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I. Introduction

The search for synergy has followed many tortuous
paths during the past 100 years, and especially during
the last 50 years, Claims of synergism for the effects,
both therapeutic and toxic, of combinations of chemicals
are ubiquitous in the broad field of Biomedicine. Over
20,000 articles in the biomedical literature from 1981 to
1987 included “synergism” as a key word (Greco and
Lawrence, 1988). Travelers on the search for synergy
have included scientists from the disciplines of Pharma-
cology, Toxicology, Statistics, Mathematics, Epidemiol-
ogy, Entomology, Weed Science, and others. Travelers
have independently found the sametrails, paths have
crossed, bitter fights have ensued, and alliances have
been made. The challenge of assessing the nature and
intensity of agent interaction is universal and is espe-
cially critical in the chemotherapy of both infectious
diseases and cancer. In the mature field of anticancer

chemotherapy, with minor exceptions, combination che-
motherapyis required to cure all drug-sensitive cancers
(DeVita, 1989). For the nascent field of Antiviral Che-
motherapy, combination chemotherapy is of great re-
search interest because of its great clinical potential
(Schinazi, 1991). Our review should aid investigators in
understanding the various rival approaches to the as-
sessmentofdrug interaction and assist them in choosing
appropriate approaches.

Wewill make no attempt to offer advice on the use of
a discovery of synergy. The interpretation of the impact
of both qualitative and quantitative measures of agent
interaction is dependent uponthefield of application. At
the very least, an agent combination that displays mod-
erate to extreme synergy can be labeled as interesting
and deserving of further study. (Inventors may use proof
of synergy as support for the characteristic of “unobvi-
ousness,” which will assist them in receiving a patent for
a combination device or formulation with the United

States Patent Office.)
There have been many previous reviews of this con-

troversial subject of agent interaction assessment.
These critiques are summarized in the next section.
However, our review is unique in several ways. First,
our bias is toward the use of response surface concen-
tration-effect models to aid in the design ofexperiments,
to use forfitting data and estimating parameters, and to
help in visualizing the results with graphs. In fact, be-
cause a major strength ofresponse surface approachesis
that they can help to explain the similarities and differ-
ences among other approaches,the entire review is from

* Supported by grants from the National Cancer Institute,
CA46732, CA16056 and RR10742.

+ Abbreviations: 3-D, three-dimensional; 2-D, two-dimensional;

Eq,, equation; vs., versus; see table 2 for mathemptical/stetiaticalabbreviations.

To whom correspondence should be addressed: Dr. William R.
Greco, Department of Biomathematics, Roswell Park Cancer Insti-
tute, Buffalo, NY 14263
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a response surface perspective. [Response surface meth-
odology is composedof a group ofstatistical techniques,
including techniques for experimental design, statistical
analyses, empirical model building, and model use (Box
and Draper, 1987). A response surface is a mathematical
equation, or the graph of the equation, that relates a
dependent variable, such as drug effect, to inputs such
as drug concentrations.) Second, two commondata sets,
one with continuous responses and one with discrete
success/failure responses, are used to compare 13 spe-
cific rival approaches for continuous data, and three
rival approaches for binary success/failure data, respec-
tively. Third, many detailed criticisms of many ap-
proaches are included in our review; these criticisms
have not appeared elsewhere.

It should be noted that the goal of this review is to
underscore the similarities, differences, strengths, and
weaknesses of many approaches, but not to provide a
complete recipe for the application of each approach.
Readers who need the minute details of the various

approaches should refer to the original articles. A good
compendium of recipes for many of the approaches in-
cluded in this review is the fourth chapter of a book by
Calabrese (1991). It should also be noted that manyof
the approaches were originally written as guidelines,
not detailed algorithms. Therefore, our specific imple-
mentations of several of the methods may have differ-
ences from the approachesactually intendedbythe orig-
inal authors.

There is no uniform agreement on the definitions of
agent interaction terms. Sources for extensive discus-
sions ofrival nomenclature include the following: Beren-
baum (1989); Calabrese (1991); Copenhaver et al.
(1987); Finney (1952, 1971); Gessner (1988); Hewlett
and Plackett (1979); Loewe (1953); Kodell and Pounds
(1985; 1991); Valeriote and Lin (1975); Unkelbach and
Wolf (1984); and Wampler et al. (1992). It is our view
that many of the naming schemes are unnecessarily
complex. We will use a simple scheme that was the
consensus of six scientists who debated concepts and
terminology for agent interaction at the Fifth Interna-
tional Conference on the Combined Effects of Environ-

mental Factors in Sarriselki, Finnish Lapland, Septem-
ber 6 to 10, 1992 (Greco et al., 1992). The six scientists,
from the fields of Pharmacology, Toxicology and Biome-
try, comprised a good representative sample of advo-
cates of diametrically opposing views on many issues.

Table 1 lists the consensus terminology for the joint
action of two agents, the major part of the so-called
Saariselkaé agreement, The foundation for this set of
terms includes two empirical models for “no interaction”
for the situation in which each agentis effective alone.
(Even though the term “interaction” has a mechanistic
connotation when applied to agent combinations,it will
be used throughout this article in a purely empirical
sense. Also, the less-mechanistic term, “combined-
action” will be often substituted for “interaction” when
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TABLE 1

Consensus terminology for two-agent combined-action concepts

Both agents effective Both agents effective 3re ‘ oP aaae . Only one agent Neither agentindivid ; Eq. 6 is individually; Eq. 11 or 14 ee ered Me eaethe aeees is the ae sandal effective individually affective individually
Combination effect greater than Loewe synergism Bliss synergism synergism coalism

predicted
Combination effect equal to Loewe additivity Bliss independence inertism inertism

prediction from reference model
Combination effect less than Loewe antagonism Bliss antagonism entagonism

predicted

feasible.) The mathematical details of these two models

are described in Section III, and the debate over which of
these is the best null reference model is the subject of
Section IV. The first model is that of Loewe additivity
(Loewe and Muischnek, 1926), which is based on the
idea that, by definition, an agent cannot interact with
itself. In other words, in the sham experiment in which
an agent is combined with itself, the result will be Loewe
additivity. The second model is Bliss independence
(Bliss, 1939), which is based on the idea of probabilistic
independence;i.e., two agents act in such a mannerthat
neither one interferes with the other, but each contrib-
utes to a common result. The cases in which the ob-

served effects are more or less than predicted by Loewe
additivity or Bliss independence are Loewe synergism,
Loewe antagonism, Bliss synergism, and Bliss antago-
nism, respectively. The use of the names Loewe and
Bliss as adjectives emphasizes the historical origin of
the specific models and deemphasizes the mechanistic
connotation of the terms additivity and independence.
Both Loewe additivity and Bliss independence are in-
cluded as reference models, because each has somelog-
ical basis, and especially because each has its own cote-
rie of staunch advocates who have successfully defended
their preferred model against repeated vicious attacks
(see Section IV), As shown in table 1, when only one
agentin a pair is effective alone, inertism is used for “no
interaction,” synergism (without a leading adjective) for
an increased effect caused by the second agent, and
antagonism for the opposite case. Alternate common
terms for the latter two cages are potentiation and inhi-
bition. When neither drug is effective alone, an ineffec-
tive combination is a case of inertism, whereas an effec-
tive combination is termed coalism.

For the cases in which more than two agents are
present in a combination, it may not always be fruitful to
assign special namesto the higherorderinteractions.It
may be better to just quantitatively describe the results
ofa three-agent or more complex interaction than to pin
a label on the combined-action. However, in some fields,
such as Environmental Toxicology, it may be useful to
assign a descriptive name to a complex mixture ofchem-
icals at specific concentrations. Then, six of the above-
mentioned terms haveclear, useful extensions to higher
order interactions: Loewe additivity, Loewe synergism,
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Loewe antagonism, Bliss independence, Bliss syner-
gism, and Bliss antagonism. Note also that all ten terms
are defined so that as the concentration or intensity of
the agent(s) increases, the pharmacological effect mono-
tonically increases. This is why the lower right-handcell
of table 1 is missing; a pharmacological effect less than
zero is not defined. However, because in the field of

chemotherapyit is common for increased concentrations
of drugs to decrease the survival or growth of infectious
agents or of tumorcells, most of the concentration-effect
(dose-response) equations and curvesin this review will
assume a monotonically decreasing observed effect (re-
sponse), such as virus titer. The dependent response
variable will be labeled as effect, % effect, % survival, or
% control in most graphs and will decrease with increas-
ing drug concentration. In contrast, JD, values such as
ID,, will refer to the concentration of drug resulting in
X% of pharmacological effect (e.g., 25% inhibition, leav-
ing 75% of control survival). The above definitions and
conventions will become clearer in later sections with

the introduction of defining mathematical equations.
The emphasis of this review will be on approaches to

assess combinations of agents that yield an unexpect-
edly enhanced pharmacological effect. Loewe additivity
and Bliss independence will be used as references to give
meaning to claims of Loewe synergism and Bliss syner-
gism, respectively. Loewe antagonism will be only
briefly discussed, as will synergism, antagonism, and
coalism. Most concentration-effect models and curves in

this review will be monotonic. Therapeutic synergy in in
vivo and in clinical systems, which involves a mixture of
efficacy and toxicity, and which often involves nonmono-
tonic concentration-effect curves for each agent individ-
ually and for the combination, will not be discussed.

The preceding discussion referred to global properties
of agent combinations;i.e., it was implied that a partic-
ular type of named interaction, such as Loewe syner-
gism, appropriately described the entire 3-D‘ concentra-
tion-effect surface. Some agent combinations may
demonstrate different types of interaction at different
local regions of the concentration-effect surface. When
this occurs, the interaction terms in table 1 can be used
to describe well defined regions. However, it is impor-
tant to differentiate true mosaics of different interaction

types from random statistical variation and/or artifacts
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caused by faulty data analysis methods. Unfortunately,
rigorous methods to identify true mosaics are not yet
available.

I. Review of Reviews

Wehavedivided reviews on the subject of synergy into
three classes: (a) whole books, some of which include
new methodology, and some of which do not; (b) book
chapters and journal articles entirely dedicated to re-
view; and (c) book chapters and articles with noteworthy
introductions and discussions of combined-action assess-

ment, but which also include new specific methodology
development or data analyses. Books include: Brunden
et al. (1988); Calabrese (1991); Carter et al. (1983); Chou
and Rideout (1991); National Research Council (1988);
Péch (1993); and Vollmar and Unkelbach (1985), Book
chapters and articles dedicated to a review of the field
include: Berenbaum (1977, 1981, 1988, 1989); Copen-
haver et al. (1987); Finney (1952, 1971); Gessner (1988);
Hewlett and Plackett (1979); Jackson (1991); Kodell and
Pounds (1991); Lam et al. (1991); Loewe (1953, 1957);
Rideout and Chou (1991); and Unkelbach and Wolf
(1984). Book chapters andarticles that include signifi-
cant reviews of various approaches, but which also in-
clude either new methodology development and/or anal-
yses ofnew data include: Chou and Talalay (1983, 1984);
Gennings et al, (1990); Greco (1989); Greco and Dembin-
ski (1992); Hall and Duncan (1988); Kodell and Pounds
(1985); Prichard and Shipman (1990); Sithnel (1990);
Syracuse and Greco (1986); Tallarida (1992); and
Machado and Robinson (1994),

Although not exhaustive, this list includes a compre-
hensive, redundant account of the interaction assesa-
ment literature. This list includes critical and non-

critical reviews of history, philosophy, semantics,
approaches advocated by statisticians, and approaches
advocated by pharmacologists. Most of the reviews are
biased toward the respective authors’ point of view, and
many of the reviews harshly criticize the work ofrival
groups. Our review is no exception. A subset of these
reviews, which along with our own, will provide a com-
prehensive, but not overly redundant view of the field
include: chapters 1 to 4 of Calabrese (1991), which pro-
vide a relatively noncritical recipe-like description of
concepts, terminology, and assessment approaches,in-
cluding many disagreements with our review; chapters 1
to 2 of Chou and Rideout (1991), which also provide a
contrasting view to our review on many issues; Copen-
haveret al. (1987), which accents the approaches devel-
oped by statisticians; Berenbaum (1981, 1988, 1989),
which critically review the approaches developed by
pharmacologists; Gessner (1988), which examines ap-
proaches developed both by statisticians and pharmacol-
ogists; and Kodell and Pounds (1991), which may be the
best source for a rigorous comparison of rival concepts
and nomenclature.
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Til. General Overview of Methods from a

Response Surface Perspective

Figure 1 is a schematic diagram of a general approach
to the assessment of the nature and intensity of drug
interactions. This schemeincludesall of the approaches
examined in later sections. This is because, in essence,
figure 1 describes the scientific method. A formal statis-
tical response surface way of thinking underlies all of
this section. With such an orientation, the similarities
and differences among rival approaches for the assess-
mentofdrug interactions, both mathematically rigorous
ones and not-so-rigorous ones, can be readily explained.

Step 1 is to choose a good concentration-effect (dose-
response) structural model for each agent when applied
individually. A common choices is the Hill model (Hill,
1910), which is also known as the logistic model (Waud
and Parker, 1971; Waud et al., 1978). The Sigmoid-
Emax model (Holford and Sheiner, 1981), is equivalent
to a nonlinear form of the median-effect model (Chou
and Talalay, 1981, 1984). However, the equivalence of
the median-effect and Hill models is disputed by Chou
(1991). The Hill model is shown in figure 2 and as Eq. 1
for an inhibitory drug. Symbol definitions are listed in
table 2.

naele=—|
= Ti

ge beck tostep 3, 4 or 6.

 
Fic. 1, Schematic diagram of a general approach to the assess-

ment of the nature and intensity of agent interactions, which in-
cludes all specific approaches.
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E(Ettect) 
D (Drug Concentration)

Fic. 2. Graph ofthe Hill (1910) model, which is also referred to as
the Sigmoid-Emax model (e.g., Holford and Sheiner, 1981), and
which is also a nonlinear form of the median-effect equation (Chou
and Talalay, 1984).

In Eq. 1, E is the measured effect (response), such as the
virus titer remaining in a culture vessel after drug ex-
posure; D is concentration of drug; Emax is the full
range ofresponse that can be affected by the drug; Dm or
ICgo is the median effective dose (or concentration) of
drug (or ID59, EDgo, LD, etc.); and m is a slope param-
eter. When m has a negative sign, the curve falls with
increasing drug concentration; when m is positive, the
curve rises with increasing drug concentration. The con-
centration-effect curve in figure 2 can be thoughtof as
an ideal curve formed by data with no discernible vari-
ation, or as the true curve known only to God or to
Mother Nature, or as the average curve formed by an
infinite number of data points at each of an infinite
numberof evenly spaced concentrations. Equations 2 to
4 are additional candidate structural models for single
agents,

 

Eco ( aalo

ICs

E= mi D\ (2)
ICs

D imE==aca) +B [3]
~ ae PP

ICs

1Dia(5)E = Econ exp(aD) = Econ “i Tc [4]50

In Eqs. 2 and 3, the parameter Econ is the control effect
(or response when no inhibitory drug is applied). When
there is no B (background response observed at infinite
drug concentration), then Econ is equivalent to Emax, as
in Eq. 2. However, whenthere is a finite B, then Econ =
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Emax + B. Eq. 4 is the exponential concentration-effect
model, which can also be parameterized with an IC.

Because real experiments rarely generate data that
fall on the ideal curve, Step 2 in figure 1 is to choose an
appropriate data variation model. Model candidates in-
clude the normal distribution for continuous data, such
as found in growth assays in which the absorbance of a
dye boundto cells is the measured signal; the binomial
distribution (Larson, 1982) for proportionsoffailures or
successes, such as in acute toxicology experiments; and
the Poisson distribution for low numbers of counts, such
as in clonogenic assays. A composite model is formed
from one structural model plus one data variation model
and eventually used for fitting to real experimental
data. This concept, called generalized nonlinear model-
ing (McCullagh and Nelder, 1989) is illustrated in figure
3, with the Hill model as the structural model, and the
normal, binomial, and Poisson distributions (respective-
ly from left to right) as the random models. (Note that
only one random component is usually assumed for a
particular data set. Graphs of three random components
are pictured in figure 3 to illustrate the universal nature
of the approach. The lower equation in the figure is a
variant of the Hill model, and the upper one is for the
binomial distribution. These equations will be described
in detail in Section VI.)

In Step 3, most approaches can be categorized into one
of two main strategies. In Step 3a, a structural model is
derived for joint action of two or more agents with the
assumption of “no interaction” (Loewe additivity, Bliss
independence, or another null reference model). Then,
after the experiment is designed and conducted, data
from the combination of agents is compared with predic-
tions of joint action from a null reference combined-
action model. This comparison can be made with formal
statistical rejections ofnull hypotheses,or by less formal
methods. In contrast, in Step 3b, a structural model is
derived for joint action that includes interaction terms.
Then, after the experiment is designed and conducted,
the full combined-action modelis fit to all of the data at

once, and interaction parameters are estimated. Both
the left-hand and right-hand strategies end in a set of
guidelines for making conclusions.

Examples of approaches that use the left-hand strat-
egy include: the classical isobologram approach (Loewe
and Muiechnek, 1926); the fractional product method of
Webb (1963); the method ofValeriote and Lin (1975); the
method of Drewinko (1976); the method of Steel and
Peckham (1979); the method of Gessner (1974); the
methods of Berenbaum (1977, 1985); the median-effect
method (Chou and Talalay, 1981, 1984); the method of
Prichard and Shipman (1990); and the method of Laska
et al. (1994). Examples of approaches that use the right-
hand strategy include the universal response surface
approach (Greco et al., 1990; Greco and Lawrence, 1988;
Greco, 1989; Greco and Tung, 1991; Syracuse and Greco,
1986); the response surface approachesofCarter’s group

Alkermes, Ex. 1045
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Symbol

artysinetty
D, [drug], D,, (drug 1), Dz, {drug 2)
I, qT, iy
Econ
Emax

B

fa
fu
fi
ICso, Igo. ICyo,15 TCso2

Dm, Dm,, Dmy Dmy,

IDx, Dx, ICx, ID.1, Dx, [Dx¢9, DXq, DXyp

xX

mm, My, Mg, Mig

a

a,6
PC,, PC;, bpy, bp
n

Bi Ba By

ci
R

GRECO ET AL.

TABLE 2

Mathematical/statistical symbol definitions

, Definition

Measured effect (or response), in this review, usually a measure of survival
Transformed response variable, continuous or discrete
A particular value of Y
Probability that the function in parenthesis is true
Mean or expected value of a transformed response
Number of successes in a binomial trial

Numberofattempts in a binomial trial
Concentration (or dose) of drug, drug 1, drug 2
Inhibitor concentrations for an inhibitor, inhibitor 1, inhibitor 2
Control effect (or response)
Maximum effect (response), is equal to Econ for an inhibitory drug in the abeence of a

background, B
Background effect (response) observed at infinite concentration for an i
Fraction of effect affected
Fraction of effect unaffected

Fraction enzyme velocity inhibited
Concentration (or dose) of drug resulting in 50% inhibition ofEmax, of drug 1,of

drug 2
Median effective dose (or concentration) of drug, of drug 1, of drug 2, of a combination

of drugs 1 and 2 in a constant ratio (equivalent to [C,,)
Concentration (or dose) of drug resulting in X% inhibition of Emax, of drug 1, of drug

2, or a combination of drigs 1 and 2 in a constant ratio
% inhibition

Slope parameter, for drug 1, for drug 2, for a combination of drugs 1 and 2 in a
constant ratio

Synergism-antagonism interaction parameter
Empirical parameters for exponential concentration-effect model
Interaction parameters of model 29
Interaction parameter of model 30
Empirical parameters for probit and logistic models
Interaction index of Berenbaum (1977)

Combination index of Chou and Talalay (1984)
Ratio of D, to D,

hibitory drug

 
Ss Ww 20 80

Drug Concentration | pM, log scale)

o2 05 1 2

Fic. 3. General scheme for the dissection ofa generalized nonlin-
ear model into random and structural components for a concentra-
tion-effect curve for a single drug.

(Carter et al., 1983, 1986, 1988; Gennings et al., 1990);
the response surface approach of Weinstein et al. (1990);
the generalized linear model approach of Lam et al.
(1991); and the response surface approach of Machado
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and Robinson (1994). The method proposed by Siihnel
(1990) has elements ofboth the left-hand and right-hand
strategies.

Although most, and possibly all, approaches for as-
sessing agent combinations may fall under the scheme
presented in figure 1, the different approaches differ
from each other in many respects. The approaches de-
veloped by pharmacologists usually stress structural
models, e.g., the median-effect approach (Chou and Ta-
lalay, 1984), whereas the approaches developed bystat-
isticians usually stress data variation models, e.g., the
approaches of Finney based on probit analysis (Finney,
1952). There are differences in the definitions of key
terms, especially that of “synergism.” Some approaches
only yield a qualitative conclusion (e.g., Loewe syner-
gism, Loewe antagonism, or Loewe additivity), such as
the classical isobologram approach, whereas others also
provide a quantitative measure of the intensity of the
interaction, such as the universal response surface ap-
proach. There are differences in the degree ofmathemat-
ical and statistical rigor, i.e., some approaches are per-
formed entirely by hand(e.g., the classical isobologram
approach), whereas others require a computer(e.g., uni-
versal response surface approach). Some approaches use

Alkermes, Ex. 1045



7 of 55 Alkermes, Ex. 1045

SEARCH FOR SYNERGY

parametric models (e.g., Greco et al., 1990), whereas
others emphasize nonparametric models (e.g., Siihnel,
1990; Kelly and Rice, 1990). The suggested designs for
experiments differ widely among the different ap-
proaches.It is therefore not surprising that it is possible
to generate widely differing conclusions on the nature of
a specific agent interaction when applying different
methods to the same data set. This will be illustrated

dramatically in Sections V and VI.
Weare highly biased in our view that the right-hand

strategy in figure 1 for assessing agent interactions is
superior to the left-hand strategy when used for the
cases in which an appropriate response surface model
can be found to adequately model the biological system
of interest. However, for preliminary data analyses for
all systems, for the final data analyses of complex sys-
tems, and for cases in which the data is meager, the
left-hand approaches are often very useful.

The derivation ofEq. 5, the flagship equation for two-
agent combined-action developed by our group, is pro-
vided in detail in Greco et al, (1990), Although we do not
put forward Eq. 5 as the model of two-agent combined-
action, it is a model of two-agent combined-action that
has proved to be very useful for both practical applica-
tions (Greco et al., 1990; Greco and Dembinski, 1992;
Gaumontet al., 1992; Guimaras et al., 1994) and meth-
odology development (Syracuse and Greco, 1986; Greco
and Lawrence, 1988; Greco, 1989; Greco and Tung, 1991;
Khinkis and Greco, 1993; Khinkis and Greco, 1994;
Greco et al., 1994). Eq. 5 will be used throughout this
review to illustrate concepts of combined-action and to
assist in the comparison of rival data analysis ap-
proaches. Eq. 5 was derived with an adaptation of an
approach suggested by Berenbaum (1985), with the as-
sumption of Eq. 2 as the appropriate model for each
agent alone. The interaction parameteris a.

E ee
Eq, 5 allows the slopes ofthe concentration-effect curves
for the two drugs to be unequal. It is this key feature
that distinguishes Eq. 5 from many other response sur-
face models used by others to describe agent interactions
(e.g., Carter et al., 1988). (This point is expanded in
Section VI. B.2.). Because Eq. 5 is in unclosed form (the
dependent variable, E, cannot be isolated on the left-
handside of the equation), a one-dimensional bisection
root finder (a computer numerical procedure explained,
e.g., by Thisted, 1988) is used to calculate F for simula-
tions. Eq. 5 was not derived from biological theory,
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ratherit is an empirical equation that often matches the
shape of real data (e.g., Gaumontet al., 1992; Greco et
al., 1990; Greco and Dembinski, 1992; Greco and Law-
rence, 1988). However, as shown below,it is consistent
with Eq. 6, the equation for Loewe additivity (Loewe and
Muischnek, 1926), which is the basis ofmany interaction
assessment approaches.

= Htaie
IDy, IDx2

For an inhibitory drug, Eq. 6 refers to a particular X%
(percent inhibition level), e.g., 58% inhibition. ID, ;,
IDx.2 are the concentrations of drugs to result in X%
inhibition for each respective drug alone, and D,, D, are
concentrations ofeach drug in the mixture that yield X%
inhibition. When the right-hand side of Eq. 6 [equal to
the Interaction index, J, of Berenbaum (1977) or to the
combination index, CI, for the mutually exclusive case of
Chou and Talalay (1984)] is less than 1, then Loewe
synergism is indicated, and when the right-handsideis
greater than 1, Loewe antagonism is indicated. When
Eq. 2 is an appropriate concentration-effect model for
each drug alone, then Eq. 7, which is a rearrangement of
Eq. 2 [similar to a rearrangement of the median-effect
equation from Chou and Talalay (1984), relates the ID,
value for any X% inhibition to the observed response
level, E, and the parameters, Econ, IC,o, and m.

[6]

E UmIDy =IOnles) (7]
Note that the right-hand expression of Eq. 7 is the same
as the denominators ofthe first two right-hand terms of
Eq.5. Therefore, the first two right-hand terms ofEqs. 5
and 6 are equivalent.It follows that Eq. 8 defines J [or CI
for the mutually exclusive case of Chou and Talalay
(1984)] for two-drug combinations whose individual
components have concentration-effect curves that follow
Eq.2.

I=CI= Dy + De
= C="tims:+7isCsam ~ 5] ( ]

[8]

=1- E ‘eaeCravege
Therefore, based upon the interaction index, /—when a
is positive, Loewe synergism is indicated, when o is
negative, Loewe antagonism is indicated, and when a is
0, Loewe additivity is indicated. The magnitude of a
indicates the intensity ofthe interaction. Thus, although
Eq. 5 is not the model for Loewe synergism (or Loewe
antagonism), it is a model for Loewe synergism (or
Loewe antagonism) that is consistent with the more
general Loewe additivity model, Eq.6.
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We now use the concept that Eq. 5 generates a Loewe
synergistic response surfaceat all effect levels, and we
present several 3-D and 2-D graphical representations of
Eq. 5 to help to show the similarities and differences
among the various approaches to the assessment of
Loewe synergism.

Figure 4 showsthe relationship between a 3-D re-
sponse surface of Loewe synergism, the construction of
isobols, and the calculation of interaction indices. The
3-D surface was simulated with Eq. 5, our flagship
model for agent interaction for the case in which the
individual drugs follow the Hill model, Eq. 2, with un-
equal slope parameters. The interaction parameter, a,
was made equal to 5 to demonstrate strong synergism.
The other parameters used and additional technical de-
tails are listed in the figure legend. Note the scooped out
nature ofthe Loewe synergistic surface in contrast to the
three Loewe additivity bars at 75%, 50%, and 25% of
control. A complete Loewe additivity surface (a = 0)
would consist of straight lines running across the sur-
face parallel to these bars at every effect level. To show
the 3-D origin of 2-D isobols, the surface is cut and
separated at the 25%, 50%, and 75% effect levels and
rotated so that the viewer sees the surface from the top.
The isobols in panel (D) are not symmetric because ofthe
different slope parameters for drug 1 (m = -1) and drug
2(m = -2). However, as seen in panel (E), normalizing
the drug concentrations by the respective ID, values
(from Eg. 7) makes the isobols symmetric. In addition,
the normalization reverses the order of the isobols and

makes the Loewe additivity lines lie on top of each other
for all effect levels. Panel (E) shows the geometrical
relationships among normalized isobols, interaction (or
combination) indices, and response surface equations.
Onespecific CI calculation is given for one specific point
on the 25% pharmacological effect (75% control) isobol.
The calculated CI is 0.68, indicating Loewe synergism.
Vertical lines, made up of three different line patterns,
run through the two data points. The three segments of
each line correspond to the three right-hand parts of the
response surface model, Eq. 5.

The geometrical relationships between interaction
models and isobols are further examined in figure 5.
Note in panel A that lines at a 45° angle in the northeast
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direction between the isobol and the Loewe additivity
diagonal are equal to the interaction term divided by /2.
In panel (B), panel (A) is redrawn with the curves re-
moved, with many horizontal, vertical and diagonal
lines drawn, and with vertices labeled. These reference
lines and ubiquitous 45° triangles all aid in the inter-
pretation of the geometry of the 25% isobol (75% con-
trol), In panel (B), the length of each thick line repre-
sents the magnitude of the interaction term. This is a
general result and will be true for a large class ofspecific
equations that follow the general interaction equation,
Eq. 9.

1 Bite +e D, ) (9)= Tn.*tm 22:IDy, IDx2 IDy;" IDx2 e
  

Eq. 9 is a general form that is independent ofthe specific
concentration-effect models for each drug (that may be
different for each drug). Also, the interaction term may
be any function of the normalized concentrations, may
include any numberof interaction parameters, a, and
may include any numberof additional parameters, p.
Additional specific response surface interaction models,
including ones from Weinstein et al. (1990) and
Machado and Robinson (1994), which are consistent
with Eq. 9, are described in Section V.L.

Figure 6 shows the geometrical relationships for 50%
effect isobols for Eq. 5, with various valuesofa listed in
the figure legend. Whenais positive, the isobols are to
the left of the Loewe additivity diagonal (a = 0), line E;
larger a values increase the bowing of the isobols, indi-
cating more intense Loewe synergism. Whenoais nega-
tive, the isobols are to the right of the Loewe additivity
diagonal; as a increases in absolute value, the isobols
become more bowed,indicating more intense Loewe an-
tagonism. The degree of bowing of the isobols can be
quantitated as the ratio of the line segments, S = on/om
(Hewlett, 1969) or by the sum of op + og (Elion et al.,
1954). The interaction parameter, a, is related to these
geometrical measures (Greco et al., 1990). Eq, 10 was
derived by Greco etal. (1990) and showsthe relationship
between a and S for the 50% effect isobols of Eq. 5.

a = 4(S? — S) [10]

Fic. 4. Mlustration of the relationship between a 3-D response surface ofLoewe synergism, the construction of isobols, and the calculation
ofcombination (interaction) indices. (A) A hypothetical 3-D solid shaded graph ofmeasured effect (response, survival, or some other endpoint)
expressed as a percentof control effect va, the concentrations of drug 1 and drug 2. This graph was simulated with Eq. 5, with parameters:
Econ = 100, ICgq, = 1, 1Cg9.9 = 1, m, = -1, mz = -2, a = 5. The horizontal lines connecting the edges of the surface at 75%, 50%, and 26%
ofcontrol are part ofa Loewe additivity surface (Eq, 5, « = 0). (B) The surface is cut and separated at the 75%, 60%, and 25% ofcontrollevels,
and the sections are pulled apart to accent the inward curved shape of the surface. (C) The sectioned surface is being rotated so that the
viewer will be able to see the surface from the top. (D).A view of the surface from the top; a set of 2-D isobols at 75%, 50%, and 25% ofcontrol,
along with their corresponding Loewe additivity lines. (EZ) An isobologram in which the isobols at 75% and 25% ofcontrol each have their drug
concentrations normalized by their respective JD,values, This makesall of the isobols symmetrical, makesall of the Loewe additivity lines
coincide, and reverses the order of the isobols. Two vertical lines, each running the full length of the Y-axis, and each comprised of three
segments ofdifferent line patterns, one for the 25% isobol (‘75% ofcontrol) and one for the 75% isobol (25% ofcontrol) ehow the correspondence
between the isobol diagram and Eq. 5. Each of the three eegments corresponds to one of the three right-hand expressions ofEq.5. In addition,
the correspondence of the combination (or interaction) index, CI, and the isobola and Eq.5 is illustrated.
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Fic. 5. Diagram to show the general correspondence between the geometry of interaction isobola and the algebraic expressions of
interaction mathematical models. (A) An elaboration of Figure 4, Panel(E), which shows the correspondence between the lengths of line
segments in the normalized isobologram andthevalue ofthe three right-hand expressions in Eq.5 at 75% ofcontrol. Note that the interaction
term that contains a,is the vertical distance between the curved isobol and the additivity line. (B) Panel (A) is redrawn,but only for the 25%
isobol (75% of control) (with the curve removed), and many horizontal, vertical, and diagonal lines drawn and vertices labeled. The length
of each thick line is equal to the value ofthe interaction term. This is a general correspondence, and will be true for many specific models
that follow the general form of Eq. 9.

 
Fic. 6. Examples of isobols for the 50% effect level, simulated

from equation 5, for a range of a values. For curves A through H, a
was 100, 2, 1, 0.5, 0, -0.5, -0.75, and-0.99. Curvea A through D
represent varying degrees of Loewe synergism; curves F through H
represent varying degrees of Loewe antagonism, and curve E is the
straight line of Loewe additivity. The point n is the center of the
straight Loewe additivity line, and points m are the centers of
the other isobols. Pointa p and q are the abscissa and ordinate of the
point m. The degree of bowing of the isobols can be quantitated as
the ratio of the line segments, S = om/on (Hewlett, 1969) or by the
sum of op + og (Elion et al., 1954).

Figure 7 shows the relationship between the same 3-D
response surface described in figure 5 and the concept of
the CI vs. fa plot (mutually exclusive case) of the medi-
an-effect approach (Chou and Talalay, 1984). Although
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the exact calculations for the CI vs. fa plot suggested by
Chouand Talalay (1984) will be disputed in Section V.G,
we believe that the general idea has great merit. Essen-
tially, the 3-D surface is cut lengthwise along a fixed
ratio ofD,:D, (for example,a ratio of 1:1 in fig. 7). Then,
both the Loewe synergistic ray and the predicted Loewe
additivity ray are drawn on a 2-D concentration-effect
graph,both rays are normalized by the ID, values along
their whole lengths, and then the normalized graph is
rotated counterclockwise by 90°. The details are pro-
vided in the figure legend.

Figure § is another graphical sequence, using the
same simulated 3-D surface as shown in figures 4, 5, and
7, created to illustrate the concept ofthe CIvs, fa plot. In
panel (A), the Loewe synergistic surface is deleted ex-
cept for one vertical, infinitely thin slice for the fixed
ratio ofD,:D, of 1:1. The length of the short horizontal
line segments at various effect levels drawn from the
curve to the backplanes are the values ofD, and D, used
to construct the Loewe synergistic surface. Panels (B)
and (C) show the unnormalized and normalized set of

isobols, respectively. The solid points in these panels are
the same ones as in figure 7. The sum ofone vertical and
one horizontal line from each point in Panel C is equal to
the C/ at that effect level. Details are provided in the
figure legend.

Thus, in essence, the isobologram approach consists of
making horizontal slices through a 3-D surface, and the
median-effect. approach (mutually exclusive case) con-
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Fic. 7. Dlustration of the relationship between a 3-D response surface of Loewe synergism and the CI vs. fa plot of the median-effect
approach (Chou and Talalay, 1984).(A) The same hypothetical 3-D solid shaded graph shown in figure 4 is shown here. A curve is drawn on
the surface for a fixed ratio ofD,:D, of 1:1, and a corresponding Loewe additivity curve, to the right of the solid surface, is drawn for the same
fixed ratio of D,.D, (a = 0). (B) The eolid surface is cut and separated at the fixed ratio of D,:D, to accent the shape of the curved Loewe
synergistic surface (the Loewe additivity curve was removed for clarity). (C) A 2-D plot of the Loewe synergistic and additive curves at the
same fixed ratio ofD,:D,, with D, + D, as the X-axis. The solid points in Panels (C) through (EZ) correspond to % Control levels of 99, 95,
90, 75, 60, 25, 10, 5, and 1. (D) The drug concentrations have been normalized by their respective [D,s, and the X-axia is now the sum of the
normalized concentrations. (E) Because the normalized sum ia the same as the combination index, CJ, for the mutually exclusive model, Eq.
8 (Chou and Talalay, 1984), and the % control is the aame as 100 [1 - fa] (where fa is the fraction ofeffect affected), the CI va. fa plot can be
obtained by rotating the graph in Panel D counterclockwise by 90°.

sists of making vertical slices through the same 3-D
surface. Both approaches and their variants then in-
clude examination of the shape of the slices, with or
without data transformations, and/or making somecal-
culations to summarize the shape of the slices, usually
with comparison to a Loewe additivity reference.

The difference between a Loewe synergistic surface
and a Loewe additivity reference surface can also be
examined in 3-D. The difference can be calculated in the

horizontal or vertical directions, and plotted, with or
without additional transformations. The use of differ-

ence surfaces to examine combined-actions has been

introduced by Prichard and Shipman (1990) and Stihnel
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(1992c). The 3-D CI plot in figure 9 was calculated with
Eq. 8 for the same simulated Loewe synergistic surface
(a = 5) shown in the previous figures. Note that CI
starts at 1 for each drug alone, and decreases toward
zero for combinations as either drug concentration in-
creases toward infinity. Thus, for Loewe synergistic
drug combinations that follow Eq. 5, there is more in-
tense interaction, as quantified by CI (or J), at higher
drug concentrations. In contrast, figure 10 [panels (A)
and (C)] shows the results of plotting the vertical differ-
ence between the Loewe synergistic (a = 5) and additiy-
ity surface. Panel (A) shows the Loewe synergistic sur-
face with a fishnet and the Loeweadditivity surface as a
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Fic. 8. An additional illustration of the relationship between a 3-D response surface of Loewe synergism and the combination index,CY.
(A) For the same hypothetical surface shown in Figs. 4, 5, and 7, the concentration-effect curves for drug 1 and drug 2 alone are shown along
the back walls of the figure, together with the Loewe synergistic middle curve for a fixed ratio ofD,-D, of 1:1. Line segments from the joint
drug curve to the back walls represent the values ofD, and D, used to construct the curve at % Control values of 99, 95, 90, 75, 50, 25, 10,
and 6. (B) A view of the isobols for the aurface from the top. The numbers next to the isobola indicate the % Control. The solid dots along the
northeast-pointing diagonal indicate the points corresponding to the fixed ratio ofD,:D, of 1:1 at the indicated levels of% Control. Although
not included in Panel(B), the line segments in Panel A would be horizontal and vertical lines from the dots to the axes. (C) The [Drug 1] and
[Drug 2] axes are normalized by the respective ID, values. The addition of the lengths of a horizontal plus a vertical line segment for each
solid dot equals the C/ for the respective % Control level. These points correspond to the respective points in figure 7.

We”ye 
Fic. 9. A 3-D fishnet plot of the CI calculated from Eq. 8 for the

Loewe synergistic concentration-effect surface described in Figs.4, 5,
7, and 8.

solid sheet on top of the fishnet. Note that the difference
between the two surfaces, shown in panel(C), has a peak
near D, = D, = 1. Thus, when looking at vertical differ-
ences, the largest synergism is not at infinite drug con-
centrations, but rather at achievable drug concentra-
tions near (but not exactly at) the [C,,'s of each drug.
This critical difference in the two ways of forming dif-
ferences between Loewe synergistic and Loewe additive
surfaces,i.e., either in the horizontal or vertical direc-
tion, has profound implications for experimental design,
as discussed in Section VIII.
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In figure 10, panels (B) and (D) were constructed in an
analogous manner to panels (A) and (C), except that the
null reference model was that for Bliss independence,
not for Loewe additivity. The general form of the Bliss
independence effects equation is Eq. 11, and a specific
form, which assumes that Eq. 2 is appropriate for each
drug individually, is Eq. 12.

fuijg = furfue

D,; my Dg Tryie Beon(5°] (a)
blese-Ge)

In Eq.11, fti,, fue, and fu,, are the fractions of possible
response for drug 1, drug 2, and the combination(e.g., %
survival, %control) unaffected (Chou and Talalay, 1984).
For Eqs. 2, 5, and 12, fu = E/Econ. Eq. 12 was used to
generate the upper solid surface in panel B, Note that
the difference plot in panel (D) has a central peak, but
the peak is higher than the analogous one for the Loewe
additivity reference in panel (C).

Which is a more appropriate reference, Loewe addi-
tivity (generally represented by Eq. 6) or Bliss indepen-
dence (generally represented by Eq. 11)? Some of the
approachesfor interaction assessment examined in Sec-
tion V use the Loewe additivity reference and others use
the Bliss independence reference. This controversy is
examined in detail in Section IV.

Our preferred paradigm of interaction assessmentis
most closely akin to the philosophical principles ex-
pressed by Berenbaum (1981, 1985, 1988, 1989), but

[11]

[12]
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Fic. 10. (A) 3-D fishnet Loewe synergistic surface simulated with Eq. 5, with parameters: Econ = 100, ICgo , = 1, ICgo9 = 1,m, = -1, mg =
-2, a = 5, the same as in Figs. 4, 5, and 7 through 9. The solid surface on the top ofthe fishnet is a Loewe additivity surface simulated with
the same values for the first five parameters, but with a = 0. (B) The 3-D fishnet Loewe synergistic surface is the same one as in Panel (A),
but the solid top surface was simulated from the Bliss independence model, Eq. 12, with parameters: Econ = 100, [C59= 1,ICg0,3 = 1, my =
-1, mg = -2. C. A3-D solid shaded graph of the difference between the Loewe additivity and Loewe synergistic surfaces in Panel (A). The
contour lines are at five-unit intervals. (D) A 3-D solid shaded graphofthe difference between the Bliss independence and Loewe synergistic
surfaces in Panel (B).

with several major differences. The elements of the par-
adigm include: (a) combined-action assessment is most
appropriate for complex systems in which a complete
correct description of the mechanisms by which the
agents cause their single and joint effects does not exist.
Ifsuch a description does exist, then mathematical mod-
els based upon a mechanistic understanding of the con-
centration-effect relationships should be applied to data,
not general combined-action mathematical models; (b)
the degree of departure from “no interaction” of the
concentration-effect surface for an agent combination is
a quantitative measure of the ignorance of the investi-
gator, i.e., if the system were well understood by the
investigator, and this understanding were incorporated
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into the “no interaction” model, then the experimental
results would be as predicted (e.g., Loewe additiv-
ity)}—no more,noless; (c) the Loewe additivity equation,
Eq. 6, the Bliss independence equation, Eq. 11 or 14, or
response surface interaction models adapted directly
from them, should be used in an initial step to evaluate
departures from the no interaction reference, without
regard to mechanistic interpretation; (d) a later useful
step in interaction assessment mayinvolvethe interpre-
tation of Loewe synergism, Loewe additivity, Loewe an-
tagonism, Bliss synergism, Bliss independence,Bliss an-
tagonism, synergism, inertism, antagonism, or coalism
via mechanistic arguments. For relatively simple sys-
tems, such as individual enzymes or receptors or small
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networks of enzymes and receptors, it may be useful to
establish the relationship between empirical interaction
models and mechanistic biochemical models. However,
except for very well understood simple systems, it is
unlikely that the results of a combined-action analysis
will unambiguously lead to a correct mechanistic expla-
nation of an observed agent interaction; (e) the main
uses of general combined-action analyses are:

(1) to summarize a large amount of data with a joint
concentration-effect surface, with relatively few param-
eters, for a combination of agents.

(2) to facilitate good predictions ofjoint effects in re-
gions in which no real data was collected (interpolation
and judicious extrapolation).

(3) to empirically find and characterize agent combi-
nations with intense interactions, in order to use or to
avoid the combinations for specific practical purposes.

(4) to quantitatively characterize a system, so that the
effect of changes in some other factor can be quantified.

(5) to provide a lead to a mechanistic explanation of
joint action.

IV. Debate Over the Best Reference Model for

Combined-action

Because synergism (and antagonism) are commonly
defined as a greater (or lesser) pharmacological effect for
a two-drug combination than what would be predicted
for “no interaction” from the knowledge of the effects of
each drug individually, their definitions critically de-
pend upon the reference model for “no interaction.” It is
our view that there are only two reference models that
deserve extensive consideration. Thefirst, and our pref-
erence, is Loewe additivity, which is defined by Eq. 6. A
specific model for Loewe additivity that assumes the Hill
equation, Eq. 2, for the concentration-effect model for
each drugindividually, is Eq. 13.

dD, Dz
1 ==!e\e+fF\Uma{13]

Isea= 5] i walSeam - 5)
Note that Eq. 13 is equivalent to Eq. 5 with the third
right-hand term, the interaction expression, dropped.
Also note that Eq. 13 is merely the Loewe additivity
model, Eq. 6, with the substitution of the definition of
ID, for the Hill model, Eq. 7, for both drugs. This deriva-
tion for a specific Loewe additivity model follows the guide-
lines of Berenbaum (1985), and the examples of Hewlett
(1969) and Siihnel (1992c). The additivity reference con-
cept was first mentioned by Frei (1913) and was first
defined formally by Loewe and Muischnek (1926). The
Loewe additivity reference is the diagonal Northwest-
Southeast line in isobolograms of figures 4, 5, 6, and 8 and
is a key part of the classical isobologram approach (Loewe
and Muischnek, 1926; Elion et al., 1954; Gessner, 1974).
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The simplest intuitive explanation of the concept of
Loeweadditivity is the following sham experiment: an
aliquot ofa solution of drug 1 from a tube is poured into
a second tube and then diluted with an appropriate

solvent. When these two preparations are falsely labeled
as different agents and their combination is examined,
the result will be Loewe additivity. [Gennings et al.
(1990) experimentally illustrated and verified this con-
cept by examining the loss of righting reflex of mice
treated with the combination of sodium hexobarbital

with itself.] Thus, by definition, one agent is noninter-
active with itself. Advocates of the Loeweadditivity ref-
erence for no interaction use this sham studyofone drug
with itself as a litmus test to invalidate other reference

models (e.g., Berenbaum, 1981), From this logic, Loewe
additivity implies that each of two drugs act similarly,
presumably at the samesite of action, differing only in
potency. However, Eq. 6 is less restrictive than this
narrow interpretation. The constraint of Eq. 6 can be
obeyed for two drugs with different concentration-effect
slopes, (e.g., Eq. 13) that presumably would not act at
the samesite. In fact, each of the two drugs in a combi-
nation could follow different concentration-effect func-

tions and still obey Loewe additivity, Eq. 6, This flexi-
bility is considered a weakness, with no theoretical
justification, by opponents of the Loeweadditivity refer-
ence [Greco et al., (1992)]. They contend that the rare
observation of Loewe additivity in real complex experi-
mental systems is only fortuitous and does not lead one
to any mechanistic conclusion.

The strongest advocate of approaches based upon the
Loewe additivity reference has been Berenbaum (1977,
1978, 1981, 1985, 1988, 1989). Of the approaches eval-
uated in our review, the following use the Loewe addi-
tivity reference: isobologram by hand; interaction index
of Berenbaum (1977); median-effect method of Chou
and Talalay (1984); mutually exclusive model method of
Berenbaum (1985); bivariate spline fitting (Siihnel,
1990); parametric response surface approaches of Greco
et al. (1990) and Weinstein et al. (1990); approach of
Gessner (1974); parametric response surface approach of
Greco and Lawrence (1988); and the use of the multiva-
riate linear logistic model (Carter et al., 1983, 1986,
1988; Brundenet al., 1988). The concepts of similarjoint
action (Bliss, 1939), simple similar action (Plackett and
Hewlett, 1952), and concentration (dose) addition (Shel-
ton and Weber, 1981) are all consistent with Loewe
additivity, as defined by Eq. 6. However, as discussed
above, Loewe additivity also includes cases not consis-
tent with these more restrictive concepts.

In our view, the most convincing argumentin favor of
the use of the Loewe additivity model, Eq. 6, as a uni-
versal reference to define “synergism” and “antago-
nism,” is that it can best survive criticism. With the
possible exception ofBliss independence,all of the other
candidate reference models can be fatally wounded from
well aimed attacks; whereas, the Loewe additivity
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model, although not completely unscathed,is still stand-
ing after the smoke of battle clears. The Loewe additiv-
ity reference model, by definition, yields the intuitive
correct evaluation of the sham combination of one drug
with itself to be Loewe additivity (or as preferred by
Berenbaum, 1981, “no interaction”). The Loewe additiv-
ity reference model is, in fact, merely a reasonable as-
sumption, The interpretation ofan assessment of Loewe
additivity, Loewe synergism, or Loewe antagonism is, in
general, free of mechanistic restrictions and implica-
tions, [In principle, the mathematical models and pa-
rameters of specific biological systems can be mapped to
empirical combined-action models and parameters to
facilitate a mechanistic interpretation of a combined-
action analysis, but work on such mappings is in its
infancy (e.g., Bravo et al., 1992; Jackson, 1993).] From a
response surface perspective, the Loewe additivity
model, Eq. 6, can be adapted to yield many useful em-
pirical models of combined-action, such as Eq. 5.

In our view, the only other major contender for a
universal reference of noninteraction (worthy of thesil-
ver medal) is Bliss independence, Eg. 11, or its equiva-
lents. Eq. 12 is a specific Bliss independence model that
assumes that the Hill model, Eq. 2, is an appropriate
concentration-effect model for each drug individually.
Bliss independence implies that two agents do not phys-
ically or chemically or biologically cooperate; i.e., each
agent acts independently of the other. Berenbaum
(1981) describes an interesting hypothetical experiment
that provides an intuitive feel for independently acting
agents. His thought experiment involves randomly
throwing either bushels of nails or pebbles or both at a
collection of eggs. None of the causal units, nails or
pebbles, cooperate with each other in the cracking of an
egg, an all-or-none phenomenon.Butrather, each causal
unit has a certain probability (different for nails or peb-
bles) of hitting an egg, and the cumulative damage is
merely the result of correctly combining probabilities.

The Bliss independence reference model has an intu-
itive, theoretical basis: the concept of noninteraction;it
has a simple general formula, Eq. 11. Testing of the
model usually requires frugal experimental designs, and
many specific approaches for interaction assessmentin-
corporate it. These approaches include: the fractional
product method of Webb (1963); the method ofValeriote
and Lin (1975); the method ofDrewinko et al. (1976); the
method of Steel and Peckham (1979), Mode I; and the
method of Prichard and Shipman (1990). Synonyms for
Bliss independence include: independent effects, inde-
pendentjoint action (Bliss, 1939); independent action
(Plackett and Hewlett,.1952); response (effect) addition
(Shelton and Weber, 1981); effect summation (Gessner,
1988); and effect multiplication (Berenbaum, 1981).
[Note: if Eq. 11 is recast in terms of the fraction of
possible effect, with subscripts referring to specific con-
centrations of agent 1, agent 2, and the corresponding
combination of agents 1 and 2, then Eq.14is the result.
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This equation is analogous to the common formula for
the combination of probabilities (e.g., Larson, 1982).]

faj2 = fa; + fag — fa;faz [14]

Gessner (1974; 1988)offered a philosophical argument
against the Bliss independence model: he questioned
whether, given the high degree of integration ofa living
organism, the action of an agent on one receptor type,
target organ, or system can ever be envisaged as not
altering to some degree the responsiveness ofother recep-
tors, organs, or systems to a simultaneously present sec-
ond agent. Certainly, complex systems with extensive
positive and negative feedback pathwaysatall levels of
biological organization are ubiquitous and are the chief
targets of drug therapy (Jackson, 1992). Most examples
oftheoretical systems that follow the Bliss independence
model are relatively simple, such as single enzymes(e.g.,
Webb, 1963) and simple biochemical pathways (e.g.,
Jackson, 1991).

Gessner (1988) also mentioned that he had never seen

a published isobologram for the 50% effect level for
quantal data in which an isobol reasonably followed the
Bliss independence model throughout the whole curve.
In contrast, Péch and coworkers have reported several
examples ofBliss independence (e.g., Péch,1990; Péch et
al., 1990a, b, c; Péch, 1991; Péch, 1993). An objective
survey would be necessary to estimate the frequency of
occurrence of exact Bliss independence for combinations
of agents in real experimental work. However, just as
with Loewe additivity, it is aleo our impression that pure
Bliss independence in complex systems is a rare occur--
rence.

The most convincing arguments against the Bliss in-
dependence model as a universal reference model for
noninteraction use the pair of concentration-effect
curves in figure 11 (Greco, 1989). [Similar figures and
arguments were previously published by Grindeyet al.
(1975) and Berenbaum (1977, 1981)]. Figure 11 includes
individual simulated data points and simulated concen-
tration-effect curves for two different hypothetical inhib-
itory drugs. Suppose that 0.5 um ofdrug 1 results in 95%
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Fic. 11. Hypothetical concentration-effect curves for two drugs to
demonstrate a logical inconsistency for approaches to assess drug
synergism based upon the assumption of Bliss independence, Eq. 11
or Eq. 14, as the “no interaction” reference model.
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survival of cells in a typical growth inhibition experi-
ment, likewise for drug 2. From Kq. 11, one would pre-
dict that the noninteractive response for 0.5 1M of drug
1 plus 0.5 uM of drug 2 would be about 90% survival.
Therefore, if one found that this drug combination elic-
ited, let’s say, 40% survival of cells, one would conclude
strong, undeniable Bliss synergism. However, note in
figure 11 that either 1 uM ofdrug 1 aloneor 1 yM of drug
2 alone brings the survival of cells down to 30%. There-
fore, a total of 1 wm of the hypothetical combined drug
preparation elicits less of a cell kill than 1 uM of either
drug alone, yet one would conclude strong Bliss syner-
gism under methods based upon the Bliss independence
reference assumption, Eq. 11.

Figure 11 can also be used to illustrate the paradox of
the sham combination of one drug with itself. Let’s say
that a drug preparation is divided into two tubes, and
then each tube is treated as if it contained a different

drug. The two concentration-effect curves in figure 11,
which are in fact identical, would result. Using the same
logic as used in the beginning of the previous paragraph,
one would conclude that the drug is Bliss synergistic
with itself. This absurd conclusion is inconsistent with

the intuitive definitions of“synergism,” “additivity,” and
“antagonism” used by many researchers.

It is our view that these two aspects ofthe same basic
criticism illustrated by figure 11 are persuasive enough
to relegate Bliss independence to second place for the
optimal routine reference for defining “synergism” and
“antagonism.” However, proponents of the Bliss inde-
pendence reference have several counterarguments:(a)
when concentration-effect curves are steep, such as in
figure 11, the joint effects of a Bliss synergistic combi-
nation may be disappointingly small relative to the ef-
fects of each drug individually, but this result is neither
paradoxical nor absurd; (b) a drug with a steep concen-
tration-effect curve is Bliss synergistic with itself (this is
a fundamental tenet of Biology); (c) the sham combina-
tion of a drug with itself is a silly experiment, and the
so-called paradox is, at worst, a minor exception to a
generally useful concept; (d) ifit is known that two drugs
in a combination act at the same biochemical site, a
relatively rare situation, then their actions cannot be
independent, and one shouldn’t use the Bliss indepen-
dence reference. Figure 11 is merely an illustration of
the extreme case of this situation, in which the two dose
response curves are identical.

Our rejoinders to these counterarguments include:(a)
the search for synergy will often involve agents, drugs,
and preparations with multiple, complex, possibly un-
known mechanismsofaction, and therefore, guidelines
for the assessmentofinteraction must not depend upon
knowledge of mechanisms ofaction; (b) a general con-
cept must encompass rare cases; (c) the first argument
illustrated by figure 11 did not require that the two
drugs be the same or that they have similar sites of
action, but only that they have steep concentration-
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effect curves; (d) a reference model that can result in the
counterintuitive result, that a synergistic combinationis
less effective than its components applied individually,
is not useful. '

As pointed out by Berenbaum (1981), the fundamental
explanation underlying both forms of the above paradox
involves the functional form of the individual concentra-

tion-effect curves. Only when each individual concentra-
tion-effect curve follows Eq. 4, that for exponential de-
cline with dose, will there be no paradox: Loewe
additivity will be concluded from the sham combination
of one drug with itself. Eq. 15 would be the resulting
equation for no interaction of two drugs, from combining
either Eq. 4 and Eq. 6 (Loewe additivity) or Eq. 4 and Eq.
11 (Bliss independence). Concentration-effect curves
steeper than the exponential model will lead to the
above paradox; whereas, concentration-effect curves less
steep than the exponential modelwill lead to an opposite
paradox. (Note: the data points and curves in figure 11
were simulated with Eq. 2 with Econ = 100, IC59 = 0.86
pM, and m = -5.6, resulting in relatively steep curves.)

E = Econ exp(aD,)exp(bD.) = Econ exp(aD, + 6D») [15]

However, we disagree with Berenbaum’s inference
from the abovelogic that the Bliss independence model,
Eq. 11, is appropriate for describing the joint action of a
combination only when each of the component drugs
have exponential concentration-effect curves, Eq. 4. Be-
renbaum (1981) argues that in order for molecules of
drug 1 to act independently from molecules ofdrug 2,all
molecules of drug 1 must act independentlyof all other
molecules of drug 1, resulting in an exponential concen-
tration-effect curve for drug 1; all molecules of drug 2
must act independently ofall other molecules of drug 2,
resulting in an exponential concentration-effect curve
for drug 2. This argument can be refuted by a specific
counterexample from Jackson (1991). Jackson (1991)
modeled a hypothetical biochemical pathway consisting
of: a substrate, A, being converted to substrate B by
enzyme 1; substrate B being converted to substrate C by
enzyme2, and to substrate D by enzyme3; a competitive
inhibitor of enzyme 1; and a competitive inhibitor of
enzyme 2. When the enzyme kinetic parameters are
adjusted to give a high sink capacity (the ratio of the
sum of the maximal velocities of enzymes 2 and 3 di-
vided by the maximal velocity of enzyme 1), exact Bliss
independence of the effects of the two inhibitors can be
achieved. The individual concentration-effect curves for

the two inhibitors followed the Hill model, Eq. 2, and
thus were nonexponential, yet the specific Bliss indepen-
dence model, Eq. 12, fit the data perfectly over a wide
range of inhibitor concentrations (Bravo et al., 1992). In
addition, Péch (1991) provides several specific examples
of Bliss independence found with real laboratory data, in
which the individual concentration-effect curves follow

the Hill model, Eq. 2 or 3. Thus, this specific argument

Alkermes, Ex. 1045



17 of 55 Alkermes, Ex. 1045

SEARCH FOR SYNERGY

of Berenbaum against the independenteffects modelis
questionable.

Although we prefer Loeweadditivity to Bliss indepen-
dence as a universal reference for the lack of “syner-
gism” or “antagonism,” we must concede that the Bliss
independence camp has successfully resisted total de-
feat, It is clear that adherents of Loewe additivity and
Bliss independence have heard all of the most compel-
ling arguments for and against each model and cannot
be persuaded to switch allegiances. Thus, the debate can
progress no further, and we join in the recommendation
that both models be accepted as legitimate empirical
reference standards for “no interaction.” It must be em-

phasized, however, that neither model is well suited for
unambiguously indicating mechanistic explanations for
the joint action of agents in complex systems, such as
whole cells, single organisms, or populations of organ-
isms. In order for researchers to make mechanistic con-

clusions for a specific experimental system, the corre-
spondence between empirical concepts—such as Loewe
synergism or Bliss antagonism—and theoretical mecha-
nisms must be derived. This is a rich source for future

research initiatives.

The shapesof isobols for Loewe additivity and Bliss
independence will, in general, be very different. Figure
12 shows a set of isobols at the 50% effect level for the

specific Bliss independence model, Eq. 12, which incor-
porates the Hill model, Eq. 2, for the individual concen-
tration-effect curves. The shape of the isobols is deter-
mined only by the two slope parameters, m, and mo;
these are listed in figure 12 next to each respective
isobol. [Note: Similar figures and observations are pro-
vided by Gessner (1988) and Péch et al. (1990c)]. When
the slope parameters are the samefor the two drugs, the
isobols are symmetrical; when they are different, the

 
0.50

DMD5as
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Fic. 12. Normalized isobols at the 50% effect level, for the Bliss
independence model, Eq. 12, for various values of m, and mg, which
are set next to each corresponding curve. A single m indicates that
Mm, = Mg = m.The thick diagonal line is the line of Loewe additivity.
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isobols have an S shape and may cross the Loewe addi-
tivity diagonal. Slope parameters that are large in mag-
nitude result in Loewe antagonism; whereas, slope pa-
rameters that are small in magnitude result in Loewe
synergism. It may be useful to superimpose the pre-
dicted Bliss independence model on both 2-D and 3-D
representations of two-drug combination concentration-
effect surfaces. If the superimposed Bliss independence
curveslie close to the data, then it may be useful to infer,
after making necessary assumptions, that the two drugs
may, in some sense, act independently.

Four other candidates for a universal reference for no

interaction will be briefly described and critiqued below.
The first is Eq. 16, that for effect addition, and the
second is almost the same, Eq. 17, that for fractional
effect addition. [Note: Some authors call Eq. 11 and 14
the effect addition model (e.g., Shelton and Weber,
1981).]

Ey2= EF, + Eg [16]

fai2 = fa; + faz (17]

According to Eq. 16, if the effect for a particular concen-
tration of drug 1 was 20 units and that for a particular
dose of drug 2 was 30 units, then the no interaction
prediction would be 50 units. As pointed out by Beren-
baum (1981), this intuitive definition of no interaction
may underlie the claims of synergism and antagonism
for which authors provide no explicit definitions. Eq. 16
is not easily applied to the common case in which the
drugs have some maximum possible effect, because ifE,
and £, are both reasonably large, 60 and 70,let’s say,
and close to the maximum possible effect, 100,let’s say,
then Ej, would be 130, greater than the maximum pos-
sible effect, resulting in an inconsistency. For one re-
stricted situation, when each of the individual con-
centration-effect curves are linear and increasing,
Berenbaum (1981) showed that Eq. 16 is consistent with
the Loewe additivity model, Eq. 6.

A somewhat more credible variation of effect addition,
Eq. 16, is fractional effect addition, Eq. 17. According to
Eq. 17, if the fraction of possible effect affected for drug
1 is 0.20 and thefraction affected for drug 2 is 0.30, then
the no interaction prediction would be 0.50. Eq. 17 is
also easily eliminated as a candidate for a universal
standard by considering an example in which the frac-
tional effects are both large, let’s say, fa, = 0.60 and
faz = 0.70. Because fa,, has an upper limit of 1.0, the
sum of fa, + faz, which equals 1.30, leads to an incon-
sistency. In addition, paradoxes regarding synergy, sim-
ilar to those described above for the Bliss independence
reference model, can be contrived using figure 11. How-
ever, Eq. 17 is valid or approximately valid under sev-
eral restricted situations. The first is the case in which

fa, and fa, are both very small. Then Eq.17 will approx-
imate Eq. 14, that for Bliss independence, because the
product term will be very small (Péch, 1991). The second
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is independenteffects for quantal responses, in which
the susceptibilities of the individual organisms to the
two drugs are completely negatively correlated (any or-
ganism that is affected by drug 1 will not be affected by
drug 2, and vice versa) (Plackett and Hewlett, 1948).
Thethird is the joint effects of two inhibitors in a met-
abolic network in which two converging reactions that
lead to a single product are both inhibited (Jackson,
1991). Note that these latter two examples of restricted
conditions both impose upper limits upon the magni-
tudes of fa, and fay; their sum never exceeds 1.0.

Another candidate for a universal reference for no

interaction is the mutually nonexclusive model of Chou
and Talalay (1984), Eq. 18. An alternate form is Eq. 19,
which is equivalent to Eq. 5, our model for drug inter-
action, with m = m, = mz and a = 1, As emphasized by
Chou and Talalay (1984), their mutually nonexclusive
model is equivalent to the Bliss independence model
only underrestricted conditions; specifically, when the
median-effect model (equivalent to Eq. 1 or Eq. 2) ade-
quately describes the individual concentration-effect
curves for both drugs and m, = mz = -1 for monotoni-
cally decreasing curves [or m, = mz = 1 for monotoni-
cally increasing curves, as preferred by Chou and Tala-
lay (1984)]. They further conclude that the Bliss
independence model is inadequate under conditions in
which |m| # 1. However, it-is our view that it is the
mutually nonexclusive model that is suspect. Only an
abbreviated general derivation ofthis model, for the case
of multiple mutually nonexclusive inhibitors of a single
enzyme, is provided in Chou and Talalay (1981). A spe-
cific derivation, for the case of two mutually nonexclu-
sive noncompetitive inhibitors, is provided in Appendix
A, An equation equivalent to Eq, 12, not to Chou and
Talalay’s mutually nonexclusive model, is the result.
Because their model is of questionable validity, we feel
that it is not appropriate as a universal reference. An
extensive discussion of the median-effect approach to
the assessmentofdrug interaction is provided in Section
V.G.

(me)(i)*Ge)* Gere)fur. fu, fug fu;fug
[18]
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E= 50,1 60,2 60,14~"60,2 [19]
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A final candidate for a universal reference for no in-

teraction is the Mode II additivity model of Steel and
Peckham (1979). A compact way to express the modelis
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Eg. 20. An equivalent form is provided by Kodell and
Pounds (1991).

Dz = IDix-faw,))2 [20]

Eq. 20 can be used to construct an isobol forD, versus D,
for a particular X% inhibition. To do this, D, is varied,
and the fraction affected (% inhibition) for the particular
D, is calculated and subtracted from the target X%.
Then, the D, needed to achieve this resulting difference
X% is determined. Interestingly, this reference model
will give the correct answer of no interaction for a sham
combination of drug 1 with itself; the isobol will be a
straight diagonal NW-SEline, such as in figure 6. How-
ever, Eq. 20 is not equivalent to the Loewe additivity
model, Eq. 6. This will be shown and discussed in detail
in Section V.F. A fatal flaw of the Mode II reference

model is that it has a polarity; i.e., for two different
drugs, different isobols will be drawn, depending upon
the arbitrary assignment of drug 1 and drug 2 (Beren-
baum, 1981).

The issue of the preferred reference model for no in-
teraction has been recently debated in the antiviral lit-
erature by Siihnel (1990; 1992a) and Prichard and Ship-
man (1990; 1992). We endorse Siihnel’s advocacy of the
Loewe additivity model, Eq. 6 over Prichard and Ship-
man’s advocacy of Bliss independence, Eq. 11 or Eq. 14.
However, this is mainly because of personal preference
and because our specific response surface models incor-
porate Loewe additivity. We do not endorse Siihnel
(1990, 1992a) and Berenbaum’s (1981) main argument
that the Bliss independence modelis only valid for the
case in which each individual concentration-effect curve

follows an exponential concentration-effect curve.
Rather, we feel that the paradoxes illustrated with fig-
ure 11 are sufficient to place Bliss independence in sec-
ond place for the competition for a universal null refer-
ence model.

In summary, we advocate the use of the Loewe addi-
tivity model, Eq. 6, as the best choice for a universal
standard reference for defining “synergism” and “antag-
onism.” Adaptations of Eq. 6 can be used to derive con-
centration-effect response surface functions, such as Eq.
5, containing interaction parameters, such as a. To the
best of our knowledge, response surface models for agent
interaction that incorporate Bliss independence have
not been developed. However, some ideas ofAshford and
Smith (1964) and Ashford (1981), which have been re-
cently reviewed by Unkelbach (1992), have the potential
to lead to the development of such madels.

V. Comparison of Rival Approaches for
Continuous Response Data

There are many published methods for assessing drug
interactions. We have carefully chosen 13 of them for
continuous response data to compare in a head-to-head
competition. (Section VI includes a comparison of three
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rival approachesfor discrete success/failure data.) Some
methods consist of general guidelines, whereas others
include very specific recipes. This set of 13 methods was
chosen because, as a group, they have a high frequency
of use, have a high rélative impact on biomedicine, have
many similarities and differences, provide a good sum-
mary of the practical history of drug interactions, in-
clude good examples ofthe pleasures,pitfalls, controver-
sies and paradoxes inherent in the field, and point
toward the future of interaction assessment. Notewor-

thy additional approaches not extensively evaluated in
this review include the ones by Péch (1990b), Kodell and
Pounds (1985), Tallarida et al. (1989), Kelly and Rice
(1990), and Laska et al. (1994). The 13 rival approaches
will be compared in two ways: (a) Theoretical aspects,
both positive and negative, of each approach will be
listed and discussed. Although a large numberof these
comments will be summarized from previous work of
other reviews, there will be many new comments. Sev-
eral of the theoretical comments will refer back to Sec-

tions I to IV. (b) An abbreviated recipe for the applica-
tion of each approach to a common data set, for an
inhibitory drug, will be described. For a complete recipe
ofeach approach, the reader is encouraged to consult the
original references. Each approach will then be applied
to a common data set. Pitfalls, problems, and results will
be listed and compared.

The common data set consists of the 38 data points in
columns 2 to 4 of table 3, simulated with the approach
described completely in footnote a of the table. Briefly,
this data set was simulated with Eq. 5 as the structural
model, with different slope parameters for the two drugs
(m, = -1, mg = -2) and with a small amountofsynergism
(a = 0.5). The data contains normally distributed ran-
dom relative errors; the coefficient of variation is 10%. A
simulated Monte Carlo data set was used, as opposed to
a real data set, because: (a) the “true” answer is known,
so there is an absolute reference for making comparisons
between rival approaches; and (b) specific characteris-
tics can be imbedded in the data set to illustrate specific
differences among rival approaches. To the best of our
knowledge, this approach to making comparisons among
rival methods to assess agent interaction has not been
used by groups other than ours (Syracuse and Greco,
1986; Greco, 1989).

A. Isobologram by Hand

The graphical isobologram approach, performed by
hand, with the aid of pencil, ruler, graph paper, and
possibly French curve, has its origins in the work of
Fraser (1870-1871; 1872), Loewe (Loewe and Muischnek,
1926; Loewe, 1928, 1953, 1957), and Elion, Singer, and
Hitchings (1954), It is a general approach and has many
interpretations and variants. Our interpretation is de-
scribed here. Thefirst step is to plot the measured data,
such as those found in columns 2 to 4 of table 3, as
concentration-effect curves, such as in figure 13. Two
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separate graphs are drawn, usually by hand with a
French curve or a straight edge, one for drug 1 and the
other for drug 2. Each graph has a family of concentra-
tion-effect curves, one curve for each level of the other
drug. The ICs, (or Dm, IDso, EDso, LDgo, etc.) values are
then determined, by eye, for each curve on both graphs.
From Figure 13, six ICs, values can be determined,
three from theleft panel and three from the right panel.
(An IC,5o value cannot be determined for six of the con-
centration-effect curves, because for each of them, the
measured response at the first drug concentration is
already below 50% ofthe maximum measured response.)
From the left panel, the JC,, values for drug 1 are
recorded along with the level of drug 2 used to generate
the respective concentration-effect curves. Then, these
ICso values for drug 1 are divided by the IC,, value for
drug 1 in the absence of drug 2, and thelevels of drug 2
are divided by the JC,, for drug 2 alone. The resulting
data points, (D,/Dm,, D,/Dm,), are the solid points on
the left isobologram of figure 14. The analogous proce-
dure is performed on the concentration-effect curves of
the right paneloffigure 13, resulting in the open points
in the left panel of figure 14. In the isobolograms of
figure 14, each data pointis labeled (a-l) to correspond to
the curve in figure 13 from which it was derived. Occa-
sionally, smooth curves are drawn through points on an
isobologram, possibly with a French curve; occasionally,
straight lines are drawn connecting the points, and oc-
casionally, no curve is drawn at all. In figure 14, curve W
is not a curve drawn by hand, but rather is the theoret-
ically correct isobol simulated with Eq. 21 (an isobol
model that assumes that Eq. 5 is appropriate for the
entire concentration-effect surface), for the 50% level
and for a = 0.5. As explained in Section ITI and shown in
figures 4, 5, 6, and 8, the diagonal NW-SElineis theline
of Loeweadditivity; points below the line indicate Loewe
synergism and points above the line indicate Loewe an-
tagoniam.
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In principle, any constant effect level can be used for
an isobologram analysis, notjust the 50% level. Because
most of the concentration-effect curves from figure 13
did not yield a Dm value, ICs, (Dgp) values were also
determined, The right panel of figure 14 is the isobolo-
gram analysis of the Dg, values.

If one only used the Dm isobologram from figure 14,
one would conclude that the experiment should be re-
peated. If one also used the Dgp isobologram from figure
14, one would conclude that the interaction between
drug 1 and drug 2 is Loewe synergistic.
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TABLE 3

Data set, with a continuous response variable, used for comparison ofrival data analysis approaches, and the results from four approaches 

Predicted effect
Data Measured from Bliss  COMSlusion from Gaiusion from _Drewinko’s
pont D, D, flect* ind 1 fractional product

number jelt

Predicted effect  Berenbaum’a Conclusion from
from Loewe interaction Loewe additivity

compariaont «VSPA Laysternd=Score} Saetvity model index, IW comrpantaan®® 

1 00 106 99.2
2 00 99.2 99.2
3 oo 116 99.2
< 002 79.2 94.6
5 0056 70.1 TTA
6 o1 49.0 47.9
7 02 21.0 19.6
8 056 3.83 4.00
9 20 74.2 81.7

10 5 0 71.6 64.9
li wo 48.1 43.4
12 200 30.9 32.2
13 60 0 16.3 16.1

14 202 763 55.0 BANT INT 21.3 74.3 1.10 LANT
15 205 488 48.6 BANT SUB 0.2 61.1 0.713 LSYN
16 21 44.5 34.0 BANT SUB 10.5 40.6 1,10 LANT
17 22 16.6 14.6 BANT SUB 0.9 18.2 0,901 LSYN
18 26 3.21 2.66 BANT SUB 0.55 3.94 0.895 LSYN
19 5 0.2 66.7 52.9 BANT SUB 3.8 68.3 0.944 LSYN
20 5 05 47.6 46.9 BANT SUB 0.6 48.2 0.978 LSYN
21 6 1 26.8 32.7 BSYN BSYN —5.9 33.6 0.811 LSYN
22 5 2 16.9 14.0 BANT SUB 2.9 16.5 1.02 LANT
23 5 5 3.25 2.56 BANT SUB 0.69 3.85 0.911 LSYN
24 #10 02 46.7 35.6 BANT SUB 11.1 43.5 1.13 LANT
25 10 05 35.6 31.5 BANT SUB 4.1 36.5 0.968 LSYN
26 101 21.5 22.1 BSYN BSYN -0.6 26.7 0.818 LSYN
27 #10 2 11.1 9,44 BANT SUB 1.66 14.4 0.836 LSYN
28 #410 6 2.94 1.72 BANT SUB 1.22 3.72 0.878 LSYN
29 20 02 248 22.9 BANT SUB 1.9 29.2 0.809 LSYN
30 20 05 21.6 20.3 BANT SUB 13 25.1 0.844 LSYN
31 «#20 1 17.3 14.1 BANT SUB 3.2 19.4 0.899 LSYN
32.0 20 2 7.78 6.07 BANT SUB 1.71 11.6 0.761 LSYN
33. 20 5 1.84 1.10 BANT SUB 0.74 3.47 0.698 LSYN
4 #6650 02 136 113 BANT SUB 2.3 15.0 0.898 LSYN
350 60 0.5) 11.1 9.96 BANT SUB 1.14 13.4 0.824 LSYN
360s BOsd 6.43 VAT BSYN BSYN —1.04 111 0.613 LSYN
37 «6680 2 3.34 3.20 BANT SUB 0.14 7.66 0.539 LSYN
38 «#450 5 0.890 0.583 BANT SUB 0.307 2.93 0.496 LSYN

Totals BSYN = 3 BSYN = 3 mean = 2.59 LSYN = 21
BANT = 22 SUB=21 SD.=51 LANT = 4

INT =1 S.E. = 1.02

* The “Measured Effecta” were generated by: (a) calculating ideal data with Eq. 5 with parameters, Econ = 100, IC; = 10, ICyo = 1,
m, = —1,m, = —2, a = 0.5;(b) generating normally distributed random numbers with a mean of0 and a variance of 1 (Box and Miiller, 1958);
(c) caleulating relative errors by the equation, error = ((normal random number)/10] x [ideal effect]; (d) adding the errors to the ideal effects
to generate simulated data with relative error (a coefficient of variation of 10%).

+ Each measured effect from column 4 was divided by the average ofthe control effects (107) to yield a fraction of control effect, then the
fractional effects for the appropriate D, and D, were multiplied, then this product was multiplied by the average of control effects to yield
the entries in column 5.

+ For the fractional product approach to the assessmentofdrug interaction (Webb, 1963), when the entry in column 4, the measured effect,
is greater than the entry in column 5, the predicted effect, then Bliss antagonism (BANT)(leas inhibition than predicted) is recorded; when
the column 4 entry is lesa than the column 5 entry (more inhibition than predicted), then Bliss synergism (BSYN) is recorded.

§ The Valeriote and Lin (1975) system differs from the Webb approach by further subdividing the Bliss antagonism into 3 categories,
subadditivity (SUB), interference (INT), and antagonism (ANT). Details are in the text.

|| Column 8 is the difference between columns 4 and 5. From the mean and standard error of the mean for this difference score (Drewinko
et al., 1976) one would concludesignificant antagonism (P < 0.05). See the text for details.

{| The predictions in column 9 are based on the best fit ofEq. 13 to the data points for which drug 1 and drug 2 were not simultaneously present,
Le., the data in columns 2-4, rows 1-13, and then the simulation ofEq. 13 with these 5 best fit parameters for all of the 38 data points.

# Berenbaum’s interaction index (J) is calculated from Eq, 22, with theJD,s for drug 1 and drug 2 calculated from Eq. 7 with the parameter
values from the best fit of Eq. 13 to the first 13 data points.

** When I > 1, then Loewe antagonism (LANT)is concluded; when J < 1, then Loewe synergism (LSYN)ia concluded.
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Fic. 13, Hand-drawn (with the aid of a French curve) concentra-
tion-effect curves for the data in columns 2 through 4 from table 3.
The ICs, and ICg) values for each curve are indicated by short
horizontal lines intersecting the curves.

 
Fic. 14. Isobolograms made from IC, values (left panel) and ICgq

values (right panel). Line x in each panel is the Loewe additivity line.
The data points in each panel are labeled with a lowercase letter that
corresponds to the appropriate curve from figure 13. Thesolid points
were derived from the left panel of figure 13, and the open points
from the right panel. Curves W in each panel of figure 14 are the
theoretically correct isobols and were simulated from Eq. 21 with
parameters: Econ = 100, C59 = 10, JCg99 = 1, m, =-1, mg = -2, a=
0.5.

The advantages of the isobologram by hand method
include:

(a) the null reference model for no interaction is the
Loewe additivity model, Eq. 6, which was given support
in Section IV and is our preferred universal standard.

(6) the approach is simple,flexible, and to many users,
intuitive.

(c) equipment to run the approach is inexpensive, and
expert statistical advice and/or the learning of some
modern statistical ideas are unnecessary.

(d) the approach is famous and widely accepted.
(e) variants of the basic method exist that add more

statistical rigor (e.g., Gessner, 1974; Gennings et al.,
1990) and that provide quantitative measures of inter-
action intensity (e.g., Hewlett, 1969; Elion et al., 1954;
Péch, 1980).

(f) many newer, more rigorous methods have the ba-
sic isobologram approach as their underlying basis (e.g.,
the method of Berenbaum (1985), the nonparametric
bivariate spline fitting approach of Sithnel (1990), and
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the parametric response surface approach of Greco etal,
(1990).

The disadvantagesofthe isobologram by hand method
include:

(a) the method lacks many of the good characteristics
of objective statistical procedures. It lacks the theoreti-
cal framework to allow inferences with a specified de-
gree of certainty to be made from an experiment to the
true situation. It lacks the option of objectively weight-
ing more precise measurements greater than less pre-
cise ones,

(6) the basic isobologram method lacks a summary
measure of the intensity of interaction.

(c) for the isobologram method, each concentration-
effect curve should have data that encompasses the JC,
level. When this is not the case, such as with curves d-f,
j-lin figure 13, for the 50% effect level, the data for those
curves is wasted. If enough data is wasted, then the
experiment may have to be rerun.

(d) in general, the basic isobologram method requires
a relatively large amount of data. When data is expen-
sive, combination experiments may become prohibitive.

(e) graphs of a measured dependent variable vs. an
experimentally fixed independent variable, often fruit-
fully assumed to be recorded without error, are appeal-
ing, because they represent directly the actual experi-
ment. Fitted curves can be superimposed upon actual
observed data points to provide a good indication of the
goodnessoffit of the data by the curves. Isobolograms
are not such graphs; no observed data points appear on
them. Both the X- and Y-variables in isobolograms are
subject to error of a complex, unknown distribution.

(f) the seatter of points in an isobologram may lead
the researcher to a false conclusion of Loewe synergism
in some regions and Loewe antagonism in other regions
of the concentration-effect surface. Such a conclusion

might be reached with the isobologram in theleft panel
of figure 14.

(g) it may take a relatively long time to plot by hand
the required curves and to perform the required calcu-
lations.

(h) different data analysts are likely to plot the data
differently and thus arrive at different answers.

B. Fractional Product Method of Webb (1963)

This method is a very simple one. Eq. 11, that for Bliss
independence, is used to construct a set of predicted
fractional responses, fu, as the product of the individ-
ual fractional effects, fu, and fuo, for specific concentra-
tion combinations. Then, optionally, the results can be
re-expressed as responses on the original response scale
by multiplying each fu,. by the control response, as was
done to calculate the entries for column 5 of table 3 for

the analysis of the 38-point common data set. For an
inhibitory drug, when the predicted response exceeds
the measured response, Bliss synergism is claimed;
when the measured response exceeds the predicted re-
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sponse, Bliss antagonism is claimed. Column6oftable 3
lists the conclusions for each of the 25 combination

points. There were 22 claims of Bliss antagonism and 3
claimsofBliss synergism. The overall conclusion is mod-
erate Bliss antagonism, seemingly different from the
conclusion of Loewe synergism from the isobologram
analysis.

The advantages of the fractional product method in-
clude:

(a) it is the simplest ofall methods;it is very intuitive.
Calculations can be performed with pencil and paper;
thus, equipment and personnel to run the method are
inexpensive. The approach is famous and widely ac-
cepted,

(b) experimental designs can be very frugal; in princi-
ple, one can perform the experiment at single drug 1 and
drug 2 concentrations, and thus one minimally needs
only four data points to apply the method:(0, 0); (D,, 0);
(0, D3); and (D,, Dz).

(c) variants ofthe fractional product method exist that
add somestatistical rigor; e.g., the method of Steel and
Peckham (1979) and the method of Prichard and Ship-
man (1990).

The disadvantages include:
(a) the no interaction null reference model for the

fractional product method is the Bliss independence
model, Eq. 11, which in our view,is slightly inferior to
the Loewe additivity model, Eq. 6.

(6) the fractional product method is inconsistent with
the isobologram method. It is possible to arrive at the
opposite conclusion from that found with the isobolo-
gram method,as illustrated by the respective analyses
of our common data set.

(c) there is no objective quantitative summary mea-
sure of the intensity of synergism or antagonism.It is
not obvious how to combine results from several sets of

measurements.

(d) a frugal design may give a misleading resultif the
pattern of interaction is different at different regions of
the concentration-effect surface.

C. Method of Valeriote and Lin (1975)

This method is very similar to the fractional product
method of Webb (1963). A predicted response is calcu-
lated from the Bliss independence null reference model;
e.g., column 5 in table 3. Then, just as with Webb’s
method, the observed and predicted responses are com-
pared. However, Valeriote and Lin (1975) further sub-
divide the less-than-additive region into subadditive,
interference, and antagonism subregions. For an inhib-
itory drug, an interaction for a combination point is
called (a) subadditive, if the surviving fraction is be-
tween predicted additivity and the survivingfraction for
the more active drug,(6) interference, if the surviving
fraction for the combination is between the observed

surviving fractions of the two individual drugs, and (c)
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antagonism, ifthe surviving fraction for the combination
is more than for the least potent drug.

The results from the application of the Valeriote and
Lin (1975) approach to the common data set are: 3 com-
bination points showed Bliss synergism, 21 points
showed subadditivity, and 1 point showed interference.
The conclusion is subadditivity.

The advantages and disadvantages of the Valeriote
and Lin (1975) method are essentially the same as ofthe
fractional product method of Webb (1963). The extra
subdivision of the less-than-additive region into three
regions may have merit.

D. Method of Drewinko et al. (1976)

This approach is also similar to the fractional product
method ofWebb (1963). The predicted surviving fraction
is calculated from the Bliss independence model and
listed as in column 5 of table 3. Then, the predicted
surviving fraction is subtracted from the measured sur-
viving fraction for the combination points, and the dif-
ference scores are listed, such as in column8oftable 3.
The scores are then used as data for a Student’s t-test for

the hypothesis that the true mean is equal to zero. For
the 25 combination points for the common data set, the
mean Drewinko score was 2.59, with a standard error of
1.02. There was significant Bliss antagonism, P < 0.05.

The advantages and disadvantages of the method of
Drewinko et al. (1976) are essentially the same as those
of the last two approaches. A difference is that this
method offers a summary measure of the intensity of
interaction, with an associated statistical indication of
the uncertainty in the measure. A disadvantage of the
meanDrewinko score is that it is not the statistical

expectation of any specific true parameter. In other
words, the mean Drewinkoscore will very much depend
upon which regions of the concentration-effect surface
are sampled. A statistic, such as the mean Drewinko
score, that depends heavily upon the design of the ex-
perimentis not ideal.

E. Interaction Index Calculation ofBerenbaum (1977)

This method is the algebraic analog ofthe isobologram
by hand method. The general formula for the interaction
index, J, is Eq. 22, in which D, andD, are concentrations
of drug 1 and drug 2 in the combination, and ID,,,
ID2, are the predicted inhibitory concentrations ofeach
drug individually to give the observed effect of the com-
bination. The specific method of estimating JD,, and
ID2 is left to the researcher but is often done by hand
with pencil, graph paper, and possibly, French curve.

_ D ‘ Dz
~ ICx, IDxz

  
[22]

Weapplied the interaction index method to the common
data set by first fitting the first 13 data points with Eq.
13, that for Loewe additivity for two inhibitory drugs
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that both individually follow Eq. 2. The first 13 data
points include the control points plus the drug 1 alone
and drug 2 alone points. The data were fit with nonlin-
ear regression, weighted by the reciprocal of the square
of the predicted effect. (This weighting factor is appro-
priate for continuous data that have errors that are
normally distributed and proportional to the true re-
sponse. This error structure is common in biological
systems and was used to generate the common data set,
as described in the legend of table 3.) The 5 parameter
estimates were: Econ = 99.2 + 5.2; 1Cg9, = 9.52 + 1.7;
IC50.2 = 0.966 + 0.094; m, = -0.989 + 0.11; mg = -1.93
+ 0.13. Then, using Eq. 8, the specific form of Eq. 22 for
drugs that follow Eq. 2, and these 5 parameter esti-
mates, the interaction indices were calculated for the 25
combination points and listed in the tenth column of
table 3. When J > 1, Loewe antagonism is claimed; when
I< 1, Loewe synergism is claimed. The results of this
analysis are listed in column 11of table 3, There were 21
cases of Loewe synergism and 4 cases of Loewe antago-
nism. The overall conclusion is Loewe synergism, in
agreement with the isobologram by hand method, but in
apparent disagreement with the fractional product
method ofWebb (1963), the method ofValeriote and Lin
(1975), and the method of Drewinkoet al. (1976).

The advantages and disadvantages of the interaction
index method of Berenbaum (1977) are similar to the

isobologram by hand method. The key advantages in-
clude:

(a) the null reference model is the Loewe additivity
model, Eq.6.

(6) if the individual concentration-effect curves for

both drugs can be well characterized, then all of the
combination data can be used. This eliminates some of

the potential waste of data of the isobologram by hand
method. Also, in principle, the experimental designs can
be parsimonious.

The key disadvantages include:
(a) it is not obvious how to derive a good summary

measure of the intensity of interaction. If one merely
calculates a mean for all of the Js and then performs a
Student’s t-test with the null hypothesis that the true
interaction index is equal to 1, then the same criticisms
directed against the mean Drewinko score would apply
here.

(6) the analysis results are not as visually informative
as with the isobologram by hand method.

F. Method ofSteel and Peckham (1979)

This approach has many similarities to the isobolo-
gram by hand approach butalso several fundamental
differences. In addition to the original reference, the
approach is described well by Streffer and Miiller (1984)
and by Calabrese (1991). A variant of the original ap-
proach developed by Deen and Williams (1979) has been
used extensively by Teicher and coworkers (e.g., Teicher
et al. 1991). First, reference curves for the Bliss inde-
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pendence model, Eq. 11 (called Mode I additivity) and for
Mode II additivity, Eq. 20, are constructed for a partic-
ular effect level. An alternative equation for Mode II is
provided by Kodell and Pounds (1991), although it is
more common to describe the Mode II calculation with a

diagram (e.g., Steel and Peckham, 1979; Streffer and
Miiller, 1984). Mode I and Mode II isobols for the 20%
survival level are shown for the analysis of the common
data set in figure 15. All calculations and graphs were
made with pencil, graph paper, and French curve. How-
ever, automated curvefitting computer programs for the
approach have been developed (Teicher et al., 1985). The
data points are the JD.) values estimated from families
of log-linear concentration-effect curves (not shown), not
from the linear-log curves in figure 12. The positions of
the JDgp points in figure 15 differ a little from the posi-
tions in figure 14 because of the differences in how the
concentration-effect curves were drawn. Note that there

are two ModeII isobols. Especially note that the ModeII
isobols are not the same as the “classical” isobol simu-

lated from the Loewe additivity model, Eq. 6. This is in
direct contradiction to claims that the Mode II model

and Loewe additivity are the same (Teicheret al., 1991).
[This contradiction is the result of Steel and Peckham’s

(1979) misinterpretation of the first paper on isobolo-
grams in English by Loewe (1953). Unfortunately, this
key paper, Loewe (1953), was written with a cryptic
mathematical notation and is difficult to interpret. It ia
a dramatic contrast to his lucid original paper on the
subject, Loewe and Muischnek (1926), written in Ger-
man.] The area between the Mode I and ModeII isobols

is called the “envelope of additivity.”
Because most of the JDg points fall between the bor-

ders of the envelope of additivity, using either Mode II
isobol for the upper boundary, the conclusion for the
common data set would be additivity.

[DRUG2] 
CORUG 1]

Fic. 15. Isobologram from the Method of Steel and Peckham
(1979) for the 20% survival level (JC,,). Note that the isobol for the
Mode I assumption, each ofthe two isobola for the Mode II assump-
tion, and the iscbol for the classical Loewe additivity assumption are
all different. The data points are [C,,s taken from log-linear plots of
Seurvival vs. drug concentration. The letters next to the points
correspond to the legend of the linear-log survival plota in figure 193.
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The advantages of the method of Steel and Peckham
(1979) include:

(a) a region, the envelope of additivity, is provided to
facilitate judgments about departures from no interac-
tion, rather than a line. The envelope of additivity pro-
vides a standard, with a reasonable theoretical justifi-
cation, to aid in the decision ofwhether a departure from
additivity is great enough to warrant further consider-
ation.

(6) the automated variant of the approach (Teicher et
al., 1985) provides a degree of objectivity and some sta-
tistical rigor.

(c) the approach is widely accepted.
The disadvantages of the method include:
(a) neither of the two no interaction null reference

models, that for Mode I or that for Mode II, are the
preferred Loewe additivity model, The ModeII reference
modelis not part of other common approaches; in addi-
tion, it results in two predictions.

(6) the envelope of additivity does not take into ac-
count the precision of the data;it is not larger for data
with more experimental error. It is not a statistical
interval.

(c) the method lacks a summary measure of the inten-
sity of interaction.

(d) the method is insensitive to small but real and

potentially important interactions. It lacks good statis-
tical power. This was seen for the analysis of the com-
mon data set.

G. Median-effect Method of Chou and Talalay (1984)

Of all of the methods examined in this paper, the
median-effect approach received the most thorough re-
view. This is because, of all of the methods to assess
agent interaction introduced since 1970, the method of
Chou and Talalay (1984) has been the most influential
and controversial. Probably the key element of the ap-
proach that has led to its widespread use is the avail-
ability of an implementation in inexpensive microcom-
puter software (Chou and Chou, 1987). Chou (1991a)
lists 79 recent publications that applied the median-
effect approach to real laboratory data; 39 centered on
anticancer agents, 25 centered on antiviral agents, and
15 centered on other miscellaneous agents. Our own
literature survey located 3 application papers in 1985, 5
in 1986, 13 in 1987, 16 in 1988, 28 in 1989, 31 in 1990,
and 11 in an incomplete survey of 1991 fora total of 107.
It is clear that the approach has many advocates and
that its use has continued to grow. The article, Chou and
Talalay (1984), may becomeone of the most often-refer-
enced scientific papers in the history of biomedicine.

The median-effect approach is the culmination of a
long series of very technical papers centered on describ-
ing a wide variety of complex enzyme kinetic mecha-
nisms with a general framework (see Chou, 1991a for a
summary). Many useful concepts and equations were
introduced by this series of papers, including several
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used by our group in the development of our own re-
sponse surface approach for assessing agent combina-
tions (Greco et al,, 1990). In fact, our original motivation
in developing our approach was merely to add small
improvements to the median-effect method. For in-
stance, our first goal was to show (via Monte-Carlo sim-
ulation) that using weighted nonlinear regressionto fit a
nonlinear form of the median-effect equation, Eq. 1, to
single drug data was superior to using unweighted lin-
ear regression to fit a linearized form of the median-
effect model, Eq. 23, to single drug data (Syracuse and
Greco, 1986). Even though the weighted nonlinear re-
gression approach was consistently more precise and
less biased than the unweighted linear regression ap-
proach, for the estimation of both Dm and m,the differ-
ences were usually not striking, and the simpler method
performed very well for most cases. However, as we
examined the method of Chou and Talalay (1984) more
closely, we found several disturbing problems, which
will be described below. In addition, our own approach
developed along very different lines, most notably with
the incorporation of some ideas of Berenbaum (1985).
Today, our approach for assessing agent interaction
(Greco et al., 1990) bears only a faint resemblance to the
median-effect method.

The analysis of the common data set by the approach
of Chou and Talalay (1984) is shown in figure 16. Only a
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Fic. 16. Median-effect (upper panel) and CI va. fa plot (ower
panel) for the analysis of data from table 3, columns 2 through 4, for
drug 1 alone (points 4 through 8), drug 2 alone (points 9 through 13)
and for the combinationata fixed ratio ofD,-D. of10:1 (points 14,20,
26, 32, and 38) The solid square data points in the lower panel
represent the five combination points and were calculated as de-
scribed in the text.
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brief description of the approachis included here; there
have been many detailed recipes of the approach previ-
ously published (e.g., Chou and Talalay, 1984; Chou and
Chou, 1987; Chou, 1991b; Calabresi, 1991). The easiest
way to apply the approach to a data set is to use the
software program by Chou and Chou (1987), which is
available for both the Apple II and IBM-compatible per-
sonal computers. Eq. 23 is fit to data from drug 1 alone,
drug 2 alone, and the combination of drug 1 and drug 2
in a fixed ratio. [Eq. 23 is a linearized form of Eq. 24,
essentially equivalent to the Hill equation, Eq. 2, and
was derived by Chou and Talalay (1981).]

log[fu-* — 1] = log[fa-* — 1}?
[23]

= mlog(D) — mlog(Dm)

fa_(D\"fu = (i [24]
An average control effect was first calculated (the aver-
age of the 3 D, = D, = 0 points, 106, 99.2, and 115 from
column 4 of table 3) to be 107. Then, each fu value was
calculated by dividing the measuredeffect in column 4
by 107. For drug 1 alone, points 4 to 8 were used, for
drug 2 alone, points 9 to 13 were used, and for the
combination at a fixed ratio of 10:1, points 14, 20, 26, 32,
and 38 were used.(In principle, more sets of points from
otherfixed ratios from the data set in table 2 could have

been used for the analysis; however,it is very common to
apply the approach to a single fixed ratio.) Additional
calculations were performed on the 15 data points to
construct the transformed y-values of log{fu~!—1] and
the transformed x-values of log(D). Unweighted linear
regression was applied separately to the three sets of
five points each, and the slopes and y-intercepts were
estimated, m and —mlog(Dm), respectively. The trans-
formed data and fitted curves are in the upper panel of
figure 16. The Dm values were calculated from the y-
intercepts and slopes. The six estimated parameters
were: for drug 1, Dm, = 7.40, m, = 0.845; for drug 2,
Dm, = 0.631, mg = 1.37; for drug 1 + 2 inafixed ratio,
Dmg = 4.48 and m,, = 1.77. [Note that the signs of the
ms have been made positive to correspond to the stan-
dard implementation of the approach of Chou and Tala-
lay (1984); this is the opposite of the convention usuaily
used by our group.] According to Chou and Talalay
(1984), ifm, = mz = mp, then the two drugs are claimed
to be mutually exclusive; ifm, = mg # m9, then the two
drugs are claimed to be mutually nonexclusive; if m, +
M2, the mutual exclusivity of the drugs is unclear. Chou
and Talalay (1984) do not explicitly state how the equiv-
alencies of m,, mz, and m,, should be determined. How-
ever, we will make the conclusion that 0.845, 1.37, and
1.77 are sufficiently different from each other that the
mutual exclusivity is unclear for the common data set.
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In the lower pane! of figure 16 are the CI vs. fa plots
for both the mutually exclusive and mutually nonexclu-
sive assumptions. These plots were generated by insert-
ing the six estimated parameters from the median effect
plots into Eq. 25 for the mutually exclusive case and into
Eq. 26 for the mutually nonexclusive case (Chou and
Chou, 1987; Chou, 1991b), and calculating C7 for the
range of fa from 0.01 to 0.99. (Here, R is the ratio of
concentrations ofD,:D,). The area above the CI = 1 line
represents antagonism; below, synergism. Thefive data
points in the lower panel represent the five combination
points that have been transformed with Eg. 27 and
directly plotted, without relying on the estimation of
Dm, and m,,. This addendum to the approach, sug-
gested mainly for nonconstant combination ratios
(Chou, 19918), is also applicable to fixed combination
ratios, as shown by our example. To the best of our
knowledge, it is not yet available in the commercial
software (as of August, 1992). This is essentially the
same approach as described in Section V.E., the calcu-
lation of Berenbaum’s (1977) interaction index.

 
[27]

Overall, the conclusion is strong antagonism at low fas,
slight synergism at fa > 0.8, with the assumption of
mutual nonexclusivity; strong Loewe antagonism at low
fas, slight Loewe synergism at fa > 0.8, with the as-
sumption of mutual exclusivity. Note that the extreme
antagonism occurs to the left of the combination data
points. If one would just examine the five combination
points calculated with Eq. 27, then one might conclude
Loewe additivity; or slight Loewe antagonism at low fas
and slight Loewe synergism at high fas.

The advantages and good features of the median-
effect approach of Chou and Talalay (1984) include:
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(a) the fundamental equations for the approach were
derived from basic mass action enzyme kinetics, and
thus, the estimable parameters have the potential to be
biologically meaningful, However, the approach has
most often been applied to much more complex systems,
such as biochemical networks, viruses, bacterial cells,
mammalian cells, intact mammals, or populations of
mammals, Therefore, the biochemical origin of the me-
dian-effect approach, a relatively simple system of mul-
tiple inhibitors of a single enzyme, will usually not fa-
cilitate mechanistic insights into the more complex
systems to which the approach is applied. The mecha-
nistic models of the approach are used essentially in an
empirical manner.

(6) many useful equations, combined-action concepts,
and specific applications of the approach have been pub-
lished that have inspired others to create newer ap-
proaches(e.g., Greco et al. 1990).

(c) part of the method involves thefitting of models to
data with an objective, well accepted statistical ap-
proach, namely linear regression.

(d) the experimental design requires fewer data points
than a typical design to be analyzed by the isobologram
technique and other methods. However, the common
sparse design with one fixed ratio of D,:D, may miss
some interesting regions of the full 3-D concentration-
effect surface (Prichard and Shipman, 1990).

(e) the mutually exclusive modelis consistent with the
Loewe additivity null reference model.

(f) for many analyses of real data, when artifacts
inherent in the approach do not make a major contribu-
tion, the overall general conclusions will be consistent
with more rigorous methods. However, conversely, when
artifacta do make a major contribution, the final conclu-
sions will not be consistent with more rigorous methods.
For example, in an informal survey of 37 application
papers that used the Chou and Talalay (1984) approach,
we re-analyzed 136 data sets with the parametric model
fitting approach, using Eq. 5, described in Section V.L.1.
For only 38 of the 136 data sets (28%) was there close
agreement in the final conclusions for the two ap-
proaches.

(g) the method is available in microcomputer software
for the popular Apple II (Apple Computer Inc., Cuper-
tino, CA) and IBM PC (IBM Corporation, Boca Raton,
FL) (and compatible) microcomputers, This last advan-
tage is the most crucial: for any sophisticated data anal-
ysis technique to be used routinely by biomedical scien-
tists, especially by those with little mathematical and
statistical training, the method must be readily avail-
able in the form of inexpensive, user-friendly software.

The disadvantages of the method of Chou and Talalay
(1984) include:

(a) the mutually nonexclusive model was not ade-
quately derived. Appendix A includes an extensive dis-
cussion of this point, provides a derivation from basic
enzyme kinetic arguments for Eq. 12, a model that can
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also be derived directly from the concept of Bliss inde-
pendence, and provides support for Eq. 12 being a more
appropriate model for mutual nonexclusivity for two
inhibitors against a single enzyme, than Chou and Ta-
lalay’s model 18 (or an alternate form, Eq. 19). It must
be noted that, as shown in Appendix A, the mutually
nonexclusive model of Chou and Talalay (1984) for two
inhibitors of a single enzyme can be derived from en-
zyme kinetic arguments by making some additional as-
sumptions. However,it is unlikely that an equation de-
rived from a set of unusual assumptions, for a rare
experimental system, would have general utility for
modeling concentration-effect phenomena from a wide
spectrum ofcomplex agent interaction systems. Another
implication of this discussion is the weakness of Chou
and Talalay’s (1984) argument that the fractional prod-
uct method of Webb (1963) is not valid for higher order
systems with sigmoidal concentration-effect curves
(|m| > 1). In fact, from a theoretical basis, any approach
based upon Loewe additivity or Bliss independence is
“valid” for most types of concentration-effect functions
over a wide range of parameter values.

(b) as shown in Appendix B, Nonlinear Nature of the
Median Effect Plot for Mutual Nonexclusivity section,
the median-effect plot for mutually nonexclusive inhib-
itors is not linear; this leads to inaccuracies in the esti-
mation ofDin,, and especially of mj, via linear regres-
sion, and then to artifacts in the CI vs.fa plot, including
large antagonism at low fas. Interestingly, this nonlin-
earity in the median-effect plot for their mutually non-
exclusive model was first shown by Chou and Talalay
(1981) in their figure 2 (not shown here).

(c) the CI formula for the mutually nonexclusive case
is not correct. This is shown in Appendix B, Incorrect
Combination Index Calculations for the Mutually Non-
exclusive Case section. This also leads to artifacts in the

CI vs. fa plot.
(d) even for the mutually exclusive case, one effect of

Loewe synergism or Loewe antagonism is to make the
median-effect plot nonlinear, leading to artifacts in the
CI vs. fa plot. This is shown in Appendix B, Nonlinear
Nature of the Median Effect Plot for Mutual Exclusivity
with Interaction section.

(e) The median-effect equations for both the mutually
exclusive and nonexclusive cases were originally derived
by Chou and Talalay (1981) with the assumption that
mM, = Mg. When m, # mg, which is usually the case, both
models are only approximately valid. The approximation
becomes worse as the difference between the ms be-

comes larger. This problem and several others are illus-
trated in figure 17. Eight simulations were conducted
using Eq. 5 as a model (not the model) for Loewe syner-
gism or Loewe antagonism, using the values for m,, mg
and a listed in the insets of the figure. The simulated
data were plotted in panel A after the median-effect
transformation. The CI vs. fa plots were simulated di-
rectly with Eq. 8, thus avoiding manyof the calculation
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Fic. 17. Median-effect plots (A) and CIvs. fa plots (B) for data simulated with Eq. 5, with parameters: Econ = 100, ICgo, = 10, IC'gq.9 =
1 and m,, mg, a as listed in the inset boxes in each panel. CI was calculated from Eq. 8. Note that the median-effect plot is a straight line
only for the casa in which m, = mz and a = 0. Thus, both m, # m, and a # 0 will result in a curved median-effect plot. Also note that the
shape of the CI vs. fa plots are influenced by both the slope parameters and the interaction parameter.

artifacts discussed in points (b) through (d) of this sec-
tion. Note that the median-effect plot is a straight line
only for the case a., in which m, = mz = -1, and a = 0.
Thus, either m, # m2, or a # 0, or both conditions will
result in a curved median-effect plot. Note that large
differences in slope parameters (e.g., curve e., m, = -1,
Wz = -5, a = 0) seem to have a more profoundeffect on
the curvature than does a high o value (e.g., curve c.,
m, = -1, mg = -1, a = 20). Because only pure Loewe
additivity, pure Loewe synergism, or pure Loewe antag-
onism were simulated, none of the CI vs. fa plots cross
the CJ = 1 line. Note thatall of the plots, for both Loewe
synergism and Loewe antagonism,start at C] = 1 (fa =
0). This implies that all reported C/ vs. fa plots that
show large antagonism in the region near fa = 0, contain
calculation artifacts. Indeed, the CI =1 at fa =0 point
should be the anchor for all C/ vs. fa plots, no matter
what kind of combined-action is present. Also note that
CI vs. fa curves b. and c.(m, = m2 = -1) curve downward
near fa =1, whereas, curves f. and g. (m, = -1, mz = -5)
curve upward near fa = 1. Finally, note that increasing
degrees of Loewe synergism, for the same set of slope
parameters, order the curves from bottom to top for the
median-effect plot, but from top to bottom for the CI vs.
fa plot.It is clear that in the vast majority of cases, the
median-effect linearization of combination data at a

fixed ratio will result in a true nonlinear curve. The

nonlinearity may be small, and data variation may mask
the nonlinearity, but the fitting of a median-effect
straight line to such data will almost always be,at best,
only approximately correct.

(f) the method of Chou and Talalay (1984) lacks many
aspects of modern statistical approaches, First, thefit-

27 of 55

ting of the median-effect line to data with linear regres-
sion does not have the option of weighting. However,
proper weighting only offers a slight improvementto the
unweighted linear regression (Syracuse and Greco,
1986). Second, the only goodnessoffit statistics offered
are Pearson correlation coefficients, r, for each separate
unweighted linear regression of the transformed data
for each median-effect plot. It would be useful to have
some overall goodness of fit statistic for the fit of the
overall model simultaneously to all of the data. There is
no uncertainty measure provided with the estimates of
™M, Mg, and mM, to aid in making the decision between
mutual exclusivity vs. mutual nonexclusivity. Most im-
portantly, there is no uncertainty measure associated
with the final result, the C7 vs. fa plot. Objective deci-
sions regarding the occurrence of moderate degrees of
Loewe synergism or Loewe antagonism are therefore
difficult. However, newer variants of the approach in-
clude more extensive statistical procedures, such as con-
fidence intervals for the combination index (Belen’kii
and Schinazi, 1994).

(g) the relationship between the CI vs. fa plot, the
original raw data, and the original concentration-effect
curves is somewhat hard to visualize. The experimenter
may “lose touch” with his data. However, a good under-
standing of the relationship between the CI vs. fa plot
and the 3-D concentration-effect surface for a two drug
combination, figure 7, may assist in this visualization.

(Ah) the Chou and Talalay (1984) approach first in-
volves a decision on mutual exclusivity vs. mutual non-
exclusivity, and then a decision on synergism, additivity,
or antagonism,for a total of six different cases, There is
a conceptual difficulty in differentiating between mutual
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exclusivity with synergism and mutual nonexclusivity
with synergism, additivity, and especially with antago-
nism. The regions overlap. This can be seen in isobols of
figure 6, in which curve E represents pure mutual ex-
clusivity (a = 0), curve C represents pure mutual non-
exclusivity (a = 1), and curve D (a = 0.5) would be an
example of Loewe synergism with reference to the mu-
tually exclusive model and of Loewe antagonism with
reference to the mutually nonexclusive model. In line
with this reasoning, the figure legend of figure 2 from
Chou and Talalay (1981) states that the curve for mu-
tual nonexclusivity “clearly shows synergistic effects at
high concentrations. ...” In fact, one can see that the
nonlinear form of the mutually nonexclusive model, Eq.
19, is the same as our flagship model for Loewe syner-
gism, Eq. 5, with m = m, = mz and a = 1.

(i) the available software (Chou and Chou, 1987) that
implements the approach is relatively unsophisticated.
Future changes in the computersoftware should include
improvements in graphics, datafile editing, saving and
retrieving, and the prevention of the program from
“bombing” under certain conditions.

(j) if the concentration-effect curve for either agent in
a combination does not follow the Hill model, Eq. 1 (or
the equivalent median-effect model, Eq. 24), then the
Chou and Talalay (1984) approach is not valid.

(&) there are three practical decisions that users of the
Chou and Talalay (1984) approach must make thatcrit-
ically affect the final results: (1) what to do with data
points in which % survival equals or exceeds 100%, or
equals or is less than 0%; such data will lead to compu-
tational difficulties; (2) how to decide whethera specific
two-agentinteraction is mutually exclusive or mutually
nonexclusive, especially when m, # my; and (3) how to
conclude synergism, additivity, or antagonism from the
CI vs. fa plot. There is a wide variety of different tactics
used by different groups to make these three critical
decisions. Therefore, the objectivity of the approach is
lessened. For example, for decision (1), some groups
either censor any extreme points (fa = 1, fa = 0) or
change any fa = 1 to a usable fo such as 0.96 (e.g.,
Schinazi et al., 1986), whereas, most groups do not spec-
ify their procedure (e.g., Hartshorn et al., 1986). For
decision (2), as recommended by Chou and Talalay
(1984), some assume mutual exclusivity when the medi-
an-effect plots for both single drugs and the combination
are parallel (e.g., Koshida et al., 1989), assume mutual
nonexclusivity when the slope parameters for the single
drugs are similar but the slope for the combination is
much different (e.g., Nocentini et al., 1990), and report
both exclusivities when the median-effect plots for both
single drugs are not parallel (e.g., Eriksson and Schi-
nazi, 1989). However, some groups report the mutual
exclusivity results, because they feel that the mutually
nonexclusive results would not be muchdifferent (e.g.,
Vogt et al., 1987; Kuebler et al., 1990). Some report
mutual exclusivity, because it corresponds to the classi-
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cal isobologram approach (e.g., Johnson et al., 1992):
some groups assume mutual nonexclusivity, because it
yields a more conservative estimate ofC/ (e.g., Vathsala
et al., 1990). Some assume mutual nonexclusivity, be-
cause the two agents are known to act at different sites
(e.g., Jackson, 1992), and some assume someexclusivity,
but don’t state which one or why(e.g., Richman etal.,
1991). For decision (3), some groups stress the CI at high
fas, such as 0.50, 0.75, 0.90 and 0.95 (e.g., Kong et al.,
1991). Some show the whole CIvs.fa plot, from 0.01 to
0.99 and describe many of the nuances of the curve,
including the point at which the C7 = 1 line is crossed
(e.g., Wadler et al., 1990). Some report an average CI for
the 50% effect point from several replicate experiments,
along with a standard deviation (e.g., Katz et al., 1990).
Some use several other additional approaches to analyze
the data, such as the isobologram approach, or the
method of Steel and Peckham (1979) and then report a
consensus (e.g., Nocentini et al., 1990). There are no firm
guidelines for assessing the importance of small consis-
tent differences between the CI vs. fa plot and the CI =
1 line. For example, in Chou and Chou (1987), the CI vs.
fa plot on page 42 follows a path slightly above the CI =
1 line, with a conclusion of additivity; whereas, the
CI vs. fa plot on page 61 follows a path slightly below the
CI = 1 line, with a conclusion of strong synergism.

H. Method of Berenbaum (1985)

In one sense, the method of Berenbaum (1985) is
merely a graphical version of the interaction index ap-
proach of Berenbaum (1977). However, interpreted dif-
ferently, the method of Berenbaum (1985)is the basis of
all modern nonparametric and parametric response sur-
face approaches to be described in Sections V.K. and
V.L. The approach consists offitting concentration-effect
models to data for each agent alone, deriving a model for
Loewe additivity consistent with these single agent mod-
els, simulating the Loewe additivity model, superimpos-
ing this simulated Loewe additivity surface upon the
raw data points, and then deciding whether points are
above or below the surface, which will indicate Loewe
synergism or Loewe antagonism, depending upon
whether the 3-D concentration-effect surface rises or

falls with increasing agent concentrations. The derived
Loewe additivity models can accommodate different
slope parameters for each agent when each agent’s con-
centration-effect curve follows a Hill model, Eq. 2, 3. The
Loewe additivity models can even accommodate differ-
ent functional forms for the concentration-effect curve

for each agent. Unfortunately, these models are often in
unclosed form, A formal parametric model for Loewe
additivity is useful, but optional: Berenbaum (1985)
shows an example offitting complex single agent data by
hand.Siithnel (1992c) has derived andlisted many para-
metric Loewe additivity models and emphasizes the use
of 3-D interaction plots, such as figure 9, and 3-D differ-
ence surfaces such as in figure 10. The functional form of
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the derived Loewe additivity response surfaces, e.g., Eq.
13, can easily be extended to include interaction terms,
leading to a full combined-action model, such as Eq.5. In
fact, the guidelines from Berenbaum (1985) for deriving
general Loewe additivity models led us directly to the
derivation of Eq. 5, which was first published in Syra-
cuse and Greco (1986). Interestingly, essentially the
same logic for deriving Loewe additivity and combined-
action models was part of a review paper by Hewlett
(1969), who provides examples of combined-action mod-
els from Finney (1952), Plackett and Hewlett (1952),
Landshl (1958), and Plackett and Hewlett (1967). How-
ever, Berenbaum’s (1985) hallmark paper is much
clearer and was published at a time when the necessary
computer hardware and software were sufficiently avail-
able to enable the routine application of his paradigm
and logical variants to real data.

We applied the method of Berenbaum (1985) to the
common data set by first fitting the first 13 data points
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in columns 2 to 4 of table 3 with Eq. 13, that for Loewe
additivity for two inhibitory drugs that both individually
follow Eq. 2, just as described for the interaction index
approach of Berenbaum (1977) in Section V.E. Thefirst
13 data points include the control points plus the drug 1
alone and drug 2 alone points. Just as in Section V-E.,
data were fit with nonlinear regression, weighted by
the reciprocal of the square of the predicted effect. The
five parameter estimates were: Econ = 99.2 + 5.2; IC501
= 9.52 + 1.7; IC5o2 = 0.966 + 0.094; m, = -0.989 + 0.11;
my, = -1.93 + 0.13. Then, instead of calculating an in-
teraction index using Eq.8, the fitted curve is shown in
figure 18(A), along with the raw data. For the 25 com-
bination points, a solid point (above the surface) indi-
cates Loewe antagonism, and an open point indicates
Loewe synergism. The results are identical (as they
must be) to the results from the interaction index ap-
proach of Berenbaum (1977) shown in columns 9 to 11 of
table 3. There were 21 cases of Loewe synergism and 4
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Fie. 18. Analyses ofdata from table 3, columns 2 through 4. (A) Approach interpreted from Berenbaum (1985). Data for drug 1 alone and
drug 2 alone were fit by a Loewe additivity model, Eq. 13, with nonlinear regression as explained in the text. The 3-D fishnet is the best fit
Loewe additivity surface. The full 38-point data set is plotted on the same graph, with vertical lines indicating the distance between the data
points and the surface. Solid points are above the surface, and open points are below. For the 25 combination points, a solid point indicates
Loewe anttagonism, and an open point, Loewe synergiam. There is an exact correspondence between thia 3-D graph and columns 9 through
11 of table 3. (B) Graphical Bliss independence comparison. The best fit parameters from the fit of the Loewe additivity model, Eq. 13, were
estimated as for panel (A), but these parameters were used with the Bliss independence model, Eq. 12 to simulate the 3-D surface. The full
38-point data set ia again plotted on the eame graph. There are 11 points above the surface (Blies antagonism), and 14 points below the
surface (Bliss synergism).
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eases of Loewe antagonism. The overall conclusion is
Loewe synergism.

The key advantages include:
(a) the null reference model is the Loewe additivity

model, Eq.6.
(6) if the individual concentration-effect curves for

both drugs can be well characterized, then all of the
combination data can be used.

(c) the experimental] designs can be parsimonious.
(d) the single agent data are fit with a logical response

surface model, possibly with modern curvefitting tech-
niques.

(e) it is not necessary to derive or use some arbitrary
combined-action model for fitting the combination data.
Mosaics of regions of Loewe synergism and Loewe an-
tagonism are thus easily accommodated.

(f) the approach led to the creation and use of full
combined-action models (e.g,, Greco et al,, 1990).

(g) the approach can be used to characterize very
complex mixtures of three or more agents, If one is
chiefly interested in the assessment of combined-action
at a specific combination of doses of the agents and not
in characterizing the whole response surface, then ex-
perimental designs can be very frugal.

The key disadvantages include:
(a) just as with the interaction index calculation ap-

proach (Berenbaum,1977), it is not obvious how to de-
rive a good summary measure of the intensity of inter-
action, with an accompanying measure of uncertainty.
However, Gennings (1995) recently proposed some ex-
tensions to Berenbaum’s (1985) method that include

some excellent statistical summary measures of depar-
tures from Loewe additivity.

(6) the derivation and application of complex Loewe
additivity models may require considerable mathemati-
cal, statistical, and computing resources.

I. Bliss (1939) Independence Response
Surface Approach

Wedid not find this specific method in theliterature,
but it is included because it is a logical cross between the
Webb (1963) and Berenbaum (1985) approaches. This
approach is a graphical version of the fractional product
method of Webb (1963) andis similar, but not identical,
to the method ofPrichard and Shipman (1990) described
in Section V.J. The results are shown in figure 18(B),
which was madein the same way as described in Section
V.H.for the Berenbaum (1985) approach,except that the
Bliss independence model, Eq. 12, was used to simulate
the 3-D surface. There are 11 points above the surface
(Bliss antagonism) and 14 points below the surface
(Bliss synergism). The overall conclusion would be Bliss
independence. Interestingly, the results differ from
those previously found with the fractional product ap-
proach (Webb,1963) (column 6 oftable 2; 4 cases ofBliss
synergism and 21 cases of Bliss antagonism), This dif-
ference is caused by the use of fitted individual concen-
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tration-effect curves for making the Bliss independence
predictions for the surface approach,vs. the raw data for
the individual drugs for making the Bliss independence
predictions for the fractional product method.

This approach shares advantages (b) through(e) ofthe
Berenbaum (1985) approach.It is possible that full com-
bined-action models can be derived and applied, as sug-
gested by Unkelbach (1992).

The key disadvantages include:
(a) the basis ofthe approach is Bliss independence, not

our Loewe additivity preference.
(6) it is not obvious how to derive a good summary

measure of the intensity of interaction, with an accom-
panying measure of uncertainty. However, variants of
the recently proposed extensions by Gennings (1995) to
Berenbaum’s (1985) approach maysolve this problem.

(c) the derivation and application of complex Bliss
independence models may require considerable mathe-
matical, statistical, and computing resources.

J. Method ofPrichard and Shipman (1990)

This approach (e.g., Prichard et al., 1990) is a graph-
ical, 3-D version of the fractional product method of
Webb (1963). Figure 19 showsthe result of the analysis
of the common data set, columns 2 through 4 of table 3.
A checkerboard (factorial) experimental design,like that
provided by the common data set, is necessary for the
optimal use ofthe approach. We used the MacSynergy IT
program (Prichard et al., 1992), which is a set of Mi-
croSoft Excel (Microsoft Corporation, Redmond, WA)
spreadsheets and macros, kindly provided by M. Pri-
chard, which was run with Excel to perform the neces-
sary calculations. We used the Tecplot graphics package
(Amtec Engineering, Inc., 1988) to prepare figures 19
and 20.

First, the % inhibition for every data point is calcu-
lated (100% — column 3 oftable 3 divided by the average
control, 106.7). (Note that 107 was the average control
value used to generate columns 5 and 8 in table 3.) The
points, connected with straight lines, are plotted on a
3-D graph in figure 19(A). The predictions, based upon
Bliss independence, are calculated on a point-by-point
basis, just as with the Webb (1963) approach and are
plotted in figure 19(B). Figure 19(C)is the difference plot
of the % inhibition above predicted. These differences
are equivalent to the Drewinkoet al. (1976) Scores in
column 8 of table 3, after reversing the signs, and divid-
ing the Drewinko Scores by the average control. There
are 22 combination points below the zero plane, repre-
senting Bliss antagonism, and 3 points above the zero
plane, representing Bliss synergism. These 3 data points
are the same ones that showed Bliss synergism in table
3, data points 21, 26, and 36. The Bliss synergy differ-
ences were added up to yield a summary measure,7.19,
and the Bliss antagonism differences were added up to
yield a Bliss antagonism summary measure, -65.27.
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(Drug 2]

Fic. 19. Method ofPrichard and Shipman (1990) applied to the data from table 3, columns 2 through 4.(A) Raw data, 36 data pointa (the
3 control pointa were averaged into 1 point), expressed as %inhibition, connected by straight lines, in a 3-D plot. (B) combination points are
predicted directly from the raw data for drug 1 slone and drug 2 alone, with Eq. 11, that for Blise independence, expressed as “inhibition,
and connected with straightlines, in a 3-D plot. (C) The set of points from panel (B) are subtracted from the set of points from panel (A) and
shown in a 3-D plot. Sections of the difference surface above 0 indicate Bliss synergiam, below 0, Bliss antagonism. Both Blies synergism and

 
  

Fic. 20. An alternate approach provided by Prichard et al. (1992) that integrates the Loewe additivity reference concept of Berenbaum
(1985), applied to the data from table 3, columns 2 through 4. (A) Same as panel (A), figure 19. (B) Predicted Loewe additivity surface
analogous to panel (2) offigure 19. (C) Difference surface analogous to panel (C) offigure 19. Mostly, Loewe synergism is seen. The algorithm
used by Prichard et al. (1992) does not make Loewe additivity predictions for points along the outer edge, and thus the predicted and
differance surfaces appear to be smaller than those of figure 19.

Although we were able to successfully apply the
Prichard and Shipman (1990) method to our common
data get, the ideal data set for this approach will contain
replicates. Replicates allow the calculation of point-by-
point 95%, 99%, and 99.9% confidence intervals for the
experimental data. If the lower confidence limit for a
point is greater than the predicted Bliss independence,
the observed Bliss synergy is considered to be signifi-
cant. Similarly, if the upper confidence limit for a point
is lesa than the predicted Bliss independence, the ob-
served Bliss antagonism is considered to be significant.
The significant Bliss synergism and antagonism differ-
ences are totaled separately for additional summary
measures. The overall conclusion for the results of the

analysis of our common data set is Bliss antagonism.
However,as stated above, replicates are needed in order
to make firm conclusions with this approach.

The main advantages of the approach are:
(a) the approach emphasizes the 3-D nature of com-

bined-action concentration-effect surfaces; it is very vi-
sually oriented.
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(6) the software, MacSynergy II, is inexpensive and
straightforward to use, provided that one already is
proficient with Excel (or possibly some other spread-
sheet software) and a suitable graphics package.

(c) the approach is very flexible and does not require a
parametric model for either the single agent concentra-
tion-effect curves or for combined-action. The approach
is, essentially, a very simple nonparametric multivari-
ate curve fitting procedure. The approach can easily
accommodate mosaics of interspersed regions of Bliss
synergism and Bliss antagonism.

(d) there are some summary and uncertainty mea-
sures associated with claims of Bliss synergism and
Bliss antagonism.

(e) mathematical, statistical, and computing complex-
ities associated with the fitting of full combined-action
response surface models are avoided.

(f) when compared with all of the simpler approaches
examined in this review, Sections V. A-V. G, the method
of Prichard and Shipman (1990) stands out as having
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the best combination of automation, accessibility, intu-
itiveness, and visualization.

The disadvantages include:
(a) Bliss independence is the main no interaction ref-

erence model. However, a new feature added to MacSyn-
ergy II, but not necessarily recommendedby Prichard et
al. (1992), is the ability to use Loewe additivity as the
null reference model. The results of the analysis of the
common data set are displayed in figure 20. Note that
the algorithm used by Prichard et al. (1992) does not
make Loeweadditivity predictions for points along the
outer edge, and thus the predicted and difference sur-
faces appear to be smaller than thoseof figure 19. The
conclusion for the analysis in figure 20 is Loewe syner-
gism.

(6) the ideal experimental design, a full checkerboard
of drug dilutions with replicates, may be prohibitive for
many applications. However, for many in vitro studies of
antiviral or anticancer agents, experimental systems
use 96-well culture plates, which facilitates the require-
ment of a large experimental design.

(c) similar methods described in Sections V.H. and

V.L., in which the data for drug 1 alone and drug 2 alone
are fit by specific parametric models, but in which the
combination points are not fit by specific combined-
action models, may offer a cost-effective advantage over
the Prichard and Shipman (1990) approach.

(d) the approach is essentially, an exploratory ap-
proach. It may be ideal as a front-end for further para-
metric 3-D response surface approaches for most data
sets, or possibly a reasonable final method for very com-
plex data sets with numerous regions of true Bliss syn-
ergism and Bliss antagonism. However, it might be of
interest to test whether some of the mosaics of Bliss

synergism and Bliss antagonism disappear after substi-
tuting Loeweadditivity for Bliss independence as the no
interaction null reference model. Data sets generated
with a full replicated checkerboard design likely contain
much more useful information than can be revealed by a
simple exploratory approach. It would be cost-effective
to further analyze such data sets with powerful multi-
variate parametric response surface approaches, such as
described in Section V.L.

The paperthat introduced the methodofPrichard and
Shipman (1990) also provided an extensive review of
other older rival approaches. There were many confus-
ing arguments included in this review, and because it
may havehada large impact on workers in the antiviral
chemotherapyfield, and manyoftheir arguments are at
odds with our own views, some of Prichard and Ship-
man’s (1990) assertions will be disputed:

(a) they claim that Chou and Talalay’s (1984) mutu-
ally exclusive model is not equivalent to the Loewe ad-
ditivity model. As shown in discussions of figures 7 and
8, and elsewhere in our review, they are indeed equiva-
lent. Prichard and Shipman’s (1990) assertion was based
upon the unreasonable assumption oflinear single agent
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concentration-effect curves, rather than sigmoidal
curves following the Hill equation, Eq. 1.

(6) they claim that Loewe additivity is equivalent to
fractional effect addition, Eq. 17, and to Steel and Peck-
ham’s (1979) Mode II model, All three models are differ-

ent, as discussed in Section IV ofour review. The cryptic
paper of Loewe (1953) may be responsible for this con-
fusion.

(c) they imply that Chou and Talalay’s (1984) mutu-
ally nonexclusive model is, in general, equivalent to
Bliss independence (Webb’s 1963 model). This was
shown not to be true in Appendix A and not to be true
originally by Chou and Talalay (1984). Prichard and
Shipman (1990) only examine the caseof a first order
system, an exceptional case in which the models are
equivalent, as first demonstrated by Chou and Talalay
(1984).

(d) Prichard and Shipman (1992) assert that the
methods proposed by Siihnel (1990) and Greco et al.
(1990) are not quantitative and that the method of
Prichard and Shipman (1990)is “uniquely suited as it is
the only one that quantitates statistically significant
interactions.” As we hope we demonstrated in our re-
view, their conclusion is overstated.

K. Nonparametric Response Surface Approaches

There are many response surface approaches avail-
able that do not require an a priori assumption of a
specific functional form containing estimable parame-
ters. The method of Prichard and Shipman (1990) is a
particularly simple nonparametric technique, which
connects data points with straight lines. More sophisti-
cated nonparametric approaches that have been applied
to concentration-effect data include: kernel estimation

(Staniswalis, 1989), spline-based procedures for mono-
tone curve smoothing (Kelly and Rice, 1990), and a more
traditional spline-based procedure introduced by Siihnel
(1990) and later applied by Baumgart et al. (1991).

Laska et al. (1994) published an approach to detect
Loewe synergism or Loewe antgonism, which uses some
geometrical principles derived from Loeweadditivity re-
sponse surfaces, but which does not require assumptions
regarding the specific functional form of the individual
dose-response curves or the combined-action surface.
Thus, the approach uses a nonparametric structural
model. The random model used to describe data varia-

tion can be either parametric or nonparametric. A min-
imum of only three design points are needed to apply
this method; it should be classified as an hypothesis-
testing rather a response surface approach.

Only the traditional spline-based response surface ap-
proach will be reviewed here.

1. Bivariate spline fitting (Siihnel, 1990). Essentially,
Siihnel (1990) proposed to fit data from combination
experiments with bivariate splines, without and with
smoothing, and then to display the resulting 3-D surface
and contours at various levels of the surface. Bivariate
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splines are sets of piecewise polynomials running in two
dimensions that flexibly follow the points of a surface.
The raw data from the common data set is shown in

figure 21(A) with a bivariate spline (Harder and Des-
maris, 1972; Meinguet, 1979), with no smoothing, fit to
the data with the procedure, GSGRID from the SAS
statistical package (SAS Institute, 1987). Figure 21(B)
shows contours drawn from the raw data at 10% effect

intervals (from 90% to 0% Control, from left to right),
using the SAS procedure, GCONTOUR, using an algo-
rithm from Snyder (1978). Siihnel emphasizes that the
shape ofthe contours can be interpreted directly without
the need offitting a parametric function to the data. A
straight diagonal NW-SE isobol would be consistent
with Loewe additivity. Because the isobols in figure
21(B) are mostly slightly bowed downward, the conclu-
sion is slight Loewe synergism. The approach is a more
sophisticated version of the Prichard and Shipman
(1990) approach, but with the null reference model being
Loewe additivity, not Bliss independence. The Siihnel
(1990) approach shares many of the advantages and
disadvantages of the Prichard and Shipman (1990) ap-
proach.

363

The main advantages include:
(a) Loewe additivity is the null reference model.
(b) the approach is very flexible and does not require a

parametric model for either the single agent concentra-
tion-effect curves, or for combined-action. Mosaics of
interspersed regions of varying degrees of both Loewe
synergism and Bliss antagonism are easily accommo-
dated. Siihnel (1992a, 1992b) considers this character-
istic so important that he has questioned the routine use
of 3-D combined-action models, such as Eq. 5, which
include only a single interaction parameter.

The disadvantages include:
(a) like many nonparametric response surface ap-

proaches, the required experimental design must in-
clude a large number of regularly dispersed points.

(b) the approach is essentially only an exploratory
approach,

(c) no summary measures of interaction intensity or
conclusion uncertainty are provided.

(d) the approach is more complex to implement and to
use than the Prichard and Shipman (1990) approach.

(e) the potential user is required to find his own soft-
ware implementation of the approach.

 
[ Drug 1]

Fic. 21. Analysis ofdata from table 3, columns 2 through 4 by a nonparametric approach interpreted from Siihnel (1990). (A) The surface
is a fit of the data with a bivariate spline (Harder and Desmarais, 1972; Meinguet, 1979), no smoothing, with the procedure, G3GRID,from
SAS (SAS Institute, 1987). All 38 data points, whether they fall above or below the surface, are shown as solid circles. (8) Contours drawn
from the raw data at 10% effect intervals (from 90% to 0%Control, from left to right), using the SAS procedure, GCONTOUR, using an
algorithm from Snyder (1978). The general shape of the contours is in the direction of Loewe synergism.
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L. Parametric Response Surface Approaches

In many senses, parametric response surface ap-
proaches are the most complex anddifficult to apply to
the problem of the joint action of agents. They may
require the scientist-user to be facile with terminology
and concepts that were not part of his formal education,
may require the consultative advice of a statistician or
other quantitative professional, and will require com-
puting facilities and expertise. However, in a broader
sense, these approaches may be the simplestofall ofthe
methods discussed so far. In general, to apply the ap-
proaches, (a) logical models are fit to data with auto-
mated computer programs, (5) parameter estimates,
other statistics, and graphs (3-D and 2-D) are generated
and interpreted, (c) conclusions are made.

1. Models of Greco et al. (1990). Eq. 5 and close vari-
ants have been successfully applied to laboratory data
from several studies (e.g., Greco et al., 1990; Gaumont
et al., 1992; Greco and Dembinski, 1992; Greco and
Rustum, 1992; Guimaraeset al., 1994). Eq. 5 was fit to
the common data set with nonlinear regression,
weighted by the reciprocal of the square of the predicted
effect. [Metzler (1981) provides a good description of
nonlinear regression intended for biomedical scientists.]
The Nash (1979) version of the Marquardt (1963) algo-
rithm for nonlinear regression was coded by our group in
MicroSoft FORTRAN, and run on MSDOS-compatible
microcomputers.

The six best-fit parameter estimates (+ standard
error) were: Econ = 95.1 + 4.5; ICs), = 11.1 + 1.3;
IC50,2 = 1.07 + 0.068; m, = -1.05 + 0.078; mz = -2.04 +
0.080; a = 0.519 + 0.11. The 95% confidence intervals
for each parameter can be calculated by multiplying
each standard error by the appropriate value of the
Student’s t-test distribution and then adding and sub-
tracting this value from the parameter estimate. The
appropriate value of the ty92, distribution for two-sided
95% confidence intervals and 32 degrees of freedom (38
data points, 6 parameters) is 2.04. The 95% confidence
intervals were: Econ, 86.0 to 104; IC,.,, 8.40 to 13.9;
IC50,2, 0.934 to 1.21; my, -1.21 to -0.892; mo, -2.20 to
-1.88; a, 0.300 to 0.738. None of the 95% confidence
intervals encompass zero; all of the parameters were
well estimated. This is a positive indication of the model
fitting the data well.

The raw data and best fit 3-D curve are shown in

figure 22(A). A 2-D representation of the same concen-
tration-effect surface is shown in the isobologram of
figure 23, which was formed by the intersection of the
surface with planes at 10, 50, 90, and 99% inhibition.
Figure 24 includes concentration-effect curves (logarith-
mic concentration scales) for drug 1 at different drug 2
concentrations (left panel) and for drug 2 at different
drug 1 concentrations (right panel). The curves are sim-
ulations of Eq. 5 with the best-fit estimated parameters.
The curves are intersections of the surface shown in
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Fic. 22. 3-D concentration-effect surfaces estimated from the

best fit of four different models, with weighted nonlinear regression
as described in the text, to the data from table 3, columns 2 through
4. Both fitted and raw data are expressed as a percentage of the
estimated Econ parameter. Solid points are above the surface; open
points fall below the surface. (A) Eq. 5; (B) Eq. 28; (C) Eq. 29; (D)
Eq. 29.

figure 22(A) with vertical planes at the concentrations of
drug 2 and drug 1 listed in the figure. These curves,
along with the actual data points, provide a visual anal-
ysis of the goodness offit. Note the differences between
the set of best-fit simulated curves in figure 24 and the
analogous hand-drawn curves in figure 13. Figure 25
shows concentration-effect curves simulated with the

best-fit parameters for drug 1, drug 2, a 10:1 mixture of
drug 1 to drug 2, and a 10:1 mixture with the assump-
tion of Loewe additivity (a = 0). This 2-D representation
of the full 3-D surface in figure 22(A) provides a visual
assessment of the magnitudeof the shift of the concen-
tration-effect curves, because of Loewe synergism, for
fixed ratio mixtures. The IC,, value for the 10:1 mixture
of the Loewe synergistic combination was 1.015-fold
(5.45/5.37) lower than the expected value for the Loewe
additive combination. This is close to the ratio of 1.012-

fold (5.00/4.94) for ideal data containing no error.It is
apparent that an a value of 0.5 leads to only subtle shifts
in mixture concentration-effect curves. Because the a

estimate is positive and the 95% confidence interval,
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Fic. 23. Families of2-D isobols for the bestfit ofEq. 5 to the data
from table 3, columns 2 through 4. The set of contours is a 2-D
representation of the 3-D response surface in figure 22, panel (A).
Note that the X- and Y-axes are the concentrations of each drug
transformed by division by the appropriate value of the dose (or
concentration) of drug that inhibits survival by X% (Dx), The num-
bers on the isobols indicate the % inhibitory level.

 

 
FOde*po
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Fic. 24. Families of 2-D concentration-effect curves for the best

fit of Eq. 5 to the data from table 3, columns 2 through 4. This is
another 2-D representation of the 3-D response surface in figure 22,
panel (A). Note that drug concentrations are on logarithmic scales.

0.300 to 0.738, does not encompass zero, a claim of small
but significant synergism is made.

As was stated previously several times in this paper,
Eq. 5, our flagship model, is a model for combined-
action, not the model. Eq. 5 has a questionable property:
for negative values of the interaction parameter, a, the
3-D concentration-effect surface has a saddle point and
rises back to Econ at simultaneous high concentrations
of both agents. This is illustrated in figure 26, a simu-
lation ofEq. 5 with a = -1 (Loewe antagonism), Like the
fit of second order polynomial models to data sets that
show slight curvature, the fit of Eq. 5 to experimental
data demonstrating Loewe antagonism maybe valid for
only a restricted region. Thefit of Eq. 5 with negative a
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Fic. 25. Predicted 2-D concentration-effect curves for drug 1
alone, drug 2 alone, and the combination of drug 1 and 2 in a fixed
10:1 ratio for the best fit of Eq. 5 to the full data set from table 3,
columns 2 through 4. The predicted Loewe additivity curve for the
same combination at a fized ratio of 10:1, simulated by setting a = 0,
is also shown. The X-axis ia the sum of concentrations of drug 1 and
drug 2 (logarithmic scale), The raw data points are the same ones
shown in figure 16.

estimates to experimental data has been shown to be
satisfactory (e.g., Greco and Dembinski, 1992). However,
we have systematically searched for a logical model that
would not rise up at mixtures of high agent concentra-
tions.

Such an experimental model is Eq. 28, whose general
form was first suggested by Finney (1952) and later
included in a list of plausible interaction models by
Hewlett (1969). (Eq. 28 rises back toward Econ only at
very high agent concentrations and large negative a
values.) Eq. 28 is a specific example ofthe general Loewe
combined-action model, Eq. 9. Eq. 28 differs from Eq. 5
by havingall of the right-hand expression, except for a,
raised to the ¥2 power. For simulations of Eq. 28, the
extent of bowing will be the samefor isobols at different
effect levels determined from plots of D./IDy2 vs. D,/
ID,,, This is in contrast to the greater bowing of isobols
at higherlevels of inhibition for Eq. 5, as seen in figures
4(E), 5(A), 8(C), and 23.

1

1=——5+
1C50,1(sm = 5) 1da — 5)

1/2

+ainsi}
IotCeo)

Eq. 28 was fit to the commondata set in the same way
as described for Eq. 5. Figure 22(B) shows the best-fit
3-D surface and the raw data points. The six estimated
parameters were: Econ = 88.9 + 5.5; [C59,= 15.6 + 2.2;
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Fig. 26. Simulation of Eq, 5, with Econ = 100, ICs; = 10,

ICg9.g = 1, m, = -1, mg = -2, a = -1, an example of Loewe antago-
nism.

ICyo.2 = 1.27 + 0.11; m, = -1.34 + 0.11; mg = -2.28 +
0.13; a = 0.643 + 0.18. As seen in Figure 22(B) and in
other 2-D plots not shown, the goodness of fit was ade-
quate, Because a was positive and its 95% confidence
interval did not encompass zero (0.270 to 1.02), Loewe
synergism is claimed. [Note however, that for some neg-
ative values ofa (from -1.414 to 0), the isobols simulated
with Eg. 28lie outside the limits ofthe graph ofD./ID»
vs. D,/IDy, shown in figure 5(A);i.e., they lie outside the
unit square. This inadequacy of the general form of this
model was first pointed out by Machado and Robinson
(1994) and further explored by Khinkis and Greco (1994).]

2. Models of Weinstein et al. (1990). Eq. 29 was intro-
duced by Weinstein et al. (1990) and Bunow and Wein-
stein (1990); a reparameterization has been used more
recently (Kageyamaet al. (1992). Eq. 29 is called the
robust potentiation model. Loewe additivity is its null
reference model. PC,, PC;, are the concentrations of
agents 1, 2 required to increase the apparent potency of
the other drug by a factor of2. The parameters, bp,, bpo,
govern the slope of the potentiative effect of agents 1 and
2, respectively. Loewe synergism, but not Loewe antag-
onism, can be modeled with Eq. 29, because a negative
PC parameter cannot be used with a corresponding non-
integral bp parameter. Eq. 29 and several other models
are integrated into the software package COMBO,
which runs in the MLAB (Civilized Software Inc, 1991)
environment on MSDOS-compatible microcomputers.
Wefit Eq. 29 to data with nonlinear regression with our
FORTRAN program as described for Eqs. 5 and 28, with
weights equal to the reciprocal of the square of the
predicted response; we did not implement the interest-
ing weighting scheme described by Bunow and Wein-
stein (1990), a Gaussian kernel windowing technique
based on estimated responses.

We were unsuccessful in fitting the full nine-parame-
ter model, Eq. 29 to the commondata set. There was not
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enough information in the data set to allow the estima-
tion of four separate interaction parameters, PC,, PCo,
bp,, and bp. However we were successful in fitting two
different reduced seven-parameter models to the com-
mon data set. Figure 22(C) showsthefit of Eq. 29, with
the expression containing PC, and bp, eliminated, and
figure 22(D) showsthefit of Eq. 29, with the expression
containing PC, and bp, eliminated. The need to use only
one of the two pairs of interaction parameters was also
reported by Weinstein et al. (1990). The estimated param-
eters for the best fit shown in figure 22(C) were: Econ =
95.3 + 4.8; C59) = 11.0.+ 1.4; ICgq2= 1.02 + 0.084; m, =
-1.13 + 0.077; mg = -1.94 + 0.10; PC, = 1.65 + 0.31; bp, =
1.55 + 0.21. The estimated parameters for the best fit
shown in figure 22(D) were: Econ = 98.9 + 4.5; ICs=
9.49 + 1.2; ICg92 = 0.947 + 0.059; m, = -1,00 + 0.064;
Mg = -1.92 + 0.066; PC, = 44.8 + 5.0; bp, = 1.18 + 0.16.
Because the fit was good for both reduced models, the
interaction parameters, PC,, PC, were both positive, and
their 95% confidence intervals did not encompass zero, the
conclusion is Loewe synergism.

1= +
1 E Thy,Ios= — 5) Iolo = 5]

There are many other parametric response surface mod-
els that could be applied to the common data set.
Hewlett (1969) provides a general framework for deriv-
ing many specific, potentially useful, multivariate con-
centration-effect combined-action models. More re-

cently, Machado and Robinson (1994) have reviewed this
set of combined-action models, plus the general forms of
Eqs. 5, 29, and an original model, Eq. 30. Eq. 30 has a
single interaction parameter, which is called y. Unfor-
tunately, like Eq.28, Eq. 30 has the disadvantage of
having isobols lie outside the unit square of the graph of
D,J/IDx.2 vs. D,/ID,, for values of 7 from -~ to -0.333 and
from 1 to ~ (Khinkis and Greco, 1994).

[29]

Ia IC50,2 Econ —E

[30]
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The response surface approaches have the following
advantages:

(a) they provide a quantitative measure of the inten-
sity of interaction, along with a measure of its uncer-
tainty.
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(b) they reduce the full data set from an experimentto
a smaller set of parameters, along with uncertainty es-
timates.

(c) they facilitate prediction of the response under new
conditions.

(d) they are appropriate for complex situations, such
as three-, four-, and five-drug combinations.

(e) they aid in experimental design, including the de-
sign of complex experiments, Also, they tend to be tol-
erant of a wide spectrum of designs.

(f) they have the potential to explain, in intimate
detail, all ofthe characteristics of a complex system, and
thereby facilitate a deep understanding of the system.

(g) they are objective (relatively), rigorous, and con-
sistent with modern statistical theory. In addition to the
briefstatistical summary provided forthe fits of Eq. 5, 28,
and 29 to the common data set, there are other use-
ful statistical diagnostics available, including overall good-
ness offit statistics, confidence envelopes aroundthefitted
surface, and residual (functions of the difference between
the actual and fitted data) analyses (e.g., McCullagh and
Nelder 1989; Seber and Wild, 1989; Bates and Watts, 1988;
Carter et al., 1986; Machado and Robinson, 1994).

(hk) parametric 3-D concentration-effect models may be
used as the pharmacodynamic component of composite
pharmacokinetic-pharmacodynamic models, to be used
for the clinical study of the disposition and effect of drug
combinations.

(i) finally, as described in Section III, response surface
approaches are useful in explaining the similarities and
differences among other rival approaches to the assess-
ment of combined-action.

The four panels of figure 22 look very similar. From
the statistics provided for the fit of Eqs. 5, 28 and 29 to
the commondata set, it would be difficult to choose the

best structural model. To a great extent, the exact form
of combined-action models is arbitrary, and consider-
ations other than the goodness of fit of a model to a
specific data set, must be used to decide upon a modeling
framework. These criteria include:

(a) a model should allow the “slope” for each agent’s
individual concentration-effect curve to be different; this
is allowed by Eqs. 5, 28, 29, 30.

(6) it is desirable to allow each agent’s individual
concentration-effect curve to have a different functional

form; however, the need for such a model seldom arises.
(c) the model should be one from a hierarchical set,

which allows expansion and reduction of models by inclu-
sion and deletion of expressions and parameters, in a log-
ical, hierarchical manner. For example, a model might be
expanded to accommodate more than two agents, or to
describe simultaneous Loewe synergism and Loewe antag-
onism in different regions of the concentration-effect sur-
face, and reduced to describe an agent that increases the
pharmacological effect of a second agent, but which has no
effect by itself (synergism, see table 1).
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(d) the simulation of the model should present no
unsolvable numerical problems. For example, Eqs. 5,
28-30all require appropriate one-dimensional root find-
ers (e.g., Thisted, 1988), but these are easily pro-
grammed, and have been foundto be reliable.

(e) if normalized isobols (e.g., fig. 8(C)] for typical data
increase in bowing at higher levels of inhibition, then
this characteristic should be intrinsic to the model.

(f) a model should have the fewest parameters possi-
ble to adequately describe combined-action data.

(g) it is desirable for the parameters to have some geo-
metrical meaning; i.e., upon hearing of the values of a
model’s parameters, an experienced researcher should be
able to mentally picture 2-D and 3-D concentration-effect
curves. This would be true for Eqs. 5 and 28 through 30.

(A) it is desirable for the model to follow the correct

course, even in regions for which there is no data. In
other words, cautious extrapolation should be possible.

(i) the modeling paradigm should allow the combining
of a 3-D concentration-effect structural model, such as

Eqs. 5 and 28 through 30, with an appropriate random
model, for fitting data with modern statistical ap-
proaches, such as maximum likelihood estimation,

(j) in general, the structural model should closely
follow the overall average data, without following ran-
dom fluctuations.

(k) the isobols for the model should lie within the unit

square ofthe graph ofD,/ID,» vs. D,/ID,_; for all values
of the interaction parameter(s). This last criteria is not
met by Eqs. 28 and 30.

A critical area of future research will be the deriva-

tion, collection, and comparison of rival multivariate
parametric concentration-effect combined-action mod-
els. A comprehensivecritical comparison of rival models
(e.g., Eqs. 5 and 28 through 30) is beyond the scope of
this review. Machado and Robinson (1994) present one
of the first such critical reviews; our group is also cur-
rently working in this area (Khinkis and Greco, 1994).
Althoughthefield of response surface modeling ofagent
interactions has old roots (e.g., Finney, 1952), only in
recent years has the availability of computer hardware
and software madeit into a practical, universally impor-
tant discipline.

The disadvantagesof fitting 3-D parametric concen-
tration-effect models to data include:

(a) there are an infinite number of plausible paramet-
ric models; it may be difficult to choose among rival
models. Different rival models may lead to different
conclusions. The parametric modeling paradigm isstill
evolving; an analysis ofdata with a current model might
be proven to be suboptimal at a later time.

(b) the proper fitting of these models to data requires
statistical and computing expertise and adequate com-
puter hardware and software. However, the acquisition
of these skills and tools is increasing among laboratory
scientists, and, in our view, is very cost-effective. In
addition, as an alternate solution, both initial and long-
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term collaborations between laboratory and quantita-
tive scientists can be very Loewe synergistic.

(c) the links between empirical models of combined-
action, such as Eqs. 5 and 28 through 30, and theoretical
mechanistic models of molecular, biochemical, and phys-
iological systems have not been systematically made. In
other words, after one makes a rigorous claim of, let’s
say, Loewe synergism,it is in no way obvious what this
implies regarding the mechanistic interaction of two
agents. Some work has been done in this field (e.g.,
Werkheiser et al., 1973; Jackson, 1980, 1984, 1991,
1992, 1993; Bravo et al., 1992). However, this critical
research area is in its infancy.

VI. Comparison of Rival Approaches for Discrete
Success/Failure Data

This section will discuss approaches to the assessment
of the combined-action of agents, in which the measured
or observed response is binary (quantal); i.e., it is suc-
cess or failure, yes or no, dead or alive, on or off, 0 or 1.
The data is often grouped by treatment and is expressed
a8 a proportion of successes; e.g., five successes of eight
trials, or 0.625. Most of the material in this section is
from Greco (1989). A random model that describes the
statistical variation in success/failure data is the Ber-

noulli distribution, and one that describes the variation
in proportion data is the binomial distribution (Larson,
1982), Figure 3 showed a concentration-effect structural
curve with binomial variation about one point on the
curve. A formula for the binomial model is Eq. 31, in
which n is the numberof attempts in a binomial trial, k
is the number of successes, Y is the proportion of suc-
cesses (Y = k/n), y is a particular value of Y (y = 0, I/n,
2/n,..., 1), wis the mean or expected value of Y, P(Y =
y) is the probability that the general Y variable will
equal the particular value y, and ( ) is the combination of
n things taken ny at a time. [Note: Eq. 31 is different
from but equivalent to the more common form of the
binomial distribution equation (e.g., Larson, 1982) not
shown here. We reparameterized the more common form
into Eq. 31 to facilitate the combining of structural with
random models.] Because the overall mean or expected
value of Y is merely the value of the structural model,
structural models for success/failure concentration-

effect phenomena can be generated by simply substitut-
ing » for E in any of the structural concentration-effect
models previously described in this paper for continuous
data. For example, the Hill model can be expressed as
Eg. 32, and our flagship combined-action model can be
expressed as Eq. 33. Note that the Econ parameter has
been constrained to be the constant, 1, in Eqs. 32 and 33.
In order to make a composite structural-random model
for data fitting, the structural expression for is in-
serted into the binomial model, Eq. 31, either directly or
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indirectly with a numerical procedure.
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Rival approaches for the assessment of combined-action
when the response is quantal (proportions of success/
failure) will be compared in a manner similar to the
comparison in Section V of rival approaches for com-
bined-action when the response is a continuous mea-
sure. A simulated data set for a pair of inhibitory drugs,
listed in table 4, was generated by first calculating
» with Eq. 33 with parameters, IC;,, = 10, ICgo2 = 1,
m, = -1, mg = -2, a = 1; and then entering p, along with
n into a binomial random number generator from the
Statgraphics Software Package (STSC Inc., 1988). This
data set will be analyzed with three different ap-
proaches, the approach of Gessner (1974), the fitting of
the parametric response surface model, Eq. 33 (Greco
and Lawrence, 1988) to the full data set, and the fitting
of the multivariate linear logistic model (Cox, 1970), Eq.
34, to the full data set (e.g., Carter et al., 1983, 1988;
Brundenetal., 1988).

Bw T+ exp(Bp + BD; + BoD + Bi2D,D2)

Many of the methods for analyzing continuous com-
bined-action data, described in Section V, could be used,
and have been previously used, for analyzing proportion
data. If one merely calculates the proportions of survi-
vors from table 4 as decimal numbers and then treats

these numbers as continuous data, then methods E.1
through E.11 could be directly applied without any ad-
ditional complications. However, the variation pattern
(probability distribution) of proportion data is funda-
mentally different from that for typical continuous bio-
logical data. For proportion data, usually the numbers of
survivors and the total numbers of organisms undergo-
ing a treatment is known withouterror. The variation in
responses is usually caused by the fundamental nature
of discrete binary responses; the variation is usually
wider in the JD,, range of the concentration-effect curve

[34]
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TABLE 4

Data set, with a binary (proportion) response variable, used for
comparison of rival data analysis approaches

D D Number of Total number of
‘ = survivors* organisms

O.1 0 100 100

0.3 0 97 100
0.5 0 96 100
1 0 96 100
3 0 72 100
5 0 69 100

10 0 67 100
30 0 32 100
50 0 13 100

100 0 13 100
0 0.01 100 100
0 0.03 100 100
0 0.05 $9 100
0 0.1 98 100
0 0.3 95 100
0 0.5 72 100
0 1 46 100
0 3 6 100
0 6 3 100
0 10 2 100
0.1 0.01 99 100
0.3 0.03 97 100
0.5 0.05 94 100
1 0.1 87 100
3 0.3 59 100
5 0.5 53 100

10 1 24 100
30 3 7 100
50 5 2 100

100 10 0 100

*The number of survivors in column 3 was generated by (a)
calculating » with Eq. 33 with parameters, [Cy= 10, ICgo2 = 1,
m, = —1, mg = —2, a = 1; then entering p, along with n (the total
number of organisms, equal to 100) into a binomial random number
generator from the Statgraphics Software Package (STSC Inc.,
1986).

and smaller near the two ends of the curve. Proportions
above 1 and below 0 do not exist. In contrast, continuous
biological data often follow bell-shaped normal distribu-
tions, with larger variances associated with larger mea-
surements (proportional error, constant coefficient of
variation). Individual measurements (% control) both

above 100% and below 0% often occur. Proportions will
tend to become normally distributed as n becomes large,
and as the true proportion tends away from the ends of
the range, 0 and 1. Methods, E.1 through E.11, which
ignore the true random componentof the data, will only
be, at best, approximately correct for binary data. How-
ever, they can provide very useful preliminary explor-
atory procedures. Nonetheless, only approaches that
fully exploit the binary nature of the data will be com-
pared in this section.

Much of the early work on the problem of combined-
action of agents was focused on biological systems with
quantal responses(e.g., Bliss, 1939; Finney, 1952, 1971;
Hewlett and Plackett, 1959, 1979; Hewlett, 1969; Plack-
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ett and Hewlett, 1948, 1952, 1967). (It seems that sys-
tems with quantal responses were of more interest to
statisticians, whereas systems with continuous re-
sponses have been of more interest to pharmacologists.)
Specific approaches and models of these pioneers in the
field of combined-action assessmentwill not be reviewed

in this paper. However, many of their concepts, ap-
proaches and models form the basis of the three ap-
proaches that will be compared.

A. Approach of Gessner (1974)

Our interpretation of the method of Gessner (1974)
first consists of fitting appropriate single agent models
to the data for agent 1 alone, agent 2 alone, and fixed
ratios of D,:D,. Gessner (1974) recommends the probit
model(e.g., Finney, 1952), Eq. 35, for this purpose; how-
ever, we also explored the use of the univariate linear
logistic model with In(D) as the input, Eq. 36, and the
univariate linear logistic model with D as the input, Eq.
37. Note that Eq. 32 and 36 are different parameteriza-
tions of the same fundamental model, in which By =
-mln(Dm) and 6, = m. These three models were fit to the
data for drug 1 alone, drug 2 alone, and the 10:1 mixture
from table 4, with maximum likelihood estimation via
nonlinear least squares (Jennrich and Moore, 1975),
with the software package, PCNONLIN (Statistical
Consultants, Inc., 1986), on an MSDOS-compatible mi-
crocomputer. The best fit of Eq. 32, and the equivalent
model, Eq. 36, to the three sets of data points from the
common 30-point data set, is shown in figure 27(A). The
best fits ofEqs. 35 and 37 are shown in figures 27(B) and
27(C), respectively. The fits look good for Eqs. 32, 36,
and 35, but not for Eq. 37. The parameter estimates +
standard errors for the fits of these four models were:

(for Eq. 32, drug 1, Dm = 10.7 + 0.99, m = -0.982 +
0.060; drug 2, Dm = 0.895 + 0.056, m = -1.99 + 0.14;
drug 1+2, Dm = 4.36 + 0,30, m =-1.59 + 0,10). (For Eq.
36, drug 1, By = 2.33 + 0.16, B, = -0.982 + 0.060; drug
2, Bo = -0.220 + 0.13, B, = -1.99 + 0.14; drug 1+2, By =
2.34 + 0.19, B, = -1.59 + 0.10). (For Eq. 35, drug 1, By =
6.36 + 0.084, B, = -1.32 + 0.072; drug 2, By = 4.90 +
0.072, B, = -2.72 + 0.17; drug 1+2, By = 6.35 + 0.10,
By = -2.12 + 0.12). (For Eq. 37, drug 1, By = 1.61 + 0.10,
B, = -0.0577 + 0.0043; drug 2, Bp = 2.55 + 0.14, B, =
-1.67 + 0.13; drug 1+2, By = 2.52 + 0.16, B, = -0.403 +
0.032). None of the 95% confidence intervals for any of
the parameters for any of the models encompassed zero,

Probit(}2) = By + Bilog(D) [35]

= exp(Bp + B,ln(D)) [36]
Ph" T+ exp(Bo + Biln(D))

exp(By + 8,D) [37]
#1 + exp(By + BD)

The second stage ofthe method of Gessner (1974)is to
plot the estimated Dm (ID,9) values, along with their
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Fic. 27. Fitted curves of various modele to the simulated data
from table 4. See detaila in the text.

95% confidence intervals, for drug 1 alone, drug 2 alone,
and for the mixture, on isobolograms. Figure 28 shows
the isobologramsfor thefits of Eqs. 32, 35 and 36, which
all coincide, and figure 29 shows the isobologram for the
fit of Eq. 37. The dashed lines connecting the ends of the
95% confidence intervals for the JD,.’s of drug 1 alone
and drug 2 alone define a Loewe additivity region. Be-
cause the 95% confidence interval for the 10:1 mixture of

drug 1+2 intersects the Loewe additivity region, a con-
clusion of Loewe additivity is made. In contrast, the
isobologram replot for the fit of Eq. 37, figure 29, indi-
cates Loewe synergism.Interestingly, the poor fit of Eq.
37 to the data resulted in poor estimates of the JD,,'s for
each drug alone, and this lead to the “correct” claim of
Loewe synergism. Theoverall conclusion for the method
of Gessner (1974), based upon thefits of Eqs. 32, 35 or
36, and the isobologram replot in figure 28, is Loewe
additivity.
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Fic. 28. Further isobolographic analysis of data from figure 27,

panels (A), (B), using an interpretation of the approach of Gessner
(1974).
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Fic. 29. Further isobolographic analysis of data from figure 27,

panel (C), using an interpretation ofthe approach ofGeasner (1974).

It is also clear that the linear logistic model without
the logarithmic transformation of the dose, Eq. 37, does
not seem to have the ideal shape for typical concentra-
tion-effect data. It seems to miss points near 100% sur-
vival, and misses points for concentration-effect curves
with relatively shallow slopes (around m = -1).

The advantages of the method of Gessner (1974) in-
clude:

(a) the underlying null reference model is Loewe ad-
ditivity.

(6) the approach takes into account in an appropriate
manner, the binomial variation of proportion data.

(c) the approach allows the slopes of the individual
concentration-effect curves to be different.
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(d) the derivation and application of complex full com-
bined-action models are not necessary.

(e the isobologram replot is visual and intuitive.
(f) uncertainty measures, the 95% confidence inter-

vals about the /D,o8, are included in the analysis.
(g) the approach can accommodate interspersed re-

gions of Loewe synergism and antagonism.
(A) the general concepts of estimating JD;9s, along

with 95% confidence intervals, and making a replot
isobologram, are very general, and could be applied to
continuous data.

(i) the approach is relatively easy to implement with
standard software.

(j) the approach is an excellent front-end for more
advanced model-fitting approaches and may provide the
best final analysis for complex situations in which the
degree of Loewe synergism and Loewe antagonism var-
ies across the 3-D concentration-effect surface.

The disadvantages include:
(a) the additivity region bounded by the dashed lines

connecting the ends of the 95% confidence intervals of
the individual agent ID,98 was not created with a rigor-
ous statistical derivation. The additivity region will tend
to be too wide, too conservative, resulting in rejection of
true Loewe synergism and Loewe antagonism too often.
More realistic confidence bounds, based upon modern
statistical theory, have been derived by Carter's group
(Carter et al., 1986, 1988; Gennings et al., 1990).

(6) it is likely that the fitting of data for a fixed ratio of
D,:D, by concentration-effect models appropriate for
single agents, such as Eqs. 32, 35, or 36, will result in
biases, similar to the problems described for fitting the
median-effect model to fixed ratio data, described in
Appendix B,andin figure 17. We predict that the misfits
will become more severe as the difference in slope pa-
rameters increases and as the intensity of interaction
increases, as shown for the median-effect model, in fig-
ure 17. However, we predict, as indicated for the medi-
an-effect model in Appendix B, that the problems will
tend to be minor if one focuses mainly on the ID,,s.

(c) maximum use is not madeofthe data, as compared
with approaches centered on the fitting of full combined-
action concentration-effect surfaces to all of the data

simultaneously.
(d) summary measuresof the intensity of interaction,

along with uncertainty measures, are not provided.
An additional criticism—with which we take issue—

leveled at the method of Gessner (1974) is that the

approach does not adjust the 95% Loewe additivity re-
gion to take into account the problem ofmaking multiple
comparisons of [D,98 from several separate fixed ratio
concentration-effect curves (Carter et al., 1988). Carter's
group argues: “The procedure described suffers from the
same problem associated with making multiple [Stu-
dent's] t-tests to compare the means of a number of
treatment groups. In such cases, the probability of in-
correctly rejecting the null hypothesis of equality of
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treatment means is inflated. Here, the null hypothesis is
one of additivity. Hence, the probability of incorrectly
rejecting additivity and thereby concluding synergism is
inflated.”

We respond to this criticism by pointing out that,
when applying Gessner’s (1974) approach to datasets
with several fixed ratios of D,-D., the pattern of IDs
confidence intervals is taken into account; albeit, in an

ad hoc manner, when making a conclusion. Each [D,,
confidence interval is not meant to be interpreted in
isolation. For example, if there were 10 different fixed
ratios for our common data set, and if their [D,, confi-
dence intervals were plotted in figure 29, and if a ran-
dom assortment of significant Loewe synergism and
Loewe antagonism were demonstrated, one would con-
clude either that the combined-action was very complex
or that some errors were made in conducting the exper-
iment. The experiment would probably be repeated. If
only 1 of 10 fixed ratios showed significant Loewe syn-
ergism, with no apparent trend in the JD,, estimates,
then the Loewe synergism would be considered sugges-
tive at best, possibly a random artifact, and,if possible,
the experiment would be repeated with larger sample
sizes, especially in the region of suspected Loewe syner-
gism. However, with the more probable result of consis-
tent patterns of Loewe synergism or Loewe antagonism,
(e.g., Gessner, 1988), the clusters of Loewe synergistic
and/or Loewe antagonistic [D,. intervals will reinforce
each other, leading to a more conservative, not to a
more liberal, conclusion. The use of improperly inflated
P-values, and conversely, improperly deflated 95% con-
fidence intervals, caused by the making ofmultiple sta-
tistical comparisons, is certainly an important general
problem in biostatistics (Miller, 1981). However, the
problem is not releyant to the application of Gessner’s
approach when rationally applied to agent combination
data.

B. Parametric Response Surface Approaches

Just as for continuous data, full 3-D combined-action
concentration-effect models can be fit to proportion data,
to assess the nature and intensity of agent interaction.
The use of two different structural models will be dem-

onstrated: our flagship combined-action model, Eq. 33,
and the multivariate linear logistic model, Eq. 34. In
principle, the general form of Eq. 28, Eq. 29 (Weinstein
et al., 1990), Eq. 30 (Machado and Robinson, 1994), and
any of the models reviewed by Hewlett (1969) could also
be tried, but these are not included in this part of the
review,

1. Model of Greco and Lawrence (1988). Eq. 33 was fit
to the full common data set in table 4 with maximum

likelihood estimation in the same manneras described
in Section VI.A. The best fit surface is shown as three

curves in figure 27(E). The fitted surface hugs the raw
data, with a random distribution of points about the
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surface. The parameter estimates + standard errors
were: Dm, = 11,2 + 0.99, m, = -0.995 + 0,052, Dm, =
0.905 + 0.056, mz = -2.05 + 0.14, a = 0.903 + 0.46. The
95% confidence interval for a was from 0.001 to 1.80.

Therefore, Loewe synergism is claimed.
2. Multivariate linear logistic model. The use of the

multivariate linear logistic model (Cox, 1970) is very
popular in the analysis of clinical trial data and in Epi-
demiology, in cases in which the response variable is
binary (Hosmer and Lemeshow, 1989). It is the most
popular response surface model that has been routinely
applied to quantal combined-action data (e.g., Carter et
al., 1983, 1988; Brundenet al., 1988). Eq. 34, the mul-
tivariate linear logistic model for two agents, includes
one interaction parameter, B,.. When B,. is positive,
Loewe synergism is indicated; when f,, is negative,
Loewe antagonism is indicated, and when fj, is zero,
Loewe additivity is indicated. Eq. 34 was fit to the com-
mon data set in table 4 with the maximum likelihood

approach described in Section VI.A. Thefitted surface is
shown in figure 27(D). The parameter estimates were:
Bo = 2.03 + 0.071, B, = -0.0713 + 0.0043, B, = -1.54 +
0.11, By. = -0.0837 + 0.025, Because the 95% confidence
interval for B,. is from -0.133 to -0.0347, Loewe antag-
onism might be concluded. However, the best fit of Eq.
34 to the data, shown in figure 27(D), does not look very
good. First, the surface misses the points near 100%
survival. Second, because the linear logistic model con-
strains agent 1 alone, agent 2 alone, and the 10:1 mix-
ture all to have the same dose-effect slope (on a logarith-
mic dose scale), the data points are not randomly
scattered about the curves; the surface systematically
misses most of the data. These two characteristics make

the multivariate linear logistic model suboptimal for
assessing the combined-action of agents in many sys-
tems.

This second problem with the use of the linear logistic
model, the constraining of the slopes of the concentra-
tion-effect curves, may have profound implications for
the use of the multiple linear logistic model in other
fields. Therefore, a cleaner, simpler example ofthe prob-
lem,illustrated in figure 30, is presented here. The four
curves, a, 6, c and d for both panels, A and B, were
simulated with the simple linear logistic model, Eq. 37.
For curve a, By = 1.5, B; = -2.0; for curve b, By = 3.0,
B, = -2.0; for curve c, By = 1.5, B, = -0.1; for curve d,
By = 3.0, 8, = -0.1. In panelA, » is plotted against agent
doge on a common logarithmic scale; whereas, in panel
B,thelogit of» is plotted against agent dose on a linear
scale. For each of these curves, 45 points, indicated by
symbols, were simulated, and then the points connected
via the spline option in SigmaPlot 2.0 (Jandel Scientific,
1994), The combined data for curves b and c (n = 90)
were assumed to represent the proportion of organisms
remaining after treatment with agent 1 and agent 2,
respectively. A sample size of 1000 was assumedfor each
of the 90 treatment groups. No binomial variation was
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Fic. 30. Problems with use of logistic function for representing
dose-response phenomena.

introduced. This set of data was then fit with Eq. 38, a
multiple linear logistic model with three estimable pa-
rameters, Bp, B,, and Bo, but no B,. interaction param-
eter, with the LR program in BMDP(Dixonetal., 1990).
This model assumes a common fp term, a 8, term for
agent 1, and a f, term for agent 2. The bestfit estimates
(+ standard error) were: By = 1.93 + 0.013; B, = -1.36 +
0.016; and B, = -0.122 + 0.0015. These parameter esti-
mates were then used to simulate curves e and fin both
panels (A) and (B).

__exp(By + ByD; + BaD2)
BT + exp(By + B:D; + BaDo)

Note that in panel (A), the two members of each curve
pair, a and c, b and d, and e andfshare the same shape:
they are parallel; they have the same dose-effect slope
(on a logarithmic dose scale). For example, at every
effect level (except 1 = 1 and u = 0), the dose for curve
c is 20-fold higher than the corresponding dose on curve
a (the ratio of their JD,5s). This is caused by the same By
term for each respective pair. The lateral separation of
the curves for each pair is because of different 8, terms.
Because the JD,, is equal to -B/B;, it is clear that a
larger B, term will shift the concentration-effect curve to

[38]
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the right, and a larger-in-magnitude B, term will shift
the curve to the left. Note that in panel B, that curve
pairs a and b, and c and d consist of paralle) lines. This
is caused by the same f, terms for each respective pair.
There are common y-intercepts for curve pairs a and c, b
and d, and e and f, in panel B, but this cannotbe visually
detected on the scale with which the graph is drawn.

WhenEq.38is fit to the combined data from curves 6
and c, there are only three parameters available to rep-
resent the information that was originally contained in
four parameters, s0 compromises were necessary. Note
that the estimated B, for the combined data, 1.93, is a
compromise between the 8, terms for the individual
concentration-effect curves, 1.5 and 3.0. Also note that
the concentration-effect slopes in panel (A) for curves e
and fappear to be the same, but these curvesare differ-
ent from those of a and c, and of b and d. The estimated
B, term for curve f, -0.122, is somewhat different from
the 8, term of curve c, -0.1; the estimated B, term for
curve e, -1.36, is somewhat different from the B, term of
curve 6, -2.0. The [Dos for curves e and f, 1.42 and 15.8,
respectively, are close to those of curves, b and c, 1.5 and
15, respectively. Curves e and f seem to attempt to
closely follow the data from curves 6 and c, but fail,
because the information contained in four parameters
cannot be expressed completely by three parameters.

The advantages and disadvantagesoffitting 3-D com-
bined-action concentration-effect surfaces to proportion
data are essentially the same as listed for continuous
data. However, as seen with the experience of the mul-
tivariate linear logistic model, one must be very careful
about choosing an appropriate combined-action model.

VII. Overall Conclusions on Rival Approaches

Tables 5 and 6 summarize the characteristics ofthe 13

rival approaches for assessing combined-action for con-
tinuous data, and the three rival approachesfor assess-
ing combined-action for quantal data, respectively. In
addition, they also provide a condensed summary ofthe
conclusions of each analysis, For the originators of the
13 approaches for continuous data, there is about an
equal division between those who have Loeweadditivity
as their null reference model and those that have Bliss

independence as their null reference model. Only the
method of Steel and Peckham (1979) and the method of
Chou and Talalay (1984) use additional models, Eq. 20
and Eq.18, respectively, as integral null reference mod-
els for their approaches.

With today’s universal accessibility to powerful, inex-
pensive computers with useful software, there is no good
reason for an analysis of combined-action data to lack a
graphical component. All of the methods that require
graphics and advanced statistical procedures have ei-
ther already been implemented into stand-alone soft-
ware packages or are “easily” implemented with stan-
dard general statistical and graphical software.
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Atfirst glance, the conclusions of the authorsof the
13 different approaches seem to be quite varied. How-
ever, the common continuous data set was simulated
with Eq. 5 to contain a small degree of Loewe syner-
gism (true a = 0.5), which corresponds in most regions
of the 3-D concentration-effect surface to a small de-

gree of Bliss antagonism. Methods1, 2,4, 5, 8, and 10
through 12b yielded conclusions consistent with their
respective “no interaction” reference models. This was
also true for method 3, the method of Valeriote and
Lin (1975), which further divides Bliss antagonism
into three subcategories, including “subadditivity.” In
addition, because the true combined-action was be-
tween Loewe additivity and Bliss independence,ideal
data would fall into the additivity envelope of method
6, that of Steel and Peckham (1979), and thus the
conclusion of “additivity” for this approach is also
consistent. The Bliss independence surface approach
failed to detect the small amountofBliss antagonism.
Of the 13 different approaches, only the method of
Chou and Talalay (1984) gave a conclusion opposite to
the one expected, based on its respective null refer-
ence model(s). This is because of artifacts inherent in

the calculation of the CI vs. fa plot.
The three approaches to the analysis of combined-

action for quantal data listed in table 6 all share Loewe
additivity as the null reference model. The method of
Gessner (1974) is somewhat conservative and just
missed the correct conclusion of a small degree of Loewe
synergism. Not surprisingly, our flagship model that
was used in the simulation of the common proportion
data set, table 4, fit the data well, but just barely de-
tected the small degree of synergism (true a = 1), just
above the noise level ofthe data. The multivariate linear

logistic model arrived at the wrong conclusion, because
it could not mold itself well to the data.

VII. Experimental Design

The main decisions that must be made regarding ex-
perimental design are: (a) where to choose the concen-
trations, (b) numbers of replicates, and (c) numbers of
experiments. These seemingly simple questions have
spawned many full careers for statisticians, who have
delved deeply into them to reveal their inherent com-
plexity. The adoption of a response surface paradigm for
the assessment of combined-action of agents facilitates
the understandingofformal statistical experimental de-
sign. First, the experimenter must decide whetherheis
in an exploratory or a confirmatory mode. Screening
experiments (exploratory mode) shouldfirst include, for
each agent individually, agent concentrations that span
the anticipated response region. Logarithmic spacing of
the concentrations over a thousand-fold to a million-fold

range is probably necessary, depending upon the previ-
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TABLE 6

Comparison ofconclusions from the application to the same simulated data set (representative example ofdata from pure small synergism
with binomial variation, Table 4), of three rival approaches for assessing the nature and intensity ofagent combined-action

Null “no : “Advanced”
5 on a Software Graphical i 2 Short

Approach fetaha availability approach? Sonn Long conclusion conclusion
1, Method of (Gessner, 1974) LADD YS, YG Y N Loewe additivity is claimed, LADD

but with a hint of small

Loewe synergism.
2a. Parametric response surface LADD YG Y Y Small, borderline significant LSYN

approach (Greco and Lawrence, 1988) Loewe synergism (P < 0.05).
a = 0.903 + 0.46

2b. Parametric response surface LADD ¥s Y Y Significant Loewe antagonism LANT
approach, multivariate logistic model
(e.g., Carter. et al, 1988)

(P < 0.06).
 

* The abbreviations used throughout Table 6 are the same as used in Table 5.

ous knowledge of the researcher about the concen-
tration-effect behavior of the compound. After the indi-
vidual agent concentration-effect curves are well char-
acterized, a combination experiment should be
conducted that repeats the single agent data points and
which includes a set of combination points. Either a full
factorial (checkerboard) design as suggested by Prichard
and Shipman (1990), or a single ray (fixed-ratio) design,
or a multiple ray design, all with logarithmically spaced
concentrations, might be appropriate. If a complex 3-D
concentration-effect surface is anticipated, then the en-
tire interesting region of agent 1 and agent 2 concentra-
tions should be sampled, either with a checkerboard or
multiple ray design. However, if a well behaved 3-D
concentration-effect surface is anticipated, and the spe-
cific combination being studied is only one of many can-
didates being screened, then a single ray may be suffi-
cient. Composite designs consisting of a checkerboard
and some rays might also be used. Of course, if the
intended data analysis approach is firmly tied to a par-
ticular design, then that design will have to be used.

After the researcher has completed the analysis of the
first mixture experiment in exploratory mode, he/she
may wantto switch to confirmatory mode. The repeat of
the combination experiment may use the same design as
in the exploratory experiment, but probably the knowl-
edge gained from thefirst run will help to refine the
design for the second run.If a complex 3-D concentra-
tion-effect surface was found in the exploratory experi-
ment, then agent concentrations in the interesting re-
gions of the surface should be accented in the
confirmatory experiment. Increasing the numbers of
replicates probably also will be necessary. If a simple
3-D concentration-effect surface was foundin the explor-
atory experiment, i.e., one with pure Loewe synergism or
Loewe antagonism, then a design that facilitates the
estimation of parameters with the smallest variance
might be appropriate. A single ray or a D-optimal design
(Box and Lucas, 1959; Atkinson and Hunter, 1968; Sil-
vey, 1980; Fedorov, 1972; Greco and Tung, 1991) might
be indicated with many replicates.
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There are many lettered-optimality criteria for exper-
imental design. Atkinson and Donev (1992) present a
recent comprehensive review. The D-optimality crite-
rion has become popular for biological applications (e.g.,
Bezeau and Endrenyi, 1986; Greco et al., 1994). Reasons
for its popularity include: (a) ease of application; (6)
intuitiveness of its theoretical basis (For models nonlin-

ear in the parameters, D-optimality minimizes the lin-
ear approximation of the volumeof the joint confidence
region of the parameters); (c) transformation of model
parameters does not alter designs (Fedorov, 1972).

Interestingly, the number of design points in a D-
optimal design is generally equal to the numberof esti-
mable parameters (Atkinson and Hunter, 1968). For
example, if one assumes that Eq. 5, which contains 6
parameters, will adequately describe the 3-D combined-
action concentration-effect curve, then a D-optimal de-
sign will include only six design points, with or without
replicates. A description of our algorithms for calculat-
ing D-optimal designs for agent combination studies is
included in Greco and Tung (1991) and Greco et al.
(1993).

The D-optimal designs may, at first, seem to be very
strange and potentially noninformative. For example,
for the continuous common data set listed in table 2,

which contains proportional error, the approximate D-
optimal design based upon the ideal parameters (Econ =
100, ICs, <= 10, ICs92 a 1, my, = -1, Mo = -2, a= 0.5)
is (point 1, D, = 0, D, = 0; point 2, D, = 1,000, D, = 0;
point 3, D, = 95, D, = 0; point 4, D, = 0, D, = 1000;
point 5, D, = 0, D, = 3.08, point 6, D, = 86.4, D, = 8.73).
This D-optimal design is only approximate because the
assumption of pure proportional error (constant coeffi-
cient ofvariation)will drive manyofthe design points to
unrealistic infinite concentrations (Bezeau and Endre-

nyi, 1986). We have reduced unrealistically large con-
centrations to 1000. Even with this adjustment, the
D-optimal design still seems to be uninformative. (By
visually plotting the six D-optimal design points in fig-
ure 25, the readerwill note that one point is at the very
top ofthe concentration-effect surface and that the other
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five are at the bottom! None of the points lie in the
middle region of the surface.) However, we have con-
ducted Monte-Carlo simulations to verify that this type
of D-optimal design results in the smallest variance for
the six model parameters when compared with factorial
and ray designs (Greco et al., 1994). We have algo shown
that the variance of the parameter estimates is approx-
imately proportional to the reciprocal of the number of
replicates. This type of frugal experimental design may
have great potential for animal and human experiments,
in which the experimental units are very dear.

The point at which the Loewe additivity model and the
combined-action model are furthest apart in the vertical
direction may be an important design point; this point
may offer the maximum potential for discriminating
between the two models (Mannervick, 1982), From fig-
ure 10(C), it was shown for our flagship model, with
parameters (Econ = 100, [C59 = 1, 1C59.2 = 1,m, =-1,
My = -2, a = 5), that the largest vertical difference was
near the point, (ICgo,1, IC59,.2). In contrast, figure 9 indi-
cates that the largest horizontal difference between
Loewe additivity and our combined-action modelis at
infinite concentrations of both agents. This implies that
a pair of very large concentrations may be useful. These
two design points, based upon maximum modeldiffer-
ences, may be added to other designs discussed above.

Formal statistical experimental design often includes
an interesting paradox:in order to design an experiment
well, you have to know the final answer well. However,
if you knew the final answer well, then you would not
have to conduct the experiment. This paradox is solved
with sequential experimentation; each experiment in a
sequence provides better information for the planning of
the subsequent experiment.

IX. General Proposed Paradigm

Readers of this review may not be particularly happy
at this point. They may have become enlightened on the
subject of combined-action after following the discussion
of the different 3-D and 2-D representations of this phe-
nomena. They may have carefully read the descriptions
of the application of 13 rival approaches for assessing
combined-action for continuous data, and of 3 rival ap-
proaches for quantal data. They may have digested and
evaluated the long list of advantages and disadvantages
of each approach. They may now have a greater appre-
ciation of the similarities and differences among the
rival approaches reviewed in this paper. Finally, they
may have developed an understanding ofthe fundamen-
tal importance of mathematical models in the descrip-
tion and evaluation of complex systems. However, it is
probably notat all clear how to actually proceed with the
practical analysis of a data set from an experiment of
combined-action.

We recommend the following general approach. Be-
fore the combined-action experiment is conducted, the
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concentration-effect curves for the individual agents
should be characterized well. Data for a combination

experiment can then be generated from eithera factorial
design, from a fixed-ratio (ray) design, from a D-optimal
design, from a model discrimination design, or some
combination ofthe four. The numbers anddistribution of

different rows and columns in the factorial design, the
numbers and distributions of rays in the fixed-ratio de-
sign, and the numbers of replicates, will depend upon
the importanceofthe anticipated result, the cost of each
experimental unit, and the degree of ignorance of the
shape of the full 3-D concentration-effect surface,

The overall best initial data analysis, which will work
with almost any conceivable, reasonable design, should
include a combination of approaches V.H., the method of
Berenbaum (1985), and V.L, the Bliss independence re-
sponse surface approach.First, a logical Loewe additiv-
ity model should be fit, with an appropriate curve-fitting
technique, to the data for agent 1 alone and agent 2
alone. Nonlinear regression should be used to fit models
to continuous data, and maximum likelihood procedures
used to fit models to quantal data. The 3-D Loeweaddi-
tivity predicted surface should be shown in 3-D. Then
sprinkle the raw data points on the same graph, and
note the position of the points relative to the surface,
such as was done in figure 18(A), Then construct the
Bliss independence surface and sprinkle the raw data
points, such as was done in figure 18(B). Combining
Loeweadditivity and Bliss independence surfaces on the
same 3-D graph may be useful. Also, various 2-D repre-
sentations ofthe 3-D surfaces, such as isobolograms, and
families of 2-D concentration-effect curves, with accom-
panying data points, may be useful. A confidence enve-
lope, adapted from suggestions of Carter et al. (1986,
1988), around the two surfaces might be used to discrim-
inate between true departures from the null reference
models and random variation. Note that our suggested
approach has the flavor of the “additivity envelope”
method of Steel and Peckham (1979), but the correct
model for Loewe additivity is used to define one of the
boundaries, instead of Eq. 20. Only in rare cases will it
be difficult to find appropriate concentration-effect mod-
els to fit the concentration-effect data for the individual

agents.
After this initial analysis, a decision should be made

whether to derive and fit a full appropriate combined-
action concentration-effect model to all of the experi-
mental data simultaneously or to accept the initial anal-
ysis as the final answer. In many cases,it will be fruitful
to complete this last step. The final summary statistics
should include uncertainty measures around thefinal
parameter estimates, confidence envelopes around the
fitted surface, overall goodnessof fit statistics, residual
analyses, and sets of 3-D and 2-D graphs. These sets of
graphs mayincludethe 3-D combined-action concentra-
tion-effect surface along with the raw data, such as
figure 22, 3-D difference plots such as figure 10, 3-D
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combination index plots such as figure 9, 2-D isobolo-
grams such as figure 23, 2-D families of concentration-
effect curves, such as figures 24 and 25, plus any other
informative graphical representations. Physical 3-D
models of combined-action concentration-effect surfaces

made with LEGO bricks (LEGO Systems Inc., Enfield,
CT) (Greco, 1991) or other materials can accent impor-
tant results.

To the best of our knowledge, a software package
dedicated exclusively to this whole composite approach
does not as yet exist. However, many general nonlinear
regression packages, which allow the coding of a one-
dimensional root finder for dealing with models in un-
closed form, and with accompanying graphics capabili-
ties, could be used to implement this approach. Such
packages available for microcomputers include: PC-
NONLIN (Statistical Consultants Inc., 1986), SAS (SAS
Institute Inc., 1987), MLAB (Civilized Software, Inc.,
1991), GAUSS (Aptech Systems Inc., 1991), and IMSL
(IMSL, 1989). There are many more packages available
for UNIX workstations, minicomputers, and mainframe
computers with adequate capabilities to implement this
full approach. Our group is currently developing an im-
plementation of the full approach, which has been de-
signed to work under the MicroSoft Windows operating
system.

Several critical areas for future research and develop-
ment in the field of the assessment of combined-action

were pointed out in this review article:
(a) the relationship between empirical models of com-

bined-action, and mechanistic theoretical models of bio-
chemical and physiological systems should be explored.

(6) a library of combined-action models should be de-
rived, collected, evaluated, and critically compared.

(c) the impact ofusing different experimental designs,
especially D-optimal designs, should be evaluated, both
from theoretical and practical perspectives.

(d) user-friendly, inexpensive computer software
should be developed to facilitate the paradigm of exper-
imental design and data analysis approaches described
above.

X. Appendix A. Derivation of a Model for Two
Mutually Nonexclusive Noncompetitive
Inhibitors for a Second Order System

A. Motivation

The concepts of Bliss independence and mutual non-
exclusivity, at first glance, seem to be the same. Equiv-
alent general forms for the classical Bliss independence
model are Eqs. 11 and 14, in which fu, fire, andfu;. are
the fractions of possible response for drug 1, drug 2, and
the combination (e.g., % survival, %control) unaffected
(Chou and Talalay, 1981, 1984), and fa,, faa, and fa,> are
the fractions of possible response affected (e.g., % dead,
% inhibition) [fa(= 1 - fu)]. For the common case in
which each drug individually follows the Hill concentra-
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tion-effect model, Eq. 2, (equivalent to the median-effect
equation of Chou and Talalay, Eq. 24) the appropriate
specific Bliss independence model would be Eq. 12 (fu =
E/Econ).

fuy2 = fu;fue (11)

fay = fa, + faz — fa;faz [14]

Borla)‘con| ——

Cy
E=se [2]

+ 1Gs5

fa D\™fe = (sr [24]
rs)(ea)Bona eeii= Ce0,1 ICs0,2 [12]

(+ Gee)eo bess))
However, the mutually nonexclusive model of Chou and
Talalay (1981, 1984), Eq. 18, is not equivalent to the
Bliss independence model, except under the restrictive
condition that the slope parameter, m, is equal to 1 (or to
-1 by our convention ofmonotonically decreasing concen-
tration-effect curves). Eq. 19 is a specific nonlinear form
of Eq. 18. (Note that Eq. 19 is equivalent to our flagship
interaction model, Eg. 5, with m, = mz = m, and a = 1.)
Chou and Talalay (1984) stressed this difference be-
tween the Bliss independence model and their mutually
nonexclusive model and concluded that the Bliss inde-

pendence modelis not appropriate for higher order sys-
tems (m > 1).

fms)~Um)*Ge)* (iam)fur fu; fug fufug

_ Di,Dz.DD,
. Dm1 Dm, DmDm2

E D, . Dz % D,D, \™
"ICs, ICso2  ICsoalCso2 i

1+ Di + Ds + DiD2 f
IC50,1 IC592 IC50,11Cyo2

Wecertainly agree that Eqs. 12 and 19 are not equiva-
lent. It should be noted that the derivation of the mutu-

ally nonexclusive model (Chou and Talalay, 1981) was
for multiple mutually nonexclusive reversible inhibitors
of a single enzyme, in which the slope parameter, m,is
the integral numberof binding sites on the enzymefor
each inhibitor, yet the application of the model has been
mainly to much more complex systems, such as cell
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cultures and batches of whole organisms, in which the
nonintegral slope parameter, m, is related to the width
of the tolerance distribution of the sensitivities of the

cells or organisms to the agent. It might be argued that
the difference between Eqs. 12 and 19 is caused by their
differences in origin. However, we will show below that
the primary reason that Bliss independence and mutu-
ally nonexclusivity are not equivalent is that the mutu-
ally nonexclusive model of Chou and Talalay (1981) was
not properly derived.

B. Elements of the Derivation of the Mutually
Nonexclusive Model for Higher Order Systems from
Chou and Talalay (1981)

To keep confusion to a minimum,we will use fi and fv
for the fractional inhibition and fractional velocity, re-
spectively, which are slightly different from the variable
symbols included in Chou and Talalay (1981). Also, in-
stead of using Chou and Talalay’s exact general equa-
tions for any number of enzyme inhibitors, we will list
specific equations for sets of two inhibitors. We will
designate Chou and Talalay’s equations with a CT pre-
fix, and use the equation numberfrom Chou and Talalay
(1981).

The key suspicious step in the derivation of the mu-
tually nonexclusive model, Eq. CT22, appears on page
211 of Chou and Talalay (1981). It is stated:

Let us assume that m molecules of each of two mutu-
ally nonexclusive inhibitors bind to one molecule of en-
zyme. By analogy to Eqn (CT17) and addition ofthe term
for nonexclusivity [Eqn(CT21)] we obtain:

 firs me fix im fiz ee, fitfie Um
fix fry foe forfoz

or

Pa 1
"asfe fia)” Fifi “y [CT22]fry foe forfrz

~ 1
> h. & Le  

Tso1 1502 Is0,a2s0,2

It is our view that merely stating, “by analogy to
Eqn(CT17) and addition of the term for nonexclusivity
[EQN(CT21)), we obtain:” does not constitute a convinc-
ing derivation. Eg. CT17, or the equivalent, Eq. CT18,
that for a mutually exclusive system was derived by
combining Eq. CT11, the general equation for mutual
exclusivity for multiple inhibitors in a first order system
with Eq. CT12, the general median-effect or Hill equa-
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tion for inhibition of higher order kinetic systems by a
single inhibitor.

fin fy fe LL tt
Snyeeee CT11
fy fry fee Iso. Iso2

fi jr
—=|— CT12fo \Too ental

fie | & |"
a=| CT17firs Ee ie rT

which can be rewritten:

= 2 CT18
fir = aa i, : Ty [ ]

L501  Is0,2

Even for the derivation of Eq. CT17, that for mutual
exclusivity, it is not entirely apparent to us how to
properly combine Eqs. CT11 and CT12. However, via
two other derivations not provided here, one based on
enzyme kinetics and another based on the ideas of Be-
renbaum (1985) and provided in Appendix A of Greco et
al. (1990), we verified that Eq. CT17, that for mutual
exclusivity, is correct.

Thus, the derivation of the mutually nonexclusive
model for two enzyme inhibitors provided by Chou and
Talalay (1981) is weak, incomplete, and suspicious. In
order to settle the matter, we provide below a complete
derivation for the case of two mutually nonexclusive,
noncompetitive inhibitors of a single enzyme. We use the
same restrictive assumption used by Chou and Talalay
(1981) and also used in the derivation by Hill (1910)
that, for each inhibitor, which has two identical binding
sites on the enzyme, both of the two inhibitor molecules
bind to the enzymein onestep, It should be emphasized
that our goal is not to derive an alternate model for
mutual nonexclusivity to be used by the biomedical com-
munity but rather to show that the Chou and Talalay
model was not derived correctly. We therefore provide
this one counterexample, for two mutually nonexclusive,
noncompetitive inhibitors, to refute the general model
for mutual nonexclusivity of Chou and Talalay (1981).

C. Assumptions of the Derivation of the Model for
Mutual Nonexclusivity for Two Noncompetitive Higher
Order inhibitors

1, The enzyme (E) has one active site where one sub-
strate molecule (S) may bind.

2. In addition to the active site for the substrate, there
are two binding sites for inhibitor 1 and two other bind-
ing sites for inhibitor 2. Any occupation of an inhibitor
site will prevent the substrate from being converted to
product,
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3. Both inhibitor 1 and 2 are noncompetitive with the
substrate; 2 molecules of inhibitor 1 plus two molecules of
inhibitor 2 may simultaneously bind to the enzyme,
whether the substrate has occupied the active site or not.

4, The affinity of inhibitor 1 for the enzyme, and the
affinity of inhibitor 2 for the enzyme, is unaffected by
occupation of the active site by the substrate; thus, we
have classical or pure noncompetitive inhibition.

5. The binding of inhibitor 1, J,, to its binding sites
does not influence the binding of inhibitor 2, [,, to its
binding sites, and vice versa.

6, When J, binds, two molecules bind at once; the same
for I,. [This is the critical controversial Hill assumption,
which was also made by Chou and Talalay (1981) in the
derivation of the median effect equation for a single
inhibitor.] In other words, the concentrations of enzyme
species, E, ES, EJ,J,, Elol2, El,JJoI5, ESI1,, ESIgIo,
ESI.uf.if,ale, exist; but E/,ly EI, ESI,, ESI, ELI2) El,Iala,
ELL, ESL, ESI,Jols, ESI,J,Jo are negligible and will
be assumed to not exist.

D. Derivation

1. The general rules for deriving enzyme kinetic rate
equations from Segel (1975) are used.

2. The enzymevelocity (v) rate equation is written in
terms ofthe rate constant for the formation ofproduct (k,,)
and the enzyme-substrate complex concentration ([ES)):

v =k,[ES] [Al]

3. The left side of the velocity equation is divided by
the concentration of total enzyme, [E,], and the right
side is divided by the equivalent sum of the concentra-
tions of all non-negligible enzyme species: (Note: The
denominators of Equations A2, A3 and A7 are too wide
to fit easily into an equation in one column ofa journal
page. Therefore, each denominator has been defined by
the terms, DENOMA2, DENOMA3, DENOMA7,respec-
tively):

DENOMA2 = [E] + [ES] + [EL] + [Elgg] + (ELAIole)

+ (ESI,1,] + ESIgIq] + (ESIyIal)

vk[ES]
[E,.] DENOMA2 (A2}

4. Concentrations of each species are expressed in
terms of [E]. The term for any given complex is composed
ofa numerator and a denominator. The numeratoris the

product of the concentrations ofall ligands in the com-
plex. The denominator is the product of all dissociation
constants between the complex and free enzyme, E.
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Also, let the maximum enzyme velocity, Vmax = k, [E,].

DENOMA3 = 1 + ell““seKs

slatEgTg
vo S/Ks

Vmax DENOMA3

  
 

[A3]

5, For a noncompetitive inhibitor, J,, = Ki (Chou,
1974). Therefore, all Kis are replaced with Js. In addi-
tion, Eq. A3 is simplified to Eq. A4.

Vmax[S/Ks\1 + S/Ks]

 
6. The fractional velocity, fv, is equal to the ratio ofthe

inhibited velocity, Eq. A4, divided by the uninhibited
velocity, equal to [Vmax S)[Ks + S]. After this operation
and some simplification, Eq. A5 is the result.

1

1+(4b + Io + h
Tso,

fo= [A5]
I;

T50,2 T50,1||150.2

Eq. A5 can be written in an equivalent form, Eq. A6.

[A6]

7. Note that Eq, A5 is not equivalent to the mutually
nonexclusive model of Chou and Talalay (1981) for the
case of second order inhibitors (m = 2). Rather, Eq. A5
and its equivalent, Eq. A6 is exactly equivalent to the
Bliss independence model, Eq. 11, for two second order
inhibitors, Thus, a complete specific derivation for the
case of two mutually nonexclusive, second order, non-
competitive enzyme inhibitors, which follows the gen-
eral but incomplete derivation provided by Chou and
Talalay (1981), yields an equation inconsistent with
their final model, Eq. CT22, but consistent with the
Bliss independence model, Eq. 11.

E, Possible Rationalization of the Mutually
Nonexclusive Model of Chou and Talalay (1981)

1. The expansion of the mutually nonexclusive model
of Chou and Talalay (1981), Eq. CT22, for the case of
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m = 2, yields Eq. AT.

I 2DENOMA?Z= 1+ ie. I, ig 1, Pl i
I50,1 T50,2 Ts04 Iso2

I,|1. rT, Pl Kr teu
+2]|4 gf] | 4gt

I50,1 T50,2 T50,1 Is0.2 T50,1 Is0,2

1

fo = DENOMA7

+  

[A7]

2. The difference between this expansion of the mutu-
ally nonexclusive model of Chou and Talalay (1981), Eq.
AT, and the mutually nonexclusive model derived above,
Eq. A5, which is equivalent to Bliss independence,is the
additional three right-hand terms in the denominator.
These three terms imply the existence of six additional
enzyme species—2 E/,J,, 2 El,Jolo, 2 El,J,Io, 2 ESII>, 2
ESIJol, and 2 ES/,J,J.—that we initially assumed
were negligible and did not exist. This stems from the
key Hill assumption that when andifan inhibitor binds,
either I, or J,, two molecules of that inhibitor bind at
once. Possibly, one might be willing to get rid of this
assumption, and replace it with a less restrictive as-
sumption such as:

EI,, EZ,, ESI,, ESI, are all negligible, but enzyme
forms that contain at least two inhibitor molecules, pos-
sibly a mixture of the two inhibitors, including E/,J.,
ElIolo, ElJ,to, ESI,Ig, ESIIolo, and ESI,J,J,, are not
negligible.

If so, then the mutually nonexclusive model of Chou
and Talalay (1981) would have a firmertheoretical ba-
sis. However, it ig unlikely that an equation derived
from a set ofvery unusual assumptions,for the rare case
oftwo mutually nonexclusive higher order inhibitors ofa
single enzyme, would have general utility for modeling
concentration-effect phenomena from a wide spectrum of
complex agent interaction systems,

XI. Appendix B: Problems with the Use of the
Median Effect Plot and Combination Index

Calculations to Assess Drug Interactions

Both the inherent nonlinear nature of the median

effect plot and the incorrect calculation of the combina-
tion index (CJ), for the case of mutual nonexclusivity,
contribute to incorrect artifactual conclusions concern-

ing synergism and antagonism, when applying the
method of Chou and Talalay (1984) to real laboratory
data, In addition, the median effect plot for drug combi-
nation data for mutually exclusive drugs showing syn-
ergism or antagonism will also be nonlinear. The extent,
origins, and impact of these problems are illustrated by
the simulation shown in figures B1, B2, B3, in table B1,
and the following narrative.
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Fic. B1. Upper panel: Data points plotted from table B1. The data
points and the curves connecting the points were simulated using Eq.
B1, that for mutual nonexclusivity, with Dm, = 10, Dm, = 1,m = 1,
and R = 10. The Y-axis is E/Emax or fu; the X-axis is the sum ofdrug
1 and drug 2 concentrations on a logarithmic scale. Lower panel: The
three median-effect lines were made by separately fitting each of the
three subsets of data with unweighted linear regreasion. The curved,
dashed line ia the median-effect curve for the combination of drug 1 +
2 simulated from Eq. B1. The rectangular boxes in each panel represent.
equivalent ranges of fractional effect. The arrows on the side of the
boxea indicate the direction of decreasingfa (increasing fi).

 
Fic. B3. Mutually exclusive CI vs. fo plots for the data from table

B1 and figure B1. Curve A was generated in the exact way suggested by
Chou and Talalay (1984) and included in the commercially available
program (Chou and Chou, 1987); i.e., by estimating Dm,, m,, Dmg, m2,
Dm,3, My, with unweighted linear regreesion as in the lower panel of
figure B1, and then plugging these values into Eq. 25 to calculate CI for
a range offa values, Curve B was generated by calculating Dm, and
™M,. With Eqs. B2 through B4, from the original (same as estimated)
values, Dm, = 10, Dmz = 1, m, = m, = 1, and then plugging these
values into Eq. 25. The box represents a range of fractional effects
equivalent to the boxes in figure B1, with the arrows of the box indi-
cating the direction ofdecreasingfa. The open data points represent the
eight combination points, each calculated with the C/ formula for the
mutually exclusive assumption for the raw data itself, Eq. 27.

A. Nonlinear Nature of the Median Effect Plot for
Mutual Nonexclusivity

The median effect plot for mutually nonexclusive
drugs is inherently nonlinear. This was shown originally
by Chou and Talalay (1981) in figure 2 of their paper.
Therefore, the estimation of Dm, and mj, via simple
linear regression can never be correct. The data points in
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Fic. BZ. Mutually nonexclusive CJ ve. fa plots for the data from

table Bl and figure B1. Curve A was generated in the exact way
suggeeted by Chou and Talalay (1984) and included in the commercially
available program (Chou and Chou, 1987); Le., by estimating Dm,, m,,
Dimi, mg, Driizs, Mig With unweighted linear regression as in the lower
panel of figure B1, and then plugging these valuez into Eq. 26 to
calculate CT for a range offa values. Curve B was generated by calcu-
lating Dm,, and m,, with Eqs. B2 through B4, from the original (same
as estimated) values, Dm, = 10, Dm, = 1, m, = mz = 1, and then
plugging these values into Eq. 26. Curve C, CI] = 1, was generated by
calculatingDm,, and m,, with Ege. B2 through B4, but then using Eq.
565 for the CIcalculation. Thebox repreeents a range offractional effecta
equivalent to the boxes in figure B1, with the arrows of the box indi-
cating the direction ofdecreasingfa. The open data points represent the
eight combination pointa, each calculated with the CJ formula for the
mutually exclusive assumption for the raw data itself, Eq. 27.

figure B1 and table Bi were simulated by using Eq. B1,
that for mutual nonexclusivity, and using Dm, = 10,
Dm, = 1, m = 1, and R = 10. (Here, FR is the ratio of
concentrations of D,:D.). The data consists of 24 simu-
lated data points, 8 for drug 1 alone, 8 for drug 2 alone,
and 8 for the combination ofdrug 1+2 in a 10:1 constant
ratio. Four significant figures were retained throughall
calculations to eliminate any appreciable errors in the
simulated data.

im

[B1]

In the upper paneloffigure B1, the three concentration-
effect curves were simulated directly with Eq. B1. The
data points in figure B1 correspond to the 24 simulated
points in table B1. In the lower panel, the three median
effect straight lines were madeby separately fitting each
of the three sets of data with unweighted linear regres-
sion. The curved, dashed line is the nonlinear median
effect curve for the combination of drug 1+2 simulated
from Eq, B1. The rectangular boxes in each panel rep-
resent equivalent ranges of effect. The arrows on the
sides ofthe boxes indicate the direction of decreasing fa
(from fa = 0.091 to 0.017). The parameters estimated
from the three linear regressionlines were: Dm, = 10.0,

. Mm, = 1.00, Dm, = 1.00, Mz = 1.00, Dm = 4,04, Mio =
1.24, The correct Dm, calculated from Eq. B2 was 4.56.
The correct m,. calculated from Eqs. B3 and B4, which
are fa-dependent, increased from 1.04 at fa = 0.01 to
1.49 at fa = 0.99. (The derivations of Eqs. B2 through

D,

Dm,
+ D2

Dmz

D,D;z

Dmwm,
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B4, for the restricted case of m,; = mz = m,are not
included here but can be requested from W. R. Greco.)
Note the vertical dashed line in figure B1, which shows
the alignment of the true Dm, value. Also note the
small displacement of the estimated Dm,. value from
the true Dm,.. It is the approximation of the varying
M9 by a constant my, estimated from the median effect
linear regression, which is responsible for most of the
mismatch between the true median effect nonlinear

curve and the approximate straight line. (Note: The
numerators of Equations B2 and B4 are too wideto fit
easily into an equation in one column of a journal page.
Therefore, each numerator has been defined by the
terms NUMB2 and NUMB4,respectively):

RDm,z + Dm,

(1+ R)Dm,Dmz,

‘|

Dm, =

NUMB2 = -  
RDm,+ Dm, |*

qd + R)Dm,Dm,
5 4R

(1+ R)*Dm,Dm,

NUMB2

2R

(1+ R)'Dm,Dm;

[B2]

[RDm, + Dm,]Z + RZ*
Dm,Dm,

  
 

 
(B3]

where:

aa RDm, + Dm,
= Dm,Dm,

se |_fara|RDm, + Dm, ‘1-faxDm,Dmz;z

NUMB4

z= R
- 2 ede

Dm,Dm,

Figure B2 is a mutually nonexclusive CI vs. fa plot for
the data in table B1 and figure B1. Curve A in figure B2
was calculated as suggested by Chou and Talalay (1984),
from the three straight median effect lines in figure B1,
using the formula, Eq. 26, incorporated into the commer-
cial software package, Dose-Effect Analysis with Micro-
computers (Chou and Chou, 1987). The interested
reader should be able to reproduce this curve by plug-
ging the 24 data points listed in table B1 into the com-
mercial software package. Like many real examples
from the literature, the standard CIvs. fa plot, curve A,
crosses the additivity, CJ = 1 line. The conclusion from

(B4]
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TABLE Bi

Simulated data for mutual nonexclusivity examination*®

D, D, fu fa logifu~? — 1]

0.5 0 0.9524 0.04762 -1.301
1 0 0.9091 0.09091 —1,000
2 0 0.8333 0.1667 -0.6989
5 0 0.6667 0.3333 —0.3011
7 0 0.5882 0.4118 -0.1548

10 0 0.5000 0.5000 0.0000
20 0 0.3333 0.6667 0.3011
50 0 0.1667 0.8333 0.6989

0 0.05 0.9524 0.04762 —1.301

0 0.1 0.9091 0,09091 —1,000
0 0.2 0.8333 0.1667 —0.6989
0 0.6 0.6667 0.3333 —0.3011
0 0.7 0.5882 0.4118 —0,1548
0 i 0.5000 0.5000 0.0000
0 2 0.3333 0,6667 0.3011
0 § 0.1667 0.8333 0.6989
0.5 0.05 0.9070 0.0930 —0,9891
1 0.1 0.8264 0.1736 —0.6776
2 0.2 0.6944 0.3056 ~—0.3565
5 0.5 0.4444 0.6556 0.09699

7 0.7 0.3460 0.6540 0.2765
10 1 0.2600 0.7500 0.4771
20 2 0.1111 0.8889 0.9031
50 5 0.02778 0.9722 1.544

* The data was simulated using Eq. B1, that for mutual nonex-
clusivity, with Dm, = 10, Dm, = 1, m = 1, and R = 10. This is an
ideal data set with no random errors added; any inexactness is
caused by roundoff errors in the fourth significantfigure.

Curve A is appreciable antagonism at low fractional
effects and appreciable synergism at high fractional ef-
fects. However, the data in table Bl was simulated for
pure, unadulterated, mutual nonexclusivity! The final
CI ys. fa plot should be a straight, horizontal line at CI =
1! Note the large box on the left-hand side of figure B2.
This is the same box as was shown in figure B1, upper
and lower panel, for a range of concentration-effect, ex-
cept that its height has been magnified in the CI vs. fa
plot, Thus, the difference between the true nonlinear
median effect curve, and the approximate median effect
straight line, has been magnified in the CIvs.fa plot.

 
Curve B in figure B2 was generated with Eq. B5, but
with the correct values for Dm. and m4» as calculated
from Eqs. B2 through B4. CurveB is closerto the target,
CI = 1 line, but there remains a problem.
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B. Incorrect Combination Index Calculations for the
Mutually Nonexclusive Case

Eq. 26, that suggested by Chou and Talalay (1984)
and incorporated into the commercial software (Chou
and Chou, 1987), is slightly wrong. This is shown by the
difference between curve B in figure B2 and the C7 = 1
line, By using a rational trial-and-error strategy, we
discovered the correct form of the CI ys. fa equation for
the mutually nonexclusive case for the restricted case of
m = m, = Mg, Eq. B5 (Syracuse and Greco, 1986), An
equivalent form of Eq. B5 has also been recently pub-
lished by Lam et al. (1991). When Eq. B5 is used with
the correct values ofDm, and myo, curve C results, the
correct CI = 1 line.

 
C. Nonlinear Nature of the Median Effect Plot for
Mutual Exclusivity with Interaction

Because of the many problems inherent with assum-
ing a mutually nonexclusive model, one might prefer to
assume a mutually exclusive modelfor all experimental
data, including cases in which a median effect analysis
shows that m, = my, # mj. Combination plots gener-
ated with Eq. 25, that for mutual exclusivity (Chou and
Talalay, 1984), are presented in figure B3.

 
Curve A is the CI calculated exactly as suggested by
Chou and Talalay (1984), and is the result that one
would find using the commercial software (Chou and
Chou, 1987) with the data in table B1. To generate curve
A, Eq. 25 was used with the six parameter estimates
derived from the three median effect lines of figure B1.
As with the mutually nonexclusive assumption, the mu-
tually exclusive assumption still shows an initial incor-
rect antagonism because of the incorrect linear extrap-
olation of the inherently nonlinear median effect curve
for the drug combination. Curve B was also generated
with Eq. 25, but with the correct values for Dm, (=
4.56) and my, (1.04 to 1.49). Curve B does portray the
correct situation; i.e., synergism along the entire range
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of fa (with reference to the mutually exclusive model).
However, because the method of Chou and Talalay
(1984) does not include a reliable method to estimate

Dm, and m,, from the inherently nonlinear median
effect plot for drug combinations, a useful CI vs. fa plot,
such as curve B,is not readily generated.
The eight open points in figure B3 (andin figure B2) are
the eight combination data points from table B1,directly
plotted without the estimation of Dm,. and m,.. In-
stead, the raw data were plugged into Eq. 27, which
depends only on the individual drug parameters, Dm,
m,, Dmg, and mg, to calculate CI. This approach has
been discussed (Chou, 1991a), but to the best of our
knowledge, is not as yet available in the commercial
software (as of January, 1994).

= “ af = m [27]om[ia om"
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