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PREFACE

With the passage of approximately nine years since publication of the first

edition, this text has been transformed from the status of a newcomer to a

mature representative of heat transfer pedagogy. Despite this maturation,

however, we like to think that, while remaining true to certain basic tenets, our

treatment of the subject is constantly evolving.

Preparation of the first edition was strongly motivated by the belief that,

above all, a first course in heat transfer should do two things. First. it should

instill within the student a genuine appreciation for the physical origins of the

subject. It should then establish the relationship of these origins to the

behavior of thermal systems. In so doing, it should develop methodologies

which facilitate application of the subject to a broad range of practical

problems, and it should cultivate the facility to perform the kind of engineer-
ing analysis which, if not exact, still provides useful information concerning

'the design and/or performance of a particular systan or process. Require»

mentsofsuchananalysisindudetheahilitytodiscemrelevanttranspon

processesandsimphfymgassumpfionnidmfifyimpmtantdepmdmtand
indqaendent variables, develop appropriate expressions from first prineiplim
andintroducerequisitematuialfiomtheheatuansferknowledgebaselnthc
fifrst achievement of-this objective was fostered by coaching many of

the examples and end-of-chapter prohlms in terms of actual aigineerirrg

systems. -

1heseccndeclifionwasalsodrivenbytbeforegoingobjectives,asweilJm

by input derived from itsenttooverllwcollugnes who used, or
with-,thefirstedit:ion.Ama_;or' consequenceofthis

inputwaspuihlicationoftwoversionsofthe-shook, Faardmnenraboffleatmrd
Mass Transfer a:nd=In1rnductian.ro Heat Transfer. As in the first edition, the

Fundamemals version included mass transfer, an: integrated treat-

mento£hatt,massandmomenni1nu-ansferbyconvectionmdsepante

tre:mnentsofheatandmasstransferbydi&‘usicn.TheIun'adueticn versinnof

thebookwas-inlendedfcrnsuswhounbracedtheueatmenttofheatttmsfer

hndidnotwish;tocnvumassnamfu=eEeets.lnbothvem’ens,_signifieailé
inrprovunmtswueamdeinthetr%entscf"inmraica!nIethnds_andliene
transferwithphaseclnnge. _ _ _

pnnens.canuauoutnatuuunuzmmgsar:aemaeayiamnnnetpun»-
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vi Preface

compact heat exchangers, as well as by the addition of new material on

submerged jets (Chapter 7) and free convection in open, parallel plate chan-
nels (Chapter 9). Submerged jets are widely used for industrial cooling and
drying operations, while free convection in parallel plate channels is pertinent
to passive cooling and heating systems. Expanded discussions of physical
principles are concentrated in the chapters on single-phase convection
(Chapters 7 to 9) and relate, for example, to forced convection in tube banks

and to free convection on plates and in cavities. Other improvements relate to
the methodology of performing a first law analysis, a more generalized lumped
capacitance analysis, transient conduction in semi-infinite media, and finite-
difference solutions.

In this edition, the old Chapter 14, which dealt with multimode heat

transfer problems, has been deleted and many of the problems have been
transferred to earlier chapters. This change was motivated by recognition of
the importance of multimode effects and the desirability of impacting student
consciousness with this importance at the earliest possible time. Hence,
problems involving more than just a superficial consideration of multimode
effects begin in Chapter 7 and increase in number through Chapter 13.

The last. but certainly not the least important, improvement in this
edition is the inclusion of nearly 300 new problems. In the spirit of our past
efforts, we have attempted to address contemporary issues in many of the
problems. Hence, as well as relating to engineering applications such as energy
conversion and conservation, space heating and cooling, and thermal protec-
tion, the problems deal with recent interests in electronic cooling, manufactur-
ing, and material processing. Many of the problems are drawn from our
accumulated research and consulting experiences; the solutions, which fre-
quently are not obvious, require thoughtful implementation of the tools of heat
transfer. It is our hope that in addition to reinforcing the student’s understand-
ing of principles and applications, the problems serve a motivational role by
relating the subject to real engineering needs.

Over the past nine years, we have been fortunate to have received
constructive suggestions from many colleagues throughout the United States
and Canada. It is with pleasure that we express our gratitude for this input.

FRANK P. INCROPERA

W6! Lafayette. Indiana DAVID P_

Intel Corp. et al.
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226 Chapter 5 Transient Conduction

In our treatment of conduction we have gradually considered more compli

cated conditions. We began with the simple case of one-dimensional, steady-

state conduction with no internal generation, and we subsequently considered

complications due to multidimensional and generation effects. However, we '
have not yet considered situations for which conditions change with time.

We now recognize that many heat transfer problems are time dependent

Such unsteady, or transient, problems typically arise when the boundary
conditions of a system are changed. For example, if the surface temperature of
a system is altered, the temperature at each point in the system will also begin
to change. The changes will continue to occur until a sread_v—srare temperaturr
distribution is reached. Consider a hot metal billet that is removed from

furnace and exposed to a cool airstream. Energy is transferred by conveciiflfl

and radiation from its surface to the surroundings. Energy transfer by oondlw '
non also occurs from the interior of the metal to the surface, and tilt

f¢'11P¢1’3i|1r€ at each point in the billet decreases until a steady-state condition
IS reached. Such time-dependent effects occur in many industrial heating“
Cooling processes.

To determine the time dependence of the temperature distribution Willlifi
3 ‘°‘*d “Wins 3 transient process. we could begin by solving the approvm
f°m]_°f ‘ht heal °q113'i0n, for example, Equation 2.13. Some cases for '
solutions have been obtained are discussed in Sections 5.4 to 5.3- H0"““'

“ch 5011-ltions are often diflicult to obtain, and where possible a '
appmach is P1"~‘fel‘1'6d. One such approach may be used under conditi0I15 m‘
which. temperaturc gradients within the solid are small. It is termed the WM
Wpflfflance method.

Intel Corp. et al. Exhibi It 14
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5.1 The Lumped Capacitance Method 22'?

decrease for time t > 0, until it eventually reaches Tm. This reduction is due to
convection heat transfer at the soIid—liquid interface. The essence of the

lumped capacitance method is the assumption that _the__t_e_rI_1pera_ture of the
solid is sparfal'l}_*_ uniform at any instant during the transient process. This
assfitioifruiplies that temperature gradients within the solid are negligible.

From Fourier’s law. hea_t conductigtgjrl fl.'l§_§b_§€;1_1C€ of a temperature
grgdient implies the{§_:3i_s_ten7c§ __c>i__iritii_1"ite thermal conductivity. Such a condi-
tion"ts—clEar1y impossible. However. although the condition is never satisfied
exactly. it is closely approximated if the resistance to conduction within the
solid is small compared with the resistance to heat transfer between the solid
and its surroundings. For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation. Instead,
the transient temperature response is determined by formulating an overall
Energy balance on the solid. This balance must relate the rate of heat loss at
the surface to the rate of change of the internal energy. Applying Equation
1.11:: to the control volume of Figure 5.1. this requirement takes the form

 

.»_E-om = E“ /L), [ QUUJ
or ' '

dT

"!A,(T- Tm) = pVc— (5-2)
at:

Introducing the temperature difference

. r — T, (5.3)

and recognizing that (d9/dr) = (dT/dr), it follows that

We J3

he‘! dr _ —a

Separating Variables and integrating from the initial condition. for which I = 0
and 7(0) = 7",. We then obtain

PVC ad0 ,

hi!‘ 61?: ‘lid!

MPAlG.?~5
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3. Chaplerfi 'I'ranm'cnIConducti0n

T-= " Figure 5.4 Effect of Bic-t nmnber an

steady—state temperature disuibutian in!
plane wall with surface convecfim.

““°“.“.°‘““‘° Value» 12,2. for which Tm < 1; 1 < 1; ,. Hence under sleadY'5““
wndmons the smfice 511313)’ balance, Equation 1:12. reduces to

char. It gumuty (Md/R)

Intel Corp. et al. Exhi_b_ '14
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5.2 Validity of the Lumped Capacitance Method 231

 
Bi >>l

B'<<l 3'21' ‘ T=Tl.r.£)
T:.-Tu) T= Ttr. it

Figure 5.5 Transient temperature distribution for diflerent Biot numbers in a plane
wall symmetrically cooled by convection

number, and three conditions are shown in Figure 5.5. For 3:‘ 4: 1 the
temperature gradient in the solid is small and T(x, 1) == TU). Virtually all
the temperature difference is between the solid and the fluid. and the solid
temperature remains nearly uniform as it decreases to Tm. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, 1). Note that for Bi‘ :3» 1, the tempera-
ture diflerence across the solid is now much larger than that between the
surface and the fluid.

We conclude this section by emphasizing the importance of the lumped
capacitance method. Its inherent simplicity renders it the preferred method for

 

the error associated with using the tumped capacitance method is small. For
°°11Vettience, it is customary to define the characteristic length of Equation 5.10
as the ratio of the solid’s volume to surface area. L; 5 V/Ar Such 3 d°fi‘1i‘i°“
facilitates calculation of LC for solids of complicated shape and reduces *0 I116
hfilflthickness L for a plane wall of thickness 2L (Figure 5.5), to r,,/2 for a

33316 corresponding to the maximum spatial temperature difference. Accord-
“ISIY. for a symmetrically heated (or cooled) plane wall of thickness 2L, LL.
would remain equal to the half-thickness L. However, f0? 3 109% °Y1i1~‘Id€T 0'
Slihere, L1. would equal the actual radius re, rather than ro/2 or ra/3.

q.-.«.t__.._,—.... _ ._VyH'n).‘...,.

Intel Corp. et al. I I
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B2 Chapter 5 Transient Conduction

Finally. we note that, with LE 2 V/A5, the exponent of Equation 5.6 may

M5: in M. k t M. at

A mtmprions:

1. Temperau

2. Radiation

3. Losses by

4. Constant

Analysis:

1. Because I

the solutit

capacitan

approach
determin:

fact that

Accordin

excellem

Intel Corp. et al.
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5.2 Validity of the Lumped Capacitance Method B3

Equation 5.6 my

  

 
  
   
 
 

  
  

  

  
  
  

  

1;: 200's
1; ~_- JJEXJW/m K Thermocouple k = 20 Wim - K

D junction c = 400 Jjkg- K
7,. = 25 “C ,. = 3500 kgfrn‘

(511)

Assumptions:

1. Temperature of junction is uniform at any instant.

2. Radiation exchange with the surroundings is negligible.

3- Losses by conduction through the leads are negligible.

4. Constant properties.

Analy_n'5_-

1- Because the junction diameter is unknown, it is not possible to begin
The solution by determining whether the tuiterion for using the lumped
C3133‘-‘itance method, Equation 5.10, is satisfied. However, a reasonable
3PProach is to use the method to find the diameter and to then
determine whether the criterion is satisfied. From Equation 5.7 and the

  

*"’.“”’?"i~’“fl“':5'.'?-' fact that .4, = rd)’ and V = «D3/6 for a sphere, it follows am
mm '
*m-K. 1' == 1 x pmnac
1 f ’"’D2 5

fm,_-wig-=+ - €‘-anangmg and subsutuung numerical values.
am, 5x_4ooW/m2-texts’ =_m6Xm_,m 4in‘:T 

pc 8500kg/m3X4(I)J/kg-K.
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2. From Equation 5.5 the time required for the junction to reach T=
199°C is  

 
 

 
 

  

_ P(‘-‘T93/5)C T, - T pDc T — TW I 09
In ——1

h(-:rD2) I-1; 6hnT~Tm

= ssuukg/m3 x 7.06 x104 m x 400]/kg - K. 25 -200
6x4o0w/m1~1( 199-200

:=5.2s=sr, 4

I  

Comments: Heat losses due to radiation exchange between the junction
and the surrouridtnga and conduction through the leads would necessitate
“S1113 3 51113116? Junction diameter to achieve the desired time response.

Intel Corp. et al. .014
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5.3 General Lumped Capacitance Analysis B5 

heat flux, and intemal energy generation. It is presumed that, initially (t = 0),
the temperature of the solid (T,—) dilfers from that of the fluid, Tan, and the
surroundings, 1;“, and that both surface and volumetric heating (q;’ and 4) - 1 '
are initiated. The imposed heat flux qj’ and the convection—radiation heat ' ¥ = '
transfer occur at mutually exclusive portions of the surface, Am” and A,“ ,,,
rmpectively, and convection—~radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant I, it follows from
Equation 1.11a that

E (S .14) ..E-__ q.:'As.h + £5 _ (qeimv + qi';d)A.t(c,r) = PVC d:
i _5:’ .-

or, from Equations 1.3a and 1.7, ., -
H’ ' -6 4 dT ll. 7'

q,A,_,, + as — [h(T— 1;,)+ ea(T — T,,,,)]A,,,,,, = pVc:£- (5.15) ~ _ -

Unfortunately, Equation 5.15 is a nonlinear, first-onder, nonhomoge-
neous, ordinary differential equation which cannot be integrated to obtain an

lby oonveclill exact solution.‘ However, exact solutions may be obtained for simplified

 

E5 versions of the equation. For example, if there is no imposed heat flux or
; mad nuyht generation and convection is either nonexistent (a Vacuum) or negligible
._g_»mpa-agmmi relative to radiation, Equation 5.15 reduces to '

41*

PVC; = -eA.v..a(T‘ - 1;.) (5-16)

 
 

temperature T becomes

V r,,,,+r

“ {ml-rI = ———._..

4EA....nT.?. Tsar - T
_,,,|, 

 

  
 

_‘An applzoximate, t5=6m=
"““a=iv=tseczions.9}an¢».mntug.nneso:unonou:incinu:- '

1;. Intel Co .wa1..f. E
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deep space). Returning to Equation 5.17, it is readily shown that, for T” =0,

(5.19:

An exact solution to Equation 5.15 may also be obtained if radiationmzp
be neglected and h is independent of time. Introducing a reduced temperature. '
9 '=' T " Tee’ Where d9/df = 537/41. Equation 5.15 reduces to a linear. firs!-
Ofdef, nonhornogeneous differential equation of the fonn

d9

E:-5-(I0~b.—_-0

;"h°’° 0 5 WI.../r=Vc) and b 2 [(q;’A3_ ,, + rig)/pvc]. Although Equation
'20 may be 5°l"°d by Summing its homogeneous and particular solutions. all

ah°ma‘i""- 3PP1'0&Ch is to eliminate the nonhomogeneity by introducing 113
transformation

, b
9 E9‘ " (5.21)G

Recognizing that d9’ 4 = - - -
(5.20) ‘O yield / 1‘ d€/a't, Equation 5.21 may be substituted IIIW

d0’

‘ET 4' G0’ = 0

‘. __,._

Separating Variables and integrating from 0 to I (9,-' to 6'), it follows that

(533)

Intel Corp. et al. Exhibits" 14



Intel Corp. et al.    Exhibit 1014

 
t, for T“ =0,

(5.19)

radiation may

alinear,fittt-

(5-20}

igh Equatinl
' solution, I

(.511)

Jstituted 1|!”

(521)

(51231

  

5.4 Spatial Effects 237

5.4 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-
propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the

medium are no longer negligible.

In their most general form, transient conduction problems are described
by the heat equation, Equation 2.13 for rectangular coordinates or Equations
2.20 and 2.23. respectively, for cylindrical and spherical coordinates. The
solution to these partial differential equations provides the variation of tem-
perature with both time and the spatial coordinates. However, in many
problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal
generation and the assumption of constant thermal conductivity, Equation
113 then reduces to

air 1—_ ~ -133 (5.25)
33:2 - O.’ 3:

To solve Equation 5.26 for the temperature distribution T(x, I), it is
I106?-Ssary to specify an initial condition and two boundruy conditions. For the
typical transient conduction problem of Figure 5.5, the condition is

 

T(x,o) = T, (5.27)

and the boundary conditions are

32'

x x-0

and

(IT

"*3" = h[T(L, I) - Tm] (5-29)
I -x_L

Efillalion 5.27 presumes a uniform temperature distribution at time I = 0;
Equation 5.23 reflects the symmemr reqtérenlenl for the fl1idP15-'-113° of the W311:
“*1 Equation 5.29 describes the surface condition experienced f°I time ‘ > 0-
Fmm Equations 5.26 to 529, it is evident that. in addition to dvependins on x
"*“‘“'~ temperamios in thewal1alsodepet1donanuu11ber0§P11Y5l'°31P31'im3¢'
‘"3 In Particular

Tr: 115:, r, r,.,1;,, L, k,a, 1:) (530)

The foregdngprohlmnmaybeso[vedanaIy1iCfllll“°‘“f“'F‘_l°a5Y-These

“metheadvantages that maybeobtained.-by

Inte1'Corp_. et..a1.
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ing equations. This may be done by arranging the relevant variables into

suitable groups. Consider the dependent variable T. If the temperature differ-
ence 9 E T - Ta is divided by the maximum possible temperature dtfirente
8,. E T, - Tan, a dimensionless form of the dependent variable may be defined
as

a 1'-1-"
3- ‘DB: I " ($339 T

Accordingly, 9* must lie in the range 0 g 0* 5 1. A dimensionless spatial
coordinate may be defined as

I . x ' _ p '
.. x’? e— - -

(33

where L is the half-thickness of the plane wall, and a dimensionless time E1133’
be defined as

-T fit;, ‘|

Intel Corp. et al. Exhibilt, 14
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5.5 The Plane Wall with Convection 239

Equation 5.38 implies that for a prescribed geometry, the transient temperature : .. "
distribution is a universal function of x*, Fe, and Bi. That is. the dimensionless =_ ‘_
solution assumes a prescribed form that does not depend on the particular A ;_ ' I , ,
value of 1'], Too, L, k, 0!, or 1:. Since this generalization greatly simplifies the . ~; ' .:
presentation and utilization of transient solutions, the dimensionless variables y _ _' . = ' _
are used extensively in subsequent sections. ' , ' I 'I

5.5 THE PLANE WALL WITH -CONVECTION I ,,

Exact, analytical solutions to transient conduction problems have been ob-
tained for many simplified geometries and boundary conditions and are well
documented in the literature [I-4]. Several mathematical techniques, including
the "method of separation of variables (Section 4.2), may be used for this
Pllrpose. and typically the solution for the dimensionless temperature distribu-
tion. Equation 5.38, is in the form of an infinite series. However, except for
‘'51)! small values of the Fourier number, this series may be approximated by a
Slnfile term and the results may be represented in a oonvenient graphical form.

  
qtiatinnill 55.1 Exact Solution
Equati<ms5J6 '

' Consider the plane will of thickness 21. (Figure 5.7a)- If the-thickness is small
relative to the width and height of the wall, it is reasonable to assume that

534) Oonduction occurs exclusively in the x direction. If the wall is at a
uniform temperature, T(x,0) = I}, and is suddenly immersed in a fluid of
Tat: T}, the resulting temperatures may be obtained by solving Equation 5:34

535] a Subject to the conditions of Equations 5-35 to 5.37. Since the convection
l ' A A T-‘eonditions for the surfaces at x‘ = :1 are the same, the temperature distribu-

fi°“ 3‘ any instant must be symmetrical about the midplafle ('1' = -

l P rtx, D) = 1'.- ‘I'(r.0) = Ta

iii

..L.
re

"“L<5>'Iminitccysnaenorspnao
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55-2 Alfloxilnate Solution

553 7°” “Hey Transfer

exact solution to this problem has been obtained and is of the form [2]

9' = if C.=xp(~§.?Fo)cos(§.x*)
11-1 (5391)

where the coefficient C" is

C 4sir1§',,
,. = (5.3%)

and the discrete values (eigenvalues) of §',, are positive roots of the transom-
dental equation

1. tan 1,, = 111 (53911

The first four roots of this equation are given in Appendix B.3.

It can be shown (Problem 5.24) that for values of F0 2 0-2, the infinite S005
S°l““°“~ E‘l“3“°n 5-3934 can be approximated by the first term of the sdifi
Itlvoldng, this 3PP1'°7‘iII13li0Il, the dimensionless form of the temP°"3m”
dismbuuon becomes

0: s C,exp(-§'fFo)co5(§1xe) (5.401)
or

On _—_ 3: cosfilxa)

where 9;‘ represents the midplane (x' = 0) temperature

0: = Cl

 

 

n 

Table 5.1 Coelficients us:
to the series so 

 

 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 

PLANE WALL

f1
31'“ (rad) C1

0.01 0.0998 1.0017

0.02 0.1410 1.0033

0.03 0.1732 1.0049

0.04 0.19117 1.0000

0.05 0.2217 1.0032

0.00 0.2425 1.0090

0.07 0.2015 1.0114

0.03 0.2791 1.0130

0.09 0.2950 1.0145

0.10 0.3111 1.0100

0.15 0.3779 1.0237

0.20 0.43211 1.0311

0.25 0.4301 1.0302

0.30 0.5213 1.0450

0.4 0.5932 1.0500

0.5 0.0533 1.0701

0.0 0.7051 1.0314

0.7 0.7500 1.0919

0.0 0.7910 1.1010

0.9 0.3274 1.1107

1.0 0.11003 1.1191

2.0 1.0709 1.1795

3.0 1.1925 1.2102

4-0 1.2040 1.2237

5.0 1.3130 1.2402

0.0 1.3490 1.2479

7-0 1.3700 1.2532

3-0 1.3973 1.2570

9-0 1.4149 1.2591

10.0 1.4239 1.202c

10.0 1.4901 1.2091

30.0 1.5202 1.271:

40.0 15325 1.272

50-0 1.5400 1.272".

100.0 1.5552 1.2731.__________i_______:

‘B’ " M./R for the planewall a
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Table 5.1 Cocfficients used in the one-Ierrn approximation
[0 the series solutions for transient 0116-C11I'1’1E]‘lS10I’1El1 conduction

INFINITE

1'-‘1_1’\1\'F, WAL1._ CY1_.I.\"DER SPIIERE

1:. 1 .11
[rad] C"-_. 111111] (‘J ( rad 1 1.",

11.119911 1.111117 1.1.1412 1.111125 0.17311 1.110311

11.14111 1.01133 11.1995 1.1111511 11.2445 1.01160

11.1732 1.11049 11.2439 1.111175 0.29119 1.11090

11.19117 1.11066 0.21114 1.01199 0.34511 1.11120

11.2217 1.110112 11.3142 1.11124 11.31152 1.11149

11.2425 1.1111911 11.34311 1.111411 0.4217 1.11179

1.1.2615 1.0114 11.371111 1.11173 11.45511 1.11209

11.2791 1.11131.1 11.39611 1.1.1197 11.414611 1.11239

11.2956 1.11145 11.4195 1.0222 0.5150 1.112611

0.3111 1.111611 11.4417 1.11246 11.5423 1.112911

1.1.3‘.-'79 1.11237 11.5376 1.0365 11.6608 1.11445

1.1.43211 1.11311 11.61711 1.114113 11.7593 1.11592

11.411111 1.113112 11.61156 1.115911 11.114411 1.11737

11.52111 1.114511 11.7465 1.0712 11.92011 111111111

11.5932 1.1151111 11.11516 1.11932 1.05211 1.1164

11.6535 1.117111 0.941111 1.1143 1.1656 1.1441

11.71151 1.111114 1.111115 1.13411 1.2644 1.1713

11.751111 1.11919 1.111173 1.1539 1.3525 1.19711

11.79111 1.11116 1.14911 1.1725 1.43211 1.2236

11.5274 1.11117 1.20411 1.19112 1.51144 1.241111

11.116113 1.1191 1.25511 1.21171 1.571111 1.2732

1.11769 1.1795 1.5995 1.33114 2.02118 1.4793

1.1925 1.21112 1.78117 1.41.91 2.211119 1.6227

1.2646 1.22117 1.911111 1.46911 2.4556 1.72111

1.31311 1.24112 1.911911 1.51129 2.57114 1.7870

1.3496 __ 2.11491) 1.5253 2.6537 1.11338

1.3766 . _. 3.11937 1.5411 2.7165 1.11674

.39'.’.'*< .. _ 2.12116 1.5526 2.7654 1.11921

1.4149 . _. ' 2.1566 1.5611 2.111144 1.91116

1.42119 . ' 2.1795 1.5677 2.1.1363 1.9249

1.496] , 2.211111 1.5919 2.9857 1.97111

1.52112 . .- ._ 1.5973 3.0372 1.911911

1.5325 . _ __ 1.5993 3.11632 1.9942

1.541.111 ._ . ' 1.60112 3.1171111 1.9962

11111.11 1.5552 .. _ . 1.61115 3.11112 1.99911

'11‘: '- 1'.'.1._-'1 |0.'I11u plunu wali and 1'11-m/11' |':'>r I111‘ 1n11nitc L-\'|mr1cr und :~])1'1I.‘I'L'. Sec Figure 5.7.
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Equating the energy transferred from the wall Q to E0,“ and setting Em =0
and AES‘ = Eu) — I-2(0), it follows that

Q = —[E(t) — 5(0)] (ms!

01'

= —fpc[r(r, :) — 1;] of?’ (5.43m

where the integration is performed over the volume of the wall. It is come

nient to nondimensionalize this result by introducing the quantity

Q, = pcV(T, - T“) (5.44)

which may 56 interpreted as the initial internal energy of the wall relative I0
‘he Mid tenlperatttre. It is also the maximum amount of energy transfer which
could occur if the process were continued to time I = no. Hence, assilfllifli

Constant propenies, the ratio of the total energy transferred from the Wall UV“
the time interval I to the maximum possible transfer is

Q_ —[r(r,:)—r,.]dV 1
—-_ ____ . .5}
Q5 _.,;_Tm V—V (1-may (54
 

Employing E113 3PPT0Xin1ate form of the temperature distribution for I116 Pm‘
wan» EQURUOH 5-405. the integration prescribed by Equation 5.45 0“ h‘

 
 

Performed to obtain

Q0 ———gl 0 _ .\ ._

E

10050

;s§§§::e§::§es§§§§"
lfirnennmhers. F3”: is

may be used 9 _‘"’«‘1_1 are Presented in Figures 5.3 to 5.10. 5 ‘L
toobtaln the ns.dp;,,,,,_, tempemmf of the wall, no, r) 33”

“men! Process. If r [5 known for p31'“°“m W ji

m-.“.‘\'

Intel Corp. et al. Exhi 1014 
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5.5 The Plane W311 with Convection
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I‘=(atlba)==F0

Figure5.8Midplanetemperatureasa.functionoftimeforaplanewallofthickness2!.[5].Usedwithpermission.
Intel Corp. _et al.
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‘ I llllnm-"’ii::===1..-—:=
D2 Illl 15-:
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Ill . . III
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0010.02 0.05 0.1 02 0.5 1.0 2 3 5 10 20 50 100
(kfhL)=Bi_i

Figure 5.9 Temperature distribution in a plane wafl of
lhickness 2L [5]. Used with permission.

in conjunction with Figure 5.8. For example, if one wishes to determlB°“::
surface temperature (x* = :1) at some time I, Figure 5.8 would fil-‘St be
to determine 3'; at t. Figure 5.9 would then be used to determinfi the
teznperanue from knowledgfl of 11,. The Procedure would be inverted If E

termining the time required for the surface I0 W’

" ' -'* r ."llVI|!"

. ,I.1II'%E5i_i5W:ii,I:i'_IauI
5 llhllmlllllllalllllllllll

‘§:|grJ;:IJwA|iaI||yA|:a||I§|I In_ :fiW}}f5'n5'_I?i5in'f§'Ifi?|'
I1i%'i35i5WiI""fl:"1:!"r":i§fl55i§14.11.11

.:|'I1.iMll!!'£iI!ilIl|!.':Il.!Il!liiIIII
=35.!!i!!i£i!!2!!7.-Efiiiiiillllllllll

Intel Corp. et al. Exhib__i_ -
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5.6 Radial Systems with Convection 245

Absence of the Fourier number in Figure 5.9 implies that the time

dependence of any temperature oil" the midplane corresponds to the time
dependence of the midplane temperature. This result is, of course, a conse-
quence of the approximation that led to Equation 5.40b and is valid for all but
the earliest stages of the transient process (F0 2: 0.2).

Graphical results for the energy transferred from a plane wall over the
time interval I are presented in Figure 5.10. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Q0 is expressed exclu-
sively in terms of F0 and Bi.

Because the mathematical problem is precisely the same, the foregoing
results may also be applied to a plane wall of thickness L, which is insulated
on one side (x“‘ = 0) and experiences convective transport on the other side
(x* = +1). This equivalence is a consequence of the fact that, regardless of
whether a symmetrical or an adiabatic requirement is prescribed at x‘ = ,
the boundary condition is of the form 39*/Bx‘ = 0.

5-6 RADIAL SYSTEMS VVITH CONVECTION

For an infinite cylinder or sphere of radius ro (Figure 5.7b), which is at an
illitial uniform temperature and experiences a change in convective conditions,
results similar to those of Section 5.5 may be developed. That is. 311 EXEC!
series solution may be obtained for the time dependence of the radial

tion for‘ cylinders having L/re 2 10.

ifilcxactsotutrotn

Exact solutions to the transient, one—dimensional form of the heat equation
have been developed to: the infinite cylinder and for the sphere. For a uniform

mtfial ‘I’-mperature and convective boundary conditions. 156 S01'111i0l15 [2] are
3-8 ollows.

“Wt-=CyInuer Indimensionlessf0II11.3N1¢'l1P°"3t'“'°i5
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where

Jl(§n)
C = (5.4'i'bI

2

n E 1928,.) + J12“-.)

and the discrete values of L are positive roots of the transcendental equation

Jl(§n) =
"Jo(s“..)

The quantities J1 and J0 are Bessel functions of the first kind and their valllti
are tabulated in Appendix B.4. Roots of the transcendental equation (5.4%)

are tabulated by Schneider

§ Bi (5.47cJ

Sphere Similarly, for the sphere

°‘‘ 1

9’ = E C..=IPl-§,§"Fo)11-1 :17‘ Sin(§"r*)

where

= 4[sin(r.) - :.cos<:..)1
2:. — sin (2:,.)

Intel Corp. et al. EX_h' "t 1014
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247  5.6 Radial Systems with Convection

where 9;‘ represents the centerline temperature and is of the form

(Mb) 9; = C1 exp(—§3Fo) (5.49c)
Values of the coeflicients C1 and I; have been determined and are listed in

xndemal eqmfim Table 5.1 for a range of Biot numbers.

(5 ac] Sphere From Equation 5.48a, the one-term approximation is
sin(;1r=-) (5.50a)

1

91: = _ 11d and their values C‘ ex“ SF") hr’
211 equation (S.-He) 01'

 

1

9* = 0; _ sanglrw) (5.5%)
hr

(5-48!) .
where 0;‘ represents the center temperature and is of the form

9; .—. Clgg,-_~p(_§EF0) {5.50c)

5 4“ Values of the coeficients C1 and {I have been determined and are listed in
( ‘ I Table 5.1 for a range of Biot numbers. I

eendental 5.53 T.“ Ema Tim,“

 
 

 

.43? .(sh - A5 in Section 5.5.3, an energy balance may be pelformfld I0 deififflllfle 3'3
adder {2} total energy transfer from the infinite cylinder at spline over the time interval

M = 1. Substituting from the approximate solutions. 131035035 5'-49!’ and
5.5013, and introducing Q, from Equation 5.44, the results are as follows.

em taken," ' I"m°°’““*"
. ,9. 5 1 — 29:! ( (5.51)

- Q0 :1 1 5'1)

Slime

Q at .

E = 1 "' 3 3: “ (552)° 1

Vahlesofthecgngegggmpei-anne 8:'aredetn‘nI'ined£mmEqnati.on5e.49e-or
55°°~ “sinetnemencim:sotTab1es.irmmeaw~eri=m=synm=-
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Figure 5.12 Temperature distribution in an infinite cylinder
of radius re [5]. Used with permission.

564 Graphical Representation

(at/re-I=1Fa

GT3PhiCal representations similar to those for the plane wall (Figures 5-3 *0
5-10) have also been generated by Heisler [51 and Gréber *3 “L [6] f°r
infinite cyfinder and a sphere. Results for the infinite Cylifldef are Presgmed "1
Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 to
5.16. Note that, with respect to the use of these figures, the Bio: number is
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Figlme 5.15 Temperature distribution in a sphere of radius
'2. {5} Used with permission.

I‘I:(qt/r,,2)an:F9

defined in terms of re. In contrast recafl that, for the lumped’ capacitance method,
the characteristic length in the Biat number is customarily defined as ra/2 for the
‘Winder and r0/3 for the sphere.

In closing it should be noted that the Heisler charts may also be used to
determine the transient response of a plane wall, an infinite cylinder. or a
Sphere subjected to a sudden change in surface temperature. For such a
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condition it is only necessary to replace Tea by the prescribed surface tempera ‘455"'“P"'9"-5‘
ture T, and to set Bi '1 equal to zero. In so doing the convection coeflicientis _ _
tacitly assumed to be infinite, in which case TI = 7}. 1- P‘P3 “'3

less than

EXAMPLE 5'2 2. Constan
3. Outer SL

Consider a steel pipeline (A131 1010) that is 1 m in diameter and has a wall _
thickness of 40 mm. The pipe is heavily insulated on the outside. and before P"’p‘""“"
the initiation of flow, the walls of the pipe are at a uniform temperature of 300 K]: 9
—20°c. With the initiation of flow, hot oil at 60°C is pumped through the “ =13-3 X‘
pipe creating a convective surface condition corresponding to h = 500 _
W/ml ' K at the inner surface of the pipe. Andy”:

1. What are the appropriate Biot and Fourier numbers 8 min after the 1- Al I =
initiation of flow‘? Equatio

2- A‘ ’ = 3 mill, What is the temperature of the exterior pipe surface t:0V'Efi‘-ll
by the insulation? 3,

3. What is the heat flux q" (W/ml) to the pipe from the oil at :=3II1iI1?
4. Flow much energy per meter of pipe length has been transferred from I13

0" *0 the PIPE at : = 3 min? Fa

2 with .34

ate. I-Io

thiclcnes

experier

Obtaineq

1. Biot and Fourier numbers after 8 min Brl g
1 T - . '

3 Hemperamm °f ammo‘ P1136 surface after 8 min. 09
4: eatfluxtothewallat8min.En - .

cry transferred ‘° WP‘? Per unit length after 8 min.
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rface {pm-
:| ooeflitientis

ndhasawall

Ie,andbef0rc

ztnperantrtof
dthroughlht

; to h=5D0

Assumptions:

1. Pipe wall can be approximated as plane wall, since thickness is much
less than diameter.

2. Constant properties.

3. Outer surface of pipe is adiabatic.

Pmperties: Table A.1, steel type AISI 1010 [T= (-20 + 60)°C/2 =-
300 K]: p=7323 kg/m3, c=-434 J/kg-K, k=63.9 W/tn-K,
a = 18.8 ><10e6 m2/s.

Analysis:

1. At t= 8 min, the Biot and Fourier numbers are computed from
Equations 5.10 and 5.12, respectively, with L: = L. Hence

hL 500 W/m2 - K x 0.04m
3:=—=—————————=0.313 <1

I: 63.9 W/n1- K

-5 - 60 '
F0=a_r=18.8><10 m2/sX8mInX s/nnn___5'64 4

L2 (0.04 m)’

 

2. With B1’ = 0.313, use of the lumped capacitance method is inappropri-
ate. However, since transient conditions in the insulated pipe Wall of
thickness L correspond to those in a plane wall of thickness 2L
experiencing the same surface condition, the desired results may be
Obtained from the charts for the plane Wall Using Fi3“1'° 5-3: with
31"; = 3.2, it follows that

9,, _ T[0,t)—T_, 022
s,'— at II an

Hence after 8 min, the temperature of the exterior pipe surface. which
°°“’°5Ponds to the rnidplane temperature of a plane wall. is

1:, = r(0-,430 5) = 1;, + 0.22(T,. - Tm)

1; = 60°C + 0,22(-20 - 50)°c = 42°C <1

3- Heat transferto the inner surface at x = L iSbY°0|1V°°fi°"~a“d‘“ _‘m'-V
‘"113 I the heat flux may be obtained from Newton's law of 00011118-
3!‘-nce at t=4sos,

q;:(L.480 s) E 4;; = n[r(L,ms) — 1;]
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The Surface temperature m.,4s0 s) may be- obtained from Figure 5.9.
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For the prescribed conditions

and BF‘ = 3.2

it follows that

a(1..430 s) T(L.480s) — 7;
—— = ———~ z 0.86

94430 5) ?;(480s) — 1;

Hence

T(L.-4805) = Tm + O.86[T0(480 5) — Tn]

r(_L.430 5) =—. 60°C + 0.86[42 — 60]°C =— 45°C

TheheaIfluxat!=8n1inisthen

431 = 500W/ml-1<(4s — 6i))°C = -7500 w/m2 <1

The energy transfer to the pipewall over the 8-min interval may be
obtamed from Figure 5.10 and Equation 5.44. With

13:‘ = 0.313 B1'2Fo = 055

it follows tha:

—* = 0.78
Q9

Hence

Q *4 0.78pcV(T‘ — Tm)

or with a volume per unit pipe length of V, ___ WDL,

Q’ = 0.78pc7rDL(7;. — Tn)

Q’ = 0-73 " 7323 kg/m3 x 434 J/kg- K

>< vrx 1m x 0.0-41n(—20 — 50)°c

Intel Corp. et al. Ex - '-
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ture can be determined from Equation 5.41

71,- T...

3;‘ = RT = C1€Xp(*-§{IF0)

 

 
 

 
 

 

 
  

where. with Bi = 0.313, C1 = 1.047 and §'1 = 0.531 rad from Table 5.1.
With F0 = 5.64,

0; = 1.047 exp [ — (0.531 rad): x 5.64] = 0.214

This result is in good agreement with the value of 0.22 obtained from
Figure 5.8. Hence.

T(0,8 = Tm + — Ta) = 60°C + 0.214( -20 — 60)°C = 429°C timfittteszT
which is within 2% of the value determined from the Heisler chart.

3. Using the one~terrn approximation for the surface temperature. Equa-
tion 5.40b with x* = 1 has the form

" = 9;“C0s(§1)

TU-. I) = T... + (TE * Ta..)3.§’c0s(£'1)

THE, 3 min) = 60°C + (-20 — 60)°C x 0.214 x cos (0.531 rad) uaaAus—90
T(L.8 min) = 452°C

which is within 1% of the value determined from the Heisler chart.

4- The total energy transferred during the transient process can be deter-
mined from the result associated with the one-term approximation.
Equation 5.46.

 .... -“.1': .-.'-

_Q_=1_5i11(§t)0:
Q0 :1

' 0.5 ad
£=1~ x0.214=0.80

0.531 rad
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Step 1‘ Cooling in air at 20°C for a period of time In until the center

temperature reaches a critical value. Ta(0, rut = 335°C. For this situation.

the convective heat transfer coeflicient is 11“ 2 10 W/m2 — K.

After the sphere has reached this critical temperature. the second stepis
initiated.

Step 2 Cooling in a well—stirred water bath at 20°C, with a convective heat

transfer coefficient of ii“. = 6000 W/m3 . K,

1. Calculate the time ta required for step 1 of the cooling process to be
completed.

2. Calculate the time (_, required during step 2 of the process for the center
°f ‘he 5Phefe to cool from 335°C ( the condition at the completion of step
1) to 50°C.

SOLUTION

Intel Corp. et al.

 
Assumptions:

1. One-dimer

2. Constant;

Analysis:

1. To deterrn

Biot numb

Bt'=

According

temperatu
5.5 it folio

2- To detern

used for 1

again calc

Bi:

and the lu

excellent

I = fa am

1 = I“ to

3:-1

%l'¢Q:r
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tntil the cente

3r this situatiott

- K.

second step is

convective heat

kg/tn’. k = ll}

; process ta he

s for the cent?!

ctpletion of 51%?

5.6 Radial Systems with Convection 257

A ssuntptians:

1. One-dimensional conduction in r.

2. Constant properties.

Analysis:

1. To determine whether the lumped capacitance method can be used. the
Biot number is calculated. From Equation 5.10. with LC = rn/3,

B_ huro tow/ml-Kx0.005m
'—3k” 3><20W/m-K

= 8.33 x 10“

Accordingly, the lumped capacitance method may be used, and the
temperature is nearly uniform throughout the sphere. From Equation
5.5 it follows that

I pl/c 1 6,. pracm 11- Tm
“_ hdA, "09" 30“ T,,—r;,

where V = (4/3)-M03 and A, = 4-irrf. Hence

 3000kg/m3 x 0.005m x 1000J/kg- K 400-20
ra= 1n——————=94s

3><10W/ml-K 335-20
<3

To determine whether the lumped capacitance method may also be
used for the second step of the cooling process, the Biot number is
again calculated. In this case

B_ hwro GOOOW/m2 - K x 0-o05mI= =

3k 3 x 20 W/m - K

= 0.50
  

and the lumped capacitance method is not app1'013ri3t€- HOWEVE "3 an
excellent approximation, the temperature of the sphere is uniform at
’ = 1', and the Heisler chai-Ls may be used for the calculations from
’= ‘.1 I0 I = ta + t_,. Using Figure 5.14 with

k 20 W/m - K
—' = =

12,; 5000 W/m1- K x 0.005 m
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it follows that Fa = 0.80, and

(0.005 m)2
0. ——;= _306.5cs><10-°m3/s 305

If the temperature distribution in the sphere at the conclusion of step]
were not uniform, the Heisler chart could not be used for the calcula- ,
tions of step 2. *

The surface temperature of the sphere at the conclusion of step 2 may .
be obtained from Figure 5.15. With '

=1

I‘

re

Intel Corp. et al. Exhiin Q" ‘ . 4
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5.7 THE SEMI-INFINITE SOLID

 

5.7 'll1eSemi-Infinite Solid 759

  tures, it follows that

1 In 1 (50 —- 20)°C_in T X no

(1300 rad): 1.376 (335 — 20)°C

Substituting for rd and a, it follows that 1,, = 3.1 5, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

  

 
Fa = ]= 0.82

  
 

  

 

r.t.._.-
.. -.'.E'-t2-_"-:',=I-I,‘-1gr: -i-_r_;_....._1—

.._..

  

..‘-.. _-.-.%-.—-2--I-1-uL..._~_-q-.-.«-4-,.,_.,.-
 
 

 
 

 Another simple geometry for which analytical solutions may be obtained is the
semi-infinite solid. Since such a solid extends to infinity in all but one direction.
it is characterized by a single identifiable surface (Figure 5.17). If a sudden
Change of conditions is imposed at this surface, transient, one-dimensional
conduction will occur within the solid. The semi-infinite solid provides a usefid

itlealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient

response of a finite solid, such as a thick slab. For this second situation the
3PP1'0Xi1nation would be reasonable for the early portion of the transient.

during which temperatures in the slab inteiior (well removed from the surface)
are uninfiuenced by the change in surface conditions.

The heat equation for transient conduction in a semi-infinite solid is given
_l’3’ Equation 5.26. The condition is prescribed by Equation 5.27. and the
Interior boundary condition is of the form

T(oo, iv) = (5.53)

Case (1) case (2) Case (3)

Tl‘ 01 = Ti Ttx, 0) = T; 17:. 0l= 1?
TIO. ti = T, -1. ar/axing = 9; -I; a1‘/az|,_o= hl'I'..- Tt0. 0|  
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Closed-form solutions have been obtained for three important surface condi
tions. instantaneously applied at I = 0 [1, 2]. These conditions are shown in

Figure 5.17. They include application of a constant surface temperature
I; 9* 7], application of a constant surface heat flux q;’, and exposure of the
surface to a fluid characterized by Tue at 7] and the convection coefliciem it -
The solutions are summarized as follows.

Case! Cons!nn1SIn'faceTemperatuI'!e

T(0.r) = 1;

T(x,t)—T,

T-TI J’

x

2t/a_t

HT
q."(r) = —k——

3x

=e,;(

x=0

Cuez (lonstantstufaoeflearflux

mated _ P°3Ti_Il8 in Equation 5.55 is the Gaussian enarfimfii
flame". mm’ is dginsgjtgn 3.1 of Appendix B. The corrIp1€""""“"y

€IfCws]._erfw

Tflnperamr - _ '_17.
note thecir digfiefi f.°' ‘be three cases are also shown In Fgure J

' 3 features- For case 3 the specific wmpeflmfi
mpilted fr - . . . Note!”

‘EL’ E:l';3:0D 5_.60 are Plotted in Figure 5.13.
Swface temperature to 7: = Tm‘

‘aim ‘"1 T-he right-hand side of Equation 5-60 5965 w
equivalent to Equation 5.55. '

Intel Corp. et al. Exhi-' I
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11! surface coed}
ms are shown I ‘ _
face temp-mime ' "."
I exposure oh]: I
ion coefficient ti. .:

V"

(554) A

(5.55)

(555) Figure 5.18 Temperature histories in a semi-infinite
solid with surface convection [2]. Adapted with
permission.

(557)

x

558)M7 (

(559!

“Ewe 5.19 Interfacial contact between two
‘°mi.-infinite solids at tiimtmit initial

[5-_50) ‘°mP€¥atures.k . . . -

_ . _ _ An interesting permutation of case 1 results when two semi-infinite sohde,
rt erraffi-“”"" ' - mmafly at uniform temperatures TM and Th, 31? Placed °°“ta°‘ at fl_‘m
tiemenm 8"" ‘Tee surfaces (Figure 5.19). If the contact resistance is nfiflhfilbles the WW-

'"°“‘ °f ‘herml equiiibtium dictates that, at the instant 0‘ °°‘““°‘ V = °3~
bmh 5“1'f3I‘-CS must assume the same temperattlffi 7}, £01’ which TB.» < I; <

_ 1 _ TM-_Since 1; does not change with increasing time. it f0H3°“’5 ‘hf’
inFialIf°5-1‘ transient thermal response and the surfaoeheatfllmufaichof thesohdsis

='fic'='"P“‘'"’'_» ;' d°‘*’“"'n°d by Equations 5.55 and 5.56, respectively-
5_13. Notefi fr The equilibrium surface ta‘-mperatilte Of Figure 5.19 may be determined
Lthfl“%'£.fl‘- °masu:faceenetgyba1atiee,whichreqttitesthat
tn:_5.36'yI'-*‘-" -[ 93$ = oft (5 '61)

subsfimfing from Equation 5.56 for q;f,_ and 4:1: and
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I

coordinate of Figure 5.19 requires a sign change for q_;‘ A, it follows that

'kA(T;“TA.r) kn(Ti‘Ta,.')
1,3 = {$635

lorafit)’ (artist)

or. solving for 1",,

T — (kpC)']‘\f2TA.£ "' (kflfiii/173.:J
7 . 5.63!

lkpcli./" + U<.0c)i;/I (

Hence‘ the C1_'-‘limit!-’ m E (kpc)1/2 is a weighting factor which determines
whether T, will more closely approach TA ,(mA > m-B) or TB_ i[mB > m A).

EXAMPLE 5.4

1“ laying Water mains. utilities must be concerned with the possibility”!
freezing ‘luring Cold periods. Although the problem of determining ‘he mm’
P€l'3Ill1_I’e In soil as a function of time is complicated by changing Sulfa“
‘7°“d1l|0I1S, reasonable estimates can be based on the assumption of 2 conihlfil
surface temperature over a prolonged period of cold wemhel-_ when minimum
burial depth xv: would YOU recommend to avoid freezing under conditions fflf
which soil, initially at a uniform temperature of 20°C is subjcctfid ll"
constant surface temperature of — 15°C for 60 days? ‘
SOLUTION

Tempem“7° impfised at the surface of soil that is initifl11Y"“
F" .

Md: The depth 3». 10 which the soil has frozen after 60 days.

Intel Corp. et al. Exhi "I
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follows that

(5.62}

5’ MULTIDIMENSIOML EFFECTS

5.8 Multidimensional Effects K

 
 
 

 
 

 
 
 

 
 
 

  
  

  
 

 

Properties: Table A3. soil (300 K): p = 2050 kg/tn’, k = 0.52 W/m - K,
c= I840 J/kg - K, 0! = (k/pc) = 0.138 X 10-5 1112/5.

Analysis: The prescribed conditions correspond to those of case 1 of
Figure 5.17. and the transient temperature response of the soil is governed
by Equation 5.55. Hence at the time I = 60 days after the surface tempera-
ture change,

T(xm’r)_T:s' xn:
——=«t )T,-I; Na‘:

01'

o_(—15) 0429 t(x"')20-(—15)_ ‘ "er 2./.3

Hence from Appendix B.1

X” 0
M7 — .40

and

x,,, = 0.30%.? = o.3o(o_13s x 10*‘ ml/s x so days >< 2411/day

X3600 s/h)"’ = 0.68 m <1

Cfllmlentc: The properties of soii are highly valiable» d¢P€11dil13 0'1 33°
nature of the soil and its moisture content.

Tfansient problems are frequently encountered for which two- and even
' ensional eifects are significant. Soiution to a class of such problems

can be Obtained from the onedimensiona] results of Sections 5-5 and 5-7-

_C°nsider immersing the short cylinder of Figure 520, which is initially at
3'-mlform temperature I}, in a fluid of ten1peratn|'B'T..*Tr 399335‘ ‘he
hm and diameter are comparable. the subsequent traflsifi‘ 05 33°13 by
°°“d'-lctionwillbesignificant forboththerand xcoordmatedirecfions-The
‘°“‘P°murewizhtn:hscy1inde:ws1tmeze:omdependon r. Land I-
an Assuming constant properties and no generatioil. the “PPI°Pfi3‘¢ f°“'-° °f

heat equation is, Erom Equasion 2.20,

j_—_____

) 327' 1 33'+ _
3.111 G at
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154 Chapterfi Transient Conduction

—"%> I

   
an-_x. Z)/«(RAJ "lf._-‘P SE|'T'll- Infinite9' al

*3’ solidat = Cm, H) x Plz‘. I’:

 
Fifi“ 5*” T""°'diIfl€DSi0!1a1. transient conduction in a short cylinder. (:1) GeoI:nc|I}‘-
lb) Form of the product solution.

Where x has been used in place of z to designate the axial coordinate. A
Cioted-fonn solution to this equation may be obtained by the separation of
“names method‘ Ahh°'-‘Sh We will not consider the details of this solution. 11

ifs hnponant to note that the end result may be expressed in the foflovfiflfiorm.

 EH T(f..t,l)—Tm T(x_;)_Tm 1-(,.’,)_T
at: T,-T Plane T—T Infinite

’ °'° cyflnder

T ._

Six. 1‘) = (5154) _
Tr ‘ Tau 3=mi—infim':e Pmducts of one-clir

T ._

P(x, () E (Sfifl Whereas for the p
T. * T_, 53. the coordin;

ensional (em;
T _ 5.21}: '

(‘(r. I) 3 ._£C.’__Q___¥_:'E_ planctiafieng ft;1i'0 I ~
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C(r, tj 
fir, 1) “H  
 

PT“ Put‘ ‘.1 (I) semsguigfimte (b) Piane wall
” "'_" S(x1.t)P(mlJ Pm. UPLI2. I)

a) Geoulatry.

oordinate. A

zpaxafion 05
lS solution, I! %

he follovmlfi -._'
'

+4.»!

Id} Semi—infinite m 5¢mi-*"“""°
in plan; cylinder

kt - C(r, t).P(1, E)

 Intel Co . eta
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The distances x1. x2, and x3 are all measured with respect to a rectangular Assumptions.
coordinate system whose origin is at the center of the parallelepiped.

The amount of energy Q transferred to or from a solid during a multidi ' I. Two-di
rnensional transient conduction process may also be determined by combining I 2 Comm“
one-dimensional results, as shown by Langston [7].

Properties:

EXAMPLE 5.5 450 K]: p
It/pc = 4.19

In a manufacturing process stainless steel cylinders (AISI 304) initialh at
600 K are quenched by submersion in an oil bath maintained at 300 K Will! Analysis-'
31 = 500 W/ml - K. Each cylinder is of length 2L = 60 mm and diamelflf the WHPCT3
D = 80 mm. Consider a time 3 min into the cooling process and determine following P1’
temperatures at the center of the cylinder, at the center of a circular face. and
at the midheight of the side. Tl“ 3‘

SOLUTION

 :

K"'°""" Initial lcmllerature and dimensions of cylinder and temperature
and convection conditions of an oil bath.

(V. X, f) after 3 min at the cylinder center. T(0~0-
3 min). at the center of a circular face, T(0. L, 3 min), and at the rnidheighl
of the side. T(ro.0,3 min). '

Schematic.-

Intel Corp. et al. E ’
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:0 a rectangulat Assumptions:

:piped.

tiring a multidi- 1. Two—dimensional conduction in r and x.

d by combimg 2. Constant properties.

Properties: Table A.1, stainless steel, AISI 304 [T= (600 + 300)/2 =
450 K]: p = 7900 kg/1133. c = 526 J/kg - K, k =17.4 W/m - K. at =
k/pc = 4.19 X 104’ ml/s.

  

  

 
 
 

 
 
 

 
 
 

  

  

I04) initially at ‘ _
. at 300 K with Analysis: The solid steel cylinder corresponds to case 1 of Figure 5.21, and ‘E’, ._
1 and diameter the temperature at any point in the cylinder may be expressed as the ...-u. -"

and determine following product of one-dimensional solutions. E I
rcular far-76.31115 '

T(r, x. I) — Tx P C ) 7
2- Tue _ (M) (U :11,

9:;
where P(x, 1) and C( r. I) are defined by Equations 5.65 and 5.66. respec- ‘fig ' _ ._
Lively. Accordingiy. for the center of the cylinder, ' .23.‘ [E _'

T(0.0,3 min) — 2;, T(D,3 min) — 71;, T(0.3mi11)— Too '3' '_

ence, for the plane wall, with Ear! .. ; :
k _ -K *5 ~

3r1= _ = 17 4W/"1 = 1.16 -_-..; ' ‘
hL soow/ml-Kx0.03m .- »‘

4. '5 2 180Fo=_t£= 19><10 in/sx 5:034
L2 (0.03 inf

  

it follows from Figure 5.8 that

9., T(0,3 min) - Tm

0|": T;-“Tm Plan:wall

 
= 0.64

similarly. for the infinite cylinder, with

 

 

Br._,=_I5_= 17.4w/in-K =03?
hr, 500 W/m3- K. x 0.04m

. *6 so
Fo=f;=419><10 m3/:.><1 5:0‘?

ro
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it follows from Figure 5.11 that

 

  

  

  

    

 

 

where, from F ig

g = T(0.31I1ifl) — T1: = 9‘ ) T
T: 0.55 ____ = _

8f 7; — Tm Illiifiiiitc B 1

Hence, for the center of the cylinder, ; Hence

T101013 min) — Tm I l
= 0.64 x 0.55 = 0.35 ' T(ro.3 mu

T, - Tn I T
T(0.o.3 min) = 300 K + 0.35{6OO — 300) K = 405 K < i '1

l

The temperature at the center of a circular face may be obtained from the 1
requirement that i‘ .

T(0-L-3min}-Ta, T(L.3m'm)—T T(03rnin)-—T :‘ N 3= . 1: I - I“! [In]

T: “ Ty; — Tau 51:].-tine I: " Tm T fi

where. from Figure 5.9 with (x/]_) 2 1 and B:-»1 = L16’ I Hence
an.) m,3 min) — rm
_—— = '—’—%.——'—— 2: T90 Hun) _ Tm Han: [-"o.D. 3!

wall ‘ Tr _
Hence

- T(r.

T(L’3[n‘i‘n)_T-ac r(0.3m‘m)-Tm’ r i
T — = . - ~*j——""

r T1», 51831111: 3 mm) — Tm 21:11:: T: -* Ti :3‘ ‘ Comment‘.
1'”( L. 3 min) — rx - E
"“}‘~__":;~“-—- =0.68 >< o.54=0.44 S -f 1 Verify that

an wane 3 3:
I

Hence 2- The one-ter
! I355 temper
L "Wane tr

Ti __ Tm = 0.44 X 0,55 .-.-. 024 1 e
T(o.L3min}-300 4; ‘ '37:‘

~ - K+0.24{600—300)K=372K 5 i 5
The tern . . _ '

requgremgiiafigf at the mldhfilght of the side may be obtamed from 15‘ ' % artéetrlelcwrth0 =_-

T(ru.0.3 ' _ . _ I

I Tm -— T ' T "‘ Tm 3- Plan
' ' wan
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whgre, from Figuxe 5.12 with (r/rs) = 1 and Bi” = 0.87. 

am _ T(r,,,3 min) - rm
9 _ r(0,3m'm) -1;0

= 0.61
[nfpite
cylmdcr

 

 
 
 

 

 

ained fromthe

u) -T,,

1; $3,

TE
-.-. 0.54 x 0.34 =- 022

T(r,,,a,3min) = 300K+O.22(6D0 — 300)K=366K
min) -7..

- Tan 5':

1' v°"ifY that the temperature at the edge of th6 Cylinder is Tho» L»
3 min) = 345 K.

1110 one-term approximations can be used to calculate the dimension-
‘°35 temperatures read from the Heisler charts For the rim WW» “"3
“lidiblane temperaturencan be determined from Eq'13fi°“ 5-41

  
  

  
  

  

2.

3“"=£_.C 29 ,, - .=xp(—:1ro)I
 

wfyere. with as = gag; C1 .1 1199 and :1 = -0.314 rad from Table 5.1.
WW F0 = 0.84,

 
0|,

'5; mm = 1.109exp [- (0.314 mi)’ x 0.84] = 0-636wan
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The surface temperature can be evaluated using Equation 5.4%

6'11, F0) 8(L, I)

T— 9 = cos(0.S14 rad X 1) = 0.6879 0

For the infinite qvtinder, the centerline temperature can be determined
from Equation 5.4%. '

9-D

00* = E =.

Wheres with Bi = 1.15, C1 = 1.227 and g, = 1.307 from Table 5.1. with 3'
F0 = 0.47,

0

3 Mm = l.109exp [—(1.307 rad): x 0.47] = 0.550

Intel Corp. et al. E_i_b'."" I ‘
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.40b

determined

le 5.1. With

4913

5.9 Finite-Difl'erence Methods 271

finite-dtfierence methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we

consider explicit and implicit forms of finite-diflerence solutions to transient

conduction problems. More detailed treatments, as well as related algorithms,

may be found in the literature [B-10].

59.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-

sient conditions with constant properties and no internal generation, the

appropriate form of the heat equation, Equation 2.15, is

-—=—-—+ — (5.67)

To obtain the finite—difl"erence form of this equation. we may use the central-

dlllierence approximations to the spatial derivatives prescribed by Equations
4.31 and 4.32. Once again the m and n subscripts may be used to designate
the x and y locations of discrete nodal points. However, in addition to being
fl-15°fBli2-ed in space, the problem must be discretized in time. The integer p is
introduced for this purpose, where

:= P A, (5.68)

find the finite—difference approximation to the time derivative in Equation 5.6‘!
'5 “Pressed as

3T T:-inl _ Tn‘: n

3‘ ,, 2 At
(5.69)

T“? 5“P¢1'SCript p is used to denote the time dependence of T, and the link?
d°.m"‘“j"° is Expressed in terms of the difference in temperatures 35S0Ci31°d
With the new ( p + 1) and previous ( p) times. Hence calculations must be
peimrllled at successive times separated by the interval Ar. and 1115" 35 3
,fi‘m°'difl'erence solution restricts temperature determination to discrete points
in SP"‘°¢e it also restricts it to discrete points in time.

_ “ ‘Equation 5.69 is substituted into Equation 5.67, the nature of the
‘¢-dlfference solution will depend on the specific time at which tempera-

‘“’?‘ are evaluated in the finite-dificrenoe approximations to the spam!
dmvati‘’°3- 111 the explicit method of soltttiom 11165l are flaw‘
3”“ 3‘ the previous (p) time. Hence Equation 5.69 is considered to be 3
"°"""f"""’"fi'r-since approximation to the time derivative. Evaluating terms 09
‘’‘° “ehvhano side of Equations 4.31 and 4.32 at P and 5“b5*=““‘i”8 in”
Eqmlion 5.67, the gxplicit form of the finite-difl'u'ence equation for the

Intel Co o.
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interior node :11, n is

1

1 _ Tnf+1.n + T:£—1.n _
or A; = (Ax):

Tn£,n+I + 'Tr:.n-1-’

(fly);

Solving for the nodal temperature at the new ( p + 1) time and assuming that
Ax = Ay. it follows that

+ (5.70;

?;_.?'+": _., Fo(T,{+1_,, + T,;',’_1 K + T; n+1+ 7:5 "_1)

+(1— 4Fo)T,f_n

where F0 is a fi.nite—difl‘erence form of the Fourier number

am‘

Pa = (5.72)
(Ax?

If ‘h°_5Y-‘Stem is one-dimensional in x, the explicit form of the finite-difi’erc110E
equauon for an interior node m reduces to

734'” = F0(T.5+1 + T.‘.’—1) + (1 _ 2Fo)r,,+:

8 {ICW ti_me are determined exclusively by known nodal ternp€T3‘“""“”
the P"°"‘°“5 111116. Hence calculation of the unknown temperatures is Sflaiflm’
forward. Since the temperature of each
p = 0) from ' ' -

tures known for t = At. the 399"?”
equation is then applied at each node to detemlllle "5
Mr ( p =2). In this way, the transient mtnv°““‘"‘
‘*5 5)’ marching out in time. using intervals Of A‘
f the finite-difierence solution may be impl‘0V°d by db

course, the number of inEBl'i°‘ "odd

Intel Corp. et al. Exhib-'='. I A
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(5-70)

assuming that

5.9 Finite—Diflerence Methods 273

An undesirable feature of the explicit method is that it is not uncondition-

ally stable. In a transient problem, the solution for the nodal temperatures
should continuously approach final (steady-state) values with increasing time.

However, with the explicit method, this solution may be characterized by

numerically induced oscillations, which are physically impossible. The oscilla-

tions may become unstable, causing the solution to diverge from the actual

steady-state conditions. To prevent such erroneous results, the prescribed
value of At must be maintained below a certain limit, which depends on Ax

and other parameters of the system. This dependence is termed a stability

criterion, which may be obtained mathematically [8] or demonstrated from a

thermodynamic argument (see Problem 5.69). For the problems of interest in
this text, the criterion is determined by requiring that the caeflicierit associated

with the node of interest at the previous time is greater than or equal to zero. In
general, this is done by collecting all terms involving T,,f_,, to obtain the form
of the coefficient. This result is then used to obtain a limiting relation

involving F0, from which the maximum allowable value of At may be

determined. For example. with Equations 5.71 and 5.73 already expressed in
the desired form, it follows that the stability criterion for a one-dimensional

interior node is (1 — 2Fo) 2 0, or

F0 _<_ % (5.74)

and for a two-dimensional node, it is (1 - 4170) 2 0. Of

F0 5 % (5.75)

For prescribed values of Ax and at, these criteria maybe used to determine
“PW limits to the value of At.

Equations 5-71 and 5.73 may also be derived by applying the Cm’-T8)’
balance method of Section 4.4.3 to a control volume about the interior node.

A¢€Ounting for changes in thermal energy storage, a general form of the
“W3! balance equation may be expressed as

sin + 3% = (5.75)

111 the interest of adopting a consistent methodology, it is again assumed that
3“ heal flow is into the node.

To illustrate application of Equation 5.76, consider the surface node of
‘ii? one-dimensional system shown in Figure 5.22. To more accurately deter-
mine thermal conditions near the surface. this D049 has assigufii 3
duck“?-55 Which is one-half that of the interior nodes. Assuming °°‘3"°°“°“
“ansferf - ° ‘ill fr tion
5'76 that tom an adyommg flmd and no generation, it o ows om Equa

Ax Ty“ - Ti’

“(Ta - 13’) + gm" — T0’) = fi'CAT AI
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Fi3"'° 5-22 5‘11’f3¢t‘- node with convection and one-dimensional
transient conduction.

°"~ 5°1"1"8 for the surface temperature at 1 + At,
2!: A:  

roe” =

Recognizing that (Zh A: T. / A = 2 it 2 = - .2
grouptng terms involving Tdpfit {glows Eha:-Xx/k)(a At/Ax } 2B:Fa an

Rev: , 2Fa(2“lp + Brig) + (1 _ 21:0 _ 231-1:-0)TDp (54711
The finite-dilference form of the Blot number is

, h Ax

_ k (5.73!

Recalling the oced - - . . . . v
that the mefficiempffor Tl-Ire for determrmng the stabtltty cntenon, W6 1'3‘I“’”

up be greater than or equal to zero. Hence
1- 21:0 — zarro go

01'

 
 Intel Corp. et

Table5.2Summaryoftransient.two-dimensionalfinite-differenceequations(Ax=Ay) EXPLICITMETHOD CONFIGURATIONFINITE-I)IFFF.RENCEEQUATIONSTABILITYCRITERIONIMPLICITMETHOD
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n, we

mmB7.
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EXAMPLE 5.6

A fuel element of a nuclear reactor is in the shape of a plane wall of thickness
2L = 20 mm and is convectively cooled at both surfaces, with h = Illll
W/m3- K and Tm = 250°C. At normal operating power. heat is generated
uniformly within the element at a volumetric rate of q'r1 = 107 W/1Ir1.A
departure from the steady-state conditions associated with normal operation
will occur if there is a change in the generation rate. Consider a sudden change
to 42 = 2 X10? W/m3, and use the explicit finite-difl"erence method In
determine the fuel element temperature distribution after 1.5 s. The fud
element thermal properties are k = 30 W/m - K and a = 5 X 10"” 1113/;

SOLUTION

Known: Conditions associated with heat generation in a rectangular fuel l
element with surface cooling.

 
 
 
 

 

 

 

 

I

Fuelelement 1

2- ‘ii: ism ;= ‘m T..,= 250°C

:5 : gUKwl21"5Km?rs xi ;, = 1100 wimz - K
Symmetry adiabat :5‘.

I l I
m—l| ll In-;+1 :5|

0 : I : 0 40 | -"\rI' 1 |
—+' z.I+— 4 I8“I = I I

: lg! |::L = 10 mm Eh! ‘' : x |

Intel Corp. et al. .

 
 

 

 
 
 
 

  
  

  
  

1

method, Equatii

for any interior

T:— 1 —

Ax

Solving for T5,’ ‘

kA

T,f"1= Fc

This equation 1
nodes 1. 2. 3.

about node 5,

Since the I

2. we select Fa

it follows that

F0 s 0.46

01’
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method, Equation 5.76, an explicit finite-difference equation may be derived i p
for any interior node m. _ '

=wa1lofthiclms é- i .. l;"_;}: .-

heat is generated Ax Ax At ' I '_. _ 3.4 ; ..'= T
=1O7W/m’.A , , - :"
normal |- Solving for Tnf” and rearranging, _; _ I - -'

"a suddenchange ‘H Ax): ‘ ‘ h ;
fence mflhod 1° 1",;;+1= Fa r,{_1 + 215+, + + (1 — 2Fo)T,{ (1) it E

1.5 s. The furl '

x 10"‘ tn’/s. +- ‘ 
 

This equation may be used for node 0, with T,,{L1 = T,£+1. as Well as for
nodes 1, 2, 3, and 4. Applying energy conservation to a control volume :|__
aboutnodefi, -__‘§_..  

  MT P Tj’-T5" _ Ax AA}: Tsp+1_T;p
‘«=*Ts’+"*‘*3x“+4"7"’ 2“?

  
 

  

  

 
 

  
 

iting power.

+ (1 — 2Fo — 23:1-"o)T;’ (2)

Since the most restrictive stability criterion is associated with Equation
n2 - It 3. We select F0 from the requirement that
ads:

F0(1 + Bi) s g

  Hence, with 
  _ hAx 1100 W/m-1 - K (0.002 m)

30W/in - K

 
= 0.0733  

 0.466(2 x 10-3 in)‘  

 
 
 

  Fa -—- ——————;\5X 104 m2/s(0;3 3) = 0.375
(2 X 10’3 in)
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Substituting numerical values, including :3 = ch = 2 X 107 W /ml. the nodal
equations become I

TOP” = 0.375(2Tf + 2.67) + 0.25073"

T5” = 0.37503’ + T; + 2.67) + 0.25017’

If” = 0.375(r1»° + T; + 2.67) + 0.2502";

T?" = 0.375(73*’ + 2:: + 2.67) + o.25oT;'

74”” = 0-375(T;’ + T; + 2.67) + 0.2507:

T,“ = 0.75001: + 19.67) + 0.1951;

T0 begin the marching solution, the initial temperature distribution
mustbe known. This distribution is given by Equation 3.42. with ti‘-’4ir '
Obtamng T; = 7; ffom Equation 3.46,

4'11 107 W/m3 x 0 01 m
T5: 7;; 4' —-=250°C+——.:_'j ___34091°C

3! 1100 w/mt K '

it follows that

U‘3§led with the new steady-state condition (row 73- ""hi"h
"Sins Equations 3.42 and 3.46 with 4 = 42.

‘_____%&___j____

e .

I
Intel Corp. et al. Exhi ~ 4



Intel Corp. et al.    Exhibit 1014

 
)7 W/m3, the nodal

rature distribution
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Comments: It is evident that at 1.5 s, the wall is in the early stages of the
transient process and that many additional calculations would have to be
made to reach steady-state conditions with the finite-difi'erence solution.
The computation time could be slightly reduced by using the maximum
allowable time increment (Ar = 0.373 5), but with some loss of accuracy. In
the interest of maximizing accuracy, the time interval should be reduced
until the computed results become independent of further reductions in Ar.
 

19.2 DiseretizationoftheHeatFA]uation:'I‘lieItnplicitMethotl

In the explicit finite-difierence scheme, the temperature of any node at r + A:
may be calculated from knowledge of temperatures at the same and neighbor-
i“B nodes for the preceding time 1‘. Hence, determination of a nodal tempera-
lure at some time is independent of temperatures at other nodes for the same
time. Although the method offers computational convenience, it suffers from
limitations on the selection of Ar. For a given space incttmt‘-UL the time
“flew-31 must be compatible with stability requirements- Frequently, this
dictates the use of extremely small values of Ar, and a very large number 01"
time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
FmP]0)'ing an implicit, rather than explicit, finite-difl'erence scheme. The
“nlllicit form of a finite-difference equation may be derived by using Equation
5.69 to approximate the time derivative, while evaluating all other tempera-
fures 3‘ ‘-116 new (p + 1) time, instead of the pl’8Vi0|3S(P)t3"1e- E¢l'13-fi°‘3 5-69
'5 considered to provide a backward-dtjflhrence approximation to the timfi
dmvative. In contrast to Equation 5.70, the implicit form of the finite-difference
equation for the interior node of a two-dimensional systfim is lhfifl

P‘°“"3n8ins and assuming Ax = Ay,it follows that

0 + 41-‘o)T.::.*.‘ - Fol:-W + r:::l,.. + Tm, + T.t.".‘-1)-~ Ti.-nn+1. it

F’°m Equation 5.87itisevident'thatthenew t=mp=rmr=°“h°'"»"
n0dedePmd$0nthem.-w te1nperatIn'eso:fitsaiil°511iF8in°‘i°‘»“hh‘h'“‘°’in

(5.86)
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general, unknown. Hence, to determine the unknown nodal temperatures a!
r + At, the corresponding nodal equations must be solved simultaneously. Such
a solution may be effected by using Gauss—Seidel iteration or matrix inversion
as discussed in Section 4.5. The marching solution would then involve simulta-
neously solving the nodal equations at each time I = At.2Ar, until the
desired final time was reached.

Although computations involving the implicit method are more compli-
cated than those of the explicit method, the implicit formulation has tlzt:
important advantage of being unconditionally stable. That is. the solution
remains stable for all space and time intervals, in which case there are no
restrictions on Ax and Ar. Since larger values of At may therefore be used
with an implicit method, computation times may often be reduced. with liltlf
loss of accuracy. Nevertheless, to maximize accuracy, A: should be sufficientll
small to ensure that the results are independent of further reductions in its
value.

The implicit fonn of a finite—difl'erence equation may also be derived from
‘he energy balance method. For the surface node of Figure 5.22, it is readill
shown that

(1 + 21-".9 + 2FoBi)rg’*' — zforfrl = 2503,-Tm + Top list:

F0’ any interior node of Figure 5.22, it may also be shown that

(].+ 2Ffl)T:+1 __ + Tp+l) ___m+1

' erence equation for other common gE0_|11°“i“
Each equation may be derived by appiymfi '3'37° Presented in Table 5.2.

energy balance method.

 
Find:

l. Using the ex]
the surface at

min.

2. Repeat the ca

3. Determine th«

Sdicmatic:

I
0

__’ I
t I

I

L4 as2

Assumptions:

1. One-dimensii

2. Thick slab ‘

constant surl

3. Constant prc

Pmpenies: Tab

10”” mi/s.

Analysis:

1- An explicit I
may be obta

about the nu:
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Using the explicit finite-diflerence method, determine temperatures at
the surface and 150 mm from the surface after an elapsed time of 2
min.

Repeat the calculations using the implicit finite-diflerence method.

Determine the same temperatures analytically.

Schematic:

q; = 3 x 105 wm-.2
——>

an. £321-: ml:....
Asslnnptions:

1- One-dimensional conduction in x.

7» Thick slab may be approximated as a semi—infinite medium with
constant surface heat flux.

3- Constant properties.

1- 511 expiici: form of the finite-difference equation for the surface node
may be obtained by applying an energy balance to a control volume
about the node.

Ax

+ rg) + (1 — 2Fa)TJ'
I.'h°fi“53°-difierenceequafionforanyinte:iormdFi5BiV§”‘.bYEq“3‘
tron 5.73. Both the surface and interior nodes are govsmdfbfi‘ "N

_Inte1_Cor_p. ‘
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stability criterion finite-differ

p-i-1
Fosfi To

Noting that the finite-dfiference equations are simplified by choos- J P-l-1
a Tm

ing the maximum allowable value of F0, we select F0 = Hence
and the re

tax)’
(I

(0.075 [1102 '
A = F T: = 24 lI 0 117 x 10*’ 1112/5 5

I

2

With

 q;;Ax _ 3 X105 w/ml (0.075 m)

k 401 W/tin ~ K

 
= 56.1°C

 

  
  

the finite-diflerence equations become

Tn£+1 + Tflffl

T.;f“1=56.1°C+T1P and ;;§+1= 2

for the surface and interior nodes, respectively. Performing the calcu1fl'
nous, the results are tabulated as follows.

 Of,

(1+

Arbitrart

Intel Corp. et al.
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by choos-
Ience

.n+1
To

an

After 2 min. the desired temperatures are To = 118.9°C and T: =
444°C. Comparing the above results with those obtained for F0 = it
is clear that by reducing Fa we have eliminated the problem of
'°°“'TiI1E temperatures. We have also predicted greater thermal pene-
‘mion (to node 5 instead of node 3). An assessment of the improve-
ment in accuracy must await a comparison with results based on an
31301 solution.

P°1'f0FIJ:Iing an energy balance on a control volume about the surface
“Odes the implicit form of the finite-difl'erence equation is

or,

T?“ = 51:02.. + 7.5-

=9

g(55.1°C + 25) + gr;

1) + %T,.’.’

(1 + 2Fo)T,,P+1 — 21952;-9+1 =
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kAx

finite-difference equations are then of the form

 Ax TJ” - T5’

-2-’: Ar

Zaqf,’ At
+ T3‘

and the results of the calculations are tabulated as follows.

 

Explicit finite-djflerence solution for F0 = 1/4

Arbitrarily choosing Fa = gm: = 24 s), it follows am

17'5"“ — Tr“ = 55.1 + 23'

 I <8) 73 T1 T2 T3 T; E To 73 TE;

0 0 20 20 20 20 20 20 20 20 20

1 12 43.1 20 20 20 20 20 20 20 20

2 24 52.1 27.0 20 20 20 20 20 20 20

3 35 72.5 34.0 21.3 20 20 20 20 20 20

4 48 31.4 40.5 24.4 20.4 20 20 20 20 20

5 50 39.0 45.7 27.5 21.3 20.1 20 20 20 20

6 72 95.9 52.5 30.7 22.5 20.4 20.0 20 20 20

7 34 102.3 57.9 34.1 24.1 20.3 20.1 20.0 20 20

8 95 103.1 53.1 37.5 25.3 21.5 20.3 20.0 20.0 20

9 103 113.7 53.0 41.0 27.5 22.2 20.5 20.1 20.0 20.0

10 120 113.9 72.5 not 29.5 23.2 20.3 20.2 20.0 20.0
__ 

Intel Corp.
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From Equation 5.89, the finite-difference equation for any interior node ‘
is then of the form

— 1353:: + 413*‘ — 13:,‘ = 21*!’HI

Since we are dealing with a semi-infinite solid. the number of '

nodes is. in principle, infinite. In practice, however, the number may be .
limited to the nodes that are afleeted by the change in the boundary‘ i
condition for the time period of interest. From the results of the explicit .
method. it is evident that we are safe in choosing nine nodes corre-
SP0fldiI1g I0 To. T,..., 7}. We are thereby assuming that, at I = 1205.
there has been no change in T3.

We now have a set of nine equations that must be solved simulta-
neously for each time increment. Using the matrix inversion method
we express the equations in the form [A][T] = [C], where

2 -1 0 0 0

-1 4 -1

-1

G

I 4:-:-c:r:a:>cac:¢:2
O

0

0

0

1

4

I
I l

3
l

1--0 -I‘-‘b

Intel Corp. et al.
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any interior node 

 
 

 
 
 
 
 

 
 
 
 

 
 

 

 

. the number of 7 1

: number may be
in the boundaty

lts of the explicit 40
inc nodes c0rre- 40

hat, at I =120S, [C]P_0 _ 40

e solved simulta- 40
tversion method. 40
iere 40

0 0 0 6°
0 0 0 the second row of the table is obtained- Updating [C]. the process is
D 0 0 repeated four more times to determine the nodal temperatures at 120 s.
D 0 0 The desired temperatures are 1,’, = 114.7°C and T; = 442°C.
 

D 0 9 . . . .

1 0 0 hlphcit finite-dijference solution for F0 = §
4 ~1 0  
1 4 -1 20.0 20.0 20.0 20.0 20.0 20.0 . 20.0 20.0
) _1 4 52.4 28.7 22.3 20.6 20.2 20.0 20.0 10.0 20-0

74.0 39.5 26.6 22.1 20.7 202 20.1 20.0 20-0
90.2 50.3 320 24.4 21.0 20.6 202 20.1 20.0

103.4 50.5 30.0 27.4 229 21.1 20.4 20.2 20.1

110 iqfi 10.0 30.9 24.7 21.9 20.3 203 20.1 

*0 any point in the slab.

2q:;(ar/«)‘''’ *2 — M ( )T(xs‘)‘T:-= €KP""¢‘

AHhesurtaoe,thisexp:essionyie1ds
“M”-fl-3..." no 2x3x10’W/tn’ ' 1/1e also RN _ : r1203) — 20°C = (117 x_ 10" tn’/s X 1205/tr)

s-{A} 401 W/m- K

 

 
 

710.120 s) == 120.0°c
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coefficient matrix [A]“ must first be found. At each time p + 1, it is
then multiplied by the column vector [C], which is evaluated at p. to
obtain the temperatures T0’ +1, T1’ "1, . . ., T3’ +1. For example, multiply-
ing [A]“ by the column vector corresponding to p = 0,
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At the interior point (x = 0.15 111)

2x 3 x 105W/1113
T 0.15 .120 — 20°c=( m 5) 401w/m - K

><(117 :-<10‘° ml/s x 120 s/«.-1)”

(0.15 m)3 3 x 105 w/ml x 0.15 m

4 X117 ><10““ ml/s X 120 s _ 401W/m- K

0.15 111

X 1 — erf = 454°C

x exp [-

2~,»"117 x 10”‘ 1111/5 x 120 5

Commenls:

1- _C°mPafil'|g the exact results with those obtained from the three approx-
imate solutions. it is clear that the explicit method with F0 =1/4
Provides the most accurate predictions,

Expl1'cit[Fo = g) 1253 481

Explicit ( Fa =- E) 1133 44A

ImpliciI(Fo = 1»; 114;; 441

Em! 120.0 45 4

Although computations are simplified by using the maximum allowable
::::.a(fm:;in the expfici‘ “1€1h0d, the accuracy of the results is st‘-ldam I

Intel Corp. et al. Exhi"". ‘ A
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difference equation of the form

sa[r;,,— (rm +h(r,—rg)+k—— ~——— y

Use of this finite-difference equation in a numerical solution is compli-

cated by the fact that it is nonlinear. However, the equation may be
linearized by introducing the radiation heat transfer coefiicient I1,

 
 

 

 

   
  

  
  

   
  
  

  
  

  
  
  

 

 X 0.15 in

_ K defined by Equation 1.9, and the finite—difl”ere11ce equation is

h”(T f” h T T” kT‘p— T“? — T°pH — T‘?<1 r sur_ 0)+ (ae— 0)+ Ax ’pTC A1,

The solution may proceed in the usual manner, although the effect of a - _ __ -t _ - ;
radiative Biot number (Bi, E It, Ax/k) must be included in the stabiI- 7 7 _ . '; 9-H
ity criterion and the value of It, must be updated at each step in the ;--.-f . 1 . -.-_'_ lg.‘ , s

meg apprm calculations. If the implicit method is used, )1, is calculated at p + 1, in p : ' T
11 F0 = 1/4 which case an iterative calculation must be made at each time step. ; ‘ . . = _-.. .

5.10 SUMMARY______..

Transient conduction occurs in numerous engineering applications. and it is
1mP0_1'tant to appreciate the different methods for dealing with it. There is
°‘“3}“13' much to be said for simplicity, in which case, when confronted with a
transient problem, the first thing you should do is calculate the Biot number.

__.__———- If this number is much less than unity, you may use the lumped capacitance

f A: is 5055 Eelhod to. obtain accurate results with minimal comptttational requirements.
beowevei-(,1 if the Biot number is not much less than umty, spat1_£;lefi'6Clll15 mus!

31;]: W151 Cred. and some other method must be used. Analjm 1'68 t5 are
Eglgdm _3V=IIlable in convenient graphical and equation four: for the plane Wall, 1113

lilfinite cylinder mes " ' solid Y should know. phcre, and the semi-mfimte . 011
"hell and how to use these results. If geometrical coI'flP1*‘-‘xifies 311d/01' the

.g’n':111 of the boundary conditions preclude their use, recourse must be made to
’~_ _ i ‘¢~difl'erence methods. With the digital computer, such methods may be
Um fa ,1, _ ma ‘° 50'“? any conduction problem, regardless of compicxitjh
mputer PW‘ mmmcm

in IN ' 1 .
mm tan: . ' g=r_s1aw_. H s., and I. c. Jacger. Conduction of Hon: in-Solidi. 2nd- at. Oxford
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PROBLEMS

Qualitative Considerations

5.1 Consider a thin electrical heater attached to a plate and backed by insulation-
lmfiallyu 1118 heater and plate are at the temperatttre of the ambient air. 7}-
Suddenly, the power to the heater is switched on giving rise to a constant heat mu
4.? {W/I113) at the inner surface of the plate.

Insulation

Power
leads

(:1) Sketch and label, on T—x coordinates. the temperature distributions: inim-
Slfiady-state. and at two intermediate times.

Intel Corp. et al. Exhi '
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ant Temperature

er, McGraw-HiIL

ects Using Ont-

fer, 25. 149-150.

for Initial Valve

1-, McGraw-Hill.

ransfer Analysis

Problems 289

5.3 A microwave oven operates on the principle that application of a high frequency

5.4

field causes electrically polarized molecules in food to oscillate. The net effect is a

uniform generation of thermal energy Within the food, which enables it to be
heated from refrigeration temperatures to 90°C in as short a time as 30 s.

Consider the process of cooking a slab of beef of thickness 21. in a

microwave oven and compare it with cooking in a conventional oven, where each

side of the slab is heated by radiation for a period of approximately 30 min. In
each case the meat is to be heated from 0°C to a minimum temperature of 90°C.

Base your comparison on a sketch of the temperature distribution at selected
times for each of the cooking processes. In particular consider the time to at

which heating is initiated, a time r, during the heating process, the time r2

corresponding to the conclusion of heating, and a time :3 well into the subsequent
cooling process.

A plate of thickness 2L, surface area A,, mass M, and specific heat cp, initially at
a uniform temperature 7:, is suddenly heated on both surfaces by a convection
process (Tm. h) for a period of time to, following which the plate is insulated.
Assume that the midplane temperature does not reach Tm within this period of
time.

(3) Assuming Bi‘ be 1 for the heating process. sketch and label, on T—x coordi-
nates, the following temperature distributions: initial, steady—state (t -> on).
T(-‘K. I0). and at two intermediate times between r= r_, and r —> oo.

(bl Sketch and label, on T-t coordinates, the midplane and exposed Surface
temperature distributions.

(6) Repeat parts a and b assuming Bi 4: 1 for the plate.

(91) Derive an expression for the steady-state temperature T(x_. co) = 7}, leaving
Your result in terms of plate parameters (M, CF), thermal conditions (17. Tags *5).
the surface temperature T(L, I’), and the heating time 1,.

"'!’“'C3lfl£itanee Method
5.5

5.6

Steelballsllmmindiameterareannealedbyheatingtollioliandthenslowly
°°°1ingto4oo K in an air-environment for which r_,,=3:-is Kand h=20
‘Wm?-icAssuming:hepmperse;onhesn=1tobet=4ow/m-K.p=7300
|‘§/1II3,andc=60DJ/kg-K,esfimatethetimEf5q|15I°df°“h¢¢°°HnSPT°°e35-
The heat transfer coeflicient for airflowingow-1' 3897191? is ‘O be-d=“‘-'1'mi11‘-‘db!
°b5°“'5118 the temperature-time history of asphere fabricated Enom Pm
Thesphere.whichtsi2.7mminniameu=r,isa:se°cseroreiiisinsenedmman
31fS1reamhavingatempaammof27°C.AthemoooupleontheoutasurfaceoE
'h°5Ph€Ieintficates5S°C69safterthespha'cisinsertedinthcairsUEam.
A-'*5‘1mI=.and dienjustify,thatthespherebehavesasaspanewiseisoIh=rma10bJ¢€'
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5.8 A spherical lead bullet of 6 mm diameter is moving at a Mach number of
approximately 3. The resulting shock wave heats the air around the bullet to ion

K, and the average convection coefficient for heat transfer between the air and the

bullet is 500 W/mz - IC If the bullet leaves the barrel at 300 K and the timeof

flight is 0.4 5, what is its surface temperature on impact?

Carbon steel (AISI 1010) shafts of 0.1 III diameter are heat treated in a gas-fired
furnace whose gases are at 1200 K and provide a convection coefficient of [00
W/m2 - K. If the shafts enter the furnace at 300 K. how long must they remainin
the Iumace to achieve a centerline temperature of 800 K‘?

5.10 A thermal energy storage unit consists of a large rectangular channel, whichis
well insulated on its outer surface and encloses alternating layers of the stoma:
material and the flow passage.

Ea“ “Y” 0‘ the Storage material is an aluminum slab of width W =0-05 '1
which is at an ‘9mP¢ratt.Ire of 25°C. Consider conditions for which I3
storage “nit is “ha-‘Bed bl! passing a hot gas through the passages. With lb‘ 5”
‘empflamm and W3 °0nVection coefficient assumed to have constant

3 100 W/ml ' K throughout the channel. How 1003

to“

=17? V/m-Kmda=£;‘n,
epoxyeoating that must W

;

Intel Corp. et al. _ E_xhi' ‘ 4
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1 number of coefficient of 20 W/31)‘ - K, and (2) cooling in an enclosure with air at 25°C and a
bullet to ill] convection coefficient of 10 W/1112 - K.

Mir aedih (21) Assuming the panel is initially at 25°C, what is the minimum residence time
1 the W0‘ for the panel in the oven?

(In) What is the total elapsed time for the two—step curing operation if it is
in 3 335-fiffii completed when the panel has been cured and cooled to the safe-to-touch '
iciflll of “)3 temperature of 37°C?

"33’ mm“ 5.13 A plane wall of a furnace is fabricated from plain carbon steel (1: = 60 W/m - it,
p = 7850 kg/m3, c = 430 J/kg - K) and is of thickness L = 10 mm. To protect II _ 1

net, which is from the corrosive effects of the furnace combustion gases, one surface of the wall fis-
f the stotagt is coated with a thin ceramic film which. for a unit surface area, has a thermal Eu.’

resistance of Rgff = 0.01 ml - K/W. The opposite surface is well insulated from 1
the surroundings.

Ceramic filrri,—--_ ‘—Z- Carbonkstgel. E
R» : l I pl C‘ I— .

Fun;race 1 ''I’'‘‘
l"~=‘.=

Ti?
1.‘; ‘ p .; 1.

I‘.-‘. . im '3‘ "i
- II I“ 9

At furnace start-up the wall is at an t£:1TIP“m““'e °FdiEg= 300 K’ and . ', g
Combustion gases at T = 1300 K enter the furnace, P"°“ a come’: ‘"1 :i ‘ %’--:j_:‘.‘' _-j

r=£i5; Coefiicient of I: = 25 w°°/mi - K at the ceramic film. Assgfigzg theufirflm to :13; gr.‘ .7
Ir W negligible thermal capacitance, how long will it take for inner s ace 0 e _ * i_:_-_-_.,
withlhfl” Sleeltoachieveatempefattneof7;a=uD0K?wh3ti5‘h315mP¢‘3“1r°7:.o°f I .1
11! the exposed surface of the ceramic film at this time? *

long I1 5.14 In an industrial process In-1-in high dc cm-rents, water-jacketed copper rods. 20
mm is '1: mm in diameter are userzqto carryg the current. The water, which flows continu-

. 00513 between the jacket and the rod, maintains the rod temps-ra1vr=_at 75°C
Wilhafill I d“‘i“8fl0rma1operationat1000A_Theeiectricalraistanceoftherodlslrnown

ve11i03'1Y"’ *0 be 0.15 Q/m. Problems would arise if the coolant water ceased to be avaflablt
itainfi”_‘“ ' (9% because of a valve malfunction). In such a situation heat transfer the
on aw!‘-_ rod sjmrace would greatly. and the rod would eventually melt. estimate
SW93”; - u"’*1B1€requiredformeltingtooccur.
lpmnilgnl ' 5'l5’“°n3WireofdianteterD=1tnmissubmcfzeditlanflilbathoftemperamre
nbyuw _ Tw’“25°C.ThcwirehasanelectficalresistanceperIflfil1€fi%lh°fR:-‘"901
rksjfld. Q/m.IIacnrrentofI=-100AflowsthrO|1%h‘he“‘e"mdtheEbenwircg:

' °°¢flicient ' 5 = sogw ml . hat‘ the steady-state tunpflfamle 0 '

‘ Fromthetismeth‘,cu,m:1l¢§5a;§,,fi‘:d,h:wlongdoesittakeforthewiremreacha
=73 "'12,. ‘°}“P°rature which is within 1°C of the steady-stat V31“? 171‘ P‘£P°"i“ °‘ "‘°
eInfi3"‘.. “"“'~fl=p=8000 at’ =500I' -K.andk="-“W/m‘
‘(FT 1: iléconsidcr W ’c M an
I - the system of Problem 5.1 where IENPW‘

5pa°""'l5¢is0l1LermaldmingthetransientprO0BS3-
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(a) Obtain an expression for the temperature of the plate as a function of time

T(r) in terms of qfj. Tx,-h. L, and the plate properties p and c.

(b) Determine the thermal time constant and the steady-state temperature fora
12-mm—tl1ick plate of pure copper when Ta: = 27°C, It = 50 W/m3 - K, and
q,',’ = 5000 W/ml. Estimate the time required to reach steady—state conditimn

5.1? An electronic device, such as a power transistor mounted on a finned heat sink

can be modeled as a spatially isothermal object with internal heat generation and
an external convection resistance.

(3) Consider such a system of mass M, specific heat c. and surface area A,. which
is initially in equilibrium with the environment at T3,. Suddenly, the electronic
device is energized such that a constant heat generation E5 (W) occurs. Show
that the temperature response of the device is

9 r

3.-“('25)

_“’h°"'* 9 E T ‘ T030) and T(oo) is the steady—state temperature correspond‘
"13 3° F “ 00; 9, =_7: — T(oo); T, = initial temperature of device: R =
lhermal resistance 1/54,: and C = thermal capacitance MC.

(5) An electronic device, which generates 60 W of heat. is mounted on 1'1
aluminum heat sink weighing 0.3}. kg and reaches a temperature of 100°C ill
ambient air at 20°C under steady-state conditions. If the device is 3‘
20°C, what temperature will it reach 5 min after the power is switched 011?

5'18 Before beinfl injected into a furnace, heated by P3-55313 ii
&“'°'-‘Eh 3 C}'151|d1'iC31 tube whose surface ' = 1000°C. The 9°31
pellets are suspended in an airflow and are known to move with a speed 05 3 313/5‘
If ‘he P°“°‘5 133)’ be approximated as spheres of 1-mm diameter and it WY 1”
assumed that any are heamd by radiation transfer [tom the tube surf£|C¢- 1"”
‘("13 must the “lbc b6 to heat coal entering at 25°C to a temperature of 600°C’ 15
the use °f the l‘1mP°d Capacitance method justified?

5-19 A metal sphere of diameter D, which is at a uniform tempera!‘-W 7}- is
removed from a furnace and suspended from a fine wire in a large room with an‘
3‘ 3‘ “mf°“” ”3mP€l'3m!€ 7;, and the surrounding walls at a tempera“-"9 Tsar‘
(3) heat transfer by mdjafiom obtain an expression fog the til!‘

w °°°1 '-he SPIICIE to some temperature T. ,
convection, obtain an expression 50‘ ‘he W

to the temperature T.
m :00‘

terrniningthetimerequiredforthesphefi’
if both convection and radiation are of the 53"“ “M

Intel Corp. et al. Exh' " ' I
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heat to space. A novel heat rejection scheme that has been proposed for this

purpose is termed a Liquid Droplet Radiator (LDR). The heat is first transferred

to a high vacuum oil, which is then injected into outer space as a stream of small

droplets. The stream is allowed to traverse a distance L, over which it cools by

radiating energy to outer space at absolute zero temperature. The droplets are

then collected and routed back to the space station.

Consider conditions for which droplets of emissivity e = 0.95 and diamflef
D=0.5 mm are injected at a temperature of '1‘}=500 K and 3 VEIOCEW 05
V=0.1 In/s. Properties or:heei1a:ep=s35kg/m’,c=1900I/ks-K.and
k=0.145W/In-K.Assumingeachttroptoradiatetodeepq)aceatTW=UK.
determine the distance L required for the droplets to impact the collector at 3

finaieempemureer3-;=3ooK_w1aa1ismemnoumonhema1encrgvrejected
byeachdeopterz

591 lmsmeranic rods of circularcross secfion arehea: treated by passinsanelectfic

current throughtherods toprovide uniform volumetric heat generation atarate :3
[W/I113)-Therodsareofdiameterbandareplaoed-in313I8¢d'l3mb=T“'h°5°
Wa1IsammaintainedatthesametanperammTmasd:eendosedah.Convecfion
&omehesu:tadeonnerodsm:heaie1sehaeaeeaszedbythe°°=fici¢nt"-

(3)Obta:in an expression thatoould be used todetermine tbest;cadY‘5‘339
lemperatureoftherod.

M Negltcting radiation and prescribing all (I ‘ 0) ‘°d t‘mP"”‘m“ °f
72=T.,.,o2ataindre:ranss=e:rempcramreresp°mc°f*h*=r°"-

5'12AchipthatisoflengthL=5mmonasidea.ndthickn¢ss:=Imn:isenmsedin
‘f°‘f3mi€mbsuatqandiLsaposedsu:EaoeismmmfiVdyC°°1°dbY3dj‘l°°‘fi°
1“Iu1dEorwhichh=150W/n12-Ka11dT,_=20°C~

Intel Corp. et
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In the ofi’-mode the chip is in thermal equilibrium with the coolant (T, = Li.
When the chip is energized, however, its temperature increases until a new

steady-state is established. For purposes of analysis. the energized chip is charac-

terized by uniform volumetric heating with ti = 9 X 10“ W/ml. Assuming an

infinite contact resistance between the chip and substrate and negligible conduc-

tion resistance within the chip, determine the steady-state chip temperature T,.
Following activation of the chip, how long does it take to come within 1°C of this

temperature? The chip density and specific heat are p = 2000 kg/m3 and c -—- ‘it'll
1/kg - K. respectively.

5.23 Consider the conditions of Problem 5.22. In addition to treating heat transfer bl‘
convection directly from the chip to the coolant, a more realistic analysis wouid

account for indirect transfer from the chip to the substrate and then from the
substrate to the coolant. The total thermal resistance associated with this indirect

route includes contributions due to the chip-substrate interface (a contact resis-
tance). Illulfidimensional conduction in the substrate, and convection from Lil:
surface of the substrate to the coolant. If this total thermal resistance is R, = 393

K/“V What is the steady-state chip temperature 7}‘? Following activation of 159
°hlP« 110W long does it take to come within 1°C of this temperature?

One-Dimensional Conthetion: The Plane Wall

5.24 Consider the series solution. Equation 5.39. for the plane wall with convcctim
Cal°"‘]“-“C 3‘-“Plane (-1' = 0) and surface {x" = 1) temperatures 0* fol’ F9 " M
"ml 1» “Sins 31' = 0-1. 1. and 10. Consider only the first four eigenvalues. Basal
on these results discuss the validity of the approximate solutions. E‘l33fi°“5 W
and 5.41.

Intel Corp. et al. :""; ‘ A
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M (T = T L How long will it take for the second wall to reach 285°C at the position x = L1‘?
mm; 3 E3, Use as the basis for analysis. the dimensionless functional dependence for

lip is chm} transient temperature distribution as expressed in Equation 5.26.
Assuming an 5.26 A large aluminum (2024 alloy) plate of thickness 0.15 m, initially at a uniform
gible condue temperature of 300 K, is placed in a furnace having an ambient temperature of
nperature I}. 800 K for which the convection heat transfer coefficient is estimated to be 500 ,
n1“Colthis W/ml-K.

and " = 70" (a) Determine the time required for the plate uiidplane to reach 700 K.

(b) What is the surface temperature of the plate for this condition?

(c) Repeat the calculations if the material were stainless steel (type 304). $-
13“ from the 5.27 After along, hard week on the books, you and your friend are ready to relax. You
1 this indirect take a steak 50 mm thick irom the freezer. How long do you have to let the good d:
eontact resis- times roll before the steak has thawed? Assume that the steak is initially at — 6°C. 3-;

[an fmm 1]: that it thaws when the midplane temperature reaches 4°C, and that the room E’
Eis R, = 200 - temperature is 23°C with a convection heat transfer coefficient of 10 W/m3 - K.
vafion of the Treat the steak as a slab having the properties of liquid water at 0“C. Neglect the 1:;
~ heat of fusion associated with the melting phase change. C3);

5.28 A one-dimensional plane wall with a thickness of 0.1 m initially at a uniform 3
temperature of 250°C is suddenly immersed in an oil bath at 30°C. Assuming the

_ convection heat transfer coetficient for the wall in the bath is 500 W/ni’ - K.

‘ commm Calculate the surface temperature of the wall 9 min after immersion. The proper-
tiesofthewall are k = 50 W/i:n- K, p = 7835 kg/m’, and c= 465 I/kg - K.

  
 

 
 

  
  
  

  
 

 

sonwhenal .Bas=d _ .
" “Em W 5.29 Consider the thermal energy storage unit" of Problem 5.10. but with a masonry ‘ _ I
1'” materia1ofp=19ookg/m3_,=goo]/13.1-gand k=0_70W/ni-Kusedin :.-- W _;
_ . . Place of the aluminum. How long will it take to achieve 75% of the maximum ‘1 i' 5'-s,_ y
lnlnfifly M I . _ . . I l J‘. "
on bound” possible energy storage? What are the maximum and minimum temperatures o ,,. :.

159 masonry at this time?
530 The wall of a rocket nozzle is of thickness L = 25 mm and is made from a high l

alloysteeirorwhich p= soookg/m3,e=5ooJ/kg-K.andk=25W/m-K
During a test firing, the wall is initially at 2: = 25°C and its inner surface is
“P0-Std to hot combustion gases for which It = 500 W/3112 ‘ K and Ta: = 17500‘:-
The outer surface is well insulated.

 , =10!) s i‘
and tires“

i.‘.?.’vEf"' 1" if the wall must be maintained at least 100°C below its melting point of
H—'—--“"/ . Tm»:}500°C.Whatisthem.aximuma1lowahleflfingti.mer,?'I'hediameter0fthe

._ 5 Male is much larger than its thickness L.
f_'’/ E -31 a tempering process, glass plate, which is at a uniform temperature T}.

“°°°1=d by suddenly reclucingthe temperature-ofhothsiirfaces to T,.The1>!at=is

Intel Corp. et al.
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20 mm thick. and the glass has a thermal diflitsivity of 6 X 10 ‘7 m2/s.

{a} How long will it take for the midplane temperature to achieve 50% of its

maximum possible temperature reduction‘?

(b) If (1: — 1;) = 300°C, what is the maximum temperature gradient in the glass
at the above time?

5.32 Copper-coated. epoxy-filled fiberglass circuit boards are treated by healing a stack

of them under high pressure as shown in the sketch. The purpose of I11:

pressing-heating operation is to cure the epoxy which bonds the fiberglass sheets
imparting stiffness to the boards. The stack, referred to as a book. is comprised of

10 boardr and 11 pressing plates which prevent epoxy from flowing between the
boards and impart a smooth finish to the cured boards. In order to perfoml

simplified thermal analyses, it is reasonable to approximate the book as having an
effective thermal conductivity Ur) and an effective thermal capacitancfi (P91

Calculate the effective properties it each of the boards and plates has a thickness
of 2.36 mm and the following thermophysical properties: board (h) p,. =1W
k8/mi» 4-”,,_.i. =1500 I/kg ' K. k,, = 0.30 W/tn - K; plate (p) pp = 3000 ‘*3/59-
EM = 4301'/kg — K. kp =12 w/m - K.

Applied force

1 1 1 Platen withI 1 F—circulating fluid
Metal pressing

x HI" I H ' I plate

_5o mm //rm;/x//,,
I _ .

5‘

533 Circuit boards am nu“-‘d by heating a stack of them under high PW55‘-“° 5
illustrated in Problem 5.32 The the tack 3"
maintained at a uniform temperftlfitglgsyat the topand bottom of s of LI:

' ifitheplaten, inorder toretumthfsmnofl’
temperature?

Intel Corp. et al. ~ A
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One-Dimensional Conduction: The Long Cylinder

5.34 Cylindrical steel rods (AISI I010), 50 mm in diameter, are heat treated by

drawing them through an oven 5 In long in which air is maintained at 750°C. The

rods enter at 50°C and achieve a centerline temperature of 600°C before leaving.

For a. convection coefficient of 125 W/ml - K, estimate the speed at which the

rods must be drawn through the oven.

5.35 Estimate the time required to cook a hot dog in boiling water. Assume that the

hot dog is initially at 6°C, that the convection heat transfer coefficient is 100

W/n13 - K, and that the final temperature is 30°C at the centerline. Treat the hot
dog as along cylinder of 20-mm diameter having the properties: p = 880 kg/nr’.

c = 3350 J/kg - K, and k = 0.52 W/m - K.

5.36 A long rod of 60-mm diameter and thermophysical properties p = 8000 kg/tn‘,
c = 500 I/kg - K and k = 50 W/m - K is initially at a uniform temperature and
is heated in a forced convection furnace maintained at 750 K. The convection

coefficient is estimated to be 1000 W/I132 - K. At a certain time, the surface
temperature of the rod is measured to be 550 X. What is the corresponding center

temperature of the rod?

5.37 A long cylinder of 30-mm diameter, initially at a uniform tperature of 1000 K.
is suddenly quenched in a large, constant-temperature oil bath at 350 K The
cylinder properties are k=1.7 W/In-K, c=1600 I/kg-K. and p=40O
ks/I113, While the convection coefficient is 50 W/m1- K. Calculate the time

required for the surface of the cylinder to reach 500 K.

533 Along pyroceram rod of diameter 20 mm is clad with a very thin metallic tube for
mechanical protection The bonding between the rod and the tube has a thermal
Contact resistance of R; C = 0.12 m - K./W.

Thlfl metallic tube

\ Ceramic rod
\ Bonding interface

D=20mm

“metedisinidal1yataunifonntemperatureof900K.andissuddcu1Y°°°l¢dbY
afluid at Tn=3oo]; and },.—_1oow/ml-K, atwhat timewillthe rod
°Em3T5BBl'each6{X)K?

5'39 5* long rod 40 mm in diarneter, fabricated from sapphir=(a1"mi==“m °"“'°3 €11“
mi‘i3nYatauniformtunpemmreof800K.i3S"dd3n1Y¢‘P°5ed1°3°°"h“3
P1'0ces.swithafluidat300Khavi11gaheattransferooeifieientof1600W/tn’-K.
Aftcr35sofe:cposmewthemofingprocBs._th€f°d55WT3PP°dini“5“h“°“a”d
°‘PfiIiencesnohea1losses.Whmwiilhed1etenrpuamreofthemdaheralons
P¢I'Iaodoft.im¢?

5'40A1°“£barof70-rnmdianntcrandinitiallyaI90°Ci303015'dbYimm°‘5i"3i‘ina
w“°’b31hWhichisat40°Candpruvidesaumvucfioncoefidemof20W/m1'K-
T““h=rmophysicatpzope:uesorztiebuam_p=2600ks/m‘-C =1°3°3/‘‘8‘ “-
‘nd k= 3.50 W/in-IL
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(a] How long should the bar remain in the bath in order that, when it is removed

and allowed to equilibrate while isolated from any surroundings, it aehievesa
uniform temperature of 55°C?

(b) What is the surface temperature of the bar when it is removed from the bath’?

A long plastic rod of 30-mm diameter (k = 0.3 W/m - K and pie’, =1|}~lfl
kl/nr‘ - K) is uniformly heated in an oven as preparation for a pressing opera-
tion. For best results. the temperature in the rod should not be less than 2C0°C.

To what uniform temperature should the rod be heated in the oven if, for the

worst case, the rod sits on a conveyor for 3 min while exposed to convectioii
cooling with ambient air at 25°C and with a convection coefficient of 8 W/H1: - K7

A further condition for good results is a maximum-niinimum ‘temperature differ
ence of less than 10°C. Is this condition satisfied and, if not. what could you do to
satisfy it‘?

0ne~DimensionaI Conduction: The Sphere

5.42 In heat treating to harden steel ball bearings (c = 500 J/kg - K. a = isookg/nfv
k "‘ 50 W/III ‘ K). it is desirable to increase the surface temperature for a short
time without significantly warming the interior of the ball. This type of heating
can be accomplished by sudden immersion of the ball in a molten salt bath Wilt

Ta. = 1300 K and I‘! = 5000 W/m2 — K. Assume that any location within the ball
Whose temperature exceeds 1000 K will be hardened. Estimate are time realm’
to harden the outer millimeter of a ball of diameter 20 mm. if "5 mm“!
temperature is 300 K.

is sphere of 80-mm diameter (k = so w/m. K and ii. = 1.5 x10'*' ml/si is
“many 3‘ 3 |-111if0fI1'L elevated temperature and is quenched in 311 051 bad‘
maintained at 50°C. The convection coefficient for the cooling p1'0¢955 is mm
W/ID“ - K. At a certain time. the surface temperature of the sphere is m€35“‘°d "3
be 150°C, What is the corresponding center temperamre of the sphere?

544 A cold air Chamber is Pf0P05ed for quenching steel ball bearings of diam?!“
.9 = 0.2 m and initial temperature 1: = 400°C. Air in the chamber is maifilamd
3! -15°C by a refrigeration system, and the steel balls pass through H3‘ _ . .
on a conveyor belt. Optimum bearing production requires that 70% of the 111“-"J
‘berm energy content of die ball above — 15°C be removed. Radiation 25“
.may be “°3I°°‘°"-L and the convection heat transfer coefficient within the chub“
‘5 1°09 W/ml - K. Estimate the residence time of the balls within Ihs °"“””"'
and reconnnend a drive velocity of the conveyor. The following properties may‘ be
usedl'orthesteei:k=50W/m.1(_ n = 2 X 10-5 mz/5,31“; C = 450]/KS1‘

i“‘-‘"——- 5 in -———__.,+
Cold air
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(a) If quenching is to occur until the surface temperature of the balls reaches
100°C, how long must the balls be kept in the oil? What is the center

temperature at the conclusion of the cooling period?

(b) If 10,000 balls are to be quenched per hour, what is the rate at which energy
must be removed by the oil bath cooling system in order to maintain its

temperature at 40°C?

5.46 A spherical hailstone that is 5 mm in diameter is formed in a high altitude cloud
at — 30°C. If the stone begins to fall through warmer air at 5°C, how long will it
take before the outer surface begins to melt‘? What is the temperature of the

stone’s center at this point in time, and how much energy (J) has been transferred
to the stone? A convection heat transfer coefficient of 250 W/ml - K may be

assumed, and the properties of the hailstone may be taken to be those of ice.

5.47 A sphere 30 mm in diameter initially at 300 K is quenched in a large bath having
a constant temperature of 320 K with a convection heat transfer coefficient of 75
W/m3 - K. The thermophysical properties of the sphere material are: p = 400
kg/I113. c=1600.l/kg - K,and k = 1.7 W/m -K.

(=1) Show, in a qualitative manner on 71: coordinates, the temperatures at the
center and at the surface of the sphere as a function of time.

(b) Calculate the time required for the surface of the sphere to reach 415 IL

(9) Determine the heat flux (W/ml) at the outer surface of the sphere at the time

determined in part b.

(<1) Determine the energy (1) that has been lost by the sphere during the process
of cooling to the surface temperature of 415 K.

{5} At the time determined by part b, the sphere is quickly removed from the bath
and covered with perfect insulation, such that there is no heat loss from the
Surface of the sphere. What will be the temperature of the sphere after a 10113
Period of time has elapsed?

Diameter (mm)

Density (kg/m’)

SP?-Ciific heat (H/kg . K}

Thflmal Conductivity (W/in — K;

C0|1Vection coefficient cw/m3 - K) 5
._._____________________________________n__

(a)sh°Winaqualitativemanner,onTversust
‘hectnterandatthesurfaoeforeachsphueasa __
“‘P13inthere:mm:ingbywhichyondetetnm1ethemlafiveP°51“°“3°“h°
curves.

0J)Ca5°“1atethetirrIerequiredfortliesmfaoeofeac-l15Ph“°‘°’°3°h“15K'
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(c) Determine the energy that has been gained by each of the baths during the
process of the spheres cooling to 415 K.

5.49 The convection coefficient for how over a solid sphere may be determined by

submerging the sphere, which is initially at 25°C. into the flow, which is at 75°C.

and measuring its surface temperature at some time during the transient healing

process. The sphere has a diameter of 0.1 m, and its thermal conductivity and

thermal diffusivity are 15 W/m - K and 10'5 1113/5, respectively. If the convec-
tion coeflieient is 300 W/nf - K, at what time will a surface temperature of 60°C
be recorded‘?

Semi-infinite Media

5.50 Two large blocks of different materials. such as copper and concrete, have bfifll
sitting in a room (23°C) for a very long time. Which of the two blocks. if am”-
will feel colder to the touch? Assume the blocks to be semi-infinite solids and you!

hand to be at a temperature of 37°C.

5-5911?" P3‘-'€ment may achieve temperatures as high as 50°C on a hot sumlntf
d3Y- Assume that such a temperature exists throughout the paV€fl1€11L “he”
suddenly 3- rainstorm reduces the surface temperature to 20°C. Calculate the will
“"19"” ‘’f ‘"913? (5/I111) that will be transferred from the asphalt over a 30-min
Period in which the surface is maintained at 20°C.

5.52 A furnace wall is fabricated from fireclay bttctt [II = 7.1 x 10” m‘/5l— 3"‘ ‘F’
inner surface is maintained at 1100 K during furnace operation. The “’911_‘‘
d‘_5‘3"°d 3°°°1'di|1S I0 1113 Cfitetion that, for an initial temperature of 300 K» "5
§mdP°i1=N~'=mt>erature will not exceed 325 K after 4 h of furnace operation W‘
'5 the minimum allowable wall thickness?

5.53 A block or material of thickness 20 mm with known thctmophysical pf°P="“‘
tk=I5 W/m-K and tt=2.oxto—5 cave) is imbedded in the W10"
diam‘! ma‘ i5 initial]? 31 25°C and is suddenly subjected to a convection Pm“;
with gases at 325°C. A thermocouple (TC) is installed 2 mm below the surfacc °‘
lb: “ham”! ‘"311 f9‘ '11‘? Purpose of sensing the temperature-t'Lme hi5t°"3’ “cm”
mg smwup °f the hm S33 30'“) and thereby determining the transient be“ M”
A‘ an °l3‘P5‘?d time of 10 s, the thermocouple indicates a tezttpe!‘-it'll’? “f 167%."

Intel Corp. et al. 4
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Problems 30!

Calculate the corresponding surface convective heat flux assuming the block

behaves as a semi-infinite solid. Compare this result with that obtained from the
Heisler method of solution.

5.54 A tile—iron consists of a massive plate maintained at 150°C by an imbedded

electrical heater. The iron is placed in contact with a tile to soften the adhesive.

allowing the tile to be easily lifted from the subfiooring The adhesive will soften
sufiiciently if heated above 50°C for at least 2 min, but its temperature should not
exceed 120°C to avoid deterioration of the adhesive. Assume the tile and subfioor

to have an temperature of 25”C and to have equivalent thermophysical
properties of k = 0.15 W/m - K and pa? = 1.5 X 10‘ J/I113 - K.

4—rnm thickness

//7Subfloori ng/

(at) How long will it take a worker using the tile-iron to lift a tile‘? Will the
adhesive temperature exceed 120°C?

(13) If the tile-iron has a square surface area 254 mm to the side, how much energy
has been removed from it during the time it has taken to lift the tile?

5.55 The manufacturer of the heat flux gage of the type illustrated in Problem 1.8
Claims the time constant for a 63.2% response to be r = (4d2pcP)/172/C. Where P,
0,. and k are the therrnophysical properties of the gage material and d is its
thickness. Not knowing the origin of this relation, your task is to model the gage
Considering the two extreme cases illustrated below. In both cases. the gage.
initially at a uniform temperature 1}, is exposed to a sudden change in surface
tempfifafum, T(0, t) = T}. For case a the backside of the gage is insulated. and f0l'
Casebthegageisimbeddedinasemi—infinitesolidhavingthesarnethermophysi-
cal P1’0D€rties as those of the gage.

 

 
(3) (D)

“Wop relationships for predicting the time constant of the gear for the "'0
casesandcflmparethem tothemannfactuter'sreIa:ion.Wliatoonc]u.stoncan3!°“
d'awfT°mthisanalysismgardingmeuansimtresponSe0fE3%5[°Tdifi-°“m
‘PP’-ications?

PAiC_.f't-'
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following experimental arrangement uses the procedure to determine the conver-

tion coefficient for gas flow normal to a surface. Specifically, a long copper radii

encased in a super insulator of very low thermal conductivity. and a very thin
coating is applied to its exposed surface.

Gasflevl T,,Ii

Surface coating

Copper rod,
ii = 400Wlm-K. n = 1o"rn*rs

Super insulator

It the rod is initially at 25°C and gas flow for which i = 200 w/nil - K ant
T1 = 300°C is initiated, what is the melting point temperature of the coatifliill
mfrlling is observed to occur at t = 400 5?

An .insura.nce company has hired you as a consultant to improve their undersla-mi
ins 0‘ burn injuries. They are especially interested in injuries induced when:
Portion of a worker’s body comes into contact with machinery that is at elevalfil
temperatures in the range of 50 to 100°C. Their medical consultant inform 15”“

irreversible thermal injury (cell death) will occur in any living tissitfl is
mmmaifled at T 2 48°C for a duration or 2 10 5. They want informal“
concerning the extent of irreversible tissue damage (as inensinen by distance if?”
Iheskin surface) as a function of the machinery temperature and the lime ‘i“““5
which contact is made between the skin and the machinery. Can you help W’
Assume that living tissue has a normal temperature of 37°C, is isotI017iC~‘“’d "”
°°”5““" P1'°P°1Ti€3 equivalent to those of liquid water.

5.5:; A procedure for determining lhc thermal conductivity of a solid material i="°""
Embfidding a thermocouple in a thick slab of the solid and ineasuriflfl the “spouse

2 a pmscrflmd “M353 51! lfimperature at one surface. Consider an afimfimwr

_tl!Iermaldifl'usivityS.6xlO’°n13/sand
. “M13113! at-annifotm tureof 315°C.

‘“"“°“S=xposedio coolan -e mg“ - iiea
mefiidemislmwxnfk tat1_5Cforwlnehtheconvectiom

Intel Corp. et al. " - A
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Problems 303

:rmine the centre 5.61 A thick oak wall initially at 25°C, is suddenly exposed to combustion products at

long copperrndis 800°C. Determine the time of exposure required for the surface to reach the
I. and a very thin ignition temperature of 400°C, assuming the convection heat transfer coeflicient

between the wall and products to be 20 W/m3 - K.

5.62 It is well known that, although two materials are at the same temperature, one

may feel cooler to the touch than the other. Consider thick plates of copper and
glass, each at an initial temperature of 300 K. Assuming your finger to be at an
initial temperature of 310 K and to have thermophysieal properties of p = 1000
kg/tn}, c = 4130 J/kg - K and k = 0.525 W/m - K, determine whether the
copper or the glass will feel cooler to the touch.

5.63 Twostainless steel plates (p = 8O00ltg/m3, c = 500 J/ltg- K. k =15 W/m - K),
each 20 mm thick and insulated on one surface, are initially at 400 and 300 K

when they are pressed together at their uninsulated surfaces. What is the tempera-
ture of the insulated surface of the hot plate after 1 min has elapsed?

e of the ooatinsif Mlifidhnensional Conductio‘n

5.64 A long steel (plain carbon) billet of square cross section 0.3 m by 0.3 In. initially

   

H1151!’ “"d3"5“"‘l' at a uniform tem rature of 30°C, is laced in a soalcin oven having a tempera-
. M a 139- p s

5 111d1_1¢°d . ture of 750°C. If the convection heat transfer coefficient for the heating process is
‘hm “cl: 5 190 W/ml ~ K. how long must the billet remain in the oven before its center
tam “’f°m“hfl.' lfimperature reaches 600°C?

mug an-M 5-55 Fifeclay brick of dimensions 0.06 in X 0.09 in X 0.20 m is removed from a kiln at
:V”‘dim:m'm“m 1600Kandcooledinairat40°Cwithh=50W/m2-l(.Whatisthetempera-
ldbythe time dud”; ‘ lure at the center and at the corners of the brick after 50 min of cooling?
In “Wm: 5‘65A°Yli11dricalcopperpinloflmmlongandfiflmmindiameterisinitiallyata
-Emytrow-C‘ mum “11i1'0I'm temperature of 20°C. The end faces are suddenly subjected to 311 intflflf-E

heating rate that raises them to a temperature of 500°C. At the same time, the

lm _ . M ‘istlindrical surface is subjected to heating by gas flow with a temperature 500°C33*” and a heat transfer coeflicient 100 W/tn‘ - K
min; the WW
:1. an 3;-mngenfl Gas flow

ater. If. the ill“
tree a temptim E 5
la! is its W-‘ad End face
tnown to" '75 Z“ ‘“ ~—~—/ x

_' -th flaw 5 fr’
Tcmndwfiflflp pl 50 mm
l’1ur1:in2fW”::;:!'- *“"“l00mm—>-1

Home E p (a)?p:l°i‘“dfl¢lh£mmpemmmmthecmterpdntofthecyfinder8safm«mddm
. canonoftheheas. ’ _ _

" - (b){?°““d°finSthepuanmtasgovaniagfl1e!fiBP“3m‘Ed’§m-b““‘?“'¥‘“af"
_ nuitheatdifiusionproblemscananysimphfyingassmnpuonsbejusufiedrn

'_ 333132135 this particular problem? Explain briefly.
smR°°am“%1h3lyot1r ruothcroncesaidthatrneatshouldbecoolted.unu‘l every

p°rfi°“!7fi5aItainedatmrpemuHeof8lJ“C.h0W1°fi8‘Wmitt3k_°‘°'°“fiFa

 



Intel Corp. et al.    Exhibit 1014

304 Chapter 5 Transient Conduction

2.25-kg roast? Assume that the meat is initially at 6°C and that the Dttfll

temperature is 175°C with a convection heat transfer coeflicient of 15 W/nr’ -K
Treat the roast as a cylinder with properties of liquid water, having a diauiele’
equal to its length.

5.68 A long rod 20 mm in diameter is fabricated from alumina {polycrystalline
aluminum oxide) and is initially at a uniform temperature of 850 K The rods
suddenly exposed to fluid at 350 K with )1 = 500 W/of - K. Estimate the
centerline temperature of the rod after 30 s at an exposed end and at an axial
distance of 6 mm from the end.

Finite-Difference Solutions

5.69 The stability criterion for the explicit method requires that the coefficient of the
If ‘C1111 of the one-dimensional, finite-difierence equation be zero or pvsilill‘?
Consider the situation for which the temperatures at the two neighboring flfldfi
i7:.‘i—t» 7:5--1) are 100°C while the center node (Tnf) is at 50°C. Show that for
Values 05 F0 3‘ i. the finite—difference equation will predict a value of Ti" I11-‘Ii
violates the second iaw of thermodvnamics.

5.70 A thin rod of diameter D is initially in equilibrium with its surroundings. 313%‘
vacuum enclosure at temperature. 1;”. Suddenlv an electrical current I (M5
P35-fed ‘hm’-‘Sh the rod having an electrical resistivity pa and emissiviil 5- Om
P°”“_“=‘" thsrmophysical properties are identified in the sketch. Derive ll‘
transient. finite-difl'erence equation for node m. '

5.71 A tantalum rod of diameter 3 mm and length 170 mm is sl1PP°“°d by
electrodes within a large vacuum enclosure. Initially-the rod is in Eqnflibrium with
the electrodes and its surroundings. which are maintained at 300 K. Sudde‘1iY- an
electrical current, I = so A‘ is passed through the md_ Assume the eznissinti-’ at
the rod is 0.1 and the electrical resistivity is 95 X 10-3 9 _ m_ Us: Table A1 to
obiain .11]: other ‘he““°PhY5i‘33-1 Pmperties rcqltired in your solution. U5”
lin.ue—differenoe method with 3 space increment of 10 mm.

Intel Corp. et al. Exhi-"'-
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Problems 305

(3) Estimate the time required for the midlength of the rod to reach 1000 K.

(b) Determine the steady-state temperature distribution and estimate approxi-

mately how long it will take to reach this condition.

5.72 A one-dimensional slab of thickness 2L is initially at a uniform temperature T,.

Suddenly, electric current is passed through the slab causing a uniform volumetric

heating 5; (W/nf). At the same time, both outer surfaces (J: = i L} are subjected

to a convection process at T‘ with a heat transfer coefficient h.

!

!

T - l
—L !+L

 
L.s

Write the finite-difference equation expressing conservation of energy for node 0
located on the outer surface at x = —L. Rearrange your equation and identify

any important dimensionless ooetficients.

5.73 A wall 0.12 tr thick having a thermal diffusivity of 1.5 x 10*‘ mi/s is initially at
. a uniform temperature of 85°C. Suddenly one face is lowered to a temperature of
' 20°C, while the other face is perfectly insulated. Using a numerical method with

5930: and time increments of 30 mm and 300 s, respectively, determine the

“=H1t>eratttre distribution within the wall after 45 min have elapsed.

5-74 A large plastic casting with thermal diffusivity 6.0 x 10-’ ml/s is removed from
its mold at a uniform temperature of 150°C. The casting is then exposed to a
hihh-Velocity airstream such that the surface experiences a sudden change in

temperature to 20°C. Assuming the casting approximates a semi-infinite medium
and using a finite-difierence method with a space increment of 6 mm. Estimate 339
lempel-’3lI].l'E at a distance 18 mm Erom the surfme after 3 min have elapsed. Verify

Your result by comparison with the appropriate analytical solution-

5‘75 A “try thick plate with thermal diffusivity 5.5 x 10*‘ mi/s and ihtmal CW5“-
*iVity 20 W/m - K is initially at a uniform temperature of 325°C. Suddenly, the
Surface is exposed to a coolant at 15°C for which the convection heat transfer
fmflicient is 100 W/H12 - K. Using the finite~difl'erence method with 2 SP3“
increment of Ax = 15 mm and a time increment of 18 s, determine temperatures

atthesurface and atadepthof45mma.fter3 minhaveelapsoti

175 Consider the fuel element of Example 5.6. Initially. I119 Elfinm‘ l5 3‘ 3 “nifmm
ffimperature of 250°C‘ with no heat generation. suddenly. the element is inserted
“"0 the reactor core causing a uniform volumetric heat 35333350“ mt‘ °f ‘7 "' ms
W/mi. The surfaces are convectively cooled with 1;, = 250°C and I: = 1100
W/mz‘K-USingtheexp1it:itmethodwithaspaoeinae:nentof2mm.d=t¢1'mi‘1¢
‘he temperature distribution 1.5 s after the elemmt is inserted itrto the core.

‘I‘‘'.
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(.1) Estimate the midplane temperature 3 min after the generation has been
switched 011'.

(b) Plot on T—.: coordinates the temperature distribution obtained in part in

Show also the and steady-state temperature distributions for the wall

5.78 For the conditions described in Example 5.6, use the finite-difference method to

estimate the temperature at the midplane (x = O} 20 s after the power level has

been changed from 41 to 42.

5.79 A thin circular disk is subjected to induction heating from a coil, the effect of
which is [0 provide a uniform heat generation within a ring section as shown
Convection occurs at the upper surface, while the lower surface is well iasttlatni

Qj

<1—Tm.h

Intel Corp. et al. Exh"; " A
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Problems 307

5.81 One end of a stainless steel (AISI 316) rod of diameter 10 mm and length 0.16 in

is inserted into a fixture maintained at 200°C. The rod. covered with an insulating

sleeve. reaches a uniform temperature throughout its length When the sleeve is

removed. the rod is subjected to ambient air at 25°C such that the convection heat

transfer coeflicient is 30 W/m1 — K. Using a numerical technique, estimate the

time required for the midlength of the rod to reach 100°C.

5.82 The cross section of an oven wall is composed of 30-mm-thick insulation sand-

wiched between two thin (1.5-mm-thick) stainless steel sheets. Under steady-state

conditions, the oven is operating with an inside air temperature of T9“ = 150°C

and an ambient air temperature of Two = 20°C with h, = 100 W/ml - K and
kg = 10 W/m2 - K. When the oven heater level is changed and the fan speed

changed to substantially increase air circulation within the oven. the inside Surface

of the oven experiences a sudden temperature change to 100°C. The insulation
has a thermal conductivity of 0.03 W/ni - K and a thermal diffusivity of 7.5 x

10‘? ml/s. In your finite—difierence solution, use a space increment of 6 mm.
Assume that the effect of the stainless steel sheets is negligible and that the

outside convection heat transfer coefficient ha remains unchanged. Estimate the

time required for the oven wall to approximate steady-state conditions after
the inner wall temperature is changed to 100°C.

—Circu|ating fan

Heater assembly *—:Ft0

  

  

 
533 TWO Vent long (in the direction normal to the page) bars 11flVi118 339 Pmsaibed

temperature distributions are to be soldered togefht’-I‘ (553 95“ P3351 5‘
time: = 0, the m = 3 face ofthe copper(pure)barcomacts the 111 = 4faceofthe
SW31 (A131 1010) bar. The solder and flux act as an interfacial layer of neghgble
thmhiess and effective contact resistance Rf‘. = 2 X 10-5 m2 ' K/w-

 

 _______.
”/"' 1 2 3 4 5 6 
1

700 700 700 1000 900 300

1 700 soot 700 moo 900 300

3 700 700 700 1000 900 890
 _F_

la) Derive the explicit, fi_nite-difference equation in terms of Pa and B1‘, =-
Ax/1‘Rii. E01’ '1'.'._2 and determine the ootrcspondiflfl Smbimy uimfim‘

. :3:

5.2!

if
Fe‘
:13:

C}:
-eff

E
9:: _f

,3? we '
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interface with

[Vsoider and flux
Conner. Steel.

pure '7 A$SI [010
2.3 3.3 4.3 5,3 6,3

‘C
:.m

t!t1=.1y=20mm

03} Using F0 = 0.01. determine 7;‘; one time step after contact is made. W113”
Ar‘? Is the stability criterion satisfied?

5.84 Referring to Example 5.7, Comment 4. consider a sudden exposure of the SW13“
to large surroundings at an elevated temperature (:z;,,,) and to convection (Tr H"

(3) D¢1'i''’¢ 1543 Explicit. finite-difference equation for the surface node in termsflf
Fe. 3:’. and 3:,

(b) Obtain the stability Critclion rot the surface node. Does this critefion ““j""
with time? [s the criterion more restrictive than that for an interior nod‘?-

tc) A thick slab of material (k = 1.5 w/in - K, B = 7 X10” mi/S» 6*”
initially at a uniform temperature of 27°C, is suddenly expose‘? “’ my
5“"°“ndj1‘B5 31 1000 K Neglecting convection and l15i11B 3 513395 mama!
of 10 mm, determine temperatures at the surface and 30 mm from 11*‘ 5””
afteraneiapsedtimeofl min.
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Problems 309

95

  

Laser source. q; M tM‘!

Plastic film—\ i L L i <]—<i—— T... :-

Metal strip _\ ,~——_iwi—=—i <1 "ti
L. = “,2 __g T

__D I
Tm v‘! —-i>

--D’

The Sjtrip is initially at 25°C and the laser provides a uniform flux of 85.000
W/nr over a time interval of Alan = 10 s. The system dimensions and thermo-
PhY5iC&1 properties remain the same, but the convection coefficient to the ambient
air at 25°C is now 100 W/ml - LL

(3) Using an implicit finite-diflerence method with Ax = 4 mm and Ar = 1 s,

obtain temperature histories for 0 5 I 5 30 s at the center and film edge,
T_(0. r) and T(w1/2, r), respectively, to determine if the adhesive is satisfacto-
111)’ Ctlred above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

{bl Validate your program code by comparing it against the steady—state results of
Problem 3.79. What type of analytical solution would you seek in order to test
‘hf PTODBI transient behavior of your code‘?

5-33 Circuit boards are treated by heating a stack of them under high pressure as
illustrated in Problem 5.32 and described further in Problem 5.33. A finite-
differenee method of solution is sought with two additional considerations. First.
the book is to be treated as having distributed. rather than iumpeti ehsrseteristies.
P)‘ Using a grid spacing of Ax = 2.36 mm with nodes at the center of the
'ndi"i‘h'3-I Circuit board or plate. Second. l’3ih¢1' 111311 bfinging ‘he Plate” 1°
19uvC in one sudden change, the heating schedule 7_;(t) shown below is to be
"Rd in order to excessive thermal stresses induced by riipidllf chansins
thermal Sfadients in the vicinity of the platens.

Intel Co . et a‘-
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ta) Using a time increment of it = 60 s and the implicit method, find the

temperature history of the midplane of the book and determine vrhetlirr

curing will occur (l.70°C for 5 min).

lb} Following the reduction of the platen temperatures to 15°C (t = 50 IJ1iI1}.lltWi

long will it take for the midplane of the book to reach 37°C. a salt

temperature at which the operator can begin unloading the press‘?

(c) Validate your program code by using the heating schedule of a sudden change

of platen temperature from 15 to 190°C and compare results with those from
an appropriate Heisler solution (see Problem 5.33).

5.89 Consider the thermal conduction module and operating conditions of Problem
4.71. To evaluate the transient response of the cold plate, which has a thermal
dilfusivity of ti = 75 X 10* ml/s, assume that, when the module is activated at

I = 0. the initial temperature of the cold plate is I = 15°C and a uniform ht!!!
""343 0f 67.7.’ = 105 W/m2 is applied at its base. Using the implicit finite—difl'eret1t€
method and a time increment of Ar = 0.1 5.. Compute the designated E94531
temperatures as a function of time. From the temperatures computed at 3
P31’UV-GU13! lime. evaluate the ratio of the rate of heat transfer by convection ‘O13?
water to the heat input at the base. Terminate the calculations when this T3“-°

reaches 0.99. Print the temperature field at 5-5 intervals and at the time for Whit"-h
the calculations are terminated.

Intel Corp. et al.


