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PREFACE

With the passage of approximately nine years since publication of the first
edition, this text has been transformed from the status of a newcomer to a
mature representative of heat transfer pedagogy. Despite this maturation,
however, we like to think that, while remaining true to certain basic tenets, our
treatment of the subject is constantly evolving.

Preparation of the first edition was strongly motivated by the belief that,
above all, a first course in heat transfer should do two things. First, it should
instill within the student a genuine appreciation for the physical origins of the
subject. It should then establish the relationship of these origins to the
behavior of thermal systems. In so doing, it should develop methodologies
which facilitate application of the subject to a broad range of practical
problems, and it should cultivate the facility to perform the kind of engineer-
ing analysis which, if not exact, still provides useful information concerning
the design and/or performance of a particular system or process. Require-
ments of such an analysis include the ability to discern relevant transport
processes and simplifying assumptions, identify important dependent and
independent variables, develop appropriate expressions from first principles,
and introduce requisite material from the heat transfer knowledge base. In the
first edition, achievement of this objective was fostered by couching many of
the examples and end-of-chapter problems in terms of actual engineering
systems.

The second edition was also driven by the fosregomg objectives, as well as
by input derived from a questionnaire sent to over 100 colleagues who used, or
were otherwise familiar with, the first edition. A major consequence of this
input was publication of two versions of the book, Fundamentals of Heat and
Mass Transfer and Introduction to Heat Transfer. As in the first edition, the
Fundamenials version included mass transfer, providing an integrated treat-
ment of heat, mass and momentum transfer by convection and separate
treatments of heat and mass transfer by diffusion. The Introduction version of
the book was intended for users who embraced the treatment of heat transfer
but did not wish to cover mass transfer effects. In both versions, significant
improvements were made in the treatments of numerical methods and heat
transfer with phase change.

In this latest edition, changes have been motivated by the desire to
expand the scope of applications and to enhance the exposition of physical
principles. Consideration of a broader range of technically important prob-
lem= iz facilitated by increased coverage of existing material on thermal

resistance, fin performance, convective heat transfer enhancement, and
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Preface

compact heat exchangers, as well as by the addition of new material on
submerged jets (Chapter 7) and free convection in open, parallel plate chan-
nels (Chapter 9). Submerged jets are widely used for industrial cooling and
drying operations, while free convection in parallel plate channels is pertinent
to passive cooling and heating systems. Expanded discussions of physical
principles are concentrated in the chapters on single-phase convection
(Chapters 7 to 9) and relate, for example, to forced convection in tube banks
and to free convection on plates and in cavities. Other improvements relate to
the methodology of performing a first law analysis, a more generalized lumped
capacitance analysis, transient conduction in semi-infinite media, and finite-
difference solutions.

In this edition, the old Chapter 14, which dealt with multimode heat
transfer problems, has been deleted and many of the problems have been
transferred to earlier chapters. This change was motivated by recognition of
the importance of multimode effects and the desirability of impacting student
consciousness with this importance at the earliest possible time. Hence,
problems involving more than just a superficial consideration of multimode
effects begin in Chapter 7 and increase in number through Chapter 13.

The last, but certainly not the least important, improvement in this
edition is the inclusion of nearly 300 new problems. In the spirit of our past
efforts, we have attempted to address contemporary issues in many of the
problems. Hence, as well as relating to engineering applications such as energy
conversion and conservation, space heating and cooling, and thermal protec-
tion, the problems deal with recent interests in electronic cooling, manufactur-
ing, and material processing. Many of the problems are drawn from our
accumulated research and consulting experiences; the solutions, which fre-
quently are not obvious, require thoughtful implementation of the fo0ls of heat
transfer. It is our hope that in addition to reinforcing the student’s understand-
ing of principles and applications, the problems serve a motivational role by
relating the subject to real engineering needs.

Over the past nine years, we have been fortunate to have received
constructive suggestions from many colleagues throughout the United States
and Canada. It is with pleasure that we express our gratitude for this input.

FRANK P. INCROPERA
West Lafayette, Indiana Davip P. DEWrITT
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226 Chapter 5 Transient Conduction

In our treatment of conduction we have gradually considered more compl:
cated conditions. We began with the simple case of one-dimensional, steady-
state conduction with no internal generation, and we subsequently considered
complications due to multidimensional and generation effects. However, W
have not yet considered situations for which conditions change with time.

We now recognize that many heat transfer problems are time dependent
Such unsteady, or transient, problems typically arise when the bounday
conditions of a system are changed. For example, if the surface temperaturc i
a system is altered, the temperature at each point in the system will also begn
to change. The changes will continue to occur until a sready-state temperalur
distribution is reached. Consider a hot metal billet that is removed from
furnace and exposed to a cool airstream. Energy is transferred by convectios
apd radiation from its surface to the surroundings. Energy transfer by conduc
tion also occurs from the interior of the metal to the surface, and ¢
temperature at each point in the billet decreases until a steady-state conditi
is reached. Such time-dependent effects occur in many industrial heating ¢
cooling processes.

To determine the time dependence of the temperature distribution with
a solid during a transient process, we could begin by solving the approprisf
form of the heat equation, for example, Equation 2.13. Some cases for whi
solutions have been obtained are discussed in Sections 5.4 to 5.8. Howei®
such solut}ons are often difficult to obtain, and where possible 2 simpkr
approach is preferred. One such approach may be used under conditions for

whjCh. emperature gradients within the solid are small. It is termed the
capacitance method.

5.1 THE LUMPED CAPACITANCE METHOD

A sim; . 3 . ‘
ple, yet common, transient conduction problem is one In which a sold

experiences a sudden change in its th i ider a hot
forging that is initi 8 ermal environment. Const

. R Y at a uniform tem " and is quencit® -
lmmerSan it in a liq perature 7, an q
quenching is said to

uid of lower temperature T < T, (Figure 5'”1“3
begin at time ¢ = 0, the temperature of the solid

Fi )
IBll'ES.l thnEOfahot fO !

Intel Corp. et al. Exhibit

dec
cor
lun
sol
ass

tio

Co1

Eni
the
| |

or

In

Wl




more compl-
sional, steady-
tly considered
- However, we
with time.

me dependent
the boundary
temperature of
will also begin
fe temperatur
moved from 2
by convectiot
fer by condu-
face, and (h¢
state condition
al heating and

ibution withit
he appropriak
ases for which
5.8. However
ible a simpks
conditions o
ned the humpet

51 The Lumped Capacitance Method 227

decrease for time ¢ > 0, until it eventually reaches T,,. This reduction is due to
convection heat transfer at the solid-liquid interface. The essence of the
lumped capacitance method is the assumption that the temperature of the
solid is spatially uniform at any instant during the transient process. This
assumption implies that temperature gradients within the solid are negligible.

From Fourier’s law, heat conduction in the absence of a temperature
gradient implies the existence of infinite thermal conductivity. Such a condi-
tion is clearly impossible. However, although the condition is never satisfied
exactly, it is closely approximated if the resistance to conduction within the
solid is small compared with the resistance to heat transfer between the solid
and its surroundings. For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation. Instead,
the transient temperature response is determined by formulating an overall
energy balance on the solid. This balance must relate the rate of heat loss at
the surface to the rate of change of the internal energy. Applying Equation
1.11a to the control volume of Figure 5.1, this requirement takes the form

Pyt ”i solid (5.1)

dar

dr (5.2)
dt

Introducing the temperature difference

A
or

—hA (T -T,) = pVc

L 8=T-T, (53)
and recognizing that (df /dr) = (dT/dt), it follows that

pVe do

hA, &t
Separating variables and integrating from the initial condition, for which ¢ =0
and T(0) = T, we then obtain

Ve .4dé :

MI 8 ? . _j;) dr
where
)_E"al“aling the integrals it follows that

s

P e
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Figure 5.2 Transient temperature response of
lumped capacitance solids corresponding to
different thermal time constants %
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Equation 5.5 may be used to determine the time required for the solid to ’ﬁ
some temperature T, or, conversely, Equation 5.6 may be used to compui¢
temperature reached by the solid at some time 1. .4 a0l
The foregoing results indicate that the difference between the ”M -
fluid temperatures must decay exponentially to zero as ¢ approaches mﬁmﬂz
This behavior is shown in Figure 5.2. From Equation 5.6 it is also b >
the quantity (pVc/hA,) may be interpreted as a thermal time constant.
time constant may be expressed as

e o2t et WA e L o e 'ii : i
MR.iStheresistancetooonvecnon heat transfer and C, is the 0

thermal capacitance of the solid. Any j i will cause alnguﬂ
Yy increase in R, or C, o
Ep?nd more slowly to changes in its thermal environment and will
“lm_ereqmredtoreachthmma]equilibrium (6 =0). voliage
e 115 useful 10 note that the foregoing behavior is analogous go.thﬁ ip 1
- }'_thathécuu_rs When a capacitor is discharged through a resis i by
ectrical Circuit. Accordin OCess
equivalent therma] e e

id is charey —uF: Which is shown in Figure 5.3. With the switch €0
enugymemhd“-zha’wmhﬂempmmu 6, When the switch is opened
thm'sswmmSOﬁdisdisctargedthmughthethelmﬂfwﬂ;
RC e]mpe’a““, © of the solid decays with time. This anzdﬁig)fs'-‘gs""“s o




52 Validity of the Lumped Capacitance Method ~ 229

t=0
o
t<0
=k
=4 C= chﬁE R=7
=0
-
Figure 53 Equivalent thermal circuit for a
lumped capacitance solid.

To determine the total energy transfer Q occurring up to some time ¢, we
simply write

0= j:th=hA,j:0dt

Substituting for # from Equation 5.6 and integrating, we obtain

mqmﬁWQis,ofrelatedtothechangBintheinwmalenergyofthe
solid, and from Equation 1.11b

For quenchmg Q expcn 'ences adecmasein.
Equations 5.5, 5.6, and 5.8a also apply to situations where the solid is heated
(8<0), in which case Q is negative and the internal energy of the solid
Increases.

52 VALIDITY OF THE LUMPED CAPACITANCE METHOD

mwtﬁ.ﬂ'w"' F’?m‘hﬁfmsoingmﬂtsitismywseewhythmisamwfﬂmfm
I o using lhe lumped capacitance method. It is certainly the smlp!est and most

feasonable accuracy. :
Todﬂdopasaﬁtableaitaionwmidﬁsmdy-statecm@uchontbrmgh
hp}f“WﬂMmA(F@neSQMMghwmmmgﬂudymte
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230 Chapter 5 Transient Conduction

Figure 54 Effect of Biot number o0
steady-state temperature distribution in
plane wall with surface convection.

inter{ll_ediate value, T, ,, for which T, < T, , < T, ,. Hence under steady-sia
conditions the surface energy balance, Equation 1.12, reduces to

kA
T Ta=T2) =ha(T,, - T,)

where k is the thermal conductivity of the solid. Rearranging, we then obtain

. 2 'M#P:-?‘; o R
The quantity (L k) appearing in

. Equatioﬁ -5.9 lS a dimensionless pare™
eter. It is termed the Big number, and it plays a fundamental ;fﬂcm

. F ob olve surface Vi . Amdmg
EquanOn 59 anﬂ convection eﬂ'ecls z

measure illustrated in Figure 5.4, the Biot number s
diﬂ'moedbett]:e:nmf ature drop in the solid relative to the t s
correspondi the surface and the fluid. Note especially the Cﬂﬂ‘h g
ding to Bi « 1. The results suggest that, for these oondmfms-l‘“
time during » transia uniform temperature distribution across a solid & ﬁ
interpretation of the Bio, brocess. This result may also be
59. If Bi « 1 the B.mt number as a ratio of thermal resistances, P
resistance to co;: resistance to conduction within the solid is much less M d
a uniform tem S dcross the fiuid boundary layer. Hence the assumpi®®
We have Wmm distribution is reasonable. : :
transient mﬂdﬂcﬁonwob the Biot number because of its Si ol
initally at 2 ypifoun, o0 ™" Consider the plane wall of Figure 55, ¥/

is i :Ofm temperature 7T, : ion cooling
u-“wmaﬂuidofr i and experiences convection e
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7
' T 0 =T, 1,0 = Ti
ATk :
A T~ \
A\ \
i T, _-/’J""\—— T, N T T
| | . L = L <L L
-L L
% Bi <1 Bi=1 Bi>>1
T=T(t) T=Tix t) T=T(xt)

Figure 5.5 Transient temperature distribution for different Biot numbers in a plane
wall symmetrically cooled by convection.

number, and three conditions are shown in Figure 5.5. For Bi < 1 the
temperature gradient in the solid is small and T(x,t) = T(¢). Virtually all
the temperature difference is between the solid and the fluid, and the solid
temperature remains nearly uniform as it decreases 10 T,. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, ). Note that for Bi > 1, the tempera-
ture difference across the solid is now much larger than that between the
surface and the fluid.

We conclude this section by emphasizing the importance of the lumped
capacitance method. Its inherent simplicity renders it the preferred method for
solving transient conduction problems. Hence, when confronted with such a
problem, the very first thing that one should do is calculate the Biot number. 1f
the following condition is satisfied

(5.10)

the error associated with using the lumped capacitance method is small. For
convenience, it is customary to define the characteristic length of Equation 5.10
as the ratio of the solid’s volume to surface area, L. = V/A,. Such a definition
facilitates calculation of L, for solids of complicated shape and reduces to the
half-thickness L for a plane wall of thickness 2L (Figure 5.5), to r,/2 for a
long cylinder, and to r,/3 for a sphere. However, if one wishes to implement
the criterion in a conservative fashion, L, should be associated with the length
Scale corresponding to the maximum spatial temperature difference. Accord-
ingly, for a symmetrically heated (or cooled) plane wall of thickness 2L, L,
Would remain equal to the half-thickness L. However, for a long cylinder or
Sphere, L_would equal the actual radius r,, rather than r,/2 ot r,/3.
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232 Chapter 5 Transient Conduction

Finally, we note that, with L, = V/A_, the exponent of Equation 5.6 ms
be expressed as

hA t ht hL,

oVe pel, Kk

hL, at

Kk 1
pc L? U

or
e AN 511)
p_Vc- = Bi - Fo (5.
where
Wit il ey 3
- Fo=—
ran o

is termed the Fourier number. It is a dimensionless time, which, with the B

numt}cr, characterizes transient conduction problems. Substituting Equatior
5.11 into 5.6, we obtain

P T,
Tt = exp(—Bi - Fo) (5.9
EXAMPLE 5.1

:S;egmocouple junction, which may be approximated as a sphere, is © ¥
o the Dorature measurement in a gas stream. The convection coeffice®

:t:lhe ;}lﬁj;nc‘i?; Surface and the gas is known to be & = 400 w/m’ 4&“‘}
cion thermophysical ; i Koe=
J/kg-K, and p = physical properties are k = 20 W/m

= 8500 kg/n’. Determine the junction diameter needed ot

$titiil:cecl in UPle to have a time constant of 1 s, If the junction is at 25°C .
to reach lgt;ogs Stream that is at 200°C, how long will it take for the junc
SOLUTION

e E
Known: Th i :
e l‘fmp*:ram"trmol:,hysmal Properties of thermocouple junction used 0 med

ure Of a gas Stl‘eam_
Find:

L. Junction diameter
2

; needed for 3 ¢ |
Time required to reqc time constant of 1 s. 1

h 199°C in gas stream at 200°C.

Schematic:

T, = 200°C
h = 400 W/m" -K

o

Sm—
Gas stream

Assumptions:

Temperat
Radiation

Losses by

i ol 3 R o

Constant
Analysis:

1. Because f
the soluti
capacitan
approach
determin
fact that

Accordi
Lc =r 0/
excellen

Intel Corp. et al. M it 1014



quation 5.6 may

(s.1)

5.2 Validity of the Lumped Capacitance Method 233

Schematic:
~Leads
L
T, = 200°C
h= 400W/m" -K Thermocuuple‘ E=20W/m-K
—= /" junction ¢=400J/kg-K
—> T, = 25°C | p=8500kg/'m4
=5
Gas stream ‘r(— D a\
Assumptions:
1. Temperature of junction is uniform at any instant.
2. Radiation exchange with the surroundings is negligible.
3. Losses by conduction through the leads are negligible.
4. Constant properties.
Analysis:
1. Because the junction diameter is unknown, it is not possible to begin

the solution by determining whether the criterion for using the lumped
capacitance method, Equation 5.10, is satisfied. However, a reasonable
approach is to use the method to find the diameter and to then

determine whether the criterion is satisfied. From Equatio

n 5.7 and the

fact that 4, = #D? and ¥V = 7D*/6 for a sphere, it follows that

‘=

1 pwD?
X
Fehil

Rearranging and substituting numerical values,

D=

6hr, 6 X 400W/m’-K X1s i
- =706 x 10" m 4
pc 8500 kg/m’® x 400 J/kg - K

With L = r,/3 it then follows from Equation 5.10 that

Bi

h : 53 x10°°
= (r,/3) = 400 W/m? - K X 3.53 m L2135 x 1074
k 3x20W/m-K

Accordingly, Equation 5.10 is satisfied (for L. =7, 25 well as for
L.=r,/3) and the lumped capacitance
excellent approximation.

method may be used to an

v
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234 Chapter 5 Transient Conduction

2. From Equation 5.5 the time required for the junction to reach T= |
199°C is
p(#D/6)c T -T. pDc T -T

o i o

a(zD?) "T-T, 6 “T-T,

b 8500 kg/m’ X 7.06 X 10™* m x 400 J/kg- K = 25-200
6 X 400 W/m? - K 199 — 200
t=32s =57 4

!

Comments: Heat. losses due to radiation exchange between the junction
and the surroundings and conduction through the leads would necessitate

using a smaller junction diameter to achieve the desired time response.

53 GENERAL LUMPED CAPACITANCE ANALYSIS

Although transient conduction in a solid is commonly initiated by convectiod

heat transfer to or from an adjoining fluid, other processes may

transient thermal conditions within the solid. For example, a solid may ¢

Separated from large surroundin res ol
the solid and surro gs by a gas or vacuum. If the tempera

thermal ener :im dings differ, radiation exchange could cause the int
ture chan esiy‘ula:jl fepce the temperature, of the solid to change.‘TemPﬂ“'
of the sur% e d also be induced by applying a heat flux at a portion, of &
Surface he‘:;fnan /or by initiating thermal energy generation within the
electrical heat:; could, for example, be applied by attaching a film or sk
passing an ¢ to the surface, while thermal energy could be generated by
Fig ejectnca_j current through the solid. :
may beg:imzﬁuiﬁ depicts a situation for which thermal conditions within 2 S0
taneously influenced by convection, radiation, an applied

Surroundings &5
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5.3 General Lumped Capacitance Analysis 235

heat flux, and internal energy generation. It is presumed that, initially (¢ = 0),
the temperature of the solid (T;) differs from that of the fluid, T, and the
surroundings, 7., and that both surface and volumetric heating (g, and ¢)
are initiated. The imposed heat flux g;' and the convection—radiation heat
transfer occur at mutually exclusive portions of the surface, A ., and A, ),
respectively, and convection—radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant ¢, it follows from
Equation 1.11a that

: dT
qA, »+ E, — (qlay + Graa) Asie,n = PYe - (5.14)

or, from Equations 1.3a and 1.7,
: dT
/A, ,+ E,— [n(T - T,) + eo(T* - N4 pVe— (5.15)

Unfortunately, Equation 5.15 is a nonlinear, first-order, nonhomoge-
neous, ordinary differential equation which cannot be integrated to obtain an
exact solution.! However, exact solutions may be obtained for simplified
versions of the equation. For example, if there is no imposed heat flux or
generation and convection is either nonexistent (a vacuum) or negligible
relative to radiation, Equation 5.15 reduces to

dT
Ve — _ed, a1 -~ T (519

Separating variables and integrating from the initial condition to any time 7, it

follows that

pVe Jo n TS - T

Evaluating both integrals and rearranging, the time required to reach the
temperature T becomes

g pVe y B A 3 /A
4£As.rors\3;r Tsur 7 4 TS‘-“' 2 T:

T,
+2[tan‘1(-1£—r) o tan"(}i:)]} (5.18)

This expression cannot be used to evaluate T explicitly in terms of ¢, T;, and
T, nor does it readily reduce to the limiting result for T, = 0 (radiation to

: I.A'“ approximate, finite-difference solution may be obtained by discretizing the time
derivative (Section 5.9) and marching the solution out in time.

Intel Corp. et al.
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236 Chapter 5 Transient Conduction

deep space). Returning to Equation 5.17, it is readily shown that, for T, =0 54
Ve [ 1 1 !
:=—-——(———) (5.9 I

An exact solution to Equation 5.15 may also be obtained if radiation my ]
be neglected and & is independent of time. Introducing a reduced temperatur
0=T- T, where d6/dt = dT/d1, Equation 5.15 reduces to a linear, fist
order, nonhomogeneous differential equation of the form

de

—+ab-b=0 (520

where a = (hd, /pVc) and b = (g4, , + Eg)/ch]. Although Equation
3.20 may be solved by summing its homogeneous and particular solutions, &
alternative approach is to eliminate the nonhomogeneity by introducing (b

transformation
b
it S (5.2
a

Recognizing that de’/dt = de /4t : ol 4 -
(5.20) to yield /dt, Equation 521 may be subs

dg’

— ’ - { 1
7 Tat=0 (52

=
—

Separating variables and integrating from 0 to ¢ (8; to @), it follows that
6!
e exp (—ar) (52

Or substituting for g and @

I.-T, - (b/a) =exp(-at) (54

Hence,
=T
'—-——-——S_.__ o b/a -l
e A p(-ar) + T-7T [1 - exp(—ar)] 0%

As it i
t=0 Ay s _E.ql:‘m’“ >-25 reduces 1o (5.6) when b = 0 and yields T=£u;;
also be obtaineg 'quuanon 325 reduces to (T — T_) = (b/a), which

Y performing surface &

> AN energy balance on the control
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L for T, =1,
(519

radiation may

| temperature
a linear, firs:-

(5

1gh Equatiot
- solutions, &
troducing

(521

ystituted into

(52

Jows that

(5.3

(524
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54 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-
propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the
medium are no longer negligible.

In their most general form, transient conduction problems are described
by the heat equation, Equation 2.13 for rectangular coordinates or Equations
220 and 2.23, respectively, for cylindrical and spherical coordinates. The
solution to these partial differential equations provides the variation of tem-
perature with both time and the spatial coordinates. However, in many
problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal
generation and the assumption of constant thermal conductivity, Equation

2.13 then reduces to

T 14T
(5.26)

dx? a dt

To solve Equation 5.26 for the temperature distribution T(x, ), it 18
necessary to specify an initial condition and two boundary conditions. For the
typical transient conduction problem of Figure 5.5, the initial condition is

T(x,0) = T, (5.27)
and the boundary conditions are

aT

= i (5.28)

X x=0
and
aT '
—k—| =h[T(L,1) - T.] it
X x=L

Equation 5.27 presumes a uniform temperature distribution at time ¢ = 0;

Equation 5.28 reflects the symmetry requirement for the midplane of the wall;
and Equation 5.29 describes the surface condition experienced for time 7 > 0.
From Equations 5.26 to 5.29, it is evident that, in addition to depending on x
and 1, temperatures in the wall also depend on a number of physical parame-
ters. In particular

T=7(x,t,T,T,, L, k,a,h) (5.30)

The foregoing problem may be solved analytically or nun?cr‘ically. These
methods will be considered in subsequent sections, but first it 1s important to
note the advantages that may be obtained by nondimensionalizing the govern-

e

AMPAIGN

- -

BRARY U, OF 1. URBANA-CH

Intel Corp. et al. E; :_ it g




238 Chapter 5 Transient Conduction
ing equations. This may be done by arranging the relevant variables int 5
suitable groups. Consider the dependent variable 7. If the temperature differ s;
ence # =T — T_ is divided by the maximum possible temperature difference 3
§,= T, — T, a dimensionless form of the dependent variable may be defined
s '
8 T-T
t=_= — 531
T o
55
Accordingly, 6* must lie in the range 0 < 6* < 1. A dimensionless spatil
coordinate may be defined as X
t
e (5:3) ;
= —
L Lo t
: _ i I
where L is the half-thickness of the plane wall, and a dimensionless time may t
be defined as 1
: - | 5
"= i =Fo (5.33)
Where 1* is equivalent to the dimensionless Fourier number. Equation 5.12. 531
Substituting the definitions of Equations 5.31 to 5.33 into Equations 320
10 5.29, the heat equation becomes '
a%* g+ : ]
3x‘z = -;?_1:._0 (5.3“] |
and the initial and boundary conditions become
0*(x*,0) =1 (5.3)
a6*
o, =" (64
and
a0*
axv| = —Bib*(1, %) (537
x*=1

where the Biot number is B;

= hL/k. In dimensi the function?
Qép(_fndence may now be exp /k. In dimensionless form

e e

R tha ; 4 ! =l O

for the Iy o f\mcup nal dependence, without the x* variation, Was obtaite!
c@pacitance method, as shown in Equation 5.13.

nd 5.38, the considerable advantag® ass0c
problem in dimensionless form becomes 2PP

: uations 5,
ated with casting the 30 and
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5.5 The Plane Wall with Convection 239

Equation 5.38 implies that for a prescribed geometry, the transient temperature
distribution is a universal function of x*, Fo, and Bi. That is, the dimensionless
solution assumes a prescribed form that does not depend on the particular
value of T, T, L, k, a, or h. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables

are used extensively in subsequent sections.

55 THE PLANE WALL WITH CONVECTION

Exact, analytical solutions to transient conduction problems have been ob-
tained for many simplified geometries and boundary conditions and are well
documented in the literature [1-4]. Several mathematical techniques, including
the method of separation of variables (Section 42), may be used for this
purpose, and typically the solution for the dimensionless temperature distribu-
tion, Equation 5.38, is in the form of an infinite series. However, except for
very small values of the Fourier number, this series may be approximated by a
single term and the results may be represented in a convenient graphical form.

551 Exact Solution

Consider the plane wall of thickness 2L (Figure 5.7a). If the thickness is small
relative to the width and height of the wall, it is reasonable to assume that
conduction occurs exclusively in the x direction. If the wall is imitially at a
uniform temperature, T(x,0) = T, and is suddenly immersed in a fluid of
T, # T, the resulting temperatures may be obtained by solving Equation 5.34
subject to the conditions of Equations 3.35 to 5.37. Since the convection
conditions for the surfaces at x* = +1 are the same, the temperature distribu-
tion at any instant must be symmetrical about the midplane (x* = 0). An

T(x,0) =T;
| it

s

{34 ##4

~Tno) =T,

|
|
|
|

(a) (&)

Figure 57 One-dimensional systems with an initial uniform
:mpe'at“m subjected to sudden convection conditions. (a) Plane
all. (b) Infinite cylinder or sphere.
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240 Chapter 5 Transient Conduction s
: . 5 ient
exact solution to this problem has been obtained and is of the form [2] R R e
to the series so
[ <]
6* = ):l C,exp (—§7Fo) cos (§,x*) (5.3 PLANE WALL
P
. ; §
where the coefficient C, is Bi* 1rald) G
4sin §, 0.01 0.0998 1.0017
G = X +sn(X) (5.3%) 002 01410 10033
003 01732 1.0049
and the discFete values (eigenvalues) of {, are positive roots of the transces- 0.04 0.1987 1.0066
dental equation 0.05 0.2217 1.0082
¢ tan{, = Bi (5.8 006 02425  1.0098
007 02615 10114
The first four roots of this equation are given in Appendix B.3. 008 02791 1.0130
009 0295 1.0145
552 Approximate Soluti 010 03111 1.0160
015 03779 10237
It can be shown (Problem 5.24) that for values of Fo > 0.2, the infinite s 830 048 10011
soluugn, qullation 5.39a, can be approximated by the first term of the series 0.25 0.4801 1.0382
Invoking this approximation, the dimensionless form of the temperai® 93 058 104
distribution becomes 04 0.5932 1.0580
P W 0.5 0.6533 1.0701
vexp(—¢; Fo) cos ({,x*) (5 06 0.7051 1.0814
or 0.7 0.7506 1.0919
038 0.7910 1.1016
* = g* *
5 cos (§,x*) (5400 09 08274 11107
Where 67 represents the midplane (x* = 0) temperature ot e R e
Pl 20 10769 1.1795
> = Crexp(-{7Fo) (541 30 11925 12102
; ey 40 12646  1.2287
mI;IOMI Hﬂphcauop of Equation 5.40b is that rhe time dE’PE’ﬂde"ce‘ af e 5.0 1.3138 1.2402
rempera:ﬁe @ any location within the wall is the same as that of the ™ 60 1 1247
and 5 39(: i;is’.;l::ui—(fﬂimegts C!. a'nd ;1 are Cva]uated from Equations 70 ].3766 11532
=Gk €ly, and are given i f Biot numbe? ' 5 g
given in Table 5.1 for a range 0 80 13978 1.75%
553 Total Energy 90 14149 1259
N :
ransfer 10.0 1.4289 1.262(
In many situations ;s : 200 1.4961 1.269¢
Up to any n;:;ni “i:' '::-‘»fl-ll to know the total energy that has lt’,ftfﬂ:""ﬂll 300 st ol
requi :  transient process. The conservation O o
ﬁmminiﬁalem Ec.p{auon 1.11b, may be a;?plied for the time interval bounded 40.0 1.5325 1272
condition ( = 0) and fime ¢ > 0 300 15400 1272
100.0
e % 15552 1273
in = Epy = AE, (5.4?] ——
Bi - hL/k for the plane wall a
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Table 5.1 Coefficients used in the one-term approximation
to the series solutions for transient one-dimensional conduction

INFINITE
PLANE WALL CYLINDER SPHERE

§

.i'] .('1

(rad) C, (rad) C (rad) C

0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.1732 1.0049 0.2439 1.0075 0.2989 1.0090
0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.2217 1.0082 0.3142 1.0124 0.3852 1.0149
0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.2615 1.0114 0.3708 1.0173 0.4550 1.0209
0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.3111 1.0160 0.4417 1.0246 0.5423 1.0298
0.3779 1.0237 0.5376 1.0365 0.6608 1.0445
0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.4801 1.0382 0.6856 1.0598 0.8448 1.0737
0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.5932 1.0580 0.8516 1.0932 1.0528 1.1164
0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.7051 1.0814 1.0185 1.1346 1.2644 1.1713
0.7506 1.0919 1.0873 2B 1.3525 1.1978
0.7910 1.1016 1.1490 1.1725 1.4320 1.2236
(.8274 1107 2048 1.1902 1.5044 1.2488
0.8603 1191 2558 1.2071 1.5708 1.2732
1.0769 1795 5995 1.3384 2.0288 1.4793
1.1925 2102 1.7887 1.4191 2.2889 1.6227
1.2646 2287 1.9081 1.4698 2.4556 1.7201
1.3138 2402 1.9898 1.5029 2.5704 1.7870
1.3496 2 2.0490 5255 2.6537 1.8338
1.3766 253 2.0937 £ 2.7165 1.8674
3978 28 2.1286 2.7654 1.8921
1.4149 2598 2.1566 5 2.8044 1.9106
10.0 1.4289 .262( 2.1795 ; 2.8363 1.9249
0.0 1.4961 2 2.2881 g 2.985 1.9781
0.0 1.5202 27 2.3261 5973 3.0372 1.9898
400 1.5325 2723 2.3455 5993 3.0632 1.9942
50.0 1.5400 272 2.3572 3.0788 1.9962
100.0 1.5552 273 2.3809 1.6015 3.1102 1.9990

“Bi=hL/k for the plane wall and hr,/k for the infinite cylinder and sphere. See Figure 5.7,
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Equating the energy transferred from the wall Q to E,, and setting E, ={
and AE, = E(1) — E(0), it follows that

0= -[E(r) - E(0)] (5.4%)

or
= —fpc[T(r, t)—T)]adv (5430)

where the integration is performed over the volume of the wall. It is conv
nient to nondimensionalize this result by introducing the quantity

Q, = pe¥(T, - T,) (4

which may be interpreted as the initial internal energy of the wall relative ©
the fluid temperature. It is also the maximum amount of energy transfer whic
could occur if the process were continued to time 7 = co. Hence, assumin
constant properties, the ratio of the total energy transferred from the wall 0%
the time interval ¢ to the maximum possible transfer is

Q —\T(r,t) - T] av
a;':f [ Tr_)T :]_F=1Vf(l _6.)dV (545)

Employing the approximate form of the temperature distribution for the plane

wall, Equation 5.40b, the integration prescrib ion 5.45 can ¥
A ed b uation .
performed to obtain i p G

—Q— S Eligl_at (546) N \

2 L ° 8-
here 6 can be determined from Equation 5.41, using Table 5.1 for values S
the coefficients C, and k. i

554  Graphical Repre .
e

Graphi : :
aphical representations of the approximate relations for the transiém B

% energy transfer were first presented by H
and Griber P
decades: ; bl The_gmphs have' been widely used for 1

‘-
8
:
g
B
=
;
h
=)
=]
%
1.0
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in conjunction with Figure 5.8. For example, if one wishes to determiné the
surface temperature (x* = +1) at some time 7, Figure 5.8 would first e used
to determine 7, at 1. Figure 5.9 would then be used to determine the sqﬂw
temperature from knowledge of 7). The procedure would be inverted if %

PfOblqm Wwere one of determining the time required for the surface to reach 2
prescribed temperature.
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5.6 Radial Systems with Convection 245

Absence of the Fourier number in Figure 5.9 implies that the time
dependence of any temperature off the midplane corresponds to the time
dependence of the midplane temperature. This result is, of course, a conse-
quence of the approximation that led to Equation 5.40b and is valid for all but
the earliest stages of the transient process ( Fo = 0.2).

Graphical results for the energy transferred from a plane wall over the
time interval ¢ are presented in Figure 5.10. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Q, is expressed exclu-

sively in terms of Fo and Bi.
Because the mathematical problem is precisely the same, the foregoing

results may also be applied to a plane wall of thickness L, which is insulated
on one side (x* = 0) and experiences convective transport on the other side
(x* = +1). This equivalence is a consequence of the fact that, regardless of
whether a symmetrical or an adiabatic requirement is prescribed at x* = 0,
the boundary condition is of the form 38*/dx* = 0.

56 RADIAL SYSTEMS WITH CONVECTION

For an infinite cylinder or sphere of radius r, (Figure 5.7b), which is at an
initial uniform temperature and experiences a change in convective conditions,
results similar to those of Section 5.5 may be developed. That is, an exact
series solution may be obtained for the time dependence of the radial tempera-
ture distribution; a one-term approximation may be used for most conditions;
and the approximation may be conveniently represented in graphical form.
The infinite cylinder is an idealization that permits the assumption of one-
d_imﬁﬂsional conduction in the radial direction. It is a reasonable approxima-
tion for cylinders having L/r, > 10.

361 Exact Solutions

Exact solutions to the transient, one-dimensional form of the heat equ_ation
yng been developed for the infinite cylinder and for the sphere. Fora uniform
initial temperature and convective boundary conditions, the solutions [2] are

as follows.
Infinite Cylinder In dimensionless form, the temperature is

0* = ¥ G, exp(—§3Fo) J($,r*)

n=1

(5.47a)
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o where 6*
6r =
Cm £ - "1“")2 (5.470) C
g‘n JD (fn) + ‘]]. (fn) Values of
and the discrete values of {, are positive roots of the transcendental equation Table 5.1
Sphere [
g—”j‘(g") - (5.47c) phe
JD({n)
6* =
The quantities J; and J; are Bessel functions of the first kind and their values
are tabulated in Appendix B.4. Roots of the transcendental equation (547
are tabulated by Schneider [2], &
Sphere Similarly, for the sphere 6* =
0
9% = gl g exp(-{,f'Fo){r* sin ({,7*) (5.480) where 9*
where g
4|si — . Val f
R AR ETS) B
2, —sin(2¢) g
and the discrete values of §, are positive roots of the transcendental equation 563 Total 1
i L 4%)
1 - cotf = Bi (5. As in Se
t
Roots of the transcendental equation are tabulated by Schneider [2]. ,:: a=l ineé
SSOb, an
562 Approximate Solutions
Infinite C

For the infinite
the forego'mg
for th

cylinder and sphere, Heisler [5] has shown that for Fo 20~

series solutions can be approximated by a single term. Heﬂ“'# Q
€ case of the plane wall, the o 4 g] at any ==

i fure
locati g 8 time dependence of the temperati=’ 0,
cenlel?;oi::_mm the radial system is the same as that of the centerhng ©
. Spher.
I 2 i e
nfinite Cylinder The one-term approximation to Equation 5.47 1S
< Q
= Coop (~t7F0) s (5,r%) (5:4%! =5
or )
. Values o
= a:jo(flf') (5-4%5 3.50¢, us

Intel Corp. et al.
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where 8* represents the centerline temperature and is of the form

8* = C,exp (—$7Fo) (5.49¢)

Values of the coefficients C; and §, have been determined and are listed in
Table 5.1 for a range of Biot numbers.

Sphere From Equation 5.48a, the one-term approximation is

6* = C, exp(—{lea)r - sin (§,r*) (5.50a)
lr
or
6* = 6* sin (§,r*) (5.50b)
§lr’
where 6* represents the center temperature and is of the form
(5.50c)

6* = C, exp ( —{fFa)

Values of the coefficients C, and §; have been determined and are listed in
Table 5.1 for a range of Biot numbers.

563 Total Energy Transfer

As in Section 5.5.3, an energy balance may be performed to determine the

total energy transfer from the infinite cylinder or sphere over the time interval
Az = 1. Substituting from the approximate solutions, Equations 5.49b and

3.50b, and introducing Q, from Equation 5.4, the results are as follows.

Infinite Cylinder
Q 20*
— g 8 551
Qo 1 gl ‘ll({l) ( )
Sphere
0 36*
ol A —#[Sin(ﬁ) T glcos(ﬁ)] (5.52)
1

Q,
ed from Equation 5.49¢ or

;’alues of the center temperature 8 are determin :
S0c, using the coefficients of Table 5.1 for the appropriate system.
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Figure 5.12 Temperature distribution in an infinite cylinder

of radius r, [5]. Used with permission.

564 Graphical Representation

Graphical representations similar to those for the plane wall (Figures 5.8 to
5.10) have also been generated by Heisler [5] and Grober et al. [6] for an
infinite cylinder and a sphere. Results for the infinite cylinder are presented in
Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 tg
5.16. Note that, with respect to the use of these figures, the Biot number is

ARY U. OF 1. URBANA-CHAM
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Figure 5.11  Centerline temperature as a function of time for an infinite cylinder of radius r, [5]. Used with permission.
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Figure 5.15 Temperature distribution in a sphere of radius
r, [5]. Used with permission.

5.6 Radial Systems with Convection

defined in terms of r,. In contrast recall that, for the lumped capacitance method,
the characteristic length in the Biot number is customarily defined as r,/2 for the
Vlinder and r,/3 for the sphere.

In closing it should be noted that the Heisler charts may also be used to
determine the transient response of a plane wall, an infinite cylinder, or a
Sphere subjected to a sudden change in surface temperature. For such a
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Figure 5,14 Center temperature as a function of time in a sphere of radius r, [5]. Used with permission.

SRARY U.C

o

18|

Gl

; .

AN i
/1 W,
/] S,

i A L

} L

/ L

Ll

- { i M

10 10°

'Zigtn 5.16 Internal energy change as a function of time for 2 sphere of radius 7,
- Adapted with permission.

Intel Corp




252 Chapter 5 Transient Conduction

condition it is only necessary to replace T, by the prescribed §urface temperz-
ture 7, and to set Bi~! equal to zero. In so doing the convection coefficient is
tacitly assumed to be infinite, in which case T, = T..

EXAMPLE 5.2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wal
thickness of 40 mm. The pipe is heavily insulated on the outside, and before
the initiation of flow, the walls of the pipe are at a uniform temperature of
—20°C. With the initiation of flow, hot oil at 60°C is pumped through the
pipe creating a convective surface condition corresponding to h =50
W/m’ - K at the inner surface of the pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after th
initiation of flow?

At t = 8 min, what is the temperature of the exterior pipe surface covered
by the insulation?

What is the heat flux ¢g” (W/m?) to the pipe from the ol at ¢ = § mi’

How much energy per meter of pipe length has been transferred from ¢
oil to the pipe at 1 = 8 min?

SOLUTION

e ———

Known: Wall subjected to sudden change in convective surface condition
Find:

Biot and Fourier numbers after 8 min.

Temperature of exterior pipe surface after 8 min.
Heat flux to the wall at 8 min.

1
2
3.
4. Energy transferred 1o Pipe per unit length after 8 min.
Schematic:

Tix.0)=
Ti==20C

. TIL, t)
Insulation —__.,; h = 500 W/m?- K

Steet, AISI 1010 2] T‘T\“]\“
& o

mm >

Intel Corp. et al.

Assumptions.
1. Pipe wa
less thar
2. Constan
3. Outer st
Properties:
300 K]: p
a=18.8 X1
Analysis:
1. At 1=
Equatio
Bi
Fo
2. With B
ate. Ho
thickne:
experier
obtaine:
Bt =
Hence :
Corresp1
TO
TO
3. Heattr
time ¢
Hence .
q.
The su;



face tempers-
1 coefficient i

nd has a wal
e, and before
-mperature of
i through the
- to h=30

y

min after the
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at ¢ = § min!
rred from the

- condition.
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Assumptions:
1. Pipe wall can be approximated as plane wall, since thickness is much
less than diameter.

2. Constant properties.
3. Outer surface of pipe is adiabatic.

Properties: Table A.l, steel type AISI 1010 [T =(—-20 + 60)°C/2 =
300 KJ: p=7823 kg/m’, c =434 J/kg-K, k=639 W/m-K,
a=18.8 Xx10™° m*/s.

Analysis:

1. At tr=8 min, the Biot and Fourier numbers are computed from
Equations 5.10 and 5.12, respectively, with L, = L. Hence

AL 500 W/m? - K X 0.04m
ko 639W/m-K

= 0.313 q

Bi =

ar 18.8 X 1075 m?/s X 8 min X 60 s/min

Fo=— =
L (0.04 m)’

= 5.64 d

2. With Bi = 0.313, use of the lumped capacitance method is inappropri-
ate. However, since transient conditions in the insulated pipe wall of
thickness L correspond to those in a plane wall of thickness 2L
experiencing the same surface condition, the desired results may be
obtained from the charts for the plane wall. Using Figure 5.8, with
Bi~! = 32, it follows that

(7] -

3l M =022

0, T-T,
Hence after 8 min, the temperature of the exterior pipe surface, which
Corresponds to the midplane temperature of a plane wall, is

T,=T(0,480s) = T_ + 0.22(T, - T)
T, = 60°C + 0.22(—20 — 60)°C = 42°C <

3. Heat transfer to the inner surface at x = L is by convection, and at any
time ¢ the heat flux may be obtained from Newton's law of cooling.

q/(L,480s) = g} = h[T(L,480s) — T}

The surface temperature T( L, 480 s) may be obtained from Figure 5.9.

%
-
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For the prescribed conditions ture «
X |
—=1 and Bi''=32 ; |
L |
it follows that | 1%
6(L,480s) T(L,480s)— T, e E With
4,(480s)  T,(480s)-T, |
Hence This
T(L,480s) = T, + 0.86[T,(480 s) — T,] TR
. T(0,8
T(L,480 5) = 60°C + 0.86[42 — 60]°C =~ 45°C o
hi
The heat flux at 7 = 8 min is then e -c
3. Usin
g7 =500 W/m’ - K (45 — 60)°C = —7500 W /m’ q g tion
4. The energy transfer to the pipewall over the 8-min interval may be
obtained from Figure 5.10 and Equation 5.44. With
Bi=0313  Bi*Fo =055
it follows that
i
0 ‘
a— = (.78 whic
g | 4 The
Hence min
| Equ
Q= 0.78pc¥(T, - ) |
. 1
or with a volume per unit pipe length of ¥V’ = #DL, |
Q= 0.78pcmDL(7] -T.) ‘
Q' =0.78 x 7823 kg/m® x 434 J /kg - K f |
XFleXU-mm(—M—ﬁo)"C 2 ; whi
’ : *'"‘—-—____
B 4 |
Q 27 % 10" J/m |
Comments: .
| EXAmp
1. The minus s : the ]|
directionu:f ;lg;u assoc'alf.’d with ¢” and Q' simply implicslthﬂlam | A new
e cat transfer is from the oil to the pipe (into the pipe ¥ | Materia]
N e 1
wall ter: > 02, the one-term approximation can be used t0 calculs® 'I fumfa.:e,
Peratures and the total energy transfer. The midplane temperd cooling

Intel Corp. et al. Exhili
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ture can be determined from Equation 5.41

TD_TQ: 2
S C,exp (—{7Fo)

where, with Bi = 0.313, C; = 1.047 and {; = 0.531 rad from Table 5.1.
With Fo = 5.64,
* = 1.047 exp [ —(0.531 rad)® X 5.64] = 0.214
This result is in good agreement with the value of 0.22 obtained from
Figure 5.8. Hence,
T(0,8 min) = T, + 6*(T, — T,)) = 60°C + 0.214(—20 — 60)°C = 42.5°C

which is within 2% of the value determined from the Heisler chart.
3. Using the one-term approximation for the surface temperature, Equa-
tion 5.40b with x* = 1 has the form
f* = 67 cos (£;)
T(L,t) =T, + (T,- T,)8} cos({,)
T(L,8 min) = 60°C + (—20 — 60)°C x 0.214 X cos (0.531 rad)

T(L,8 min) = 45.2°C
which is within 1% of the value determined from the Heisler chart.

4. The total energy transferred during the transient process can be deter-
mined from the result associated with the one-term approximation,

Equation 5.46.

—Q— B — E.i...l}._(_;.’_lla*

Q, o 8

Qo sin (0.531 rad)

—_ =1 = ——— % 0.214 = 080
o, 0.531 rad

which is within 3% of the value determined from the Grober chart.

EXAMPLE 53

e neW process for treatment of a special material is to be evaluated. The
Ifna‘e“alv a sphere of radius r, = 5 mm, is initially in equilibrium at 400°C in a
Urnace, It is suddenly removed from the furnace and subjected to a two-step

%oling progess.
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256 Chapter 5 Transient Conduction

Step 1 Cooling in air at 20°C for a period of time 7, until the center
temperature reaches a critical value, 7,,(0, r,) = 335°C. For this situation,
the convective heat transfer coefficient is £, = 10 W/m? - K.

After the sphere has reached this critical temperature, the second step is
initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convective hea
transfer coefficient of 4, = 6000 W /m? - K.

The thermophysical properties of the material are p = 3000 kg/m’, k=1
W/m - K, ¢=1000 J/kg - K, and @ = 6.66 X 10~ m?/s.

1. Calculate the time 1, required for step 1 of the cooling process to b

completed.

of the sphere to cool from 335°C (the condition at the completion of st?
1) to 50°C.

SOLUTION

Known: Temperature requirements for cooling a sphere.

Find:

Time ¢, required to accomplish desired cooling in air.

2. Time 1, required to complete cooling in water bath.

Schematic:

T.=20C e
ha = 10 W/mR.K - =20" :
ol he = 6000 W/m?-K
Air —p —D
; Water —>
Ty

Sphere, ro=5mm
/ P = 3000 kg/m?
LT e E i S8 N
s t)=335°C | a=666x10-5 T T;=335°C
m2/5 w0, ty) =50 °C
Sep1 T A=HWim.K

étep 2

Intel Corp. et al.

Calculate the time !, required during step 2 of the process for the centét j

Assumptions:

1. One-dimer
2. Constant |

Analysis:

1. To determ
Biot numt

Bi =

According
temperatu
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2. To detern
used for
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Assumptions:

1. One-dimensional conduction in r.

2. Constant properties.

Analysis:

1. To determine whether the lumped capacitance method can be used, the
Biot number is calculated. From Equation 5.10, with L_ = r,/3,

h,r, 10W/m?-K X 0.005m
Bi = - —833x10°*
3k 3x20W/m-K

Accordingly, the lumped capacitance method may be used, and the
temperature is nearly uniform throughout the sphere. From Equation

5.5 it follows that

pte 0 pre . Hirels
In

where V = (4/3)nr} and A, = 47r]. Hence

o2 3000kg/m3xO.OOSmxlOOOJ/kg-Km400—20 Ly
" 3x10W/m?-K 335 — 20

<

2 To determine whether the lumped capacitance method may also be
used for the second step of the cooling process, the Biot number 1s

again calculated. In this case

h.r 6000 W/m?- K X 0.005
e o foss = 050
3% 3Ix 20W/m-K

and the lumped capacitance method is not appropriate. However, to an
excellent approximation, the temperature of the sphere is uniform at
t=1, and the Heisler charts may be used for the calculations from

I=1,t0¢=1,+t,. Using Figure 5.14 with

b 2 .
e ol i = 0.67
h,r, 6000 W/m’-K x 0.005m

, T,-T, S-2
e = 0.095
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258 Chapter 5 Transient Conduction

1 = 1.800 rad) and substituting appropriate tempe™

it follows that Fo = 0.80, and
r? i (0.005 m)* o §
= — = (), ~ JUS
SR T T

Comments:

1. If the temperature distribution in the sphere at the conclusion of step] |
were not uniform, the Heisler chart could not be used for the calculs- j
tions of step 2.

2. The surface temperature of the sphere at the conclusion of step 2 may
be obtained from Figure 5.15. With

r
Bi"'=067 and — =1
lrD
) 1(r,) - T,
iy T, 1. = 0.52
Hence
T(r,) = 20°C + 0.52(50 — 20)°C = 36°C
The variation of the center and surface temperature with time is then 2
follows.
Ti=400 °C
1 T(O, t) = Tir,, t)
400
Iy 335°C
< 300
= 7O, 1)
£ 200
10~ T4, 5 50°C
oL ="FT Vowx
0 i+ Y

3. For the Step 2 transient Process in water, the one-term approxima{ion 15
\propriate for determining the time t,, at which the center temper®
ture reaches 50°C, that is, 70, t,) = 50°C. Rearranging Equation

Fo = _ém[g] < _‘l‘ll:l __1_ % o, ) —&
: G T G I.-T,
Using Table 51 4 : : : =150
Tees gy he coefficients for Bi =1/

Intel Corp. etal. Exhibj

37 TH

Anc
fem
it is
char
cony
idea
sien
resp
app
duri
are

by |
inte




nclusion of step 1
d for the calcula-

on of step 2 may

th time is then a

approximation i
center temper®
anging Equati®

‘Too

= 1/0.67=1%
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tures, it follows that
1 1 (50 — 20)°C

i e 7 1 X =0.82
= T 1800rad)’ | 1.376 ~ (335 — 20)°C

Substituting for r, and a, it follows that ¢, = 3.1 s, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

57 THE SEMI-INFINITE SOLID

Another simple geometry for which analytical solutions may be obtained is the
semi-infinite solid. Since such a solid extends to infinity in all but one direction,
it is characterized by a single identifiable surface (Figure 5.17). If a sudden
change of conditions is imposed at this surface, transient, one-dimensional
conduction will occur within the solid. The semi-infinite solid provides a useful
idealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient
response of a finite solid, such as a thick slab. For this second situation the
approximation would be reasonable for the early portion of the transient,
during which temperatures in the slab interior (well removed from the surface)
are uninfluenced by the change in surface conditions.
The heat equation for transient conduction in a semi-infinite solid is given
by Equation 5.26. The initial condition is prescribed by Equation 5.27, and the

interior boundary condition is of the form

T(co,1) = T, (5.53)
Tcase (l) Case (2) Case (3)
(x,0) = T; T(x, 0)=T; Tix,0)=T;
T0,0=T, —k 3T/ax),_o =0 —k 3T/ x),_o= hiT— T(0, )]

-

=z

— o
T, T(x, t) .

three
and

Fi e :

“':fure 517 Transient temperature distributions in a semi-infinite solid for
ace conditions: constant surface temperature, constant surface heat flux,
ace convection.
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260 Chapter 5 Transient Conduction

Closed-form solutions have been obtained for three important surface condi
tions, instantaneously applied at ¢ = 0 [1,2]. These conditions are shown it
Figure 5.17. They include application of a constant surface temperature
T, # T,, application of a constant surface heat flux q.', and exposure of the
surface to a fluid characterized by T, # 7, and the convection coefficient i
The solutions are summarized as follows.

Case 1 Constant Surface Temperature

T(0,1) =T, (5.54)
TLx; t)-T X
~ =erf| —— 5.55)
N (2@) (
aT - |
()= —k—| = 8L -7 (5.6
dx =0 Vrat

Case 2 GonstmtSm‘faneHeatﬂux

4 =gq; o
2¢;r"(m/-.|:r)1’(2 [ —x2 " X
T(x,1) - T = =% _ % ( ) (5.5
k CXP( dat ) k" 2
Case 3 Surface Convection
aT ¥
R A Y
k " g R[T, - T(0, 1)] (53
x.t) - T, %
T (]
o= T, 2t
~ exp(iu_ ¥ e x hnfat (5.0
TR | il b

© quantity erf appearing in Equation 5.55 is the Gaussian error funci®

which is tabulated in Sect; dri
. tion B. I er
Junction, erfe w, is defined a5 sl

erffcw =1 - orf
Temperature histories for the three cases are also shown in Figure 3"

efully note their dlsungmstung fealures_ For case 3 the Speci_ﬁc tmperaﬁ
uation 5.60 are plotted in Figure 5.18. Note 5

€ cury .
obtainedcfg:r;e:gj)sdmg = = 0 is equivalent to the result that W‘_}‘:at &
for h = en change in the surface temperature to T, = T

% the second 1t P :

< {0
€T on the right-hand side of Equation 5.60 8¢
€quivalent to Equation 5.55.

Zero, and the resyly i

Intel Corp. et al. Exhiby
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0.01

: 05

=)

1.0 1.5

2 ot

Figure 518 Temperature histories in a semi-infinite
solid with surface convection [2]. Adapted with

permission.

F‘-gnpw_e 5.19 Interfacial contact between two
Smi-infinite solids at different initial
lemperatures.

___An interesting permutation of case 1 results when two semi-infinite solid;‘..
itially at wniform temperatures T, ; and Ty ;, are placed in contact at theu
free surfaces (Figure 5.19). If the contact resistance is negligible, the require-
ment of thermal equilibrium dictates that, at the instant of contact (1 = 0),
both surfaces must assume the same temperature 7, for which Ty, < 7, <
Ty Since T, does not change with increasing time, it follows that the
tl'a.nsien[ thermal response and the surface heat flux of each of the solids 1s
Getermineq by Equations 5.55 and 5.56, respectively. 2
The equilibrium surface temperature of Figure 5.19 may be determined

from a surface energy balance, which requires that
(5.61)

i
q""\ iy qs’ B

Substituting from Equation 5.56 for ¢/’ and gy and recognizing that the x
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262 Chapter 5 Transient Conduction

coordinate of Figure 5.19 requires a sign change for g/, it follows that Prop:
c=1
—kalT, - T, ) - kn(?;_TB,:) (56)
(mayr)'/? (wagt)'? 7 Anall
Figw
or, solving for T,, by E
. 5 ture |
T — (kPC)kI-TA.i + (kp(‘_);‘/'TB_, (563)
T e+ (ko) 2
Hence, the quantity m = (kpc)'/? is a weighting factor which determins
whether T, will more closely approach T, ((mp > my) or Ty [(mg > my). or
EXAMPLE 54 |
In laying water mains, utilities must be concerned with the possibility o | Her

freezing during cold periods. Although the problem of determining the tem
perature in soil as a function of time is complicated by changing surfa
conditions, reasonable estimates can be based on the assumption of a consta
surface temperature over a prolonged period of cold weather. What minimi®
bm?'al depth X, Would you recommend to avoid freezing under conditions for and
which soil, initially at a uniform temperature of 20°C, is subjected 102
constant surface temperature of —15°C for 60 days?

SOLUTION
e |
Knowe: Temperature imposed at th f f soil that is initially & | Com
20°C. e surface of soil tha | e
-‘-_"——n____
Find: i
nd: The depth x,, to which the soil has frogen after 60 days.
Schematic: | : .
A
tmosphere —Ty=~15°C | o
o - | thres
5 -t < N can
Saul |
Ti=20°C: | g
' leng
; |
g =
: | tern]
Ssumptions: |
. | , the |
:lz. OlTe-filmens:onal conduction in . |
- Soil is a Semi-infinite medium_ :
3 Constant PTOperties.

Intel Corp. et al. Exhiba
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(5.63)

which determins
B, i(mp > my).
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changing surfac
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Properties: Table A.3, soil (300 K): p = 2050 kg/m’, k = 0.52 W/m - K,
c=1840 J/kg - K, a = (k/pc) = 0.138 X 10~° m’/s.

Analysis: The prescribed conditions correspond to those of case 1 of
Figure 5.17, and the transient temperature response of the soil is governed
by Equation 5.55. Hence at the time 1 = 60 days after the surface tempera-

ture change,

T(me t) B 'Ts xm
e erf( )
/! 2yat

or

0-(-15) < e
o e =erf(2\/5)

Hence from Appendix B.1

xﬂ‘l

and

x,, = 0.80Yar = 0.80(0.138 x 10~ m?/s X 60 days X 24 h/day
%3600 5/h)"/* = 0.68 m %

Comments: The properties of soil are highly variable, depending on the
Rature of the soil and its moisture content.

38 MULTIDIMENSIONAL EFFECTS

Transient problems are frequently encountered for which two- and even

three-dimensional effects are significant. Solution to a class of such problems

¢an be obtained from the one-dimensional results of Sections 5.6 and 5.7.
Consider immersing the short cylinder of Figure 5.20, which is initially at

la uniform temperature 7, in a fluid of temperature T, # T.. Because the
“gth and diameter are comparable, the subsequent transfer of energy by

conduction will be significant for both the r and x coordinate directions. The

*mperature within the cylinder will therefore depend on r, x, and .
Assuming constant properties and no generation, the appropriate form of

the heat equation is, from Equation 2.20,

+ A el ipinastither
ax? a dt

l_{( BT) °T 14T

rar\"ar

i
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264 Chapter 5 Transient Conduction

iz, 1)

8(r.x,t) ®r.1
_—= X
8 8 ’

0* = C(r*, t*) % P(x*, 1"

Figure 520 Two-dimensional, transient conduction in a short cylinder. (a) Geomets.
(b) Form of the product solution.

where x has been used in place of z to designate the axial coordinate. A
closed-form solution to this equation may be obtained by the separation of
variables method. Although we will not consider the details of this solution, i

ifs important to note that the end result may be expressed in the following
orm.

T(r,x,t) - T, WXty =T, T(r,t) - T,
e ] R WS
T |mme T T-T, |mme

That is, thg two-dimensional solution may be expressed as a p roded &
one-dimensional solutions that correspond to those for a plane wall of hih
;uss 217 and an infinite cylinder of radius r,. These solutions are availabk
from Flgurps 3.8 and 5.9 for the plane wall and Figures 5.11 and 5.12 for ¥
u.lﬁmte cylinder. They are also available from the one-term approximatios*
given by Equations 5.40 and 5.49.
e Rlesults for other multif!imensional geometries are summarized in Fig*
21, In _each case the multidimensional solution is prescribed in terms .
product involving one or more of the following one-dimensional solutions.

S(x,1) E—M

| (584
7 el R PSS

T L2
Plx)mit) ~ T, (5.6)
T; T Tm Hmu :

C(r,r)szli-’_r_)_.___zf_

I.-T Infinite
cylinder

The x Coordinate for the semi-infinite solid is measured from the surfd

(560

Semi-infinite
(a) solid

S(x1, t) P(

(d) Semi-infinite
plate
Stxy, )P(xy, t)P(xy, t

-
x3

| ?!,2 |
zbz—ﬂ/ﬁt

I
I
I
I
I
I
I

Pl
(g Semi-infinite

rectangular bar
Figuwre 521  Solut;
Products of one-dir

Whereas for the p
3.21 the coordin:
dimensiona] temy
3.21h, is then, for
Plane walls of thi

T(

X1 X3, X;
._‘_—___—i——___
;




br. 1) W51
al z ‘i
£*) x P(z*, t%

g) Geometry.

vordinate. A
eparation of
s solution, it
he following

te
ler

produﬂ' of
all of thick
ire availabk
5.12 for the
yroximations
od in Figu®

, terms of 8
olutions.

(564

(5.69)
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S(x, t) P(x, t) C(r, t)

@

|

L]

- : \\"“'\-/-F)
2z, ] Froet
Infinite

(b)  Piane wall (c) cylinder

|

I

|

|
Sl Bh

|

() Semsi‘;"iglinite
S(xy, t) P(xa, t) P(x), t)P(xa, t) C(r, t)S(x, t)

X1l Fra,
Fi) i

| Loty et
L—?'I'z—”! Infinite fexy
(d) Semi-infinite (e) rectangular (f) Semi-infinite
plate bar cylinder
S(x3, OP(xy, )P(xa, 1) P(xy, t) Pz, )P(x3, ) Clr. OP(x, 8)
! o P il S
I '\_,/‘
I | *3 I S,
i 2 i
e | | 24 B 2L3 o | “lu J
by 285 i
|
I .
: I
= IE;J Il.l———— 7“ L r"._‘|-_‘\
A = ‘ZLI # le \/
2y g =l
@ Semi-infinite (h i linder
)  Rectangular (i) Shortcy
rectangular bar paralielepiped

Figwre 521 Solutions for multidimensional systems expressed as
Products of one-dimensional results.

¥hereas for the plane wall it is measured from the midplane. In using Figure
. the coordinate origins should be carefully noted. The transient, three-
?ﬁ:’ns.lonal temperature distribution in a rectangular pargﬂelepiped,_ Figure

=15 then, for example, the product of three one-dimensional solutions for
Plane waljs of thicknesses 2L,, 2L,, and 2L,. That is,

T(x!‘x'rx.f ‘—T
*‘—-———-3__3.'_)__<= = P(x,,1) - P(x,, 1) - P(x3,1)
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Chapter 5 Transient Conduction

The distances x,, x,, and x; are all measured with respect to a rectangulir
coordinate system whose origin is at the center of the parallelepiped.

The amount of energy Q transferred to or from a solid during a multid
mensional transient conduction process may also be determined by combining
one-dimensional results, as shown by Langston [7]

EXAMPLE 55

In a manufacturing process stainless steel cylinders (AISI 304) initially a
600 K are quenched by submersion in an oil bath maintained at 300 K wih
h =500 W/m’- K. Each cylinder is of length 2L = 60 mm and diameie
D = 80 mm. Consider a time 3 min into the cooling process and determine

temperatures at the center of the cylinder, at the center of a circular face, and
at the midheight of the side.

SOLUTION

Known: Initial temperature and dimensions of cylinder and temperature

and convection conditions of an oil bath. }
\
Find: Temperatures I(r, x, t) after 3 min at the cylinder center, 10,0, |

i |
3 min), at the center of a circular face, T(0, L, 3 min), and at the midheight |
of the side, T( r,,0,3 min). . ‘

|

Schematic:

Tir,x,00=T;=600K

LL = w mm Tf"o- 0! ‘)
L=3 mm |
T(0, 0, &)
Cylinder, i }
AISl 304 i

Intel Corp. et al.

Assumptions:

1. Two-dim
2. Constani

Properties:
450 K]: p =
k/pc = 4.19

Analysis: T
the tempera
following pr:

T(r, x,
T |

I

where P(x, .
tively. Accor

7(0,0,3 mi
T=

Hence, for t

Bi ! =




0 a rectangula
piped.

uring a multid
d by combining

04) initially
at 300 K with
1 and diameter
and determine
cular face, and

|

temperature

[
nter, T(0,0.

e midheight
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Assumptions:

1. Two-dimensional conduction in r and x.

2. Constant properties.

Properties: Table A.l, stainless steel, AISI 304 [T = (600 + 300)/2 =
450 K): p= 7900 kg/m’, ¢ =526 J/kg-K, k=174 W/m K, a=
k/pe =419 X 10¢ m?/s.

Analysis: The solid steel cylinder corresponds to case i of Figure 5.21, and
the temperature at any point in the cylinder may be expressed as the
following product of one-dimensional solutions.

e, x.t)-T,
L=T,

there P(x,t) and C(r, t) are defined by Equations 5.65 and 5.66, respec-
tively. Accordingly, for the center of the cylinder,

= P(x,t)C(r,1)

7(0,0,3min) — 7, 7(0,3 min) — T, 7(0,3min) — T,
e Tcz: L= T EI:I?E Yo I, glr:]?:.il:r
Hence, for the plane wall, with
k :
S Ko 174W/m - K T ke
hL 500 W/m’- K X 0.03m
Tt 6 m?/s x 180
Fo=a > 19 X 107° m“/s S=0.84

L (0.03 m)’
it follows from Figure 5.8 that
i 7(0,3 min) — T,

i T; = T::c Plane
wall

= (.64

==

S'mj]afly, for the infinite cylinder, with

ik 74W/m- K
et R Kb i =087

hr, ~ S00 W/m® - K X 0.04m

af 419 % 10 5 m?/s X 180 s
Fom =L _ 39 M ~ 047

To (0.04 [l‘l)2

¥
N
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268 Chapter 5 Transient Conduction
it follows from Figure 5.11 that where, from Fig
ﬁ= T(0,3min) — T, g 0(r,) =I

8’ h= Tx iﬁﬁ:fitr : Bﬂ 1
Hence, for the center of the cylinder, | Hence

7(0,0,3 min) — T, ; .

) = 0.64 X 0.55 = 0.35 1] I(r,,3 mi
LT, B
T; —

710,0,3 min) = 300 K + 0.35(600 — 300) K = 405K 4
The temperature at the center of a circular face may be obtained from the |
requirement that
(0, L,3min) - T 5 T(L,3min) — T : 7(0,3 min) — T, = Tlr. 3 mi

-1, =y o -7, cyiner : T
Where, from Figure 5.9 with (x/L) = 1 and Bi~! = 1.16, Haia

8(L) T(L,3min)-T

—_— = : ) - = (.68 T(r,,0,31

gf? T(O3 Hllll) or Tm Plane
wall e
Hence
I(r
T(L,3 min) — 7, T(L,3min) - T 7(0,3 min) — T, | |
e ——— % P S e R et s e e .

e o TO3mD) T fme T 7T, [l || Commens:
T(L.3min)—T:‘c ! | L Vesis
 T-7 |, =068x064=044 | Verify that

T' Tx :,i;"]'e | ' 3min) =
Hence | 2 The one-ter

| less temper

(0, L,3 min) - T, Midplane tc

7T =044 x 055 =024 :
6* = -

(0, L,3 min) = 300 K + 0.24(600 — 300) K = 372K bl .
The lemperature at the mi : - the | y -

3 midheight : : ed from where, with
Tequirement that % of the side may be obisin ' With Fp —
T(r. 0. m)y 3 ; 1 !
-—(—E—-}}_n_li'_]l___]_;c__T(O.I’ﬁmm)-—Tx T(ro,3rmn)-—T,= : |

- O i s i o e c——— afimk | | —_
g R P e 0, P
wall wall

Intel Corp. et al.
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5.8 Multidimensional Effects 269

where, from Figure 5.12 with (r/r,) =1 and Bi~' = 0.87,

6(r,) T(r,,3min)—T_

= . = (.61
6 7(0,3 min) — T,

Infnite
cylinder

T(f0-3 mlIl) e T-x:
Infinite  7/(0,3 min) — 4

cylinder

T(r,,3min) — T
Jo="T

i o0

Infinite
cylinder

7(0, 3 min) — T,
e

Infinite
cylinder

T(r,,3 min) — T,
L1

=~ 0.61 X 0.55=0.34

Infinite
cylinder

Hence

T(r,,0,3 min) — T,
0.64 X 0.34 = 0.22

n

S
‘3 T(r,.0,3 min) = 300 K + 0.22(600 — 300) K = 366K <

Comme_nrs:

L Vefi'fy that the temperature at the edge of the cylinder is 7(r,, L,
3 min) = 345 K.

The one-term approximations can be used to calculate the dimension-
le§5 temperatures read from the Heisler charts. For the plane wall, the
midplane temperature can be determined from Equation 5.41

00
87 = 7 = Cuexp (~7Fo)

[

|
i
| where. with Bi = (.862, C,=1109and {;, = 0.814 rad from Table 5.1.
| With Fo= 034,

o

P = 1109 exp [ - (0.814 rad)’ x 0.84] = 0.636

Plane
wall

3
.

e

!

MPA

. URBANA-CHA

RY U.OF

3R A

tm
12

]




270 Chapter 5 Transient Conduction

The surface temperature can be evaluated using Equation 5.40b
0*

T = — = cos ({;x*)

| =

with x* =1 to give

8*(1, Fo) 6(L,1)
- g = cos(0.814 rad X 1) = 0.687

0

For the infinite cylinder, the centerline temperature can be determined
from Equation 5.49c.

8

67 = 5 = Ciexp(~{7Fo)

where, with Bi = 1.15, C, = 1.227 and {, = 1.307 from Table 5.1. With
Fo =047,

7 i = 1-109exp [ — (1.307 rad)® x 0.47] = 0.550

cylinder |

The surface temperature can be evaluated using Equation 5.49b |
A

_93 o3 -0: W Jo(fl"*) ;
with r* =1 and the valye of the Bessel function determined from !
Table B4, ;

0*(1, Fo) o(L, 1) |
T8 - g =%(1307rad x 1) = 0616 |

o o

The one-term 3 imati |
; Pproximations are in with results fro™
the Heisler ke good agreement !

59 FINITE-D[FFERENCE METHODS

Analytical solution
and boundary
Extensive Coverage of th
[1-4]. However, in man
preclude the use of an

: \ &
S 10 transient problems are restricted to simple geome?

conditions, such as those considered in the precediﬂg 'seclimﬁ
€s¢ and other solutions is treated in the ht;[i::i
Y cases the geometry and/or boundary ¢O™

alytical techniques, and recourse must be

g 10

Intel Corp. et al.

Exhibj

B O O u o

59.1

B S - U S|

R I s T |

A T




T

TTPTTTTRIT

determined

e 5.1. With

49b

ined from

5.9 Finite-Difference Methods 271

finite-difference methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we
consider explicit and implicit forms of finite-difference solutions to transient
conduction problems. More detailed treatments, as well as related algorithms,

may be found in the literature [8-10].

59.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-
sient conditions with constant properties and no internal generation, the

appropriate form of the heat equation, Equation 2.15, is

MOT T 9T (5.67)

_:I_ + —
R Ix* " 3y’

To obtain the finite-difference form of this equation, we may use the central-
difference approximations to the spatial derivatives prescribed by Equations
431 and 4.32. Once again the m and n subscripts may be used to designate
ii_lc x and y locations of discrete nodal points. However, in addition to being
discretized in space, the problem must be discretized in time. The integer p is
troduced for this purpose, where

t=pAt (5.68)

and the finite-difference approximation to the time derivative in Equation 5.67
18 expressed as

_31 T’£.+nl . Tnfn (5 69)
at o e At F

Thg superscript p is used to denote the time dependence of T, and the time
derivative is expressed in terms of the difference in temperatures associated
With the pew (p+1) and previous (p) times. Hence calculations must be
Performed at successive times separated by the interval Az, and just as a
.ﬁm“’-"diﬂ'mnce solution restricts temperature determination to discrete points
0l Space, it also restricts it to discrete points in time.
3 If Equation 5.69 is substituted into Equation 5.67, the nature of the
Ute-difference solution will depend on the specific time at which tempera-
WIS are evaluated in the finite-difference approximations to the spatial

::ivaﬁ"“- In the explicit method of solution, these temperatures are evalu-
f at the previous (p) time. Hence Equation 5.69 is considered to be a
TWard-difference approximation to the time derivative. Evaluating terms on

I'igl‘lt-hand side of Equations 4.31 and 432 at p and subst‘ilu:ing into
Ualion 5.67, the explicit form of the finite-difference equation for the
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272 Chapter 5 Transient Conduction

interior node m, n 1s

l T»‘:.:l = T:fn = Tp-i-l.n + Tnf—l.n e 2Tp

n m,n

[4 | A‘ (Ax)z
S P dk g g — 2TE
2 - .
(Ay)”

Solving for the nodal temperature at the new (p + 1) time and assuming that
Ax = Ay, it follows that

(5.70)

Tn}:fnl T Fo(Togivl.u + Tnf—l.n " Tnf,n+1 + Tn’:,n—l)
+(1 - 4Fo)T? (5)

where Fo is a finite-difference form of the Fourier number

alr

Fo = (Ax)

- s s s FEe wt e e . B et LA e P e 08 0O

(5.72)

If the_ system is one-dimensional in x, the explicit form of the finite-differenc '
€quation for an interior node m reduces to ‘

TP+ = Fo(T?,, + T2_1) + (1 - 2Fo)T? (5.73)

ey LhE;]uatlon-s 5.71 and 5.73_are explicit because unknown nodal temperatur® '

fie€w tme are determined exclusively by known nodal temperatures ’
e Previous time. Hence calculation of the unknown temperatures is straight |
forward. Since the lemperature of each interior node is known at [ =0 |
(7 = 0) from prescribed initial conditions, the calculations begin at = u |

iiit:mii);] “-’here Equation 5.71 or 5.73 is applied to each interior node 10
INE Its temperature. With tem — At. the approp®
ate finite-difference peratures known for r = At, :

equation is then applied at each node to determine 1¥
temperature at t=2A; =2 : ; emperalif®
distribution is obtain (p ). In this way, the transient pe

; - Hence, the computation time increasss ™

eﬁxlng Ax and At. The choice of Ax is rypilt):ally based on a com?m“f:;
been ¥ and computational requirements. Once this selectio? =
value of At may not be chosen independently:
stability requirements.

made, however, the Itis

Intel Corp. etal. Exhibi
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5.9 Finite-Difference Methods 273
An undesirable feature of the explicit method is that it is not uncondition-
ally stable. In a transient problem, the solution for the nodal temperatures
should continuously approach final (steady-state) values with increasing time.
However, with the explicit method, this solution may be characterized by
numerically induced oscillations, which are physically impossible. The oscilla-
tions may become unstable, causing the solution to diverge from the actual
(5.10) steady-state conditions. To prevent such erroneous results, the prescribed
' value of At must be maintained below a certain limit, which depends on Ax
and other parameters of the system. This dependence is termed a stability
assuming that criterion, which may be obtained mathematically [8] or demonstrated from a -
thermodynamic argument (see Problem 5.69). For the problems of interest in )
this text, the criterion is determined by requiring that the coefficient associated oot 4
with the node of interest at the previous time is greater than or equal to zero. In .
(s7) general, this is done by collecting all terms involving T}/ ,, to obtain the form -
: of the coefficient. This result is then used to obtain a limiting relation -z."E
involving Fo, from which the maximum allowable value of Ar may be oy 955,
determined. For example, with Equations 5.71 and 5.73 already expressed in f_?,
the desired form, it follows that the stability criterion for a one-dimensional ot
(57 interior node is (1 — 2Fo) > 0, or —
Fo<l (5.74) 5
ite-difference : 0
and for a two-dimensional node, it is (1 — 4Fo) > 0, or =
Fo<l 5.75 o
(5.7) . ( ‘ ) r
For prescribed values of Ax and a, these criteria may be used to determine O
meemm‘rz upper limits to the value of At. .
g i - Equations 5.71 and 5.73 may also be derived by applying the energy _ —
es IS sualgjo balance method of Section 4.4.3 to a control volume about the interior node. -
.:vn ;:t:; - Accounting for changes in thermal energy storage, a general form of the ‘Qé,
rior node 10 elergy balance equation may be expressed as e
the approp” E.,+E =F (5.76) £
determine 15 e el
temperatuft In the interest of adopting a consistent methodology, it is again assumed that
f At. heat flow is into the node.
oved by & To illustrate application of Equation 5.76, consider the surface node of
yterior 1 Ihf’ One-dimensional system shown in Figure 5.22. To more accurately deter-
| the o Mine thermal conditions near the surface, this node has been assigﬂeq a
d final 7% :hlckness which is one-half that of the interior nodes. Assuming convection
creases Wil ;;gsfﬁr from an adjoining fluid and no generation, it follows from Equation
: at
tion B
i kA Ax T -1
et M) A -y
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—»

Or nodes, as well as Equati Al Equaliﬁﬂ
5.79 R uation 5.77 for the surface n e, _
. r:::: sbe Contrasted with Equation 5.74 to determine which requirement i$

tringent. Since Bi > 0, it i e e of Fo
for Equation 5.79 i less tha; _tilgt it is apparent that the limiting valu

nodes, Equation 579
able value of Shoul

e+l _ TP

for Equation 5.74. To ensure stability f"“ﬂ%
d therefore be used to select the maximum allo¥

i e, S T 3 i s .
sponding node. ?rrgy alance method to a control volume about

(4] develop confidence in your ability to apply this mcthﬂ‘i
at least one of these equations.

qCGﬂH 8
T
=

Figure 522 Surface node with convection and one-dimensional E

transient conduction. S
%

or, solving for the surface temperature at ¢ + Az, ) %

<
2h At 2a At ’
T +1 = T 32 ; &
N ) e (- + T 4| |8
- . : m
Recognmng th_al (2h At/pe Ax) = 2(h Ax/k)a At/Ax?) = 2BiFo and g Lé
grouping terms involving T¥, it follows that z 3
-
+ g E
T8™" = 2Fo(T? + BiT,) + (1 — 2Fo — 2BiFo) Ty (5.7 ol |5
Q —
The finite-difference form of the Biot number is : g
L =l
Bi hAx E 2 i
e (5.78) 3 E
&2
> - - - . { % [_‘
A g}i‘-‘iﬁmg Fhe Pfrocedurc for determining the stability criterion, we requ _‘:3 S 5
oefficient for Ty be greater than or equal to zero. Hence SRR
1 - 2Fo - 2B; HEIE
0 — 2BiFo > 0 Qi =3 B8
or E 4R
a9t IB| &
T ey {REIN
ince the co ite-di . ; ion 5.1 z ~
i imerimplete finite-difference solution requires the use of Equation 3 HEE
@ a)
= =
5| |2
b .
[ ]
g
E
=
7))
~
w
3
=
-

CONFIGURATION
*

you should attempt to verify

Intel Corp. et
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276 Chapter 5 Transient Conduction
EXAMPLE 5.6

A fuel element of a nuclear reactor is in the shape of a plane wall of thicknes
2L =20 mm and is convectively cooled at both surfaces, with h = 1100
W/m’ - K and T, = 250°C. At normal operating power, heat is generated
uniformly within the element at a volumetric rate of G, =107 W/m' A
departure from the steady-state conditions associated with normal operation
will occur if there is a change in the generation rate. Consider a sudden change
0 ¢,=2x10" W/m’, and use the explicit finite-difference method 1
determine the fuel element temperature distribution after 1.5 s. The fud
element thermal properties are k = 30 W/m-Kand a =5 x 10°° m'/s

SOLUTION

Known: Conditions associated with heat generation in a rectangular fuel |
element with surface cooling.

Find: Temperature distribution 1.5 s after a change in operating power.

Schematic: .
|
Fuel element 4 |
g = 1 % 107 wm? i
@ = 2 x 107 Wm : T = 250°C |
a=5x 10-5ms 2 E /m? - K
k=30Wm-K i A= 1100 Wi
|
Symmetry adiabat 't ?T‘?W"‘ j
i ‘-! |
. 1
e i : 158
L ‘e 18
N3 —» &le
,'\fz ' Geond .z:“’""""
i |
e i
‘ ‘ LM-JL |
_Ax o it |

1.

One-dunensiﬂnal conduction in x.

2. Uniform generation.
3.

Constant Properties. |

Intel Corp. et al.

method, Equati
for any interior

=
Ax
Solving for T2

kA

TP*! = F

This equation 1
nodes 1, 2, 3,
about node 5,

hA(T, —

ac
or

|
7*'=2F0

Since the 1
2, we select Fo
Fo(1 + B

Hence, with

h A
o=
k
it follows that
Fo < 0.46
or

F
A{:—.-—O_(_

To be well wi
Sponds to



-wall of thickness
5, with h=110
heat is generated
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normal operation
- a sudden chang
ence method
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X 10~¢ m'/s.

|
ctangular fuel |
|
\

1{ing poOwer.

increment of
¢, the B

ergy balanc®
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method, Equation 5.76, an explicit finite-difference equation may be derived
for any interior node m.

R e B e S
i 2 4+ kA— + gAAx = —
&4 Ax Ax ¢ s At

Solving for T?*! and rearranging,

9(82)" | | (1 - 20)T2 (1)

I =FolTl , +Th+

This equation may be used for node 0, with T2_, = T, as well as for
nodes 1, 2, 3, and 4. Applying energy conservation to a control volume

about node 5,

T, — T? Ax Ax TP -T2
A i o A N ol e = — e
hA(T, — T?) + kA TP =

or

WAx) | . 1 -2F0—2BiF)T? ()

+1 :
= ZFG{T;’ i o

Since the most restrictive stability criterion is associated with Equation
2, we select Fo from the requirement that

Fo(1 + Bi) <

=

Hence, with

Bi =

h 2k (0.

Ax _ 1100 W/m K (0.002 m) e
k 30 W/m - K

it follows that

Fo < 0.466
or

F : “m)’
Ao ABx) . DA X107 B eme
& A% i/

To be well within the stability limit, we select At = 0.3 s, which corre-
Sponds o

SX10°*m?/s(03s
Fo= 03n) ks

(2% 107 m)*

-
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278 Chapter 5 Transient Conduction

it follows that

T(x) = 16.67(

Computed tem
first row of the

Using the finite-
sequentially calculat,
time is reached. Th
and may be contr
was obtained by

S
L-

gL
=1+ =25°C+

2

TP = 0.375(2T7 + 2.67) + 0.250T7

TP = 0.750(T7 + 19.67) + 0.195T7

Tlp+1 Lt 0_375(%}’ +Tf + 2.67) + 0.25017
TP*! = 0.375(TF + T? + 2.67) + 0.250T7
Tf*1 = 0.375(TF + T7 + 2.67) + 0.25077

TPt = 0.375(TF + T7 + 2.67) + 0.25077

10" W/m® x 0.01 m

1100 W/m? - K

+ 340.91°C

= 340.91°C

To begin the marching solution, the initial temperature ci_istriptlliqn
must be known. This distribution is given by Equation 3.42, with § =4,
Obtaining 7, = T, from Equation 3.46,

peratures for the nodal points of interest are shown in the
accompanying table. be |
difference equations, the nodal temperatures e al |
ed with a time increment of 0.3 s until the desired ﬁnI
€ results are illustrated in rows 2 through 6 of the [l:?c;
asted with the new steady-state condition (row 7), W %
using Equations 3.42 and 3.46 with 4 = ¢,

Tabulated noda] temperatures

N i 4 T L L I, I
R e A 0 N S

0 0 357.58 356,91 35491 35158 34691 340.91
1 03 35308 35741 35541 35208 34741 34141
2 06 35858 35791 35591 135258 34791 34188
3 09 35008 35841 35641 35308 34841 34235
4 12 135953 35891 35691 35358 34889 34082
- TR Jh 36008 35041 35741 35407 34937 34327
% ™ 46515 4634 45982 45315 w3 s

Intel Corp. et al.

o

Exhibj

. - - ] |
Substituting numerical values, including § = ¢, = 2 X 10”7 W /n?’, the nodal |
equations become

Com
frans
madi
The

allov
the i

until

92 D

Intt
may
Ing 1
fure
time
limi1
intey
dict;
time

emp
imp
3.69
ture
is th
deri

Re:

nog
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)’ W /n’, the nodal | Comments: It is evident that at 1.5 s, the wall is in the early stages of the
' transient process and that many additional calculations would have to be

' made to reach steady-state conditions with the finite-difference solution.

The computation time could be slightly reduced by using the maximum
allowable time increment (Ar = 0.373 s), but with some loss of accuracy. In
| the interest of maximizing accuracy, the time interval should be reduced |
until the computed results become independent of further reductions in Az.

IGN

PA

592 Discretization of the Heat Equation: The Implicit Method

rature distribution In the explicit finite-difference scheme, the temperature of any node at ¢ + Ar
may be calculated from knowledge of temperatures at the same and neighbor-

3.42, with ¢ = §; ;

ing nodes for the preceding time t. Hence, determination of a nodal tempera-
ture at some time is independent of temperatures at other nodes for the same
time. Although the method offers computational convenience, it suffers from
340.91°C limitations on the selection of Ar. For a given space increment, the time
interval must be compatible with stability requirements. Frequently, this
dictates the use of extremely small values of At, and a very large number of

time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
?mpioying an implicit, rather than explicit, finite-difference scheme. The
implicit form of a finite-difference equation may be derived by using Equation
569 1o approximate the time derivative, while evaluating all other tempera-
tures at the new ( p + 1) time, instead of the previous ( p) time. Equation 5.69
18 ﬂ_len considered to provide a backward-difference approximation to the time
derivative. In contrast to Equation 5.70, the implicit form of the finite-difference

are shown in the

SARY U. OF 1. URBANA-CHAM

\peratures may be

il the desired final _
ugh 6 of the table €quation for the interior node of a two-dimensional system is then [ 4
on (row 7), which £

. TR TP+l 4 TPl TPl -
q,, -, moa _ m+1l.n m—1,n m,n n—*‘l I
e @ Ar (Ax)l
___—-—-——"_"_’ + 4 R +1

g TJ.’...‘-: 2T (5.86)

TR (ay)

Rearranging and assuming Ax = Ay, it follows that
+ Tnf:}.n > T:+81+L + Trg.+nl—l) s Tn’:,n

(1 +4Fo)T241 — Fo(T211,
(5.87)

ure of the m, n
which are, in

od From Equation 5.87 it is evident that the new temperat
ST, = L i ¢ depends on the new temperatures of its adjoining nodes,
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general, unknown. Hence, to determine the unknown nodal temperatures a
t + A, the corresponding nodal equations must be solved simultaneously. Such
a solution may be effected by using Gauss—Seidel iteration or matrix inversion.
as discussed in Section 4.5. The marching solution would then involve simult
neously solving the nodal equations at each time 7 = Ar,2A¢, ..., until the
desired final time was reached.

Although computations involving the implicit method are more compli-
cated than those of the explicit method. the implicit formulation has the
important advantage of being unconditionally stable. That is, the solution
remains stable for all space and time intervals, in which case there are
restrictions on Ax and Ar. Since larger values of Ar may therefore be used
with an implicit method, computation times may often be reduced, with litte
loss of accuracy. Nevertheless, to maximize accuracy, Ar should be sufficiently
sm[all 10 ensure that the results are independent of further reductions in it
value.

The implicit form of a finite-difference equation may also be derived from

the energy balance method. For the surface node of Figure 5.22, it is readily
shown that

(1+2F+ 2FoBi )T — 2FoT?*! = 2FoBiT, + T¢ (5.88)
For any interior node of Figure 5.22, it may also be shown that
U+ 2P)T2t — Fo(Test + T22) = 12 i

Forms of the implicit finite-difference equation for other common geometris

are presented in Table 52 Each equation may be derived b applying the
energy balance method. i % i

: PR
one surface such that the net heat flux is maintained 3
4 constant value of 3 x 103

W/m’. Using the explicit and implicit fn'®
Pace increment of Ax = 75 mm, determii¢
surface and at an interior point that is 150
have elapsed. Compare the results with thost
analytical solution,

Find:

1. Using the ex]
the surface a
min.

-

Repeat the cz

':_r.)

Determine th

Schematic:

0
__’I
<

|

Assumptions:

1. One-dimensi

2 Thick slab
constant surf

3. Constant prc

Properties: Tab
1078 m2 /s,

Analysis:
L An explicit

may be obts
about the nc

q;’A =+
or
+1
TP+ =

The finite-dj
on 573, B




_

T ‘-?w.r-

itures al
ily. Such
Iversion,
simulta-
mtil the

compl-
has the
solution
 are 10
be used
ith Iittle
ficiently
15 in 15

ed from
readily

(5.89)

(589

.meﬂ'iﬁ
ing the

iddenls
ined 3!

finite-
ine the
50 mm
; thos

I 1. Using the explicit finite-difference method, determine temperatures at
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Find:

the surface and 150 mm from the surface after an elapsed time of 2

min.
2. Repeat the calculations using the implicit finite-difference method.

3. Determine the same temperatures analytically.

Schematic:
g, =3 x 10°Wm?
| T
| m-1} m m+1
0 % 1. ® .) ® i 2 1 L
. M) S ! &—
g o 4 Tl § 5
)| Y%ond Geond | ] Gcond
[ B | -
Lﬂ-l ax Lox Ax = 75mm e—3>t
Assumptions:

l. One-dimensional conduction in x.
2 Thick slab may be approximated as a semi-infinite medium with
constant surface heat flux.

3. Constant properties.

i:f‘:emfs' Table A.1, copper (300 K): k =401 W/m-K, a=117 X
m-/s.

Analysis;

L. An explicit form of the finite-difference equation for the surface node
may be obtained by applying an energy balance to a control volume
about the node.

T, - TF Ax T -1}
ST Y aed Sl S e, )
Ax 2 At

or

PIA
TP+t 2Fo( q,,k il T{’) + (1 -2F)Tf

I

or node is given by Equa-

ARY U, OF 1. URBANA-CHA

\ The finite-difference equation for any interi
Uon 5.73. Both the surface and interior n

odes are governed by the

-

A

-

Py
=3

i
:
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stability criterion

Fo <

P

Noting that the finite-difference equations are simplified by choos-
ing the maximum allowable value of Fo, we select Fo = 1. Hence

At =

i (Ax)’ 1 (0.075m)’
) .

= — =24
a 2117 X 10~% m?/s :
With

g, Ax 3 x10° W/m? (0.075 m)
= = 56.1°C
k 401 W/m - K

the finite-difference equations become

T2 .+ T2
%pa-l = 56.1°C + Tlp and TRFEY — m_"]‘___l

A 2

for the surface and interior nodes, respectively. Performing the calculz-

tions, the results are tabulated as follows.

Explicit finite-difference solution for Fp = 2

p 1 (s) T L T T L
0 0 20 20 20 20 20
1 24 76.1 20 20 20 20
2 48 76.1 481 20 20 20
3 ) 104.2 481 341 20 20
4 9 104.2 69.1 341 27.1 20
5 120 1253
69.

___________________1_ 481 271 20 R
After 2 min, the surface temperature and the desired interior temper |
ture are 7, = 125 3°C and 7, = 48.1°C.

Note tha

¢ t calculation of identical temperatures at successive tames
or the same node is an idios

v;lm? of Fo with the explicit finite-difference technique. The
Physical condition 18, of co

: ; urse, one in which the temperature ¢
:o?unuously with time. The idiosyncra_sy is eliminated and the 2
acy of the calculations is improved by reducing the value of Fo. i

v

To determine the ex . ;
: tent to whi be 1mpro
by reducing Fop, et us red ch the accuracy may

o the calculations for Fo = (At = 125) The

Intel Corp. et al.
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finite-difference equations are then of the form
o= 1(56.1°C + T} +31¢
by choos- | 20 =T, + T7 9+ 315
ence
and the results of the calculations are tabulated as follows.
Explicit finite-difference solution for Fo = 1/4
p ot T T, ! T Ty I Ts T Ty
0 0 20 20 20 20 20 20 20 20 20
L 481 20 20 20 20 20 20 20 20
; T 621 2710 20 20 20 20 20 20 20
35 3 726 340 218 20 20 20 20 20 20
4 4 814 406 244 204 20 20 20 20 20
5 6 890 467 275 23 201 20 20 20 20
6 N 959 525 307 26 204 200 20 20 20
7 84 1023 579 341 241 208 201 200 2 20
. calodls § 96 1081 631 s 258 ;S5 203,200,200 .38
: 9 108 1137 630 410 276 22 205 201 200 200
0 120 [{i§8 76 W@ 26 22 208 202 200 2200
e =
After 2 min, the desired temperatures are To = 1189°C and T, =
— : : ; £
44.4°C. Comparing the above results with those obtained for Fo = 3, 1t
L is clear that by reducing Fo we have eliminated the problem of
recurring temperatures. We have also predicted greater therqﬂ pene-
tration (to node 6 instead of node 3). An assessment of the improve-
ment in accuracy must await a comparison with results based on an
€xact solution.
2 Performing an energy balance on a control volume about the surface
e node, the implicit form of the finite-difference equation 15
empert PR e g i
o S, LY P
. . Ax iy Ar
ve [mes
e w0 2aq) At
chang®s | ¢ (1+ 2Fo)TP+! — ZFOTf’” = o + T
he accu | -f . kAx
o) o Arbitrarily choosi (At = it follows that
pproved | - s y choosing Fo = (At = 245), 1t [0
The b
5) AR - Ty =56 + T
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From Equation 5.89, the finite-difference equation for any interior node |

is then of the form

—T2*1 + 4TP*) — TP:l = 272

m

Since we are dealing with a semi-infinite solid, the number of |

nodes is, in principle, infinite. In practice, however, the number may be
limited to the nodes that are affected by the change in the boundary
condition for the time period of interest. From the results of the explicit
method, it is evident that we are safe in choosing nine nodes corre-
spondingto T, T, ..., T;. We are thereby assuming that, at ¢ = 1205,
there has been no change in T;.

We now have a set of nine equations that must be solved simulta-

neously for each time increment. Using the matrix inversion method,

Wwe express the equations in the form [A4][T] = [C], where

RS0 0 0" 0 "0 Fonkl
o U R e TSR SR ) B A
0 -1 4 -1 0 0 0 08
1 O R e 0 .0 . 0has
Lok b el | g P WY SO RS W,
;] e RO IR, S St T
0 0 0 0 0 -1 ) B
gt ol el T SEECR R Wit
PR 00 0 0 il ol
(863477 ]
217
217
21?7
[€]=]|217
217
21?
217
‘2T3’+T;;’+1J

Note that numerica] val

ues for the components of [C] are det :::

Intel Corp. etal. E

coefficie
then mu
obtain t
ing [A]

[C

the sec
repeate
The de:

-
Implicit fin

P 1(s)

0 0
1 2
1 4
SN
4
5

At the
70,1205) -

or




1 YT

59 Finite-Difference Methods 285
any interior node coefficient matrix [ 4] must first be found. At each time p + 1, it is
then multiplied by the column vector [C], which is evaluated at p, to
obtain the temperatures T2 %, 77, ..., T7*". For example, multiply-
ing [4]~" by the column vector corresponding to p = 0,
. the number of | [ 76.1 “
> number may be | v
in the boundary 40
Its of the explicit 40
ine nodes corre- 40 =
1at, at ¢ = 1205, (€] = |40 o
- (&
e solved simulta- - :1-:‘
wversion method, 40 .
1ere 40 %
0 7 e g 50 o )
0 0 0 the second row of the table is obtained. Updating [C], the process is ‘-;’:
) 0 0 repeated four more times to determine the nodal temperatures at 120 s. wi
) 0 0 The desired temperatures are T, = 114.7°C and T, = 44.2°C. ‘qzc
B LT £xXJ
1 P Implicit finite-difference solution for Fo = 3 :UD:
B T Pt T T, T, T T T T, T Ty L8
] Ay 0 0 200 200 200 200 200 200 200 200 200 Li
| g M sma w7 @y we B2 We M0 AN AP o
: SO 40 s %6 Bl M7 907 01 X6 N0 :D
30-m . 02 a3 20 244 26 06 W3 ALC A0 s
¢ 9% 134 s 80 274 9 ;U1 W4 202 ANl i
S 120 B8 wo W 9 247 9 2208 203 201 o
: £,
3. Approximating the slab as a semi-infinite medium, the approprate £
analytical expression is given by Equation 5.58, which may be applied it
1 any point in the slab.
A W B (O (L1
T S el fEes i I SR - — —erfc
5t =T, k P\ ™ St k Wat
At the surface, this expression yields
are determined :
e also how the T(0,120 s) — 20°C = 2 % 3%10° Wi/nd (117 x 107 m?/s X IZOs/vr)lﬁ
s [ ] and [C} 401 W/m - K
inning * or
Aitial condition
e inverse of the T(0,120 s) = 120.0°C 4
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7(0.15m, 120 s) — 20°C=

1.

At the interior point (x = 0.15 m)

2% 3x10°W/m?
401 W/m - K

X (117 X 106 m2/s X 120 s /n )"

(0.15 m)* 3 % 10° W/m? X 0.15m
* p_4x117x10—"m2/s><1205 = 401 W/m - K
0.15
X|1 = erf : = ) = 45 .4°C 4
2y117 X 10 * m?*/s X 120 s

Comments:

Comparing the exact results with those obtained from the three appfof:
imate solutions, it is clear that the explicit method with Fo=1/
provides the most accurate predictions.

METHOD T, = T(0,120 5) T, =T({015m,1205s)
Explicit (Fo = 1) 1253 48.1
Explicit (Fo = 1) 1189 444
Implicit (Fo = 1) 1147 442
Exact 1200 454

e

This is not unexpected, since the corresponding value of At is 50%
smaller than that used in the other two methods.

Although computations are simplified by using the maximum allowable

value of Fo in the explicit method, the accuracy of the results is seldo™
satisfactory,

Note that the coefficient matrix [A] is tridiagonal. That is, all elemen’
are zero except those which are on, or to either side of, the ma?
diagonal. Tridiagonal matrices are associated with one-dimensio
conduction problems. In such cases the problem of solving for e
unknown temperatures js greatly simplified, and stock computef P
grams may readily be obtained for this purpose.

A more genera] radiative heating condition would be one in which (¢

surface is suddenly Xposed to large surroundings at an eleval_"d <
perature T,,, (Problem 3.84). The net rate at which radiation is %~

ferred 1o the surface may then be calculated from Equation 1

S o f
heat transfer to the surface, aPPpCf'mg:i:;_
0 the surface node yields an explicit

Allowing for convection
conservation of energy t
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difference equation of the form

T - T¢

Ax T 1-T1P
¢ 1 0 (
ea[igt,—(np)“] R R s ko s

="9—=FC
p2 At

Use of this finite-difference equation in a numerical solution is compli-
cated by the fact that it is nonlinear. However, the equation may be
linearized by introducing the radiation heat transfer coefficient A,
defined by Equation 1.9, and the finite-difference equation is

h?(Ty, — T?) + h(T, — T? p e S U ! Gt
— — + e — S ———-

The solution may proceed in the usual manner, although the effect of a
radiative Biot number (Bi, = h, Ax/k) must be included in the stabil-
ity criterion and the value of h, must be updated at each step in the
calculations. If the implicit method is used, k, is calculated at p + 1,in
which case an iterative calculation must be made at each time step.

510 SUMMARY

Transient conduction occurs in numerous engineering applications, and it is

important to appreciate the different methods for dealing with it. There is

certainly much to be said for simplicity, in which case, when confronted with a

transient problem, the first thing you should do is calculate the Biot number.

If this number is much less than unity, you may use the lumped capacitance
method to obtain accurate results with minimal computational requirements.
However, if the Biot number is not much less than unity, spatial effects must
be considered, and some other method must be used. Analytical results are
available in convenient graphical and equation form for the plane wall, the
mfinite cylinder, the sphere, and the semi-infinite solid. You should know
when and how to use these results. If geometrical complexities and /or the
f""_m of the boundary conditions preclude their use, recourse must be made to
finite-difference methods. With the digital computer, such methods may be
Used to solve any conduction problem, regardless of complexity.
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PROBLEMS

Qualitative Considerations

5.1

Consider a thin electrical heater attached to a plate and backed by insulation
Initially, the heater and plate are at the temperature of the ambient air, L
Suddenly, the power to the heater is switched on giving rise to a constant heat fi
4, (W/n?) at the inner surface of the plate.

Insulation Plate

Power : L"'

leads

(a) Sketch and label, on T-x coordinates, the temperature distributions: e
steady-state, and at two intermediate times.

(b) S.ketch the heat flux at the outer surface g/’(L, r) as a function of 1l

The inner surface of a plane wall is insulated while the outer surface is €xpos®® ;

0 airstream at T,_. The wall is at a uniform temperature corresponding t0 1

the airstream, Suddenly, a radiation heat source is switched on applying 2 o

flux ¢/’ to the outer surface,

4—qg fort >0

insulation L—-u

L } 111

(@) Sketch and label, on -y coordinates, the temperature distributions: initidh

Steady-state, and at two intermediate times
(b) Sketch the heat flux at ‘

the outer surface g/’(L, r) as a function of time.
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53 A microwave oven operates on the principle that application of a high frequency

54

field causes electrically polarized molecules in food to oscillate. The net effect is a
uniform generation of thermal energy within the food, which enables it to be
heated from refrigeration temperatures to 90°C in as short a time as 30 s.
Consider the process of cooking a slab of beef of thickness 2L in a
microwave oven and compare it with cooking in a conventional oven, where each
side of the slab is heated by radiation for a period of approximately 30 min. In
each case the meat is to be heated from 0°C to a minimum temperature of 90°C.

Base your comparison on a sketch of the temperature distribution at selected

times for each of the cooking processes. In particular consider the time 7, at

which heating is initiated, a time r, during the heating process, the time r,

corresponding to the conclusion of heating, and a time t; well into the subsequent

cooling process.

A plate of thickness 2 L, surface area A, mass M, and specific heat c,,, initially at

a uniform temperature T, is suddenly heated on both surfaces by a convection

process (T, h) for a period of time r,, following which the plate is insulated.

Assume that the midplane temperature does not reach 7, within this period of

time.

(a) Assuming Bi >> 1 for the heating process, sketch and label, on T—x coordi-
nates, the following temperature distributions: initial, steady-state (1 — o),
T(x, 1,), and at two intermediate times between 7 = 1, and f = 0.

(b) Sketch and label, on T-t coordinates, the midplane and exposed surface
temperature distributions.

(¢) Repeat parts a and b assuming Bi < 1 for the plate.

(d) Derive an expression for the steady-state temperature T(x, ) = T}, leaving
your result in terms of plate parameters ( M, c,), thermal conditions (T, T, h),
the surface temperature T(L, 1), and the heating time 7.

Lumped Capacitance Method

335 Steel balls 12 mm in diameter are annealed by heating to 1150 K and then slowly

f:oolin’g to 400 K in an air environment for which T, = 325 K and h =20
W/m’ - K. Assuming the properties of the steel to be k = 40 W/m - K, p = 7800
kg/m’, and ¢ = 600 J /kg - K, estimate the time required for the cooling process.

36 The heat transfer coefficient for air flowing over a sphere is to be determined by

observing the temperature—time history of a sphere fabricated from pure copper.
The sphere, which is 12.7 mm in diameter, is at 66°C before it is inserted into an
arstream having a temperature of 27°C. A thermocouple on the outer surface of
the sphere indicates 55°C 69 s after the sphere is inserted in the airstream.
Assume, and then justify, that the sphere behaves as a spacewise isothermal object
and calculate the heat transfer coefficient.

57 A solid steel sphere (AISI 1010), 300 mm in diameter, is coated with a dielectric

material layer of thickness 2 mm and thermal conductivity 0.04 W/m - K. The
C and is suddenly

coated sphere is initially at a uniform temperature of 500° .

Quenched in a large oil bath for which T, = 100°C and h = 3300 W/ar - K.
E{ma‘e the time required for the coated sphere temperature to reach}dﬁ“?.
Hint: Neglect the effect of energy storage in the dielectric material, since its

capacitance (peV) is small compared to that of the steel sphere.
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290 Chapter 5 Transient Conduction

58 A spherical lead bullet of 6 mm diameter is moving at a Mach number of
approximately 3. The resulting shock wave heats the air around the bullet to 70
K, and the average convection coefficient for heat transfer between the air and the
bullet is 500 W/n* - K. If the bullet leaves the barrel at 300 K and the time of
flight is 0.4 s, what is its surface temperature on impact?

5.9 Carbon steel (AISI 1010) shafts of 0.1 m diameter are heat treated in a gas-fired
furnace whose gases are at 1200 K and provide a convection coefficient of 100
W /m’ - K. If the shafts enter the furnace at 300 K, how long must they remainin
the furnace to achieve a centerline temperature of 800 K?

310 A thermal energy storage unit consists of a large rectangular channel, which i
well insulated on its outer surface and encloses alternating layers of the storage
material and the flow passage.

Storage
matenal

Hotgas T_ h

Ea‘fh layer of the storage material is an aluminum slab of width W =005
which is at an initial temperature of 25°C. Consider conditions for which ¢
storage unit is charged by passing a hot gas through the passages, with the &
temperature and the convection coefficient assumed to have constant values o
T = 600°C and h =100 W/a? - K throughout the channel. How long vil !
take to achieve 75% of the maximum possible energy storage? What B
temperature of the aluminum at this time?

511 A leaf spring of dimensions 32 mm by 10 mm by 1.1 m is sprayed Wil 5
anticorrosion coating which is heat treated by suspending the spring vertical) -
tlfle lengthwise direction and passing it through a conveyor oven maintained ;'“‘B
ar temperature of 175°C. Satisfactory coatings have been obtained 08 spﬂl'!’
imtially at 25°C, with an oven residence time of 35 min. The coating Suppherhff
medﬂthat the coating should be treated for 10 min above 2 ‘f‘“paamr; °

v How long should a spring of dimensions 76 mm by 35 mm! bmyaphll s
cl:r[na;n in t.he oven in oFder t0 properly heat treat the coating? The K :”d
k= a2 e ok Be spring material are p = 8131 kg /o, ¢, = 473 J/18"
512 A 3-mm-thick

’ + XIO-&

sides o
= b with an epoxy coating that must be cured 3
et 5'min, The production line for the curing W“’g:
1) heating in an oven with air at 175°C and a c08¥

above 150°C for a1
involves two steps: (
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coefficient of 20 W /m” - K, and (2) cooling in an enclosure with air at 25°C and a

convection coefficient of 10 W/n? - K.

(a) Assuming the panel is initially at 25°C, what is the minimum residence time
for the panel in the oven?

(b) What is the total elapsed time for the two-step curing operation if it is
completed when the panel has been cured and cooled to the safe-to-touch
temperature of 37°C?

513 A plane wall of a furnace is fabricated from plain carbon steel (k = 60 W/m - K,
p = 7850 kg /n?’, ¢ = 430 J/kg - K) and is of thickness L = 10 mm. To protect it
from the corrosive effects of the furnace combustion gases, one surface of the wall
is coated with a thin ceramic film which, for a unit surface area, has a thermal
resistance of R} , = 0.01 o - K/W. The opposite surface is well insulated from

the surroundings.

Ceramic film, — —— Carbon steel,
Ry l e kT
Furnace

gases
¢ Ly

111
D Tas F

1
L)x IZL

At furnace start-up the wall is at an initial temperature of 7; =300 K, and
combustion gases at 7, = 1300 K enter the furnace, providing a convection
coefficient of h = 25 W /o - K at the ceramic film. Assuming the film to have
negligible thermal capacitance, how long will it take for the inner surface of the
steel to achieve a temperature of 7, , = 1200 K? What is the temperature : gl -
the exposed surface of the ceramic film at this time?

314 In an industrial process requiring high dc currents, water-jacketed copper rods, 20
mm in diameter, are used to carry the current. The water, which flows continu-
ously between the jacket and the rod, maintains the rod temperature at 75°C
during normal operation at 1000 A. The electrical resistance of the rod is known
to be 0.15 @ /m. Problems would arise if the coolant water ceased to be available
(¢ because of a valve malfunction). In such a situation heat transfer from the
rod surface would diminish greatly, and the rod would eventually melt. Estimate
the time required for melting to occur.

315 A long wire of diameter D = 1 mm is submerged in an oil bath of temperature
T, = 25°C. The wire has an electrical resistance per unit length of R, = 0.01
Q/m. If a current of | = 100 A flows through the wire and the convection
Coefficient is h = 500 W /o - K, what is the steady-state temperature of the wire?
From the time the current is appiied, how long does it take for the wire to reach a

'emperature which is within 1°C of the steady-state value? The properties of the

: Wire are p = 8000 kg/nr, ¢ = 500 J/kg - K, and k =20 W/m - K.
16 Consid'.:r the system of Problem 5.1 where the temperature of the plate is
SPacewise isothermal during the transient process.
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292 Chapter 5 Transient Conduction

(a) Obtain an expression for the temperature of the plate as a function of time
T(t) in terms of g.', T_+h, L, and the plate properties p and ¢.
(b) Determine the thermal time constant and the steady-state temperature for 2
12-mm-thick plate of pure copper when 7, = 27°C, h = 50 W/m’ - K, and
q, = 5000 W /nr’. Estimate the time required to reach steady-state conditions
5.17 An electronic device, such as a power transistor mounted on a finned heat sink,
can be modeled as a spatially isothermal object with internal heat generation and
an external convection resistance.

(a) Consider such a system of mass M, specific heat c, and surface area A,, which
is initially in equilibrium with the environment at 7. Suddenly, the electronic
device is energized such that a constant heat generation Eg (W) occurs. Show
that the temperature response of the device is

) t
{-of 1]

where § = T — T(c0) and T(co) is the steady-state temperature correspond-
Ing to - oo; 6, =T — T(x); T, = initial temperature of device; R=
thermal resistance 1 /hA,; and C = thermal capacitance Mc.

(b) An electronic device, which generates 60 W of heat, is mounted on 28
aluminum heat sink weighing 0.31 kg and reaches a temperature of 100°C
ambient air at 20°C under steady-state conditions. If the device is initially &
20°C, what temperature will it reach 5 min after the power is switched on’

3.18 Before being injected into a furnace, pulverized coal is preheated by passisg
through a cylindrical tube whose surface is maintained at 7,,, = 1000°C. The co®

pellets are suspended in an airflow and are known to move with a speed of 3 m/s

If the pellets may be approximated as spheres of 1-mm diameter and it may % 321

assumed that they are heated by radiation transfer from the tube surface, ho¥

long must the tube be to heat coal entering at 25°C to a temperature of 600°C’ ;
the use of the lumped capacitance method justified?
3.19 A metal sphere of diameter D, which is at a uniform temperature T}, is suddenly
removef] from a furnace and suspended from a fine wire in a large room ——c

at a uniform temperature T, and the surrounding walls at a temperature T*”j

(a) Neglfcﬁng heat transfer by radiation, obtain an expression for the =
l‘eqmmd to cool the sphere to some temperature T. :

(b) Neglecting heat transfer by convection, obtain an expression for the i &
required to cool the sphere to the temperature T.

(c) How would You go about determining the time required for the sphere 10 o
zm:mm T if both convection and radiation are of the sa®®

(d) gﬂa‘:ﬁdﬁf m anodized aluminum sphere (¢ = 0.75) 50 mm in diameter, Wﬁ!d’
0 sl temperature of 7; = 800 K. Both the air and mesmround’-:ﬁ
are at 300 K, and the convection coefficient is 10 W/nr - K. Calculﬂ::snl .

compare the time it will tak ing the
of parts a, b, and « ¢ for the sphere to cool to 400 K using

Intel Corp. et al. Exhibg |
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heat to space. A novel heat rejection scheme that has been proposed for this
purpose is termed a Liquid Droplet Radiator (LDR). The heat is first transferred
to a high vacuum oil, which is then injected into outer space as a stream of small
droplets. The stream is allowed to traverse a distance L, over which it cools by
radiating energy to outer space at absolute zero temperature. The droplets are
then collected and routed back to the space station.

Droplet Droplet
injector collector
T Ty ‘
(o) o) 0@ © .
—E; v §€>@@9@9@
i (9] @E ) o @ © 0 4 025
! L —
— T
Cold oil return

Consider conditions for which droplets of emissivity & =095 and diameter
D =05 mm are injected at a temperature of 7, = 500 K and a velocity of
V'=0.1 m/s. Properties of the oil are p = 885 kg/nr’, ¢ = 1900 J/kg - K, and
k = 0145 W/m - K. Assuming each drop to radiate to deep space at T,,, = 0 K,
determine the distance L required for the droplets to impact the collector at a
final temperature of T, = 300 K. What is the amount of thermal energy rejected
by each droplet?

521 Long metallic rods of circular cross section are heat treated by passing an electric

current through the rods to provide uniform volumetric heat generation at a rate g

(W/nr'). The rods are of diameter D and are placed in a large chamber whose

walls are maintained at the same temperature T, as the enclosed air. Convection

from the surface of the rods to the air is characterized by the coefficient A.

(2) Obtain an expression that could be used to determine the steady-state
temperature of the rod.

(b) Neglecting radiation and prescribing an initial (¢ = 0) rod temperature of
T, = T, obtain the transient temperature response of the rod.

522 A chip that is of length L = 5 mm on a side and thickness = 1 mm is encased in

a ceramic substrate, and its exposed surface is convectively cooled by a dielectric
liquid for which 4 = 150 W/f Kand T, = 20°C.
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294 Chapter 5 Transient Conduction

In the off-mode the chip is in thermal equilibrium with the coolant (7, =T,)
When the chip is energized, however, its temperature increases until a new
steady-state is established. For purposes of analysis, the energized chip is chara
terized by uniform volumetric heating with § =9 X 10° W/m’. Assuming a
infinite contact resistance between the chip and substrate and negligible conduc-
tion resistance within the chip, determine the steady-state chip temperature T,
Following activation of the chip, how long does it take to come within 1°C of this
temperature? The chip density and specific heat are p = 2000 kg/nr and ¢ = 700
J/kg - K, respectively.

5.23 Consider the conditions of Problem 5.22. In addition to treating heat transfer by
convection directly from the chip to the coolant, a more realistic analysis would
account for indirect transfer from the chip to the substrate and then from the
substrate to the coolant. The total thermal resistance associated with this indirest
route includes contributions due to the chip-substrate interface (a contact resi-
tance), multidimensional conduction in the substrate, and convection from the
surface of the substrate to the coolant. If this total thermal resistance is R, = 20
K/W, what is the steady-state chip temperature T,? Following activation of
chip, how long does it take to come within 1°C of this temperature?

One-Dimensional Conduction: The Plane Wall

5.24 Consider the series solution, Equation 5.39, for the plane wall with convection
Calculate midplane (x* = 0) and surface (x* = 1) temperatures §* for Fo =01
and 1, using Bi = 0.1, 1, and 10. Consider only the first four eigenvalues. Based
on these results discuss the validity of the approximate solutions, Equations 34
and 5.41.

Consider the one-dimensional wall shown in the sketch which is initially 32

unifo'n.n temperature 7, and is suddenly subjected to the convection boundar?
condition with a fluid at e

5.25

Wal, T(z0) =T,
k, a

r Insulation

For a particular w

a[L case 1 = B lw s B
(L, 1) = 315°C » the temperature at x = L, after 4

Another wall, case 2, has different thickness and thermd

conditions as shown below.
CASE B
Lim) a (o /) k (W/m - K) T,(°C) T, (°0 _MEL/
I 0.10 15 x 106 50 300 400 200
. 00 Bx10¢ 0 30 20 M e
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How long will it take for the second wall to reach 28.5°C at the position x = L,?
Use as the basis for analysis, the dimensionless functional dependence for

transient temperature distribution as expressed in Equation 5.26.

526 A large aluminum (2024 alloy) plate of thickness 0.15 m, initially at a uniform
temperature of 300 K, is placed in a furnace having an ambient temperature of
800 K for which the convection heat transfer coefficient is estimated to be 500
W/’ - K.
(a) Determine the time required for the plate midplane to reach 700 K.
(b) What is the surface temperature of the plate for this condition?
(¢) Repeat the calculations if the material were stainless steel (type 304).

5.27 After a long, hard week on the books, you and your friend are ready to relax. You
take a steak 50 mm thick from the freezer. How long do you have to let the good
times roll before the steak has thawed? Assume that the steak is initially at —6°C,
that it thaws when the midplane temperature reaches 4°C, and that the room
temperature is 23°C with a convection heat transfer coefficient of 10 W /m* - K.
Treat the steak as a slab having the properties of liquid water at 0°C. Neglect the
heat of fusion associated with the melting phase change.

528 A one-dimensional plane wall with a thickness of 0.1 m initially at a uniform
temperature of 250°C is suddenly immersed in an oil bath at 30°C. Assuming the
convection heat transfer coefficient for the wall in the bath is 500 W/m’ - K,
calculate the surface temperature of the wall 9 min after immersion. The proper-
ties of the wall are k = 50 W/m - K, p = 7835 kg/nr, and ¢ = 465 J/kg - K.

329 Consider the thermal energy storage unit of Problem 5.10, but with a masonry
material of p = 1900 kg/n’, ¢ = 800 J/kg - K, and k = 0.70 W/m - K used in
place of the aluminum. How long will it take to achieve 75% of the maximum
possible energy storage? What are the maximum and minimum temperatures of
the masonry at this time?

330 The wall of a rocket nozzle is of thickness L = 25 mm and is made from a high
alloy steel for which p = 8000 kg/n?, ¢ = 500 J/kg - K, and k =25 W/m - K.

ing a test firing, the wall is initially at 7, = 25°C and its inner surface is
exposed to hot combustion gases for which & = 500 W/mr’ - Kand T, = 1750°C.
The outer surface is well insulated.

— Nozzle wall

P St S
—>

Insulation J s ¥

If the way must be maintained at least 100°C below its melting point of
Top = 1600°C, what is the maximum allowable firing time #,? The diameter of the

St {n"’“le is much larger than its thickness L.
= 0 a tempering process, glass plate, which is initially at a uniform temperature 7,
's cooled by suddenly reducing the temperature of both surfaces to 7. The plate is
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296 Chapter 5 Transient Conduction

20 mm thick, and the glass has a thermal diffusivity of 6 X 107 m’/s.

(a) How long will it take for the midplane temperature to achieve 50% of its
maximum possible temperature reduction?

(b) If (T, — T,) = 300°C, what is the maximum temperature gradient in the glass
at the above time?

5.32 Copper-coated, epoxy-filled fiberglass circuit boards are treated by heating a stack
of them under high pressure as shown in the sketch. The purpose of the
pressing-heating operation is to cure the epoxy which bonds the fiberglass sheets
imparting stiffness to the boards. The stack, referred to as a book, is comprised of
10 boards and 11 pressing plates which prevent epoxy from flowing between the
boards and impart a smooth finish to the cured boards. In order to perform
simplified thermal analyses, it is reasonable to approximate the book as having a0
effective thermal conductivity (k) and an effective thermal capacitance (pc,)
Calculate the effective properties if each of the boards -and plates has a thickness
of 2.36 mm and the following thermophysical properties: board (b) p, = 100
kg/m', ¢, , = 1500 I /kg - K, k, = 0.30 W/m - K; plate (p) p, = 5000 kg/’
Cp=480J/kg K, k,=12W/m - K.

Applied force

L (==

circulating fluid

|
Pl — —Metal pressing
x \ plate
L RS
~50 mm G
L . RN

— - Circuit
<o 123 g '_ = board

LPlaten

5.33 Circuit boards are treate

Hlustrated in Problem 5.32. The platens at the top and bottom of the stac
ntged at a uniform temperature by a circulating fluid. The purpost of r.he
En“:lss_mg—hea[}ng Operation is to cure the epoxy which bonds the fiberglass e
has S Suﬁne?‘s to the boards. The cure condition is achieved when the &%

been maintained at or above 170°C for at least 5 min The effect®

d by heating a stack of them under high prfﬁ;:f;

lher:'OPhYchal properties of the stack or book (boards and metal pressing 55

are k = 0613 W/m - K and Pe, =273 X 10° J /oY - K.

(a) If the book is initially at 15°
platens are suddenly brought 1
elapsed time ¢, required for
temperature of 170°C

: : the
C and, following application of pressurs, &
0 a uniform temperature of 190°C, Cﬂﬂﬂa‘ew
the midplane of the book to reach the ¢

reduced
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Problems 297

One-Dimensional Conduction: The Long Cylinder

534 Cylindrical steel rods (AISI 1010), 50 mm in diameter, are heat treated by
drawing them through an oven 5 m long in which air is maintained at 750°C. The
rods enter at 50°C and achieve a centerline temperature of 600°C before leaving.
For a convection coefficient of 125 W /n?* - K, estimate the speed at which the
rods must be drawn through the oven.

3.35 Estimate the time required to cook a hot dog in boiling water. Assume that the
hot dog is initially at 6°C, that the convection heat transfer coefficient is 100
W/nr - K, and that the final temperature is 80°C at the centerline. Treat the hot
dog as a long cylinder of 20-mm diameter having the properties: p = 880 kg/n,
¢=3350J/kg - K, and k = 0.52 W/m - K.

3.36 A long rod of 60-mm diameter and thermophysical properties p = 8000 kg/m’,
¢=3500J/kg - K and k = 50 W/m - K is initially at a uniform temperature and
is heated in a forced convection furnace maintained at 750 K. The convection
coefficient is estimated to be 1000 W/m’ - K. At a certain time, the surface
temperature of the rod is measured to be 550 K. What is the corresponding center

temperature of the rod?

537 A long cylinder of 30-mm diameter, initially at a uniform temperature of 1000 K,
is suddenly quenched in a large, constant-temperature oil bath at 350 K. The
cylinder properties are k=17 W/m - K, ¢=1600 J/kg - K, and p = 400
kg/nr', while the convection coefficient is 50 W/m’ - K. Calculate the time
required for the surface of the cylinder to reach 500 K.

338 A long pyroceram rod of diameter 20 mm is clad with a very thin metallic tube for
mechanical protection. The bonding between the rod and the tube has a thermal
contact resistance of R, A = 0.12 m - K/W.

Thin metallic tube

Ceramic rod
Bonding interface

)
/

D =20mm

If the rod is initially at a uniform temperature of 900 K and is suddenly cooled by
a fluid at T, = 300 K and k=100 W/n? - K, at what time will the rod
centerline reach 600 K?

2 A long rod 40 mm in diameter, fabricated from sapphire (aluminum oxide) and
nitially at a uniform temperature of 800 K, is suddenly exposed to a ct:olmg
Process with a fluid at 300 K having a heat transfer coefficient of 16_00 W/ or - K.
Alter 35 s of exposure to the cooling process, the rod is wrapped in insulation and
€Xperiences no heat losses. What will be the temperature of the rod after a long
Period of time?

A long bar of 70-mm diameter and initially at 90°C is cooled by immersing it in a
Water bath which is at 40°C and provides a convection coefficient of 20 W /nr - K.
The thermophysical properties of the bar are p = 2600 kg/mr', c = 1030 I /kg - K,
ad k =350 W/m - K_
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298 Chapter 5 Transient Conduction

(a) How long should the bar remain in the bath in order that, when it is removed (
and allowed to equilibrate while isolated from any surroundings, it achieves 4
uniform temperature of 55°C?

(b) What is the surface temperature of the bar when it is removed from the bath’ {

541 A long plastic rod of 30-mm diameter (k=0.3 W/m- K and pec, = 1040
ki/m' - K) is uniformly heated in an oven as preparation for a pressing oper:
tion. For best results, the temperature in the rod should not be less than 200°C 546
To what uniform temperature should the rod be heated in the oven if, for the i
worst case, the rod sits on a conveyor for 3 min while exposed to convectios I
cooling with ambient air at 25°C and with a convection coefficient of 8 W/n - K! |
A further condition for good results is a maximum-minimum temperature differ '

ence of less than 10°C. Is this condition satisfied and. if not, what could you doto !
satisfy it? 547 |

One-Dimensional Conduction: The Sphere

5.42 In heat treating to harden steel ball bearings (¢ = 500 J /kg - K, p = 7800 kg/m,
k =50 W/m - K), it is desirable to increase the surface temperature for  shor
time without significantly warming the interior of the ball. This type of heating
can be accomplished by sudden immersion of the ball in a molten salt bath wilh
T, =1300K and h = 5000 W /n? - K. Assume that any location within the ball
whose temperature exceeds 1000 K will be hardened. Estimate the time require
to harden the outer millimeter of a ball of diameter 20 mm, if its initid
temperature is 300 K.

343 A sphere of 80-mm diameter (k = 50 W/m - K and a = 1.5 x 107* of/9) ¥
mitially at a uniform, elevated temperature and is quenched in an oil bath
maintained at 50°C. The convection coefficient for the cooling process is 1000
W/nr - K. At a certain time, the surface temperature of the sphere is measured 10
be 150°C. What is the corresponding center temperature of the sphere? 548

5.44 A cold air chamber is proposed for quenching steel ball bearings of diametet

D = 0.2 m and initial temperature T, = 400°C. Air in the chamber is maint

at ~13%C by a refrigeration system, and the steel balls pass through the cham®
on a conveyor belt. Optimum bearing production requires that 70% of the b
thermal energy content of the ball above —15°C be removed. Radiation efiee®
may be neglev;ted, and the convection heat transfer coefficient within the cha®
15 1000 W/n?' - K. Estimate the residence time of the balls within the chambe
and recommend a drive velocity of the conveyor. The following properties may
used for the steel: k = S0W/m-K, a =2 X105 n?/s, and c=450}/ks'k

545

Stainless stee] (AIST : ' . ed ©
850°C, are har, P 304) ball.beanng,s: which have been umf.orm_ly he 3

The ball diameter is
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Problems 299

(a) If quenching is to occur until the surface temperature of the balls reaches
100°C, how long must the balls be kept in the oil? What is the center
temperature at the conclusion of the cooling period?

(b) If 10,000 balls are to be quenched per hour, what is the rate at which energy
must be removed by the oil bath cooling system in order to maintain its
temperature at 40°C?

546 A spherical hailstone that is 5 mm in diameter is formed in a high altitude cloud
at —30°C. If the stone begins to fall through warmer air at 5°C, how long will it
take before the outer surface begins to melt? What is the temperature of the
stone’s center at this point in time, and how much energy (J) has been transferred
to the stone? A convection heat transfer coefficient of 250 W /oY - K may be
assumed, and the properties of the hailstone may be taken to be those of ice.

547 A sphere 30 mm in diameter initially at 800 K is quenched in a large bath having
a constant temperature of 320 K with a convection heat transfer coefficient of 75
W/n? - K. The thermophysical properties of the sphere material are: p = 400
kg/m’, ¢ = 1600 J/kg - K, and k = 1.7 W/m - K.

(a) Show, in a qualitative manner on 7-¢ coordinates, the temperatures at the
center and at the surface of the sphere as a function of time.

(b) Calculate the time required for the surface of the sphere to reach 415 K.

(¢) Determine the heat flux (W /m?) at the outer surface of the sphere at the time
determined in part b.

(d) Determine the energy (J) that has been lost by the sphere during the process
of cooling to the surface temperature of 415 K.

(¢) At the time determined by part b, the sphere is quickly removed from the bath
and covered with perfect insulation, such that there is no heat loss from the
surface of the sphere. What will be the temperature of the sphere after a long
period of time has elapsed?

348 Spheres A and B are initially at 800 K, and they are simultaneously quenched in

large constant temperature baths, each having a temperature of 329 K. The
following parameters are associated with each of the spheres and their cooling

Processes,
SPHERE A SPHERE B

Diameter (mm) 300 30

Density (kg /m?) 1600 400

Specific heat (kJ /kg - K) 0.400 1.60
Thermal conductivity (W /m - K) 170 1.70
Convection coefficient (W/ni* - K) 5 s
-_‘__‘——n—__

(2) Show in a qualitative manner, on T versus ¢ coordinates, the temperatures at
the center and at the surface for each sphere as a function of time. Briefly
explain the reasoning by which you determine the relative positions of the
curves. 7

®) Calculate the time required for the surface of each sphere o reach 415 K.
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300 Chapter 5 Transient Conduction

(c) Determine the energy that has been gained by each of the baths during the
process of the spheres cooling to 415 K.

5.49 The convection coefficient for flow over a solid sphere may be determined by
submerging the sphere, which is initially at 25°C, into the flow, which is at 75°C,
and measuring its surface temperature at some time during the transient heating
process. The sphere has a diameter of 0.1 m, and its thermal conductivity and
thermal diffusivity are 15 W/m - K and 1073 o /s, respectively. If the convec-
tion coefficient is 300 W/m’ - K, at what time will a surface temperature of 60°C
be recorded?

Semi-infinite Media

5.50 Two large blocks of different materials, such as copper and concrete, have bee
sitting in a room (23°C) for a very long time. Which of the two blocks, if either
will feel colder to the touch? Assume the blocks to be semi-infinite solids and your
hand to be at a temperature of 37°C.

5.51 Asphalt pavement may achieve temperatures as high as 50°C on a hot summer
day. Assume that such a temperature exists throughout the pavement, when
suddenly a rainstorm reduces the surface temperature to 20°C. Calculate the fotal
amount of energy (J/m’) that will be transferred from the asphalt over a 3(-min
period in which the surface is maintained at 20°C.

352 A fumnace wall is fabricated from fireclay brick (a = 7.1 X 10”7 m'/s), aod i8
inner surface is maintained at 1100 K during furnace operation. The “u,ls
deggnf:d according to the criterion that, for an initial temperature of 300 K, 1t
midpoint temperature will not exceed 325 K after 4 h of furnace operation. Wh!
is the minimum allowable wall thickness?

5.53 A block of material of thickness 20 mm with known thermophysical propertis
(k=15 W/m-K and a =20 x 10~5 u?/s) is imbedded in the wall of 3
channel that is initially at 25°C and is suddenly subjected to a convection proce
with gases at 325°C. A thermocouple (TC) is installed 2 mm below the surface o
the channel wall for the purpose of sensing the temperature— time history (follo™
W8 start-up of the hot gas flow) and thereby determining the transient beat X
At an elapsed time of 10 s, the thermocouple indicates a temperature of 167°C

No
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)

Intel Corp. etal. Exhiby

5.5¢

3.5

35




ths during the

letermined by
ch is at 75°C,
nsient heating
1ductivity and
If the convec
-ature of 60°C

>te, have been
ocks, if either,
plids and your

3 hot summer
vement, when
ulate the total
over a 30-mi

1’ /), and i
. The wall

of 300 K, 18
eration. What

cal propert®
the wall of 8
ection process
the surface of
story (follo®
ient heat flux
are of 167°C

Problems 301

Calculate the corresponding surface convective heat flux assuming the block
behaves as a semi-infinite solid. Compare this result with that obtained from the

Heisler method of solution.

554 A tile-iron consists of a massive plate maintained at 150°C by an imbedded
electrical heater. The iron is placed in contact with a tile to soften the adhesive,
allowing the tile to be easily lifted from the subflooring. The adhesive will soften
sufficiently if heated above 50°C for at least 2 min, but its temperature should not
exceed 120°C to avoid deterioration of the adhesive. Assume the tile and subfioor
to have an initial temperature of 25°C and to have equivalent thermophysical

properties of k = 0.15 W/m - K and pc, = 1.5 X 10° J/m’ - K.

s=—Tile, 4—mm thickness

M%% Subfiooring

(a) How long will it take a worker using the tile-iron to lift a tile? Will the
adhesive temperature exceed 120°C?

(b) If the tile-iron has a square surface area 254 mm to the side, how much energy
has been removed from it during the time it has taken to lift the tile?

555 The manufacturer of the heat flux gage of the type illustrated in Problem 1.8
claims the time constant for a 63.2% response to be T = (4d2pcp)/1r3k, where p,
¢,» and k are the thermophysical properties of the gage material and d is its
thickness. Not knowing the origin of this relation, your task is to model the gage
considering the two extreme cases illustrated below. In both cases, the gage,
initially at a uniform temperature T}, is exposed to a sudden change in surface
temperature, (0, 1) = T,. For case a the backside of the gage is insulated, and for
case b the gage is imbedded in a semi-infinite solid having the same thermophysi-
cal properties as those of the gage.

= Same material
as gage

Thin film
thermocouples

(a) (®)

Develop relationships for predicting the time constant of the gage for the two
Cases and compare them to the manufacturer’s relation. What conclusion can you
draw from this analysis regarding the transient response of gages for different

: applications?

s A simple procedure for measuring surface convection heat transfer t_:oeﬂiciegts
involves coating the surface with a thin layer of material having a precisc melting
Pomnt temperature. The surface is then heated and, by determining the time

fequired for melting to occur, the convection coefficient is determined. The
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302 Chapter 5 Transient Conduction

following experimental arrangement uses the procedure to determine the conver
tion coefficient for gas flow normal to a surface. Specifically, a long copper rod is
encased in a super insulator of very low thermal conductivity, and a very thn
coating is applied to its exposed surface.

Gasflow T, &

-+— Surface coating

| Copper rod,
k = 400 Wim-K, « = 10 *m%s

Super insulator

If the rod is initially at 25°C and gas flow for which h = 200 W/af - K ad
T, =300°C is initiated, what is the melting point temperature of the coating i
melting is observed to occur at ¢ = 400 s?

5.57 An insurance company has hired you as a consultant to improve their understand
ing of burn injuries. They are especially interested in injuries induced whes 2
portion of a worker’s body comes into contact with machinery that is at elevated
temperatures in the range of 50 to 100°C. Their medical consultant informs them
that irreversible thermal injury (cell death) will occur in any living tissue thal ¥
maintained at T > 48°C for a duration Ar> 10 s. They want informatio
concerning the extent of irreversible tissue damage (as measured by distance [0
lhe' skin surface) as a function of the machinery temperature and the time dum?%
which contact is made between the skin and the machinery. Can you help thes
Assume that living tissue has a normal temperature of 37°C, is isotropic,
constant properties equivalent to those of liquid water.

ey o procedure for determining the thermal conductivity of a solid material iﬂ"o"f.s
embedding a thermocouple in a thick slab of the solid and measuring the resp™
;.O a prescribed change in temperature at one surface. Consider an mﬂge‘:;
bor which the thermocouple is embedded 10 mm from a surface that is S“dd tsﬂi

rought to a temperature of 100°C by exposure to boiling water. If the m
limg:ature of the slab was 30°C and the thermocouple measures 2 [WWW
. d C 2 min after the surface is brought to 100°C, what is ifs thermdl
Lonductivity? The density and specific heat of the solid are known 10 b¢
kg/m and 700 J /kg - K_

5.59 OA;: eltzgu'ic heater in the form of a sheet is placed in good contact with the s_urfmf
t @ thuck slab of Bakelite having a uniform temperature of 300 K. Determi®®
hecamtcperthasm of the sl:{b at the surface and at a depth of 25 mm, 10 mft aﬁ:;d
2500 W /m?m energized and is providing a constant heat flux to the surf

5.60 : : :
S 058 et ity 5610+ o/l

m - initi y A
s imtially at a uniform temperature of 325°C. S“dl ransier

surface i .
ace 1s exposed to a coolant at 15°C for which the convection he2

coeficient is 100 W/n7 - K. Determine the tnres at the surface 593 8°
after 3 min has elapsed.

depth of 45 mm
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Problems 303

561 A thick oak wall initially at 25°C, is suddenly exposed to combustion products at
800°C. Determine the time of exposure required for the surface to reach the
ignition temperature of 400°C, assuming the convection heat transfer coefficient
between the wall and products to be 20 W/n?’ - K.

562 It is well known that, although two materials are at the same temperature, one
may feel cooler to the touch than the other. Consider thick plates of copper and
glass, each at an initial temperature of 300 K. Assuming your finger to be at an
initial temperature of 310 K and to have thermophysical properties of p = 1000
kg/m’, ¢ =4180 J/kg - K and k = 0.625 W/m - K, determine whether the
copper or the glass will feel cooler to the touch.

563 Two stainless steel plates (p = 8000 kg/mo?’, ¢ = 500 J/kg - K, k = 15W/m - K),
each 20 mm thick and insulated on one surface, are initially at 400 and 300 K
when they are pressed together at their uninsulated surfaces. What is the tempera-

ture of the insulated surface of the hot plate after 1 min has elapsed?

Multidimensional Conduction

364 A long steel (plain carbon) billet of square cross section 0.3 m by 0.3 m, initially
at a uniform temperature of 30°C, is placed in a soaking oven having a tempera-
ture of 750°C. If the convection heat transfer coefficient for the heating process is
100 W/ - K, how long must the billet remain in the oven before its center
temperature reaches 600°C?

365 Fireclay brick of dimensions 0.06 m X 0.09 m X 0.20 m is removed from a kiln at
1600 K and cooled in air at 40°C with h = 50 W/m* - K. What is the tempera-
ture at the center and at the corners of the brick after 50 min of cooling?

566 A cylindrical copper pin 100 mm long and 50 mm in diameter is initially at a
uniform temperature of 20°C. The end faces are suddenly subjected to an intense
heating rate that raises them to a temperature of 500°C. At the same time, the
cylindrical surface is subjected to heating by gas flow with a temperature 500°C
and a heat transfer coefficient 100 W/m’ - K.

Gas flow

2%

™

4+—End face

(3) Determine the temperature at the center point of the cylinder 8 s after sudden
application of the heat.
() Considering the parameters governing the temperature distribution in tran-
sient heat diffusion problems, can any simplifying assumptions be justified in
67 R Uyzing this particular problem? Explain bricfly. :
¢calling that your mother once said that meat should be cooked until every
Portion has attained a temperature of 80°C, how long will it take to cook a
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304 Chapter 5 Transient Conduction

2.25-kg roast? Assume that the meat is initially at 6°C and that the oven
temperature is 175°C with a convection heat transfer coefficient of 15 W/m' -k
Treat the roast as a cylinder with properties of liquid water, having a diameter
equal to its length.

5.68 A long rod 20 mm in diameter is fabricated from alumina (polyerystalline
aluminum oxide) and is initially at a uniform temperature of 850 K. The rod i
suddenly exposed to fluid at 350 K with /4 = 500 W/’ - K. Estimate the
centerline temperature of the rod after 30 s at an exposed end and at an axd
distance of 6 mm from the end.

Finite-Difference Solutions

5.69 The stability criterion for the explicit method requires that the coefficient of th
T} term of the one-dimensional, finite-difference equation be zero or posifie
Consider the situation for which the temperatures at the two neighboring nods
(171, T7.,) are 100°C while the center node (T?) is at 50°C. Show that o
values of Fo > 1, the finite-difference equation will predict a value of T7"' tha
violates the second law of thermodynamics.

3.70 A thin rod of diameter D is initially in equilibrium with its surroundings, 2 la
vacuum enclosure at temperature, T... Suddenly an electrical current / (A)%
passed through the rod having an electrical resistivity p, and emissivity ¢ O
pertinent thermophysical properties are identified in the sketch. Derive
transient, finite-difference equation for node m.

y

571 A tantalum rod of diameter 3 mm and length 120 mm is supported DY o
electrodes within a large vacuum enclosure. Initially the rod is in equilibiu® e
the el_eclrodes and its surroundings, which are maintained at 300 K. Su‘jdﬂ’]_y'ﬂ.-
electnca! current, / = 80 A, is passed through the rod. Assume the ermssivity &
the rod is 0.1 and the electrical resistivity is 95 x 10-* @ - m. Use Table AL
gb@n the other thermophysical properties required in your solution s

nite-difference method with a space increment of 10 mm.

Rod

Electrode, £
30k
Sur.roundings‘ L
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Problems 305

(a) Estimate the time required for the midlength of the rod to reach 1000 K.

(b) Determine the steady-state temperature distribution and estimate approxi-
mately how long it will take to reach this condition.

5.72 A one-dimensional slab of thickness 2L is initially at a uniform temperature T,.
Suddenly, electric current is passed through the slab causing a uniform volumetric
heating § (W /mr’). At the same time, both outer surfaces (x = + L) are subjected
to a convection process at T, with a heat transfer coefficient A.

|
|
£

it
-L | +L
s
Write the finite-difference equation expressing conservation of energy for node 0
located on the outer surface at x = — L. Rearrange your equation and identify
any important dimensionless coefficients.

573 A wall 0.12 m thick having a thermal diffusivity of 1.5 X 107° m’ /s is initially at

. a uniform temperature of 85°C. Suddenly one face is lowered to a temperature of

* 20°C, while the other face is perfectly insulated. Using a numerical method with
space and time increments of 30 mm and 300 s, respectively, determine the
temperature distribution within the wall after 45 min have elapsed.

574 A large plastic casting with thermal diffusivity 6.0 X 10”7 o /s is removed from
its mold at a uniform temperature of 150°C. The casting is then exposed to a
high-velocity airstream such that the surface experiences a sudden change in
temperature to 20°C. Assuming the casting approximates a semi-infinite medium
and using a finite-difference method with a space increment of 6 mm, estimate the
temperature at a distance 18 mm from the surface after 3 min have elapsed. Verify
your result by comparison with the appropriate analytical solution.

375 A very thick plate with thermal diffusivity 5.6 X 10~ ° o’ /s and thermal conduc-
tivity 20 W /m - K is initially at a uniform temperature of 325°C. Suddenly, the
surface is exposed to a coolant at 15°C for which the convection heat transfer
coefficient is 100 W /m? - K. Using the finite-difference method with a space
increment of Ax = 15 mm and a time increment of 18 s, determine temperatures
at the surface and at a depth of 45 mm after 3 min have elapsed.

376 Consider the fuel element of Example 5.6. Initially, the clement is at a uniform
emperature of 250°C with no heat generation. Suddenly, the element is inserted
inito the reactor core causing a uniform volumetric heat generation rate of § = 10°
W/mi_ The surfaces are convectively cooled with T, = 250°C and h = 11.00
W/w . K Using the explicit method with a space increment of 2 mm, determine
the temperature distribution 1.5 s after the element is inserted into the core.

o A Plane wall of thickness 100 mm with a uniform volumetric heat generation of
4=15 x 10¢ W/n? is exposed to convection conditions of T, = 30°C and
"= 1000 W/m 'K on both surfaces. The wall is maintained under steady-state
conditions when, suddenly, the heat generation level (§) is reduced to zero. T'hs
lhfrmal diﬁ'uSiVity and thermal conductivity of the wall material are 1.6 X 10~

/s and 75 W/m - K. A space increment of 10 mm is suggested.
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306 Chapter 5 Transient Conduction

(a) Estimate the midplane temperature 3 min after the generation has bee
switched off.
(b) Plot on T-x coordinates the temperature distribution obtained in part (3)
Show also the initial and steady-state temperature distributions for the wall
5.78 For the conditions described in Example 5.6, use the finite-difference method to
estimate the temperature at the midplane (x = 0) 20 s after the power level hs
been changed from ¢, to §,.
5.79 A thin circular disk is subjected to induction heating from a coil, the effect of
which is to provide a uniform heat generation within a ring section as shown
Convection occurs at the upper surface, while the lower surface is well insulated
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@ De.ﬁw: the transient, finite-difference equation for node m, which is within ¢
region subjected to induction heating.

(b) On T-r coordinates sketch, in a qualitative manner, the steady-state temp™

ture distribution, identifying important features.

>80 An electrical cable, experiencing a uniform volumetric generation , is half butkd

pm;'(;:s; (Twlfilj)].g material while the upper surface is exposed to 2 convector
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- Eit;nm;? the stability eriterion for each of the finite-difference equi®®
¥ the most restrictive criterion
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Problems 307

5.81 One end of a stainless steel (AISI 316) rod of diameter 10 mm and length 0.16 m
is inserted into a fixture maintained at 200°C. The rod, covered with an insulating
sleeve, reaches a uniform temperature throughout its length. When the sleeve is

removed, the rod is subjected to ambient air at 25°C such that the convection heat
transfer coefficient is 30 W/m’ - K. Using a numerical technique, estimate the

time required for the midlength of the rod to reach 100°C.

5.82 The cross section of an oven wall is composed of 30-mm-thick insulation sand-

wiched between two thin (1.5-mm-thick) stainless steel sheets. Under steady-state
conditions, the oven is operating with an inside air temperature of T, , = 150°C
and an ambient air temperature of T, , = 20°C with h, = 100 W/m’ - K and
h, =10 W/m’ - K. When the oven heater level is changed and the fan speed
changed to substantially increase air circulation within the oven, the inside surface
of the oven experiences a sudden temperature change to 100°C. The insulation
has a thermal conductivity of 0.03 W/m - K and a thermal diffusivity of 7.5 X
1077 m’/s. In your finite-difference solution, use a space increment of 6 mm.
Assume that the effect of the stainless steel sheets is negligible and that the
outside convection heat transfer coefficient h, remains unchanged. Estimate the
time required for the oven wall to approximate steady-state conditions after

the inner wall temperature is changed to 100°C.
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e Two very long (in the direction normal to the page) bars having the prescribed

U}itial temperature distributions are to be soldered together (see next page). At
tme 7 = 0, the m = 3 face of the copper (pure) bar contacts the m = 4 face of_the
steel (AISI 1010) bar. The solder and flux act as an interfacial layer of negligible
thickness and effective contact resistance R, =2 X 107° o’ - K/W.

Initial Temperatures (K)

n/m 1 2 3 - ; -

1 00 700 700 1000 %0 800
:

3 200 800 700 1000 900 -
3 e 200 700 1000 900 -

(@) Derive the explicit, finite-difference equation in terms of Fo and Bi =
Ax/kR; for T, , and determine the corresponding stability criterion.
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308 Chapter 5 Transient Conduction

Interface with
(soider and flux

Copper, —= s=+—— Steel,
pure AlSI 1010
S 203 33
1,2 2 2 s
¥y, n
T__,_ 1,1 2,1 3,1

Im
Ax = Ay = 20 mm

(b) Using Fo = 0.01, determine T, , one time step after contact is made. What 5
Ar? Is the stability criterion satisfied?

3.84 Referring to Example 5.7, Comment 4, consider a sudden exposure of the surf:d;
to large surroundings at an elevated temperature (7, ) and to convection (T M

(a) Derive the explicit, finite-difference equation for the surface node in terms®
Fo, Bi, and Bi,.

(b) Obtain the stability criterion for the surface node. Does this criterion chif¥
with time? Is the criterion more restrictive than that for an interior node’

(¢) A thick slab of material (k = 1.5 W/m - K, a = 7 x 10”7 oP/5, f’f'%‘
initially at a uniform temperature of 27°C, is suddenly exposed 10 W;
surroundings at 1000 K. Neglecting convection and using 2 space mcm:::;
of 10 mm, determine temperatures at the surface and 30 mm from the'
after an elapsed time of 1 min.

3.85 Consider the system of Problem 4.58. Initially with no flue gases flowing, (¢ :iﬁ

(@=355x10"°6 o7’ /s) are at a uniform temperature of 25°C. Using e lmpmr!
finite-difference method with 2 time increment of 1 h, find the tempee
distribution in the wall 1, 2, 5, and 20 h after introduction of the flue 56
C?nsider the system of Problem 4,66, Initially, the ceramic plate (& = 15X 131::1
m'/s) is at a uniform temperature of 30°C, and suddenly the elecmc‘q?] hﬂﬂé
elements are energized. Using the implicit, finite-difference method, estim** o
time required for the difference between the surface and initial temperam‘“
reach 95% of the difference for steady-state conditions. If you write 3 i
Program, use a time increment of 2 s; otherwise use 50 s.

: - ! yed
5.87 Consider the bonding operation described in Problem 3.79, wl?gch was ﬂﬂtzlw

5.86

the film for a prescribed iod of & . ient heating
f ent
shown in the sketch_ TR s Cucaing thr o
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The strip is initially at 25°C and the laser provides a uniform flux of 85,000

W/n’ over a time interval of Az,, = 10 s. The system dimensions and thermo-

physical properties remain the same, but the convection coefficient to the ambient

air at 25°C is now 100 W/m? - K.

(@) Using an implicit finite-difference method with Ax = 4 mm and Ar =1 s,
obtain temperature histories for 0 <t < 30 s at the center and film edge,
T(0, 1) and TY( wy /2, t), respectively, to determine if the adhesive is satisfacto-
rily cured above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

(b) Validate your program code by comparing it against the steady-state results of
Problem 3.79. What type of analytical solution would you seek in order to test
the proper transient behavior of your code?

388 Circuit boards are treated by heating a stack of them under high pressure as

Mustrated in Problem 532 and described further in Problem 5.33. A finite-
difference method of solution is sought with two additional considerations. First,
the book is to be treated as having distributed, rather than lumped characteristics,
Py using a grid spacing of Ax = 2.36 mm with nodes at the center of the
'ndividual circuit board or plate. Second, rather than bringing the platens to
190°C in one sudden change, the heating schedule T,(1) shown below is to be
ised in order to minimize excessive thermal stresses induced by rapidly changing
thermal gradients in the vicinity of the platens.
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310 Chapter 5 Transient Conduction

(a) Using a time increment of As = 60 s and the implicit method, find the
temperature history of the midplane of the book and determine whether
curing will occur (170°C for 5 min).

(b) Following the reduction of the platen temperatures to 15°C (7 = 50 min), how
long will it take for the midplane of the book to reach 37°C, a skt
temperature at which the operator can begin unloading the press?

(c) Validate your program code by using the heating schedule of a sudden chang
of platen temperature from 15 to 190°C and compare results with those from
an appropriate Heisler solution (see Problem 5.33).

5.89 Consider the thermal conduction module and operating conditions of Problem
4.71. To evaluate the transient response of the cold plate, which has a themal
diffusivity of & = 75 X 10™° nr’ /s, assume that, when the module is activated at
t = 0, the initial temperature of the cold plate is 7, = 15°C and a uniform beat
flux of )’ = 10° W /n? is applied at its base. Using the implicit finite-differeac:
method and a time increment of Ar =01 s, compute the designated nodd
temperatures as a function of time. From the temperatures computed 3 &
particular time, evaluate the ratio of the rate of heat transfer by convection to the
water to the heat input at the base. Terminate the calculations when this raio
reaches 0.99. Print the temperature field at 5-s intervals and at the time for whid
the calculations are terminated.
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