4,625,081

91

LENGTH: STRING intrinsic that returns the dy-
namic data length of a STRING variable.

MARK: Used to mark the current top of the heap in
dynamic data memory allocation.

MEMAVAIL: Returns number of words between
heap and stack in data memory.

MOVELEFT: Low-level intrinsic for moving mass
amounts of bytes.

MOVERIGHT: Low-level intrinsic for moving mass
amounts of bytes.

POS: STRING intrinsic returning the position of a
pattern in a string variable.

REWRITE: Procedure for opening a new file.

RESET: Procedure for opening an existing file.

RELEASE: Intrinsic used to release memory occu-
pied by variables dynamically allocated in the
heap.

SEEK: Used for random accessing of records within
a file.

92

procedure internal to a module with a procedure sup-
plied at link-time. This allows a new or test version of a
procedure or function to be globally replaced without
recompiling each module.

A link stage is required for programs that run outside
the program development system environment and
which use the ideal machine monitor service routines
for the following reasons. First, most of the extensions
to standard Pascal are implemented as functions and
procedures called from the user program. Some of these
calls are satisfied intrinsically by the ideal machine in-
terpreter—an example of this is any of the character
string functions. When compiled, a call to one of these
functions generates a single P-code instructions (with an
argument) that performs the requested function in one
P-code instruction execution cycle. These functions are
effectively micro-coded into the ideal machine’s in-
struction set.

However, other extensions call internal program

SIZEOF: Function returning the number of bytes 20 development system procedures implemented as P-code
allocated to a variable. routines. When a program is being run under the pro-
STR: Procedure to convert long integer to string. gram development system (by typing EXECUTE from
IMM Service the program development system terminal) many of the
Routines: Set of over 50 procedures that provide extensions used in a program are serviced by the pro-
access to I/0O and management services. 25 gram development system itself. Examples of this are
An example of a segmented program is the program the GET & PUT intrinsics—using these standard intrin-
development system itself. The root segment of the sics actually generates calls to routines in the program
program development system simply displays a choice development system that drive lower level 1/0 func-
menu on the program development system terminal and tions. Such a user program is referred to as a Level 4
then accepts a selection from the keyboard. This results 30 process with the program development system provid-
in a segment procedure to be loaded from disk that ing a Level 3 operating environment which divorces
implements the choice (i.e., editor, filer, etc.) the Level 4 application program from the underlying
A disadvantage of segmented programs is that its architecture of the ideal machine and system 100. This
loaded code cannot be shared among a number of users, is the environment that the editor operates in, and a user
as the instantaneous state of each user’s code space is 35 would normally test subsections of his application by
not constant but depends upon the particular state of using the program development system execute func-
each program’s segment overlay. For example, as pro- tion.
gram development system is an overlayed program, Eventually, however, an application program oper-
every program development system user who logs-on ates in a stand alone environment, and is initiated not
causes a new copy of the program development system 40 from a terminal command under program development
code to be loaded into memory. If, on the other hand, a system, but by the JSAM. Therefore, any procedural
number of identical applications use a non-segmented routines normally supplied by the program develop-
program, then only one copy of the program code ment system to implement intrinsics and extensions (i.e.,
would actually exist in each general purpose processor ~ GET and PUT) must be linked with the application
942, 944. The individual virtual machines created for 45 before it can operate independent of the program devel-
each instance of the application would map the virtual opment system.
machine code space to the single copy of code and share The second requirement for a link stage relates to the
it. low-level ideal machine monitor service routines. Once

A more rational way to organize large multivser again, a subset of these calls trap directly to micro-
applications is to design a system using a number of 50 coded routines in the ideal machine monitor—typically
cooperating, memory-resident processes. This brings those that call REX functions directly (for example,
two advantages: Send a Packet). Other routines require a P-code “front-

(1) Better response due to no segment-loading over- end” to map a higher level call into a specific set of
head. primitive ideal machine monitor calls—for example,

(2) Reduction in real memory space taken with multi- 55 one ideal machine monitor service routine reads the
ple users due to code-sharing of the nonsegmented com- memo in an indexed dataset via a sequence of basic ideal
ponents of the application system. machine monitor intrinsic calls. These P-code drivers
I. Pascal Linker must be linked into the users application.

The Pascal linker allows precompiled procedures to Note that these procedures, when linked to the user
be linked to form an object code file that can be loaded 60 porgram, reduce by a small amount the code-space
and run in an ideal machine. A reference to an external available for the application, as they reside in the same
procedure or function can be made within a separately ~ 64K-byte address space available in a single ideal ma-
compiled module, provided that the referenced proce- chine. However, the amount of space taken by exten-
dure has been declared as external. The linker attempts sion, intrinsic and ideal machine monitor service rou-
to resolve references between a set of modules submit- 65 tines is not great—typically less than 2K-bytes.
ted to it, or by selecting named precompiled procedures ‘When a program is running under the program devel-
from within a library of code modules, if one is supplied. opment system after an EXECUTE command, the ap-
It is also possible to specifically replace all calls to a plication code is co-resident with program development

0075

Apple 1016 Part 2
U.S. Pat. 8,724,622

4,625,081

93
system in the same virtual machine, and hence the
amount of space available for the application is less than
64 K-bytes (program development system takes approx-
imately 16K-bytes). Normally, the various segments
and procedures of an application are tested in this envi- 5
ronment.
J. Program Testing

The program development system, as an interactive
single-user system, does not provide any specific testing
tools for SPM programs. As the program development
system resides in an ideal machine which executes P-
codes, SPM code cannot be checked out in the program
development system environment itself. To test SPM
code, two facilities are available:

(1) Monitor functions from a system programmer’s 15
console for in-system testing

(2) Use of an auxiliary extension board for in-system
and stand-alone testing.

For Pascal programs, a high degree of static checking
is carried out by the Pascal compiler, which not only 20
checks for syntactic and semantic errors, but also pro-
vides extensive type-checking of variables across as-
signments, procedure calls, etc. A successfully com-
piled Pascal program will mostly contain only logical
errors at run-time. As these programs are, by the nature 25
of the Pascal language, of a modular design, individual
sections can be tested by executing them under the
program development system with run-time errors re-
ported to the program development system console.
For execution tracing, the module can be seeded with 30
READs and WRITEs which will interact with the
program development system terminal as the program
runs. The Hex Dump utility can also be used to print
diagnostic lists of data files generated by the program as
an alternative source of trace information. This latter 35
method is then available for producing dumps of trace
files generated by the complete application system run-
ning outside the supervision of program development
system. The interactive nature of the editor and com-
piler ensures a fast error correction cycle to eliminate 40
logical operation problems.

Privileged programmers use the program develop-
ment system to generate SPM programs to be run in the
host space of the system 100. SPM programs are neces-
sary when a new device handler, a hardware-specific 45
transient, a time-critical transient or a time-critical job
supervisor is required.

Authorized personnel using a system programmer’s
terminal 270 can load and run programs for test pur-
poses, interacting with the processor environment in 50
which the program is loaded. From a system program-
mer’s terminal 270, the program, scratchpad and data
memory of any processor can be displayed and altered.
Packets can be sent to, and received from, the process
using the test program, and dump tables can be specified 55
in the event of the process trapping the processor. As a
system programmer also has access to all of the func-
tions available to a system operator, the system log can
be used to collect run-time trace packets sent from the
test program, and the verified program can then be 60
installed in a program library. All of these functions can
occur during normal system operation,

K. Ideal Machine Implementation

The implementation of the ideal machine software in
a general purpose processor is presented here for inter- 65
est only. Except for any desired application program,
no user programming is required in a general purpose
processor.

-

0

0076

94

The ideal machine monitor subsystem is a collection
of SPM processes resident in a general purpose proces-
sors high-speed program memory. Two main processes
(i.e., processes with an allocated scratchpad context,
and a system process ID (SPID) of 0) can be identified:
ideal machine monitor subprocess driver (IMMS) and
general purpose processor resource manager.

All requests for ideal machines are sent as create
process requests to IMMS by JSAM, specifying a P-
code Program ID. Ideal machine monitors creates a
subprocess within its own main context for each such
request. The shared program code for this subprocess
provides two functions:

(1) ideal machine monitor interpreter driver (IMMI),
and

(2) ideal machine interpreter (IMI).

The IMMI function of the subprocess generates a
request to the general purpose processor resource man-
ager to load the program specified by the request into
data memory and return to IMMI the data and code
segment register contents needed to map out the loaded
code in memory. If the P-code is already loaded, the
existing copy is pointed to. IMMI then initiates running
of an ideal machine by starting the ideal machine inter-
preter (IMI) decoding and executing the P-codes con-
tained in the code space now pointed to by the mapping
registers.

IMMI provides intrinsic services on behalf of IMI
during process execution, including interfacing to REX
functions. IMMI also deallocates resources used by the
ideal machine when the P-code process terminates by
calling the general purpose processor resource man-
ager.

IMMI and IMI functions are provided by a single
wubprocess and use the suspend option when waiting
for the completion of REX functions (I/0, Event Man-
agement, etc.)

Every P-code process running in its ideal machine
employs an IMMI/IMI subprocess to implement the
basic machine emulation. However, due to SPM code
sharing, the only SPM program-code required to be
resident in the general purpose processor program
memory are single copies of ideal machine monitors,
IMMI and IMI. The general purpose processor re-
source manager is a P-code process running in system
ideal machine.

Major kernel system processes implemented in Pascal
use a main process invocation of IMMI/IMI. As each
main process has its own scratchpad context, it can be
assigned a unique system bus ID (SBID) by JSAM. This
is necessary for those Level 2 system processes (for
example, SYSDEV) requiring an instant global address
(SBID) to which any process can send a packet. (When
an IMMI/IMI process runs as a subprocess under ideal
machine monitors, the subprocess identity cannot be
pre-established, thus such subprocesses cannot be as-
signed global addresses.) In certain cases, SBIDs are
also assigned dynamically to permit use of the packet
rerouting facilities provided by the inter processor com-
munications system to implement fault tolerant dual
processing schemes.

Finally, this approach provides a system ideal ma-
chine with its own scratchpad context, reducing the
process context-switching overhead to a minimum. In
contrast, a normal ideal machine operating as a subproc-
ess must save its operating context in a shadow context
in data memory, to permit sharing of the ideal machine
monitors main context.

4,625,081

95

RESIDENT EXECUTIVE (REX)

A. Overview

The resident executive (REX) is a firmware subsys-
tem integral to each system 100 processor. It provides
the resources management which software processes
require to effectively use the hardware facilities of the
standard processor module 500 (SPM), common to all
processors. Software processes executing in a processor
perform under the management of REX, which can
support the operation of multiple, concurrent software
processes. REX’s responsibilities include the following
service areas:

(1) Logical initialization of the standard processor
module 500 on power-up.

(2) Loading of programs into the standard processor
module 500 on request.

(3) Allocation of memory resources to processes.

(4) Scheduling and dispatching of processes.

(5) Process suspension and event management.

(6) Input/output and packet transfer services.

(7) Inter-processor utilities and subroutine calls.

(8) Timer utilities.

(9) List processing utilities.

(10) Interrupt handling.

(11) Diagnostics.

In the system 100 each process contains an identical
coph of REX, combined with a processor-specific ex-
tension to REX (called generically, EXREX). EXREX
manages the particular hardware extension of the stan-
dard processor module 500 which, together with the
standard processor module 500 form one of the five
different system 100 processor types.

Communications between REX and an active resi-
dent process is via subroutine calls. Communications
between a specific processor's REX and a process in
another processor is vis packets transmitted over the
inter-process communications (IPC) network. There is
a close relationship between the multiple copies of REX
and the kernel system management process, JSAM (job
scheduling, allocation and monitoring subsystem man-
ager). Each REX is periodically requested by JSAM to
report the status of its resources and this information is
used to allocate required resources to the dynamically
changing workload imposed on the system.

An understanding of REX services is important to
users of ideal machines for applications programmed in
Pascal, although such applications programs do not
interface with REX directly. Ideal machines created in
general purpose processors 942, 944 (GAPs) provide a
logically separated and hardware fence protected envi-
ronment for Level 3 application systems. Nonetheless,
most of the image machine monitor services routines
called via Pascal program procedures make direct and
obvious use of the underlying REX callable subroutines
of the host general purpose processor.

A system 100 consists of a collection of independent,
tightly-coupled processors, each with its own central
processing unit, program, scratichpad, and data memo-
ries. Although working cooperatively with other pro-
cesses in the system, each within itself is an autonomous
processing unit. At a system-wide level, each provides a
useable resource to which work, in the form of software
processes, is allocated. At the processor level, this allo-
cated workload together with its hardware must be
managed by the processor itself, free of any higher-level
system-wide organizational structure.

0077

15

20

25

40

60

65

96

The resident executive provides this management.
Each processor, of the five different types that can exist
in a Delta 2 system, has up to 32K-words of program
memory, 12K of which is read-only memory used to
house a copy of the REX program code. Each contains
an identical copy of the basic REX code and has its own
personal extension to REX that manages the hardware
resources specific to that processor type. This extension
is referred to as EXREX and is housed in an additional
4K-words of read-only memory.

Because REX provides a set of fixed, well-defined
user functions and is in integral part of the basic hard-
ware of a standard processor module 500, it is consid-
ered to be as much a primitive component of a standard
processor module 500 as are the instruction set, memo-
ries, registers, and basic logic of the board itself. Thus
the standard processor module 500 processor is a self-
managed hardware system providing a reliable environ-
ment in which to host multiple concurrent processes, all
contending for the use of the processor’s fixed re-
sources. A user process executes compiled basic ma-
chine instructions to achieve its specific goal but calls
on a REX function to communication with other pro-
cesses, acquire additional machine resources, use timers,
or perform other general activities. REX management
not only provides the applications programmer freedom
from concern with many hardware-specific operations,
but greatly increases the overall reliability of the system
since most of the more complex activities needed by the
user, and normally callable by basic machine instruc-
tions, are provided by mature, well-tried REX routines.
Additionally, it reduces the problem of resource and
activity contention by concurrent processes in a single
processor by allowing for a structured, disciplined way
to handle allocation of processor resources to processes.
Thus the low-level program visibility of a processor
presented to a programmer is both the standard proces-
sor module 500 instruction set and the set of REX-calla-
ble functions.

The life-cycle of a process within the system 100 is
used as an example of the kinds of services REX pro-
vides within each processor.

A process is the basic unit of work from which sys-
tem-wide jobs are built. To execute, a process needs a
processor with the available resources necessary to host
the associated program (memory, attached channels,
execution time, etc.). Processes are initiated by a com-
ponent of the kernel system called the job scheduling.
Allocation, and monitoring subsystem manager
(JSAM), which bases its decision as to which processor
should host a process by comparing the quantity and
types of resources required with those available in the
system’s processors. JSAM maintains current resource
inventories by a regular background dialogue with the
REX of each live processor in the system. (Process
requests can be sent to JSAM by any active process in
any processor in the system.)

Having chosen a suitable host for the requested pro-
cess, JSAM sends to the REX of that processor a re-
quest to initiate the process. If the program code needed
by the process is not already in program memory, REX
loads the code froma disk-resident program library and
creates the process. Once running, the process acquires
from REX whatever resources are necessary to perform
its task.

REX can initiate and manage a large number of pro-
cesses, suspending those awaiting resources or an event
and scheduling the execution of those currently dis-

4,625,081

97
patchable. When a process is running, it can make sub-
routine calls to REX to request a wide range of services
including:

(1) Dynamic allocation of scratchpad and data mem-
ory.

(2) Management of and access to user-defined lists
allowing a process to efficiently maintain a variety of
single and multi-thread queues and stack structures.

(3) Communications with other processors in either
the same or different processors.

(4) Management of any number of general purpose
timers on behalf of the process.

(5) Semaphore services for user-defined resource
sharing and activity synchronization.

(6) Management of hardware interrupts.

(7) A set of general purpose I/0 services allowing
data transfer to be performed between and among de-
vices, datasets, and processes owned by the requesting
process, regardless of where it is located in the system.

(8) A large number of general purpose utility and
computational routines designed to ease the burden of
user-programming of standard processor module pro-
cesses.

During process activation, REX manages the inter-
face between the process and any outside events related
to it (for example, the receipt of packets destined for it).
A process can be suspended, and thus become dormant
for a number of reasons: waiting for a response to a
communication, a timer to fire, or a resource to become
free. When a process is suspended, REX enqueues the
process until the event occurs, and dispatches which-
ever process has become the next-most-eligible to use
the machine.

When a process terminates, REX returns all interpro-
cessor resources used back to the general pool, and
notifies JSAM of termination,

REX also manages hardware interrupts and provides
a utility routine for each possible external interrupt
condition. Many interrupts relate to the detection of
hardware errors within the processor. REX manages
the trapped error-condition allowaing inspection from a
system terminal and diagnostic processing.

When a processor is first powered-up, REX takes the
hardware through a predefined series of initialization
and diagnostic routines. After successful completion,
REX reports to JSAM that the host processor is avail-
able for work allocation.

B. Memory Management

Scratchpad management provides all resident pro-
grams in a standard processor module 500 including
REX, with an orderly way of using the scratchpad
memory resource. Order is preserved by requiring that
all allocations and decallocations be accomplished using
REX’s scratchpad routines exclusively.

Each processor contains 4096 16-bit words of high-
speed scratchpad memory, organized as 32 pages of 128
words each. Each page is arranged as eight packets of
16 words each (the structure of a scratchpad and inter-
processor packet are obviously similar and logically
equivalent).

The first page of scratchpad memory, page zero, is
reserved for common use. Information which must be
inaccessible to all resident processes in the host proces-
sor, such as the date and time, is maintained here. REX
uses page one as its own private scratchpad area or
context. The remaining 30 pages are available for allo-
cation by REX either for user-process contexts or dy-
namic working storage.

0078

15

20

25

30

40

55

65

98

A context is an area of scratchpad memory allocated
by REX at the time each process is created. The number
of scratchpad packets allocated is specified to REX in
the create process request. This is generally kept to a
minimum since context packets are allocated for the life
of the process and provide “registers” for system con-
trol information as well as a static working area of stor-
age used by the process as it desires.

The initial context allocation to a process may not
meet all of the processes’ lifetime requirements for
scratchpad memory. This may occur because the size of
the context is physically limited, or because it is waste-
ful for a process to request long-term allocation for
waht are often short-term needs. REX satisfies such
requirements for dynamic working storage by allocat-
ing and deallocating packets to each process on de-
mand. Such requests are made on an individual packet
basis. The amount of scratchpad allocated can thus
expand and contract as necessary to meet the changing
demands of the process during its lifetime.

Since a context must be allocated to each main pro-
cess in a processor, the number of main processes is
limited to the number of contexts. To keep this number
as large as possible, REX allocates dynamically from
those pages from which a context has already been
allocated and maintains all spare packets available from
previously allocated contexts on the available packet
queue. Each time a context is allocated, packets not
requested from the context’s eight packets are placed on
this queue. Because REX prefers to have as many full-
page contexts as possible, each time a context is deal-
located, spare packets from the same page are removed
from the available packet queue. If the packets are con-
tiguous with the deallocated context, they extent it. If
not, they are placed on a free packet stack to await the
return of the rest of the packets in the page. The free
packet stack is composed entirely of packets which
were once on the available packet queue, but have since
been removed because the context from the page of
which they were a part is no longer allocated. The free
packet stack is maintained as a single-linked stack, using
REX’s standard scratchpad list facilities. When the
remaining context packets are returned, they are all
removed from the free packet list and used to extend the
unused context back into a full page. REX will not
allocate from the free packet stack unless the available
packet list is empty. In this way, REX reconsolidates
complete context pages.

The page consolidation function is performed by
REXIDLE (REX's permanent background process
which continually scans the available packet queue.

Besides managing scratchpad memory as a resource,
REX also provides a set of functions for maintaining
lists of individual packets on single-linked stacks or
queues for user-defined operations.

Data memory management provides all resident pro-
cesses in a processor, including REX, with an orderly
way of using the data memory resource.

Each processor contains 64K 22-Bit words of data
memory. Each word consists of 16 bits and six error
correcting code (ECC) bits. The ECC bits permit detec-
tion of all 2-bit errors and correction of all 1-bit errors.

Initially, a minimal work area of 4K-words is as-
signed to REX. All remaining available memory is as-
signed to extension board REX (EXREX), the needs of
which vary depending on processor type. If, during
initialization, EXREX determines that this assignment

4,625,081

99
is excessive the surplus memory blocks are transferred
back to REX.

Whatever the size of the area initially assigned to
REX, it may at times exhaust its supply of data memory.
EXREX can aid REX by providing temporary exten-
sion blocks on these occasions. During physical initial-
ization, EXREX informs REX of the addresses of its
allocation and deallocation routines, its data memory
area, and the maximum length of the extension blocks it
can provide. Then whenever REX requires additional
data memory, it requests a block from EXREX and
later, after the need for a block passes, it is returned to
EXREX.

The data memory management routines used by REX
and available to all processes implement a buddy system
of storage management. Blocks of any length up to the
maximum may be requested by a process. However,
available data memory is maintained only in blocks of 4,
8, 16, up to 32,768 words, that is, the lengths of all
available blocks are in powers of two and in the range
22 to 215 inclusive. A request for a block of any other
length is satisfied by allocation from the next-larger
available block, successively smaller power-of-two
blocks until the request is satisfied with a total alloca-
tion which exceeds the requested size of the least possi-
ble amount. Since the smallest available block is four
words in length, up to three extra words may be allo-
cated to satisfy a request. The unused memory remain-
ing after request allocation is retained as a number of
smaller available blocks.

During allocation, it is possible that an available next-
larger block does not exist from which to allocate the
request. In this case, a still larger available block can be
successively split into two “buddies” of equal size until
a block of the next-larger size is obtained. Since the
length of each available block is a power of two, the
length of each buddy thus obtained is also a power of
two.

When a previously assigned block id deallocated,
unless its original length was a power of two, the block
cannot be made directly available. Instead, smaller
blocks, the lengths of which are each successively
larger powers of two, are split off from the deallocated
block until the length of the remainder is also a power
of two. It can then be made available.

Each time a new available block is created, either by
deallocation or as a result of splitting, all other available
blocks of the same length are examined to determine if
the buddy of that block is also available. Since the ori-
gin in data memory of each block is a multiple of its
length, the address of the buddy may be easily deter-
mined. If the buddy is available, both blocks are recom-
bined to form a new available block of the next-larger
size. Recombinatio is performed by REX's background
process, REXIDLE.

Program memory in each processor consists of at
least three blocks of 4096 16-bit word ROM and up to
65,536 16-bit word RAM for REX and EXREX. Both
ROM and RAM are 50 nanosecond memories. Since
only RAM can be loaded dynamically, one might ex-
pect REX to consider only RAM as a manageable re-
source and to accept ROM as a non-alterable preas-
signed resource. This is not the case, however. REX
treats all program memory, both RAM and ROM, as a
manageable resource and wherever possible does not
differentiate between the two. This uniformity of treat-
ment presents a number of important advantages, par-
ticularly in the area of program loading.

—

5

30

40

45

50

55

60

100

A request to load a program into program memory
can be accepted regardless of the memory type of the
target area. Programs cannot actuglly be loaded into
ROM, but part of the loading operation is to verify that
the expected checksum which accompanies the pro-
gram being “loaded” matches the actual checksum
computed from the data in memory. Thus a program on
disk can be “loaded” into ROM to verify that the two
are identical.

Another advantage of treating memory uniformly is
that, as long as loads are requested for all programs,
RAM and ROM can be interchanged without altering
any code. If the target area is RAM, the area written to
is changed. If the target area is ROM, it is not. This
flexibility greatly facilitates testing and debugging.

REX allocates blocks of program memory in lengths
of up to 4K-words. Blocks can be requested by length
alone, or by both address and length. Each block of
available program memory (whether RAM or ROM) is
described by a program memory element (PME), an
internal data structure maintained in a queue by REX in
its own data memory area.

When a block is requested by length, REX searches
the program memory queue for a block of sufficient size
from which to satisfy the request. The search is begun at
the head of the queue, and the first block of sufficient
size encountered is selected.

If a block is selected from which to make the alloca-
tion, the program memory element for the block is
changed (the length and address so that it then describes
only that portion of the original block which remains
after the allocation is made). If no residual exists, the
program memory element is instead deleted from the
queue and returned to available data memory. On the
other hand, if the allocation cannot be made because a
block of sufficient size does not exist, the request is
rejected and an error return to the calling process is
made.

When a user requests that a previously allocated
block be returned to available program memory, an
attempt is made to recombine the returned block with
any existing unassigned blocks on either side of it in the
program memory address space.

A program can consist of from one to nine relocata-
ble load modules, each limited to a maximum length of
4K-words, and up to 32 overlay modules. Load mod-
ules can be either two types: primary or secondary.
Primary are program-related, that is, only one re-
entrant copy need exist in memory no matter how many
processes share its use. Secondary are process-related
and a separate copy of each must exist for each active
process. Overlay modules are loaded by explicit request
and may overlay primary or secondary modules. (Gen-
erally, overlay modules do not exist in re-entrant pro-
grams). A program must have at least one primary mod-
ule loaded into program memory before a process can
be created.

Programs are loaded by REX in response to create
process request packets. Such requests assume the im-
plied condition that the program be loaded only if it is
not already present in program memory. Because the
transfer of a program from disk is a relatively time-con-
suming operation, REX creates a subprocess to perform
each load.

Initially, the subprocess sends SYSLOAD (part of
the system directory subsystem resident in a disk data
processor 934, 936 a packet requesting the transfer.
SYSLOAD (via the SYSDIR program load process

0079

4,625,081

101
PGMLOAD) responds with a packet containing infor-
mation describing the program, including the quantities
types and memory required. The loading subprocess
allocates that memory and creates all control blocks
necessary for each of the program’s load modules.

The subprocess then requests that the program be
loaded. As the program packets arrive, they are put into
memory one by one until the entire program has been
loaded. The subprocess proceeds to calculate a check-
sum from the loaded program, and compares it with
another passed to it in the last packet received from
PGMLOAD. The subprocess accepts the load if an
error has not occured during the transfer, and the two
checksums match. Otherwise, the load is rejected (if
rejected, the load is not retried). In either case, the load
subprocess then terminates.

Once loading of a given program is begun, any fur-
ther program, load requests to the same process are
enqueued to allow the one in progress to complete.
Eventually, after the load completes, the subprocess
initially created to perform the load for the first request
proceeds to process each of the other requests, in the
order in which they were received.

It may occur that a program load is required but a
contiguous area of available program memory is not
sufficiently large enough to accept it. In this event,
REX re-examines each program in the program load
list, considering those not currently being used by a
process. If the required program can be accommodated
by overlaying an unused adjacent one, the request is
accepted; otherwise, it is rejected. Note that unused
programs are not automatically deleted to avoid having
to reload if they are required again in the future.

C. Process Management

Work performed by a processor other than handling
interrupts is accomplished by the execution of pro-
cesses. A “process” is a program and associated set of
dynamic data (that is, its context) provided execution
time by REX.

For each process, a control data structure referred to
as a process control block (PCB) is allocated in data
memory describing the attributes and status of that
process. REX maintains several different lists of process
control blocks which allow control of the execution
phases a process can be in. The process control blocks
listed are organized in descending order of dispatching
priority, the dispatching priority determining which of
the members is most eligible for attention. One list con-
sists of all process control blocks for dispatchable pro-
cesses while the remaining lists are made up of those for
dormant or nondispatchable processes; for example,
processes awaiting for an event to occur before they can
proceed.

A process can create subordinate processes that exe-
cute using the same scratchpad context as their creator,
and these can each create still other processes using that
same context. In this way, a total of up to 256 processes
can be created to execute using one scratchpad context.
The first process created in a given context is called the
“main” process. All other processes spawned by the
main process are called “subprocesses”.

A single process, executing alone in its own context,
is referred to as a “‘simple” process. A main process and
a set of subprocesses, all of which share a common
context, are referred to as a “compound process”.

When a main process is created, it can be defined as a
“bypass” process designated to receive not only packets

0080

'

0

15

35

40

45

50

55

60

65

102
addressed to it, but those addressed to any of its sub-
processes whether the subprocess actually exists or not.

Any process (main or sub) to which JSAM allocates
resources can create another main process, and any
main process thus created can itself request the creation
of still other main processes. For certain kernel system
subsystems, the original request to JSAM causes a mul-
tiprocess block of resources to be allocated. In such
cases, the request can be directed to the same processor
in which the requesting process itself is executing.

When REX receives a create process request packet
(from the requestor, generally JSAM), the program
load list is first examined to determine if the required
program already resides in program memory. If it does
not, the program is requested from the system library
and loaded. The created process is then immediately
available for execution.

A process can request the creation of subprocesses,
and any subprocess thus created can itself request the
creation of still other subprocesses (up to a maximum of
255). Each uses the same scratchpad context as the
creating process, possibly with a “shadow context”
overlay kept in data memory. The program to be exe-
cuted by a subprocess must have been loaded with or by
its main process and must reside in program memory at
the time the subprocess is created. A subprocess is cre-
ated by a direct function call to REX.

Process deletion refers to the elimination of one pro-
cess in response to a request from another, enabling a
process working as a control node to order the termina-
tion of one of its subordinates. JSAM, however, also
uses this function to order the termination of an or-
phaned process (one whose control node has failed).

It is important to distinguish between process dele-
tion and process abortion. Process deletion is the execu-
tion of a planned sequence of operations by one process
to elicit its own orderly demise at the request of an-
other. Process abortion, however, is the premature
removal of a process by REX as a result of an unrecov-
erable error detected and attributable to that process. In
order to be deleted, a process must have defined a dele-
tion entry point to REX. A subprocess can be deleted
only by the process that created it, or by its main pro-
cess.

No subprocess can outlive the process that created it,
and an attempt to terminate a main proces with any
surviving subprocesses results in a trap. For this reason,
a compound process, if it is to be terminated, must de-
lete all of its created subprocesses prior to terminating.

Each process if assigned a bi-level dispatching prior-
ity consisting of a process class and a rank within that

Five process classes are defined, number from zero to
four. Processes assigned to class four have the highest
priority; those assigned to class zero have the lowest
(processes with class zero are reserved for use by REX-
IDLE). Within each of the four classes, processes are
ranked from zero to 255, the highest rank being 255.
The kinds of processes normally assigned to each class
are listed as follows:

Class 4: Interrupt-initiated background processes,

imperative timers.

Class 3: Normal events.

Class 2: Delayed timers (e.g., timeouts), lot-priority

processes, time-initiated long processes.

Class 1: All other processes (except REXIDLE).

Class 0: REXIDLE.

4,625,081

103

The initial dispatching priority can be assigned when
the associated program is assembled, or the assignment
can be deferred until the process is actually loaded. In
cither case, after a process begins execution, various
REX routines allow the process to dynamically alter its
own priority or, subject to certain restrictions, that of
another process.

REX selects the highest-priority dispatchable process
for execution, that is, the one whose process control
block is at the head of the dispatchable queue. Once
given control, a process is allowed to execute until it
voluntarily relinquishes control or is interrupted by the
occurrence of a hardware interrupt.

A process can relinquish control voluntarily or invol-
untarily. It voluntarily relinquishes control in one of
three ways.

(1) By calling a wait routine to wait for one or more
events to occur, including calling an input or output
services routine in a mode which invokes suspension
until the requested service completes.

(2) By calling a routine to signal processes’ desire to
terminate its owh execution.

(3) By calling a resource management routine, in a
mode which invokes a wait if the resource is not imme-
diately available. (This is considered a voluntary relin-
quishment of control since the process chooses to call
this routine.)

The first method of voluntarily relinquishing control,
calling a wait routine, is used whenever a process can-
not proceed until some external event occurs. The event
might be the completion of an I/0 operation, the expi-
ration of a specified time interval, the receipt of an
unsolicited packet, or any other condition defined for
the process.

Calling a wait routine causes the calling process to be
made nondispatchable until a specified or an unsolicited
event occurs. Control is returned to the process when it
again becomes the highest-priority dispatchable pro-
cess.

The second method is used when a process has no
work left to perform. This may be because it has suc-
cessfully accompoished all of its assigned tasks, or be-
cause some insurmountable problem has forced it to
abandon its mission prematurely.

Once a process terminates, control is never returned.
Therefore a process must complete all internal process-
ing prior to termination, including the return of any
owned resources and termination of all subprocesses.

Calling a resource management routine, the third
method of voluntarily relinquishing control, need not
result in a loss of control. However, if it cannot allocate
the resource because it is not available, the process does
lose control. When the resource becomes available, the
process will again be made dispatchable.

A process involuntarily relinquishes control when-
ever a hardware interrupt occurs. After the interrupt is
serviced, control may or may not be immediately re-
turned to the interrupted process.

As previously explained, all processes are assigned to
one of five process classes. Processes in one class are
allowed to interrupt those in a lower class. Processes in
the same class, however, are not allowed to interrupt
others in that class, regardless of rank.

When a process of one class interrupts that of a lower
class, the interrupted process is said to be “suspended”.
Since five process classes are defined and processes
cannot interrupt others in the same class, at most four

5

0

15

35

45

55

60

104
processes, one in each class except the highest can be
suspended at any one time.

The servicing of a hardware interrupt can result in
making dispatchable a process whose class is higher
than the interrupted process. In this case, the inter-
rupted process is suspended and the higher-class pro-
cess given execution control. Other interrupts, after
servicing, can result in execution control returned to the
interrupted process.

A dormant or suspended process can again become
dispatchable in one of three ways:

(1) An event for which it is waiting occurs.

(2) The process is restarted.

(3) A previously unavailable resource becomes avail-
able.

When a process voluntarily reliquishes control by
calling a wait routine, it normally must wait for its
process control block to come to the head of the dis-
patchable queue, and then for the active process to
relinquish control before it is again allowed to execute.
(It can, however, be restarted by an interrupt handler or
another process.) When a process waits for a specified
or an unsolicited event to occur, its process control
block makes its way back to the head of the dispatcha-
ble queue in one of several ways, depending on when
the event occurs and how it was initially defined.

If, at the time the wait routine is called, the event has
already occurred, the process remains dispatchable but
is process control block is replaced on the dispatchable
queue in descending order by dispatching priority. The
process must then wait for all processes ahead of it to
execute before it is given another turn.

If the wait routine is entered before the event has
occurred, the process is made nondispatchable and its
process control block is moved to the event quque.
When the event occurs, the process control block is
returned to the dispatchable queue in the usual priority
order to await its next turn at execution.

A nondispatchable process can again be made dis-
patchable by a call to a restart routine. This call can be
made by an interrupt handler or another process.

When an interrupt handler restarts a process, the
restarted process, if it is assigned to a higher priority
class than is the active process, forces the suspension of
the active process and immediately becomes the active
process.

When a process restarts another process, the restarted
process is made dispatchable but the currently active
process is never suspended in its favor. The restarted
process must wait its normal turn to execute.

A request to restart a process is acceptable only if the
process is waiting for an unsolicited event to occur. If
the process is nondispatchable for any other reason, the
request is ignored.

A process made nondispatchable due to the lack of a
requested resource is made dispatchable when the re-
source again becomes available. The process regains
control at the same point and with the same register
contents, as if the resource had been available initially.
The temporary loss of control is thus transparent to that
Pprocess.

Most processes perform some initialization prior to
beginning data processing. They may need to set up
tables, create subprocesses, or complete various other
functions that generally prepare the process to handle
events. To ensure that this initialization is allowed to
take place, each process is created dispatchable. The

0081

4,625,081

: 105
process will, therefore, execute at least once and per-
form any required initialization at that time.

If a process is to accept any unsolicited packets the
function codes contained in those packets must be de-
fined to REX. A process accomplishes this by allocat-
ing and initializing a function code branch table. Func-
tion code branch table is created in a 16-word area of
data memory, with one word for each possible function
code (the first word of the area corresponds to function
code zero, the last to function 15). Each word of the
area must be initialized to contain either the address
where control is to be passed if a packet with the corre-
sponding function code is received, or zero to indicate
that packets received with the corresponding function
code are invalid and are to be discarded.

It should be noted that a process can change the
function code branch table at any time, and the process
can temporarily enable or disable one or more function
codes.

The structure of a compound process, where each
member process uses the same scratchpad context,
greatly facilitates communication among the compo-
nents. However, conflict for the use of the limited
scratchpad space may also be introduced.

To avoid this problem, a “shadow context” whereby
eight packets selected from the scratchpad context can
be saved is allocated in data memory for each process of
a compound process. Then each time a compound pro-
cess is allocated to execute, REX verifies that its con-
tent in scratchpad reflects the content of the shadow
context of the executing component process. If neces-
sary, REX swaps into scratchpad the executing process
shadow context, saving the overlayed context packages
of the suspended process in its shadow context.

A shadow context is not automatically defined for a
main process when it is created but if a creating process
defines a shadow context for itself, then identical ones
are automatically defined for all subprocesses in its
compound process.

If a main process requires a shadow context or a
subprocess needs one different than that of its creating
process, the required shadow context can be defined
and allocated data memory.

D. Event Management

An “event” is any change of state (either “hardware”
or “software”) that can be recognized and communi-
cated to a process.

Hardware events generate interrupt requests for 15
possible interrupt conditions in each of three levels. For
each level, a separate interrupt branch vector contains
the addresses of all interrupt handler routines desig-
nated to service the interrupt conditions assigned to that
level. Control is transferred directly to the designated
interrupt handler routine whenever an interrupt request
is generated at a higher level than is currently being
serviced.

Software events do not generate interrupt requests,
nor are they limited to a small number of predefined
conditions. Rather they are defined dynamically by
processes, and their number is limited only by the
amount of available data memory. Each of the follow-
ing conditions, when properly described to REX, con-
stitute a software event for a process:

(1) The receipt of an input packet.

(2) The expiration of a time interval.

(3) The completion of an I/0 operation.

(4) The termination of a subprocess.

(5) The receipt of a signal from another process.

35

40

45

55

60

65

0082

106

The term “event” when used in the following para-
graphs refers exclusively to a software event.

For each event, REX maintains an event control
block (ECB) in data memory. The event control block
describes the event to REX, and contains information
used by REX to recognize the event and control execu-
tion of the process associated with it.

Generally an event control block is created in antici-
pation of an event, that is, before the event actually
occurs. Events for which event control blocks are cre-
ated in advance are referred to as “solicited”.

In some cases, however, an event is not certain to
occur. In other instances, even though it is sure to oc-
cur, an unpredictable amount of time may pass in wait-
ing. In the interest of conserving data memory, event
control block creation can be deferred until after the
event occurs. An event of this type, for which an event
control block is not created until after the event occurs,
is referred to as “unsolicited”.

Events can have time limits associated with them,
referred to as “timed” events. Those that do not are
called “untimed”.

A timed event is one which must occur within a
specified interval of time. A packet transfer, for exam-
ple, is typically a timed event. If the transfer does not
complete within a given time interval, a problem has
definitely occurred.

The event control block which describes a timed
event contains an expiration time specified when the
event is defined. If the event occurs prior to this, it is
said to have completed “normally” and if it does not, it
is said to have completed “with error”. The error is
called a “timeout”. If an event “times out” and then
occurs, it is no longer defined and is ignored.

An untimed event is one which need not complete -
within any specified interval of time. The event control
block which describes an untimed event does not con-
tain an expiration time, and therefore the event cannot
“time out”.

Interval timers are, for the most part, treated in a
manner identical to timed events. The event for an
interval timer is the expiration of the specified time
interval. However, timeout in this case is not considered
an error.

‘When an event occurs, the event control block de-
scribing that event is “‘posted” to the process associated
with the event. Whether or not the process is then made
dispatchable to service the event depends on the status
of the process itself, and the return-point addresses
specified. If the process is waiting for the event to occur
and the supplied return-point is nonzero, the process is
made dispatchable from the return-point address. An
executing process must explicitly check its list of posted
event control blocks to determine if an event, either
unsolicited or solicited (identified by a reference num-
ber), has occurred.

Note that even if a suspended process is made dis-
patchable by the occurrence of the event and is of the
same class but of a higher rank than the currently active
process, control remains with the active process until it
voluntarily relinquishes control.

When an event occurs, the event control block de-
scribing that event is “‘posted” to the process with an
event completion code. This code indicates whether the
event completed normally or with error and if com-
pleted with error, the code also indicates which error.

An event completion code is made up of an error
group and code. Codes belonging to group zero indi-

4,625,081

107
cate normal completions and thos belonging to all other
groups indicate error completions.

Whether the event completed normally or with error
determines at what point the associated process will be
dispatched to process the event. If the event completed
normally, the process is dispatched at the primary re-
turn-point address. If the event completed with error,
the process is dispatched at a secondary return-point
address.

A 16-word function code branch table is defined for
each process, each one-word entry in the table corre-
sponding to one of 16 function codes associated with
each packet or signal that a process will recognize. The
entry contains the address where control is to be passed
when a packet or signal with a given function code is
received.

For each process, a function code mask determines
whether events with a given function code are solicited
or unsolicited. Each bit in the mask corresponds to a
particular code and if a bit is set, then a packet or signal
with the corresponding function code is unsolicited.
E. Input/Output Functions

The high degree of processor specialization in the
system 100 is particularly evident in the area of /O
control. A number of different special purpose proces-
sors may participate in performing this function for the
many attached 1/0 devices.

Each input, output and control channel for each de-
vice in the system 100 is attached to a processor de-
signed specifically to host handlers for that class of
device. Disk drives are attached to disk data processors
934, 936; magnetic tape drives, terminals, printers, and
data channels are attached to interactive services execu-
tives 702, 706, telephone, operator terminal voice chan-
nels, and real-time data channels are attached to real-
time executives 406, 408.

In each processor, a system process known as a de-
vice handler is hosted for each type of device channel
attached to that processor. The responsibility for all
communication with and control of a device channel
rests with its assigned device handler. A user-process
application in the system 100 does not communicate
directly with I/0 devices. Instead it makes requests to
device handlers that interact with the device to perform
the requested functions.

Generally the device handler does not reside in the
same processor as the user-process. Device 1/0 for a
user, therefore, involves inter-processor communica-
tion in the form of packet interchanges over the main
buses.

Because communication with all device and data set
handlers is as such, it is beneficial to both user and han-
dler designer to provide a standard framework within
which these packet interchanges can be defined. The
REX 1/0 service routines (IOSRs) make up this frame-
work.

The input/output services routines (IOSRs) are a set
of subroutines, each affecting a prescribed sequence of
packet interchanges with a device or data set handler.
Each packet interchange performs some basic I/0 func-
tion and together provide a complete interface between
the user-process and device or data set handler.

Generally such an interchange proceeds as follows: a
user-process request an I/0 function be performed by
issuing a subroutine call to the appropriate input/output
services routine, which formats the user’s request into a
request packet and forwards it to the specified device or
dataset handler. The handler then either performs the

S

s

30

40

45

60

108

requested function responding with a confirmation
packet to the input/output services routine, or rejects
the request responding with an error packet. In either
case, the input/output services routine extracts any
pertinent information from the response packet and
returns it to the user-process. The manner in which a
specific handler responds to a given function depends
on the nature of the device, and the particular handler
implementation.

The input/output services routines allow the user to
perform I/0 operations in either two modes: “wait” or
“no-wait”.

When a user issues a request in wait mode, the input-
/output services routine places the user in a wait state
suspending him until either the requested operation
completes or some other previously defined event oc-
curs (the choice is the user’s). A process exclusively
using wait I/O cannot, therefore, overlap operations
and it never has more than one I/0 operation outstand-
ing at any one time.

When a user issues a request in no-wait mode, the
input/output services routine returns control to the user
once the requested operation is initiated which is as
soon as the request packet is sent. A user operating in
this mode can have several overlapping operations out-
standing at the same time.

The input/output services routines monitor 1/0 oper-
ations using two reference values supplied by the user
when requesting an input/output services routine oper-
ation. The first, a channel reference number in the range
of one through 255, is uniquely associated with a device
or dataset. This number is assigned when the device or
dataset is opened, and released when the device or data-
set is closed. The second, an access reference number
also in the range one through 255, is uniquely associated
with a particular input or output operation for a device
or dataset. This number is assigned when the I/O opera-
tion is initiated, and released when the operation is
completed.

Once a device or dataset has been opened, all accesses
must specify the assigned channel reference number to
select a particular device or dataset. After an access to
an individual logical data record has been issued, all
data transfers to or from that record must specify the
assigned access reference number associated with that
record.

The reference numbers assigned by the user when an
operation is initiated are returned when the operation is
completed. The user can, therefore, determine which of
several outstanding concurrent input/output services
routine operations has completed.

A time limit, expressed by the user, can be applied to
all I/0 operations. The user can specify a time interval
(in seconds) which when added to a predefined system
timeout value determines the actual timeout interval for
the operation. The time begins when the request packet
leaves the outstack:

One parameter in each input/out services routine is
the address of a parameter list in data memory. The list
is constructed by the user prior to calling an input/out-
put services routine, and contains a set of parameters
specific to each input/output services routine call. The
contents of the list are not changed by the input/output
services routine.

F. Time Management

The variety of time management facilities provided

by REX are divided into two categories: those related

0083

4,625,081

109
to interval timing, and those concerned with date and
time-of-day maintenance.

All interval timing functions within a processor are
controlled by that processor via one 16-bit hardware
register in the processor’s standard processor module
CPU 504. The register is called the programmed inter-
val timer (PIT).

To maintain internal consistency, REX alone con-
trols the programmed interval timer, satifying the vari-
ous timing requirements of individual processes by cre-
ating a “virtual programmed interval timer” for each
timing interval required and manipulating the hardware
programmed interval timer to operate all of the virtual
programmed interval timers. A process can explicitly or
implicitly request that an interval timer be created.

An explicit request is made whenever the process
calls one of the REX time management routines to
request that the elapse of a specified time interval be
defined as an event.

An implicit request is made whenever the process
calls a REX routine (other than a time management
routine) to define an event which must occur within a
specified period of time.

Regardless of whether the interval timer is created
explicitly or implicitly, it is placed on a single list along
with all other event control blocks associated with
timed events. REX maintains the event control blocks
on this “timer” list in chronological order by expiration
time.

The expiration time at the head of the list is used to
determine the current value to be loaded into the pro-
grammed interval timer. When an event control block
reaches the head of the list, the difference between its
expiration time and the current programmed interval
timer contents is calculated, and the programmed inter-
val inter is reloaded with this value. When the interval
expires, the event control block is removed from the list
and posted to its process.

JSAM, a system process, periodically provides REX
with the system data and time in both binary and BCD
formats. REX maintains the most recently received
values in scratchpad page zero. JSAM sends updates to
successive processors approximately every 50 ms. In a
system with a full complement of 32 processors, each
processor receives a new date and time about every 1.6
seconds.

For some applications, this discrepancy from true
system time is not acceptable. REX provides a correc-
tion factor in page zero equal to the number of pro-
grammed interval timer ticks since the last update was
received. The user can use this value to adjust the date
or time-of-day to obtain a more accurate result.

REX performs the functions described previously by
setting and resetting the programmed interval timer. It
operates as follows:

By loading the programmed interval timer with the
appropriate count, REX selects a time interval re-
quested by a process. Each 256 instruction cycles, the
programmed interval timer is decremented by one (that
is, “ticks” occur every 34,133 microseconds). The 16-bit
programmed interval timer can be decremented a maxi-
mum of 65,536 times and thus define a maximum time
interval of 2.237 seconds.

When the programmed interval timer is decremented
past zero (that is, when the specified interval expires), a
Level 1 interrupt request is generated.

The programmed interval timer continues to be dec-
remented, however, and must be reset under REX con-

10

40

2%

60

0084

110
trol within 1024 ticks (approximately 34,953 millisec-
onds), or a Level 3 watchdog timer interrupt is gener-
ated to signal an overrun.

Programmed interval timer is considered about to
“tick” if it will decrement within the next 16 instruction
cycles, and it can be tested for this condition. If a tick is
imminent, it should be allowed to occur prior to pro-
grammed interval timer readout to avoid errors in cal-
culations by use of a noncurrent value,

G. User-Defined Resource Management

All processes acquire, use, and release resources.
These might include memory space, datasets, 1/0 de-
vices or could be slightly more abstract such as execu-
tion time or permission to access a list. In fact, almost
anything of interest to a process can be considered a
resource for that process.

Some resources are of interest to more than one pro-
cess and must be shared. Access to shared resources
must be controlled to prevent the activities of one pro-
cess from interfering with those of another. This control
can be vested in a formal resource manager. The REX
data memory manager, for example, controls all ac-
cesses to REX’s pool of data memory.

Alternately, the processes involved can exercise the
resource control necessary by cooperating with each
other. This shared resource control is implemented
using flags to synchronize the activities of the cooperat-
ing processes. REX supports two kinds of flats: binary
and general. These, and the routines for using them are
described and followed by a discussion of how such
flags can be used to control access to shared resources.

A binary flag is a flag which has two possible values:
true or false. REX represent such a flag as a resource
control block (RCB). Each resource control block has a
unique name by which it and the flag it represents are
known. The value of a binary flag is true if a resource
control block with the same name exists and the value is
false if one does not.

A general flag is a flag which can take on any integer
value in the range zero to 32,767. It is also represented
by REX as a resource control block, and has a unique
name by which it and the flag it represents are known.
The current value of a general flag is stored in the re-
source control block (the value of a binary flag is stored
in the resource control block, but is always one).

A resource can be successfully shares as long as all
processes which access that resource synchronize their
activities to avoid conflict. The manner in which this
synchronization is completed depends on the relation-
ship which exists among the processes sharing the re-
source. Three relationships are common: (1) competi-
tion for a single resource, (2) competition for a pool
resource, and (3) production consumption.

These relationships, and methods for using flags to
synchronize process activity to avoid conflict, are ex-
amined in more detail in the following paragraphs.

Processes which compete for a single resource must
synchronize their activities to avoid conflict with one
another. For example, processes updating the same
word in memory cannot do so simultaneously and still
maintain the integrity of the contents. Rather they must
synchronize their activities so that each is allowed to
complete any outstanding update operation before a
new one is begun by another. In such cases, synchroni-
zation can be accomplished using a binary flag. Access
to the resource can be denied or permitted depending
on whether the value of the flag is true or false.

4,625,081

111

In operation, the first process to find the flat set false
(no resource control block) in its attempt to access a
single resource is permitted to acquire it. A resource
control block is now created so that other processes
attempting access to the same single resource find the
flat set true and are suspended. After the using process
releases the resource, the next process (if there is one)
enqueued for that resource is given access to it. In this
way, the resource is passed from one process to the
next, with each in turn granted exclusive access to the
resource for as long as is needed.

Processes may compete for a resource from a pool of
undifferentiated resources, that is, any one of a number
of identical resources may satisfy the requirements of
any one of a larger number of processes, all of which
require one or more such resources. The available re-
sources must, therefore, be shared. Without a formal
resource manager, the participating processes must
synchronize their activities to avoid conflict with one
another.

For example, suppose a number of processes all share
a smaller number of identical magnetic tape units. Ac-
cess to this pool of resource units can be controlled
using a general flag as a resource counter. Each time a
unit is.allocated, the count of available unit (value of the
flag) is decremented by one; each time a unit is deal-
located, the count is incremented by one. The count,
therefore, always equals the number of units available
for allocation. If a process attempts to use a resource
when the count is zero, it is suspended until a resource
unit (a magnetic tape unit in this example) is released by
another user.

For a given resource, tWo OI more processes may
relate to each other as producer(s)-comsumer(s), that is,
one or more processes may produce a resource that one
or more processes may consume. Where such a relation-
ship exists, participating processes must synchronize
their activities to ensure proper resource production
consumption, and avoid conflict between competing
producer(s) and consumer(s).

For example, suppose one process (the producer)
fields request packets and adds them to a list. Several .
over processes (the consumers) remove these request
packets, one at a time, and respond to them. This flow
of request packets from producer to consumer is main-
tained using a general flag as a resource counter. (In this
example, the actual list of request packets would itself
be a shared resource. Access to it could be controlled
using a binary flag). Each request packet is added to the
list, the count (value of the flag) is incremented by one;
each time a request packet is removed, the count is
decremented by one. The count, therefore, always
equals the number of request packets available for pro-
cessing. Any consumer attempting to remove a packet
from the list when the resource count in the general flag
is zero is suspended until the producer adds another
packet to the list. If the producer adds packets to the list
faster than they are removed, the list lengthens. If the
consumers exhaust the supply, they must wait but are
restarted as soon as more request packets become avail-
able.

A general flag can be simulated using a binary flag to
manage access to a shared counter. Similarly, a binary
flag can be simulated uvsing a general flag with a count
of one. What then, are the advantages and disadvan-
tages of each?.

Binary flags are simpler to use since only two routines
need be called and fewer instructions are required.

0085

—

0

—
[

20

25

30

112

However, if there is no contention for a resource, a
resource control block will be created and deleted each
time the resource is accessed. This takes time and also
means that a process could be denied the resource, not
because it is not available but rather because the re-
source control block cannot be allocated for lack of
memory.

With general flags, the creation and deletion resource
control blocks is explicit. It is possible to create a re-
source control block once, then access the resource
several times before deleting the resource control block.
However, using general flags requires more instructions
since four separate routines need be called.

In summary, if a process accesses a particular re-
source infrequently, a binary flag is appropriate and
should be used. If the resource is accessed often, it may
be better to use a general flat (with a count of one) so
that the resource control block is created and deleted
only once for all accesses
H. List Processing

Many applications utilize lists as a means of maintain-
ing order in a group of structurally related data ele-
ments. Performing operations on these lists is com-
monly referred to as list processing

The maintenance of any list, regardless of structure,
requires that certain common functions be performed
(for example, the addition or deletion of an element).
REX supports these functions for user lists maintained
in data memory

A variety of list structures is also supported by REX.
A list has a corresponding list control block and may be
either a stack or queue, single linked (forward step
pointer) or double-linked (forward step pointer and
backward step pointer) All lists supported by REX are
linear.

The list control block for a single linked stack has
three words defining a list type code (C7-C§ =1,0, 0,0),
a top pointer and a forward step pointer A double-
linked tack control block includes list type code (C7-C4

40 _1,0,0,1), a top pointer, a forward step and a back-

45

pointer. The single linked queue control block ward
step pointer, has a list type code (C7-C4-1,1,0,0), a head
a tail pointer and a forward step pointer The double-
linked queue control block includes a list type code
(C7-C4=1,1,0,1), a head pointer, a tail pointer, a for-
ward step pointer, and a backward step pointer and thus
requires five words of storage.

Elements of a resident list in data memory are repre-
sented in one of two formats: “standard” or “primitive”.
The standard format is intended to meet most demands;
however, when space considerations are foremost, the
overhead required by this format may prohibit its use.
In this case, it may be necessary to use the primitive
format, though this requires that some capabilities be
sacrificed.

The standard format provides broad flexibility in the
handling of lists. It also permits multi-threading of list
elements to any predetermined level and movement of
list elements from list to list without regard to differ-
ences in individual list structure. Each list element rep-
resented in this format consists of a control and data
section.

The control section is made up of a single two-word
control header, followed by one or more four-word
control segments. One control segment is required for
each list on which the element is to appear at any one
time. For example, a triple threaded list element would
require a 14-word control section, that is, a two-word

4,625,081

113
control header followed by three 4-word control seg-
ments.

The data section can be contiguous with or separated
from the control section, or may be omitted entirely.
Access to the data section is made via a pointer (first
word) in the control header.

The second word of the header includes a first field
defining the list length and a second field defining the
number of segments in the control section. The four
words of each segment include a pointer to the first
word of the header, a link control block (LCB) pointer,
a forward link pointer and a backward link pointer.

The primitive format is used where list element
lengths must be kept to a minimum. It provides a com-
pact means of representing single-threaded list ele-
ments, that is, those which appear on only one list at a
time.

Each list element in this format consists of a two- or
three-word control segment equivalent to the first two
(or three) words of a control segment in a standard
element. These words define a link control block (LCB)
pointer, forward link pointer and optional backward
link pointer. The data section of a primitive link element
(if one exists) is known only to the user, not to the list
processing routines themselves and follows immedi-
ately the two- or three-word control section.

I. Inter-Processor Communications

A packet is the unit of information transferred be-
tween processors on the main buses of the system 100. It
consists of 16 words, the first of which is a header used
by an executive services processor 916, 918 to route the
packet to the proper receiving processor. The packet is
presented to the main bus via a processor’s outstack and
received from the bus into a processor’s instack. The
placement of packets into an outstack and removal from
an instack are controlled by REX.

Within the system 100 a process is uniquely identified
by a 20-bit process ID (PID) consisting of three compo-
nents: a bus ID (BID) assigned when the processor
enters the system on power-up; a context ID (CXID)
related to the scratchpad context used by the process;
and a subprocess ID 9SPID) with a zero value if the
process is the context’s main process. Component pro-
cesses of a compound process have subprocess IDs of
non-zero value. Since all processes within a given pro-
cessor have the same bus ID, the context ID and sub-
process ID are sufficient to identify which process
within a processor a packet is address, and together
form an internal process ID (IPID).

There are two basic packet types defined: process
packets and immediate packets. Packets with a context
ID other than zero are routed to an existing process in
the receiving processor. These are referred to as process
packets because they establish communication and con-
trol activity between processes in the system. The for-
mat of a process packet allows REX to accept packets
on behalf of the receiving process to carry out standard
sequences of control and data interchange for that pro-
cess. The format is given in the interface specification of
a process, which defines what packets can be meaning-
fully sent to a process, and what packets a process will
send during its lifetime.

Immediate packets are distinguished by a context ID
of zero. This indicates that they are not addressed to a
specific process, but are either related to an ongoing
data interchange managed by REX or to system and
maintenance activities. Such packets are handled imme-
diately at the interrupt level by REX, EXREX, or spe-

0086

0

5

25

40

60

114
cially-defined handlers. There are several types of im-
mediate packet, each of which has its own format and is
handled differently. The function code in the packet
distinguishes one type from another and determines
which handler is invoked to process the packet.

The most universally used immediate packet is the
immediate data packet. It is used by REX to effect all
data transfers in the system in response to input/output
requests. Immediate data packets are created by the
outstack handler and processed as input by the appro-
priate receiving handler.

Force-load memory packets facilitate various system
development and debugging activities by permitting
memory to be loaded directly with the contents of the
force-loaded packet.

JSAM bus test packets instruct REX to perform vari-
ous tests related to the specified ports. These packets
contain a list of headers so that as long as the tests are
successful, they can be daisy-chained to each processor
in the list. JSAM is notified of any bus-port test failures.

Maintenance packets are used to communicate with
diagnostic programs in unusual situations. The contents
of these packets are defined by their users.

Several of the function codes direct to context zero
are reserved for use by EXREX. This allows handlers,
unique to a normal extension board (NEB), to be in-
voked so that special functions can be performed for the
extension board at the interrupt level.

The data area of the CPEXECUTE packet contains
processor program code which is loaded into REX’s
own program area. After inserting a program jump
back to REX at the end of the code, REX executes the
“program” sent in the CPEXECUTE packet. This
packet is used in systems development and trouble-
shooting environments.

When an incoming packet has been transferred to a
processor’s instack (X or Y) by an executive services
processor, an X-instack-full or Y-instack-full interrupt
occurs in the receiving processor and control is trans-
ferred to the instack handler. The instack handler reads
the packet header to determine whether it is an immedi-
ate or process packet. If it is an immediate packet, con-
trol is transferred to the appropriate immediate packet
handler. Otherwise, the instack handler will find and/or
create all control blocks needed for the process packet
to be passed to the destination process.

Output from a processor is placed on the main bus (X
or Y) via one of two 16-word hardware outstacks. The
outstack handler controls the placement of data into
these stacks and sets flags to enable the executive ser-
vices processor 916, 918 controlling the bus to actually
effect the transfer of the packet to the destination pro-
cessor. REX supports two methods of output: direct
and nondirect. The direct method is used to transfer
exactly one packet of data, which does not require se-
quence control transfer structures. However, there may
be an associated event control block if the output opera-
tion is to be timed, or if the user is to be notified when
the data leaves the outstack. The nondirect method is
used to transfer data areas that require more than one
packet. This requires a transfer control block (XCB),
which is a data structure used by REX to control the
sequencing of multiple packets between the sending and
receiving processors. Nondirect transfer also provides
additional capabilities in the form of header and buffer
lists. The user calls REX routines for both methods,
which enqueque the request on the bus output queue.

4,625,081

115

Duplicate copies of the same data area can be trans-
ferred to two different processes with the use of a
header list. The header list contains two headers, one
for each of the processes to which the data is to be sent.

Several noncontiguous data area can be transferred in
a single operation with the use of a buffer list. The
buffer list contains the address and length of each area
to be transferred.

When an output operation fails due to a port reject,
REX automatically tests the port and retries the opera-
tion on the other port. If that port is closed, it retries the
same port again. Retry is possible since REX retains a
copy of the data placed in each outstack in a separate
“shadow™ packet in scratchpad. To test the port, REX
sends a self-addressed port test packet through the port,
permitting REX to differentiate between problems with
the intended recipient process or difficulties elsewhere
on the bus. If the problems are located elsewhere, REX
closes that port and notifies JSAM through the remain-
ing port.

J. REX Processes

Along with providing a large number of callable
subroutine functions to a user-process, the resident ex-
ecutive subsystem implements a set of processes used by
REX itself to fulfill its own operations. Each processor
contains the program code used by REX's processes in
read-only memory and on power-up initialization, two
processes are immediately created in every processor:

REXMAIN: The main REX process primarily re-

sponsible for the creation and deletion of all other
processes in the same processor. It also performs
program loads and manages interprocessor com-
munications.

REXIDLE: A permanent subprocess used to absorb

and report all unused machine time in a processor.

REXMAIN creates additional temporary sub-
processes from time to time, but these are deleted as
soon as their assigned functions have been completed.
For example, in order for REXMAIN to create a pro-
cess, the required program must first be loaded into
memory. This is a relatively time-consuming operation.
Therefore, whenever a program load is required, REX-
MAIN creates a temporary subprocess that is used to
load the program, create the process, and send a re-
sponse packet back to the requester.

REXIDLE, REXMAIN's only permanent subproc-
ess, absorbs all otherwise unused instruction cycles in a
processor. A count is kept of the number of unused idle
cycles in a processor. This is reported to JSAM as a
measure of the level of activity in the processor.

REX’s main process REXMAIN operates out of
context number 1 of each processor. As its subprocess
ID is O (for example, it is the context’s main process),
then the PID of REX to which requests are sent to a
given processor is:

Bus ID=LBID of processor (allocated dynamically

by JSAM)

Context ID=1

Subprocessor ID=0

The main packet requests sent to REX are for the
creation and deletion of processes within the host pro-
cessor of the receiving REX.

REAL TIME SUBSYSTEM

A. Functional Description

The real-time subsystem 230 as shown in FIG. 4 is an
integrated set of hardware and software components,
tailored to provide fast circuit switching and real-time

—

0

it
w

20

40

45

50

55

60

116

processing functions. The real-time subsystem 230 can
interface to a large number of synchronous data chan-
nels, each one capable of carrying a continuous, non-
interruptable real-time signal. For example, in voice
applications, these channels would connect to the sepa-
rate telephone room subsystem 206 to transmit PCM
voice signals to and from the system 100.

The integral executive software of the real-time sub-
system provides a high-level user interface to the three
classes of real-time functions:

(1) Switching, to make or break the flow of data from
a source channel to one or more destination channels.

(2) Processing real-time data that flows between the
system 100 and one or more external channels.

(3) Effecting the transfer of channel supervisory and
control messages between the system 100 and the syn-
chronous data channels which, in voice applications,
would be the telephone room subsystem channels 232,
233.

These functions can be controlled by any process
owning the channels involved, generally a Level 3 ap-
plication process running in an ideal machine.

For voice applications, the channels between the
telephone room subsystem 206 and the real-time subsys-
tem 230 are duplex paths with a nominal data rate of 64
Kbps in each direction, enough for each path to carry a
two-way digitized voice connection. The single real-
time subsystem 230 has the capacity to attach up to 1260
physical channels, and each system 100 is able to sup-
port up to four interconnected real-time subsystems.
The allocation and use of real-time channels is managed
in a fashion similar to that of any other type of data
channel connected to the system (for example, printers
and terminals). Each channel has a unique identity and
before an application can effect a switching or process-
ing function, the channel must be acquired from the
system device manager (SYSDEV) by the application
in the normal way. .

To reduce the number of physical connections in
voice applications that need to be made between the
telephone room subsystem 206 and the real-time subsys-
tem 230, groups of 30 real-time 64 Kbps channels are
multiplexed onto single, full-duplex 2.048 Mbps syn-
chronous data linkes 232, 233. These high-speed links
form the actual interface to the real-time subsystem 230,
and an external equipment subsystem such as the tele-
phone room subsystem 206 performs the multiplexing
and demultiplexing of individual 64 Kbps channels onto
the links. In voice applications, this subsystem 206 also
performs the analogue-to-digital and digital-to-analogue
conversion of channel information. Multiplexed into
each high-speed link is a duplex 64 Kbps control chan-
nel used to communicate with the system 206 equip-
ment and, in the case of the telephone room subsystem
206, control the line group controllers 302, 306 that
route each channel onto the synchronous link to the
real-time subsystem 230. It also controls the line inter-
face boards 310-318 onto which each analogue speech
path terminates.

Switching functions allow external real-time chan-
nels, attached to the real-time subsystem 230 (via the
external subsystem), to be interconnected. The real-time
subsystem 230 provides a “logically continuous” circuit
link between groups of channels, but uses electronic
time division multiplexing (TDM) to actually perform
the switching rather than mechanical switches. Addi-
tionally, the real-time subsystem 230 provides 508
switched simplex links which, once set up, require no

0087

4,625,081

117
intervention or action by the system 100. The switching
function is fully programmable by executive processors
in the real-time subsystem 230, which provide the fol-
lowing advanced switching functions:

(1) Dynamic allocation of bandwidth through the
switch channels with higher or lower individual data
rates than the nominal 64 Kbps. This is referred to as a
super- and sub-commutation. A higher data rate per
channel is achieved at the expense of fewer switch paths
through the real-time subsystem 230.

(2) Many-to-one channel switching, used in voice
applications for conferencing a number of callers.

(3) One-to-many channel switching, used in voice
applications for broadcasting messages, conferencing,
and recording.

A real-time subsystem 230 is configured with its own
processing resources within which real-time signal pro-
cessing functions are located. Data from real-time chan-
nels attached can be input to transient processes hosted
by the real-time subsystem 230. Alternatively, a process
running in the real-time subsystem 230 can generate
real-time data which can be output to a real-time subsys-
tem 230 outgoing channel.

Examples of transient signal processing in voice ap-
plications are voice record and playback. These func-
tions permit record and replay channels to be logically
connected to the file services subsystem 908 to record
or playback real-time voice data using random access
disks as the storage media.

Before recording, the real-time data is available for
processing activities such as compression or filtering.
Subsequently, the recorded data is retrieved, repro-
cessed as necessary, and returned to an outgoing real-
time channel one or more times. These facilities are used
in applications such as voice and image store and for-
ward, image processing, message libraries, etc. During
recording, a compression factor of better than two to
one can be achieved, depending on the nature of the
data processed.

Record and playback compression are specific exam-
ples of real-time signal processing activities performed
by transient software processes hosted by the real-time
subsystem 230. The real-time processors 410, 412 can be
user-programmed to perform other processing func-
tions on real-time channel data. A single real-time pro-
cessor 410, 412 can sink up to 16 channels into data
memory for processing; simultaneously, another 16
independent outgoing channels can be sourced by the
same real-time processor 410, 412. Typical applications
include spectral analysis, filtering, and pattern recogni-
tion. The real-time processors 410, 412 are fully inte-
grated members of the system 100 family of processors,
and can host process nodes of systemwide distributed
jobs. In a user-defined transient process a real-time pro-
cessor 410, 412 can be initiated and controlled by a
high-level Pascal primary node in a general purpose
processor. In a time-critical application, a job's primary
node could reside in a real-time processor 410, 412 itself.
B Switching

Channels attached to the real-time subsystem 230
need to be interswitched in many applications, as are
those related to voice communications. Automatic call
distribution, telephone answering, and voice messaging
are all examples of applications which use the real-time
subsystem 230 for their switching capabilities. These
applications, realized as Pascal-sourced Level 3 job
supervisor processes, communicate with the real-time

0088

50

65

118
subsystem 230 via an uncomplicated procedural inter-
face within the application program process.

Tne protocol can be divided into three stages: acqui-
sition, control and release. In stage one, the real-time
channes to be switched or controlled must first be ac-
quired by the application process. The channel acquire
request is sent to the system device manager (SYS-
DEV), which grants ac-ess to the channel if it is cur-
rently unowned, and at the same time informs the exec-
utive software in the real-time subsystem 230, of the job
identity of the channel’s new owner. In this way, the
real-time subsystem 230 can restrict the use of the chan-
nel to the owning application. Precisely which channel
an application acquires depends upon the application
and for what particular reason it is needed. For exam-
ple, in the telephone answering support service (TASS),
a job is initiated by an unanswered telephone with
TASS being passed as a start-up parameter. TASS then
acquires the specific channel by quoting its physical
channel ID (in practice, its normal seven-digit tele-
phone number). However, if TASS later needs to dial
out to a central office, any one of the free trunks con-
nection the system 100 to the central office will suffice.
After receiving an acquire request from TASS, SYS-
DEV will assign one of the free trunks to TASS and
pass the job identity of that specific TASS (at any given
time, multiple different TASS jobs can be in execution)
to a real-time processor 410, 412. In the case where an
application acquires a composite multi-channel device
such as an operator station 224, 226 (a keyboard/VDU
together with a voice headset), SYDEV will pass back
to the application both channel identifications related to
the one device: the channel ID or the data line connect-
ing the keyboard/VDU to the interactive services sub-
system 252, and the channel ID of the voice line con-
necting the operator headset to the real-time subsystem
230. This second channel ID is used later in switching
commands to connect the operator’s headset to other
voice channels.

The second stage of the real-time subsystem/user
protocol, once all of the channels needed by the applica-
tion have been acquired, is the control phase. Control
functions are divided into two classes: (1) Switching
commands that set up interconnects among owned
channels and (2) Supervisory commands that cause
various signals or state conditions to be generated on
the channels.

If stage three, after completing whatever functions
the application requires, the channels are returned to
the general pool of unowned devices via a release re-
quest to SYSDEV.

Stitching commands given to the real-time subsystem
230 either set up or tear down a network of intercon-
nected channels.

In setting up an interconnected channel network, the
application can include up to seven owned channels in
a single command. The parameters accompanying the
command specify how each channel is to be connected
to each other, and contain sufficient detail to allow any
combination of interconnections to take place between
the seven duplex channels permitted in the command.

A desired network interconnection, if it is to be con-
structed via a single command, can be represented as a
7 by 7 matrix. If each matrix element represents one
network interconnect, then the elements row depicts
the channel from which the data comes and the ele-
ments column depicts the channel to which the data
goes. For example, to set up a three-way conference call

4,625,081

119
between two callers on channels 3 and 5 and an opera-
tor on channel 2, the following array would be gener-
ated by the application program:

CHO: 0000000

CH1: 0000000

CH2:000CO0CO

CH3:00Co00CO

CH4: 0000000

CH5:00CCO000

CH6: 0000000

where 0 implies no connection and C implies a con-
nection.

Having specified the desired network, the user
supplies a reference number by which this network can
be identified in the future (the Circuit Net ID). The
real-time subsystem circuits function implements the
connections and wnen successful, acknowledges back
to the application The real-time subsystem 230 rejects a
circuits command if an unowned or non-existent chan-
nel is specified.

A second switching command from the application is
used to disconnect, or tear down a previously set up
interconnect. In this case, the application has only to
pass the Circuit Net ID with the disconnect command.
The real-time subsystem 230 then disconnects each
connection specified in the original circuits command
referenced by the Circuit Net ID. If a specific intercon-
nection is to be modified as would occur when the
operator drops out to leave a simple two-way conversa-
tion in the previous three-way Opepator/Client/Client
example, the application would first tear down this
entire network and then interconnect the two clients
with a new circuits command. Such tear down and
reconnect would be totally transparent to the clients.

An application can interact with the content and
status of a real-time channel in one of two ways:

(1) The real-time subsystem 230 can be used to pro-
duce signals which can be applied to a channel. In voice
applications, this is used to generate tones or tone se-
quences such as reorder, recording-in-progress, and
dual tone multi-frequence (DTMF) digit sequences.

(2) The application can interact directly with the
multiplexing and interfacing hardware outboard of the
real-time subsystem 230. In applications requiring the
telephone room subsystem, the state of each voice line
can be individually controlled and the line status re-
quested.

For voice applications, interface to these supervisory
commands is again via simple procedures. Three main
Pascal program calls exist for these applications:

(1) Signal Generator with parameters Channel ID
frequency amplitude and duration.

(2) Dialer with parameters Channel ID, digits to be
dialed, DTMF or dial-pluse select.

(3) Supervisory with parameters Channel ID com-
mand (0..63), command argument (0..63).

The signal generator command produces an audio
tone on the identified channel with an amplitude speci-
fied by the user and an integral frequency between 1

10

u

0

35

40

50

and 3200 Hertz. The dialer function generates a train of 60

digits on a channel, encoded either as 50 ms DTMF
tones or as make-break dial pulses. The supervisory
command allows an opcode and related argument to be
passed to the interface controller of any individual line
termination in a telephone room subsystem 206. Typical
opcodes generate off-hook condition on lines, request
line status, seize ringing lines. etc.

C. Real-Time Processing

0089

65

120

The telephone answering support system and voice
messaging system are examples of applications which
process and transfer data between real-time subsystem
channels and disk datasets. Since one significant use of
the system 100 is for such applications, a detailed over-
view of its operations follows. Two transient signal
processing functions are invoked as necessary to satisfy
the requirements for record and playback; both are
hosted by the real-time processors 410, 412 of the real-
time subsystem 206. Among the system 100 processors,
real-time processors have the unique attribute of being
in direct contact witn the channel switching hardware
of the real-time subsystem 230, 238. This enables the
record and playback functions to interact directly with
data on the real-time subsystem channels. Furthermore,
specific hardware extensions in the real-time processors
410, 412 greatly increase the efficiency of the speech
compression/decompression algorithms used by record
and playback to reduce the disk storage requirements.

The record and playback functions are implemented
as Level 1 transient processes. When an application
program wishes to use either of the functions, it sends a
create node request to job scheduling, allocation moni-
tor (JSAM), specifying the function ID of either record
or playback. JSAM initiates a process that performs the
function in an available real-time processor 410, 412
within the subsystem. The application then communi-
cates control requests directly to the function process.

The first stage of a record/playback operation is
similar to that of a switching operation. The application
sets up a channel interconnect network, as in a circuits
command. However, of the seven channels that can
normally be specified in a switching command, only
two relate to internal real-time subsystem channels car-
rying real-time data into or out of the record/replay
function In this way, a single command from the appli-
cation can both set up a channel network and then ei-
ther record from it or replay to it, with up to five exter-
nal real-time subsystem channels involved in the opera-
tion

For example, the network could be used by an opera-
tor during an in-call to record a message in the tele-
phone answering support service application.

In the array, the vertical dimension defines the source
of data and the horizontal dimension defines the destina-
tion. As an example, channel 1 is assigned to the opera-
tor, channel 3 to the client, channel 5 to the operator
recording process and channel 6 to the client recording
process. The record network map array would be de-
fined as:

CHO0: 0000000

CH1:000CO0CO

CH2:0000000

CH3:0C0000C

CH4:0000000

CH5:0000000

~CH6:0000000

This array would be constructed by the application
and passed as a parameter in a Pascal procedure call
after both channels specified had been acquired, and the
record/playback processes had been started. Recorded
information may be stored in either compressed or un-
compressed format. The format chosen is stored along
with the data so that playback can expand the data if
required.

Once the setup commands specifying the record re-
play networks have been given, the record/replay func-
tions are controlled by the application process in a man-

4,625,081

121
ner similar to that of a simple tape recorder. Each pro-
cess can be in one of five distinct states:

(1) Initialized (for example, functions active).

(2) Ready to be activated (for example, network
setup).

(3) Recording of playing back.

(4) Pausing.

(5) Terminating record or playback.

The following control commands can be sent to the
record of playback processes by the user:

(1) Start Recording/Playback—Includes information
which allows access to the dataset that will sink or
source the data. Indexed chain datasets are used and can
be either singular for efficiency or duplicated for secu-
rity.

(2) Pause Record/Playback—Ceases recording or
replaying temporarily and inserts a mark in the file.
(This can be used later in playback to skip back to the
marked location.)

(3) Restart Recording/Playback—Restarts either at
the current pause mark or at an alternative mark sup-
plied by the user in the restart command.

(4) Mark Recording/Playback—Without halting the
process, a mark is inserted into the dataset at the current
position.

(5) Stop Record/Playback—Ceases recording or
replaying and returns to ready state.

(6) Terminate Record/Playback—By reference to a
Circuit Net ID, recording or replaying cease, all data
paths are closed, and the existence of the record or
playback process is terminated.

(7) Record/Playback State/Status Response—Sent
to the user by Record or Playback when the process
enters a new state, or when a request could not be im-
plemented (This could be unsolicited if an end-of-mes-
sage occurs during playback.)

During recording, compression can take place to
reduce tne amount of disk storage required. Compres-
sion of data is achieved in two ways: (1) each PCM
value representing a voice (or possibly image) sample is
difference encoded (assisted by a hardware look-up
table in the real-time processor 410, 412) to give an
initial 1.5:1 reduction or (2) a run-length encoding pro-
cess (which removes silent parts of voice data) can
further increase this initial compression ratio.

The real-time processors 410, 412 of the real-time
subsystem 230 can be used to host any software func-
tions interacting directly with data on real-time chan-
nels. The real-time processors 410, 412 are located be-
tween the executive services bus 912, 914 and the real-
time subsystem inernal synchronous § and T TDM
buses 414, 416. This enables them to communicate with
any other processor while being able to sink and simul-
taneously source up to 16 channels from the real-time
processor’s data memory.

As a guide to the processing capacity provided by a
real-time processor 410, 412, up to eight record and 16
playback functions can be concurrently hosted by a
single real-time processor 410, 412. The number of real-
time processors in a real-time subsystem 230 is limited
only by the upper limit of processors in the system 100,
and thus can never exceed 22.

Real-time processors are standard processor module-
assembler programmed, and generally host Level 1
transient processes used to provide signal processing
services to Level 3 Pascal applications in a general
purpose processor 942, 944. However, a time-critical

0090

10

15

25

40

55

60

65

122
Level 3 application could have its primary node hosted
in a real-time processor 410, 412 if necessary.
D. External Interface To The Real-Time Subsystem

Logically, each real-time channel interfacing to the
real-time subsystem 230 has a unique identity, and is
treated by the system as if it were physically terminated
at the real-time subsystem 230. In practice, however,
the number of physical connections between the tele-
phone room subsystem 206 and the real-time subsystem
230 is minimized by multiplexing groups of 30 channels
onto full-duplex, high-speed synchronous links 232-235.

TDM is used on each of the two links connected to a
real-time processor 410, 412. Each link provides 8000
frames per second with each frame 125 microseconds in
duration. The 125 microsecond frame is further subdi-
vided into 32 time slots with each slot able to sink an
8-bit data sample. At the incoming switching point of
the system 100, each digitized voice channel deposits a
voice data sample of eight bits into a specific, assigned
time slot in a frame which remains its own unique slot in
each frame until voice sampling ends. Thirty time slots
in each frame carry voice data while the remaining two
time slots in each frame are used for control and syn-
chronization data. The control slot allows control data
to pass up and down the link between the real-time
subsystem 230 and the outboard multiplexing equip-
ment, which interfaces the physical channels onto the
high-speed link. The control slot carries down the link
the individual control message generated as a result of
supervisory commands given by an application process.
Tne reverse direction carries status and result data back
to the system 100. The synchronization channel is used
to keep the multiplexors and interface boards in step
with the switching hardware of the real-time subsystem
230

The time allocation on the high-speed synchronous
link conforms to CCITT recommencations for 2.048
Mbps PCM links carrying 64 Kbps encoded voice.
However, in the real-time subsystem-telephone room
subsystem connection, a unique control protocol exists
that is specific to the various line interface boards and
line group controllers of the telephone room subsystem
206, and does not conform to that of the CCITT recom-
mendations since this also encompasses the commands
that are sent over the control slot. The differences be-
tween the two protocols are such as to be easily handled
by logic on an interface board were it ever desired to
directly connect a CCITT 2.048 Mbps link to a real-
time system. Of the 32 channels in a link, channel 1
carries synchronization data, channel 17 carries control
data and the rest carry voice data.

The telephone room subsystem 206 (See FIG. 3) is
outboard of the real-time subsystem 230 attached via
the high speed serial links 232, 233 and provides a direct
interface to individual analog telephone lines, trunks,
and other voice-grade circuits. The telephone room
subsystem 206, as it relates to the real-time subsystem
230, consists of the following:

(1) A variety of line interface boards 310-318, each
interfacing two physical voice-grade circuits of the
same type. The line interface boards provide analog-to-
digital and digital-to-analog conversion (via mu- or
A-law codes), together with generation and detection
of supervisory signals such as dial-tones, dial-pulses,
on-hook off-hook condition detect, etc.

(2) Two line group controllers 302, 306 are associated
with each physical card cage capable of housing 15 line
interface boards 302-318. The 15 line interface boards

4,625,081

123

provide 30 individual, full-duplex real-time channels,
multiplexed by one of the line group controllers 302,
306 onto a single, 2.048 Mbps serial link connected fo
the real-time subsystem 230. Each line group controller
302, 306 is microprocessor-controlled (Intel 8085) and
receives control and supervisory data over the control
channel slot from the real-time subsystem 230. Each line
group controller 302, 306 also collects status informa-
tion from the line interface board 310-318 and sends it
to the real-time subsystem 230 via the control slot on the
up-link. Selection of one of the two line group control-
lers 302, 306 as controller is under software control via
the real-time subsystem 230

Each of the different types of line interface boards is
tailored to the operational characteristics of a particular
class of telephone line, trunk, or voice-grade circuit.
All, however, have a basic set of features:

(1) Termination of two voice-grade circuits of a type
unique to a line interface board.

(2) PCM encoding and decoding for each line.

(3) Dual port access to two different line group con-
trollers.

Tne PCM encoding/decoding function is performed
by Codecs (Coders/Decoders) on the line interface
board. A Codec performs an eight-bit, non-linear ana-
log-to-digital and digital-to-analog conversion. This
non-linear (quai-logarithmic) conversion is used since it
is more sensitve to the lower end of the voice intensity
spectrum where the major part of speech information is
found. The difference between the transfer characteris-
tics of mu-law used in America and the A-law used in
Europe is slight and easily converted from one to the
other.

The quasi-logarithmic Codec output of one 8-bit
floating point number for each voice sample occurs
each 125 microseconds as a direct consequence of the
sampling rate, which is 8000 samples per second per
voice channel. This floating point format of each PCM
sample permits a much greater sound intensity range to
be encompassed than would be possible with a strictly
linear (for example, integer) representation.

Four classes of line interface board are necessary for
most telephone applications. An operator line interface
board 310 provides two simple four-wire links to opera-
tor station headsets with no DTMF, supervisory or
control signaling. A concentrator line interface board
312 terminates two “dry” (no line voltage) two-wire
links from remote line concentrators with no supervi-
sory or control signaling other than DTMF. A direct
inward dialing line interface board 314 terminates two
2-wire DII trunks, handles all DTMF signals and de-
tects supervisory and control signals and incoming di-
aled digits. A loop-start/ground-start line interface
board 316 terminates two pay station telephone number
conventional lines, can accept incoming calls, can seize
a line to dial outgoing calls, and can handle all DTMF,
supervisory and control signals.

The dual-ported line interface boards 310-318 con-
nect to the pair of eight-bit data highways 304, 308, each
attached to a separate line group controller 302, 306.
Either line group controller of a pair 302, 306 can multi-
plex up to four operator line interface boards 310, and
up to 11 line interface boards 312-318 of any other type
onto a high-speed full-duplex synchronous link inter-
connecting the line group controller 302, 306 to the
real-time subsystem 230. The line group controllers 302,
306 sequentially poll each line interface board 310-318
for channel data and status conditions and pass to each

0091

20

35

40

55

60

65

124

line interface board PCM data for output, and any com-
mands to set line conditions or requests for status. If a
line interface board fails the two telephone lines at-
tached lose services. Line group controllers and line
interface boards are redundantly connected so that any
voice channel can be routed into the real-time subsys-
tem 230 via two independent paths. The executive con-
trol processes in the real-time subsystem 230 affect a
switch to the other line group controller/synchronous
link of a pair if the active link or line group controller is
detected as failed. In brief, of the two dual-ported line
group controllers 302, 306 per 15 line interface boards
310-318, one is the active controller and the other is a
hot stand-by.

A telephone room subsystem 206 consists of from one
to seven racks, each containing from one to six card
cages and redundant power supplies. Each card cage
holds two line group controllers, up to four operator
line interface boards, and up to 11 other line interface
boards. Altogether, a telephone room subsystem 206
can accommodate up to 1260 voice-grade circuit termi-
nations. The system 100 can support four separate real-
time subsystems, each with its own telephone room
subsystem permitting a total of 5,040 voice-grade circuit
terminations.

E. Hardware Architecture

FIG. 4 is a representation of the real-time subsystem
230 architecture, whose main components consist of the
following:

(1) Two high-speed TDM real-time buses 414, 416,
each of which is a 16-bit parallel synchronous link used
for the interchange of PCM or other data between ports
on the link. The two buses are asynchronous relative to
eacn other.

(2) Two real-time executives 406, 408 with each in
control of the switching and routing hardware of one of
the two TDM buses 414, 416. The executives 406, 408
host system software processes which provide a simple,
logical interface to the rest of the system 100, including
application processes.

(3) External transfer switches 402, 404, interface se-
rial PCM or other data links to the TDM bus pair. The
external transfer switches 402, 404 and TDM buses 414,
6 are used to exchange data between real-time data
channels, which in voice applications are the telephone
room subsystem channels and the real-time processors
410, 412 in the system 100.

(4) Up to 22 real-time processors 410, 412 interface
with both TDM buses 414, 416 and serve as hosts to
dynamically allocated software transient processes, thus
providing a capability for a variety of data signal pro-
cessing and, in voice applications, voice data compres-
sion and decompression.

The real-time subsystem 230 is fault tolerant and can
survive single failures of either its executive processors
buses, or any switch on any real-time processor 410,
412. In the event of failure, channels are rerouted via
alternative resources. The real-time subsystem 230 uses
load-shared redundant capacity.

Internal to each real-time subsystem 230 is an inde-
pendent bus-pair 414, 416 denoted S and T. Each bus is
functionally identical and backs up the other so that if
one fails. the real-time subsystem 230 can still operate
normally using the survivor. The function of the buses
is to exchange real-time data among external transfer
switches 402, 404, real-time processors 410, 412, and
real-time executives 406, 408.

4,625,081

125

Each TDM bus 414, 416 is 16 bits wide and of the 512
time slots per 125 microsecond frame available, four
slots (0, 1, 2, and 3) are preassigned by the system to
exchange control information between the various de-
vices that are attached to the bus. This leaves 508 usable
slots for real-time data channels. Each time slot pro-
vides a 0.244 usec period during which PCM or other
data samples can be put on a bus from one source and
read from the bus by any number of destinations. Each
time slot occurs once per frame, and frames recur at 125
microsecond intervals. Thus each slot permits 8000
PCM samples (or other data) to be transferred per sec-
ond.

For voice applications, an 8-bit PCM speech sample
occupies one time slot and one slot in the frame is as-
signed for each speaker when a pair of channels are
interconnected. This means a real-time subsystem 230
could support as many as 500 simultaneous oonversa-
tions, if no slots were required for DTMF or other
signals, or for supervisory control.

Associated with the 16 physical data lines of each
TDM bus 414, 416 is a parity line, a number of control
lines which supply the basic frame and slot reference
signals to the devices using the bus, and an ACK/NAK
signal line used in the exchange of non-voice data to
signal the detection of parity errors on the bus. If the
sender receives a NAK indicating detection of a parity
error, that data is sent again in the same slot of the next
frame. If a number of retries occur and the parity error
continues, the bus is deemed to have failed and all traffic
is rerouted onto the surviving bus. Parity is not tested
on PCM transfers.

Or the two real-time executives 406, 408 in the real-
time subsystem 230, one is designated as primary by
virtue of its being the first real-time executive to be-
come operational at system start-up. This prime real-
time executixe originates the frame and slot clocks for
both the S and T buses. Each bus operates synchro-
nously but relative to each other the § and T buses
operate asynchronously. The second real-time execu-
tive regenerates the timing clocks synchronously from
the primary’s clocks. The primary’s clocks can be
strapped to originate either from a self-contained crystal
or from an external “master clock”.

Attached to the S and T bus-pair 414, 416 are up to 42
external transfer switches 402, 404 which perform two
major functions. (1) They interface and control the
duplex 2.048 Mbps serial links connecting the real-time
subsystem 210 to the data channels and in voice applica-
tions, to tne telephone room subsystem 206. (2) They
control the data transmission into and out of the 512
time slots on each TDM 414, 416 bus (S and T buses)
from the data channels connected to the input of each
external transfer switch 402, 404. In voice applications,
there are 64 channels attached to each external transfer
switch since each external transfer switch has two serial
links, each having a capacity for 30 multiplexed PCM
channels and two control and supervisory channels.
Data interchange is defined by the contents of the S and
T port memories in each external transfer switch 402,
404, with each memory containing 512 port command
words. These words control data transfers from data
channels into the external transfer switch 402, 404 and
in voice applications, from any of the 64 multiplexed
PCM channels onto specified time slots of the available
512 on either the S or T bus.

The external transfer switch 402, 404, together with
the real-time buses 414, 416, form a totally autonomous

0092

5

10

25

40

45

60

65

126

switching system. Once the controlling real-time execu-
tives 406, 408 have loaded the external transfer switch
command memories to reflect a desired channel inter-
connect, data is transferred through the external trans-
fer switches 402, 404 and along the bus, driven only by
the synchronizing bus clock. No intervention or pro-
cessing by the real-time executives 406, 408 is required
to maintain a given interconnect. Any channel inter-
faced to an external transfer switch via a serial link can
be connected to any other connected channel by assign-
ing appropriate time slots, and properly loading corre-
sponding commands to the respective external transfer
switch port command memories.

Each external transfer switch 402, 404 is physically
identified by a seven-bit S and T bus identifier (STBID),
associated with the physical connector into which the
external transfer switch 402, 404 is inserted. The
STBID is reset by the controlling real-time executive
406, 408 to designate which external transfer switch is
being addressed when control data is transferred from a
real-time executive to an external transfer switch (dur-
ing the four-slot bus control period).

Each real-time subsystem 230 contains two real-time
executives 406, 408. Each real-time executive 406, 408
interfaces to both the S and T bus 414, 416 and is re-
sponsible for managing one of the two. Thus, they are
referred to as real-time executive-S 406 and real-time
executive-F 408, respectively. Real-time executive S
406 is the processor that activates the various control
signals associated with the S-bus 414, and can load the
command memories associated with the S-port of each
external transfer switch 402, 404. The one exception to
the control of the T-bus 416 by real-time executive-T
408 and the S-bus 414 by real-time executive S-406 is in
the frame and slot clock signals for both the S and T
buses 414, 416, which are under the control of the prime
real-time executive (defined as the first real-time execu-
tive to become operational at system wake-up). The
other real-time executive regenerates the bus clock
signals in synchronization with the prime’s clock. Simi-
larly, real-time executive-T 408 controls the T-bus 416
and its associate external transfer switch bus ports.

As shown in FIG. 6, a real-time executive 406, 408
includes:

(1) A standard processor module 500, with resident
executive and x and y inter-processor executive services
buses 912, 914.

(2) A real-time processor extension 604 providing an
additional 24K words of program memory 614, 64K
words of data memory 616, and a microprogrammed
DMA controller 618.

(3) An internal transfer switch 606, similar to an ex-
ternal transfer switch 402 except that instead of interfac-
ing serial lines to the 8,T bus, it interfaces the real-time
executive’s data memory to the S,T bus via 17 logical
DMA channels 620.

(4) A jumper clip manually placed on the S or T bus
backplane next to the connector into which the internal
transfer switch 606 is inserted. This clip distinguishes
the real-time executive-S 406 and real-time executive-T
408 from a real-time processor 410, 412

The real-time processor extension 604 provides 24
words of added program memory 614, 64K words of
data memory 616, the DMA channels 620, and also
extends the normal instruction repetoire of the standard
processor module 500.

The real-time processor extension 604 can generate
interrupts to its associated standard processor module

4,625,081

127
602 when its data memory buffers either fill or empty
after data transfer to, or from the real-time slots on the
S and T bus 414, 416. This is the general method of
communication from the DMA controller 618 in the
real-time processor extension 604 to processes in the
standard processor module 602.

It is possible to set an interrupt mask register by one
of the real-time processor extension special instructions
to enable or disable specific interrupts as well as switch
on or off certain real-time processor extension facilities.
The conditional test instructions, provided in the real-
time processor extension set, can be used to decode the
specific cause of an interrupt. A First-In, First-Out
(FIFO) buffer between the real-time processor exten-
sion 604 and the standard processor module 602 allows
multiple interrupts to be posted to the standard proces-
sor module 602 processor by the real-time processor
extension 604.

A real-time processor 410, 412 is physically identical
to a real-time executive 406, 408. It provides essentially
the same functions, the only differences consisting of
the following:

(1) The 17th DMA channel, used in a real-time execu-
tive 406, 408 to send control information onto the bus
during the first four slot times, is disabled in a real-time
processor 410, 412,

(2) The software processes, hosted by the real-time
processors 410, 412, are not involved in the manage-
ment of the real-time subsystem 230. Processes in a
real-time processor 410, 412 use the services and facili-
ties of the real-time subsystem 230 in ways comparable
to the use of processor facilities by processes in other
system 100 processors. The important difference being
that the real-time processor 410, 412 can directly and
rapidly acquire and generate real-time data by virtue of
its physical connection to the real-time bus.

A real-time processor 410, 412 can host predefined
transient or user-defined system processes programmed
in standard processor module assembler language. A
real-time processor 410, 412 process node could be
subordinate to a controlling primary job process resi-
dent in a general purpose processor 942, 944, or could
itself be a job’s primary node invoked in a real-time
processor 410, 412 for time-critical applications.

F. Software Architecture

The real-time subsystem software architecture illus-
trated in FIG. 11 shows the major software components
resident in both primary and secondary real-time execu-
tive and their relation to other processes. Within a real-
time executive 406, 408, several major functional areas
exist.

A prime supervisor process 1102 performs a variety
of executive and utility functions including interfacing
requests for assignment from the system device man-
ager (SYSDEV) 1104 in response to acquire requests
from user application process 1106. When the real-time
subsystem 230 powers up, the first real-time executive
406, 408 processor (either S or T) to report itself ready
is assigned as primary real-time executive. Assign re-
quests from SYSDEV 1104 are always passed to the
prime supervisor first. The prime supervisor then de-
cides which of the two real-time executives 406, 408
should manage this particular assignment and all subse-
quent requests relating to it (as identified in future re-
quests by the owner’s job number which is passed with
all requests). This decision is made with an aim to load-
share requests between the two real-time executives
406, 408. Having decided which real-time executive is

5

35

40

45

60

128
responsible for this job’s channels, the information in
the assign request is recorded by prime and passed to
the secondary real-time executive supervisor. The sec-
ondary supervisor also records the data and acknowl-
edges the request back to SYSDEV 1104. Subsequent
requests to the other processes in the real-time subsys-
tem 230 are directed to the primary real-time executive
first, and then redirected to whichever real-time execu-
tive is responsible to the requesting job for its channels.

The user does not communicate directly with the
supervisor 1102. This link is managed via SYSDEV
1104 which also sends free requests to the supervisor
1102 when a user wishes to release a channel after it is
no longer required.

Switch circuits (circuits) 1108 respond to a user re-
quest to create and destroy interconnections among
channels owned by the job. Packets, sent to circuits
1108 as a result of switching requests from the channel
owner, contain simple interconnect maps describing
which data source channels should be connected to
selected destination channels. A particular subset of
interconnections can be uniquely identified by reference
to a circuit network ID, a number supplied by the user
1106 when setting up an interconnection. An intercon-
nection can then be destroyed with a single request
referencing that same circuit network ID. A user can
specify any number of circuit networks (up to 255)
using nonoverlapping channel sets, provid-d that all of
the channels are “owned” by the job.

Data switch and event notification (DSEN) 1110
manages information passed along the control channels
of the serial links connecting the external transfer
switches 402, 404 to the external subsystem, which
multiplexes and interfaces individual physical channels
to the system 100. Data switch and event notification
1110 provides a simple interface to these control chan-
nels. A user wishing to forward control data to an
owned channel sends a request to data switch and event
notification 1110 identifying the channel, together with
the control command code and an associate argument.
Data switch and event notification 1110 routes this
message along the appropriate serial link control chan-
nel to the line group controller 232, 233 which controls
the designated channels’ interface board.

Unsolicited status messages originating from a chan-
nel are collected by data switch and event notification
1110. If the channel is owned by an active process, data
switch and event notification 1110 passes the control
message to the owner. If the channel is not owned, the
message is passed onto the system device log-on process
(SYSDLO). SYSDLO then decides if some action
should be taken, possibly initiating a job to respond to
the message. On a system wide basis, an unsolicited
stimulus message from data switch and event notifica-
tion 1110 is an external event with SYSDLO acting as
the unsolicited event halder. The following describes an
example of data switch and event notification 1110
operation for a voice message call sequence.

Event 1—A ring is detected. A line group controller
232, 233 detects the line state change via a line interface
board signal, and sends a message to data switch and
event notification 1110 via Channel 17, the S, T bus, and
a DMA data channel into the real-time executive mem-
ory.

Event 2—Data switch and event notification 1110
consults the channel assignment tables and determines
that this channel is owned by SYSDLO (that is, it is not
assigned to an application job). Data switch and event

0093

4,625,081

129
notification 1110 passes a message containing the line
ID to SYSDLO.

Event 3—SYSDLO’s tables describe what action to
initiate if this event, or sequence of events occur on this
channel. In this case, it requests JSAM to initiate a voice
messaging process to handle the call.

Event 4—JSAM starts a voice messaging process in
an ideal machine, passing the ID of the channel as a
start-up parameter.

Event 5—Voice messaging “acquires” the channel
with a request to SYSDEV 1104.

Event 6—SYSDEV 1104 “assigns” the channel in
response to the “acquire”.

Event 7—Voice messaging sends a control packet to
data switch and event notification 1110 to set ring back
on the line.

Event 8—Data switch and event notification 1110
passes the message to the line group controller 232, 233
controlling the line interface board 314, which turns on
the ring back generator in the line interface board 314.

Event 9—The phone is answered by the system 100.

A signal generator (SIGGEN) 1114 is a utility func-
tion that permits the real-time subsystem 230 to gener-
ate a tone, or set of tones and attach the tone to a spe-
cific circuit network. A tone may be in the range of 1 to
3200 Hz at integral frequencies, subject to quantization
approximations A single request to SIGGEN 1114 can
specify the channels to receive the tone frequency, and
relative amplitude of the tone together with the tones’
duration.

Dialer 1116 is a utility function used with telephone
applications. A process that has acquired a channel can
request that either DTMF or dial-pulses be generated
on that channel provided the channel has the correct
type of line interface board to activate the request.

With DTMF dialing, DIALER 1116 uses SIGGEN
1114 to send DTMF tones to the channel being dialed in
accordance with CCITT recommencation Q.23 (each
digit tone is transmitted for approximately 50 ms, with
an inter-digit silence of approximately 50 ms).

To generate dial-pulses, DIALER 1116 uses data
switch and event notification 1110 to send dial-pulse
control requests along the normal supervisory control
channel to the line interface board 314 to which the
channel is attached. The line interface board 314 then
switches the line condition to implement each pulse.

The record and playback functions in voice applica-
tions can send data samples to a disk dataset with delta
data compression. This initial data compression can be
further enhanced by replacing strings of identical sam-
ples (representing silence in voice data) with a run
count. Using both compression and run-length encod-
ing, overall data reduction of more than two to one can
be achieved for normal speech The compression algo-
rithm uses an error-correcting feedback loop, with
hardware look-up tables to speed the loop delay It oper-
ates as follows:

(1) The compression technique uses a feedback algo-
rithm to reduce the error between input and the regen-
erated samples An incoming 8-bit PCM sample has a
feedback 8-bit sample subtracted from it to yield an 8-bit
result. The feedback sample represents the recon-
structed previous linear PCM sample derived from the
output of the compression algorithm.

(2) The 8-bit difference sample is used to address a
256 word five-bit look-up table using the real-time pro-
cessor extension special COMPRESS instruction This
look-up returns a five-bit compressed difference signal.

—
=]

o

25

30

35

45

50

55

60

0094

130

(3) Three successive compressed difference samples
are packed into one word and bit zero is flagged ta
indicate the format of the word. Such words are
blocked and then sent to the dataset.

(4) Each difference sample is expanded back to an
8-bit form by the EXPAND instruction of the real-time
processor extension, using another hardware look-up
table It is then accumulated with previous reconverted
samples to form the normalized feedback sample for the
next differencing operation.

Because the feedback algorithm prevents accumula-
tive errors, the compressed PCM output is far more
accurate than a simple five-bit sample would suggest.

To reconstruct the original signal, the five-bit sam-
ples are expanded and integrated since drift in the differ-
ence signal has been eliminated during record. For fur-
ther reference to this modulation technique, refer to
“Delta Modulation Systems”, R. Steele, Wiley & Sons,
1975.

Finally, certain markers are placed in the data stream.
A data stream marker is a three-word sequence, with a
control word indicating a data marker followed by a
unique mark ID. This ID can be used by processing
routines to perform data processing functions on the
dataset. During record, a data stream mark is inserted
into the recorded data at one second intervals followed
by an End-Of-Message (EOM) marker at the end of the
data stream.

KERNEL SYSTEM

The Kernel of the system 100 includes the set of 8 to
32 processors, organized into subsystems of from four to
six types, plus the system-level software and data base
necessary to integrate the subsystems and provide the
user or application programmer with an apparently
monolithic, powerful and easy-to-use computer.

A feature of the system 100 is the automatic initial
program load (IPL) when a system, or any processor, is
started or restarted; another is the ability to dynamically
maintain, on-line, the system files required for “SYS-
GEN?”. A third, and even more important, feature is the
distribution of system functions among the processors
to achieve true parallel processing.

A. System Resource and Job Management

Job scheduling, allocation, and management resides
in primary form in one executive services processor 916
or 918, and in secondary form in the other. JSAM both
actively and passively maintains the status of all proces-
sors in the system, the performance of each, and the
resources of each currently unassigned and available. If
a new processor is reported by interprocessor commu-
nications, JSAM uses the system configuration file to
sequence the integration of the processor into the sys-
tem. Upon being integrated, the new processor becomes
a set of resources and functional capabilities available
for use.

If a processor fails ortraps, JSAM causes the proces-
sor to be logically deleted from the system and recon-
nected under a new identity. JSAM also effects the
relocation or recovery of those processes which had
been initiated or allocated by JSAM. JSAM receives
job request packets from any qualified originator, as-
signs job numbers, allocates any necessary resources,
and either initiates a new process or hands the job re-
quest packet over to an appropriate virtual machine
operating system.

JSAM responds to requests from any process desiring
to set up or subsequently tear down a process-net: a set

131
of one or more processes, initialized to establish any
necessary intra-net communication, allocated to the
requesting process and controlled much as if the net
were a pseudo-device. In addition, JSAM maintains a
TICKLER file, used to schedule periodic and deferred
job requests on intervals of six minutes to one year, with
a resolution of six minutes.

The system 100 is designed to respond to outside
stimuli. Stimuli from devices not allocated to some
active process (such as the ringing of a previously quies-
cent telephone line or powerup of an operator station)
are sent to SYSDLO for analysis and resolution.
SYSDLO uses data from the system device file to deter-
mine the action to be taken at this time of day and day
of the week, for the specific device. Actions to be taken
can include:

(1) Wait for additional stimuli (e.g., rings) before
responding.

(2) Log an illogical stimulus and optionally cause the
device to be logically turned off.

(3) Actively interact with the device (e.g., initial log
on of an operator station) to define the specific nature of
the required response.

(4) Determine that no action is required.

(5) Initiate a job request packet to JSAM, with pa-
rameters obtained from the SDF record of the device.

SYSDLO is a singular process which may reside
anywhere in the system where adequate data memory
exists for the required on-line data base.

B. System Files and Device Management

Each system 100 is required to have two disk packs,
pre-initialized as system disk packs 930, 932 (SYS-
DISKs) and mounted on drives attached to two differ-
ent disk data processors 934, 936. Each SYSDISK in-
cludes special transient routines to permit autonomous
wakeup of the disk data processor 934, 936 under cer-
tain circumstances. In addition, each SYSDISK 930,
932 contains a logical duplicate of the following files:

(1) SYSCAT—The system catalog is maintained by
SYSDIR as data sets are created and deleted. SYSCAT
includes all disk data sets, the data sets mounted on each
magnetic tape unit, and may include unmounted mag-
netic tape data sets. Attributes of each cataloged data
set include: (a) Creation date and creator identity, (b)
Access security specification, and (c) Redundancy type
and location. The following redundancy type and loca-
tion information is provided: (a) singular—volume ID
(or IDs if more than one volume), (b) duplex—volume
1Ds, copies one and two (recorded in parallel but not
automatically re-duplexed if one volume fails), and (c)
duplicate—volume IDs, copies one and two (automatic
recreation of second copy if one copy fails and is not
recoverable).

File organization options include: (a) record length
(maximum if variable), which can be fixed or variable,
(b) direct or indexed (number of directories), (c) offset
and length, index one, each record, and (d) offset and
length, index two, each record.

A name is also associated as an attribute of each data-
set.

(2) SCF—The system configuration file is maintained
interactively via SYSMON. This file lists the minimal
set of hardware and software required for processor,
subsystem and system operation. It is used by JSAM to
effect the wakeup of processors, subsystems, and the
entire system, and to facilitate recovery in the event of
a failure. This file initializes SYSMON for the log data
to be captured and summarized on-line.

0095

S

I

20

40

60

65

4,625,081

132

(3) SDF—The system device file is maintained in-
teractively via SYSMON and indirectly by service
processes in virtual machine operating systems that
permanently “own” devices (such as the telephone
answering support system, which permanently “owns”
most of the attached telephone lines). For each device,
this file includes: device type and subtype or subtype
range, virtual machine operating system ownerhip, if
any; account ownership, if any; a list of system termina-
tion points, by channel type and physical address, in/-
out of service, data and time, physical location, extra
system identifiers (telephone number, unit serial num-
ber, etc.), periodic diagnostics (e.g., line check) parame-
ters, service schedule by time-of-day, day-of-week, and
type of stimulus versus type of response.

(4) The kernel program library is maintained by the
kernel program librarian, through SYSMON. The li-
brary of all programs directly executable from bipolar
program memory/writeable control store by any pro-
cessor in the system. Included for each program is the
set of resource and precedent programs necessary for
execution. Each program is indexed by name, version
and change level.

(5) The TICKLER file is maintained by JSAM. It
contains job reqjests scheduled for activation from six
minutes to two years in the future. Each request can
include parameters to permit automatic rescheduling at
intervals of minutes, hours, days, weeks, or months.

SYSDIR exists in a primary and secondary form, one
to each disk data processor 934, 936 which hosts a SYS-
DISK 930, 932. SYSDIR mechanizes the following
functions:

(1) CREATE, which allocates space on a requestor-
selected or SYSDIR-selected volume, and catalogs the
data set.

(2) DELETE, which decatalogs a dataset and re-
stores to available space all space allocated to the data-
set.
(3) RECATALOG, which effects a change in the
name or other attributes of a dataset catalog descriptor.

(4) OPEN, which establishes the linkage (headers) for
communication between the requestor and the disk data
processors hosting the dataset.

(5) CLOSE, which terminates the linkage established
by the OPEN.

SYSDEV manages the inventory of external devices
attached to the system 100 including telephone lines,
operator stations, pointers, array processing unit chan-
nels, data links, concentrators, and any others. SYS-
DEV, in conjunction with SYSMON, maintains the
system device file. Any synchronous bus processor or
interactive services bus processor, upon wakeup, com-
municates with SYSDEV to obtain the type and iden-
tity of all attached devices. In addition, SYSDEV
mechanizes the following functions:

(1) CREATE, which effects the posting of an addi-
tional device.

(2) DELETE, which effects the posting of the re-
moval of a device.

(3) RECLASSIFY, which changes designated parts
of the record of an existing device.

(4) GETDEVICE, which allocates a device by iden-
tity or by type and list of subtypes.

(5) RELEASE, which returns to inventory a specifid
device, all devices owned by a process, or all devices
owned by a job.

4,625,081

133
C. Utility Software

System Logger (SYSLOG) is initiated and allocated
by JSAM to reside in a disk data processor 934, 936. It
receives all log packets and validates them for format
and generation rate. It posts each log packet to an ap-
propriate FIFO file on disk for subsequent processing.
If desired, the disk files may be moved to tape.

Kernel Program Librarian is initiated on demand via
a SYSMON file update console. Used to post new, or
update old, programs (from levels 0 through 4) in the
kernel program library. Sources can be any of various
1/0 devices or files created by the system assembler
running under the program development system.

Disk Utilities are accessible via SYSMON and re-
spond to the commands DUMP, COPY, PACKINIT,
and VALIDATE.

Voice Compression and Record is a psendo-device
invoked and acquired by a process (job) desiring to
acquire and store a voice message. The program resides
in a data processor on the synchronous bus 912, 914.
During initiation it sets up to record the message
through one or two (selectable) disk data processors
934, 936. The message index and any segmentation
marks are supplied by the requestor.

Voice Message Retrieval is a pseudo-device invoked
and acquired by a process (job) desiring to retrieve and
playback a recorded voice message. During initiation,
the requestor supplies the message ID or IDs (if two
exist). Datasets are opened as necessary and playback is
effected under supervisory control of the requestor.

" Voice Response Unit playback is a psuedo-device
similar to voice message retrieval, except that the pro-
gram is given the voice response unit file ID and a string
of voice response unit segment IDs which it uses to
construct the voice response unit sequence and autono-
mously terminate.

System Program Loader (SYSLOADER) is invoked
only by REX in the target processor, as the result of a
request packet. It provides read-only access to the ker-
nel program library, and effects program relocation
where required.

D. Virtual Machine

A virtual machine may be created to host the pro-
cesses of a new job or to provide parallel processes for
an existing job. At the time of creation, a nucleus of real
memory is allocated. In the virtual machine engines, the
following rules are applied:

(1) Instruction memory is partitioned from data and
stack memory as a separate space.

(2) Instruction memory is read only after the program
has been loaded.

(3) Memory is not swapped or moved to bulk storage
except as explicitly requested by the program executing
in the virtual machine.

(4) Memory used for stack or data space may be
dynamically managed or completely allocated during
virtual machine initiation.

(5) Interactive jobs initiated from a terminal (or from
an operator station for so long as no telephone line is in
use) are always assigned a lower priority than jobs in-
volving a telephonic line.

(6) System-initiated, periodically scheduled jobs not
involving a telephone line, and not operating interac-
tively, are assigned an even lower priority.

The resources acquirable by a single virtual machine
are subject to the following limitation:

0096

—
=

—
un

25

60

134

(1) Memory—Each partition (instruction, data, stack)
has a 24-bit byte addressing capability, mechanized as
an 8-bit segment register (most significant) and a 16-bit
address register (least significant). The most significant
12 bits address a page table to access the most significant
11 bits of the sought real memory address. The total
memory used by one virtual machine can extend to 8 M
bytes; allocation is dynamic.

(2) Devices—Virtual devices are acquired by an ap-
plication program from virtual machine monitors as
required. A virtual machine monitor acquires corre-
sponding real devices from the system as necessary. The
maximum number of virtual devices acquired by a vir-
tual machine is determined at the time the program
running in the virtual machine is loaded.

(3) Files—Unless special steps are taken upon cre-
ation, files are accessible only through the virtual ma-
chine operating system under which the files were orig-
inally created. Furthermore, the virtual machine oper-
ating system can categorically limit, through virtual
machine monitor parameters, the space occupied and
the number and types of files to be created by a virtual
machine,

VIRTUAL SYSTEMS

At the user level, a DELTA system consists of an
arbitrary number of virtual machines. Each virtual ma-
chine uses a virtual machine operating system to fulfill
the operational purpose for which it is created, such as
on-line interactive operations, application program exe-
cution, etc. A virtual system consists of:

(1) A virtual machine composed of a virtual machine
interpreter and a virtual machine monitor.

(2) A virtual machine operating system.

(3) A set of real devices allocated upon request of the
virtual machine operating system or by the application
program through the virtual machine operating system.

(4) A set of files accessible (in a security sense) to the
virtual machine operating system, opened either by
virtual machine operating system or by an application
program through virtual machine operating system.

Three generic types of virtual system are presently
defined, each with its own virtual machine operating
system.

System Monitor (SYSMON) is an interactive system
via which a variety of specialized monitors can be in-
voked. The specialized monitors include (1) a mainte-
nance monitor, (2) a system programmer monitor, and
(3) an operations monitors, one for each unique VMOS.
Within each specialized monitor, SYSMON provides
the ability to identify a set of logger events, plus a set of
corresponding functions to permit on-line access to
system and application performance and status data.
Examples might include:

(1) The number of operator stations of certain sub-
types presently logged on, and the identities of the oper-
ators.

(2) A running summary of reported error conditions.

(3) A printed log of alarm conditions.

The psuedo-machine operations accessible to the
SYSMON virtual machine interpreter include privi-
leged instructions not accessible to other virtual ma-
chine interpreters. Thus, SYSMON is the only virtual
machine operating system able to interact at the level of
the writeable control store within the system 100. To
preserve access security to the maximum possible ex-
tent, activation of a SYSMON virtual system is re-
stricted to a set of physical operator stations so desig-

4,625,081

135
nated in the system device file. In addition a user ID and
password validation is required. In addition to the moni-
tor identified above, SYSMON also provides, via a file
update mode, the only means for updating the kernel
system files.

The Program Development System (PDS) is a soft-
ware system derived from the Pascal system of the
University of California at San Diego (UCSD). Each
virtual machine created under the program develop-
ment system appears to be a single-user data processor
with a. terminal, a printer, and a set of files accessible to
the user. The user may access any of the following:

(1) A File Handler.

(2) Two Editors; one screenoriented and one line-ori-
ented.

(3) Pascal Compiler.

(4) BASIC Compiler.

(5) Linker for the Pascal and BASIC compilers.

(6) Processor assembler and linker.

(7) Debug utilities.

(8) Computational and service utilities.

The user may also invoke any program created under
PDS which executes on the PDS virtual machine en-
gine.

Telephone answering support system (TASS) pro-
vides the functional framework for the telephone ser-
vice system communications services centers. Tele-
phone answering support system is a stimulus-response
system incorporating a highly-structured, very versatile
telephone receptionist interface. Telephone answering
support system integrates the circuit switching and
signal (i.e., voice) processing to provide for the acquisi-
tion and retrieval of voice messages, using digital disks
as the storage medium. Telephone answering support
system coordinates the assignment of operators to calls,
control of the telephone network, maintains the TASS
data base, and the acquisition of data for SYSMON
supervisory use.

The telephone answering support system data base
consists of:

(1) A set of account-ordered files, including format-
ted display data, accounting records, and messages and
bulletins.

(2) An operator records file.

(3) The service schedule and other portion of the
records for those devices (lines, trunks, etc.) flagged in
the system device file as being updatable via the tele-
phone answering support system.

(4) The telephone answering support system event
log SPOOL.

Services provided under telephone answering sup-
port system include:

(1) Call intercept (Incall) handling, including message
acquisition, voice, or typed.

(2) Retrieval call (Recall) handling, including MFT
and voice command control of playback.

(3) Message dispatch (Outcall), the scheduled or un-
scheduled (demand) active delivery of a message.

(4) Field service dispatch.

(5) Order-taking.

(6) Classified ad voice response.

INTERACTIVE SERVICES SUBSYSTEM

A. Overview

The interactive services subsystem 252 (FIGS. 2, 7)
within the system 100 provides executive services and
management of data transfers betwen processes and
various attached peripheral devices. The system 100

0097

20

30

45

50

55

65

136

may contain from one to four interactive services sub-
systems 252, each processing two interactive buses 704,
708 and two dedicated interactive services executive
processors, 702, 706 individually managing a separate
bus. Each interactive services subsystem 252 parovides
up to 64 device controllers through which a variety of
peripheral devices such as terminals, magnetic tapes,
pointers, etc. may be attached. (Disks are controlled
and managed by the file services subsystem 908). Thus
up to 1024 asynchronous full-duplex serial lines can be
attached to a single interactive services subsystem 252
and for each a total of 1984 data buffers may be defined.
Since each interactive services subsystem 252 has its
own complement of processing resources, data buffers,
buses, controllers, and handlers, a smooth growth path
without bottlenecks is assured with the capacity to
support ultra-large configurations.

Each interactive services subsystem 252 controls a
separate bus pair to which is attached dual-ported, fully-
buffered device controllers. The interactive services
executives 702, 706 use an adaptive polling technigue
and a multiplexed DMA channel controlled by a sepa-
rate, independent microprocessor. The microprocessor
transfers data between memory buffers and devices at a
rate determined by the demands of the various devices.

The interactive services executive processors 702,
706 used are members of the standard processor familty,
which consists of a 16-bit standard processor module
500 (724) and an interactive processor extension unit
726 that provides data buffering and bus control func-
tions. Each interactive services executive 702, 706 hosts
multiple concurrent processes, (each process generally
a Level 1 element of the kernel system), provices a
device and channel handler functions, and are part of
the system software. An interactive services processor
702, 706 can be user-programmed to augment the kernel
system when a device, unique to an application, is at-
tached to the interactive services subsystem 252.

However, since interactive services processors 702,
704 are programmed in the low-level SPM assembler,
the resulting process coexists with other processes in an
unprotected environment and programming the interac-
tive services subsystem 252 becomes a privileged task,
requiring an understanding of the standard processor
module 500 hardware, resident executive, and all other
kernel system protocols.

A Level 3 Pascal-programmed application task uses
the services provided by an interactive services subsys-
tem 252 through procedure calls. These procedures are
a subset of the virtual machine monitor’s intrinsic sup-
port functions which handle general input/output to
devices and datasets. To an application, a device at-
tached to the interactive services subsystem 252 appears
as a channel along which data and control information
can be passed. A well-defined protocol dictates the
sequence of interactions that can take place between an
application and a device and is identical to the protocol
used in handling data channels from datasets residing on
disk or magnetic tape. Many of the procedures used for
data transfer are the same for both device-related and
dataset transfers. Magnetic tapes are attached to the
interactive services subsystem 252 as peripheral de-
vices, but logically support datasets. Therefore, dataset-
related calls from an application, program can be di-
rected to either the file services subsystem 908 or the
interactive services subsystem 252 depending on
whether the dataset has been opened on disk or mag-
netic tape.

4,625,081

137

Access from an application residing in the informa-
tion processing subsystem 906 to the interactive ser-
vices subsystern 252 is via Level 2 manager processes
which manage (on a system-wide basis) device alloca-
tion and usage for single or multiple interactive services
subsystems 252. This management function is essential
in multi-task environments, where many concurrent and
simultaneous applications need to acquire and use a
fixed number of peripherals. To acquire a terminal,
printer, or line, a request to the system device manager
(SYSDEV) must first be made. SYSDEYV allocates the
device; builds a communications path between the ap-
plication and the device’s handler, and records the de-
tails in its internal allocations tables. Similarly, a mag-
netic tape dataset is opened through the system direc-
tory manager (SYSDIR) which acquires a magnetic
tape drive, ensures that the correct tape is mounted, and
builts a communications path from the application to
the magnetic tape handler in the interactive services
subsystem 252 or subsequent data transfer operations.

The interactive services subsystem 252 does not gen-
erally host any kernel system Level 2 processes. The
processing capacity is reserved for the various device-
related processes that need the specific environment
provided in the interactive services processors 702, 706,
namely the unique access to the data buffers and control
registers of the physical channel controllers attached to
the interactive bus 704, 708.

B. 1/0 Protocol

Irrespective of the nature of a device, a general com-
munications protocol exists between a using process and
a device. This protocol is consistent not only for appli-
cations programmed in Pascal and running in the virtual
machine environment in the information processing
system 906 but also for low-level standard processor
module assembler processes using basic resident execu-
tive services. The protocol is composed of the follow-
ing distinct steps that lead up to, implement, and then
terminate a data transfer:

(1) Acquire the device for use.

(2) Open a communications path to the handler.

(3) Access the device for read or write.

(4) Transfer data between the user and the device.

(5) Terminate a data transfer operation.

(6) Close the communications path to the device
handler.

(7) Release the device back to the system.

(8) Between the acquire and release stages, send and
receive control information to the device as appropri-
ate.

These steps do not have to be sequentially performed
for each data transfer. Often a device is acquired and
opened for the duration of a job’s existence and in other
instances, only control functions have any logical mean-
ing when related to a particular device. However, all of
these cases are contained within the general protocol.

Before being able to talk to a device, the user-process
must first own it. An acquire request is routed to SYS-
DEYV either requesting a specific device (identified by
its internal system ID), or a type of device if the user is
not concerned with which one of several similar de-
vices is assigned. SYSDEV, in turn, selects the appro-
priate channel manager (of managers if the device has
more than one channel), informs it of the ID of the new
owner of the device, and passes to the user the process
ID of the channel manager(s). Until the owner releases
the device, other process may not communicate with it.

0098

5

10

5

30

45

50

55

60

138

BEfore 1/0 can begin, the user must communicate an
open request to the device channel manager. This estab-
lishes a path between the user and the device handler to
which is sent all subsequent access and transfer requests.
The user is passed the ID of a general purpose interface
process which receives all 1/0 requests and passes each
to the correspondinding device handler for action.

A write access request is used to specify the type and
amount of data for the handler to expect. In return, the
user is informed by the nandler the status of the device
and the process.ID to be used for data transfer. A buffer
is prepared in the interactive services subsystem 252 to
receive data from the user.

A read access request instructs the handler to retrieve
data from a device for the user by loading a buffer. In
response, the handler provides a status report on the
read operation, operation complete, error conditions,
etc.

A put request follows a write access and initiates data
transfer from the user’s buffer to the interactive services
subsystem 252 butter and eventually to the device itself.
The response from the handler provides the header
(process ID) to be used during data transfer to the han-
dler.

A get request follows a read access, includes the
header (process ID) to be used for data transfer, and
intiates transfer by the handler from the buffer (loaded
from the device by the read access) to the user.

It is possible to open two devices, prepare one for
read and one for write, and then effect transfer of data
from one to the other independent of any transfers to, or
from the controlling user process. A transfer request
can reference any combination of devices and datasets.

This clears a current read, write, get, put, or transfer,
and releases buffers for further use. The user returns to
the open condition with respect to the device.

The communications path, set up with the open com-
mand between the user and the handler, is broken. Any
subsequent attempt to access the same handler would be
rejected.

When use is no longer required of a device, the user
can return it to the system by releasing it back to SYS-
DEV. It is possible that another job requires the device
and has had its request queued awaiting release. In this
case, the device will be immediately reassigned to the
queued job.

Ownership of a device is via the job number of the
owning job, not the process ID of the process that ac-
quired it. This signifies that if a job consists of a network
of processes (all with the same job number), then once
a device has been acquired by a job, any other process
in the same job can also communicate with the device
provided it “knows” the appropriate process ID to be
used. This is especially useful in allowing backup pro-
cesses to take over devices when a primary process
fails.
The Pascal interface to these steps is via the following
matching set of procedures and corresponding func-
tions:

VACQNAME—Acquire from SYSDFV by name

(ID), by type, and subtype.

VACQLIST—Acquire from SYSDEV by name

(ID), by type, and subtype.

VOPEN—Open communications path.

VREADDEV—Access request.

VREADCRT—Access request.

VWRITEDEV—Access request.

VGET—Data transfer (disk or tape datasets).

4,625,081

139

VPUT—Data transfer (disk or trape datasets).

VTRANSFER—Data transfer (disk or tape data-

sets).

VENDIO—Terminate access request.

VCLOSE—Close communications path.

VRLSEDEVICE—Release back to SYSDEV.

VCONTROL—Send control data.

C. Supported Devices

To support a peripheral device on the interactive
services subsystem requires two components—a hard-
ware channel controller to physically interface the pe-
ripheral’s data and control channels to the interactive
services subsystem 252, and a device channel handler
process in the interactive services subsystem 252 to
logically interface the device’s channels with the formal
170 protocol described in the previous section. Avail-
able controlled include a serial channel controller 254,
255 that allows devices with asynchronous serial duplex
RS232 data channels to be attached, and a magnetic
tape controller 714 that interfaces the data and control
channels of magnetic tape drives. Other channel con-
trollers may be used for synchronous and X.35 chan-
nels.

Dumb terminals are simple, byte-at-a-time VDU/-
keyboard devices used in the system 100 via the interac-
tive services subsystems 252 as program development
system terminals, Attachment to the interactive services
subsystem 252 is through an asynchronous 9.6Kbps
duplex line to a serial channel controller 254. Pressing a
previously defined log-on key on an idle dumb terminal
results in the initiation of a program development sys-
tem in a virtual machine which then acquires the termi-
nal to solicit control and interactive communication
with the terminal user.

A data message sent to the terminal from an applica-
tion consists of a variable length string of ASCII con-
trol and data bytes, which may write to the screen or
perform control functions in the terminal, depending on
the individual characters sent. The simplest message is a
single character sent to echo a keyboard input. The
terminal handler provides an acknowledgement to the
user for each message sent to the handler.

Characters from the keyboard are sent individually
and directly to the owning process as they are received
by the handler. The terminal handler is given the pro-
cess ID of its owner when acquired and sends each

. typed character to the owning process in an individual
unsolicited notification message. To the user process,
the arrival is an unsolicited event which can be waited
or checked on. The status of the terminal, as seen by the
interactive services subsystem 252 can be verified at any
time by the control function available to the user to
detect if the terminal is on-line, off-line or suspended by
the system operator. To reduce the burden of the appli-
cation having to echo each character, a local handler
level echo option can be chosen.

To send messages to the terminal, standard 1/0 rou-
tines and protocol are used with open, write access, put,
end I/0, and close as meaningful for this device. To
maintain integrity, the handler times out if gaps in a
message string occurs with the timeout value related to
the band rate of the serial channel. The read access and
get functions have no meaning for this device.

Intelligent terminals 270 are used as consoles for
system programmers, system operators, and operator
stations. The intelligent terminal is a microprocessor-
controlled device which maintains a number of “virtual
screens” on the one physical display by partitioning the

0

20

40

50

60

140

screen into a number of separately managed areas. Each
visible partition is used to provide human interface to a
different class of functions allowing for efficient and
flexible use of the one device. Non-visible partitions
serve as buffers and simplify implementation of categor-
ical lists of operator-selectable functions not actually
displayed.

In a telephone answering support system application,
this terminal is used as part of a composite device called
an operator station 106. This consists of an intelligent
terminal 266 augmented with a voice headset 224, sepa-
rately connected via an audio channel to the real-time
subsystem 230.

When the telephone answering support system appli-
cation attempts to acquire an operator station 106, SYS-
DEYV must jointly allocate the data channel to the ter-
minal and the audio channel to the headset. However,
the data channel to the terminal and the voice channel
to the headset are independently controlled and oper-
ated once they have been acquired and the intelligent
terminal, used by the telephone answering support sys-
tem in the operator station 106, is identical to that used
for system consoles in so far as this description is con-
cerned.

Messages sent to an intelligent terminal are similar to
those sent ot a dumb terminal, but only to the extent that
they concist of a variable length string of bytes. How-
ever, intelligent terminal messages have a type-attribute
also which is the start-of-message character indicating
to the terminal how to interpret the characters that
follows. Additionally an end-of-message character is
defined, to delineate strings of messages. Messages are
used to define message partitions; enable or disable
keybaords and function keys; define screen partitions;
read, write, and move data in the terminal’s buffer; and
many other functions.

Messages from the terminal can be either unsolicited
resulting from operator keyboard actions, or solicited
by a request to read the contents of a partition on the
screen. The latter is useful in data-entry environments,
where a partition can be set up to contain a data entry
form consisting of protected labels and unprotected
response fields, with the operator allowed to enter key-
board data directly into the terminal in a local mode.
During data-entry to the terminal there is no workload
on the system, which can then quickly scan the whole
form with a single read access, get I/0 sequence. This
results from an unsolicited stimulus from the terminal
caused by actuation of the send function key.

Before the system permits log-on, the intelligent ter-
minal solicits a personnel ID, password, and function
selection code from the user. The log-on information
collected is transferred by the handler via an unsolicited
notification packet to SYSDLO, which receives all
unsolicited inputs from unowned devices. SYSDLO
uses the function selection code to effect initiation of a
corresponding interactive log-on process. The latter
process verifies the identity of the physical terminal,
user, and password to assess whether the user will be
allowed to proceed or not.

All of the I/0 functions can be used with the intelli-
gent terminal with control and timeouts applying as for
the dumb terminal.

Printers are connected to the interactive services
subsystem 252 via serial asynchronous channels termi-
nating on a serial channel controller 254, 255. The soft-
ware printer handler in the interactive services subsys-
tem 252 can support any number of printers and in a

0099

4,625,081

141

normal configuration, at least two are attached each to
a different serial channel controller 254, 255 for secu-
rity. The system monitor (SYSMON) acquires printers
to produce selective hard-copy of operator interactions
and dumps of the system log. To avoid long-term sus-
pension of processes requiring printers when printers
have been acquired by SYSMON (and therefore unus-
able by any other process, even if idel), a print spooler
Jjob owns the system printers rather than any individual
system or application job. As a result, a user generally
sends data to be printed to the publically writeable print
spooler dataset, where it is eventually output to a free
system printer. In addition, other printers may be at-
tached to the system which are available for general
allocation to any job requesting acquisition of a printer
for private use. The protocol between a user and printer
handler follows the standard sequence outlined earlier,
but with read access and get requests being illogical for
this particular device.

The printers supported by the interactive services
subsystem 252 are the Printronix models 300/600,
which have a wide range of advanced print options
including variable print spacing, variable line spacing,
variable character size, a programmable vertical forms
unit and plot mode.

The printer handler manages the attributes of the
printer on behalf of the user, who can select the re-
quired print characteristics and operational mode using
the control functions provided in the I/0 protocol.

There are three basic operational modes which the
user can adopt when sending output to the printer.

Transpartne Transmission Mode—All characters
received by the printer handler are passed to the printer
with no code translation or insertion of control codes by
the handler. This allows the knowledgeable user com-
plete control of the printer’s functions.

Edited Transmission Mode—The user sends the
printer handler complete message, with the handler
managing the insertion of carriage control characters to
produce a correctly-structured printout, as defined by
the user in previous control messages.

Line-Oriented Transmission Mode—Data is sent to
the printer handler on a line-by-line basis with the first
word of the data interpreted by the handler as a format
control word. This allows attributes of the printout to
be changed on a line basis, rather than on a message
basis as occurs with the edit transmission mode, al-
though the facilities offered to both modes are similar.

The printer is equipped with a soft vertical form unit
which the user can program via control messages to
skpply any desired pattern of vertical carriage move-
ments in response to vertical tab control characters.
This greatly simplifies printing out highly structured
items such as bills or invoices.

The printer can also be set to plot mode in which the
bit-wise contents of the data sent to the printer are
printed in a corresponding dot pattern in a left-to-right,
top-to-bottom scan. This can be useful in printing super-
large character sets, defined in software, for printout
labeling. Another application of plot mode is the output
of information and statistics in graphical formats such as
histograms, charts and graphs.

Datasets critical to both speed of access and data
transfer rate are stored on disk drives with each drive or
group of drives controlled by an individual disk data
processor 934, 936 in the file services subsystem 908.
For off-line archive storage or large datasets with low
access priority, magnetic tape is a cost-effective media.

0

25

40

45

60

65

0100

142

The low data rates associated with magnetic tape per-
mit the interactive services subsystem 252 to host the
magnetic tape device handler, in addition to the other
device handlers. Each magnetic tape controller 714
attached to the interactive services bus 704, 708 can
drive two tape drives 718, 720 with up to seven separate
magnetic tape controllers permitted per interactive bus
704, 708.

User processes do not directly acquire and use mag-
netic tape drives as they would a printer. Users are
concerned with the datasets supported on the magnetic
tape, not in the device as such. The magnetic tape data-
sets are of the sequential unmapped type with variable
length records. To the user, there is no difference
whether a disk-based dataset or one contained on a
magnetic tape volume is used. Either way the create-
open-access-transfer-use protocol is used.

However, in the event a user attempts to open a data-
set on magnetic tape, SYSDIR acquires a magnetic tape
drive from SYSDEV and ensures that the correct tape
reel containing the dataset is mounted. SYSDIR then
responds to the user’s open request, supplying the inter-
active services subsystem 252 process ID to provide
access to the magnetic tape device handler for all subse-
quent read/write access and transfer requests. To the
user, there is no difference in handling the magnetic
tape device handler in an interactive services executive
702, 706 or the disk handler in a disk data processor 934,
936. Each is identified via a similar process ID to which
the same requests can be sent.

The tape volumes used conform to ANSI X-3.27,
Level 1. This provides for a standard label on a tape
header allowing for transportation of tapes between a
Delta and other processing systems. Level 1 support
limits each tape to one dataset (that is, no directory is
supported on the tape), but a single dataset can span
across multiple tape volumes. Support for the more
sophisticated ANSI X-3.27 levels (Levels 2-4) will be
available in the future as needs dictate.

The magnetic tape device handler supports writing
and reading of sequential records, the reading of any
portion of a record, and a maximum record size of 4096
bytes. The handler also permits the user to send control
messages to the tape drive allowing rewind and erase to
be activated under control of the user process.

The real-time subsystem 230 switches and processes
continuous voice traffic, interfacing to the system 100 as
analogue signals at the telephone room subsystem 206,
214, 216. Each voice channel is carried on a separate
pair of copper wires attached at a remote point to
switching equipment through which the voice signals
are routed to the system 100. This equipment could be a
common carrier’s exchange plant, or a private organiza-
tion’s internal PBX. In certain telephone answering
support system applications, the voice lines originate as
off premises extensions attached in parallel to the sub-
scriber’s own telephone line at the main distribution
frame of the telephone company’s exchange (secretarial
lines).

Two factors must be taken into account in relation-
ship to normal telephone applications: (1) the average
utilization of each line is low, and (2) the cost of lines
from a central office to a remote site is high.

The remote line concentrator 202 allows a large num-
ber of low utilization remote lines to be selectively
switched onto a smaller number of high utilization
trunks leading to the system 100. The concentrator is
located in, or adjacent to, the exchange equipment and

4,625,081

143

connected via the central office main distribution frame
to each subscriber line for which service is required.
The number of trunk lines necessary between the con-
centrator and telephone room subsystem 206 is related
to both the service levels required, and the traffic pat-
terns that occur. Although variable depending on the
nature of the services offered and the particular business
environment being serviced, a concentration ratio of
60:1 would be typical in a standard telephone service
system application.

For control, the concentrator is connected via redun-
dant low speed serial data links 210 to the interactive
services subsystem 252. The data link 210 carries mes-
sages in both directions, including:

(1) Detection of rings, status changes and acknowl-
edgment of action requests, together with the identity
of the lines or trunks on which the activity is taking
place.

(2) Requests to seize a selected subscriber’s line and
connect it to one of the voice trunks; to release a sub-
scriber’s line and disconnect it from the trunk; and to
post alarm conditions intended to invoke local service
responses from system 100 to the concentrator.

Since the concentrator control lines are attached to
serial channels in the interactive services subsystem 252,
the concentrator handler is resident in the interactive
services subsystem 252 and the concentrator is consid-
ered tn interactive services subsystem peripheral de-
vice.

The concentrator 202 has a fault-tolerant hardware
architecture and each contains two controllers with
either controller capable of operating as primary and
the other as backup. Five voice trunks and one data
channel terminate on a concentrator trunk board. Each
trunk board is operated by the primary controller and is
installed in pairs. Any single subscriber line can be
switched to any of ten trunk positions of a pair of trunk
boards. From two to ten real trunks can be installed on
a pair of trunk boards, and the pair is treated by the
concentrator handler in the interactive services subsys-
tem 252 as a single logical concentrator. However, a
single physical concentrator rack at the remote site can
contain up to four logical concentrators (four pairs of
trunk boards, each paid with two data links and up to
ten trunks). Subscriber lines are partitioned into ten
groups, and a group can be connected to have access to
only one logical concentrator trunk set. In situations of
higher traffice density, this allows up to 40 trunks to be
configured between one physical concentrator and the
system 100. The datasets 208, 212 and link 210 can thus
be physically implemented as up to four parallel sets.

Since the concentrator is remote from the interactive
services subsystem 252, dataset modems 208, 212 are
required at each end of each serial data control line 210.
However, since the data rate on the line is low (110 or
300 Baud), simple low cost modems are sufficient.

Although subscribers are terminated on the exchange
side of the concentrator, individual subscriber lines are
still managed by the system as though they were at-
tached to the telephone room subsystem 206 even
though routed through the concentrator over common
trunks. A user can send SYSDEV an acquire request for
a subscriber line using the concentrator terminated
channel ID to represent the normal telephone number
of the ringing subscriber line. SYSDEV then requests
the concentrator handler to seize the requested line,
select a free trunk, and switch the line onto the selected
trunk. The concentrator handler passes to SYSDEV the

0101

20

40

60

14 -
channel ID of the incoming common trunk onto which
it has switched the requested line. SYSDEV then sends
the real-time subsystem 230 a request to assign the trunk
to the original requestor so that it can become the
owner of the trunk and perform switching or processing
functions with it.

The concentrator handler manages the assignment of
trunks from the concentrator, not SYSDEV. These
trunks are a resource used by the concentrator handler
in fulfilling requests to switch a line to telephone room
subsystem 206. SYSDEV manages the ownership of the
actual subscriber lines in the remote exchange location
as if they were physically terminated on the telephone
room subsystem 206. Once a user has acquired and
seized a line via a concentrator, the channel ID of the
trunk (employed by the concentrator handler in con-
necting the remote line to the real-time subsystem 230)
is used in switching and processing functions, not the
actual telephone number of the ringing telephone lines.

Once a line has been acquired via SYSDEV, the only
interaction between a user and the concentrator handler
is control functions. At any time, the owner can send a
status request to the concentrator handler to measure
the current state of the remote line. Additionally, a user
can acquire a remote line without seizing it, as described
previously, with the actual seize performed at a later
time. In this case, the seize command is sent in a control
message to the concentrator handler, and the trunk
assignment is then returned to the owner-user. When a
user is finished with the remote line, a release request is
sent to SYSDEV which informs the concentrator han-
dler to free the subscriber line at the concentrator and
return the trunk used back to the pool of available
trunks. SYSDEYV also sends a message to the real-time
subsystem supervisor informing it that the released
trunk is no longer owned by the user.

D. Interactive Services Subsystem Hardware Architec-
ture

An interactive services subsystem 252 consists of
three hardware components, as shown in FIG. 7.

Interactive services executives 702, 706 are one of the
five types of processors used in a system 100 with each
subsystem containing two interactive services execu-
tives 702, 706. During normal operation, the workload
involved in peripheral I/0O is shared between the two
interactive services executive processors 702, 706. In
the event of a failure of one interactive services execu-
tive 702, 706 or the bus 704, 708 it controls, the survivor
takes over the full load until the failed member is re-
placed.

Interactive buses 704, 708 are each controlled by one
of the interactive services executive processors 702,
706. The interactive buses 704, 708 known as the U-Bus
and the V-Bus respectively. Each bus has sixteen paral-
lel data lines, a parity line, and an associated set of con-
trol lines. Data can be transferred along the bus between
attached device controllers and the interactive services
executive’s data memory as follows:

(1) Write—3.478 Mbytes/second.

(2) Read—2.857 Mbytes/second.

(3) Instantaneous—7.5 Mbytes/second.

Each U and V-Bus pair 704, 708 can have attached up
to 64 device controllers. Each controller is dual-ported
bo both the U and V-Bus, contains internal data buffers
and microprogrammed control logic for all channels,
and interfaces to device-specific 1/0 channels.

Requests for I/0 services arrive at an interactive
services executive 702, 706 as packets on the inter-

4,625,081

145

processor executive bus 912, 914, where they are passed
by the interactive services executive’s resident execu-
tive to the appropriate process. To accomplish an 1/0
transfer, handler processes load a buffer area in the data
memory of interactive services executive 702, 706 with
control or data information, and then request the bus
control hardware of the interactive services executive
702, 706 to transfer the contents to a specific device
controllers’ 1/O or control channel.

Alternatively, the data from a device controller chan-
nel can be requested to be loaded into a data memory
buffer using the same microprogrammed DMA hard-
ware that is part of the U and V-Bus control extension
unit 726 of an interactive services executive 702, 706
and a device controller are via the particular interactive
bus 704, 708 to which that interactive services executive
is attached. Data transfers across the bus are asynchro-
nous, with the actual data movement on the channels
leading from the controller to the peripheral devices;
thus each device controller contains extensive buffering
to provide temporary storage for each channel. Device
controllers can be accessed from either the U or V-Bus
704, 708, allowing the devices attached to be accessed
should one interactive services executive 702, 706 or its
associated bus fail.

An interactive services executive 702, 706 is formed
by adding, to a standard processor module 724, an inter-
active processor extension unit 720 which enhances the
basic 16-bit standard processor module 724 processor in
the following areas as shown in FIG. 8:

(1) Adds extension 808 to the high-speed program
memory of the standard processor module to increase
capacity from 12K words up to 32K, of which 8K are
the extensions 812 to manage the hardware additions to
the standard processor module 724.

(2) Adds 64K words of data memory 806 primarily
used to define data buffers for passing blocks of infor-
mation between a user and a device controllers’ channel
through the interactive services executive 702, 706.

(3) Extends the basic instruction set of the standard
processor module by over 30 instructions used by the
interactive services executive-resident programs to test
and control the hardware additions.

(4) Adds a microprogrammed interactive bus control-
ler 802 which manages, asynchronously to the standard
processor module, the transfer of data between buffers
in the interactive services executive’s data memory 806
and device channel buffers in the device controllers.
The controller has two methods of communication with
the standard processor module. The first is a 64-word
deep interrupt FIFO buffer 804 used to pass to the
standard processor module the data memory addresses
of full (on input) or empty (on output) data buffers
when the microcontroller has completed a requested
transfer. The other is a 4K word block of high-speed
memory, occupying the top of the standard processor
module’s data memory address space, containing a list
of device controllers to be polled plus a word count/-
date memory address pair for each buffer associated
with the input and output of each device channel for

-each controller. To effect a transfer, a device handler
loads the origin of the buffer and the word count. As the
controller for the device channel is polled if the associ-
ated channel buffer has input or can accept output data,
the bus controller effects the transfer of the data, decre-
ments the word count, and increments the data memory
buffer address. When the word count reaches zero, the
bus controller posts the final buffer address to the inter-

0102

20

25

35

40

50

60

65

146
rupt FIFO, thereby notifying the standard processor
module that the transfer is complete.

The serial channel controller 254, 255 is a device
controller allowing up to 16 RS232C serial, duplex,
asynchronous channels to be connected to the interac-
tive services subsystem 252. Each channel’s data rate
can be independently selected from between 110 baud
to 38.4K baud, and each channel has the following
active signals:

serial transmitted data,

serial received data,

data terminal ready, and

ready to send.

A 32-byte input and output buffer is associated with
each of the 16 channels and data is transferred between
these channel buffers and the universal asynchronout
receivers/transmitters that physically drive each chan-
nel. Data desinted for or received from a serial channel
is passed between these 32-byte buffers and the buffers
in the interactive services executive data memory,
under control of the microprogram in the interactive
services executive bus controller 802, Each channel has
associated with a four-bit control register which config-
ures the channel for input, output, or both and assigns
the channel to either the U or V-Bus 704, 708 and conse-
quently either the U or V-interactive services executive
702, 706. A process in the interactive services executive
702, 706 sets the contents of these registers via a device
controller by writing a command word into any of the
top 16 locations in the interactive services executive
data memory. The microcontroller in the interactive
services executive bus controller 802 detects an attempt
to write to these memory loations and transfer the writ-
ten command word across the U or V-Bus 704, 708 to
the particular channel control register, as specified in
the low 10 bits of the command. Other device control-
lers use the same technique to configure their I/O chan-
nels, allowing the device controller to respond cor-
rectly when the interactive services executive bus con-
troller 802 polls it for input data or attempts to transfer
data for output.

The magnetic tape controller 714 is a device control-
ler which interfaces with magnetic tape units through a
formatter 716. It contains an 8K word buffer that de-
couples data transfers between the magnetic tape con-
troller 714 and the magnetic tape on one side, and the
interactive services executive 702, 706 on the other. The
magnetic tape controller 714 uses a microprogrammed
controller to manage the interface to the drives, com-
municate with the interactive bus controller in the inter-
active services executive 702, 706, and control accesses
to the magnetic tape controller 714 internal buffer and
control registers.

A magnetic tape controller 714 has three channels
through which a handler process in the interactive ser-
vices executive 702, 706 communicates:

(1) A control channel used to pass control data to the
magnetic tape controller 714. This channel allows buff-
ers in the magnetic tape controller’s 8K memory to be
defined by loading various magnetic tape controller
control registers. One particular control word loads a
register which activates the physical control lines to the
magnetic tape unit, enabling the magnetic tape handler
process in the interactive services executive 702, 706 to
select a drive; set read and write thresholds in the for-
matter; rewind the tape; erase; write file marks, and
other similar tape unit control functions.

4,625,081

147

(2) A bidirectional data channel, along which data
can be transferred between a buffer in the interactive
services executive’s data memory and the magnetic tape
controller’s buffer. Once data has been transferred to
the magnetic tape controller’s buffer, it is passed to the
selected drive by the magnetic tape controller indepen-
dent of any activity on the U or V-Bus 704, 708 between
the magnetic tape controller 714 and the interactive
services executive 702, 706. The magnetic tape control-
ler 714 can read or write data between a tape unit and
one area of its 8K memory while the interactive services
executive 702, 706 is simultaneously reading or writing
to another area in the same buffer memory. This double-
buffering allows data transfer operations to be either
pipelined to a single drive, or interleaved between
drives.

(3) An interrupt channel extends from the magnetic
tape controller 714 back to the interactive services exec-
utive. Within the magnetic tape controller 714, 2 one
word buffer is used to store the results of a read or write
operation to the tape unit 718, 720, containing the termi-
nation status of the transfer and the number of data
bytes actually transferred. The interrupt channel is used
by the magnetic tape device handler to read these re-
sults back to the interactive services executive 702, 706.
Filling the buffer causes the buffer identity to be stored
via the DMA termination FIFO 804, thus resulting in an
interactive services executive 702, 706 interrupt.

The three channels to a magnetic tape controller 714
are implemented in the same way as any other channel
used to communicate with a device controller: a buffer
to send or receive channel data is defined in the interac-
tive services executive data memory, and a description
of the buffer is put in the polling list of the interactive
services executive bus controller 802, which initiates
the requested transfer between the buffer in data mem-
ory and the magnetic tape controller 714.

An interactive services executive process can also
communicate directly with the magnetic tape controller
714 by writing a command word to any of the top 16
locations of the interactive services executive’s data
memory. This command word is self-addressed in the
lower six bits as to which device controller it is desinted
for, and is transferred immediately by the interactive
services executive bus controller 802 to the destination
magnetic tape board (for example, one of up to 64 con-
trollers on the U and V-Bus 704, 708). In the case of the
magnetic tape controller 714, this command word can
request the status of the magnetic tape controller’s inter-
nal registers, assign a magnetic tape controller to either
the U or V-Bus 704, 708, clear the magnetic tape con-
troller 714 to power-up state, and enable or disable the
control channel in the magnetic tape controller 714.

Data passed to the magnetic tape controller 714 along
the control channel from the handler process is used not
only to control the tape drive units, but to define how
the magnetic tape controller’s 8K memory is to be parti-
tioned. Buffers of up to 4K words size can be specified.
The size of the data blocks transferred can be chosen to
relate to the size of the dataset’s logical records con-
tained on the magnetic tape.

Data is transferred between the buffers in the interac-
tive services executives’ data memory 806 and the chan-
nel buffers in the device controllers under control of the
microprogrammed U and V-Bus controller 802 in the
interactive services executive 702, 706. Transfers take
place one word at a time on a polling basis, rather than
as continuous streams of data from one buffer to one

0103

0

45

50

60

148

channel. Therefore, if a number of data transfers are
pending at the same time, all are effectively undertaken
in parallel by interleaving individual one word transfers
as determined by the sequence in the polling list. This
uniformly distributes among all channels the effects of
all traffic, thus minimizing the queueing problems that
would occur if one channel could occupy the bus solely
during transfer of a large block of data.

The transfer sequence is as follows: the microcon-
troller accesses an entry in the polling list which speci-
fies the individual device controller to be polled on the
U or V-Bus 704, 708 depending on which the interac-
tive services executive 702, 706 controls, The controller
is polled by the interactive services executive bus con-
trol microcontroller 802 and responds with the ID of
the next channel for which a data transfer is required or
possible together with the direction of transfer. One
word of data is transferred between the interactive
services executive's data memory buffer indicated in the
polling list entry and the specified channel buffer in the
device controller. The bus controller then continues to
the next device controller specified in the polling list.

If more than one channel on a device controller is
active, data is then transferred from each active channel
in a round-robin sequence, with one data transfer occur-
ring on each poll cycle. The advantage of this technique
is that inactive channels, or those logically removed
from the system, take no overhead in the polling pro-
cess since they are either missing from the list or do not
respond to the bus controller’s poll. The polling se-
quence of device controllers is entirely programmable,
since the polling list forms part of the data memory
space of the interactive services executive processor
702, 706. It is also possible to poll a given controller at
a greater frequency by inserting its address more than
once in the polling list. This allows for dynamic alterati-
oms to be made in the servicing of specific device chan-
nels.

E. Interactive Services Subsystem Software Architec-
ture

A number of processes are created during the logical
initialization of an interactive services executive 702,
706 and divided into two basic categories. The first
consists of processes which are not related to any one
specific device type bus which provide general manage-
ment and interface functions. The second encompasses
the device handlers, each controlling all the devices of
a given type which have been assigned to the host inter-
active services executive 702, 706.

Management and interface functions include the fol-
lowing processes:

(1) Device management maintains tables which relate
devices to their owning job numbers, responds to assign
requests from SYSDEV, and communicates with the
other interactive services executive of the interactive
services subsystem pair 702, 706 for load sharing and
backup purposes. Device owners open and close their
devices through this function.

(2) Input/output interface receives all requests to
access and transfer data from any device. This function
interfaces the request to the appropriate device handler.

(3) Buffer managers manage the use of the interactive
services executive's data memory for buffered data
transfers between the interactive services executive 702,
706 and the inter-processor executive bus 912, 914, and
also between the interactive services executive 702, 706
and the device controllers.

4,625,081

149

(4) Backup/recovery shadows operations in the other
interactive services executive of the subsystem and
manages takeover in case of a device or bus failure.

‘When a job needs a device, it sends an acquire request
to SYSDEYV either specifying a unique device, or re-
questing any one of a given class of similar devices.
SYSDEV identifies one that satisfies the request and
sends an assign request to the interactive services sub-
system 252 shown as having the device attached. There
could be up to four interactive services subsystems 252
and within each, devices are load-shared between the
U-interactive services executive 702 and the V-interac-
tive services executive 706 according to a predefined
plan dictated to the interactive services subsystem 252
by the system configuration file.

The assign request is sent to the device management
function of the primary interactive services executive of
the subsystem. The primary interactive services execu-
tive is either the one which first completed initialization
when the subsystem was powered-up, or alternatively
the one which survived an interactive services subsys-
tem failure, becoming and afterwards remaining pri-
mary by default.

Primary interactive services executive then deter-.

mines which of the two interactive services executives
702, 706 is responsible for this request, marks the owner-
ship details in its tables, and passes the request to backup
interactive services executive to maintain its tables. The
response to SYSDEYV includes the process ID of one of
the two device management functions, the primary or
that in the backup where the owner is to send subse-
quent requests. This process ID is passed to the request-
ing process by SYSDEV. The requesting process, or
any other process in the same job to which it passes the
process ID, can then send requests directly to the inter-
active services executive 702, 706 with no need to in-
volve any higher-level kernel system functions.

At this stage, the owner can send to device manage-
ment an open request that checks the status of the de-
vice and also puts the user in touch with the interactive
services executive's input/output service function. The
process ID of this process is returned in response to the
open request, and used in all subsequent accesses to the
opened device.

The owner can then send to 1/0 services read and
write access requests. Each such request is acknowl-
edged back to the owner with an access PID, which is
used in subsequent get and put requests to cause the
physical transfer of data between the device’s buffers
and the owner. A user can build up a number of inter-
leaved transfers by using multiple Read/Write access
requests to the same device separated by End 1/0 (EN-
DI10O) requests after each access. The 1/0 service func-
tion transforms these user level requests into internal
calls to the specific device handler, which then per-
forms the physical data transfer to and from the device.

Transfers are terminated by sending an End 1/0 re-
quest to the I/0 service function. The device channel is
closed with a request to the device management func-
tion. Closing the channel invalidates the reference value
supplied in the open request response, and any subse-
quent attempt to call I/0 service after a close results in
a negative response.

When an owner no longer needs a device, a release
request is sent to SYSDEV which deallocates the de-
vice in its tables and informs interactive services subsys-
tem device management with a free device request.

0104

b2

0

30

45

55

60

65

150

The owner can then send to I/0 services read and
write access requests. Each such request is acknowl-
edged back to the owner with an access PID, which is
used in subsequent get and put requests to cause the
physical transfer of data between the device’s buffers
and the owner. A user can build up a number of inter-
leaved transfers by using multiple Read/Write access
requests to the same device separated by END 1/0
(ENDIO) requests after each access. The I/0 service
function transforms these user level requests into inter-
nal calls to the specific device handler, which then
performs the physical data transfer to and from the
device.

Transfers are terminated by sending an END 1/0
request to the I/0 service function. The device channel
is closed with a request to the device management func-
tion. Closing the channel invalidates the reference value
supplied in the open request response, and any subse-
quent attempt to call I/O service after a close results in
a negative response.

Then an owner no longer needs a device, a release
request is sent to SYSDEV which deallocates the de-
vice in its tables and informs interactive services subsys-
tem device management with a free device request.

If a failure occurs while an interactive services execu-
tive 702, 706 is performing 1/0 with a device, the data
involved in that particular get (input) or put (output)
transfer is lost since the data buffers in the failed interac-
tive services executive 702, 706 are no longer available.
However, because the device controllers are dual-
ported, they can still be accessed from the surviving
interactive services executive and 1/0 restarted by re-
initiating the interrupted data transfer request, get or
put.

To the owner, this failure is detected either as a time-
out to an access or transfer request, or a transfer which
completes in error. The owning process must then re-
initiated the interrupted get or put. If a transfer was not
in process, then action need not be taken by the user.

The next open request will be automatically rerouted
to the surviving device manager process using the sys-
tem bus ID mechanism in the interprocessor communi-
cations network.

If a device controller fails, all devices connected to
that controller are lost unless the device itself is redun-
dantly connected to the interactive services subsystem
702, 706 via two sets of 1/O channels terminating on
two different device controllers. This occurs in the case
of the concentrator which has internally redundant
channels for high availability. Each logical concentra-
tor has two serial data channels connecting it to two
different serial channel controllers 254, 255 on the inter-
active services subsystem 254. Each logical concentra-
tor manages up to ten voice trunks to the telephone
room subsystem 206, 214, 216.

SERVICE SYSTEM ACCESS RESPONSE

As illustrated in the telephone service system flow
chart shown in FIG. 12, the service system 100 re-
sponds to an incoming call by first identifying the type
of line upon which the call has been placed and then
seizing the line when specified answer conditions have
been met. For most types of lines, the answer conditions
will specify immediate answering of the call. However,
for secretarial lines the client may specify that the line
be answered only after a selected number of rings, and
the number of rings may vary with time of day and day
of week. For example, the client may have a business

4,625,081

151

telephone connected as a secretarial line and wish to
have his own secretary answer the line during normal
business hours. Therefore he may specify that during his
regular business hours the phone will be answered by
the system 100 only when his secretary is unable to
answer the phone within five rings. Outside of normal
business hours he may wish to have the phone answered
immediately.

In any event, the line is seized upon satisfaction of the
indicated answer conditions and further response then
depends upon the type of line involved, the dictates of
the caller, and the options selected by the client.

For example, in the case of a secretarial line the client
can specify either an operator assisted answering ser-
vice or a fully automatic answering system service. In
the event that operator assisted answering has been
selected by the client, upon seizure of a secretarial line,
the system 100 identifies and connects to the line an
available operator station. Client account data is auto-
matically and immediately sent to the visual display unit
at the operator console to assist the operator in respond-
ing to the call. This data may include the salutation with
which the call is to be answered, instructions for order
taking, messages for selected callers, information about
the client’s schedule or where he can be reached and so
forth. Upon terminating the call the line is released and
the operator station becomes available for the next op-
erator assisted call.

In the event that the client has selected automatic
answering service, the caller is greeted with a client
selected greeting and invited to leave a message at the
occurrence of a tone. The client may record his own
greeting and change it at will, or alternatively, may use
a system provided greeting which does not specifically
identify the called client. Furthermore, the caller may
specify the length of any message which can be re-
corded and the maximum number of messages which
may be stored by the system. In any event, upon genera-
tion of the tone, the voice service system receives and
records in the inbasket portion of the client message
basket any message dictated by the caller. Up to the
maximum message time specified by the client. During
this recording process the system responds to message
editing commands as if the caller were a system client.
However, to avoid confusing nonclient callers, no edit-
ing prompts are provided and an unsophisticated caller
may simply dictate a nonedited message with no knowl-
edge of the system editing feature. Upon receipt of the
message, the call is terminated and the line is released.

A direct incall line, like a secretarial line, is associated
with a particular message basket. However, unlike the
secretarial line, the direct incall line is not available for
general use by the client and is dedicated to the receipt
of incoming calls for the message basket. Upon seizing
a direct incall line, the system proceeds to the automatic
answering mode in a manner which is essentially the
same as the automatic answering response to acallon a
secretarial line.

A general incall line is similar to a direct incall line
except that a general incall line is not associated with a
particular message basket. Therefore, upon seizing a
general incall line the caller is prompted to enter a mes-
sage basket code. Upon entering the required message
basket code, the line becomes dedicated to a particular
client message basket and the response proceeds in the
same manner as the automatic response to a secretarial
line or a direct incall line. Execution of a change com-
mand enables a system user to specify a new message

—

0

—
w

40

50

60

65

152
basket code at any time and return to the automatic
answering step with the line dedicated to a new message
basket. This feature enables a caller to access the system
on a general incall line and leave messages for several
different message baskets with a single call and without
having to redial the line for each different message.

A general access line provides all of the functions
available on a general incall line and also affords a sys-
tem user access to count ownership functions. Upon
seizing a general access line, the caller is prompted to
leave either a message basket code or a personal 1D
code. If the client leaves a message basket code the
system associates the line with the indicated message
basket and the call is answered in the automatic answer-
ing mode similar to the response to a general incall line.

On the other hand, if the caller enters a personal ID
code the caller is granted access to the account owner-
ship functions such as retrieval of messages stored in his
inbasket, sending of messages through his outbasket to
other inbaskets or telephone numbers, changing of the
client greeting and so forth. Through the change func-
tion, the caller may at any time change states to leave
messages with other selected message baskets or per-
form other ownership account functions without redial-
ing the call.

A direct recall line is associated with a particular
message basket and provides access to only account
ownership functions for that message basket. Such a line
may be utilized to implement a high security environ-
ment by requiring the personal ID code to have a first
field which is established when the account is open and
a second field which can be changed at will by the
caller as an account ownership function. Such an ar-
rangement requires a person accessing the account to
know the direct recall line telephone number, the first
field of the personal ID code and the second field of the
personal ID code. Such an arrangement is thus rela-
tively secure and precludes access by a person entering
personal ID codes at random in the hope of accessing an
interesting account.

The general recall line is similar to the direct recall
line except that it is not dedicated to a particular mes-
sage basket. The caller is prompted to enter a message
basket code and then must enter a personal ID code
corresponding to the selected message basket code.
This gives the caller access to the account ownership
functions.

Referring now to FIG. 13, most user initiated com-
mands which are entered through the DTMF tone sig-
nals of a telephone keyboard begin with the asterisk key
which interrupts any current activity by initiating a
pause and serves as an attention key for the system 100.
Virtually any state can be interrupted with a new com-
mand sequence although some command sequences will
not be valid for certain states. For example, a caller
accessing the system 100 through a direct incall line can
never exercise account ownership functions.

System 100 responds to the pause command by inter-
rupting any current function such as storage or retrieval
and initiating a five second time window during which
the system 100 will respond to additional commands. If
a further command is not entered within this time win-
dow, the system will remain in a pause state and will not
respond to additional commands until the asterisk key
has been reactuated. The use of the window created by
the asterisk key precludes the unintentional generation
of command signals which might affect the state of the
system. For example, it is known that the voices of some

0105

4,625,081

153

people have tonal characteristics which cause the voice
to generate the dual tone signals corresponding to cer-
tain keys. Unless the asterisk key has been actuated,
these signals are simply ignored by the system 100. At
the same time, once a user actuates the asterisk key and
places the system in a pause mode, it is unlikely that the
user will be speaking to the system or otherwise creat-
ing sounds that might be misinterpreted as a keyboard
actuation.

Once the user has actuated the asterisk key a specific
command may be entered. For example, immediate
actuation of the number sign key effects a sign off or
termination of activities with respect to the current
account. This in effect returns the system to a state in
which the user is prompted to enter a message basket
number to associate the call with a particular account.
In the case of a secretarial line or direct incall line
which is associated with a single answering function for
a dedicated message basket, the call would simply be
terminated.

Actuation of the one key institutes a listen command
which enables the user to retrieve messages recorded in
the user’s inbasket by listening to the playback of previ-
ously recorded voice messages. Again, this function
would be unavailable for certain states such as for calls
received on a secretarial line or a direct or general incall
line. The listen key can also be used to listen to a dic-
tated message for editing purposes.

Actuation of key 3 creates a talk command which
causes the system 100 to receive and record voice mes-
sages. This command would be appropriate for any
recording mode such as normal telephone answering
mode, recording messages in a client’s outbasket for
forwarding to other inbaskets or telephone numbers, or
recording a client’s personal greeting, depending upon
the particular recording responsive mod the system 100
is in at the time the talk command is executed.

The 4, 5 and 6 keys provide convenient editing func-
tions. The 4 key causes the recording system to back up
five seconds while the 6 key causes the system to go
forward by five seconds. The number 5 key is a continu-
ation key which in effect terminates the pause initiated
by the asterisk key and continues the system 100 to the
state which preceded actuation of the asterisk key.

The 7 and 9 keys provide clear and save functions
which may be utilized to preserve or erase user mes-
sages stored in an inbasket during a retrieval mode or to
edit messages stored in a client’s outbasket for delivery
elsewhere. Key 8 provides an insert function which
enables a voice message to be inserted or deleted be-
tween other parts of a message during the recording of
a message. For example, were the user to record a mes-
sage and then wish to insert a sentence between two
preceding sentences the user could actuate * 4 for a
number of times until the recording point is backed up
in five second increments to a point preceding the inser-
tion point. Upon actuating * listen (1) the user may
listen to the prerecorded message until the insertion
point is reached. At this point the user actuates * insert
(8) and may begin dictating the inserted portion of the
voice message. Upon completion of the insert, the user
merely actuates * listen (1) to listen to the remaining
portion of the previously recorded message until the
end thereof is reached. Alternatively, the user could use
the * forward (6) command to rapidly skip forward in
the previously recorded message to the end.

0106

o

0

—
vy

20

40

154

The insert function may also be used to mark the
beginning and the end of a voice message segment. The
segment can then be deleted with the * clear command.

Actuation of the zero key initiates a help function in
which detailed voice message prompts are communi-
cated to the system user to explain the current state of
the system and to explain which keyboard combinations
should be actuated to obtain a desired objective.

In the event that the system is in a state in which a
personal ID code number should be entered, the user is
prompted to do so by actuating the asterisk key, the
appropriate number keys, and the pound sign key (en-
ter). The enter key is utilized to terminate all number
sequences but the system will attempt to validate a
previously entered number sequence after a selected
(five second) timeout even in the absence of actuation of
the enter key.

Actuation of the 2 key creates a change function
which must be further defined by actuation of a third
key stroke. For example, actuation of the 1 or listen key
places the system in a retrieval mode with the system
100 responding by beginning to retrieve and communi-
cate to the user any voice messages stored in the corre-
sponding inbasket

Actuation of the 2 key initiates a change account
function which enables the system user to enter a new
message basket code number terminated by the enter
key and thereby gain access to the inbasket of a different
message basket. This combination of commands enables
a caller to leave a voice message in several different
inbaskets with a single call.

Actuation of the number 3 talk key places the user in
a recording mode for recording of a message in the
user’s outbasket (assuming that this mode is authorized).
Actuation of the 5 key creates an administrative mode
in which the caller may utilize additional function com-
mands to execute selected account ownership adminis-
trative functions. For example, actuation of the star 1 or
star 3 keys would enable the user to listen to or change
the client greeting. Other key combinations may be
assigned in the client administration mode to enable
selection of various client account options such as the
maximum length of an inbasket message, the maximum
number of inbasket messages, specification of the sec-
ond field of a direct recall line personal ID code and so
forth.

Execution of the * 2 zero key sequence causes an
active operator station to be connected to the line to
give the user access to an operator for assistance in
executing any command sequence that the user might
be having difficulty with or for execution of any ac-
count administration commands that might require op-
erator intervention.

‘While most command functions are initiated with the
asterisk key the entry of certain code number sequences
such as a message basket number, delivery code, a dis-
tribution list, or a telephone number are not preceded
by the asterisk key. It will be noted that these entries are
in the nature of a data specification and not strictly a
command function.

While FIGS. 12 and 13 describe the functional opera-
tion of system 100 from the user point of view, FIGS.
14-26, to which reference is now made, describes the
functional operation of system 100 in terms of the re-
sponse of the system 100 itself.

To customize voice message service to the needs of a
particular client, the system 100 utilizes client service
options and parameters. Client service options make a

4,625,081

155
particular voice messaging features available or unavail-
able to a client while client service parameters are quan-
tifiers that may be varied within a specified range to suit
a client’s need (e.g., the number of messages that may be
left in a message basket).

To provide these capabilities, voice messaging ser-
vice is organized into the functions shown in FIG. 14,
the voice messaging service functional flow block dia-
gram. The first function, obtain call information, pro-
vides the voice messaging service access to the client
instructions pertaining to delivery of a message or infor-
mation concerning the phone line over which the call
has been received.

Depending upon the call information, voice messag-
ing performs either the message delivery function or the
select account/activity function. As part of the select
account/activity function, client information including
client service options and parameters is obtained. The
principal task of this function, however, is the invoca-
tion of the function providing the particular service
desired by the client. The select account/activity func-
tion determines which specific service is desired based
on the call information, information entered by the
client or commands entered by a voice messaging ser-
vice information operator on behalf of the client.

The answer call function, which is shown in greater
detail in FIG. 16, plays out a message prepared by the
client, usually a salutation. Depending on the client
information, the voice message service will then record
a single message from the call which may or may not
employ the recording control primitive commands,
except a single command from the caller again invoking
the select account/activity function or perform the
terminate call function.

The send messages function is illustrated in greater
detail in FIG. 18 and places messages and delivery
instructions in the client’s outbasket. The retrieved mes-
sages function which is illustrated in greater detail in
FIG. 20, enables a client to examine the client’s message
basket. The change administrative data function is
shown in greater detail in FIG. 25 and enables a client
to change selected call and administrative instructions
associated with the client’s account. The client may
selectively and repeatedly exercise these functions dur-
ing a call. The message delivery function is illustrated in
greater detail in FIG. 26 and enables a client’s message
to be delivered to the inbasket of any client or any
telephone. The attempt to deliver the message com-
mences at the time specified in the delivery instructions
and, for telephone delivery, continues in accordance
with those instructions.

The terminate call function is the last function per-
formed and handles disconnection of the call and book-
keeping of the activities performed during the call.

The interrupt driven keyboard functions may be
commanded by a client at any time and hence are not
explicitly shown in FIG. 14. These functions include
help, operator assistance, editing, and the change func-
tion which is illustrated in FIG. 14 and returns the
system operating state to the select account/activity
state.

Also not shown in FIG. 14 is a maintain usage data
function. This function is embedded throughout the
flow process and collects and makes available to the
system 100 the data describing the resources used by
each call for client billing and system operating pur-
poses.

0107

0

—
v

35

55

60

156

Extensive prompts are available to a system user to
explain use of the system. Any command that can be
entered by a client except request operator can be en-
tered by a service system information operator. Each
command is preceded by the asterisk symbol. If no
command is entered by a user in response to a prompt,
the prompt is not repeated and the call is directed to a
system operator to provide assistance to the caller. The
operator then remains connected until the call is termi-
nated or until the operator executes an end assistance
command through the operator terminal. If a user at-
tempts to enter an inappropriate command, an error
prompt is communicated to the user which explains the
mistake and provides the user with an opportunity to
retry the command. After 2 number of retries specified
by a system parameter, error retries, the user is pro-
vided with a help prompt. If a correct entry has not
been received after the help prompt has been received
repeated once, the caller is either disconnected or re-
ferred to an operator, depending upon a selected client
service option.

The call information needed to control a voice mes-
sage service operation consists of either line type or
delivery information. Line type is provided for calls
received at the voice message service facility. Delivery
information is provided if message delivery is to be
performed. A direct line is an exclusive line associated
with one and only one client and is used solely to re-
ceive calls. The system 100 does not attempt to use a
direct line for telephone delivery and does not attempt
dial out on a direct line. A service schedule is always
associated with a direct line. A general line is associated
with no particular client and may be used for telephone
delivery. Delivery information is derived from delivery
instructions prepared by the client. It identifies the out-
basket holding message and the particular delivery in-
struction being executed.

Making reference to FIG. 15, the select account/ac-
tivity function provides the client access to specific
voice messaging services. The function is invoked by
one of the following events:

1. A change in function caused by entry of an access
send messages, an access retrieve messages, an access
administrative or access account client command.

2. Receipt of a call over a shared line.

3. A request operator client command.

4. Receipt of a call over a direct line.

In the first case an analyzed command function deter-
mines if additional information is needed. If so, a
prompt requesting the needed information is provided
and the await caller entry function is invoked. Once the
caller has completed his entry, the validity check caller
entry function is invoked. If the entry is valid the obtain
client information function is invoked. If it is not valid
either a prompt is provided to the caller or if repeated
attempts at personal identification number code entry
have occurred, the call is referred to an operator. Once
required client information is available the obtain client
information function is invoked to determine if the re-
quested service is available to the client. The function
providing the service is invoked if the service is avail-
able and the service not available prompt is provided if
it is mot.

In the event of a shared line call, the initial client
prompt is provided. If no DTMF entry is received
within the time specified by a system parameter, prompt
interval, after the prompt is provided, the operator
assistance function is invoked. In the normal situation, a

4,625,081

157
DTMEF entry is made and the await caller entry func-
tion is invoked and the flow proceeds as in the first case.
If an operator has been requested the operator assist-
ance function is invoked.

If a call is received on a direct line, the client informa-
tion is uniquely associated with a line and the obtain
client information function is invoked immediately. If
the client information specifies that operator assisted
call answering is required the operator assistance func-
tion is removed. Otherwise the answer call function is
invoked.

The analyze command function shown in FIG. 15 is
invoked as the result of an access send messages, and
access retrieve messages, an access administrative func-
tion, or an access account client command. The access
account command cannot be executed until the message
basket number of personal identification number code is
provided. The access send messages, access retrieve
messages, and access administrative functions com-
mands cannot be executed unless the client has entered
his personal identification number code. The analyze
command function shall determine the data needed, if
any, and provides the request identifier message basket
prompt to the client.

For the access send messages, access retrieve mes-
sages, and access administrative functions commands,
no prompt is provided if the client has previously pro-
vided his personal identification number code. The
obtain client information function is then immediately
invoked. Once a prompt has been provided, the await
caller entry function is invoked and operates to accept
the entry of data by the caller.

If the data entered by the caller uses data syntax, it is
assumed to be the message basket number. If it is in
command syntax, it is assumed to be the personal identi-
fication number. On a shared line allowing entry of
partial message basket numbers, (a portion of the num-
ber being uniquely associated with the incoming line),
the data entered by the client is assumed to be low order
digits of the message basket number and is concatenated
with the base number to form the message basket num-
ber.
The validity check entry function verifies that the
data entered designates a valid message basket or per-
sonal identification number code. If it does not, the
invalid message basket or invalid personal identification
number code prompt is provided depending on the
syntax of the data entered (with or without asterisk
key). If the third attempt at personal identification num-
ber code entry is found to be invalid, operator assistance
function is invoked. No attempt is made to corrolate the
type of data entry with the type requested by the
prompt. No attempt is made to cross-corrolate personal
identification number and codes and message basket
numbers. If the entry is valid, the obtain client informa-
tion function is invoked.

The obtain client information function accesses and
acts upon client information uniquely associated with
the line over which a call is received, with the message
basket number entered by the client, or with the per-
sonal identification number code entered by the client.
Client information is created using the customer sup-
port system, which is interactive software system used
to maintain the data base directing voice message ser-
vice system operation, to report system performance,
and to support administrative activities. The client in-
formation includes a client identifier, client service op-
tions, the client message basket number, and the client

0108

0

45

50

60

65

158
personal identification number code IPIN). The client
service options include:

1. Call answering available.

2. Autocall answering provided.

3. Operator assisted call answering provided.

4, Edit controls available (CA).

. Send messages available.

. Delivery codes employed.

. Distribution lists employed.

. Edit controls available (SM).
. Retrieve messages available.

10. Message basket status provided.

11. Inbasket review provided.

12. Output basket review provided.

13. Reply/redirect services provided.

14. Message amendment provided.

15. Delivery instructions amendment provided.

16. Telephone delivery available (auto).

17. Telephone delivery available (operator assisted).

18. Auto delivery reply.

19. Operator assisted delivery reply.

20. Reply edit controls available.

21. Call answer enter disconnect employed.

22. Administrative functions available.

23. Multiple salutations employed.

24. Call forwarding available.

25. Message basket forwarding available.

26. Distribution list modification available.

27. Default delivery option.

28. Shared account used.

29. Partial message basket number used.

30. Time of delivery prompt form.

The client service parameters are:

1. Maximum answer message.

2. Maximum message size.

3. Maximum number of messages.

4. Maximum number of addresses.

5. Number of distribution lists.

6. Number of delivery codes.

7. Base message basket number.

8. Number of salutations used.

Delivery instructions consist of addressee informa-
tion and a delivery code. When placing a message in his
outbasket, the client may specify the addressee directly
by providing a message basket number or telephone
number, or he may specify the addressee indirectly by
providing a distribution list number. A client distribu-
tion list consists of a set of predefined addresses and
delivery codes prepared using the customer support
system (CSS).

Each client is invited to preestablish a specified num-
ber of single digit delivery codes. This number is speci-
fied by the client parameter number of client codes. The
voice message service system maintains additional sin-
gle digit system defined delivery codes which may also
be used by the client. The following information is
provided for each delivery code:

1. Delivery code number.

2. Time of first attempt and time to stop trying. The
time in the delivery code shall be interprinted in
terms of the local time at the voice messaging ser-
vice system installation.

3. Retry interval.

4. Total number of attempts.

5. Automatic telephone delivery.

6. Ready to receive acknowledgement not required.

7. Called party identification required.

8. Delivery acknowledgement required.

WD DO =) OhLh

4,625,081

159

9. Called party response permitted.

The principal action of the obtain client information
function is the comparison of requested activity with
the client service options to determine if the request can
be honored. If it cannot, the service not available
prompt is provided and the await caller entry function
is invoked. If the request can be honored, the function
invoked depends upon the event originally invoking the
select account/activity function as follows:

1. If invoked by the access send messages, access
retrieve messages, or access administrative functions
command, the respective function shall be invoked. The
client information controlling this action is that associ-
ated with the personal identification number code.

2. If invoked by the access account command, the
operator assistance or the answer call function is in-
voked in accordance with the client information associ-
ated with the match to each basket specified.

3. If invoked by the receipt of a call over a shared line
and if a message basket was entered by the caller, the
operator assistance or answer call function shall be
invoked in accordance with the line information associ-
ated with the message basket specified.

4. If invoked by the receipt of a call over a shared line
and a personal identification number was entered by the
caller, the default function specified in the client infor-
mation associated with the personal identification num-
ber code shall be invoked.

5. If invoked by receipt of a call over a direct line, the
operator assist or answer call function is invoked in
accordance with the client information associated with
the line.

The answer call function shown in FIG. 14 is de-
scribed in greater detail in FIG. 16, to which further
reference is now made. This function enables callers to
directly access the message receiving facilities of a cli-
ent. The prompts and subordinate functions employed
by the voice messaging service system answer call func-
tion are illustrated. The operator assisted answer call
function is considered part of the operator assistance
function. Depending on the client service option, the
select account/activity function (FIG. 14) invokes one
or the other of these two functions when a call is re-
ceived over an exclusive line or when a valid change
account command is honored.

The answer call function always begins with playout
of a salutation selected by the client. If the caller is
determined to have gone on-hook during the playout,
the terminate call function is invoked. If the playout is
completed and the client service option does not allow
a caller reply, the terminate call function is invoked.

If the client service option allows a caller reply, a
second client service option determines if the caller can
leave only a simple telephone answering machine type
of reply or if the full range of voice message service edit
controls are availabe to him. In the former case, the
record invitation prompt is provided and the record
message function is invoked. In the latter case, the re-
cord/edit invitation prompt is provided and the edit
message function is invoked. However, in this case, if no
DTMEF tone is detected within the time interval speci-
fied by the system parameter prompt interval, invoca-
tion of the edit message function is cancelled and the
record message function is instead invoked. If a pro-
longed period of silence elapses during recording, the
record message function will provide the disconnect
warning prompt and may invoke either the terminate
call or operator assistance function in accordance with

0109

25

30

40

45

50

55

60

160
the client service option. At the option of the client, the
record/edit invitation prompt is omitted and superseded
by the record invitation prompt even if message editing
has been selected as a client service option.

The duration of the caller reply is controlled by the
client parameter maximum answer message. If the caller
message exceeds the value of this parameter, the time
exceeded prompt is provided and the terminate call
function is invoked. If the reply is completed within this
time, the complementary close prompt is provided and
the terminate call function is invoked.

Depending on a client’s service option, the change
account command may be recognized within the an-
swer call function. If this client service option is in
effect, a voice message service system 100 delays invo-
cation of the terminate call function for the period of
time specified by the system parameter change account
delay. If the option is in effect, the command is recog-
nized within the edit message function and during the
period of time that the final prompt is being played. It is
not recognized during playout of the salutation or initial
prompts within the record message function, or once
the terminate call function is invoked.

The playout salutation function provides playout of a
salutation selected by the client. If multiple salutations
are available, the salutation select shall depend upon the
time of day and day of the week upon which the call is
received and the salutation selected shall be the one
whose service schedule matches the time and date. If
the caller goes on-hook during the playout, the termi-
nate call function is invoked.

The record function simply records data received
over the telephone line for no more than a specified
period of time. This period of time is specified by the
client parameter maximum answer message. No DTMF
tones are recognized by this function. The message is
placed directly in the client’s inbasket and hence, if the
caller exceeds the specified period of time, this function
will retain that portion of the message that had been
received in the client’s message basket.

If a period of silence exceeding the length specified
by the system parameter silence interval elapses while
recording, the system 100 shall provide the caller with
the disconnect warning prompt. The caller may over-
ride the imminent disconnection by immediately resum-
ing recording. The voice message service system will
either disconnect the call or invoke the operator assist-
ance function in accordance with the client service
option when the prompt interval expires if recording is
not resumed.

The edit messages function is illustrated in greater
detail in FIG. 17 and provides the client or caller with
complete voice message editing facilities. Upon invoca-
tion, this function records the signals received over the
telephone line and simultaneously monitors these sig-
nals for DTMF tones representing client commands as
shown by the record and enter command functions.
Command entry causes one or more of the subsidiary
functions shown or one of the keyboard functions to be
exercised. If the edit message function has been invoked
by the answer call function, only the access account,
help and abort options within the interrupt function are
available. The commands invoking the other interrupt
functions are ignored. The commands invoking the
various voice message service system edit controls are
shown to the left of the flow line leading to the subsid-
iary function.

4,625,081

161

The pause command is embedded in every client
command as its first DTMF character. Hence, the stop
record/playback functon always performs as any part
of any command entry. The record function is invoked
as the result of a talk command. The oversize message
prompt is issued by this function as a message exceeds
the client parameter maximum message size. Under
certain conditions, the save command terminates opera-
tion of the edit message function. Otherwise, all other
commands eventually result in the invocation of the
enter command and/or playback function. The action
of the insert command depends upon whether it is the
first, second, or subsequent entry of this command dur-
ing a particular client activity. If it is the first entry, the
mark segment beginning function is invoked. If it is the
second entry, the mark segment end function is in-
voked. Subsequent entries are ignored. The action of
the clear command depends upon the current state of
the insert commands. If one command is in effect, the
delete segment function is invoked and then the enter
command and record functions are invoked. If two
insert commands are in effect, the delete segment func-
tion is also invoked. In this case, however, the enter
command and playback functions are invoked follow-
ing the deletion. If no insert is in effect, the delete mes-
sage function is invoked. In any case, no insert com-
mand is in effect when the action is completed.

The action of the safe command also depends upon
both the current state of the insert command and
whether or not anything has actually been recorded
since the first insert command was entered. If an insert
is in effect and anything has been recorded, the save
segment function is invoked. If an insert is in effect and
nothing has been recorded, the delete marks function is
invoked and if no insert command is in effect, the save
message function is invoked. In all cases, no insert com-
mand is in effect when the action is completed. Usage
data collected within this function includes net amount
of storage used.

The record function directs recording of the non-
DTMEF signal received over the voice channel associ-
ated with the call. DTMF tones are not recorded. On
each invocation of this function, a tone prompt is pro-
vided to indicate that recording is now in progress. The
enter command function directs the monitoring of the
signal received over voice channel associated with the
call for DTMF tones. If a tone is detected, it is analyzed
for the DTMF characters received, and if a client com-
mand has been entered, it invokes the function appropri-
ate to the command.

The playback function directs playback of the mes-
sage over the voice channel associated with the call.
The stop record/playback function suspends the action
of the record or playback functions. The mark segment
beginning function notes the current position of the
message as a segment beginning. The mark segment end
function notes and marks the current position in the
message as a segment end.

The position playback function positions the mes-
sages for playback in accordance with the command
causing invocation. If invoked by the backup command,
it positions the message backwards by a factor equiva-
lent to the system parameter positioning precision or to
the beginning of the message if application of the factor
so dictates. If invoked by the forward command, it
positions the message forward by a factor equivalent to
the system parameter positioning precision or to the end
of the message if application of the factor so dictates. If

0110

0

w

40

50

60

65

162
invoked by the listen command, it positions the message
to its beginning. After positioning the message, the
playback function is invoked.

The delete segment function deletes the portion of
the message between the segment beginning and seg-
ment end. If segment end has not been specified, it de-
letes the portion of the message following the segment
beginning. It deletes the notations of segment beginning
and segment end. If, after the deletion, the segment end
is not also the end of the message, it positions the mes-
sage to the point immediately following the end of the
deleted segment. If the segment end is also the end of
the message, it positions the message to a point immedi-
ately following the end of the deleted segment.

The delete message function deletes the entirety of
the message so far recorded.

The save segment function saves the segment of the
message just recorded (i.e., the portion of the message
recorded since the first insert command was recog-
nized). The segment is logically entered into the mes-
sage at the point noted as the segment beginning. If a
segment end is in effect, the function deletes the portion
of the original message between the segment beginning
and segment end. Upon playback, the message, includ-
ing the segment, is heard as a single continuous message.
At the completion of this function either the segment
beginning or segment end exist (i.e., the effect of the
insert commands will have been cancelled).

The delete marks function deletes the notations of
segment beginning and of segment end.

The save message function preserves the message
recorded, if any, for disposition by the function that
originally invoked the edit message function.

The send message function which is indicated in FIG.
14 and illustrated in greater detail in FIG. 18, provides
clients with the capability of recording and sending one
or more messages to clients or nonclients at a single
session. Upon invocation, the send message function
examines the client outbasket. If the total number of
messages in the message basket (i.e., the sum of the
message in the inbasket plus those in the outbasket)
exceeds the client service parameter maximum number
of messages, it provides the message basket full prompt
and immediately invokes the terminate send messages
function. (The client must employ the retrieve messages
function to create room in the his message basket.)
However, the room created will not be available until
the client enters a signoff or a valid access account
command or until he hangs up.

If the message basket is not full, the send messages
introduction prompt is provided and the edit message
function is invoked. The client prepares his message
using this function. When the client signifies to the edit
message function that the message is complete, the send
messages function provides the delivery instruction
invitation prompt.

The client may then begin entry of the delivery in-
struction, in which case the accept delivery instruction
function is invoked. Alternatively, the client may elect
to defer providing delivery instructions by entering the
save command. In either case the next instruction in-
voked is the place message in outbasket function. After
the message has been placed in the outbasket either the
command invitation prompt or message basket full
prompt is provided. The message basket full prompt is
provided if the number of messages currently in the
message basket equals or exceeds the client service
parameter maximum number of messages. If the mes-

4,625,081

163
sage basket full prompt is provided, the terminate send
messages function is necessarily invoked. If the com-
mand invitation prompt is provided, the client may elect
to send another message (by entering the top com-
mand), or he may terminate the message sending activ-
ity (by entering any of the change function commands
or the signoff command or by hanging up). In the latter
case, the terminate send messages function is invoked.

The accept/edit delivery instructions function shown
in FIG. 18 is illustrated in greater detail in FIG. 19. A
delivery instruction consists of a delivery address and a
delivery code. The set of delivery instructions associ-
ated with the message is a set of delivery address/deliv-
ery code pairs ordered by the sequence in which they
were entered by the client with the delivery address
always preceding the delivery code. In the absence of
the accept/edit delivery instructions function, an ele-
ment is either member of the pair (i.e.,, a delivery ad-
dress or a delivery code). An element is entered by the
client using the data syntax. To enable the client to enter
and verify his delivery instructions, the voice messaging
service system enters into a dialog with him. It accepts
an input from him, plays out a prompt or element, and
accepts an instruction from him. This instruction may
direct playout of another element, delete the element
display, or may be the next element. When an element
has been played out, the next instruction also deter-
mines the disposition of the element just played.

The accept/edit delivery instructions function has
basically four subsidiary functions which are: client
entry, validity check client entry, save element, and
delete element. Depending on the client instruction that
caused invocation of the save element function, this
function may act upon the just played element, the
current element or the previous element in the ordered
set of delivery instructions. The echo-back element
prompt may apply to the just entered, the next, the
previous, or the current element. In FIG. 19 this fact is
indicated by the parenthetical comment included along
with the function representation.

The client entry function accepts entry in both com-
mand and data syntax. The commands may cause a
prompt to be provided, one or more of the subsidiary
functions to be exercised, or one of the change function,
help, abnormal terminal request, or operator (CHAO)
functions to be exercised. The commands associated
with a particular flow line are shown to the left of the
line.

The information comprising a delivery instruction is
entered using data syntax and such an entry causes both
the validity check client entry and save element func-
tions to be invoked. As a result of its operation the
validity check client entry function provides the echo-
back element prompt, the invalid element prompt, or
the next element prompt. The save element function
monitors the number of delivery instructions entered.
As a result of its operation, it may cause the delivery
instructions capacity prompt to be provided.

The various commands entered by the client permit
the client to step through the set of delivery instruc-
tions, delete elements, and terminate operation of the
function. Instruction entered by the client, the save
element, function may or may not be invoked.

The forward command causes either the echo-back
(next) element prompt to be provided and save (previ-
ous) element function to be invoked or all the elements
played prompt to be provided. In enables the client to
step through the set of elements in a forward direction.

0111

35

55

60

65

164

The backup command causes either the echo-back
(previous) element prompt to be provided and the save
(current) element function to be invoked or has the
same effect as the listen command. It enables the client
to step through the set of elements in a backward direc-
tion.

The listen command causes the first element to be
provided and then the echo-back (first) element prompt
to be provided. It places the client at the beginning of
the set of elements. The continue command causes the
echo-back (current) element prompt to be provided.
The clear command causes the delete element function
to be invoked if an element has just been echoed. The
command has no effect otherwise. The save command
invokes the save element function if needed and termi-
nates operation of the accept delivery instruction func-
tion. i

The client entry function directs monitoring of the
signal received over the voice channel associated with
the call for DTMF tones. If a tone is detected the func-
tion determines if the entry is employing data syntax or
command syntax. When the entry is complete and if the
entry is in need of syntax, the function invokes the va-
lidity check client entry in save previous functions.

On a shared line allowing entry of partial message
basket numbers, the data entered by the client is as-
sumed to be low order digits of the message basket
number and is concatenated with the base number to
form the message basket number. If the entry is in com-
mand syntax and if it requests one of the CHAO func-
tions, the requested function is invoked.

If the command is forward and there is no next ele-
ment, the all elements play prompt is invoked. If there is
a next element it is echoed. If the command is in re-
sponse to the echo of an element, the save element
function is invoked from the previously echoed ele-
ment. If the command is not in response to the echo of
an element, the save element function is not invoked.

If the command is backup and if there is at least one
delivery address in the set of delivery instructions, and
if there is no prior element, the first element prompt is
provided followed by the echo-back element prompt
for the first element in the set of delivery instructions.

If the set of delivery instructions is empty, the backup
end is ignored. If there is a prior element it is echoed. If
the command is not in response to the echo of an ele-
ment, there can be no further action and the client entry
function is again invoked. If the command is in response
to the echo of an element, the save element function is
invoked for the previously echoed element. Note that
echo of the delivery code precedes the delivery address.
If the command is listen and the set of delivery instruc-
tions is empty, the listen command is ignored. If the
command is listen and if there is at least one delivery
address in the set of delivery instructions, the first ele-
ment prompt is provided followed by the echo-back
element prompt for the first element in the set of deliv-
ery instructions. If the command is continue and if the
command is in response to the echo of an element, the
echo-back element prompt is provided using the same
element. Otherwise the continue command is ignored.

If the command is clear and if the command is in
response to echo of an element, the delete element func-
tion is invoked for that element, otherwise, the clear
command is ignored.

If the command is save and if the command is in
response to the echo of an element, the save element
function is invoked for that element. Operation of the

4,625,081

165
accept delivery instructions function is then terminated.
All other commands are ignored.

The validity check client entry function shown in
FIG. 19 recognizes an entry in data syntax as consisting
of a delivery code, a message basket, a telephone num-
ber or a distribution list in accordance with the number
of digits in the item. Where one digit represents a deliv-
ery code, two digits represent a distribution list, three to
nine digits represent a message basket number, and ten
or more digits represent a telephone number. If the
entry is not valid, the invalid element prompt is pro-
vided and the client entry function is invoked.

If the entry is valid, it is echoed back to the client and
the client entry function is invoked. The save element
function is invoked as previously indicated.

If special instructions (those not covered by standard
addresses or preestablished delivery codes, e.g., deliv-
ery may be made to either John Doe or Mary Smith) are
required on an address, then the client obtains a voice
message service information operator by entering the
request operator command. The save element function
is invoked by the client entry function if the entry is in
response to the echo-back element prompt and if the
entry is not a clear command. This function saves the
delivery instructions and monitors the number of ad-
dresses to which the message is being sent. In all cases
the function saves an element that was echoed back. In
certain cases the function saves an additional element or
a delivery code as follows:

1. If the client service option delivery codes em-
ployed is not in effect, the function also saves a delivery
code element for the address just echoed. The delivery
code value is immediate.

2, If the client service option delivery code employed
is in effect and if the element echoed back was not a
delivery code, the function saves a delivery code ele-
ment for the address just echoed. The delivery code
value corresponds to the value established by the client
service option default delivery option.

If a distribution list identified was echoed back, the
set of delivery addresses and delivery codes comprising
the distribution list is explicitly saved. Upon replay of
the set of delivery instructions associated with the mes-
sage, each delivery instruction in the distribution list is
explicitly echoed and the distribution list identifier can-
not be retrieved. If a number of addresses exceeds the
client parameter maximum number of addresses, no
further delivery instructions can be saved and the deliv-
ery instruction capacity prompt is provided.

The delete element function deletes any element just
played back to the client.

The place message in outbasket function illustrated in
FIG. 18 is invoked subsequent to the accept delivery
instructions function and places the message in the cli-
ent outbasket and monitors the number of messages in
the message basket.

The originator (sending client) retains ownership of a
message until it has been received by all addressees.
Until received, the originator may cancel the message,
edit it, or change delivery instructions using the re-
trieved messages function if appropriate client service
options are in effect.

The terminate send messages function schedules mes-
sage delivery. If a message is being delivered to a client,
it appears in the client’s inbasket at the time specified in
the delivery instruction. If a message is being delivered
to a telephone number, the telephone delivery function

0112

5

10

15

30

166
is invoked (message delivery FIG. 14) at the time speci-
fied in the delivery instruction.

The terminate send messages function prepares a
summary of client send messages activity including:

1. Client identification.

2. Message basket identification.

3. Time activity began.

4. Time activity ended.

5. Process time used.

6. Change in disk storage used.

The terminate and send messages function also pre-
pares a detailed record of client retrieved message ac-
tivity on a message by message basis that includes:

1. Client identification.

2. Message basket identification.

3. Message identification.

4. Time playout began.

5. Time playout ended.

6. Dispostion of message and special services em-
ployed (e.g., cleared, saved, replied, amended, re-
directed, operator assistance functions employed,
etc.).

7. Processor time used.

8. Disk accesses used.

9. Change in disk storage used.

The retrieve messages function shown in FIG. 14 is
illustrated in greater detail in FIG. 20. This function
provides the capability for a subscriber to retrieve mes-
sages within his message basket. When a client enters
his PIN code number, voice message service system 100
recognizes the caller as a client and invokes the retrieve
messages function. The retrieve messages function be-
gins with the introduce retrieve messages prompt. Fol-
lowing this prompt invocation of the playout message
basket status, review inbasket, and review outbasket
functions is dependent upon a client’s service option. A
separate option controls the availability of each of these
functions.

Invocation of review inbasket and review outbasket

40 functions is also dependent upon the presence of mes-

45

50

55

60

65

sages in the inbasket or outbasket. If no messages are
present, the function is not invoked. In this case, if the
playout message basket status function has not been
invoked, the inbasket empty or outbasket empty prompt
respectively is provided.

The playout message basket status function begins
with a message basket status prompt. This prompt re-
ports the number of received messages, if any, available
for retrieval by a client and the number of messages, if
any, awaiting delivery, or the fact that the entire mes-
sage basket is empty. The review inbasket function is
shown in greater detail in FIG. 21 and enables the client
to listen to the messages in his inbasket. If there are no
messages in the inbasket, this function has not been
invoked. Consequently, it shall commence playout of
the messages and simultaneously await entry of a client
command. Client commands invoking the CHAO func-
tions, the delete message function, and the retain mes-
sage function are always effective if the review inbasket
function can be invoked. The commands invoking the
remaining functions are effective if the appropriate
client service functions are in effect.

Upon completion of message playout, delete message,
retain message, or the valid reply redirect sequence,
voice message service system 100 plays out the next
message in the inbasket, or if all messages have been
reviewed, the inbasket review complete prompt. Mes-
sages are played in reverse order of receipt (i.e., the last

4,625,081

167

message received is the first message played out). The
playout message status function always repositions the
current message back to the beginning. The reply func-
tion is not invoked if there is no room for reply in the
client’s message basket. Instead, the message basket full
prompt is provided. The await client command function
shown in FIG. 21 directs the monitoring of the signal
received over the voice channels associated with a call
for DTMEF tones. If a tone is detected and if the tone is
in command syntax, this function suspends playout of
the message. If the command requests one of the CHAO
functions, the request function is invoked. If the com-
mand is continue, playout of the message is reinstated at
the point it was suspended. If the command is clear, the
delete message function is invoked. If the command is
save, the retain message is invoked. If the command is
listen and the appropriate client service option is in
effect, the provide message status function is invoked. If
the command is talk and the client service option allow-
ing reply/redirect is in effect, the reply/redirect func-
tion is invoked. If this option is not in effect, the talk
command is ignored. All other commands are ignored
although the playout is suspended. The playout message
function shown in FIG. 21 directs playout of a message
over the voice channel associated with a call.

The provide message status function provides the
time of receipt prompt, repositions the message to its
beginning, and reinstates playout of the message after
the time of receipt prompt has been provided. The form
of the time of receipt prompt subject to a client service
option and may be either precise (e.g., message received
at 1:30 p.m. on the 6th of June) or general (e.g., message
received this morning). At the time the message was
delivered, the time of receipt (TOR) was associated
with the message.

If the general form of this prompt is used, it shall use
the time at which this in-progress call was begun to
compute the length of time the message has been in the
inbasket. The precision of this computation shall be
one-quarter hour. This duration, D, and the time of
receipt (TOR), are, shall be used to select the general
time of receipt (GTOR) prompt.

The delete message prompt shown in FIG. 21 deletes
the entirety of the message and invokes the delete ac-
knowledgement prompt.

The retain message function preserves the recorded
message for subsequent use of the client and provides
the save acknowledgement prompt. It notes that the
message has been played out.

The reply and redirect functions provide the capabil-
ity to record a commentary to a received message.
Depending on a client instructions, the commentary is
returned to the originator of the message as reply, or
redirected to a set of addresses specified by the client,
with or without the original message.

The reply functional flow is illustrated in greater
detail in FIG. 22 which shows the prompts and subsid-
iary functions employed by the reply/redirect func-
tions.

These functions are not invoked unless the appropri-
ate client service option is in effect and there is room in
the client’s message basket for the reply. Upon invoca-
tion, the function provides the reply location prompt,
invokes the form copy function to place a copy of the
client’s inbasket message into his outbasket, and invokes
the await instruction to obtain the response to the reply
location prompt.

0113

0

20

50

168

The response to this prompt indicates that the reply is
to preface the original message, to replace the original
message, to be appended to the original message or that
the message is merely to be redirected. In the first three
cases the message function shall be invoked and in the
fourth case accept edit delivery instructions function
shall be invoked.

Upon normal completion of the edit message func-
tion, the concatenate messages function is invoked if the
response to the reply location prompt indicated that the
reply was to preface or be appended to the original
message. The reply disposition function is then invoked.
Client instructions within the reply disposition function
may effectively redirect the reply. In this case, the set
delivery instruction function is invoked. The reply
function concludes by invoking the original disposition
function.

The await instruction of FIG. 22 directs monitoring
of the signal received over the voice channels associ-
ated with a call for DTMF tones. If a tone is detected,
the function analyzes the DTMF characters received,
and if the client command has been entered, the func-
tion invokes the function appropriate to the command.
If a command invoking one of the CHAO functions is
detected, the requested function is invoked. If a talk
command is detected, it is interpreted as an indication
that the reply is to be appended to the original message.
If a save command is detected, it is interpreted as an
indication that no reply is planned and the message is
merely being redirected. If a clear command is de-
tected, it is interpreted as an indication that the reply is
to replace the original. If an insert command is detected,
it is interpreted as an indication that the reply is to
preface the original message. All other commands are
ignored. The form copy function places a logical copy
of the current inbasket message in the outbasket. The
edit message function has been previously described.
The message being edited is the current outbasket mes-
sage which was just created by the form copy function.

The concatenate messages function concatenates the
current inbasket message with the current outbasket
message and places the result in the outbasket. If the
response to the reply location prompt was the insert
command, the outbasket message precedes the inbasket
message. If the response to the reply location prompt
was the save command, the inbasket message precedes
the outbasket message.

The reply disposition function provides the reply
disposition prompt. This prompt identifies the address
of the sender of the current inbasket message. In re-
sponse to this prompt, a command invoking one of the
CHAO functions, a save command, a clear command,
or an entry in data syntax may be received. If a com-
mand invoking one of the CHAO functions is received,
the requested function is invoked. If 2 save command is
received, the delivery instruction for the reply consists
of the address of the sender of the current inbasket
message with a delivery code of immediate. The origi-
nal disposition function is invoked. If a clear command
is received, the sender of the original message is not
included in the delivery instructions (i.e., no delivery
instructions are now associated with the reply), and the
edit/accept delivery instructions function is invoked. If
an entry in data syntax is received, the delivery instruc-
tion associated with the reply is the same as that pro-
vided if the save command had been entered. However,
the edit/accept delivery instructions function is invoked
before the original disposition function.

4,625,081

169

The client may redirect a received message entering
delivery instructions for the message. This function
provides the addressee invitation prompt and invokes
the edit/accept delivery instruction function.

The original disposition function provides the origi-
nal disposition prompt. In this response to this prompt a
command invoking one of the CHAO functions, a save
command or a clear command may be received and
acted upon. All other commands are ignored. If a save
command is received, retain message function is in-
voked. If a clear message is received, the delete message
function is invoked.

Returning to FIG. 20, the review outbasket function
enables the client to listen to the messages in his outbas-
ket and, especially, the delivery instruction associated
with them. It also enables him to complete sending,
editing, or addressing of a message whose composition
was interrupted. This function is illustrated in greater
detail in FIG. 23 to which reference is now made.

If there are no messages in the outbasket the review
outbasket function has not been invoked. Consequently,
this function commences playout of the messages and
simultaneously awaits entry of a client command. Client
commands invoking the CHAO functions, the delete
message function, and the retain outbasket message
function are always effective if the review outbasket
function can be invoked. The commands invoking the
remaining functions are effective if the appropriate
client service options are in effect.

Upon completion of the message playout, delete mes-
sage, retain message outbasket message, or the valid
amendment sequence, the voice message service system
100 either plays out the next message in the outbasket
or, if all messages have been reviewed, the no more
messages prompt. Messages are played in reverse order
of entry. The provide delivery status function always
repositions the current message to the end of the mes-
sage and the beginning of the delivery instructions.

The await outbasket command function directs moni-
toring of the signal received over the voice channels
associated with the call for DTMF tones. If a tone is
detected and if the tone is in command syntax, this
function suspends playout of the message. If the com-
mand requests one of the CHAO functions, the re-
quested function is invoked. If the command is contin-
ued, playout of the message is reinstated at the point it
was suspended. If the command is clear, the delete
message function is invoked. If the command is save,
the retain message function is invoked. If the command
is listen and the appropriate client service option is in
effect, the provide delivery status function is invoked. If
the command is talk and the client service option allow-
ing amendment is in effect, the amend message/instruc-
tions function is invoked. If the option is not in effect
the talk command is ignored. All other commands are
ignored although the playout is suspended.

The playout of the message function is followed by
playout of the delivery instructions.

The provide delivery status function skips playout of
the current message and provides the delivery status
prompt. This prompt reports the status of each message
awaiting delivery or for which delivery acknowledge-
ment was specified. The delivery status of a message is
reported as pending, unaddressed, delivered or undeliv-
ered. Additional status information is provided as fol-
lows:

1. For pending and undeliverable status in the event
of message basket delivery, date/time of availability to

0114

30

35

40

45

55

60

65

: 170
the addressee for message retrieval. For pending an
undeliverable status in the event of telephone delivery,
date/time of most recent attempt and reason (busy, no
answer, etc. of other reason as determined by the voice
message service system information operator on assisted
delivery attempt).

2. For delivered status the delivery date and time.
This status exists only for messages with delivery ac-
knowledgement specified in delivery instructions. Until
all addressees have received the message, the sender can
obtain delivery status from the voice message service
information operator.

3. For unaddressed status, none.

The delete message function has been previously
discussed.

The skip to delivery function causes a skipping of the
playout of the current message and commences playout
of its associated delivery instruction. The message re-
mains in the outbasket.

The amend message function shown in FIG. 23 is
illustrated in greater detail in FIG. 24. This function
provides the capability of amending a message and is
not invoked unless the appropriate client service option
is in effect. Upon invocation it provides the type of
amendment prompt, and waits to obtain the response to
this prompt.

Response to this prompt will indicate that the amend-
ment is to preface the current message, to be appended
to the current message, to replace the current message
or that only addresses are to be amended. In the first
two cases, if room is available in the outbasket, the form
outbasket copy function is invoked. If room is not avail-
able, the outbasket full prompt is provided. If the copy
is formed and always in the third case, the edit message
function is invoked. In the fourth case, the amended
delivery instruction function is invoked if the client
service option allows and ignored if it does not.

Upon normal completion of the edit message func-
tion, the concatenate messages function is invoked if the
response to the type of amendment prompt indicated
that the reply was to preface or to be appended to the
original message. If the client service option allows, the
amendment delivery instructions function is then in-
voked.

If in response to the type of amendment prompt a
command invoking one of the CHAO functions is de-
tected, the request function is invoked. If a talk com-
mand is detected, it is interpreted as an indication that
the amendment is to be appended to the original mes-
sage. If a save command is detected, it is interpreted as
an indication that only delivery instruction amendment
is planned. If a clear command is detected, it is inter-
preted as an indication that the amendment is to replace
the original. If an insert command is detected, it is inter-
preted as an indication that the amendment is to preface
the original message. All other commands are ignored.

The form outbasket copy function places a logical
copy of the current outbasket message in the outbasket
(i.e., two copies of the message are now in the outbas-
ket).

The edit message function has been explained previ-
ously.

The concatenate outbasket messages function con-
centrates the original message with the original message
and places the result in the outbasket. If the response to
the type of amendment prompt was the insert com-
mand, the amended message precedes the original mes-
sage. If the response to the type of amendment prompt

4,625,081

171
was the save command, the original message follows
the amended message.

The amend instructions function shown in FIG. 23
provides the amendment instructions prompt. In re-
sponse to this prompt, a command invoking one of the
CHAO functions, a list command, a save command, a
clear command, or a entry in data syntax may be re-
ceived. If a command invoking one of the CHAO func-
tions is received, the request function is invoked.

If a listen command is received, the accept delivery
instructions function is invoked and playout of the de-
livery instructions, if any, or the no delivery instruction
prompt will occur as described for that function.

If a save command is received the delivery instruc-
tions associated with the original message are also asso-
ciated with the amended message. Playout of the next
outbasket message or the no more messages prompt will
then occur. If an entry in data syntax is received, the
delivery instructions associated with the original mes-

sage are also associated with the amended message and 20

the accept/edit delivery instructions function is in-
voked. All other commands are ignored.

The terminate message retrieval function shown in
FIG. 20 is invoked to schedule or cancel message deliv-
ery as appropriate if an addressed reply to an inbasket
message, an amended and addressed outbasket message
or amended delivery instructions to an outbasket mes-
sage exist. This function prepares a summary of client
retrieved messages activity including:

1. Client identification.

2. Message basket identification.

3. Time activity began.

4. Time activity ended.

5. Processor time used.

6. Change in disk storage used.

This function prepares a detailed record of client
retrieve message activity on a message-by-message basis
that includes:

1. Client identification.

2. Message basket identification.

3. Message identification.

4. Time playout began.

5. Time playout ended.

6. Disposition of message and special service em-
ployed (e.g., cleared, saved, replied, amended, redi-
rected, operator assistance functions employed, etc.).

7. Processor time used.

8. Disk accesses used.

9. Change in disk storage used.

The change administrative data function shown in
FIG. 14 is illustrated in greater detail in FIG. 25. This
function gives the client control over certain of the
administrative and control data associated with his ac-
count. This function is invoked by the change admin-
strative data command (¥, 2, 5). In response to this
command, the administrative menu prompt is provided.
Selections from the menu use data syntax, not command
syntax (i.e., the selection is not preceded by the asterisk
key). The majority of the selections, as the menu shows,
are subject to client service options.

The edit salutation function provides a client the
capability of recording and altering the telephone an-
swering voice salutation. This function is subject to a
client service option. A client service option allows
multiple salutations. If this option is in effect, the select
salutation function is invoked to obtain identification of
the particular salutation to be edited. The client is able
to record a new salutation in a manner similar to record-

30

35

45

50

172
ing a message as described for the send message func-
tion. The principal distinction is that no delivery in-
structions are required.

Upon completion of a new salutation, the system 100
replaces the current salutation with the newly recorded
one. The maximum length of the salutation is specified
by the system parameter maximum client salutation size.
If multiple salutations are employed, the service sched-
ule for a particular salutation may be changed using
CSS.

The message forwarding function enables the client
to direct the system 100 to place a telephone call to him
when messages are received in his message basket. This
call is handled in accord with its delivery instructions
and the client service options in effect.

If immediate forwarding is specified, the system 100
attempts to forward the message within the number of
minutes specified by the immediate forwarding interval.
Otherwise, forwarding of messages that the client has
not heard shall only be attempted during forwarding
period established through customer service. The sys-
tem 100 accepts forwarding instructions either directly
from the client or from the client via an information
operator. The system 100 establishes a forwarding con-
dition for a client upon entry by the client of a forward-
ing on command. Upon receiving this command, the
system 100 responds with a prompt giving either:

1. The previously established forwarding telephone
number or message basket number and request confir-
mation of the number or

2. Requesting the forwarding number.

The client either confirms the existing number by
entering the save command or enter the number using a
data syntax as described for edit/accept delivery in-
structions. If the client enters a number, the system 100
will respond with a prompt that repeats the number for
his confirmation. The system 100 deactivates a forward-
ing condition for a client upon the client’s entry of a
forwarding command. The daily start/stop time, if any,
and the number of attempts and retry interval associated
with the client controlled forwarding is established
through CSS. CSS provides a client the capability to
specify a maximum of five sets of message forwarding
instructions to the system 100. An instruction contains
the forwarding phone number, start date and time, end
date and time of retry interval and number of retries.

The message delivery function shown in FIG. 14
delivers a message to a message basket or telephone
number. As illustrated in greater detail in FIG. 26, de-
livery to a telephone number may be done either auto-
matically or by operator assistance. Delivery is accom-
plished with operator assistance unless automatic deliv-
ery is intentionally selected by the client. If verification
or identification of the called party is required, then
operator assisted delivery is required.

For deliveries requiring operator assistance, the sys-
tem brings an operator on-line and automatically dials
the telephone number selected by the operator. When
the call is answered, the system 100 information opera-
tor verifies the identity of the called party, initiates the
message playout, and executes any special instructions
which have been directed by the client.

For automatic delivery, system 100 dials the ad-
dressee. At the time system 100 determines that the call
has been answered, the delivery prompt is played to the
called party. This prompt states that there is a recorded
message for delivery and requests an acknowledgement
from the called party before beginning playout of the

0115

4,625,081

173

message. The message is played to the answering party
upon receipt of this acknowledgement from the answer-
ing party. If this command is not received within a
prompt interval, the system 100 directs connection to an
information operator for assistance. The system 100
provide a client option allowing automatic delivery
without acknowledgement.

In cases where a called telephone number is not an-
swered on the first attempt, the system 100 continues to

attempt delivery at intervals and for the number of 10

retries established in delivery instructions. In addition,
most delivery attempts resulting in a “busy” are retried
in the number of minutes specified in the busy retry
interval to the maximum specified by busy retry count.
The client has the option to allow the called party to
respond to a message at the time of delivery. In this
case, the system 100 plays the reply invitation prompt.
The called party is able to record a single message. The
reply message is left in the client’s message basket. The
capability for called party response is selectable for
each addressee in the subscriber’s delivery instructions
for either operator assisted or automatic telephone de-
livery.

Messages which are undeliverable are flagged within
the sending subscriber’s message basket. These mes-
sages and their status are played out by the retrieve
message function. For automatic delivery that does not
require or does not result in information operator assist-
ance, a message a considered as delivered when the
system 100 has determined that the call has been an-
swered or acknowledgement received.

INTERFACE ROUTINES

The following interface routine functional specifica-
tion is useful in helping a skilled programmer to under-
stand and utilize the program listings set forth in Table
Is

Process management in the virtual machine consists
of a set of interface routines to REX process manage-
ment. The use of function codes and their associated
Jjump tables have been defined to fit in a Pascal environ-
ment and some of the options available to REX callers
have been combined or eliminated for this release at the
Pascal level process management.

The process management procedures and functions
which the virtual machine provides include:

(1) VCREATE—create a new subprocess.

(2) VCRNODE—create a node of a job.

(3) VQUIT—terminate the calling process.

(4) VCREATOR _PID—return the PID of the cre-
ator of the calling process.

(5) VDECLARE._FC—declare the valid packet
function codes for the calling process.

(6) VSELF_PID—return the PID of the calling
process.

VCREATE—create a new subprocess is system priv-
ileged and has the following procedure definition: func-
tion VCREATE (var SPID: vspidrange; PRTY-
CLASS: wvclassrange; PRTYRANK: vrankrange;
PGMID: vprogid; PGMNONSHARE: boolean): vbit
16.

Among the inputs to VCREATE, SPID is the spe-
cific subprocess ID to create or zero if the system
should assign one. PRTYCLASS is the priority class,
from 1 to 4, that will be assigned to the created process.
PRTYRANK is the priority rank within the class, from
1 to 255, that will be assigned to the created process.
PGMID is the system program ID of the Pascal pro-

0116

—
(73

20

25

40

45

35

60

65

174
gram to run in the created process. PGMNONSHARE
is a boolean flag indicating whether the code specified
in PGMID is shareable or not. A true value indicates
nonshareable code. Among the outputs, SPID contains
the subprocess ID of the new subprocess.

VCREATE returns as VCOMPOK if the create was
successful; VMEMUNAVAIL if sufficient extended
memory to create the process was not available;
VSPIDUNAVAIL if a REX subprocess was not avail-
able; or a REX event completion code if a REX system
error occurred.

If a nonzero SPID is specified, that SPID must be
available; if zero is specified, some SPID must be avail-
able.

It should be noted that:

(1) This function calls the REX routine CREATE#.

(2) All virtual machine subprocesses require the as-
signment of a data segment. There are 255 such seg-
ments in any one GPP, some of which are used by the
virtual machine and some are used for code. This leaves
a practical limit of 250 processes running programs in a
GPP.

(3) The named program will be loaded if it does not
already exist in memory and its user count will be incre-
mented if it already has been loaded.

(4) Execution of the process starts at the main entry
point of the program.

VCRNODE creates a node of a job by sending a
create node request packet to JSAM and access is sys-
tem privileged. The procedure definition is procedure
VCRNODE (var PKT: vpacket; var CRNRESULT:
vecomplcode; var RPKT: vpacket). PKT is the create
node request packet to be sent to JSAM. Ihe header will
be filled in by this procedure which will also wait for a
response. CRNRESULT is the event completion code
from the create node. A value other than VCOMPOK
is considered an error. RPKT is the response packet
from JSAM for the create node request. All require-
ments applicable to creation of a node of a job, as stated
in the JSAM documentation, apply to this procedure.

VQUIT terminates the calling process and is system
privileged. The procedure definition is procedure
VQUIT (PDSCLEANUP:boolean). PDSCLEANUP
is true if the procedure has been called by PDS to
cleanup resources between commands. There are no
outputs. This function has requirements similar to the
QUIT function. This procedure is intended to be called
by SYS.PDS and SYS.DRVR to end the execution of a
program. In the case of SYS.DRVR, PDSCLEANUP
is false which calls for a full process quit. In the case of
SYS.PDS, when the user segment completes execution,
PDSCLEANUP is set true to cause the resources for
the user program to be released so the next user pro-
gram can be run. This procedure calls the REX routine
QUIT.

VCREATORPID returns the PID of the creator of
the calling process and is system privileged. Procedure
definition is VCREATORPID (var PID: vpidrec).
There are no inputs and PID identifies the creator of the
calling process. This procedure calls the REX routine
CREATORIPID.

VDECLAREFC declares the valid packet function
codes for the calling process and is system privileged.
The procedure definition is VDECLAREFC
(FCMASK: vfcset). FCMASK is a set with the valid
function codes from 0 to 15 set. There are no outputs.
Note that DECLAREFC calls the REX routines
SETFCMASK and RESTFCMASK. This procedure

4,625,081

175
declares the valid packet function codes that will be
returned to the Pascal program. The program then has
to handle the functions itself through a case statement
or similar construct.

VSELFPID returns the PID of the calling process 5
and is system privileged. The procedure definition is
VSELFPID (var PID: vpidrec). It outputs the PID of
the calling process returned in PID.

Event management in the virtual machine consists of
a set of interface routines to the higher level REX event 10
management routines. Event management deals solely
with the detection of events and not the allocation or
deallocation of event control blocks (ECBs). To the
user of the virtual machine, ECBs are an internal struc-
ture used totally by the system to maintain events for 15
the user. The event management procedures and func-
tions which the virtual machine provides include:

(1) VCHECK _EVENT—check for the occurrence
of an event and return true if the event has occurred,
otherwise return false. 20

(2) VWAIT—make the calling process nondispatcha-
ble until an associate event occurs.

VCHECK_EVENT checks for the occurrence of an
event and return true if the event has occurred; other-
wise, return false. It is unprivileged. The procedure 25
definition is VCHECK_EVENT (EVENTIDTYPE:
vchecktype; var USERREFID: vuserrefval; RESPON-
SEID: vecbid; var EVENTCODE: vcomplcode; var
CHECKPKT: vpacket): boolean. As inputs EVEN-
TIDTYPE specifies whether any event or a specific 30
event by user reference value or response ID is being
checked. The following are valid values for this param-
eter:

(1) VCHKANY—check for any event for this pro-
cess. 35
(2) VCHKUSERREF—check for a specific event

with a user reference value specified in USERREFID.

(3) VCHKRESPONSEID—check for a specific"
event with a response ID value specified in RESPON-
SEID. 40

USERREFID is the user reference value of a specific
user event to be checked. RESPONSEID is the
ECBID of a specific event to be checked. If USERRE-
FID is used, then RESPONSEID is not necessary. As
outputs USERREFID is returned with the user refer- 45
ence value (this does not apply to pure timers).
EVENTCODE is the event completion code as defined
in the appendices.

CHECKPKT is a 16-word packet that is returned if
the associated event returns a packet. This function calls 50
the REX routines CHECKEDB#3, CHECKEDB-
$E#3, or CHECKECBSU#3 depending on the options
that are selected. The user reference value returned is
that which was specified when the event was defined.
Packets returned to unprivileged processes will have 55
the PID fields of the header zeroed.

VWAIT makes the calling process nondispatchable
until an associate event occurs and is unprivileged. The
procedure defintion is VWAIT (WAITTYPE: vwait-
type; var USERREFID: vuserrefval; RESPONSEID: 60
vecbid; var EVENTCODE: vcomplcode; var
WAITPKT: vpacket). For inputs WAITTYPE speci-
fies whether a VWAITANY, for waiting on any event,
or a VWAITSPECIFIC, to wait on a specific event, is
required. RESPONSEID is the ID associated with a 65
specific user event that is being waited on. This is ig-
nored for VWAITANY. For outputs WAITPKT is a
16-word packet that is returned if the associate event

0117

176

returns a packet, EVENTCODE is the event comple-
tion code as defined in the appendices, and USERRE-
FID is the ID of a specific user event that is being re-
turned. This procedure calls the REX routines WAIT
or WAITSE depending on the options that were se-
lected. If the specified event (or any) has already oc-
curred, the process remains dispatchable. Control is not
returned, however, until the associated PCB again
comes to the head of the dispatchable queue.

Time management in the virtual machine is a set of
procedures offered to interface with the system time
management. For details on the system time manage-
ment, refer to the REX subsystem specification.

The time management procedures and functions
which the virtual machine provides include:

(1) VSTART_TIMER—Start a REX timer for the
current running process.

(2) VCANCEL_TIMER—Cancel a timer that was
set for this process.

(3) VDATETIME—Return the current date and
time to the caller.

VSTART_TIMER starts a REX timer for the cur-
rent running process and is unprivileged. The proce-
dure definition is VSTART_TIMER (var RESPON-
SEID: vecbid; UREFID: vuserrefid; TIMELTH: inte-
ger; TIMEUNIT: vmmtimeunits; TIMEWAIT: bool-
ean). For inputs UREFID is the user reference value
that is established by the user and may be used to iden-
tify the expiration of the timer. If TIMEWAIT is true,
this field is not used. TIMELTH is the timer interval
expressed in milliseconds or seconds. TIMEUNIT spec-
ifies the interval type as mSEC or SEC. TIMEWAIT is
a boolean requesting suspension of the process until the
timer expires if true and immediate return if false. For
outputs RESPONSEID is a REX event ID that is re-
turned if wait was not requested. This ID is used when
calling CHECKEVENT or WAIT. This procedure
calls the REX routines STARTTIMER or START-
TIMERSS, depending on the value of TIMEUNIT. If
the timer interval is expressed in milliseconds, the larg-
est interval is 65,535 milliseconds or 1 minute, 5 sec-
onds, 535 ms. When expressed in seconds, the largest
interval is 18 hours, 12 minutes, 15 seconds. A timer
may only be started for the active process.

VCANCEL_TIMER cancels a timer that was set
for this process and is unprivileged. The procedure
definition is VCANCEL_TIMER (RESPONSEID:
vecbid). RESPONSEID is input as the REX event ID
associated with the timer being cancelled. This proce-
dure calls the REX routine CANCELTIMER. A timer
may be cancelled only if it is associated with the active
process.

VDATETIME returns the current date/time to the
caller and is unprivileged. The procedure definition is
VDATETIME (CDATETIME: vdtrectype): boolean.
The function VDATETIME returns true as an output if
the current date is set in the processor; otherwise, it
returns false. CDATETIME is set to the current date/-
time as a packed record of the following definition if the
current date is set in the processor.

vdtrectype=packed record

YEAR: 0..99;

MONTH: 1..12;

DAY: 1..31; (*Day of Month*)
DOY: 1..366; (*Day of Year*)
DOW: 1..7; (*Day of Week*)
HOUR: 0..23;

MIN: 0..59;

4,625,081

177
SEC: 0..59;
HSEC: 0..99; (*Hundreths of Seconds*)
This routine refers to the date maintained by REX in
page zero.

Job management in the virtual machine handles all
communication with JSAM for creation and deletion of
processes that exist as nodes of a job in the JSAM sense.
The levels of interface between the virtual machine
subsystem and JSAM include:

1. Processing in GPEXREX for handling incoming
packets from JSAM to control main processes that are
implemented as virtual machines; and

2. Processing in the VMM for handling requests from
JSAM to control subprocesses that run as virtual ma-
chines in the GPP.

All processes in the GPP that are implemented as
virtual machines are managed by REX/GPEXREX
and are identified as virtual machines to allow the spe-
cial handling necessary to control them. Internally, in
the GPP, and externally they are referred to as “special
processes” to distinguish them from processes that are
controlled strictly by REX. All requests to create spe-
cial processes are rounted to GPEXREX which decides
whether the request is for a system process to be run as
a main process or a nonsystem process to be run'as a
subprocess of a VM controlling process. For the first
release, nonsystem processes will include TASS and
PDS application whereas system processes will include
SYSDLO, SYSDEV, and SYSMON.

The processing involved in processing these packets
includes:

1. Create process request packet. Sent by JSAM to
request the creation of a virtual machine process.

2. Create process response packet. Sent by VMM to
JSAM to report on the status of a create request.

3. Delete process request packet. Sent by JSAM to
request the deletion of a virtual machine process.

4. Delete process report packet. Sent by VMM to
JSAM to report the completion normally or abnormally
of a virtual machine process.

1/0 control in the virtual machine is performed by a
number of input/output services routines (IOSRs), each
of which interfaces with a REX IOSR to perform a
prescribed 1/0 operation. The IOSRs operate as an
extension of the user program and establish control and
data paths between the user and the rest of the system
100.

In general, an 1/0 operation proceeds as follows. A
user requests that an I/O function be performed by
invoking the appropriate IOSR with a set of parameters
that define the request. The IOSR formats the parame-
ters into REX IOSR calling arguments and calls the
appropriate REX IOSR. At that point the user’s process
is suspended until the operation is complete. Upon re-
turn from the request, VM IOSRs either return with a
successful completion or return the appropriate status
to indicate why the operation was unsuccessful.

In this sequence, all I/O is performed on behalf of the
user’s process and the associated environment. Suspen-
sion of the process takes place if sufficient resources are
not currently available for REX to initiate the opera-
tion. Then, the process waits for completion of the 1/0
operation before being redispatched for return to VM
TOSRs and the user. The following paragraphs describe
the VM IOSR procedures in general as they apply to all
device and data set handlers.

The VM IOSRs support the acquiring and releasing
of devices through various procedures. When a device

wn

20

30

45

60

0118

178

is acquired, an acquire response packet is returned
which contains the information that is required to open
and access the device. To accommodate this, the VM
IOSR maintains these packets in its environment with
an associated unique identifier. This identifier is then
placed in the user's file information block (FIB) for
future reference when required by VM IOSRs, but the
actual packet is not made available to the user at any
time,

All devices that are acquired and all data sets that are
open must have a unique FIB associated with them. The
FIB resides in the user’s data space and contains de-
scriptive information about the device or data set. This
information is used by the VM IOSRs to interface with
system functions when executing I/O procedures for
the user and must exist from acquire to release for de-
vices and open to close for data sets.

It is defined as follows:

Vfib=packed record

VCHANREF1: vbit 8;
VCHANREF2: vbit 8;
VDEVNAMEI: vdevname;
VDEVNAMEZ2: vdevname;
VSYSCOMPL: vcomplcode;
VDEVCOMPL: vdevcompcode;
VACQPKTID: vbit 16;
VTIMEOUT: vbit §;
VPRIORITY: vbit 8;

end (Vfib);
where:

1. VCHANREF]1 is the reference number of the
primary channel on a multichannel device or the refer-
ence number of the only channel on a single channel
device.

2. VCHANREF2 is the channel number of the sec-
ond channel on a multichannel device.

3. VDEVNAMEL is the device name associated with
VCHANREF1 for the device being accessed.

4. VDEVNAME? is the device name associated with
VCHANREEF2 for the device being accessed.

5. VSYSCOMPL is the REX event completion code.

6. VDEVCOMPL is the device completion code
which is made up of the device error code and the
device error group.

7. VACQPKTID is the internal ID of the acquire
packet which is maintained by VM IOSRs. This ID is
established when a device is acquired and must remain
intact until the device is released.

8. VTIMEOUT is the time (in seconds) to be added
to the system timeout value to arrive at the timeout
interval for the operation.

9. VPRIORITY is the priority to be assigned to the
associated operation and is required only if it is imple-
mented by the target handler.

The access control block (ACB) is used to maintain
information relevant to a particular access of a device or
data set. As such, at any given time, a unique ACB must
exist for each active access. An access is established by
the execution of one of the access-type verbs (e.g.,
VREAD, VWRITE . . .) and remains active until the
access is completed (usually by a VENDIO operation).

The ACB is defined as follows:

vacb=packed record

VACCESSREF: vbit 16;
VACBCOMPL: vcomplcode;
VACBRESP: vioreturnpacket;
VTIMEOUT: vbits 8;
VPRIORITY: vbit 8

4,625,081

179

end (vacb);
where:

1. VACCESSREF is a unique reference ID assigned
and used by VM IOSRs to associate the various func-
tions executed as part of the specific access. Modifica-
tion of this field by the user will cause the access to be
aborted.

2. VACBCOMPL is the REX event completion code
related to the last operation performed on this access.

3. VACBRESP is a 10-word area where the last 10
words of the response packet, related to the last opera-
tion for this access is returned.

4. VTIMEOUT is the time (in seconds) to be added
to the system timeout value to arrive at the timeout
interval for the operation.

5. VPRIORITY is the priority to be assigned to the
associated operation and is required only if it is imple-
mented by the target handler.

VACQNAME acquires ownership of a system de-
vice by its iternal name and is unprivileged. The proce-
dure definition is VACQNAME (var VMFIB: vfib;
DEVNAME: vdevicename; VMIOFLAGS: vioflags;
USNFUNCCODE: vfcrange). For inputs:

1. VMFIB will have the following fields set:

a. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for
the operation.

b. VPRIORITY is the priority value to be assigned to
the acquire operation.

2. DEVNAME is the internal device name of the

device being acquired.

3. VMIOFLAGS is a set of flags that specify the
selected acquire options as follows:

a. VACQQUEUE is set if SYSDEV is permitted to

queue the acquire. C

b. VACQSEIZE is set if one of the device channels is
to be seized during the acquire processing.

4. USNFUNCCODE is the function code to be used
by the system for unsolicited notification packets. For
outputs:

VMFIB will have its fields set as follows:

VCHANCNT will contain the number of channels
that the acquired device has.

VCHANINFO[I.VCHANREF contains channel
reference values (1-255) that will be used by the VM
IOSRs in all subsequent I/O operations for the associ-
ated channel. Note that I ranges from 0 to
VCHANCNT.

VCHANINTO[I]. VFDEVNAM contains the inter-
nal device names of the device for the associated chan-
nel and will be used by the VM IOSRs in all subsequent
I/0 operations.

VSYSCMPL contains the REX event completion
code.

VDEVCMPL contains the acquire completion code.

VACQPKTID contains the ID of the acquire re-
sponse packet received from SYSDEYV if the device has
been successfully acquired. The ID will be used by the
VM IOSRs to access the acquire response packet when
an I/0 operation requires information contained in the
packet.

VDEVSTATUS will be set to VAQUIRED if the
operation was successful.

Upon calling VACQNAME, the user process is sus-
pended until successful or unsueccessful completion of
the acquire function. VSYSCOMPL and VDEV-
COMPL fields in the FIB indicate the result of the
acquire function. The user process must not alter any of

0119

0

20

30

35

o

45

50

60

65

180
the values returned in the FIB. This procedure sends an
acquire request packet to SYSDEV.

VACQLIST acquires ownerhip of a system device
by type and subtype and is unprivileged. The procedure
definition is VACQLIST (var VMFIB: vfib; DTYPE:
vdevtype; SUBTYPE: vstypelist; VMIOFLAGS: vio-
flags; USNFUNCCODE: vfcrange). For inputs:

1. VMFIB will have the following fields set:

a. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for
the operation.

b. VPRIORITY is the priority value to be assigned to
the acquire operation.

2. DTYPE is the system device type of the device

being acquired.

3. SUBTYPE is a list of acceptable system subtypes
for the specific device type being acquired.

4. VMIOFLAGS is a set of flags specifying the se-
lected acquire options as follows:

a. VACQQUEUE is set if SYSDEV is permitted to

queue the acquire.

b. VACQSEIZE is set if one of the device channels is
to be seized during the acquire processing.

5. USNFUNCCODE is the function coce to be used

by the system for unsolicited notification packets.

For outputs VMFIB has its field set as follows:

1. VCHANINFO[I].VCHANREF contains channel
reference values (1-255) which the VM IOSRs use in all
subsequent 1/0 operations for the associated channel.
Note that I ranges from 0 to VCHANCNT.

2. VCHANINTO[I.VFDEVNAM contains the in-
ternal device names of the device, and the VM IOSRs
use it in all subsequent I/0 operations on channel one.

3. VSYSCOMPL contains the REX event comple-
tion code.

4. VDEVCMPL contains the acquire completion
code.

5. VACQPKTID contains the ID of the acquire re-
sponse packet received from SYSDEYV if the device has
been successfully acquired. The VM IOSRs use the ID
to access the acquire response packet when an I/O
operation requires information contained in the packet.

6. VDEVSTATUS will be set to VACQUIRED.

Upon calling VACQLIST, the user process is sus-
pended until successful or unsuccessful completion of
the acquire function. VSYSCOMPL and VDEV-
COMPL fields in the FIB indicate the result of the
acquire function. The user process must not alter any of
the values returned in the FIB. This procedure sends an
acquire request packet to SYSDEV.

VOPEN opens a logical path to a device and is un-
privileged. The procedure definition is VOPEN (var
VMFIB: vfib; VMIOFLAGS: vioflags).

For inputs VMFIB will have the following fields set:

1. VCHANINFO as set by the VM IOSR acquire
ownership operation.

2. VACQPKTID as set by the VM IOSR acquire
ownership operation.

3. TIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

VMIOFLAGS will have the following set:
VCHANNO is the number of the channel to be opened
for multiple channel devices. It should be zero for de-
vices with only one channel.

For outputs VMFIB will have the following fields
returned:

1. VSYSCOMPL is the REX event completion code.

4,625,081

181

2. VDEVCOMPL is the open device completion
code.

3. VDEVSTATUS will be set to VOPENED if the
operation was successful.

The FIB must contain the values returned from the
acquire of the device being opened. This procedure
calls the REX routine OPEN#.

VOPEN DSET opens a logical path to a data set and
is unprivileged. The procedure defintion is VOPEND-
SET (var VMFIB: vfiby DSNAMLEN: vbit 8;
DSNAMPTR: vaddr; var DSINFO: vdatasetinfo).

For inputs:

1. VMFIB will have the following fields set:

a. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for
the operation.

b. VPRIORITY is the priority value to be assigned to
the operation.

3. DSNAMLEN is the length (in bytes) of the data

set name.

4. DSINFO is a packed record whose fields specify
access restrictions and default operational characteris-
tics.

5. DSINFO will have the following fields set:

a. VDSEXCL is set if this open is for exclusive ac-
cess. If the flag is rest, this open is for shared ac-
cess.

b. VDSRDWR is set if READ/WRITE is allowed
for the data set; otherwise, (flag is reset) open is for
read only.

c. VDSUTIL is set for utility open and is reset for
open without utility privileges.

d. VDSUNCAT is set if catalog is not to be used to
locate data set. If the flag is reset, catalog is used to
locate data set.

e. VDSUP is set if data set is duplicated; otherwise,
(flag is reset) data set is singular.

f. VUSER is packed array of 5 bytes, specifying user
code of requestor. (This field is currently unused.)

g. VOLID1, VOLID?2 are packed arrays of six chars,
specifying volume ID of the volume on which data
set resides.

For outputs

VMFIB will have its fields set as follows:

1. VCHAINFO[0].VCHANRF contains a channel
reference value (1-255) that the VM IOSRs use in all
subsequent 1/0 operations on the opened data set.

2. VSYSCOMPL contains the REX event comple-
tion code.

3. VOPENRESP contains the open response packet
itself.

If the catalog is to be used to locate the data set
(VDSUNCAT=1) the volume ID of the volume on
which the data set resides is required (VOLID1). Other-
wise, this field can be omitted. (If the data set is dupli-
cated [VDSUP=1], this field must specify the volume
ID of the volume on which the primary copy of the
data set resides.) If the data set is duplicated
(VDSUP=1) and the catalog is not to be used to locate
the data set (VDSUNCAT =1), this field must specify
the volume ID of the volume on which the secondary
copy of the data set resides (VOLID2). Otherwise, this
field can be omitted.

VREADCRT builds an access path to a logical data
record in a CRT to permit transfer of data from the
CRT handler to the user and is unprivileged. The pro-
cedure definition is VREADCRT (var VMFIB: vfib;

0120

5

—

5

40

45

60

65

182
var VMACB: vacb; CRTCNTL: vcrtdetrl); VMIO-
FLAGS: vioflags).

For inputs VMFIB will have the following field set:

1. VCHANINFO as set by the VM IOSR acquire
ownership operation.

CRTCNTL is a record that will have the following
fields set:

1. VSOM is a start-of-message character that specifies
the type of read.

2. VPARTNO is a character that specifies the CRT
partition number from which data will be read.

3. VLINEITEM is a character that specifies the line
number with the partition number from which data will
be read.

4. VEOM is a character that specifies the end-of-mes-
sage character.

VMIOFLAGS will have the following field set:

1. VCHANNO is the number of the channel to be
accessed for multiple channel devices. It should be zero
for single channel devices.

For outputs VMACB will have its fields set as fol-
lows:

1. VACCESSREEF contains an access reference value
(1-255) that the VM IOSRs use in all subsequent 1/0
operations related to this access path.

2. VACBCOMPL contains the REX event comple-
tion code.

3. VACBRESP is the response returned from the
device handler that will have its fields set as follows:

a. VDEVCC contains the status returned from the

device handler.

b. VDATALEN contains the size (in bytes) of the

record being accessed.

The FIB must contain the values returned by the
procedure OPEN for the device being read. Multiple
accesses to a single CRT are supported. If the handler
cannot support this, it is the handler’s responsibility to
reject the request. The user process must not alter any
of the values returned in the ACB. This procedure calls
the REX routine ACCESS#.

VREAD DIRECT builds an access path to a logical
record in a direct data set to permit transfer of data
between the user and the data set handler and is un-
privileged. The procedure definition is VREAD-
DIRECT (var VMFIB: vfib; var VMACB: vach; VMI-
OFLAGS: vioflags; ELEMNO: vlonginteger).

For inputs: ;

VMFIB will have the following field set:

1. CHANINFO[O].VCHANREF as set by the proce-
dure VOPENDSET.

VMACB will have the following field sets:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the

tion.

2. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VREADDIRECT options as follows:

1. VUPDATE is set if this is an updating read. The
record element will be locked against other accesses
until released with an End 1/0 request.

ELEMNO is the record element of the record to be
accessed.

For outputs:

VMACB will have its field set as follows:

1. VACCESSREEF contains an access reference value
(1-255) that the VM IOSRs use in all subsequent 1/0 0
operations related to this access path.

4,625,081

183

2. VACBCOMPL contains the REX event comple-
tion code.

3. VACBRESP is the response packet returned by
the data set handler that will have its fields set as fol-
lows:

a. VDEVCC contains the error/code group.

b. Other fields in this packet are unnamed, but may be
accessed by VPKTINIT[N], where N is the word
number (1-16) of the packet.

The FIB must contain the values returned from the
procedure OPENDSET for the data set being read.
The user process must not alter any of the values re-
turned in the ACB. This procedure calls the REX rou-
tine ACCESS#.

VREADKEY builds an access path to a logical re-
cord in an indexed data set to permit transfer of data
between the user and the data set handler and is un-
privileged. The procedure definition is VREADKEY
(var VMFIB: vfib; var VMACB: vach; VMIOFLAGS:
vioflags; KEYLENGTH: vbit8; KEYPTR: vaddr).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operations.

2. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VREADKEY options as follows:

1. VUPDATE is set if this is an updating read. The
record will be locked against other accesses until re-
leased with an End I/0 request.

2. VGREATER is applicable when the flag VKAP-
PROX is set. If VGREATER is set, the retrieval key
will be the first key strictly greater than the user key. If
VGREATER is not set, the retrieval will be that record
whose key is the first key in the index lexically greater
than or equal to the key supplied by the user.

3. VDATAREQC is set if the data record is not to be
retrieved. If the flag is rest, the data record is retrieved.

4. VKAPPROX is set if the read is an approximate
read. (See VGREATER flag definition).

KEYLEN is the length (in bytes) of the record key.

KEYPTR is a pointer to a packed array of characters
that contains the name of the record key.

For outputs:

VMACB will have its fields set as follows:

1. VACCESSREF contains an access reference value
(1-255) the VM IOSRs use in all subsequent 1/0 opera-
tions related to this access path.

2. VACBCOMPL contains the REX event comple-
tion code. :

3. VACBRESP is the response packet returned by
the data set handler that will have its fields set as fol-
lows:

a. VDEVCC contains the error code/error group.

b. Other fields in this packet are unnamed but may be
accessed by VPKINIT[N], where N is the word
number (1-16) of the packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned in the ACB. This proce-
dure calls the REX routine ACCESS#.

VREADNEXT builds an access path to a logical
record in an indexed data set. The record will be re-

0

-
(7

20

25

30

35

40

45

50

55

60

65

184
trieved whose key is lexically next greater than the most
recent previously completed access on this channel and
is unprivileged. The procedure definition is VREAD-
NEXT (var VMFIB: vfib; var VMACB: vacb; VMIO-
FLAGS: vioflags).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANRF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the systems
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VREADNEXT options as follows:

1. VUPDATE is set if this is an updating read. The
record will be locked against other accesses until re-
leased with an End I/0 request.

2. VNODATA is set if the data record is not to be
retrieved. If the flag is reset, the data record is re-
trieved.

3. VSAMREC is set if the access is to remain on the
same record. If the flag is reset, access the next record.

4. VNULL is set for null continue; otherwise, (flag is
reset) normal continue.

For outputs:

VMACB will have its fields set as follows:

1. VACCESSREEF contains an access reference value
(1-255) that the VM IOSRs use in all subsequent /O
operations related to this access path.

2. VACBRESP is the response returned by the data
set handler that will have its fields set as follows:

a. VDEVCC contains the error code/error group.

b. Other fields in this packet are unnamed, but may be

accessed by VPKTINIT[N], where N is the word
number (1-16) of the packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned in the ACB. This proce-
dure calls the REX routine ACCESS#.

VCONTINUE releases the current record and pre-
pare to read, write or update the next record in a block
data set and is unprivileged. The procedure definition is
VCONTINUE (var VMFIB: vfib; var VMACB: vacb).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the operation.

For outputs:

VMACB will have its fields set as follows:

1. VACBCOMPL contains the REX event comple-
tion code.

2. VACBRESP is the response packet returned by
the data set handler that will have its fields set as fol-
lows:

a. VDEVCC contains the status returned from the

device or data set handler.

b. Other fields in this packet are unnamed, but may be

accessed by VPKTINIT[N], where N is the word
number (1-16) of the packet.

0121

4,625,081

185

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned by the procedure VO-
PENDSET. This procedure calls the REX routine
ACCESS#.

VWRITEDEYV builds a write access path to a logical
data record to permit transfer of data from a user to a
device and is unprivileged. The procedure definition is
VWRITEDEV (var VMFIB: vfib; var VMACB: vach;
NBYTES: integer; VMIOFLAGS: vioflag).

For inputs:

VMFIB will have the following fields set:

1. VCHANINFO as set by the VM IOSR acquire
ownership operation.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the read operation.

NBYTES is the number of bytes to be set up for this
write device access.

VIOFLAGS will have the following field set:

1. VCHANNO is the number of the channel to be
accessed for multiple channel devices. It should be zero
for single channel devices. ’

For outputs:

VMACB will have the following fields set on return:

1. VACCESSREF is a unique value assigned by VM
TOSRs to be used throughout the life of the write access
sequence.

2. VACBCOMPL is the event completion code re-
turned by REX.

3. VACBRESP is the response returned by the de-
vice handler that will have its fields set as follows:

a. VDEVCC contains the status returned from the

device handler.

The FIB must contain the values returned by the
procedure OPEN for the device being written to. This
procedure calls the REX routine ACCESS#. Before
any data can be transferred from the user to the device
handler, both parties must be made ready for the trans-
fer by a VWRITEDEYV operation. If the device being
written to is a Zentec, only one access may be active at
a time.

VWRITEDIRECT builds an access path to a logical
record in a direct data set to permit transfer of data from
the user to the data set handler and is unprivileged. The
procedure definition is VWRITEDIRECT (var
VMFIB: vfib; var VMACB: vacb; ELEMNO: vlon-
ginteger).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the operation.

ELEMNO is the record element number (also rela-
tive to the start of the dataset) of the record to be writ-
ten. This parameter applies to disk data sets only.

For outputs:

VACCESSREF contains an access reference value
(1-255) the VM IOSRS use in all subsequent I/0 opera-
tions related to this access path.

0122

15

20

25

30

35

40

45

50

55

60

65

186

VACBCOMPL contains the REX event completion
code.

V ACBRESP is the response returned by the data set
handler that will have its fields set as follows:

1. VDEVCC contains the error code/group code.

2. Other fields in this packet are unnamed, but may be
accessed by VPKTINIT[N], where N is the word num-
ber (1-16) of the packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned in the ACB. This proce-
dure calls the REX routine ACCESS#.

VWRITEKEY builds access path to a logical record
in an indexed data set to permit transfer of data from the
used to the data set handler and is unprivileged. The
procedure definition is VWRITEKEY (var VMFIB:
vfib; var VMACB: vacb; VMIOFLAGS: vioflags;
KENLENGTH: vbit8; KEYPTR: vaddr).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O]. VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VWRITEKEY options as follows:

1. VREPLACE is set if this Write is meant to replace
an existing record, and an error is implied if the record
does not exist. If the flag is reset, the Write is meant to
create a new record, and the presence of an existing
record with the same key implies an error.

KEYLEN is the length (in bytes) of the record key.

KEYPTR is a pointer to the record key.

For outputs:

VMACB will have its fields set as follows:

1. VACCESSREEF contains an access reference value
(1-255) the VM IOSRs use in all subsequent 1/0 opera-
tions related to this access path.

2. VACBCOMPL contains the REX event comple-
tion code.

3. VACBRESP is the response packet returned by
the data set handler that will have its fields set as fol-
lows:

a. VDEVCC contains the error code/group code.

b. Other fields in this packet are unnamed, but may be

accessed VPKTINIT[N], where N is the word
number (1-16) of the packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned in the ACB. This proce-
dure calls the REX routine ACCESS#.

VGET transfers data from a device or data set han-
dler buffer to a user buffer and is unprivileged. The
procedure defintion is VGET (var VMFIB: vfib; var
VMACB: vacb; BUFFPTR: vaddr; SOURCEOFF-
SET: integer; DESTOFFSET: integer; NBYTES: inte-
ger).

For inputs:

VMFIB will have the following fields set:

1. VCHANINFO[O].VCHANRF as set by the or
Open data set operation.

VMACB will have the following fields set:

4,625,081

187

1. VACCESSREF is the value assigned by VM
TOSRs to uniquely identify the access path that was set
up by the previous Read.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for this
operation.

3. VPRIORITY is the priority value to be assigned to
the get operation.

BUFFPTR is the address of the buffer, in the user’s
space, where the get will return data.

SOURCEOFFSET is the byte offset into the record
from which point the data is to be read.

DESTOFFSET is the byte offset into the user’s
buffer where the data is to be transferred.

NBYTES is the number of bytes to be transferred.

For outputs:

VMACB will have the following fields set on return:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response returned by the de-
vice or data set handler that will have its fields set as
follows:

a. VDEVCC contains the status returned from the

device or data set handler.

b. Other fields in this packet are unnamed, but may be
accessed by VPKTINIT[N], where N is the word
number (1-16) of the packet.

The VMFIB must contain the values returned by the
procedure VOPEN or VOPENDSET. The access path
specified by the VACCESSREF must exist, i.e., the
user must have previously called one of the VREAD
procedures. The only range checking that will be per-
formed on the get operation is to ensure that the entire
buffer will fit in the user’s address space. Therefore, a
specification to get more bytes of data into a variable
than the size of the variable will result in overwriting an
area outside the variable. This will most often cause the
program to malfunction. This procedure calls the REX
routine GET#.

VWGET transfers data from a DSR buffer to a user’s
local buffer. (This function is applicable for indexed
data sets.) The function is unprivileged. The procedure
defintion is VWGET (var VMFIB: vfib; var VMACB:
vacb; BUFFPTR: vaddr; SOURCEOFFSET: integer;
DESTOFFSET: integer; NBYTES: integer;
VMWHERE: vbit2).

For inputs:

The VMWHERE field can be set to the following:

1. VDATAFLD (=0): get user data record;

2. VMEMOFLD (=1): get memo record;

3. VKEYFLD (=2): get key.

VMFIB will have the following fields set:

1. VCHANINFO[O].VCHANRF as set by the VM
TOSRs to uniquely identify the access path that was set
up by the previous Read.

VMACB will have the following fields set:

1. VACCESSREF is the value assigned by VM
ISORs to uniquely identify the access path that was set
up by the previous Read.

2, VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for this
operation.

3. VPRIORITY is the priority value to be assigned to
the get operation.

BUFFPTR is the address of the buffer, in the user’s
space, where the get will return data.

SOURCEOFFSET is the byte offset into the record
from which point the data is to be read.

0123

5

10

25

30

40

45

55

60

65

188

DESTOFFSET is the byte offset into the user’s
buffer where the data is to be transferred.

NBYTES is the number of bytes to be transferred.

For outputs:

VMACB will have the following fields set on return:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response packet returned by
the source device or data set handler that will have its
fields set as follows:

a. VDEVCC contains the status returned from the
device or data set handler.

b. Other fields in this packet are unnamed, but may be
accessed by VPKTINIT[N], where N is the word
number (1-16) of this packet.

The VMFIB must contain the values returned by the
procedure VOPEN or VOPENDSET. The access path
specified by the VACCESSREF must exist, i.e., the
user must have previously called one of the VREAD
procedures. The only range checking that will be per-
formed on the get operation is to ensure that the entire
buffer will fit in the user's address space. Therefore, a
specification to get more bytes of data into a variable
than the size of the variable will result in overwriting an
area outside the variable. This will most often cause the
program to malfunction. This procedure will call the
REX routine GET#.

VPUT transfers data from a user’s buffer to a device
or data set handler buffer and is unprivileged. The pro-
cedure definition is VPUT (var VMFIB: vfib; var
VMACB: vacb; BUFFPTR: vaddr; SOURCEOFF-
SET: integer; DESTOFFSET: integer; NBYTES: inte-
ger).

For inputs:

VMFIB will have the following fields set:

1. VCHANINFO[O].VCHANRF as set by the Open
device or Open data set operation.

VMACB will have the following fields set:

1. VACCESSREF is the value assigned by VM
ISORs to uniquely identify the access path that was set
up by the previous write.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for this
oeration.

3. VPRIORITY is the priority value to be assigned to
the put operation.

BUFFPTR is the address of the buffer, in the user’s
space, where the put will get its data.

SOURCEOFFSET is the byte offset, into the user’s
buffer, where the effected data starts.

DESTOFFSET is the byte offset, into the handler’s
record or record element where the data is to be trans-
ferred.

NBYTES is the number of bytes to be transferred.

For outputs:

VMACB will have the following fields set on return:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response returned by the de-
vice or data set handler that will have its field set as
follows:

a. VDEVCC contains the status returned from the
device or data set handler.

b. Other fields in this packet are unnamed, but may be
accessed by VPKTINIT[N], where N is the word
number (1-16) of the packet.

The FIB must contain the values returned by the

procedure VOPEN on VOPENDSET. The access path

4,625,081

189
specified by the VACCESSREF must exist, ie., the
user must have previously called on the write proce-
dure. This procedure calls the REX routine PUT#.

VWPUT transfers data from a user’s buffer to a DSR
buffer. (This function is applicable for indexed data
sets.) This function is unprivileged. The procedure defi-
nition is VWGET (var SMFIB: vfib; var VMACB:
vacb; BUFFPTR: vaddr; SOURCEOFFSET: integer;
DESTPFFSET: integer; NBYTES: integer;
VMWHERE: vbit2).

For inputs:

The VMWHERE field can be set to the following:

1. VDATAFLD (=0): put user data record;

2. VMEMOFLD (=1): put memo record;

3. VKEYFLD (=2): put key.

VMFIB will have the following field sets:

1. VCHANINFO[O].VCHANREF as set by the VM
ISORs to uniquely identify the access path that was set
up by the previous Write.

VMACB will have the following fields set:

1. VACCESSREF is the value assigned by VM
ISORs to uniquely identify the access path that was set
up by the previous Write.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for this
operation.

3. VPRIORITY is the priority value to be assigned to
the put operation.

BUFFPTR is the address of the buffer, in the user’s
space, where the put will get its data.

SOURCEOFFSET is the byte offset, into the user’s
buffer, where the effected data starts.

DESTOFFSET is the byte offset into the handler’s
record or record element, where the data is to be trans-
ferred.

NBYTES is the number of bytes to be transferred.

For outputs:

VMACB will have the following fields set on return:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response packet returned by
the source device or data set handler that will have its
fields set as follows:

a. FDEVCC contains the status returned from the
device or data set handler.

b. Other fields in this packet are unnamed, but may be
accessed by VPKINIT[N], where N is the word
number (1-16) of this packet.

The VMFIB must contain the values returned by the
procedure VOPEN or VOPENDSET. The access path
specified by the VACCESSREF must exist, i.e., the
user must have previously called one of the VREAD
procedure. This procedure will call the REX routine
PUT#.

VTRANSFER transfers data from a source device or
data set to a destination device or data set and is un-
privileged. The procedure definition is VTRANSFER
(var VMFIBS: vfib; var VMACBS: vacb; var
VMFIBD: vfib; var VMACBD: vach; NBYTES: inte-
ger; SRCEOFFSET: integer; DESTOFFSET: inte-
ger).

For inputs:

VMFIBS is the FIB for the source device or data set
that has the following fields set:

1. VCHANINFO as set by the VM ISOR acquire
ownership or open data set operation.

5

10

15

30

35

40

65

0124

190

VMACEBS is the ACB for the source device or data
set that was referenced by a previous READ operation
and has its fields set as follows:

1. VACCESSREF is the value assigned by VM
ISORs to uniquely identify the access path that was set
up by the previous READ.

2. VTIMEOUT is the time to be added to the system
timeout value for the total transfer operation.

VMFIBD is the FIB for the destination device or
data set that has the following fields set:

1. VCHANINFO as set by the VM IOSR acquire
ownership or open data set operation.

VMACBD is the ACB for the destination device or
data set that was referenced by a previous WRITE
operation and has its fields set as follows:

1. VACCESSREF is the value assigned by VM
IOSRs to uniquely identify the access path that was set
up by the previous Write.

NBYTES is the number of bytes to be transferred.

SRCEOFFSET is the byte offset, into the record that
was accessed by a previous READ, where the source
data starts.

DESTOFFSET is the byte offset, into the record
that was accessed by a previous WRITE, where the
destination data starts.

For outputs:

VMACBS will have the following fields set on re-
turn:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response returned by the
source device or data set handler that will have its fields
set as follows:

a. VDEVCC contains the status returned from the

device or data set handler.

The FIBs associated with the devices or data sets
involved in the transfer must contain the values re-
turned by the preceding VOPEN or VOPENDSET
operations. A READ access path must exist for the
source and a WRITE access path must exist for the
destination. This procedure will call the REX routine
TRANSFER#. The Transfer procedure allows a user,
in one processor, to move data from a second processor
to a third processor without having to bring the data
into his own processor.

VCONTROL communicates control information to
a device handler and is unprivileged. The procedure
definition is VCONTROL (var VMFIB: vfib;
CTRLBUFEF: vetrlinfo; VMIOFLAGS: vioflags).

For inputs:

VMFIB will have the following fields set:

1. VCHANINFO as set by the procedure that ac-
quired the device.

2. VACQPKTID as set by the procedure that ac-
quired the device.

CTRLBUFF is a record to be included in the control
packet being sent to the device. The record contains
device-specific control fields to be defined by the target
device.

VMIOFLAGS is a set of flags that specify the se-
lected CONTROL options as follows:

1. VCHANNO is the number of the channel to be
used for multiple channel devices. It should be zero for
devices with only one channel.

For outputs:

VMFIB will have its fields set as follows:

1. VSYSCOMPL contains the REX event comple-
tion code.

4,625,081

191

2. VDEVCOMPL contains the completion code
returned by the device handler.

The FIB must contain the values returned by the
procedure that acquired the device. This procedure
calls the REX routine CONTROL#.

VSETSUBTYPE alters the subtype of a specific
device and is system privileged. The procedure defini-
tion is VCONTROL (var VMFIB: vfib; SUBTYPE:
vbit16; OPRATRID: vbitl6).

For inputs:

VMFIB is the FIB for the device whose subtype is to
be altered, it has the following fields set:

1. VCHANINFO as set by the VM ISOR acquire
ownership operation.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

SUBTYPE is the subtype to be associated with the
device.

OPRATRID is the CRT operator’s ID if SUBTYPE
is non-zero; otherwise, OPRATRID is zero.

For outputs:

VMFIB will have its fields set as follows:

1. VSYSCOMPL contains the REX event comple-
tion code.

2. VDEVCOMPL contains the completion code
returned by the device handler.

Upon calling VSETSUBTYPE, the user process will
be suspended until a response is received. VSYSCMPL
and VDEVCMPL will indicate the result. This proce-
dure sends a set device subtype request packet to SYS-
DEV.

VDELETEKEY builds an access path to a logical
record in an indexed data set to permit deletion of the
record and is unprivileged. The procedure definition is
VDELETEKEY (var VMFIB: vfib; KEYLENGTH:
vbit8; KEYPTR: vaddr).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure OPENDSET.

KEYLENGTH is the length (in bytes) of the record
key.

KEYPTR is a pointer to a packed array of characters
that contains the name of the record key.

For outputs:

VMFIB will have its fields set as follows:

1. VSYSCMPL contains the REX event completion
code.

2. VDEVCMPL contains the completion code re-
turned by the device handler.

The FIB must contain the values returned by the
procedure VOPEN_DSET. This procedure calls the
REX routine CONTROL#.

VRENAME changes the identity of a logical record
in an indexed data set by substituting a new key for its
current key. The record itself is not disturbed. The
function is unprivileged. The procedure definition is
VRENAME (var VMFIB: vfib; var VMACB: vach;
OLDKEYLEN: vbit8; NEWKEYLEN: vbit§; OLD-
KEYPTR: vaddr; NEWKEYPTR: vaddr).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure OPENDSET.

VMACB will have the following fields set:

0125

55

60

65

192

1. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

2. VPRIORITY is the priority value to be assigned to
the operation.

OLDKEYLEN is the length (in bytes) of the record
current key.

NEWKEYLEN is the length (in bytes) of the new
key.
OLDKEYPTR is a pointer to a packed array of char-
acters that contains the name of the current key.

NEWKEYPTR is a pointer to a packed array of
characters that contains the name of the new key.

For outputs:

VMACB will have its fields set as follows:

1. VACCESSREF contains an access reference value
(1-255) that will be used by the VM IOSRs in all subse-
quent 1/0 operations related to this access path.

2. VACBCOMPL contains the REX event comple-
tion code.

3. VACBRESP is the response packet returned by
the data set handler that will have its fields set as fol-
lows:

a. VDEVCC contains the error code/group code.

b. Other fields in this packet are unnamed, but may be

accessed by VPKTINIT[N], where N is the word
number (1-16) of this packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The user process must not
alter any of the values returned in the ACB.

VMOVEWINDOW terminates access to the element
currently on view in an indexed subfile or CHAIN data
set, writing it to disk if necessary. It also moves the
window to permit access of a specified element in the
current logical record and is unprivileged. The proce-
dure definition is VMOVEWINDOW (var VMFIB:
vfib; var VMACB: vacb; VMIOFLAGS: vioflags).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure OPENDSET.

VMACSB will have the following fields set:

1. VACCESSREF as set by the procedure that built
the access path to the logical record.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

3. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VMOVEWINDOW options as follows:

1. VMARK is a flag that specifies the units of motion.
If the flag is reset, the units of motion are record ele-
ments. If the flag is set, the units of motion are marks
(applicable to string data sets only).

2. VABSOLUTE is the relative access flag that speci-
fies window motion relative to a specific element (c)
which is currently on view in the currently accessed
logical record. If the flag is set, motion is relative to the
first element of the logical record. If the flag is reset,
motion is relative to the current element on view.

3. VNULL is set for null continue (MOVEWIN-
DOW), and is reset for normal MOVEWINDOW oper-
ation.

4. VDESTINATION.VDEST is the mark or ele-
ment number to go to (D).

The window will move to C+D if VMARK, VAB-
SOLUTE equal 0,0; to D if VMARK, VABSOLUTE

4,625,081

193

equal 0,1, to the Dth mark after C if VMARK, VAB-
SOLUTE equal 1,0 and to the Dth mark if VMARK,
VABSOLUTE equal 1,1 where VMARK equal 1 is
applicable to chained data sets only. C is the number of
the record element which is currently on view in the
window, relative to the beginning of the logical record
and D is an array [1 ... 2] of vbitl6, representing the
mark or element number to go to.

For outputs:

VMACB will have its fields set as follows:

1. VACBCOMPL contains the REX event comple-
tion code.

2. VACBRESP is the response returned by the data
set handler that will have its fields set as follows:

a. VDEVCC contains the error code/group code.

b. Other fields in this packet are unnamed, but may be

accessed by VPKTINIT[N], where N is the word
number (1-16) of this packet.

The FIB must contain the values returned by the
procedure VOPENDSET. The ACB must contain the
values returned by the procedure that built the access
path to the logical record.

VINSERTELEM terminates access to the current
element in a logical record of an indexed subfile data
set, writing it to disk if necessary. It creates a new ele-
ment in the subfile and places it in a specified position
relative to the current element. It makes the new ele-
ment the current element on view. It is unprivileged.
The procedure definition is VINSERTELEM (var
VMFIB: vfib; var VMACB: vacb; VMIOFLAGS:
vioflags).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VACCESSREF as set by the procedure that built
the access path to the logical record.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

3. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VINSERTELEM options as follows:

1. VBEFORE is the flag that specifies the position in
the logical record to insert the element. If the flag is set,
the, new element will be logically inserted before the
current element. If the flag is reset, the new element will
be logically inserted after the current element.

For outputs:

VMACB will have its fields set as follows:

1. VACBCOMPL contains the REX event comple-
tion code.

2. VACBRESP is the response returned by the data
set handler that will have its fields set as follows:

a. VIOSTAT contains the error code/group code.

The FIB must contain the values returned by the
procedure OPENDSET. The ACB must contain the
values returned by the procedure that built the access
path to the current logical record.

VDELETELEM terminates access to the current
element in a logical record of an indexed subfile data
set. It removes from the subfile a logically contiguous
run of elements beginning with the current element.
The element on view after the remove operation will be
the element immediately before the removed run of
elements. The function is unprivileged. The procedure

20

30

35

40

45

50

60

0126

194
definition is VDELETELEM (var VMFIB: vfib; var
VCACB: vacd; VMIOFLAGS: vioflags).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANREF as set by the pro-
cedure VOPENDSET.

VMACB will have the following fields set:

1. VACCESSREF as set by the procedure that built
the access path to the logical record.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

3. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS will have the following fields set:

1. ELEMNO is the element number (zero relative to
the start of the subfile) of the first element in the run of
contiguous elements to be removed.

2. NELEMENTS is the count of the number of con-
tiguous elements to be removed.

For outputs:

VMACSB will have its fields set as follows:

1. VACBCOMPL contains the REX event comple-
tion code.

2. VACBRESP is the response returned by the data
set handler that will have its fields set up as follows:

a. VIOSTAT contains the error code/group code.

The FIB must contain the values returned by the
procedure VOPENDSET. The ACB must contain the
values returned by the procedure that built the access
path to the current logical record.

VMOVELEM move a logically contiguous run of
elements in a logical record of an indexed subfile data
set to a specified position relative to the current element
on view. The function is unprivileged. The procedure
definition is VMOVELEM (var VMFIB: vfib; var
VMACB: vach; VMIOFLAGS: vioflags).

For inputs:

VMFIB will have the following field set:

1. VCHANINFO[O].VCHANRF as set by the pro-
cedure VPENDSET.

VMACB will have the following fields set:

1. VACCESSREEF as set by the procedure that built
the access path to the logical record.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

3. VPRIORITY is the priority value to be assigned to
the operation.

VMIOFLAGS is a set of flags that specify the se-
lected VMOVELEM options as follows:

1. VBEFORE is the flag that specifies the position in
the logical record to move the run of elements. If the
flag is set, the run of elements is move to immediately
before the current element on view. If the flag is reset,
the run of elements is moved to immediately after the
current element on view. The window remains over the
same logical element number whick will either be the
element that was on view before the move (if VBE-
FORE is reset) or the former element as specified by
VELEMNO (if VBEFORE is set).

ELEMNO is the element number (zero relative to the
start of the subfile) of the first element in the run of
contiguous elements to be moved.

NELEMENTS is the count of the number of ele-
ments to be moved.

For outputs:

VMACB will have its fields set as follows:

4,625,081

195

1. VACBCOMPL contains the REX event comple-
tion code.

2. VACBRESP is the response returned by the data
set handler that will have its fields set as follows:

1. VIOSTAT contains the error code/group code.

The FIB must contain the values returned by the
procedure VOPENDSET. The ACB must contain the
values returned by the procedure that built the access
path to the current logical record.

VENDIO terminates a data transfer operation (get,
put, or transfer) and tear down the associated access
path to a logical data record and is unprivileged. The
procedure definition is VENDIO (var VMFIB: vfib;
var VMACB: vach; VMIOFLAGS: vioflags).

For inputs:

VMFIB will have the following fields set:

1. VCHANREF 1 as set by the VM IOSR acquire
ownership or OPEN data set operation.

VMACB will have the following fields set:

1. VACCESSREF is the value assigned by VM
IOSRs to uniquely identify the access path that is re-
lated to this access.

2. VTIMEOUT is the time to be added to the system
value to arrive at the timeout interval for the operation.

3. VPRIORITY is the priority value to be assigned to
the endio operation.

4. VMIOFLAGS is a set of flags that specify the
selected ENDIO options as follows:

a. VABORTACCESS is set when the request is to

abort the current access,

For outputs:

VMACSB will have the following fields set on return:

1. VACBCOMPL is the event completion code re-
turned by REX.

2. VACBRESP is the response returned by the de-
vice or data set handler that will have its fields set as
follows:

a. VIOSTAT contains the status returned from the

device or data set handler.

The device or data set specified by the FIB must be
open. The access path specified by the VACCESSREF
must exist, i.e., the user must have previously called one
of the access procedures. This procedure calls the REX
routine ENDIO#.

VCLOSE closes a logical path to a device or data set
and is unprivileged. The procedure definition VCLOSE
(var VMFIB: vfib; VMIOFLAGS: vioflags).

For inputs:

VMFIB must have the following fields set:

1. VCHANRF as set by the VM IOSR open.

2. VFDEVNAM as set by the VM IOSR open.

3. VACQPKTID, if applicable, as used by the VM
IOSR open.

4. VTIMEOUT is the time (in seconds) to be added
to the system timeout value to arrive at the timeout
interval for the operation.

5. VPRIORITY is the priority value to be assigned to
the close operation.

VMIOFLAGS is set as follows:

1. VCHANNO is the channel number to be closed.
This is always zero for noncomplex devices.

For outputs;

VMFIB will have the following fields returned:

1. VSYSCOMPL is the REX event completion code.

2. VDEVCOMPL is the close device or data set
completion code.

3. VDEVSTATUS is set to VAQUIRED.

4. VCHANREF for this device is set to zero.

0127

0

20

30

40

60

196

The device or data set specified by the FIB must be
open. All accesses to the device or data set must have
been terminated. After the device is closed, it must be
released. This procedure calls the REX routine
CLOSE#. A device or data set is considered closed
even if the request completes with errors.

VRLSEDEVICE releases ownership of a system
device and is unprivileged. The procedure definition is
VRLSEDEVICE (var VMFIB: vfib; VMIOFLAGS:
vioflags; APPERRCNT: vbit8).

For inputs:

VMFIB will have the following fields set:

1. VCHANINFO contains the system device name
that was established at acquire time and uniquely identi-
fies the device being released.

2. VTIMEOUT is the time to be added to the system
timeout value to arrive at the timeout interval for the
operation.

VMIOFLAGS is a set of flags that specify the op-
tions to the release request as follows:

1. VDOWN set if the release is to include maring the
device as “down”.

APPERRCNT is the count of the number of device
errors detected by the application.

For outputs:

VMFIB will have the following fields set:

1. VSYCOMPL is the REX event completion code.

2. VDEVCOMPL is the release completion code.

3. VDEVSTATUS is set to VRLSED if the opera-
tion was successful.

No further communication is possible between the
device and the old owner unless the device is required.
This procedure sends a release device request packet to
SYSDEV.

A set of utility procedures and functions offered by
the virtual machine monitor are defined below. The
utility procedures and functions which the virtual ma-
chine provides include:

1. VLOG_IT print the contents of a packet on the
local AEB console.

2. VGET_CREATE PKT return the create packet
to the caller.

VLOG_IT transfers a log packet to the system log

processes and is unprivileged. The procedure definition
is VLOG_IT (LOGFMT: VLOGFORMAT,
LOGPKT: VPACKET).

For inputs:

LOGFMT is a record specifying the format of the
packet to be logged. LOGFMT must be set as follows:

1. USERFORMAT—user formatted.

2. ASCII—ASCIL

3. BADPKT—bad packet.

4. HEXPKT—HEX. LOGPKT is a 16-word packet
to be logged.

If the packet is user formatted, the following fields in
the packet must be set:

1. LGUSERFLAG is the user flags (currently un-
used).

2. LGMSGTYPE is the log message type number
that is used by SYSMON for display control.

3. LGMSGNO is the system error group/error code
for this packet.

4. LGDATA is the user data to be logged.

If the packet is ASCII or HEX, the packet field
VPKTINIT[3] through VPKTINIT[16] contains the
user data to be logged.

option of the user.

197

4,625,081

If the packet is a bad packet, the user should not alter
the packet headers. Other fields may be altered at the

This procedure calls the REX routine LOGIT,
LOGISSA, LOGIT$SB OR LOGITSH, depending on 5

the value of LOGFMT.

VGETCREATEPKT returns the create process
request packet to the caller and is unprivileged. The
procedure definition is VGETCREATEPKT (var

CREATEPKT: vpacket).
For outputs:

10

CREATEPKT is returned with the contents of the
packet that was sent to cause creation of the calling

process.

198

The following files give a standard Pascal interface to
VMM system routines. They are named as follows:

1. VM.CONST—this file contains the constant decla-
rations as well as the keyword CONST. Therefore, it
should be included in front of the programs’ constant
declarations.

2. VM.TYPE—this file contains the type declarations
as well as the keyword TYPE. Therefore, it should be
included in front of the programs’ type declarations.

3. VM.SERVICE—this file contains the code neces-
sary to interface with the VMM procedures. It should
be included before any references to VMM procedures.

The REX event completion codes are:

VCOMPOK
VINOUNSOL

VIOSOL
VSIGUNSOL
VSIGSOL
VTMOUTP
VDELETE
VMAXGOODREXCC
VHDRIREJ
VHDR2REJ
VABORTREJ
VOUTOFSEQ
VSPACEERR
VMOVEFAIL
VTIMEOUT
VECBINVALID

VNORESOURCES
VCANTACCESS

VCALLINVALID

= X'0; (*OK *)

= X'l (* Unsolicited packet
received. *)

= X2" (* Solicited packet
received. *)

= X'3% (* Unsolicited signal
received. *)

= X4 (* Solicited signal
received. *)

=" (* Pure timer timed
out. *)

= X'F; (* Delete process re-
quest from JSAM. *)

= X'FF;

= X'101%

= X'102"; (* Transfer, complete,
header rejected. *)

= X'103; (* Transfer aborted,
header rejected. *)

= X'104’; (Data packet transfer-
packet out of sequence. *)

= X'105"; (* Data packet transfer-
out of buffer space. *)

= X'106"; (* Data packet transfer-
byte count error. *)

= X'107"; (* Timeout occurred on
1/0, SIGNAL. *)

= X'108"; (* Invalid ECB address
specified. *)

= X'109";

= X'10A"; (* Access path already
active; previous 1/O
function not yet com-
pleted (IOSRs). *)

= X'10B";

The VMM event completion codes are defined by HEX,

(decimal) and group as follows:
60

(24576) VMM good event codes
61 (24832) General VMM error codes
62 (25088) Memory file error codes
63 (25344) Resource manager error codes
64 (25600 P-code errors
65 (25856) PDS error codes
66 (26112) VMM utility error codes
The general constants are:
VIOOK

VMAXCHAN
VMAXDSNAMLEN
VMAXREFELEMENT
VMEMFILELIMIT
VPMINDSLTH

VPLMINMOV
VPLMINKEY

VIOCBHDRSIZE

0128

1; (* Maximum channel for

complex device, O or 1 #)
= 32 (* Maximum name length
for data sets *)

= 10; (* Maximom number of
memory files per pro-
cess ¥)

=8 (* Data set length that
fits in a standard para-
meter list *)

= 19; (* Minimum amount to be
moved for an IOCB *)

= § (* Key length that fits
in a standard parameter
list *)

- 3 (* The header size of the

199

4,625,081
200

-continued

The 10SR option codes are:
“WHERE" options of GET/PUT:

I0CB down to the para-
meter list *)

VDATAFLD =1 (* Data-field of record *)
VMEMFLD =1 (* Memo-field of record *)
VKEYFLD =2; (* Key-field of record *#)
Utility data areas: VREADDIRECT/VWRITEDIRECT:
UDAAREA = 0: (* Utility data area *)
PCAREA =2 (* Primary control area ®)
SCAAREA =3 (* Secondary control area *)
DSR function codes:
VDSRCONTINUE = 6 (* Continue function
code *)
VDSRDELETE =T (* Delete function code *)
VDSRRENAME =B; (* Rename function code *)
VDSRUNLOCK =9 (* Unlock function code *)
VDSRMARK =13 (* Mark function code *)
The memory management constants are:
VMAXMAP = 253; (* Maximum map segment
number *)
TYPE:
vbitl =0.];
vbit2 = .3
vbit3 =0.7;
vbitd = 0L15;
vbit5 = 0.31;
vhité = 0..63;
vhit7 = 0.127;
vhité = 0..255;
vhit9 =511
vbitl0 = 0..1023;
vbitll = 0..2047;
vhitl2 = 0..4095;
vhitl3 = 0..819];
vbitl4 = 0..16383;
vbitls = 0..32767;
vbitl6 = integer; (* —32768..32767 *)
The general types are:
vaddr = pointer (integer);
vappclasses = {vs le, vpsod pcodesut
vchanrange = O.vmaxchan;
velassrange = vhit3;
veomplcode = packed record
case integer of
1 : (ver- vhit§;
group
verrcode vhit8);
2 : (verrword : vbitl6)
end (* vcomplcode *);
vdevcompcode packed record
vioerrgroup : vbitg;
vioerrcode : vbit8;
end (* vdevcompeode *);
vechid = whitl6;
vicrange = vhitd;
vlogformat = (userformat, ascii, badpkt, hexpkt);
vlonginteger = array [1..2] of vbitlé;
vmaprange = 0.. F * ber of maps
in GPP *)
vmfrname = packed array [1..8] of char;
vpageindexrange = 1.6 (* number of pages per
segment map *)
vprogid = packed record
filll vbitl6;
progno + vbitlé;
fill2 : wbitl6;

end (* vprogid *);
vprogramname

vrankrange
vpriority

end (* vpriority *);
vsdtype

packed array [1 .. 12] of char;
{* .CODE is added by CXP *)

vbit8;

packed record

class velassrange;
fill : o wbitl;

rank vrankrange;

(vacg, vopid, vrls, vssub);
(* type of call to SYSDEV *)

0129

4,625,081
201 202

-continued

vstypelist = packed array [1..14] of vbit8;
(* subtype list for acquire *)
vuserrefval = wvbitle;
‘The declarefc definitions are:
vics = (VFC1,VFC1,VFC2,VFC3,VFC4,VFC5,VFC6,
VFC7,VFC8,VFC9,VFCA ,VFCB,VFCC,VFCD,
VFCE,VFCF);
vicset set pf vfcs'
The packet definitions are:
vbidrange = vhitT;
vexidrange = vhit5;
vexsizerange = vhitd;
vjobnorange = vbitlé; (* 0..65535*)
vmemrange = vbitl5; (*0.65535 %)
vprtyrange = vhitl2;
vspidrange = vbit§;
vipidrange = whitld; (* vexid = 5 bits,
vspid = 8 bits *)
vpid packed record
filo © vbitd;
cxid : vexidrange;
bid : vbidrange;
fill + vbit§;
spid : vspidrange;
end (* vpid *);
vloadstates = (load, loading, loaded);
vpgmregmap = packed array [1..14] of vbit4;
VpEmrspmap = packed array [1..14] of vmaprange;
vpacket = packed record
case integer of
1: (vicode virange;
vexid vexidrange;
vbid : vbidrange;
vrspid ¢ vspidrange;
vspid : wspidrange;
vreode : vicrange;
vrbid vbidrange;
vipkt array [1..13] of vbitl6);
2: (vpktinit : array [1..16] of vbitl6);
3: ((* 1/0 return packet definitions *)
fill array [1..5] of vbitl6;
vdevee veomplcode;
fil2 + array [1..3]3] of vhitlé;
vdatalen vhitlé);
4: ((* CR = Create Process request packet *)
crfild : array [1..3] of vbitl6; (* words 0-2 *)
crjobno vhitl6; (* word 3 *)
erfil? boolean; (* word 4 *)
crbypass boolean;
crspecial boolean;
erfil4 vbitl;
crelass : vclassmnage;
crfilé : whitl;
crrank : vrankrange;
crprogid : vprogid; (* words 5-7 %)
erfill wvhit3; (* word 8 *)
crexno ¢ vexidrange;
erfil2 : vhitd;
crexsize : vhitd;
erfild + o whitl3; (* word 9 *)
crnonshare : boolean;
crappclass + vappclasses;
erfils : array [1..2] of vbitl6; (* words A&B *)
crjobparms : array [1..4] of vbitl6) (* words C&F *)
5: ((* CRM = create packet sent by resource manager
to virtual machine monitor for new
process. Also sent back to resource
manager to give load status and sent
from process to resource manager on
deallocation. *)
crmfil) : array [1..3] of vbitl6; (* word 0-2 %)
crmprogname : Vprogrammame; (* word 3-8 %)
crmfill s vhit§; (* word 9 *)
crmdataseg : vmaprange;
ermfil2 integer; (*word A %)
cmrfild vbit2; (*word B *)
crmpds boolean; (* 0 = Delphi.
driver *)
(* 1 = Delphi.
pascal *)

0130

4,625,081

203 204
-continued
crmmemavail boolean;
crmjsamcreated : boolean;
crmrpttocreator : boolean (® True if process
was created thru
FC'B'*%)
crmprogid vprogid; (* word C-E : pro-
gram ID from create
packet *)
crmabortchr integer); (* word F : the
abort character
from PSS *)
6: ((* MFO = Memory File Open reguest packet, also
used for extended memory files #)
mfofil0 array [1..3] of vbitlé; (* word 0-2 *)
mfoname vmfrname; (* word 3-6 ®)
mfoinitredent : integer; (* word 7 *)
miomaxredent : integer; (* word 8 *)
mfopagesperrcd integer; (* word 9 ®)
mfodatasegno vmaprange; (* word A *)
mforelpgidx : vpageindexrange; (* word B *)
mfextendreucnt : integer; (*wordC*)
7: ((* MFR = Memory File Response packet and Memory
File Close Request packet *)
mfrfil0 array [1..3] of vbitl6; (*word 0-2 *)
mirstatus veompleode; (* word 3 *)
mfrno vbitlé; (* word 4 *)
mfrfill array [1..2] of integer; (* word 5-6 *)
mfrerntredent vbitl6 (* word 7 *)
mfrfil2 array [1..4] of integer; (*word 8-B *)
mfredno : integer); (*word C*)
8: ((* CRN = Create Node Request packet *)
crnfil0 : array [1..3] of vbitlé; (* word 0-2 %)
crnjobno : wbitls; (* word 3 %)
ernfill s vbitlé; (* word 4 *)
crnnid boolean; (*word 5 %)
crnprim boolean;
crnrecov boolean;
crnfil2 boolean;
crnloss : vbitd;
ernfild : vhit6;
crnct : vbit2;
empgml : vprogid; (* word 608 *)
crnpgm2 : vprogid; (* word 9-B *)
crnpgm3 + wvprogid; (* word C-E *)
crfil4 : vhitd; (* word F)
crouserbid : vbidrange);
9: ((* CNR = Create Node packet *)
cnrfild s array [1..3] of vbitl6; (*word 0-2 *)
enrjobno : vhitlé; (*word 3 %)
Cnrpgm vbitl6; (* word 4 *)
cnrfill vbitls; (* word 5 %)
cnrnakflag boolean;
enrnpidl vpid; (* word 6-7 %)
enrnpid2 vpid; (* word 8-9 %)
cnrpid3 vpid; (* word A-B *)
enrnpid4 i wpid; (* word C-D *)
cnrapid3s : wvpid); (* word E-F %)
10: ({* LG = Log packet *)
Igfill : integer; (* word 0 *)
lgfil2 : vbitl3; (* word 1 %)
lguserflag vhit3;
lgmsgtype ¢ wbitls; (*word2*)
lgfill3 : packed array (3..7] of vbitl6; (*word 307 *)
Igmsgno : integer; (* word 8 *)
lgdata : packed array [1..7] of vbit16); (* word 9-F *)
11: ((* CPR = Create Process Response packet *)
cprhdr : packed array [0..2] of vbitl6; (* word 0-2 *)
cprjobno : integer; (* word 3 *)
cpriil4 : whitl5; (* word 4 *)
cprpgmioad : boolean;
Cprermo veompleode; (* word 5 *)
cprpgm vprogid; (® word 6-8 ?)
cprfil : packed array [9..15] of vbitl6); (* word 9-F *)
12: ((* LRS = Program Load Response packet *)
Irshdr array [0..2] of vbit16: (* word 0-2 *)
Irstatus vioadstates; (* word 3 *)
Irserror boolean;
Irsmap vpgmrspmap); (* word 4-A *)
13: ((* LRQ = Program Load Request packet *)
Irghdr : array [0..2] of vbitl6; (* word 0-2 *)
Irgfil0 1 vhit2; (* word 3 *)
irq : (vloaded, vres, vnotifyl, vnotifyd);

0131

4,625,081

205 206
-continued
Irgnumofmaps : whbitd;
Irqdseg : vmaprange;
Irgdsnum integer; (* word 4 *)
case integer of
1: (Irgpgmid vprogramname; {* word 5-A *)
Irgprogno integer), (* word B *)
2: (Irgmap Vpgmregmap; {* word 5-8 *)
Irgsegimap vpgmregmap)); (* word 9-C *)

end (* vpacket *);

The packet definition for the acquire, release and set
subtype packets sent to SYSDEV are:

vaqupacket = packed record
case integer of
1: (vpkt + vpacket);
2: (fll : packed array [1..3] of vbitl6;
(* acquire *)
vjobno : vbitlé;
vusrrefl : wbitl6;
vgopt : whitl;
vacqtype : whitl;
fil2 : whit2;
vprior : whitd;
vopcode : vbits;
vintnm : wbitl6;
vusnfc : vicrange;
vusnex vexidrange;
vusnbid : vbidrange;
vdevitype : vhitg;
vusnspid : vbit8;
vstypelst 1 bstypelist);
3: (fl3 : array [1..5) of vbitl6; (* release *)
vapperrcnt + vbit8);
4: (fi4 : array 1.7] of vbitl6; (* set sub-
type *)
vsubtype vbitl6;
vzenopid vbit16);
end (* vacgpacket *);
The VCOM definition is:
vmfred = packed record (* Each entry in the array of
memory files *)
mfiname : vmfrname;
mfno : integer; (* Internal number assigned to
file *)
mfcurred vbitll; (* Current record that is
installed *)
mfrelmempy : vhit5; (* Relative page in this seg-
ment where the file starts
(1.16) ®
end (* vmfred *);
veomrec = record (* Record kept in VCOM to
describe the process for
VMM. *)
wveerpkt vpacket; (* The create process request
packet sent by the resource
manager to the virtual
machine monitor to create the
process *)
vermpkt vpacket; (* The create request communi-
cation packet for this pro-
cess as defined by the re-
source manager. *)
vmftable ; array [1.vememfilelimit]
of fmvred;
end (* vcomrex *);
veomrptr = pointer (vcomrec);
The SELFPID definition is:
vipidrec = packed record
viillerd : wbit3;
vpidex 1 vexidrange;
vpidspid 1 vspidrange
end (* vipidrec *);
vpidrec = packed record
vpidbid : vbidrange;
vipid : vipidrec

end (* vpidrec *);

The time management types are:

vmmtimeunits = (vtmnull, vsecs, vmills);

- vdtrectype = packed record

0132

4,625,081

207 208
-continued

year + 0.95;

month - P

day I 1

doy i 1.366;

dow % Mok

hour 0,23

min : 0.59;

sec o 0.59;

hsec o 0.99;

end (* vdtrectype *);

The send / signal definitions are:

vesfselements = (vewfD fewfl,vdwi2,fewl3 fowf4,fowT,
vewf6,fewl7, fewfL, vewlF,vdwiH,vdwiA,
vewfE, vewlS,vewiR, ,vewiN);

vmemtypes = (VSCRATCHPAD, VMNULL, VDATAMEN);

vaglist = packed record

case integer of
1: ((* Actual definition of SEND arg) list *)

VALRESECBADR : wbitlé; (*=0°%
VALUSERREFVAL : vbitls; (® response *)
2: ((* Definition to initialize argument list
1o zero *)
VALFINIT : array [0..7] of vbitl6);
3: ((* Definition of STARTTIMER argument list *)
Cl g vhit5:
PUNITS : vmmtimeunits; (*minutes or seconds *)
c2 : vbitd;
PECBCODE : whits; (* greater than or =
to 16 %)
PUREFID + wuserrefval; (* user reference value *)
PEXADDR : integer; (* SPM set *)
PTMIPID : vipidrec; (* SELFPID *)
PTIMELEN integer); (* number of units *}
4 ((‘ Deﬁll.lllon of DATETIME argument list #)
integer; (* year ®*) (*word 0 *)
Fl : whitd; (* filler *) (* word 1 *)
PMONTH TS 13 1 (* month - 4 bits *)
F2 : vbitd;. (* filler *)
PDAY H [L (® day of month-5 bits*)
F3 : vhitd; (* filler *) (* Word 2 %)
PDOY : 1.366; (* day of year-9 bits *}
PDOW FO P 1 {* day of week-3 bits *)
F4 + vbitd; (* filler *) (* word 3)
PHOUR o 0.23; (* hour (military) -
5 bits *)
Fs : wbit2 (* filler)
PMIN : 0.59; (* minute of hour - 6
bits *)
F6 ¢ vbit (* filler *) (* word 4 *)
PSEC r 0,59 (* second of minute -
6 bits *)
F7] vhitl; {* filler *)
PCSEC 099 {* hundredths of seconds -
7 bits *)
end (* varglist *);
VCRTLWRD = packed record
Case integer of
1: ({* Actual Definition of SEND / SIGNAL Control
Word *)
VCWN : boolean; (* Formatted ECB for
notify supplied *)
VCWR : boolean; {* Formatted ECB for resp.
supplied *)
VCWS : boolean (* Switch header before
transfer *)
VCWE ¢ boolean; (* 1=wait specific;
U=wait any *)
VCWA : boolean; (* O=default to L & L+1;
I=don't *)
VCWH : boolean; (® Create return header *)
VCWF : boolean; (* Free packet to avail-
able space *)
VCWL : boolean; (* 1=Ilong format; O=short
format *)
VCWM i vmemtypes; (* O=scratchpad; 10=data
memory *}
VCWT : boolean; (* Time response *)
VCW4 : boolean;
VCwWC : vicrange); (* function code for return
hdr/resp *)

2: P ({* Definition to initialize Control Word to

0133

4,625,081
209

-continued

zero *}
VCWFINIT

vhitl6);

3: ((* Definition to act on Ctron word as a set *)

VCWFSET
end (* vetrlwrd *);

set of vewfselements)

The wait / check__event definitions are:

vchecktype
vwaittype

The 1/0 definitions are:
chanreft
volid
case integer of

1: (volidmov

2: (volidinit
end (* volid *)
wvdatasetinfo

case integer of

= (VCHKANY, VCHKUSERREF, VCHKRESPONSEID);

o

(VWAITANY, VWAITSPECIFIC);
0..255;
packed record

array [i..3] of Vbit16;
packed array [1..6] of char)

packed record

I: ((* used to move DSINFO into REXPARMLIST *)

vdsimov
25
vdsexcl

vdsrdwr
vdsutil

Al
vdsuncat

vdsup

fil2
fil3
fil4
vparmlth

vuser

vpart

vdsnamlen
vdsnam

volid1

volid2
end (* vdatasetinfo *),
wvdevname
viofunccodes

vrefrange
wrefset
vreftype
wvdvstatcode
vrecordidtype

(* Access conrrol block definitio

vach
VACCESSREF

VACBCOMPL
VACBRESP
VTIMEOUT
VPRIORITY
VACCHANNO

end (* vach *);

(T T |

array [1..30] of integer;

boolean; (* 1= exclusive open,
0= shared open *)
boalean; (* 1= write, 0= read *)
boolean; (* 1= utility open,
0= normal open *)
vbitl3;
boolean; (* 1= uncatalogued,
0= catalogued *)
boolean; (* 1= duplicated,
0= not duped *)
vhitl4;
vbit16;
vbit§;
vbit8; (* parameter list length *)

packed array [1..5] of vbit8;
(* requester ID *)

vhit§; (* part number (tape
reel) *)
vhit§; (* data set name length *)

packed array [1..32] of char;
(* data set name *)

wvolid; (* first volume ID *)
volid; (* second volume ID *)
vbitl6;

(vfcopen, vicclose, viccontrol,
vfcaccess, vicendio, vicget, vfcput,
vfctransfer, vicopendev, vicaccdev,
viccontinue, vicentrlds, vcgdata);
1..255;

set of vrefrange;

(vrefaccess, vrefchan);

(vaquired, vopened, vrlsed)

array [1..3] of vbitlé;

The file information block definition is:

viig
VCHANCNT
VCHANINFO
VCHANRF
VFDEVNAM

VCQSBID

n *)

packed record

vbit8; (* VM I0SR assigned
reference value. *)

veompleode; (* REX event completion
code. *)

vpacket; (* Rin packet from opera-
tion (13 wds) *)

vbit8; (* User defined *)

vbit8; (* User defined *)

vchanrange; {* Index into FIB table
of channels *)

packed record

vhit8; (* No. of channels sup-

ported for FIB *)
array [vchanrange] of

packed record

vchanreft; (* VIOSR assigned channel
reference value *)

vdename; (* Device name for
channel *)

vbidrange; (* BID of channel *)

0134

210

4,625,081
212

boolean
(* VMARK, VUNMARK, VOONT[N'U'E string °)

VMARK i
(* VCONTINUE: subfile ')
VBEFORE

(* VENDIO *)
VLOCK x
VABORTACCESS i

(* VWGET, VWPUT *)
VPGWHERE

(* VWPUT *)

VFIELD

VCHANNO

boolean;

boolean;
boolean;
vbit2;

boolean;
vchanrange;

(* VCONTINUE: strlngfs‘ubt'le *y

VABSOLUTE
VDESTINATION :
case integer of

1: (VDESTINIT

2: (VDEST

VELEMENT :

end (* VDESTINATION ')
(* VCONTROL *)

boolean;
packed record

array [1..3] of vbit16);
array [1..2] of vbitl6
vbitl6)

211
-continued

VCHDEVTYP vbit8; (* Device type of device
for this channel *)

end;

VOPID vbitlé; (* Operator 1D from
acquire response *)

VSYSCMPL veomplcode; (* REX event completion
code. *)

VDEVCMPL veomplcode; (* DEvice/ data set
completion code. *)

VACQPKTID vbit16; (* Acquire Packet 1D *)

VOPENRESP vpacket; (* Open response packet
for use in record and
playback *)

VTIMEOUT vhit8; (* User defined. *)

VPRIORITY vbits; (* User defined. ®)

VDEVSTATUS vdvstatcode; (* Device status -
ACQUIRED or OPENED *)

end (* vfib *);

The 1/0 flag definitions are:

vioflags = packed record

VACQQUEUE ¢ boolean; (* SEt if SYSDEV permitted
10 quene acquire *)

VACQSEIZE boolean; (* Set if dev chanl to be
seized during acq *)

VDOWN boolean; (* True if release and
down required *)

VDIALOUT boolean; (* True if zeize is for
dialout *)

(* VREADDIRECT, VWRITEDIRECT, VREADKEY *)

VUPDATE : boolean; (* Set if updating read
(i.e. read w/lock *) -

(* VREADKEY *)

VGREATER boolean; (* Used on keyed reds to
find next grtr key *)

VMEMOREC boolean; (* Set if memo red is not
1o be retrieved *)

VDATAREC boolean; (* Set if data red is not
to be retrieved *)

VEKAPPROX boolean; (* Set if read is approx,

. used w/VGREATER *)

(* VWRITEKEY *)

VREPLACE : boolean; (°® Set if write is update
of existing red *)

VELEMSELECT : boolean; (* Used by VALLOCATE -
see spec ¥)

VUNITS ¢ boolean; (* United of motion for
VMOVEWINDOW *)

VRELATIVE boolean; (* Window motion rela-
tive to current
record ®)

(* VCONTINUE *) :

VNULL : boolean;

(* VCONTINUE: indexed record *)

VSAMREC boolm:

VNODATA

(* Position in logical
red to insert
element *)

(* Abort current

access)

(* Set to chanl no.
of multi-chan!
device *)

0135

4,625,081

213
-continued
VFCSPECIFIED boolean; (* True if VCNTRLFC
is specified *)
VCNTRLFC vicrange; (* Function code 1o use
in VCONTROL if
VFCSPECIFIED is
true *)

The REX 1/0 control word definitions are:

VIOWSELEMENTS

(VIOCWS0, VIOCWSI, VIOCWS2,
VIOCWS3, VIOCWSQ, VIOCWST,
VIOCWSM, VIOCWSA, VIOCWSW,
VIOCWSR, VIOCWS0, VIOCWSF,
VIOCW12, VIOCW13, VIOCW 14,

VIOCW15);
VIOCWTYPES = (VOICWDETAIL, VIOCWINIT,
VIOCWSET);

VIOCTRLWRD = packed record

case viocwtypes of

VIOCWDETAIL ((* Actual definition of REX 1/0

control word *)

VIOCWED vferange; (* REX /0 event
code *)

VIOCWF boolean; (* 1 = Use FC speci-
fied in VIOCWFC
0 = Use REX
defaults *)

VIOCWO boolean; (* 1 = 1/O running
as caller’s routine *)

VIOCWR boolean; (* 0 = Do not return
input parameter
list *)

VIOCWW boolean; (* 1 = WAITSE)

VIOCWA boolean; (* 0 = Do not invoke
ENDIQ; pertains to
ACCESS, CONTINUE, GET,
PUT, TRANSFER; on
CONTROL & OPEN:
0=chanl0& 1 =

' chanl 1%)

VIOCWM boolean; (* For OPEN & CONTROL,
loc of acquire resp
packet: 0=seratchpad,
1=data memory. For
ACCESS & CONTINUE,
O=input, 1 =output *)

VIOCWT boolean; (* 1 = Time response *)

VIOCWQ boolean; (* 1 = End of sequence *)

VIOCWFC vicrange); (* REX 1/0 function
code *)

VIOCWINIT ((* Definition to initialize 1/0

control word to zero *)

VIOCWINIT vbitl;

VIOWSET ((* Definition to act on 1/0 con-

trol word as a set *)

VCWFSET set of viocwselements)

end (* vioctrlwrd *);

The I0SR REX p list 1 word fi are:

VIODCRTL = packed record

case integer of

b (* VOPEN DSET *)

VIODINIT : vbitl6);

2 q (* VREADDIRECT, VREDMAPPED *)
FIL2 vhit13;
VIODUTIL vbit2;
VIODUPD boolean);

3 ((* VWGET, VWPUT *)
FIL3 vhit3;
VIODFLD vhit2;
FIL4 vhit10;
FIELD boolean);

4 ((* VREADKEY *)
FILS vhbitll;
NODATA boolean;
FILS55 vbitl;
APPROX boolean
GREATER boolean;
UPDATE boolean);

5.0 (* VENDIO *)
FIL6 : vhitl;
ABORT : boolean;
LOCK : boolean;

0136

214

4,625,081

215 216
-continued
FIL7 vbitl3;
6 ({* VMARK, VUNMARK *)
FIL8 + wbitl5;
UNMARK : boolean);
T ((* VLOCK, VUNLOCK ?*)
FIL9 vhitl5;
VUNLOCKALL boolean);
8 ((* VCONTINUE *)
FILIO : vbitl;
ISTRING : boolean;
FIL11 : whitT;
INULL boolean;
SAMEREC boolean;
INODATA boolean;
FIL13 vhitd;
9: ((* VPCONTIUE, VMOVEWINDOW,
VINSERTELEM, VDELETELEM,
VMOVELEM *)
FIL14 vhitl;
STRING : boolean;
FIL15 : vbitT;
NULL : boolean;
MARK : boolean;
ABSOLUTE : boolean;
BEFORE ¢ boolean;
FIL16 : wbly
OPERATION ¢ wbit2);
10: ((* WRITEKEY *)
FIL17 vbitd;
REWRITE boolean;
FIL18 vhit6);
end (* viodertl *);
The VNM IOCB definition is:
VCRTRDCRTL = packed record
VSOM vhit§; (® start of message
character *)
VPARTNO vbits; (* partition number *)
VLINEITEM vhits; (* line number *)
VEOM vhit8; (® end of message
character *)
end (* vertrdert] ®);
VCRTLINFO = packed array [1..18" of vbit8;
(* control information *)
VDEVTYPE = vhit8; (* device type for
acquire *)
(*SP*)
The REX 1/0 parameter list is:
VREXIOPARMLIST = packed record

case integer of
1: ((* Actual definition of REX I/0 parameter

list *)

FIL1

VPLPARMID

VPLCHANREF :

VPLACCESSREF

VPLOPCTRL

FIL2
VPLPRIORITY :
FIL3
FIL4 H

VPLPSTLTH

VPLPLSTPTR

array (*.2]

vbitl6;

vchanreft;
vhit8;
viodetrl;
vbit§;
vbit8;
vhitlé;
vbit§;
vhit§;

vaddr);

2: ((* Initialization definition of REX 1/0 para-

w

meter list *)
VPLINIT

FIL6
FIL7

VPLUFLAG 3

FIL8

array [;..16] of integer):

: ((* Definition for disk direct access *)

array [1..4] of vbitls;
vhitl§;

boolean;
array [1..3] of vbitl6;

of vbitl6; (* word 0-1 *)
(* Primary & secondary
rin address *)

(* Acquire packet address
or 1/0 list address *)

(* word 2 *)

(* Chanl no. for access *)
(* word 3 *)

(* Access reference
value *)

(* Operation control *)
(*word 4 %)

(* word 5 %)

(¢ Priority *)

(* word 6 *)

(* word 7 *)

(* Access key or para-
meter list Ith *)

(* Pir to data key *)

(* word 8 *)

(* word 0-F *)

(* word 0-3 *)
(* word 4 *)

(* Update flag *)
(* word 5-7 %)

0137

4,625,081

217 218
-continued
VPLELEMNO vionginteger; (*word 8 *)
VNUMBLKS vbitl6); {* Anticipate buffering *)
(* word 9 %)

35: ((* Definition for VMARK & VUNMARK *)

FIL9 array [1..8] of vbitl6;

VMARK vbitlé; (* Mark number *)
(* word 8 %)

VOFFSET vbitl6; (* Mark offset in elem. *}
(* word 9 %)

VREFVAL vbit16; (* User reference value *)
(* word A *)

4: ((* Definitions for VTRANSFER, VCONTROL, VREADCRT,
& VWRITEDEV *)

FILA array [1..6] of vbitl$;

(* word 0-5 %)

VPPDEVIN vdevname; (* Internal device name *)
(* word 6 *)
case integer of
1: (FILB array [1..2] of vbitl5; (* word 7-8 *)
VCNTRL wvertrdetl); (* word 9 *)
(* SOM. partition number,
line item, and EOM for
VREADCRT *)
2: (FILC array of 1..2] of vbitlé;
(* word 7-8 %)
VPPWRTBYTCT vhitl6);
(* # bytes for VWRITEDEV *)
(* word 9 *)
3: (VCNTRLBUF vertlinfo): (* for VCONTROL *)
(* word 7%)
4: (VPLCHAND vchanreft; (* word 7 %)
VPLACCD vbit8; (* Chanl & access ref for
VTRANSFER *)

end (* vrexioparmlist *);

VIOLST = array [1..100] of integer;
VIOCB = record

VIOCBSIZE integer;

VMOVSIZE integer;
VREXIOTIMEOUT vbit8;
VREXPARMLIST vresioparmlist;
VIOLIST violst;

end (* vioch *);

A listing of various programs and subroutines for
implementing a specific embodiment of the invention
was included in the original application for this patent.
This listing was deleted from the application prior to 40
publication but remains in the Patent and Trademark
Office file of the application for this patent.

What is claimed is:

1. An automated telephone voice service system com-
prising:

a store having defined therein a plurality of individu-
ally addressable message baskets which each in-
clude an inbasket portion and an outbasket portion
coupled to store and retrieve digital representation
of voice messages at each of the plurality of indi-
vidually addressable message baskets therein; and

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a
voice message received over the particular tele-
phone line, and to forward a representation of a
voice message stored in the particular message
basket to at least one other of the individually ad-
dressable message baskets, the control system re-
sponding to receipt of data signals over the particu-
lar telephone line including a personal identifica-
tion number associated with an owner of the partic-
ular message basket by enabling account activities

45

55

65

0138

including retrieval of voice messages from the in-
basket of the particular message basket and storage
of messages to be forwarded in the outbasket of the
particular message basket and blocking account
activities until a personal identification number has
been received.

2. The automated telephone voice service system
according to claim 1 wherein the store stores a repre-
sentation of a voice prompting message explaining
which combinations of data signals actuate particular
services provided by the service system and wherein
the control system responds to activation of a particular
telephone line by retrieving the voice prompting mes-
sage from the store and communicating the voice
prompting message over the particular telephone line.

3. An automated telephone voice service system com-
prising:

a store having defined therein a plurality of individu-
ally addressable message baskets which each have
an inbasket portion and an outbasket portion, the
store being coupled to store and retrieve represen-
tations of voice messages at each of the plurality of
individually addressable message baskets therein;
and

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a

4,625,081

219

voice message received over the particular tele-
phone line, and to forward a representation of a
voice message stored in the particular message
basket to at least one other of the individually ad-
dressable message baskets, the control system stor-
ing in the inbasket portion of the particular message
basket representations of voice messages directed
to the particular message basket, storing in the
outbasket portion of the particular message basket
a representation of a voice message that is to be
forwarded, and storing in the inbasket of each mes-
sage basket to which a representation of a voice
message is to be forwarded a vector pointer identi-
fying the particular message outbasket and the
voice message representation which is to be for-
warded thereto.

4. The automated telephone voice service system
according to claim 3 wherein the control system returns
to a state of a newly activated telephone line upon re-
ceipt of data signals over the particular telephone line
indicating a change function command.

5. The automated telephone voice service system
according to claim 1 wherein at least a subplurality of
the predetermined plurality of telephone lines are direct
inward dial telephone lines including first and second
groups of lines having respectively first and second
groups of mutually exclusive telephone numbers associ-
ated therewith, with each first and second group of lines
being associated with a different common account and
with each telephone line of the subplurality having a
message basket associated therewith which message
basket has an address including a group field identifying
the group of telephone lines to which the message bas-
ket is associated and an individual field uniquely identi-
fying the message basket within a group of message
baskets which are associated with the group of tele-
phone lines.

6. The telephone voice service system according to
claim 5 wherein the particular telephone line is one of
the subplurality of telephone lines and wherein the
particular message basket associated by the control
system with the particular telephone line is, in response
to data signals defining only an individual field, a mes-
sage basket identified thereby within the same group as
the particular telephone line, and in response to data
signals defining both a group field and an individual
field, a message basket indicated by the defined individ-
ual field within a group indicated by the defined group
field.

7. An automated telephone voice service system com-
prising:

a store having defined therein a plurality of individu-
ally addressable message baskets, the store being
coupled to store and retrieve representations of
voice messages at each of the plurality of individu-
ally addressable message baskets therein, the store
further storing a representation of a voice prompt-
ing message explaining which combinations of data
signals actuate particular services provided by the
service system; and

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a

0139

—

0

20

25

40

45

50

65

220

voice message received over the particular tele-
phone line, and to forward a representation of a
voice message stored in the particular message
basket to at least one other of the individually ad-
dressable message baskets, the control system re-
sponding to activation of a particular telephone
line by retrieving the voice prompting message
representation from the store and communicating
the voice prompting message over the particular
telephone line, the control system operating in an
absence of data signals received over the particular
line to select as the particular message basket a
message basket having a predetermined association
with the line, to retrieve from the store and com-
municate over the line a voice prompting message
indicating that a voice message may be received
and stored and to store in the particular message
basket a representation of any voice message subse-
quently received over the particular line.

8. The automated telephone voice service system
according to claim 1 wherein the data signals are tele-
phone keyboard activated signals defining predeter-
mined commands and data groups and wherein the
control system responds to a command only if it is pre-
ceded by an ATTENTION signal.

9. The automated telephone voice service system
according to claim 8 wherein the control system re-
sponds to a data group upon entry of a TERMINA-
TION signal.

10. The automated telephone voice service system
according to claim 9 wherein the ATTENTION signal
is a tone signal generated by actuating a star key on a
standard telephone keyboard and the TERMINATION
signal is a tone signal generated by actuating a number
sign key on a standard telephone keyboard.

11. The automated telephone voice service system
according to claim 10 wherein the control system oper-
ates to initiate a predetermined time period upon receipt
of the ATTENTION signal from a particular telephone
line and responds to a subsequently received command
only if a first data signal of the command is received
within the predetermined time period.

12. An automated telephone voice service system
comprising:

a store having defined therein a plurality of individu-
ally addressable message baskets, the store being
coupled to store and retrieve representations of
voice messages at each of the plurality of individu-
ally addressable message baskets therein; .

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a
voice message received over the particular tele-
phone line, and to forward a voice message repre-
sentation stored in the particular message basket to
at least one other of the individually addressable
message baskets;

an operator console for providing communication
with a human operator and generating operator
initiated data signals which are coupled to the con-
trol system; and

wherein the control system responds to data signals
received over the particular telephone line indicat-

4,625,081

221

ing that a telephone calling the particular tele-
phone line is a dial type of telephone by coupling
the particular telephone line to the operator con-
sole and responding to data signals generated by
the operator console as if the console generated
data signals had been received over the particular
telephone line.

13. The automated telephone voice service system
according to claim 1 wherein the control system in-
cludes a plurality of line interface circuits which are
selectively coupled to activated ones of the plurality of
telephone lines and include codecs converting analog
voice signals received over an activated telephone line
to corresponding digital voice signals and converting
digital voice signals generated by the voice service
system to corresponding analog voice signals for com-
munication over an activated line and the control sys-
tem includes a digital switch coupled for communica-
tion with the line interface circuits and the store and
selectively intercoupling digital representations of
voice signals being communicated over different ones
of the plurality of telephone lines with corresponding
message baskets stored by the store.

14, The automated telephone voice service system
according to claim 1 above wherein the control system
responds to data signals appearing on the particular
telephone line defining a CHANGE command by sus-
pending a current operating mode thereof and enabling
response to data signals appearing on the particular
telephone line which define a new operating mode.

15. The automated telephone voice service system
according to claim 14 above wherein the control system
responds to a CHANGE MESSAGE BASKET com-
mand and a message basket identification received over
the particular telephone line following receipt of a
CHANGE command over the particular telephone line
by disassociating the particular message basket from the
particular telephone line and associating the particular
telephone line with a second particular message basket
indicated by the message basket identification.

16. An automated telephone voice service system
comprising:

a store having defined therein a plurality of individu-
ally addressable message baskets, the store being
coupled to store and retrieve representations of
voice messages at each of the plurality of individu-
ally addressable message baskets therein;

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, with
the telephone lines including at least on direct in-
call line, the control system being responsive to
different data signals received over a particular one
of the telephone lines to associate the particular
telephone line with a particular message basket, to
store in the particular message basket a representa-
tion of a voice message received over the particular
telephone line, and to forward a voice message
representation stored in the particular message
basket to at least one other of the individually ad-
dressable message baskets; and

the control system including means for detecting
when the particular telephone line is a direct incall
line and responding to such detection by associa-
tion the particular telephone line with a predeter-
mined particular message basket and precluding
association of the particular telephone line with
any other message basket, the control system being

0140

5

20

(g

5

30

40

45

55

60

65

222

operable to enable only the message basket activity
of recording a voice message received over the
particular telephone line when the particular tele-
phone line is a direct incall line.

17. An automated telephone voice service system
comprising;:

a store having defined therein a plurality of individu-
ally addressable message baskets, the store being
coupled to store and retrieve representations of
voice messages at each of the plurality of individu-
ally addressable message baskets therein; and

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, with
the telephone lines including a direct incall line, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a
voice message received over the particular tele-
phone line, and to forward a voice message repre-
sentation stored in the particular message basket to
at least one other of the individually addressable
message baskets, and

the control system including means for detecting
when the particular telephone line is a direct recall
line and responding to such detection by associat-
ing the particular telephone line with a predeter-
mined particular message basket and precluding
association of the particular telephone line with
any other message basket, the control system being
operable to enable an activity affecting the particu-
lar message basket only upon receipt over the par-
ticular telephone line of a predetermined personal
identification code associated with the particular
message basket when the particular telephone line
is a direct recall line.

18. The automated telephone voice service system
according to claim 17 above, wherein the predeter-
mined personal identification code includes a first por-
tion which cannot be changed in response to data sig-
nals received over the particular telephone line and a
second portion which can be changed in response to
data signals received over the particular telephone line.

19. The automated telephone voice service system
according to claim 1 wherein the predetermined plural-
ity of telephone lines includes a general access line with
the control system including means for detecting that
the particular telephone line is a general access line and
responding to such detection by associating the particu-
lar telephone line with a particular message basket indi-
cated by a message basket indication received over the
particular telephone line as a data signal.

20. The automated telephone voice service system
according to claim 19 wherein the message basket indi-
cation is alternatively a message basket code or a per-
sonal identification code having a predetermined associ-
ation with the particular message basket and wherein
the control system responds to the message basket code
by enabling a voice message recording with respect to
the particular message basket or responds to the per-
sonal identification code by enabling account owner-
ship activities with respect to the particular message
basket and further responds to commands received as
data signals over the particular telephone line by exe-
cuting any activity commanded thereby.

4,625,081

223

21. The automated telephone voice service system
according to claim 20 wherein the account ownership
activities include voice message retrieval and voice
message sending.

22. The automated telephone voice service system 5
according to claim 1 wherein the control system re-
sponds to a LISTEN command received over the par-
ticular telephone line by retrieving from the particular
message basket and communicating over the particular
telephone line any voice message whose representation 10
is contained within the message basket and to a LIS-
TEN command followed by a TALK command re-
ceived over the particular telephone line by forwarding
to any message basket from which a voice message
representation retrieved in response to the LISTEN 15
command has been forwarded a representation of a
voice message received over the particular telephone
line following the TALK command.

23. The automated telephone voice service system
according to claim 1 wherein commands defined by the 20
data signals received over the particular telephone line
include an ATTENTION command and wherein the
control system responds to an ATTENTION command
received over the particular telephone line by entering
a pause mode and enabling a response to additional 25
commands received over the particular telephone line
for a predetermined period of time following receipt of
each ATTENTION command.

24. The automated telephone voice service system
according to claim 1 wherein the store stores a client 30
voice greeting that is uniquely associated with the par-
ticular message basket and wherein the control system
responds to at least one type of access to the message
basket by retrieving from the store and communicating
over the particular telephone line the client voice greet- 35
ing.

25. The automated telephone voice service system
according to claim 24 wherein the data signals include a
CHANGE GREETING command and wherein the
control system responds to a CHANGE GREETING 40
command received over the particular telephone line by
storing in the store in place of any previously stored
client voice greeting a new client voice greeting subse-
quently received over the particular telephone line.

26. The automated telephone voice service system 45
according to claim 1 wherein the control system re-
sponds to data signals received over a particular tele-
phone line commanding modification of a voice mes-
sage which has previously been received by forwarding
a representation of the received voice message to an- 50
other message basket or attempting to forward the re-
ceived voice message to another telephone line until the
voice message has actually been communicated over a
telephone line.

27. The automated telephone voice service system 55
according to claim 1 above, wherein the control system
forwards a representation of a voice message to at least
one other message basket by retaining in the particular
message basket a single copy of the voice message rep-
resentation and storing in at least one of said other mes- 60
sage baskets a pointer identifying the particular message
basket and the voice message representation therein
which is to be forwarded.

28. The automated telephone voice service system
according to claim 2 wherein the store stores a plurality 65
of different voice prompting messages which provide
detailed explanations of voice service system usage for
different status conditions of the voice service system

0141

224

and wherein the control system responds to data signals
defining a PROMPT command by determining a cur-
rent status condition of the voice service system and
retrieving from the store and communicating over the
particular telephone line a voice prompting message
that is appropriate for the current status condition of the
voice service system.

29. An automated telephone voice service system
comprising:

a store having defined therein a plurality of individu-
ally addressable message baskets, the store being
coupled to store and retrieve representations of
voice messages at each of the plurality of individu-
ally addressable message baskets therein;

a control system providing a selective coupling be-
tween the store and each of a predetermined plural-
ity of telephone lines of a telephone network, the
control system being responsive to different data
signals received over a particular one of the tele-
phone lines to associate the particular telephone
line with a particular message basket, to store in the
particular message basket a representation of a
voice message received over the particular tele-
phone line, and to forward a voice message repre-
sentation stored in the particular message basket to
at least one other of the individual addressable
message baskets;

an operator console coupled for communication with
the control system; and

wherein the control system stores in the store each
data signal received over the particular telephone
line to provide a stored data signal audit trail and
responds to data signals defining an OPERATOR
ASSISTANCE command by providing to the par-
ticular telephone line a voice connection to the
operator console and retrieving from the store and
communicating to the console for display thereby
the stored data signal audit trail.

30. The automated telephone voice service system
according to claim 1 wherein the control system is
further responsive to data signals received over the
particular one of the telephone lines to forward a voice
message whose representation is stored in the particular
message basket to at least one telephone line different
from the particular line.

31. An automated telephone voice service system
comprising;:

a store coupled to store and retrieve representations
of voice messages at each of a plurality of individu-
ally addressable message baskets therein; and

a control system providing a selective coupling be-
tween the store and each of a given plurality of
telephone lines of a telephone network, with a
particular message basket being coupled to a par-
ticular telephone line in response to a set of mes-
sage basket control signals received over the par-
ticular telephone line for storing in the particular
message basket representations of a voice message
received over the particular telephone line, respon-
sive to a second set of message basket control sig-
nals for retrieving from the particular message
basket and communicating over the particular tele-
phone line a voice message whose representation
has been previously stored in the particular mes-
sage basket, responsive to a third set of message
basket control signals which include an address of
a forwarding message basket for forwarding a rep-
resentation of a voice message that has been previ-

4,625,081

225

ously stored in the particular message basket to a
forwarding message basket, and responsive to a
fourth set of message basket control signals for
forwarding a voice message whose representation
has been previously stored in the particular mes-
sage basket to a telephone line selected by the
fourth set of message basket control signals.

32. The automated voice service system according to
claim 31 above further comprising a voice prompting
system coupled to communicate a voice message
prompt explaining how to use the automated telephone
voice service system upon activation of selected ones of
the given plurality of telephone lines.

33, The method of providing a telephone voice ser-
vice system response to an incoming telephone call
from a caller on a telephone line comprising the steps of:

communicating over the telephone line a prerecorded

voice message prompting the caller to enter alter-
natively a message basket code or a personal identi-
fication code;

determining the type of code entered by the caller;

if a message basket code is entered, prompting the

caller to communicate a voice message whose rep-
resentation is forwarded to a message basket identi-
fied by the code and storing in a message basket
portion of a store indicated by the message basket
code a representation of any voice message com-
municated by the caller;

if a personal identification code is entered, enabling

account ownership functions for an account associ-
ated with the personal identification code including
retrieval of messages from a message basket associ-
ated with the account and forwarding of message
representations from the associated message basket
to another message basket identified by signals
communicated over the telephone line in accor-
dance with a predetermined code.

34. In a voice message service system having means
for storing a plurality of telephone voice messages and
making such messages available to a plurality of calling
parties on a real time basis, the combination comprising:

means providing a plurality of telephone lines for

carrying voice data and command data;

means for processing data including means for storing

digital representations of a plurality of voice mes-
sages with each message being addressably retriev-
able in response to an account identifier code cor-
responding thereto, including means responsive to
a first command indicated by said command data
for selectively retrieving a voice message identified
by the command data and communicating the re-
trieved voice message over a telephone line from
which the command data is received, including
means responsive to a second command indicated
by said command data for selectively retrieving a
voice message identified by the command data and
communicating the retrieved message over a tele-
phone line indicated by the command data, which
telephone line is not the telephone line from which
the command data is received, including means for
providing routine prestored prompting messages to
a calling party, means for storing numeric data and
command sequences in response to calls received
over the telephone lines, means for recognizing
invalid and inappropriate command sequences,
means for initiating an operator assisted mode on
the occurrence of an invalid or inappropriate com-
mand sequence, and means for generating data

0142

5

10

25

35

40

45

60

65

226

describing the status of messages pertaining to a
given telephone number; and

at least one operator station responsive to the mes-
sage status data from the data processing means
and the initiation of the operator assisted mode for
providing informed intervention in response to an
occurrence of an invalid or inappropriate com-
mand sequence.

35. A system for storing and forwarding telephone

calls comprising:

first interconnect means for subscribers, the first in-
terconnect means being accessible in response to a
number in a first group of numbers, each of which
identifies a subscriber;

second interconnect means for non-subscribers, the
second interconnect means being accessible in re-
sponse to a number in a second group of numbers,
each of which identifies a subscriber;

a central station including inbasket means for storing
representations of voice messages intended for
subscribers and outbasket means for storing repre-
sentations of subscriber originated voice messages
intended for conversion and transmission from the
outbasket means to a telephone;

and means at the central station responsive to the first
and second interconnect means and coupled to
control the inbasket means and outbasket means to
permit subscribers to access the inbasket means and
control the outbasket means through the first inter-
connect means while permitting non-subscribers
access only to the inbasket means through the sec-
ond interconnect means for the purpose of record-
ing a voice message for later retrieval by a particu-
lar subscriber identified by a number in the second
group which is used to access the second intercon-
nect means.

36. A voice message service system comprising:

data processing means for monitoring the status of
subscriber messages and subscriber dialing opera-
tions, said date processing means including means
for providing routine prestored prompting mes-
sages to a party calling the system, means for stor-
ing representations of voice messages, numeric
data and command sequences in response to calls,
means for recognizing invalid and inappropriate
command sequences, means for initiating an opera-
tor assisted mode on the occurrence of an invalid
or inappropriate command sequence and means for
generating data describing the status of messages
pertaining to a given telephone number; and

at least one operator station including display means
responsive to the message status data from the data
processing means and the initiation of the operator
assisted mode for providing informed intervention
on the occurrence of an invalid or inappropriate
command sequence.

37. The voice message service system as set forth in
claim 36 above, wherein the data processing means
includes means responsive to a direct operator request
command from a subscriber for providing message sta-
tus data to the operator station and switching the call to
the operator station.

38. The voice message service system as set forth in
claim 37 above, wherein the data processing means
comprises means for communicating to the display
means for displaying thereon, data indicating a com-
mand sequence entered by a subscriber.

4,625,081

227

39. A telephone subscriber service system compris-
ing:

a telephone line concentrator connected at a central
office of a telephone network to a line of each
service system subscriber and operable upon the 5
occurrence of a predetermined condition on a sub-
scriber line to connect the subscriber line to a trunk
line;

at least one trunk line connected between the concen-
trator and a trunk interface circuit; 10

a trunk interface circuit connected between the at
least one trunk line and a computer and communi-
cations system, the trunk interface circuit being
operable to couple to the computer and communi-
cations system digital data representative of analog
signals appearing on the trunk line and to couple to
the trunk line analog signals representative of digi-
tal data received from the computer and communi-
cations system;

a line interface circuit coupled between a telephone 20
company telephone line and the computer and
communications system, the line interface circuit
being operable to couple to the computer and com-
munications system digital data representative of
analog signals appearing on the telephone line and 25
to couple to the telephone line analog signals repre-
sentative of digital data received from the com-
puter and communications system;

the computer and communications system coupled
for bidirectional communication with the trunk 30
interface circuit and line interface circuit, the com-
puter and communications system having estab-
lished therein means for storing providing an inbas-
ket and an outbasket associated with and controlled
by each service system subscriber, with each inbas- 35
ket providing storage for representations of mes-
sages received from a calling party for the associ-
ated subscriber and each outbasket proving storage
for representations of messages received from the
associated subscriber for delivery to another party. 40

40. The telephone subscriber service system accord-
ing to claim 39 above, wherein the computer and com-
munications system includes means for controlling cou-
pled to control the communication of voice messages
between the storing means and a telephone network 45
user, the controlling means including means for detect-
ing the occurrence of tone signals indicative of the
actuation of corresponding keyboard keys and means
responsive to detection of a tone signal corresponding
to actuation of a predetermined keyboard key for en- 50
abling the controlling means to control the operation of
the subscriber service system in response to the detec-
tion of at least one additional tone signal corresponding
to actuation of a keyboard key.

41. The telephone subscriber service system accord- 55
ing to claim 39 above, wherein the computer and com-
muncations system includes means for controlling cou-
pled to control the communication of voice messages
between the storing means and a telephone within the
telephone network, the controlling means including 60
means for detecting the occurrence of tone signals in-
dicative of the actuation of corresponding keyboard
keys and means responsive to a predetermined combina-
tion of a plurality of different ones of said tone signals
including a combination of tone signals identifying a 65
user of the telephone as a particular system subscriber
and including at least one tone signal indicating a talk
command, for storing in an outbasket associated with

5

0143

228 ;
said particular system subscriber a representation of a
voice message received from said telephone.

42. A telephone subscriber service system compris-
ing:

an interface circuit coupled to provide bidirectional

communication between a telephone network in-
cluding tone signal producing keyboard telephones
and a digital data processing system, with informa-
tion being communicated between the interface
circuit and the data processing system in digital
form and between the interface circuit and the
telephone network in a form compatible with the
operation of the telephone network;

the digital data processing system coupled to the

interface circuit and including:

means for providing communication of voice mes-

sages with telephone system users,

means for storing voice messages in digital form for

each different subscriber to the subscriber service
system, and

means for controlling coupled to control the commu-

nication of voice messages between the storing
means and a telephone network user, the control-
ling means including means for detecting the oc-
currence of tone signals indicative of the actuation
of corresponding keyboard keys and means respon-
sive to detection of a tone signal corresponding to
actuation of a predetermined keyboard key for
enabling the controlling means to control the oper-
ation of the subscriber service system in response to
the detection of at least one additional tone signal
corresponding to actuation of a keyboard key,
means for limiting all functions by a non-account
caller to the storage of a voice message and editing
of a voice message being stored during the course
of a single call, and means responsive to receipt of
a data code over a telephone line of the telephone
network identifying a caller as an account owner
for enabling access by the caller to and execution of
account ownership functions including (1) retrieval
of account messages, (2) digital recording of ac-
count messages for delivery to one or more other
accounts and (3) automatic storage and delivery of
a voice reply to a caller originating a message in
response to an ATTENTION, TALK command
sequence during operation in a message retrieval
mode in which a message from another account is
retrieved.

43. An automated telephone voice service system
comprising a data processing system coupled to receive,
store and retrieve representations of voice messages
received over a telephone line and to respond to tone
commands received over the telephone line, the data
processing system being operative to limit call functions
by a non-account owner caller to the storage of repre-
sentations of a voice message and editing of the voice
message during the course of a single call and including
means operative in response to a data code received
over the telephone line identifying a caller as an account
owner for executing account ownership functions in-
cluding retrieval of account messages, recording of
account messages for delivery to one or more other
accounts, and in a message retrieval mode in which a
message from another account owner is retrieved, auto-
matic storage and delivery of a voice message reply in
response to an ATTENTION, TALK command se-
quence.

4,625,081

229

44. The automated telephone voice service system
according to claim 43 above wherein the data process-
ing system includes means for executing account own-
ership functions which include in a message retrieval
mode, the saving of a current message for later recall in
response to an ATTENTION, SAVE command se-
quence.

45. The automated telephone voice service system
according to claim 43 above, wherein the data process-
ing system includes means for granting a caller having
access to a given account access to another account in
response to a command sequence ATTENTION,
CHANGE, CHANGE.

46. The automated telephone voice service system
according to claim 43 above, wherein the data process-
ing system includes means for processing an account
address either in the form of an account number identi-
fying a third party account, or a code identifying a
preestablished address list having at least the third party
account identified thereon.

47. The automated telephone voice service system
according to claim 43 above, wherein the data process-
ing system includes means for processing a received
data code which includes a first code identifying the
owned account and a second, personal identification,
code preceded by an ATTENTION command identify-
ing the caller as the owner of the owned account.

48. The automated telephone voice service system
according to claim 43 above, wherein the data process-
ing system includes means operable in any mode in any
mode for enabling a caller to leave a voice message with
another account in response to a command sequence
including ATTENTION, CHANGE, TALK, AC-
COUNT NUMBER of the account which is to receive
the message.

49. An automated telephone voice service system
comprising:

a store coupled to store and retrieve representations
of voice messages at each of a plurality of individu-
ally addressable message baskets therein; and
control system providing selective coupling be-
tween the store and each of a plurality of telephone
lines of a telephone network with at least one of the
lines being a general access line over which a plu-
rality of different message baskets may be accessed
for either message storing or account ownership
functions, with a message storing function being
enabled in response to entry of a code identifying
one of the plurality of message baskets and account
ownership functions being enabled in respone to
entry of a code identifying one of the plurality of
message baskets and a personal identification code
identifying the owner of the one message basket.

50. The automated telephone voice service system
according to claim 49 above, wherein the control sys-
tem is operative to respond to a command series AT-
TENTION, CHANGE, CHANGE by enabling receipt
of a different message basket identification code identi-
fying a message basket different from a currently ac-
cessed message basket and granting access to the differ-
ent message basket in response to the different code.

51. The automated telephone voice service system
according to claim 49 above, wherein the control sys-
tem includes means for receiving and responding to
account ownership administrative commands after said
administrative commands are enabled by a command
sequence including ATTENTION, CHANGE, AD-
MINISTRATION.

B

5

10

20

25

30

35

45

50

0144

230

52. The automated telephone voice service system
according to claim 51 above wherein the control system
includes means for distinguishing a given code for at
least one administrative command which may be en-
tered after administrative commands are enabled from
the same given code for a nonadministrative command
which may be entered when administrative commands
are not enabled.

53. An automated telephone voice service system
comprising:

a store coupled to store and retrieve representations
of voice messages at each of a plurality of individu-
ally addressable voice message baskets therein, the
message baskets being arranged in at least first and
second groups with each message basket address
having first and second fields, the message baskets
of the first group having a first group first field
address and mutually exclusive second field ad-
dresses, and the message baskets of the second
group having a second group first field address and
mutually exclusive second field addresses; and

a control system providing a selective coupling be-
tween the store and each of a plurality of telephone
lines which provide a signal at the beginning of
each incoming call which identifies a telephone
number of a telephone from which the call is being
placed, the control system being operative to asso-
ciate a first group of telephone numbers with the
first group of message baskets and upon receiving a
second field message basket address from a tele-
phone having a first group telephone number to
couple the call to the addressed message basket
within the first group of message baskets and upon
receiving a second field message basket address
from a telephone having a second group telephone
number to couple the call to the addressed message
basket within the second group of message baskets,
the control system being further operative to store
and retrieve voice messages communicated be-
tween a coupled message basket and a calling tele-
phone.

54. The automated telephone voice service system
according to claim 53 above, wherein the control sys-
tem is further responsive to a message basket address
received from a telephone line, which message basket
address contains both a first field address and a second
field address, by coupling the telephone line to a mes-
sage basket indicated thereby.

55. A telephone voice message service system com-
prising:

an information processing system operative to re-
ceive, store and retrieve digital samples represent-
ing voice messages and to command the selective
interconnection of channels carrying sequences of
digital samples which each represent a voice mes-
sage; and
real time subsystem coupled for communication
with a plurality of bidirectional voice communica-
tion channels carrying sequences of digital samples
with each sequence representing a voice messages,
the real time subsystem being responsive to infor-
mation processing system commands to selectively
couple data samples received from any channel or
from the information processing system to any
channel or from any channel to the information
processing system to provide commanded inter-
connection of the voice communication channels.

4,625,081

231

56. The telephone voice message service system ac-
cording to claim 55 above, wherein the real time subsys-
tem includes a time division multiplexed real time bus
and selectively interconnects the bidirectional voice
communication channels and the information process-
ing system by placing incoming digital samples on the
bus at commanded periodic sample data time intervals
for each channel and taking outgoing digital samples off
the bus at commanded periodic sample data time inter-
vals for each channel.

57. The telephone voice message service system ac-
cording to claim 56 above, wherein the real time subsys-
tem further includes at least one real time processor
coupled between and communicating digital samples
between the real time bus and the information process-
ing system, the real time processor being operative to
process the digital samples communicated thereby to
provide at least one real time processing function in-
cluding silence detection and compression.

58. The method of telephone voice message commu-
nication comprising the steps of:

answering a telephone line;

receiving over the answered telephone line an identi-

fication code which identifies the caller as a sub-
scriber having a subscriber message basket for stor-
ing data which includes representations of voice
messages, the message basket having an inbasket
portion and an outbasket portion;

receiving over the answered telephone line a first

signal indicating at least one command including a
talk command;

receiving over the answered telephone line and stor-

ing in the outbasket portion of the subscriber mes-
sage basket in response to the talk command a
representation of a voice message generated by the
caller;

receiving over the answered telephone line a second

signal including information identifying at least one
designated recipient of the voice message; and
for each designated recipient:
calling the designated recipient by dialing a desig-
nated recipient telephone line corresponding to
the designated recipient,
when the designated recipient telephone line is
answered, communicating over the designated
recipient telephone line a voice message deliv-
ery greeting including an explanation that a
recorded voice message is being delivered,
retrieving from the outbasket portion of the sub-
scriber message basket and communicating
over the recipient telephone line the voice
message, and
terminating the call to the designated recipient.
59. The method of telephone voice message commu-
nication according to claim 58 above, further compris-
ing between the step of retrieving and communicating
and the step of terminating, the step of receiving a reply
message to the communicated voice message.
60. The method of telephone voice message commu-
nication according to claim 59 above, wherein the step
of receiving a reply message includes the steps of:
communicating over the designated recipient tele-
phone line a reply invitation voice message;

storing in the voice message store a representation of
a voice reply message received over the designated
recipient telephone line; and

communicating over the designated recipient tele-

phone lines a voice delivery closure message.

0145

10

25

60

232

61. The method of telephone voice message commu-
nication according to claim 60 above, wherein the step
of receiving and storing includes the step of receiving
editing commands communicated over the designated
recipient telephone line and editing the voice reply
message in accordance with received editing com-
mands.

62. The method of telephone voice message commu-
nication according to claim 61 above, wherein the reply
invitation voice message includes an indication that
editing commands may be used in creating the reply
voice message.

63. The method of telephone voice message commu-
nication according to claim 58 above, wherein the voice
message delivery greeting is a voice message having a
representation thereof previously stored and is automat-
ically retrieved and automatically communicated over
the designated recipient telephone line without human
intervention.

64. The method of telephone voice message commu-
nication according to claim 63 above, wherein the sec-
ond signal includes information identifying at least one
predetermined list of designated recipients and a prede-
termined set of delivery instructions.

65. The method of telephone voice message commu-
nication according to claim 64 above, wherein the pre-
determined set of delivery instructions includes infor-
mation indicating at least one period of time during
which a designated recipient telephone line is to be
dialed and wherein the step of calling includes the steps
of automatically dialing without human intervention
the designated recipient telephone line during a period
of time indicated by the predetermined set of delivery
instructions.

66. The method of telephone voice message commu-
nication according to claim 65 above, wherein the pre-
determined set of delivery instructions includes infor-
mation indicating a retry time interval and a maximum
number of retry attempts when a dialed call is not com-
pleted and further comprising a step of automatically
redialing the designated recipient telephone line in ac-
cordance with the set of delivery instructions when a
dialed call is not completed.

67. The method of telephone voice message commu-
nication according to claim 58 wherein the at least one
designated recipient includes a subscriber having an
identification code and an associated message basket
having an inbasket portion and an outbasket portion and
further comprising the step of storing in the inbasket
portion of the message basket of the designated recipi-
ent subscriber information identifying the voice mes-
sage and the location at which a representation of the
voice message is stored.

68. The method of providing a telephone voice ser-
vice comprising the steps of:

answering incoming calls and accepting and respond-

ing to caller originated commands for voice mes-
sage operation including commands to record or
retrieve voice messages or in the absence of receiv-
ing a caller originated command within a predeter-
mined time period,

generating a voice message salutation which invites

the caller to leave a voice message following a tone
signal;

pausing after generating the saluation;

generating a tone after pausing; and

recording a representation of any voice message com-

municated after the tone is generated.

4,625,081

233

69. The method of providing a telephone voice ser-
vice according to claim 68 above wherein a caller origi-
nated command is recognized as a conmand only when
preceded by a predetermined ATTENTION code sig-
nal.

70. The method of providing a telephone voice ser-
vice according to claim 68 above, further comprising
the step of interrupting any current voice service activ-
ity related to a given call upon receipt of an ATTEN-
TION code signal from the caller and awaiting receipt
of a further command signal from the caller.

71. The method of providing a telephone voice mes-
saging service through a telephone voice service system
comprising the steps of:

providing for each client a message basket for storing

client related information including representations
of voice messages that may be edited by the client
while being stored in a client message basket, each
message basket having an inbasket portion and an
outbasket portion;

receiving and recording in a sending client outbasket

portion of the client message basket, a single copy
of a representation of a voice message;

receiving and storing an indication of a plurality of

destinations to which the voice message is to be
delivered;

delivering the voice message to each indicated desti-

nation by retrieving the single copy of the repre-
sentation of the voice message from the outbasket
portion of the client message basket for each deliv-
ery and communicating the voice message to one
of the plurality of indicated destinations.

72. The method of providing a telephone voice mes-
saging service according to claim 71 above, wherein the
delivering step includes, when the voice message is to
be delivered to a system inbasket of a recipient person
who is a system client, the steps of placing in the inbas-
ket of the recipient person a cross reference address to

0146

0

w

25

35

45

50

55

65

234
the storage location of the single voice message repre-
sentation copy in the outbasket, and accessing the single
voice message representation copy using the address
cross reference to retrieve the voice message represen-
tation for delivery of the voice message to the system
client recipient person.

73. The method of providing a telephone voice mes-
saging service according to claim 71 above further com-
prising the steps of maintaining for each recipient per-
son an indication of whether or not the voice message
has been delivered to the recipient person and enabling
a sending client to edit the voice message at any time
until the voice message has been delivered to every
recipient person.

74. The method of providing a telephone voice mes-
saging service through a telephone voice service system
comprising the steps of:

providing for each client a message basket for storing

client related messages, each message basket in-
cluding an addressable outbasket;

receiving and recording in a sending client outbasket

a single copy of a representation of a voice mes-
sage;

receiving and storing an indication of a plurality of

destinations to which the voice message is to be
delivered;

delivering the voice message to each indicated desti-

nation by retrieving the single copy of the repre-
sentation of the voice message from the outbasket
of the client message basket for each delivery and
communicating the voice message to one of the
plurality of indicated destinations; and
temporarily spacing the delivery of the voice message
to each different recipient person by a predeter-
mined time interval to avoid congestion of the

telephone voice service system.
® * % = %

