
Apple 1016 Part 1
           U.S. Pat. 8,243,723

0001

United States Patent [19]

Lotito et al.

[11] Patent Number:

[45] Date of Patent:

4,625,081

Nov. 25, 1986 

[54] AU'I‘OMA'l'ED TELEPHONE VOICE
SERVICE SYSTEM

[76] Inventors: Lawrence A. Lolita, 6625 Springpark
Ave, Los Angeles, Calif. 90056;
Teresa D. Huxford, 1822 Pandora
Ave, #3, Los Angeles, Calif. 90025;
Ann L. Donaldson, 2321 W. 232nd
St., Torrance, Calif. 90501

[21] Appl. No.: 445,651

[22] Filed: Nov. 30, 1932

[51] Int. oz.-t new 3/33; I-104M 3/50
[52] us. c1. 379/83; 319/196;

379/211

[53] Field of Search 179/13 3, 18 o, 18 DA,
179/5 P, 6.02, 6.17, 6.18, 6.09, 6.11; 360/32, 12;

364/5115, 513; 381/36, 51; 370/60, 61, -62

[56] References Cited

U.S. PATENT DOCUMENTS

Re. 30,903 4/1932 Vicari et al. .. .. 179/27 F1-I

 
 

 
 

 
 
 

1,922,879 B/1933 Burgetter 179/27 Fl-I
2,685,614 8/1954 Curtin 179/27 Fl-I
2,863,950 12/1958 Dunning et al. 179/27 Fl-1
2,392,038 6/1959 Gatzert 179/27 Fl-l
2,985,721 5/1961 Gatzert .. 179/27 Fl-1
2,993,489 B/1961 Riesz 179/6.02
3,141,931 7/1964 Zarouni ... . . . . . . . . . .. 179/6.11
3,146,310 3/1964 Jeffries et al.
3,197,566 7/1965 Sanders et al.
3,213,260 9/1966 -134/am
3,296,371 1/1967 3BlI'51
3,510,598 5/1970 . . 79/ 18 BE
3,519,745 7/1970 Colman .. . . . . . . . . . . . .. 179/5 1’
3,723,486 4/1973 Kraus ...... 179/2 R
3,733,440 5/1973 Sipes ...... 179/ 18 B
3,920,908 ll/1975 Kraus .. 179/2 CA
4,117,270 9/1978 Lesea . .. . . . . . . . . 179/18131:.
4,200,772 4/1980 Vicari et al. .. .. 179/27Fl-1
4,210,783 7/1980 Vicari et al. .. 179/ 18 FC
4,256,928 3/1981 Lesea et al. 179/18 BE
4,272,810 6/1981 Gates at al. ........ .. 364/900
4,302,632 ll/1981 Vicari etal. ...... . I79/27 Fl-I
4,320,256 3/1982 Freeman 179/6.04
4-,37l,7S2 2/1983 Matthews et al. 179/7.1 TP

OTHER PUBLICATIONS

"Store it Forward Voice Switching”, International

 

Resource Development, Inc., Report #145, pp. 45-56,
Jan. 1980.

“A Design Model for a Real—Time Voice Storage Sys-
tem", Hattori et al., IEEE floor. on Communications,
vol. COM-30, No. 1, Jan. 1982, pp. 53-57.
Barish, Bernard T. and Slattery, Paul 1., "BISCONI: Rx
for Internal Communications”, Bell’ Laboratories Re-

_ cord, vol. 42, No. 6, pp. 175-180 (Jun. 1974).
Watson, Jr., R. E. and S. B. Weinberg, “Telephone
Answering Services," Bell Laboratories Record, vol. 43,
No. 12, pp. 447-450 (Dec. 1965).
Liske, W., "Remote Controlled Switching of the Tele-
phone Message Service of the Deutsche Bundespost."
TN—Nocln-ichten vol. 70, pp. 13-16 (1970).
Probe Research, Inc., "ECS Telecommunications, Inc.,
"Proceedings of Voice Processing Seminar, Sep. 15, 1982.
Probe Research, Inc., "Voice Message Service," Pro-
ceedings of Voice Processing Seminar. Sep. 15, 1982.
Probe Research, Inc., “Logic Labs, inc.” Proceedings of

' Voice Processing Seminar, Sep. 15, 1982.
List Continued on next page.

Primary Exorm'r:er—Th0mas W. Brown

[57] ABSTRA(H'

Art automated telephone voice service system includes
a data store having a plurality of addressable voice
storage message baskets defined therein and a control
system coupled between the store and a large plurality
of telephone lines of a telephone network. An incoming
cable may address a particular message basket ‘by enter-
ing a code through the telephone keyboard or by a
pretietermined association with a particular call in line.
Upon identification of the message basket the caller is
greeted by a client’s own voice and invited to leave a
voice message which will be recorded in the message
basket or given other client information. Upon entry of
a personal identification code a caller is granted access
to user account functions which include retrieval of

voice messages, forwarding of messages to other mes-
sage baskets or telephone lines, and administrative func-
tions such as the changing of greetings or account oper-
ating criteria. Editing commands may be utilized during
the recording of voice messages.

74 Claims, 27 Drawing figures

 
 

 

  flflflflmm’-r.t"’ was-Ia:muster._¢Im'f“enact:ans-tern-‘
nun-mneousata

Apple 1016 Part 1

U.S. Pat. 8,243,723

0001



0002

4,625,081

Page 2
 

OTHER PUBLICATIONS

Probe Research, Inc., “BBL Industries, Inc,” Proceed-
ings of Voice Processing Seminar, Sep. 15, 1958.
Probe Research. Inc., "Wang Laboratories," Proceed-
ings of Voice Processing Seminar, Sep. 16, 1982.
Probe Research, Inc... “American Telephone and Tele-

graph, Inc.," Proceedings of Voice Processing Seminar.
Sep. 16, 1932.
Probe Research, Inc., “Conimtertn, Inc," Proceedings

of Voice Processing Seminar, Sep. 16, 1982.
Probe Research, Inc., “American Express Company,"
Proceedings of Voice Processing Seminar. Sep. 16, 1982.
Probe Research, Inc. “Equitable Life Assurance," Pto-
ceedings of Voice Processing Seminar, Sep. 16, 1982.
Probe Research, Inc., "Massachusetts General Hospi-
tal.” Proceedings of Voice Processing Seminar, Sep. 16,
1932.

Seaman, John, "Electronic Mail Coming at You," Com-
puter Decisions, pp. 129-160 (Oct 1982).
"Voice Mail Update," Electronic Mail 8: Message Sys-
tems, vol. 4, No. 20 (Oct. 15, 1980).
Hanson, Bruce L., R. J. Nacon and D. P. Worrall,
"Custom Calling Features Cater to Customers,” Tele-
phony. pp. 23-32 (Sep. 1980).
“Elect. Mail Pack Unveiled by DEC." Eiectronic News
vol. 27, No. 1365 (Nov. 21, 1981).
ECS Telecommunications, Inc. Marketing Literature
for their UMX System (Ian. 7', 1982).

115/gtgirliao from C. W. Murphy to Jack Atkin Dated Ian. 30,

0002

“ECS Unveils l.000—User Digital Message Ex-

change," Communications.
Matthews, G. H., “The Pitfalls of Small Telecommuni-
cations Trunlt Groups,” ECS Teiecommunicotions, Inc,
(1981).
"New Product, Voice Message Systems," Business
Communications Review pp. 37-40 (Jan.-Feb. 1981).
Dukes, A., “IBM Unveils Voice Mailbox; Seen as Step
Toward PBX," MIS Week, vol. 2, No. 39 (Sep. 30,
1981).
"Speechi'ile—IBM’s Secret Message System Weapon,"
Electronic Mail & Message Systems, vol. 5, No. 12 (Jun.
15, 1931).
“Introducing Voice Store & Forward," Computer Deci-
sions, (Oct. 1981).
Out Voice Product Brochures, Voice and Data Sys-
tems, Inc.
Dukes. 101., “Atlanta Firm Enters Voice—Message
Arena," Management Imnnotion Systents Week, 1:. 6
(Nov. 13, 1981).
“New Local Net, Voice Store and Forward from

Wang," Computer Decisions (Aug. 1981).
Delphi Delta 1 Telephone Operator's Training Manual
(Apr. 1, 1981).
Delphi Delta 1 Voicebank Data Entry Reference Man-
ual (Jul. 20, 1931).

Delphi Delta 1 Voicebank Marketing Literature.
Delphi Delta 1 Specification.
Delphi Delta 1 Standard Processor Module (SPM—l)
Specification (Mar. 13, 1978).
Delphi Pascal Programmers Manual (May 22, 1981).



0003

U. S. Patent Nov. 25, 1986 Sheet1of27 4,625,081

[08

  

 
 

 

TELEPHONE NETWORK

  DIRECT GENERAL GENERAL DIRECT GENERAL
am’ SECFIETARIAL mcAI_L INCALL. ACCESS RECALL RECAIJ_

NUMBER LINE LINE LINE LINE LINE LINE

NO YES

I no _

OWN
COUNT?

“ I24

W &MESSAGE

  

 

   
 

  

 

ANSwERING:

  CLIENT GREETING E”TE”

necoao MESSAGE . ansxgr __ _ 35333:‘;
EDIT MESSAGE NUMBER I20 —'com-: C005 

 
 

 

t-:"*‘‘—“'‘
3

   
RETRIEVAL '.

MESSIIGE BIISKET STATUS
LISTEN TO MESS!-IGE5

 

 
  

 

C HANGE ACCOUNT
ACTIVITY

I : I34
I ADMINISTRATION

I__, FUNCTIONSI
132

 

 

 
  
 

SENDING

I-‘IE CORD MESSIIGE
EDIT MESSDGE

ADDRESS +-DELIVERY

 

I

I
I
I
I

I
I
I
I

__....---l-+._.!I
‘I

1-

c “E947ME SSAGE - MESSAGE MESSAGE I-'

DATA STORE

CONTROL SYSTEM

 
  

  
  

I02.

OPERATOR CONSOLES

|O5

FI_G.l

0003



0004

U.S. Patent Nov. 25, 1986 Sheet2 of27 4,625,081

250

 ‘ INFORMATION PROCESSING SYSTEM 

  
 
 
 
 
 

INTERACTIVE
SERVICES

SUBSYSTEM
254 255

I6 SEREAL _,.T

CHANNELS *1256 !

 
  

 

 
 
 

 
 
  

 

 
 

REAL TIME
SUBSYSTEM

(FI(‘|5.4)

REAL TI M E
SUBSYSTEM

2

REALJHME
SUBSYSTEM

3

REflaL TIME
SUBSYSTEM

I   

2OHBMbps
( 30 v. CH)  
 

   

 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

 
  
  

RS232

250 onsmuaunon
PANEL

262

TELEPHONE TELEPHONE TELEPHONE
LINE ROOM ROOM ROOM
PTR SUBSYSTEM SUBSYSTEM SUBSYSTEM

A A 0

L|NE1GROUP LINE GROUP LJNE SGBROUPI

RCsfiAFgt?:R 220 ‘“”'‘‘5‘3)
264 II

224

I I
266

. --.-I -¢-

. DID RE

226 I 222 LINES {
_ ‘ 2—WlRE LINES

253 . I08 TELEPHONE NETWORKroe

J’ ‘ 270

TELEPHONE VOICE SERVICE SYSTEM I00

F|G.2

0004



0005

U.S. Patent Nov. 25, 1935 Sheet 3 of27 4,625,081

2.043 W395 2.048 Mb 5
SYNCHRONOUS SYNCHRO US

LINK TO ETS LINK TO ETS

306304 ‘
LINE LINE

GROUP GROUP
CONTROLLER CONTROLLER

308

302 306

LINE INTERFACE LINE INTERFACE
BOARD 1 BOARD I3

{OPERATOR} LOOP START!
ROUND snarl

  

LINE INTERFACE L I NE IN TER FAC E
BOARD 2 BOARD I4

{CONCENTRATOR}

LINE INTERFACE LINE INTERFACE
BOARDS some :5

(DIRECT INWARD
DIALINGI

 
TELEPHONE ROOM SUBSYSTEM A,L|NE GROUPI 206

F|G;3

0005



0006

¢.U_|._

1000,525,4

omm:E.m__,mm_..mms:._fi._mx2...Eamdzzqxumo_o>on.mxz_._xwdoo.=:h._mm_..o2om:o_é.mmansm...o.~ 

weIo.:_....m

mmu_mz<E.IiI||||||||IIIIIIIII
Jqzmmtm

Sheet 4 of 27

uzqmumunm»9m~_m.360.mamus:._qmm:3

mm

_

u>_SomxumommuuomaI|IIII:mommmuomams?._<umus:._qmEms...._qmE.

%w5.,2WNmmP«MU

 _:o.:.....mmuuwzqm»._..._.zzu»x.u.n._>_._.:omxmm:_._.Jqmm

0006



0007

U. S. Patent Nov. 25, 1986 Sl1eet5 of27 4,625,081

RAM RAM
PROGRAM MEMORY PROGRAM MEMORY

4K me I 8KXI6
(400 NSEC] {50 NS!-ZC ROM)

SCRATCHPAD
MEMORY STORE

4K>(16
[50NSEC}

PORT CONTROL UN IT

STACK STACK

l6Xl6 l8>(|6 I6X|6 I6 X I6

STANDARD PROCESSOR MODULE SOO

F|G.5

0007



0008

U. S. Patent Nov. 25, 1986 Sheet 6 om 4,625,081

 
 

    

   
 

  

 

 
 

 

  
  
 
  

 

 

 

F _ _ ' " “ “ ‘ ‘ “‘ ‘I
I

I PROGRAM 602
| MEMORY STANDARD PROCESSOR

| 24K)( is MOWLE

I

I

I .
I

I (no.5)
I

I mm — " — — — — -1

I MEMORY CPU INTERRUPTS U60463Kx|6
I 618
I I

I

I I
I I

I I

I ————— —- — I
DMA CONTROL 520 1

I MEMORY

1 IK X I6 I
I BUFFER 'OESCRIPTORS '

I. _ _ _ _ _ _ _ _ _ _ _ L. _ _ _ _JREAL TIME PROCESSOR

. 52° EXTENSION

INTERNQL TRANSFER
SWITCH 606

626 PORT COMMAND
MEMORIES

REAL TIME EXECUTIVE
403

F |G.6

0008



0009

U.S. Patent Nov. 25, 1986 Sheet 7 of27 4,625,081

  
INTERACTIVE

. SERVICES

3:: 1* EXECUTIVE x Y724

SPM
CPU

:35 PROCESSOR IS SPROCESSOR
EXTENSION UNIT ?02 EXTENSION UNIT

U.-lag} 725 705

3 BIT POLLED BUS

V-BUS

254 255

MAG. TAPE SERML SERIAL
CONTROLLER CHANNEL CHANNEL

CONTROLLER CONTROLLER

us CHANNELS 257256 I TO DISTRIBUTION IPMIEL
MAG. TAPE

FORMA TTER 7| 6 
INTERACTIVE SERVFC ES SUE SYSTEM

252

‘(I8 720
TAPE - TAPE ‘
on we omve

0009



0010

US. Patent Nov. 25, 1986 Sheet8 of27 4,625,081

802

 
  

 
  

 
  

  

 
 

  
  

 

MICFIOPROGRAMMED
INTERACTIVE BUS
CONT ROLLER

TO U-BUS 704

TO V-BUS 708

804

INTERRUPT
FIFO

STORE

64-K
BUFFER AND CONTROLLER

OESCRIPTORS

I/O DATA

POLLING LIST

{5ONSEC)
son ————— --

 
 
 
 

DATA MEMORY
64K X16

{I/0 BUFFERS}
(400 NSEC}

 
 
 

PROGRAM MEMORY
STORE 310

EXRE): ROM 3'3axxm
(50 NSEC)

TO
CPU

ISS PROCESSOR EXTENSION UNIT 3'26

F|G.8

0010



0011

U.S. Patent Nov. 25, 1986 Sheet 9 of27 4,625,081

(EXECUTIVE SERVICES SUBSYSTEM 904INFORMATION PROCESSING suasvsnam 906

9|6 922 259. 942

om MEMORY

""'°»'°’ EXTENSION
BUS

CONTROLLER
GEN. PURP. GEN. PURP.

EXTEWON : EXTENSION . EXTENSION

BUS
CONTROLLER
EXTENSION  

X I
_E_ X E InE"""':' IIIIIIII

:Zl""|—Ig3tIl'|1-I

  
INTERACTIVE REAL TIME
SERVICES sussvsremsDISK CONTROLLER DISK CONTROLLER SUB SYSTEM

EXTENSION EXTENSION
UNIT UNIT

(FlG.?I (F|G.4-I

25 2 . 902

mroamnrnow PROCESSING
SYSTEM 250

 
I
I
I
I
I

I
I

I
932 1

I
I
I
I

J

FILE SERVICE SUBSYSTEM 908

F'|(3.E)

0011



0012

U. S. Patent Nov. 25, 1986 Sheet 10 of27 4,625,081

I006

  

 
 

  
 

 

CONTROL
MEMORY
4K X12

J.l-PROGRAMMED
PACKET

SWITCHER I008
 

PROGRAM
MEMORY
IGKXIG

IOIO

 
DATA

MEMORY
|6K XIG

BUS CONTROLLER EXTENSION 922

F|G.|O

0012 '



0013

mmqaomq:

OO__um_.:.H._:zumqmmqgtom_2u»m>mm:mms.».:mEdhw__mmu._ozq:
mE.um_._.__oumaqmmqomommumoomamomxummw4zS__,_u._mq»ZO_._.d.N_J<_._._Z_

 

EqozooumIE3

  

1003,526.,4H...2.mm..n..S

 

Emma

m_2.mn_umqzm35..

$.35mmfimwmmmz.m,_..wm,w__nm__,+,mzm_._:um__u.mom_..Em%m:u._.:sm4.5.6o:_ozmo:mo:
zotamzoamq

3.01.

JDEPZOUJOEHZOUwmmuomm 0_am._.m>m>m.om...mooqmym«.33...._
I_OE.__.ZOU&.O__

._._.. mmuuomamwmooma20:40.niqm95zo_.E.o_._&qmE_aco4mum:

 

mo:

mmD5..2V.0NtHmD...SU



0014

U.S. Pateflt Nov. 25, 1986 Sheet 12 of27 4,625,081

moo...Exmqmmoqmmmzmmfizm

  
 

mjomzouOh3.40._.Zu_:.oozwmm.5w2OQmo._.§_un_o_.H._72ouom:m_mmqmopqmumo

 maoomoon9.mzo»mpqmuzuommudmmMEENFZMM0000_._.d._>_OPDd_mmpzwn:
._<zommn._n_momaou

B8o_h.v_mqm_moouE..,.m<m_moo:JqzommmmmoqmmmsmmamzqFQEOIQFn=20w_n_Modwwmcd._.n=zOEn_mZ_EIU._.Nn_ 

moooExmqmmoqmmu:Ezomm

 
wz:_4mzwr_~23

mmmuoq<

JqmmzmoJqmuzuw4q_mqpmmuum 

wz_._,_;_qo.u=__;_qmu._zmo

 

...mS_mm...mzoEaz8mmamzqZMI3m2...u~_ummnC.._.mz_n_>..:k2mD_

 

E410..>O:Es_Em...mmuzémmmzOIn_w.._m._.<N_.0_|._

 

0014



0015

U. S. Patent Nov. 25, 1986

uzlmman._._mm

.340mEz_s_mmF.
ozazmm

I_d_>w_m._.wmE45.504“.Hmzofiozausm:.m._,mmo:Emmn._zo_._nm_._uhm.mzso.pzamumqmukaouxmm_U

Sheet 13 of27 4,625,081

 

0015

mooun__maouo.JqzommmmmozqszooJqzommumn_._n.__.._tommmpzmom_,%%,_umm9..ozoammm._._5mmuuoma
mooon__

Jdzommmmuoco9._.u._xm4mz.uoou9n_._m.:ézommuaEu..52.Jqzommmaozoommzupzuuoqwmmzomouum
Es_oEEs_oE

ozcmumohzmfio1.5.5mwamzq
 



0016

    29.5Z3...ouozqszoumfinouxu

Sheet 14 of27 4,625,081

 

0016

u.._Dzo_mE

 

mupzm._.¢mmZ_m<n._._o.§.QN
N000mn._._.zu

cumm.cumm
n_..$n_._.z%omnxoqmx._<»mozqzuzm.5_._Z._.._.dmmzqm

 .Eq_..ogod0242500nmqomxmx U.S. Patent Nov. 25, 1986



0017

U.S. Patent Nov. 25, 1986 Sheet 15 of27 4,625,081

 

  

   

 
 

OBTAIN
CIKLL

INFORMATION

CHANGE
FUNCTION

 
  

F|G.|4
V-MSG FUNCTIONAL FLOW

 
SELECT

ACCOUNTI
ACTIVITY

{FIG . l5]

CHANGE
ADMIN
thaafi  

  
  

 
 MESSAGES

 
MESSAGE
DEUVERY

(maze

TERMINATE
CALL

0017



0018

U. S. Patent Nov. 25, 1986 Sheet 16 of27 4,625,081

 

  
SELECT

ACCOUN T/
ACTEVITY 

 
 
 

 REQUEST DIRECT
OPERATOR LINE 

 
 

  
 

ANALYZE

  
 

  

 

PROMPT

 

oamn
Comm” INITIAL CLIENT

CLIENT INFORMATION

6%? 

  
 

 

 
 

PROMPT
REQUEST REQUEST

pm MESSAGEBASKET

 

 
 

 

 
D

MESEQXEERASKET
 

  
|NV:N.JD

PEN

senvnce NOT
AVAILABLE

C HA NGE

VALIDITY
CHECK
ENTRY

 

 
 

  

  OBTAIN
CLIENT

INFORMATION  
 
 

 
 

 
 

 
  

SEND RETRIEVE
MESSAGES OPE FLQTER

MESSAGES ASSISTMICE
fi.NSWER

CALL
   

' fl _ SELECT ACTIVITY FUNCTIONAL FLOW

FIG. I5

0018



0019

US. Patent Nov. 25, 1986 Sheet 17 of27 4,625,081

ANSWER CALL FUNCTIONAL FLOW

  
PLAYOUT

SALUTAT IO N

 
 
 
 

 
 
 

PROMPT

RECORD
IN VITATION

PRO MPT

RECORD/EDIT
lNV|TAT|0N

 
 

  

    RECORD
MESSAGE

 
 

 

 
 

  CUMPL IME NTAHY
CLOSE

PROMPT

DISCONNECT
WARNING

 
 
 

   
T0

TERMINATE
._ CALL

TO
OPERATOR

ASSISTANCE

 
  

    

 
  

TO
SEL ECT

ACCOUNT!
ACTIVITY

 
  

 

0019



0020

US. Patent Nov. 25, 1986 Sheet 13 of27 4,625,081

CHANGE HELP
ABNORMAL REG.

OPERATOR

STOP
RECORDI

PLAYBACK

MARK
SEGMENT

' BEGINNING .
‘ MARK .

SEGMENT
OVERSIZE END 
  

EDIT MESSAGE FUNCTIONAL FLOW E33
ACTWITY

FIG. '7

0020



0021

U.S. Patent Nov.-25,1986 Sheet 19 of27 4,625,081

 

 

  

 
  

 

 

 
SEND

MESSAGES

PROMPT

SEND
MESSAGES

INT HOD UCTION

EDIT
MESSAGE

DEl_lVERY-
INSTRUCTIONS
I NVITATION

 

ACCEPT
DELIVERY

INSTRUCTIONS
{FI6.I9)

  

 

 

PLACE
MESSAGE IN

DUTBASKET

 
 

 
comwwo OUTBASKET

®

Tsnswétran371-:
MESSAGES SEND ME$AGES FUNCTIONAL FLOW

0021



0022

U.S. Patent Nov. 25, 1986 Sheet 20 of27 4,625,081

ACCEPT
DELIVERY

INSTRUCTIONS
  FIG. I9

ACCEPT/EDIT DELIVERY !NSTRUCT|ON FUNCTIONAL FLOW
 

  
 

ECHDBACK
DELIVERY

INSTRUCTION

  INVALID
DELIVERY

INSTRUCTION
VALIDITY

CHECK @CLIENT

sum
DELIVERY

CODE

SAVE
  
 
 

  PREVIOUS

IDEWE R"
INSTRUCTION)   PLAYCIUT NE XT

(DELIVERY
INSTRUCTION]

ALL DEL IVE RY
INSTRUCTIONS

PLAYED

 
 DELIVERY

INSTRUCTION
CAPACITY
  

LISTEN

 
  
   
 
  
 

DELETE
[JUST PLAYED)

DELIVERY
INSTRUCTION

 
 

CLEAR

  
 
 NONE PLAYED 

  
 

SAVE
PREVIOUS

(DELIVERY
INSTRUCTION}

 
 

SAVE

 
  
 

0022



0023

U.S. Patent Nov. 25, 1986 Sheet2I of 27 4,625,081

 RETFHEVE
MESSAGE 

 
  

  
 
 

F|G.2O
RETRIEVE MESSAGES FUNCTIONAL FLOW

PROMPT

INTRODUCE
RETRIEVE

MESSAGES

 

  
 

PLAYOUT
MESSAGE BASKET

STATUS

REVIEW
INBASKET

( F£G . 2| }

REVIEW
OUTBASKET

( FIG _ 23)

TERMINATE
RETRIEVE
MESSAGES

PROMPT

INBASKET
EMPTY

PROMPT
OUTBASKE T

EM PTY

  

  

  

  
  

  

 

 
 
 

 

T0
SE L ECT

ACCOU NT/'
ACTIVIT Y OR

TERMINATE CALL

0023



0024

U. S. Patent Nov. 25, 1986 Sheet 22 of27 4,625,081

I PROVIDE -3HAOMESSAGE
STATUS

DELETE RETAIN
MESSAGE MESSAGE

  
REVIEW

INEAS KE T

 

 

 
 

 

 
 

AWAIT
CLIENT

COMMAND

 
 

PLAYOUT
MESSAGE

PROMPT

OUTBASKET
FULL

REPLY

(To MESSAGE}
FIG. 22

REDIFIECT
{MESSAGE}

®

INBASKET
REVIEW

COMPL ETE

 
 
 
 
 
 

 

  
 

  

  REVIEW INBASKET FUNCTIONAL FLOW

F|G.2|
 

TO REVIEW
0UTBfiSKET  

0024



0025

U. S. Patent Nov. 25, 1986 Sheet 23 of27 4,625,081

REPLY

F|G.22
REPLY FUNCTIONAL FLOW

PROMPT

REPLY
LOC£\T|ON

AWAIT FORM
INSTRUCTION COPY

EDIT
MESSQGE

CONCATENATE '
MESSAGE

REPLY
DISPOSITION

9

—

G9

-

@

-

-

ACCEPT
DELIVERY

INSTRUCTION 
T0 ORIGINAL

REDIRECT DISPOSITION

0025



0026

U.S. Patent Nov. 25, 1986 Sheet 24 of27 4,625,081

 REVIEW
OUTBASKET

  

 

 
 

  
 

  

PROVIDE Cl-$130 mg 1'
DELIVERY OUTBAISKET "'-“OUT

sTA}'U3 COMMAND MESSAG E

  
  

5%’

DELETE
MESSAGE

 
 

 
  RETAIN

OUTBCISKET
MESSAGE 

  

 
 
 

  DELIVERY
INSTRUCTIONS

 PROMPT
OUTBASKET

REVIEW

COMPLETE

  
  

  
 

    

REVIEW OUTEASKET FUNCTIONAL FLOW

FIG 23
 

TO
TERMINATE
RETRIEVE
NESSAGE

0026



0027

U.S. Patent Nov. 25, 1986 Sheet 25 of27 4,625,081

 
 
  

  
 
 
 

AMEND
MESSAGE

F|G.24
AMEND MESSAGE FUNCTDNALFLOW

TYPE OF
AMENDMENT

  
  

 

OUTBASKET
FULL

 
 

FORM
OUTBASKET

COPY

EDIT
MESSAGE

  
CONCATENATE

OUTBASKET
MESSAGES 

  
 
 
 

 
 
 

 
 

 

 
 
  

T0 T0 T0

 

NEXT MESSAGE AMEND AWMT
DECSSION DELIVERY OUTBASKET

WSTRUCTIONS COMWND

0027



0028

US. Patent Nov. 25, 1986 Sheet 26 of27 4,625,081

CHANGE
ADMIN
DATA

C T
WFHATE MB ESTABLISH FORWARDING ONDI ION
FORWAROING PROMPT

senvncu-: nor AVAILABLE

PROVIDE MB FORWARDING INSTRUCTIONSMODIFY MB
FWDG INST PROMPT

SERVICE NOT AVAILITIBLE

EDIT DISTRIBUTION LIST
PROMPT

SERVICE NOT AVAILABLE

EDIT DEL’ Y 00055
PROMPT

SERVICE NOT AW.ILD.BI_E

ESTABLISH CALL FDFIWOFIDIMS CONDITION
PROMPT

SERVICE NOT AVAILABLE -

PROVIDE CALI. FWDG INST
PROMPT

SERVICE NOT AVA ILIIIBLE

INVALID ENTRY RECEIVED

25ADM|N FUNCTIONAL FLOW

0028



0029

U.S. Patent Nov. 25, 1986 Sheet 27 of27 4,625,081

 
 

  
 

TELEPHONE
DELIVERY

® FIG. 26TELEPHONE DELIVERY FUNCTIONAL FLOW 
 

  
 ACQUIRE

OPERATOR

MESSAGE
DELIVERY

PLAYOUT
MESSAGE

PROMPT

 

 
 

  

   
 

OPERATOR
DELIVERY
ACTIONS

  

   
  

  
 

 

OPERATOR
REPLY REPLY

INVITATION ACTIONS

 
PROMPT

RECORD!
EDIT

CONTROLS
 

RECORD
MESSAGE

DELI VE RY
CLOSURE

TO I TERMINATE
CALL

  

  
EDIT

MESSAGE "
RESCHEDULE

OR SCRUB

0029



0030

4,625,081
1

AUTOMATED TELEPHONE VOICE SERVICE
SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to an automated telephone
voice service system and more particularly to such a
system which provides automatic recording and editing
of voice messages as well as forwarding of recorded
voice messages to other accounts and telephone num-
bers with or without operator assistance.

2. Discussion of the Prior Art

Voice responsive telephone service systems have
traditionally meant either a telephone answering service
or a forwarding service. Early telephone answering
service systems connected individual secretarial lines to
an operator plug board. Upon activation of one of 100
or more lines coming into an operator station an opera-
tor answered the call by making an appropriate plug
connection between the active line and an operator
headset. Upon identification of an active line the opera-
tor could access a corresponding client file to obtain a
greeting for reading to the caller. The operator could
then proceed to answer questions from information
from the client file information or take a handwritten

message for storage in a client pidgeon hole until the
client called in to retrieve his messages.

Telephone answering systems have subsequently
been improved by providing the service operator with a
semi-automated terminal to which calls are automati-

cally directed. The line to be answered is automatically
identified and corresponding client data is presented to
a visual display for use by the operator in answering the
call. Any received messages may be keyed into the
system for storage in association with the client’s ac-
count until the client calls to retrieve his messages.

While such a system affords considerable improve-
ment over the early plugboard answering systems. it
remains Hunted to a basic telephone answering mode in
which limited client information may be presented to a
client and messages may be manually recorded for later
retrieval by the client.

The forwarding services provide a somewhat differ-
ent but still limited telephone service function. These
services include store and forward services and call

forwarding services. The store and forward services
enable a client to record a message and dignate a
number of persons or telephone numbers for delivery of
the message. Delivery instructions can specify dates and
times for message delivery. The operator then proceeds
to call the indicated persons or numbers in accordance
with the delivery instructions and upon completing a
call, play the prerecorded message. Such a system per-
mits recording of a message at one time for delivery at
another time, but still requires operator assistance.

Call forwarding on the other hand can be completely
automated. but merely forwards an incoming call to a
previously designated telephone line. Such a system
cannot process the call ifeither the originally called line
or the forwarded line are busy and cannot process a
message at different times which are respectively con-
venient to the calling and called parties.

SUMMARY OF Tl-IE INVENTION

An automated telephone voice service system in ac-
cordance with the invention includes a data store cou-

pled to store and retrieve voice messages at each of a

S

20

25

30

35

45

50

55

65

0030

2

plurality of individually addressable message baskets
therein and a control system providing a selective cou-
pling between the store and each of a plurality of tele-
phone lines of a telephone network. The control system
is responsive to different data signals received over a
particular one of the telephone lines to associate the
particular telephone line with a particular message has-
ltet, to store in the particular message basket a voice
message received over the particular telephone line, to
forward a voice message stored in the particular mes-
sage basket to at least one other of the individually
addressable message baskets, and to forward a voice
message stored in the particular message basket to at
least one telephone line.

The service system is implemented with a high reli-
ability fail soft data processing system in which duplica-
tion of processing system components enables a func-
tion of a failed component to be transferred to another
component to assure that no single failure disables the
entire system. The major processor subsystems include
a real-time subsystem providing interactive coupling to
the analog telephone lines, an interactive services sub-
system providing a coupling to input-output devices
such as terminals. tape drives, and printers, a file ser-
vices subsystem hosting a plurality of disk drives, an
information processing subsystem providing a sophisti-
cated general multiprocessor capability and an execu-
tive services subsystem providing communication and
coordination between the other subsystems.

The real time subsystem provides the signal generat-
ing, signal detection and interface circuitry necessary
for connection to several different physical and func-
tional types of standard network telephone lines. The
physically different types of lines include, two-wire
lines, four-wire lines, pay telephone lines, operator lines
and concentrator lines. The functionally different lines
include secretarial lines which are usually coupled
through a concentrator and function as jumped exten-
sions of client telephone lines, and direct inward dial
lines having virtual connections between an incoming
line at a telephone switching office and it called tele-
phone at a customer location (i.e. the telephone voice
service system). Plural trunking connections to the ser-
vice system concentrator and to the direct inward dial
lines enable multiple calls to the same number to be
processed simultaneously by the service system. Instead
of a second or third caller to a giv phone number
receiving an irritating busy signal, the caller receives a
prompt and efficient automatic response.

At the service system particular lines may be inter-
nally assigncd predetermined designated functions. For
example, some of the lines may be designated direct
incall lines with each being assigned a predetermined
association with a particular message basket Such a line
is controlled only in a telephone answering mode with
a caller being greeted by a client selected voice message
which may be in the client’s own voice and changed at
will and then invited to leave a voice message in the
associated message basket upon the generation of a tone
signal. Callers familiar with the system may edit the
voice message using Touch Tone commands, but no
editing prompts are provided. There is thus no confu-
sion of callers who are unfamiliar with the system and
who wish to simply record an unedited voice message
upon the occurrence of the tone.

General incall lines are operated in a telephone an-
swering mode in a manner similar to the direct incall



0031

4,625,081
3

lines except that the general incall lines do not have a
unique, predetermined association with a particular
message basket. A caller is prompted to enter through
the telephone keyboard dual tone multiple frequency
(DTMF) data signals defining commands which select a
particular message basket code or address. A voice
communication coupling between the calling telephone
line and the selected particular message basket is then
created by the telephone service system.

Other telephone lines may be assigned as direct or
general recall lines which afford a client access to ac-
count ownership functions afforded by the system. As
with the incall lines each direct recall line is associated

with a single predetermined message basket while a
general recall lines requires entry of a message basket
code identifying a desired message basket. Security is
maintained by enabling account ownership activities
only after a personal identification code has been en-
tered which corresponds to an associated message has-
ket. Added security may be implemented for a direct
recall line by requiring entry ofa second field of a per-
sonal identification code before account ownership
activities are enabled. The second field is separated
from the first field by a number sign key center and may
be changed at any time by the account owner. Account
entry thus requires a caller to have knowledge of the
direct recall telephone phone number, the first field of
the personal identification code associated therewith.
and if used, the second field of the personal identifica-
tion code.

Account ownership activities include retrieval of
messages. forwarding of messages, and administrative
functions such as the recording of a new greeting, the
changing of answering criteria for a secretarial line or
the changing of the second field of the personal identif-
cation code. Each message basket is divided into two
parts, an inbasket which stores messages from outside
callers and an outbasket which stores messages for for-
warding to other inbaskets or telephone lines. Data
storage space is conceived by storing only a single copy
of an outgoing voice message in the client's outbasket,
even if the message is to be sent to many different
parties.

If the message is to be sent to other message baskets a
code is placed in the inbasket of each inbasket portion
thereof identifying the particular voice message in the
particular outbasket of the sending client. Ifthe message
is to be communicated over one or more telephone
lines, the outbasket message is simply accessed as the
calls are initiated. This arrangement also enables a client
to retain ownership of a message so that a message can
be changed or deleted until it has actually been deliv-
ered.

As a message is delivered to another service client the
recipient can direct that the message be stored in the
recipient's inbasket for future reference and can auto-
matically direct a voice message reply back to the
sender with or without the original message attached.

A general access line affords a caller access to all
voice service system functions. Any message basket
may be selected for leaving a message therein by enter-
ing the message basket number code therefor and entry
of a personal identification number code enables access
to account ownership activities. To minimize errors and
enable the service system to readily distinguish between
different types of data sets. different data sets are re-
quired to have mutually exclusive code ranges. For
example, one digit defines a delivery code selecting a

0031

10

IS

20

25

30

35

4-5

50

SS

65

4
predetermined set of voice message delivery instruc-
tions, two digits define a predetermined distribution list,
three to nine digits define a message basket number and
ten or more digits define a telephone number including
the area code even for a local number. A personal iden-
tification number code must be preceded by an asterisk
(") and may have any reasonable number of digits
within predetermined limits for the system, for example
3-15. All data sets are tenninated by an # (enter) key or
a 5 second time out.

In the event a system user requires assistance, more
detailed voice message prompts are initiated by keying
‘D and communication with a voice message operator
can he commanded by keying ‘20. In the event that a
client calls the system from a dial telephone. the service
system detects a telephone company signal identifying a
dial telephone line as the source of the call and automat-
ically connects a service system operator to the line.
The telephone service system in accordance with the
invention thus provides a sophisticated user controlled
system for the receipt and delivery of voice messages
with an operator being required only for exceptional
circumstances.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention may be had
from a consideration ofthe following Detailed Descrip-
tion taken in conjunction with the accompanying draw-
ings in which:

FIG. 1 is a functional block diagram representation of
an automated telephone voice service system in accor-
dance with the invention;

FIG. 2 is a block diagram representation of the sys-
tem architecture for voice service system shown in
FIG. 1;

FIG. 3 is a block diagram representation of a tele-
phone room subsystem line group used in the telephone
voice service system shown in FIG. 2;

FIG. -1- is a block diagram representation ofa real time
subsystem used in the telephone voice service system
shown in FIG. 2;

FIG. 5 is a block diagram representation of a standard
processor module used in the voice service system
shown in FIG. 1;

FIG. 6 is a block diagram representation ofa real time
executive used in the real time subsystem shown in FIG.
4;

FIG. 7 is a block diagram representation of an inter-
active services subsystem used in the telephone voice
service system shown in FIG. 2;

FIG. 8 is a block diagram representation of an inter-
active services subsystem processor extension unit
shown in FIG. 7;

FIG. 9 is a block diagram representation of an infor-
mation processing system shown in FIG. 2;

FIG. 10 is a block diagram representation of a bus
controller extension unit shown in FIG. 9;

FIG. 11 is a block diagram representation of the soft-
ware architecture for the real time subsystem shown in
FIG. 4;

FIG. 12A in conjunction with FIG. 12B is a flow
diagram describing the response of the automatic tele-
phone voice service system to a user call;

FIG. 13 is a flow diagram of telephone keyboard
command operations.

FIG. 14 is a voice messaging functional flow diagram
for the service system shown in FIG. 1;



0032

4,625,08 l
5

FIG. 15 is a select activity functional flow diagram
that is useful in understanding the diagram shown in
FIG. 14;

FIG. 16 is an answer call functional flow diagram
that is useful in understanding the diagram shown in
FIG. 14;

FIG. 17 is an edit message functional flow diagram
that is useful in understanding the diagram shown in
FIG. 16;

FIG. 18 is it send messages functional flow diagram
that is useful in understanding the diagram shown in
FIG. 14;

FIG. 19 is an accept/edit delivery instructions func-
tional flow diagram that is useful in understanding the
diagram shown in FIG. 18;

FIG. 20 is a retrieve messages functional flow dia-
gram that is useful in understanding the diagram shown
in FIG. 14;

FIG. 21 is a review inbasket functional flow diagram
that is useful in understanding the diagram shown in
FIG. 20;

FIG. 22 is a reply functional flow diagram that is
useful in understanding the diagram shown in FIG. 21;

FIG. 23 is a review outbasket functional flow dia-

gram that is useful in understanding the diagram shown
in FIG. 20;

FIG. 24 is an amend message functional flow diagram
that is useful in understanding the diagram shown in
FIG. 23;

FIG. 25 is an administration functional flow diagram
that is useful in understanding the diagram shown in
FIG. 14; and

FIG. 26 is a telephone delivery functional flow dia-
gram that is useful in understanding the diagram shown
in FIG. 14.

DETAILED DESCRIPTION GENERAL
BACKGROUND

Referring now to FIG. 1, an automated telephone
voice service system 100 according to the invention
includes a control system 102 coupling a data store 101
and one or more operator consoles 106 to a standard
telephone network 108 which may represent all of the
interconnectable telephones throughout the United
States and the world. The data store 104 is shown as a

single functional block divided into a plurality of ad-
dressable units. However, as is conventional the data

store 104 may be physically implemented as one or
more magnetic or electronic storage devices and may
be distributed throughout a data processing system.
Data store 10:: provides storage for a plurality of ad-
dressable message baskets designated message basket 1
through message basket N, a plurality of individually
addressable voice message prompts and client greetings,
and an audit trail for each client accessing the system
100.

Each message basket provides storage for a plurality
of voice messages and is segregated into an inbasket
section and an outbasket section. Each inbasket section

stores voice messages and message forwarding notices
directed by system users to client owners of the associ-
ated message basket. The inbasket of each message
basket functions in a manner analogous to a recording
mechanism for a telephone answering machine.

The outbasket portion of each message basket re-
ceives voice messages generated by the message basket
account order for forwarding to selected other message
baskets or to telephohe network 108 users at indicated

0032

25

30

35

45

SO

55

65

6

telephone numbers. The forwarding of a message from
an outbasket to an inbasket as represented by arrows
110, 112 is accomplished automatically without human
intervention while the forwarding of a message from an
outbaslret to a telephone network 108 user at a selected
telephone number as indicated by arrow 114 may be
accomplished either automatically or semiautomatically
with operator assistance as required for compliance
with the instnlctions of the client account and applica-
ble state law. For example, in a fully automatic mode,
the control system 102 can operate to call the indicated
telephone number and upon its being answered, com-
municate an appropriate recorded voice message
prompt, communicate the voice message being sent, and
then terminate the call. As an example, the voice mes-
sage prompt might inform the person answering the
telephone at the indicated number that the person is
about to receive a prerecorded message from John Doe,
the account owner. This mode of operation enables the
account owner to record a single message in his outbas-
ket and have the message broadcast to one or thousands
of designated recipients without any further effort by
the account owner. The account owner, when setting
up, or modifying his account, establishes predetermined
distribution lists and sets of delivery instructions, each
having a different selection code number. The delivery
instructions can cover such features as days of the week
and time intervals during which delivery may be made,
number of retries, and whether the forwarding of the
message is to be accomplished automatically or semiau-
tomatically with operator assistance.

In the semiautomatic mode, the control system 102
waits for delivery conditions to be met, and then obtains
ownership of an active operator console including 8
terminal having a keyboard and a video display unit and
an operator headset. The control system 102 informs the
operator through the console 106 that a semiautomated
message forwarding operation is to be undertaken and
displays a prompting message for the operator to read.
Upon command, the control system 102 generates the
Touch Tone signals corresponding to the recipient's
telephone number and connects the operator console
106 to the line wh it is answered. The operator in-
forms the answering party of the call, asks to talk to a
particular person at the called telephone number if ap-
propriate, and secures the permission of the called party
to forward the voice message. The operator then com-
mands the control system 102 to communicate the voice
mmsage stored in the outbasket to the called telephone
line as indicated by arrow 114.

For voice messages forwarded to another inbasket
rather than to a telephone number, the voice message is
not actually recorded in duplicate in each of the desig-
nated inbaskets. Instead, a notification is merely stored
in the inbasltet which indicates that a forwarded mes-

sage is stored by the system for delivery to the owner of
the forwarding message basket. The notification indi-
cates the particular outbasket and the particular mes-
sage within the outbasket which is being forwarded.
This enables the person sending the message to retain
ownership of the message in his own outbasket and
selectively change or delete the message until it has
actually been delivered. Depending upon the delivery
instructions of the sender and the preselected instruc-
tions of the recipient, a forwarded message might sim-
ply wait for delivery until the recipient retrieves the
messages stored in his inbasket at some point in time.
Alternatively, the recipient might be informed of the



0033

4,625,081
7

receipt of a message in his inbasket by a paging signal
communicated over a paging system (not shown), by
the illumination of an indicator light at the recipient's
telephone, or by a telephone call to the recipient’s tele-
phone number informing the recipient by a prerecorded
message that a message has been received in the recipi-
ent’s inbaslcet.

The prompts and client greeting section of data store
104 stores a plurality of individually addressable voice
message prompts explaining how to operate the voice
service system 108 and a client greeting for each inbasr
ket. A voice message prompt is prerecorded for each
anticipated state at which a caller might access the
voice service system 100. ‘These prompts provide an
explanation as to how the user should proceed from the
particular point of use and are accessed by the control
system 102 and communicated to the user as appropri-
ate. At any point. a knowledgeable user may override
the prompt by inserting a command without taking the
time to listen to a complete prompt message. The client
greetings are provided as an answer mode for message
storage accesses to each of the system inbaskets. Each
client may record and change his own personal greeting
at will. This enables the greeting to include current
information such as telephone numbers at which the
client can be reached for a given period of time, indica-
tions that the client is on vacation for a given period of
time, indications as to when the client will return to his
office and so forth. In the event that aclient fails to have

recorded a preestabli-shed client greeting, a general
system greeting is provided in its place. The system
greeting invites the caller to leave a message but does
not identify the specific owner of the inbasket which
has been accessed by the call.

The audit trail portion of data store 104 stores a re-
cord for each caller accessing the system 100 of the
command signals which have been given to the system
100 by the caller. This record enables the control sys-
tem 102 to select particular voice message prompts in
accordance with the current state of the calling line. In
addition. in the event that a calling party requests opera-
tor assistance, the audit trail record is displayed on the
video display unit of a selected operator console 102 so
that the operator selected to give assistance can see
immediately the state of the calling line, and what at-
tempts have been made by the calling party to control
the system 100. This enables the operator to more
readily determine what mistakes have been made by the
calling party and what needs to be done to place the
system in the state desired by the calling party.

The major functions which are performed by control
system 102 are indicated by a plurality of functional
blocks shown within the outline of control system 102.
The particular functions executed by control system
102 depend upon by which one of the functionally dif-
ferent types of telephone lines the control system 102 is
accessed and upon which keyboard commands are en-
tered by a person accessing the voice messaging system
100.

A secretarial line is effectively an extension of a cli-
ent‘s normal use telephone line. The client's line may be
utilized for receiving and placing telephone calls in a
normal manner. The control system 102 responds to an
incoming call on a secretarial line by waiting for a pre-
determined number of rings which may be preselected
by the client in accordance with the day of the week,
and time of day, and then answering the telephone.

0033

10

15

20

25

30

35

45

S5

65

8

Upon answering the telephone as indicated by an-
swering function llé the client greeting is accessed in
data store 104 and communicated to the caller. The

caller is invited to leave a recorded message which is
then recorded and stored in the client's inbasl-Let if a

message is generated. Because the caller could quite
possibly be a person who is not a client of the voice
message service system 100 and is totally unfamiliar
with its operation, no prompts are provided to the caller
with respect to the editing of any message which is left
in the client's inbasket. Such prompts might prove to be
bewildering and confusing to any nonclient caller.
However, a sophisticated caller who is familiar with the
voice service system 100 is free to use normal system
editing commands which enable the caller to edit the
voice message. Upon completion of the message or
upon the occurrence of a client selected timeout dura-
tion, the call is tenninated and the message remains in
the client's inbasket until retrieved by the client.

Another type of line upon which a call might come
into the voice answering system 100 is a direct incall
line. A direct incall line is responded to by control
system 102 with answering function 116 in a manner
similar to a response to a call on a secretarial line. The
principal difference between the secretarial line and
direct incall line is that a direct incall line is dedicated to

the particular inbasltet of the client and is not available
for general use by the client. Typically there is no rea-
son for waiting for a specified number of rings before
answering a direct incall line and such a line is answered
as soon as it becomes active.

A general incall line is similar in nature to a direct
incall line except that the general incall line is not asso-
ciated with any particular message basket or inbasket
thereof. Upon accessing the system 100 through a gen-
eral incall line, a caller is prompted to enter a message
basket number which number associates the incall line

with a particular inbasket and causes control system 102
to transfer control of the call to answering function 116.
Operation then becomes functionally equivalent to the
secretarial line and direct incall line except that at any
time the caller may command a change function 118
which enables the caller to enter a new message basket
number code and thereby associate the general incall
line with a different message basket and enable the cal-
ler to leave a message with the newly selected inbasket
in accordance with answering function 116.

A general access line is intended primarily for clients
of the voice service system 100 and affords the broadest
range of system functions. Upon calling in on a general
access line, a caller is prompted to either enter a mes-
sage basket number if he desires to leave a message in
another’s inbasket or to enter his own personal ID num-
ber if he desires to have access to the ownership privi-
leges of his own account as indicated by own account
function 120. If the caller elects the enter message bas-
ket number code function 120. operation of the system
is functionally equivalent to the response to a general
incall line. Execution of a change function 124 enables
the caller to select a new system inbasltet in a manner
functionally equivalent to change function 118.

If the caller on a general access line selects the enter
personal ID number code function 126 instead of the
message basket number code function number 120, the
caller is granted immediate access to a message retrieval
function 123 for the inbasket portion of his own message
basket The message retrieval function 128 informs the
caller whether or not there are any messages within his



0034

4,625,081
9

inbasket and, if there are, begins communicating the
voice messages over the connected telephone line on a
last in first out basis. Before each message is retrieved,
the caller is informed of the age of the message on a
lapsed time basis. For example, the system might inform
the caller that the message was recorded fifteen minutes
ago and then begin relaying the message. This lapsed
time indication avoids any uncertainties which might
arise from different time zones and the caller may obtain
the exact time for receipt of a message with operator
assistance. As a caller retrieves his messages, he may
utilize the editing commands to rapidly scan through
the messages before listening to the messages more
carefully a second time or may on an individual basis
command that each message be saved or cleared. After
each message is relayed the caller may also direct, at the
caller's option, a reply to the sender, a forwarding ofthe
message to one or more other parties. The caller may
also simply go on to the next message, with the present
message being saved or cleared at the option of the
caller. After reviewing the incoming messages, the cal-
ler is informed of the status of any outgoing messages in
the caller's outbasket which are awaiting delivery. At
any time during this process the caller may execute a
change function 124 to leave a message at another‘s
inbasket or an account activity change function 130
which enables the caller to select one of the ownership
functions. The control system 102 retains the originally
entered personal ID number code and does not require
reentry of this code. Upon executing an account activ-
ity change function l30 the client may selectively return
to the retrieval function 128 or may command a sending
function 132. In response to selection of the sending
function 132 the control system 102 prompts the caller
to record a voice message in the caller’s outbasket by
initiating a talk command. During the recording of such
a message all of the edit functions are available to the
caller. Upon completion of the message the caller enters
a save command and is then prompted to enter an ad-
dress code. The addrms code is a two digit code which
identifies a preestablished list of up to 99 addressees for
the voice message. Each of the 99 entries on the address
list or distribution list may in turn be another list of up
to 99 addresses, thus permitting a distribution list of
almost 10,000 addresses in total. Upon selection of a
distribution list, the caller is prompted to enter a one
digit code selecting a preestablished set of delivery
instructions for the message. For example, the instruc-
tions may specify that delivery be made only during
certain designated days or times such as normal business
hours in the calling party's time zone or a different time
zone. Upon completion of the sending function the
calling party may again execute a change command 124
or 130 to execute other voice messaging functions. For
example, the caller may wish to access one or more of
the administration functions which are available to an

account owner. These functions include changing the
greeting for the inbasket message. changing the condi-
tions under which a secretarial line is answered and so
forth.

The control system 102 also provides connection to a
direct recall line which is the counterpart of a direct
incall line in that it is associated with a particular mes-
sage basket but enables the account ownership function
instead of the answering functions. Upon answering a
direct recall line, control system 102 executes the enter
personal ID number code function 126 and functional
execution, then proceeds in the same manner as if a

10

25

30

35

40

-1-5

50

SS

65

0034

10
caller on a general access line had elected the enter
personal ID code function 126. A general recall line is
the counterpart to the general incall line and requires
execution of an enter message basket code function 136
before advancing system control to the enter personal
ID number code function 126 as with a direct recall
line. .

The direct recall line is of advantage in that it pro-
vides a higher security for access to the system because
the caller must know both the telephone number of the
direct recall line and the personal ID number code
associated therewith. Each personal 11) number code
must be preceded by an asterisk symbol to identify it as
such. Even further security may be provided by requir-
ing a two field personal ID number code with the two
fields being separated by a number sign (enter) key. The
second field, ifelected, may be changed at will by the
client owner as one of the administration functions 134.

The system architecture of the telephone voice ser-
vice system 100 is shown in block diagram form in FIG.
2 to which reference is now made. The telephone net-
work 108 provides a number of physically different
types of telephone lines to which connections must be
made by the service system 100. By way of example,
these different types are shown as including secretarial
lines, direct inward dial lines, DX tie lines, and 2-wire
lines. Connections are also provided for six wire opera-
tor stations. In the present example the different lines
are shown to be connected rather arbitrarily to illustrate
the maximum size of the system.

Up to 640 secretarial lines are connected to a concen-
trator 202 which selectively connects the voice infor-
mation carried by these 640 secretary lines through 20
trunk lines 204 to a telephone room subsystem line
group 1 processing circuit 206. Only analog voice infor-
mation is carried by the trunk lines 204. Control com-
mands and data such as trunk and line identification

information, ringing signal indications. connection com-
mands, and execution confirmation signals are commu-
nicated through a data set 208 within concentrator 202
over a serial data line 210 extending between data set
208 and a data set 212.

A telephone room subsystem A, line group 2 process-
ing circuit 214 is illustrated as connecting to a direct
inward dial line while a telephone room subsystem D,
line group 168 processing circuit 216 is shown as being
coupled to one direct inward dial line, two DX tie lines,
and two 2-wire lines. Each represented telephone line is
assumed to be a bidirectional full duplex line.

The concentrator 202 and each of the telephone room
subsystem line groups 206, 214, 216 are physically lo-
cated at one or more telephone company central offices
or client PABX centers The system can accommodate
up to four telephone room subsystems with up to 42 line
groups being associated with each telephone room sub-
system. Each line group can in turn accommodate up to
8 operator telephone lines and up to 22 telephone trunks
or lines of another type. It is thus possible for each
telephone room subsystem to connect to up to 1260
voice grade circuit terminations with the maximum of 4
telephoue room subsystems providing in total connec-
tion to 5040 voice grade circuit terminations. Multiple
lines may be assigned to a given data source to provide
a capability of higher bandwidth than the single voice
grade line. In the present example, the telephone room
subsystem A line group 1 206 is coupled through the 20
trunks 204 to concentrator 202 and also through a maxi-



0035

4,625,081
11

I mum of 8 operator lines 220, 222 to operator headsets
224, 226 at a plurality of operator consoles 106.

The telephone room subsystems operate as interfaces
between the digital portion of the telephone voice ser-
vice system 100 and the analog telephone lines and 5
trunks. They provide analog-to-digital conversion of
the voice signals, detect and generate DTMF data and
command signals, detect and generate dial pulses, and
communicate the telephone line information to an asso-
ciated real time subsystem over one of two redundant 19
2.048 megabit per second time division multiplex serial
data channels. The 30 lines to which a line group pro-
cessing circuit may connect are each assigned to a dif-
ferent voice channel while the control information for

all of the lines as well as the line group is carried by a 15
single channel. A 32nd channel is utilized to synchro-
nize the serial data links.

In the present example telephone room subsystem 206
is coupled to real time system 1 230 by a pair of redun-
dant serial data links 232. 233. Similarly, line group 2 2°
214 is coupled to real time subsystem 1 230 by a pair of
redundant serial data links 234, 235 and line group 168
216 is coupled to real time subsystem 4 238 by a pair of

redundant serial data links 239, 24-0. 2
Up to 4 real time subsystems receive the voice and

control data from the 4 telephone room subsystems,
provide selected switching connections between chan-
nels, and communicate with an information processing

system 250 for storage and retrieval of voice messages 33
and system control. The real time subsystems also per-
form any signal processing such as silence compression
upon the voice signals.

An interactive service subsystem 252 provides a com-

munication connection between the information pro- 35
cessing system 215 and input/output devices for the
voice service system 100. Interactive service subsystem
252 is illustrated _as being coupled through two serial
channel controllers 254, 255 and two sets of 16 serial

data channels each 256, 257 to an RS 232 serial distribu- 40
tion panel 260. Distribution panel 260 provides serial
data connection to up to 32 different devices. It is repre-
sentatively shown as connecting to a line printer 262, a
card reader 264. to the keyboard display terminals 266,
263 and 270 within operator consoles 106 and to the 45
data set 212. It will be recalled that the data set 212
carries the control and data information between con-

centrator 202 and the information processing system
250.

As shown in FIG. 3, the telephone room subsystem A 59
line group 1 206 includes a line group controller 392
connected between the 2.048 MBPS 30 channel syn-
chronous data link 232 and an 8 bit parallel poled bus
304 and a second line group controller 306 connected
between the 2.048 MBPS 30 channel synchronous data 55
link 233 and an 8 bit parallel poled bus 308. Only one of
the line group controllers 302, 306 provides active com-
munication with the real time subsystem 1 239 at any
one time. In the event that the active line group control-
ler fails, the other immediately assumes the duties 50
thereof to continue uninterrupted communication be-
tween the connected telephone lines and the informa-
tion processing system 250. The active line group con-
troller poles the line interface boards connected to the
associated bus for voice channel data and upon receiv- 65
ing data. inserts the data into a preassigned one ofthe 30
time division multiplex voice channel data slots on the
synchronous data link 232 or 233.

0035

12

Each line group provides bus 304-, 308 connection to
up to 15 line interface boards, each of which may cou-
ple to two different analog telephone lines. Each of the
line interface boards is generally similar in construction
except that certain variations are required in order to
interface with the different kinds of telephone lines to
which a line interface board may connect. A variety of
different line interface board types have been illustrated
in FIG. 3 to demonstrate the different types of boards
which might be included in a voice for service system.
For example, line interface board 1 310 is an operator
type of line interface board and is somewhat simpler
than other types of boards in that it need carry no sig-
naling functions since these are accommodated through
the keyboard display terminals such as terminal 266.

The line interface board 310 interfaces two separate
operator positions to the real time subsystem 230. Line
interface board 310 provides battery feed circuits for
powering two operator headset microphones at each
position and amplifier circuitry for driving two sets of
headset earpieces at each position. Functional circuits
located on line interface board 310 include redundant

power supply inputs, two separate current limited -43
volt battery feeds per circuit. a circuit providing a side

5 tone fixed at -26 db for each headset circuit, a circuit

providing audio mixing of headset microphone inputs, a
circuit providing 4—wire operation separate receive and
transmit voice paths, and an onboard MU-LAW codec.
The MU-LAW codec provides conversion between the
13 bit digital sample of an analog voice signal and an 8
bit byte representation thereof to enable a single byte of
sampled data to have a greater effective range and reso-
lution than would be possible with 255 equal magnitude
increments. MU-LAW codecs are well known to those
skilled in the art and are not further described herein.
Each of the 6-wire interface connections of the line

interface board 310 provides headset A transmit tip,
headset A transmit ring, headset B transmit tip, headset
B transmit ring. headset A and B receive tip and headset
A and B receive ring. Two low impedance microphone
inputs per circuit (600 ohms or less) will drive two 300
ohm low impedance headsets per circuit.

A concentrator line interface board 2 312 provides
connection to two concentrator trunk circuits 204. Con-
centrator line interface board 312 terminates to "dry"
(no line voltage} 2-wire links from concentrator 202.
Because system control signals are communicated
through the serial data link 210, the line interface board
312 carries no supervisory or control signals except
DTMF signals which are communicated through the
telephone line. Line interface board 312 includes
DTMF signal generating and detecting circuits which
respond to or generate the required DTMF signals.
These signals are separated from the voice channel
information and are communicated to the appropriate
line controller during a separate control time slot on the
buses 304, 398 and are communicated by the active line
group controller to the associated real time system dur-
ing a separate control information time slot which occu-
pies a 31st channel position on the synchronous data
links. The line interface board 312 includes the redun-

dant power supplies and MU-LAW codecs which are
found on the operator line interface board 310.

A direct inward dial line interface board 3 314 termi-

nates two 2-wire Dll trunks, handles all DTMF signals
associated therewith, detects supervisory and control
signals and incoming dialed digits. The two incoming
lines may be either C0 WINK-START or immediate



0036

4,625,081
13

start lines. The direct inward dial line interface board

314 hosts DTMF detection and generation. dial pulse
detection, tone and voice envelope detection, and audio
switches for call progress tone insertion. Line interface
board 314 further includes 43 volt battery feed circuits,
redundant power supply input, secondary voltage ha-
zard protection, MU-LAW codecs, 2—wire to 4-wire
conversion, and 600 ohm or 900 ohm line impedance
selected by a strapping option. Also included on each
DID line interface board 314 is a fixed compromise
network, a loop current indicator light emitting diode, a
wink and immediate start strap option, a reverse battery
indicator light emitting diode, a reverse battery front
panel switch and test jacks for 2-wire testing. CO tip
and C0 ring wires are interfaced for 2-wire circuits. A
loop start/ground start line interface board 316 termi-
nates two pay station telephone number conventional
lines. It can accept incoming calls as well as seize a line
to dial outgoing calls and handle all DTMIF, supervi-
sory and control signals. A 2-wire line interface board
313 interfaces two C0 loop-start or ground-start trunk
lines. The 2-wire interfaces provide CO tip and CO
ring. The onboard functions include DTMF detection,
tone and voice envelope detection, 2-wire to 4—wire
conversion. loop disconnect dialer, a loop-start or
ground-start operation which is DIPSWITCI-I SE-
LECTABLE, a 600 ohm or 900 ohm strap selectable
line interface, a fixed compromise network, a loop cur-
rent indicator light emitting diode, test jacks for 2-wire
testing, redundant power supply inputs, secondary volt-
age hazard protection, and onboard MU-LAW codecs.

The real time subsystem 230 is representative of each
of the real time subsystems and is shown in FIG. 4 as
including a minimum of two and a maximum of 46 ex-
ternal transfer switches 402, 404. Each of the external
transfer switches is coupled to both an S bus which is
controlled by a real time executive S 4-06 and a T bus
which is controlled by a real time executive T 408. At
least two and not more than 22 real time processors 4-10,
412 are also coupled to the S and T buses. The real time
processors 4-10, 412 are identical to the real time execu-
tives 406, 403 except that the bus control functions are
not implemented on the real time processors 416, 412.
The S and T buses are each time division multiplex real
time buses which are 16 data bits wide and operate in
repetitive frames with 512 slots per frame. Only one of
the buses is operative at any given time with the other
being available as a hot standby in the event of a failure
on the first bus.

The external transfer switches 402, 404 provide an
interface between the 2.048 MBPS serial data links and
the S and T buses 414, 4-16. Each external transfer
switch 402, 4-04 may connect to two high speed data
links, each of which carries 30 bidirectional voice chan-
nels and one bidirectional control data channel on a

time division multiplex basis. In response to system
commands the external transfer switches can connect

any incoming or outgoing voice channel to any one or
more time slots on the S bus 414 or T bus 416.

An any channel to any channel connection scheme
thus becomes possible. For example, certain incoming
voice channels can be connected to a bus time slot allo-

cated for voice message recording or selected outgoing
channels can be connected to a bus time slot allocated to

voice message retrieval. An operator line simply ap-
pears as one of the voice channels so that an operator
can be selectively included in a set ofvoice connections.
A multiparty conference call can be established by sim-

0036

I0

15

20

25

30

35

45

50

55

65

14

ply creating a bus channel for each incoming line and
then connecting each outgoing line to all of the corre-
sponding bus time slots for the incoming lines of the
other parties. It will be appreciated that a “connection"
does not imply a continuous physical connection but
only the transfer of voice sample data bytes between
select serial data link time slots and select 5 or T bus
time slots.

The real time processors 41!}, 412 are each comprised
of a standard processor module with a real time exten-
sion board connected thereto to provide additional
processing and data storage capacity. In the voice mes-
saging environment the real time processors provide
data compaction by converting PCM encoded bytes of
data to run length in coding format and by detecting
periods of silence and encoding such periods in a run
length encoding format. Data corresponding to periods
of silence in excess of one second may be discarded if
desired.

As with the real time processors 41!}, 412, each pro-
cessor connected to the X and Y executive buses is

comprised of a standard processor module and an exten-
sion module which extends the processor module and
adapts it to a particular function to which the processor
is to be dedicated.

A standard processor module 500 is illustrated in
FIG. 5, by way of example as including a port control
unit 502, a CPU 504, a 4lt)< 16 RAM program memory
506, an Mix 16 resident executive ROM program mem-
ory SDB. and a 4-KX l6 scratch pad memory store 510 all
interconnected by a 16 bit internal data bus 512. The
port control unit 502 provides connection to the X bus
through a 16 word X inport stack 516 and an X outport
stack 51?. Connection to the Y bus is through a 16 word
Y inport stack 518 and a 16 word Y outport stack 519.
The inport stacks 516, 518 each buffer a 16 word data
packet as a packet is transferred from the bus to the port
control unit while the two outport stacks 517, 519 buffer
a 16 word data packet as the packet is being transferred
from the port control unit to one of the executive buses.

The CPU 504 provides a basic data processing capa-
bility and may have its instruction set extended for
special data processing functions by an extension mod-
ule which connects to the standard processor module
500 and dedicates the standard processor module 50010
a particular processor type.

The 4K scratch pad memory store 510 provides stor-
age for a large number of system variables and permits
different sections or pages thereof to be dedicated to
particular processes or programs. This eliminates the
need for much of the time consuming process of storing
process variables for one process or program whenever
it is interrupted by another process or program. A basic
REX program memory 508 is implemented in ROM to
provide on the standard processor module 500 basic
executive service functions such as a bootstrap startup
program functions, diagnostic analysis, and communi-
cation over the executive buses. The 4-KX 16 RAM

program memory 506 permits the standard processor
module 500 to receive and store additional program
data from other sources such as disk fl on an overlay
basis.

The standard processor module 500 is a complete
computer constructed on a single board. When aug-
mented by one of the several extension unit types, it
operates as a processor on the X and Y executive buses.
The standard processor module 500 serves as a self-con-
tained functional node in an array of such units inter-



0037

4,625,081
15

linked via the two independent, very high speed bidi-
rectional X and Y data buses. The X and Y buffered

data ports operate asynchronously relative to the stan-
dard processor module 500 itself. With some exceptions,
a full instruction cycle of CPU 504 is 133 nanoseconds,
including all accesses to program memory, working
registers, port input/output buffers stacks and scratch
pad memory.

All standard processor modules connected to the
main X and Y buses are logically isolated therefrom by
the logic of the port control unit 502. lnterprocessor
transfers are effected in packets of 16 I6-bit words,
moved between respective output and input stacks at
the instantaneous rate of one word per instruction cy-
cle. Including all overhead, each X or Y main bus in the
standard processor module array can maintain an aver-
age data rate of about 40 million hits per second. The
physical identity of a standard processor module is de-
termined by a 7-bit code permanently wired into each
connector (permitting a maximum of 128 boards of all
types on the main bus). For communications between
processors, a logical bus identification (BID) is used
within packets and subsequently translated to the ap-
propriate physical BID immediately prior to packet
transfer.

The real time executive -I-08 for the T bus 416 shown

in FIG. 4 is illustrated in greater detail in FIG. 6. The
real time executives 408 and 406 are essentially the same
except that by a strap selection option one is designated
to control the T bus 416 and the other the S bus 414.

Furthermore, except for the addition of a small amount
of bus control circuitry such as synchronizing crystal
clock signal generators, the real time executives 496,
408 are the same as the real time processors 410, 412.

Referring now to FIG. 6, the real time executive 408
includes a standard processor module 602, a real time
processor extension unit 604, and an internal transfer
switch 606. The real time processor extension 604 con-
nects to the standard processor module 602 by the 16-bit
internal data bus 612 of standard processor module 602
and includes 24K words of additional program memory
614, 64-K words of additional data memory 616, and a
direct memory access (DMA) controller 618. The data
memory 616 includes a 1K. word section 620 which is
dedicated as a DMA control memory for the DMA
controller 618. This section 620 stores buffer descriptors
for use of DMA controller 618 in executing data trans-
fer operations.

The DMA controller 618 operates on a stand-alone
basis to transfer data between selected channels of the S

and T buses and selected system storage locations such
as records within magnetic disk files. The DMA con-
troller 6l8 is coupled to the internal data bus 612 and by
DMA channels 620 to the internal transfer switch 606.

DMA controller 618 is also coupled to communicate
CPU interrupts to the standard processor module 602 in
order to selectively interrupt the CPU of the standard
processor module 602 as necessary to obtain communi-
cation over the X and Y executive buses.

The internal transfer switch 606 includes a DMA

channel interface 624, port command memories 626 and
512 wordx 16 bit 5 and T bus buffer stores 628. 630.
The internal transfer switch 606 is similar to the external

transfer switches 402, 404 (FIG. 4) and operates to
transfer data between selected frame slots on the X time

division multiplexed S and T buses 414, 416 and selected
DMA channels 620.

10

20

25

30

35

45

55

65

16
Referring now to FIG. '7, the interactive services

subsystem 252 includes an interactive services executive

702 coupled to control an 3 bit parallel poled bus desig-
nated U bus 704 and an interactive services executive

706 coupled to control an 3 bit parallel poled bus desig-
nated V bus 708. The two interactive services execu-

tives 702, 706 and their respective buses 704, 708 pro-
vide redundant ooupling of data information between
the X and Y executive buses and the various input/out-
put devices of the interactive services subsystem 252.
By way of example, these devices are shown to include
the serial channel controllers 254, 255 which interface
the U and V buses to the 16 channels 256 and the 16

channels 257 respectively. As shown in FIG. 2, these
channels connect in turn to the RS 232 distribution
channel 260.

The U and V buses are also shown as providing a
redundant coupling to a magnetic tape controller 714
which in turn couples through a magnetic tape format-
ter 716 to two magnetic tape drives 718, 720. The [/0
devices connected to the interactive services subsystem
252 have been illustrated by way of example and partic-
ular I/O devices can be added to the subsystem or de-
leted in accordance with the objectives and require-
ments ofa particular configuration ofa telephone voice
service system 100 in accordance with the invention.

The interactive services executive 702 includes a

standard processor module 724 and an interactive ser-
vices subsystem bus extension unit 726.

Referring now to FIG. 8, the interactive services
subsystem processor extension unit 726 includes a mi-
croprogrammed interactive bus controller 802 which
couples to the U bus 704 and V bus 708 and is selec-
tively operable to control the U bus 704. The interactive
bus controller 302 couples to an interrupt FIFO store
804 which in turn couples interrupt requests to the CPU
of standard processor module 724 to control the transfer
of data between a 64ICX 16 data memory 806 and the
executive X, Y buses. The data memory 806 is parti-
tioned to include a 4K poling list which is coupled for
communication of buffer and controller descriptors
with the interactive bus controller 802 and a 60K data

memory section which is coupled for communication of
I/O data with the interactive bus controller 802. Data

memory 306 is further coupled along wth a ZDKX 16
program memory 308 to the internal data bus 812 of the
standard procmor module ‘T24 to which the extension
unit 726 connects. The program memory 808 includes a.
l2K>< 16 program memory store 810 composed of ran-
dom access memory for receiving overlay programs
and an 8l{><16 extended resident executive ROM 812

storing process programs which are specifically related
to the interactive services subsystem.

Referring now to FIG. 9, the information processing
system 250 includes in addition to the interactive ser-
vices subsystem 252, the real time subsystems 1-4 902,
an executive services subsystem 904, an information
processing subsystem 906, and a file services subsystem
908. The executive services subsystem 904 includes the
two 16-bit parallel executive services main X and Y
buses 912, 914 respectively, an executive services pro-
cessor 916 coupled to control communications over the
X bus 912 and an executive services processor 918 cou-
pled to control communication over the Y bus 914. The
executive services processor 916, which is substantially
identical to processor 918 except for connection to
control X bus 912 instead of Y bus 914, includes a stan-
dard processor module 920 and a bus controller exten-

0037



0038

4,625,081
17

slot: 922. The dual X and Y bus arrangement provides
redundancy in the event of a failure associated with one
of the two buses 912, 914. However, the two buses are

operated independently of each other and carry sepa-
rate, not redundant data. However, in the event of a
failure of one of the buses 912, 914, the other connects
to all of the subsystems of the information processing
system 250 and can carry the data associated therewith.

The executive services subsystem 904 manages the
interprocessor communications and that part of the
system software that is responsible for systemwide re-
source and activity management.

Referring now to FIG. II), the bus controller exten-
sion 922 includes a W port 1002 which connects to the
particular X or Y bus which is being controlled. W port
1002 is controlled by a microprograinmed packet
switcher IBM which poles the data output ports con-
nected to the controlled executive bus and upon finding
a port with a 16-bit packet stored therein awaiting deliv-
ery, receives the logical address stored in the first 7 bits
thereof and uses the logical address to access a 4KX 12
control memory 1006 which stores a table converting
the logical address to a physical address corresponding
thereo. The microprogram packet switcher 1004 then
tests the indicated physical address input port for avail-
ability to receive the packet of data. If available, the
packet is transferred. If not available, the packet to be
transferred is queued in a queue of processors attempt-
ing to transmit to the busy recipient. If the processor
will not accept any packets, the job services and man-
agement program (JSAM) determines whether a failure
has occurred and if so invalidates the symbolic and
logical identities of the processors stored in control
memory 1006. This has the effect of logically removing
that processor from the system.

The bus controller extension 922 also extends the

storage capacity ofthe executive services processor 916
by the addition of a 16K>(l6 program memory 109%
and a IGKX 16 data memory 1010. A 16bit internal data
bus 1012 interconnects the components of the bus con-
troller extension 922 and to each other and with the

standard processor module 920.
Referring now to FIG. 9, the file services subsystem

908 provides the primary high capacity permanent stor-
age media in the form of one or more disk drives 930,
932. The file services subsystem 902 includes at least
two disk data processors 934, 936 which interface the
disk drives 930, 932 to the X and Y executive buses 912,
914. The disk data processors 934, 936 receive data
access requests for transfers of data over the eitecutive
buses and satisfy those requests by transfers of data
packets between the disk drives 930, 932 and requesting
processes over the executive service buses 912, 914.
Each of the disk data processors 934, 936 includes a
standard processor module 938 and a disk controller
extension unit 940.

Although not separately shown. the disk controller
extension unit 940 provides a 4KX 16 PROM for pro-
gram memory for physical initialization of the disk data
processor 934, wakeup processing, and the disk control- 60
ler microprogram. An additional l2K>(l6 words of
RAM program memory are made available to augment
the RAM program memory on the standard processor
module 938. The RAM program memory of the disk
data processor 934 is used for transient programs (infre-
quently used disk logical I/O routines), file manage-
ment programs, and special purpose disk data process-
ing programs such as the message basket maintenance

0038

25

45

65

18
programs, the SYSDISK programs, the system file
maintenance programs. Any unused RAM program
memory is available for general purpose programs that
can run in any delta processor with sufficient program
memory, scratch pad, and data memory resources.

The disk controller extension unit 940 further in-
cludes 64K X 16 words of data memory, all of which is
acceptable by programs executing in the disk data pro-
cessor 934. The disk controller extension unit 940 and

the data memory therein provides a direct memory
access DMA interface for the disk drive control logic.
The disk data processor _934 provides standard data
memory management routines and deals with blocks of

data memories of up to 4K words in length. Disk data
blocks longer than 4-K words are supported by the data-
chaining features of the DMA interface and of the REX
I/O service routines of the disk data processor 934. A
buffer controlled block within the data memory lists the
areas allocated to buffer the disk data blocks. Disk data

buffers are maintained as a transparent "cache" memory
for the data accessible on the disk drives attached to the

disk data processor 934. Disk data process buffer man-
agement routines return unused buffer space to the data
memory master only when the data in the buffer is no
longer valid or when available data memory is not suffi-
cient for current demand. Unused buffers are main-

tained in a queue, the first entry of which is the least
recently used buffer for cache management purposes.

A physical record is a minimum unit of data accessed
by the disk data processor 936. A physical record con-
tains either two or three fields for identification and

information storage, namely a count field, a key field
(optional), and a data field. A gap between fields allows
the disk data processor 934 to operate on the key or data
fields after verifying the identity of the physical record.
The data available for processing by the disk data pro-
cessor 934 programs other than the disk controller mi-
croprograin is called a block, and is contained either in
the data field alone or in the combined key and data
fields. A block may be in one physical record or may be
written across track boundaries in two or more physical
records. A third unit of data is the logical record, which
may be either part or all of a block or may be a series of
blocks chained together by pointers. Programs outside
the disk data processor 934 can act as only logical re-
cords, but all such accesses are translated into refer-

ences to blocks within a specified area of the recording
medium. On any initialized storage medium, the label
record contains access information for a pack directory.
The contents of the pack directory are records that
describe the unused area of the pack (available tracks)
and the separately allocated areas, which are referred to
as data sets. The record in the pack directory that de-
scribes a data set is called the "data set label''. It defines

the characteristics of the data set and gives the location
of two separate areas. The main area is the data area and
contains the data blocks. An optional control area con-
tains access and resource information that is automati-

cally maintained by the disk data processor 934- pro-
grams and is only indirectly available during logical
process of the data set. Each area is described in terms
of the physical and logical organization of information
in it and its location on the storage medium. Locations
are defined in terms of extents, each of which is a con-

tinuous set of tracks. Access requests are always by
block or track number relative to the start of the data

set. Disk data processor programs translate the relative
requests to the proper track and the proper extent.



0039

4,625,081
19

The information processing system 906 includes at
least two general purpose processors 942, 944 which
provide a general multiprocessor data processing capa-
bility. For example, system accounting and administra-
tive processing tasks would be assigned to the general
purpose processors 942, 944. The general purpose pro-
cessor 942 is exemplary of these processors and includes
a standard processor module 946 with a general purpose
extension 948 coupled thereto. The general purpose
processors 942, 944 provide program and data memory
for executing system utilities that may be executed in
any processor with sufficient memory resources. In
addition, each general purpose processor defines one or
two virtual machine types for execution of high level
source language programs under a virtual machine in-
terpreter f\/MI). A kernel of standard processor module
programs supplements the virtual machine interpreter
to provide proper interfaces between the virtual ma-
chines and the actual information processing system 250

The general purpose extension unit 948 provides
additional program memory and a standard as well as an
extended data memory interface. The general purpose
extension unit 948 executes the standard data memory
access instructions for the first 64K words of attached

data memory. Data memory access registers and error
detection and correction logic are provided as for other
extension boards. Data memory itself is on separate data
memory extension units 950. Access to the whole of the
attached data memory is provided by extended data
memory extension instructions. These allow 22 bit word
addressing via the standard processor module address
registers. The general purpose pocessor 942 provides
standard data memory resource management routines
for the first 64K words and special routines for the rest
of the data memory. Each general purpose processor
may include up to 3 megabytes of data memory.

SYSTEM ARCI-IITECTURE

A. System Summary
The system 100 is a general purpose, multi-media

computer system that uses fail-safe architecture to pro-
vide very high levels of availability and uninterrupted
processing. Continuous operation for extended periods
is assured, with no down time normally required for
failures, maintenance or system modifications. The sys-
tem lllli is a tightly-coupled, distributed network of
multiple high speed processors, interconnected by a
high speed packet switching network, and a fully dis-
tributed fault tolerant operating aystem that together
provide a flexible processing system. The system 106
can be used in environments which mix real-time, com-
putational communications, interactive and transaction
processing with large numbers of peripheral devices
and storage units. The system 100 provides for a flexible
growth path which is independent of the initial system
configuration.
13. System Architecture

A Delta system consists of five functionally unique
subsystems; executive services, information processing.
file services, interactive services and real-time. Each
subsystem contains at least two identical processors,
with the capability to expand individual subsystems as
required up to a maximum of 32 processors per system
100. This unique architecture provides maximum flexi-
bility in supporting multiple concurrent applications.

There are three different perspectives in viewing the
architecture of the Delta System. The physical system
has a hierarchical structure composed of subsystems,

10

15

25

30

35

45

50

55

65

20

plus their devices, each incorporating specialized pro-
cessors, functional characteristics and organizations.
The functional organization includes a hierarchical
network of system processes that provide an open-
ended environment for large numbers of concurrent and
simultaneous application processes.

The user system designer's structure provides a net-
work consisting of a rnulti-processor host system that
executes the machine code of the hardware processors
and a number of idealized virtual machines that execute

a higher level source-language oriented instruction set.
The following sections describe these aspects of the

system.
C. The Physical System

The system 1110 consists of from eight to 32 proces-
sors, together with a range of controllers, peripherals
and storage modules. Each processor is a fully indepen-
dent, high-speed 16-bit machine having a non-micro»
coded architecture and high-speed program memory. A
maximum of 7.5 million instructions per second can be
executed with an instruction cycle time of 133 nanosec-
onds. The instruction set contains over 34-0 instructions.

Each of the five subsystems within the system 10!}
consists of customized processors suited especially for
the functions of that subsystem. Each processor type
consists of a common processor to which are added the
following extensions: extra memory, microprocessor
based device controllers, interfaces to other system bus
structures, and extensions to the basic processor archi-
tecture. Although the type of processors varies by func-
tion, basic elements of the architecture are common to
all processors.

The management services needed to run a processor
are common to all processors and are hard-wired into
the processor. Each processor also has a finnware-resi-
dent executive system (REX) which organizes and man-
ages the resources of the processor on behalfof both the
system and the active processes within the system. The
resident executive provides a wide range of functions
ranging from wake-up diagnostics, interrupt handling.
timer management, to input/output services. In addi-
tion, each processor type has a customized extension to
the executive, which manages the individual nature of
the various processor types.

To be able to communicate with other processors in
the system 100, each processor has a pair of input/out-
put ports that interface it to the packet-switched main
interprocessor bus structure. Both buses 912, 914 of the
pair are active, providing dynamic load sharing,
thereby increasing system 100 utilization and through-
put. Each provides a peak transfer rate of 120 Mbps and
a sustainable rate of 4-0 Mbps.

To eliminate contention problems that can exist in
multiprocessor systems based on global memory re-
sources, each processor contains its own memory. Pro-
cessors within the Information Processing Subsystem
906 can have from 500K-Bytes up to 8 M-Bytes ofmem-
ory. All other proecessors may contain 500K-Bytes of
memory. Independent processor upgrades can take
place unrestricted by arbitrary system considerations.
The total amount of memory available in a Delta Sys-
tem can be extremely large.

A similar philosophy exists within the processor ar-
chitecture. Rather than have a small set of machine

registers shared between the various activities and
events contending for the use of the processor, with
wasteful saving and restoring operations between every
change, each processor is provided with over 4000

0039



0040

4,625,081
21

scratchpad registers to be allocated among multiple
resident tasks.

Each of the five subsystems has sufficient resources
to ensure survival of any single-point failure within
itself, as well as many multiple-point failures. The sys-
tem 100 as a whole is able to survive such occurrences.

The executive services subsystem 904 (E88) manages
the inter-process communication (IPC) network and
that part of the system software responsivle for system-
wide resource and activity management. Executivc
services subsystem 904 consists of two executive ser-
viccs processors 916, 918. Each executive services pro-
cessors 916, 918 controls one of the two interprocessor
buses 912, 914. A bus controller extension 922 in each

executive service processor 916, 918 includes a high-
speed microprogrammed switch controller 1004 that
transfers packets directly between the ports of the vari-
ous attached processors. This intelligent packet-
switcher 1004 translates logical packet addresses to
physical destinations in the system, reports transfer
failures to higher levels in the system, and optimizes
traffic flow between system components. In addition to
the two executive services processors 916, 918, execu-
tive services subsystem 904 consists of the two interpre-
cessor buses, the dual double-buffered ports in each
processor, and the packet transfer service provided by
the resident executive in each processor.

The executive services subsystem 904 bus controllers
916, 918 use adaptive high-speed polling techniques to
achieve high sustainable data transfer rates. This mecha-
nization enables the system 100 processes to communi-
cate via logical physical-location independent ad-
dresses.

The information processing subsystem 906 (IPS) is
the physical host to the ideal machines used for most

application software within the system 100. It is physi-
cally composed of at least two. and as many as 26, gen-
eral purpose processors 942, 944.

The information processing subsystem 906 provides
' the hardware and software capabilities needed by the

application software to customize the system 100 to the
user's requirements. The information processing subsys-
tem 906 supports execution of programs written in Pas-
cal.

Each general purpose processor 942, 944 in the infor-
mation processing subsystem 906 can have up to 8
Megabytes of memory and host up to 255 ideal ma-
chines, each of which is allocated real memory and
other resources as required by an application program.
If a processor fails, programs can be rescheduled auto-
matically in alternate hardware rmources. This service,
provided by the executive services subsystem 904 ap-
plies to all other software processes running in other
system 100 processors.

The file services subsystem 903 (FSS) is responsible
for the management of the disk storage media and is
composed of at least two and up to 26 disk data proces-
sors 934, 936 (FSPs) and their associated disk drives
930, 932. At least two of the storage volumes attached
to the file services subsystem 908 contain the system
database, which is automatically maintained in dupli-
cate. (This security service is also available to any disk
or magnetic tape file.) The disk data processors 934, 936
contain microprogrammed disk drive controllers and a
high-speed data channel 952 to manage traffic to and
from the disks. Software in the disk data processors 934.
936 includes the physical input and output disk han-

5

20

25

30

35

45

50

0040

22

dlers, as well as the logical input and output processes
that interface with the rest of a system 100.

The disk data processors 934, 936 support any Con-
trol Data Corporation SMD or equivalent storage mod-
ule. Certain modules permit dual-port attachment to
two controllers.

The interactive services subsystem 252 (ISS) manages
the transfer of data between processes and various pe-
ripheral devices that may be attached to a Delta Sys-
tem. The two dedicated processors of an interactive
services subsystem 252, the interactive services execu-
tives 702, 706 (ISXs), each manage a separate interac-
tive bus 704, 708. Attachable devices include magnetic
tape drives 718, 720, communication data channels,
tenninals, and printers. Many devices can be attached to
the interactive services subsystem 252. For example, up
to 992 data terminals can be configured. Furthermore,
multiple interactive services subsystems can be config-
ured in a system 100, each using its own processor paid
and interactive bus pair, allowing nearly 4000 devices to
be configured.

As mentioned, each interactive services subsystem
252 controls a separate interactive services bus pair, to
which is attached dual-ported fully-buffered controllers
for the various peripheral devices. Due to the sporadic
nature of the data transfers between interactive devices,
the interactive services executives 902, 906 use an
adaptive polling technique and a multiplexed DMA
channel controlled by a separate, independent micro-
processor in the interactive services executive extension
726. The microprocessor transfers data between mem-
ory buffers and devices at a rate determined by the
individual demands of the various attached devices.

The real time subsystem 230 (RTS) provides the user
with the unique capability to both switch and process
real-lime continuous data streams. Each real time sub-

system is comprised of a pair of dedicated processors,
the real time executives 406, 408 (RTX); a pair of syn-
chronous time division multiplexed (IDM) parallel
buses 414, 416 (each controlled and managed by a real
time executive); a set of external transfer switches 402,
404 (ETSS) which map pulse-coded modulation (PCM)
audio and high-speed synchronous data channels to the
buses; and two or more real time processors 410, 412
(RTPs) which provide the capability to process data
and effect data transfer between the external channels

and other processes within the system 100.
Up to 1260 channels can be connected to each real

time subsystem 230 of which 430 can be active simulta-
neously. Data on such channels is normally PCM voice
or similar, and bandwidth through the switch can be
dynamically allocated to channels with higher require-
ments, allowing up to 60 MHz if necessary. Each exter-
nal transfer switch 402, 404 permits the summing of
output channels, permitting conferencing of multiple
voice channels.

Real time information can be acquired or generated
by the system 100 through the real time processors 410,
412 to perform tasks such as signal compression/decom
pression.

Up to four cross-connected real time subsystems 230,
238 can be configured in a system 100 to match applica-
tions requiring over 5000 real time attachments.
D. System Functional Organization

Functionally, the different processor types, memory,
and peripherals may be viewed as a “pool” of manage-
able resources to which can be allocated various soft-

ware processes that together support an application.



0041

4,625,08 l
23

The software processors are grouped into five levels in
a hierarchical structure where each level supports the
higher levels. The five levels are defined as follows:
Level 0, primitive functions provide basic machine
functions and interprocess communications. Level 1,
utility processes, provides llle services, device handlers,
and transient functions. Level 2, system functions, pro-
vides operating system functions such as job scheduling,
file management, etc. Level 3, user applications, repre-
sents application programs developed by users. Level 4,
subordinate processes, provides subroutines and subor-
dinate processes used by application jobs.

Levels 0, 1 and 2 collectively are referred to as the
kernel system. Levels 3 and 4 are associated with appli-
cation software. Within the kernel, and responsible for
managing each processor, is the resident executive
(REX). Each processor in the system has its own REX.
Also provided at this functional level is a method of
communication between logically identified software
processes which may reside anywhere in the system.
Communications between all processes is through dis-
crete packets on the high-speed packet switching net-
work. Each pack or set of packets is logically addressed
to a destination process. A transmitting process may
request a response/acknowledge packet to be returned.

These process levels are ach described in greater
detail in the following paragraphs.

Level 0, the primitive function level of the system 100
is composed of the following: (1) basic hardware capa-
bilities of the system 100 processors, including the con-
trollers, interfaces and memory extensions provided by
the various extensions types; (2) functional enhance-
ments and management services provided by REX in
each system 100 processor; and (3) the interprocess
comrnunications services accessed via REX in each

processor, and managed system-wide by the executive
services subsystem 994.

Level 0 supports the set of software processes that
constitute both the kernel system software and what-
ever application systems are running in the system 100.
To the system designer, the logical environment pro-
vided by Level 0 is in many ways similar to that pro-
vided by the system executive of a more traditional
single-processor machine, in that it provides the ability
to run a set of inter-communicating processes that can
be built into various operational layers.

Level 1 processes include such functions as device
handlers, file services, specific device controllers, and
transient processes invoked and controlled in the same
manner as device controllers. They provide logical
interfaces and handlers to specific hardware attach-
ments, and therefore their location is fixed in the system
with access controlled by higher-level system software.
If a new device type is attached to the system a process
at this level must be written to logically interface the
new device into the system. Communications access to
Level 1 is granted only by Level 2 processes; once
granted, packet transfers are direct until the communi-
cations link is terminated.

The major processes of Level 2 system functions
form the operating system of the system 100 to which
applications and other system processes make requests
for services such as ownership of devices, opening and
closing of channels, and file management. The logical
addresses of these processes are known globally to all
users so that Level 2 functions provide the resource and
activity management on a system-wide basis, together
with access control for Level 1 functions. Level 2 func-

0041

I0

20

25

30

35

45

St}

55

65

24

tions include the following: job scheduling and alloca-
tion, device management, system directory and volume
management, system event processing, and system man-
agement.

An application from Level 3, applications job super-
visors, may consist of a single process or a complete
network of concurrent processes. Each job and job
supervisor is created as a result of an external or timer-
generated stimulus, and is terminated when all process-
ing requirements have been met or prove impossible to
meet. Whether simple or complex, each invocation of a
job is given a unique identifier called ajob number. For
each job number there is typically a unique Level 3
process invoked, termed the “primary process". The
Level 3 job supervisor is the mechanism which tailors
the system 100 to a particular job and is the main envi-
ronment in which the systems designer work. The
Level 3 job could invoke the existence of (Level 1}
transient processes during its lifetime to provide special
services. A job could also invoke another Level 3 pro-
cess, for example where complex checkpointing and
fast response to failure are required.

In some instances it is possible for a Level 3 applica-
tions process to act as a host for subordinate processes.
For example, if the Level 3 task is the program develop-
ment system (PDS), the invocation of the editor or

compiler, which runs under the program development
system, is an example of a Level 4 process. The Level 4
process communicates directly with its supervisor with-
out recourse to the interprocess communication net-
work as it exists in the machine space allocated to the
supervisor process.

At a given time, a Delta System may be supporting a
large number of application jobs resident in multiple
application processors and/or co-resident within the
same applications processor. In this multi-process, si-
multaneous processing environment. each job is a sys-
temwide network of level 3 and 4 processes, identified
by a unique job number, making use of level 2 and level
1 system servic as required. In a command and con-
trol application, for example, initiation of a single job
process network could link a terminal with a voice line
and a set of files to provide a single operator with a
dedicated command console. Ifthe system supported 20
such consoles, 20 similar concurrent job process net-
works could exist. (Note that common program code
would be shared by thejob processes wherever possible
for efficient use of memory resources.)

Another example will help to illustrate some system
components involved in the management and support of
applications. Mixed with the main tasks of the system
100 can be terminals configured as program develop-
ment stations for ongoing system development. An
operator on one of these terminals can invoke a pro-
gram development system to be attached to the termi-
nal, providing interactive editing and program source
file compilation, plus a full range of utility functions.

A sequence of events that might occur during the
operator's interface with a program development sys-
tem terminal is as follows:

I. The "RESET" character from the unassigned ter-
minal is sent to the terminal handler (Level 1) as a mes-
sage.

2. The terminal handler, recognizing that the terminal
is currently “un-owne " by any job, sends message to
the terminal prompting the operator for the initial log-
on sequence.



0042

4,625,081
25

3. Upon receipt, the terminal handler sends the iden-
tity of the terminal and the operator-entered log-on
sequence to the system device log-on process (Level 2).

4. The system device log-on process consults its file
and finds that this terminal permits log-on to the re-
quested application system by a qualified user.

5. System log—on sends a “Create Job Request" to the
system job scheduler (Level 2), including the terminal
identity and the entered identifier of the desired applica-
tion system, in this case program development system.

6. The job scheduler locates the program develop-
ment system (Level 3) descriptor in the system program
library and finds within the system 10!} a location that
provides the appropriate resources for the program
development system process to execute (if possible,
using an existing copy of the program development
system program code). An idealized machine is created,
allocating unique memory to the job and access to the
program code. Then the program development system
job is with its own unique job identity. The
terminal ID is passed to the program development sys-
tem job as part of its start-up parameters.

7. The program development system then requests
ownership of the terminal from the system device man-

10

20

ager (Level 2) which is responsible for management of 25
all attached devices (including read-tinie channels).

8. The system device manager records the owner of
the terminal in its tables, and informs the tertrlinal han-

dler of the job number of the program development
system that now owns the terminal.

9. A logical channel is thus established between the
program development system and the terminal via the
terminal handler (see FIG. 9). The system device man-
ager is no longer involved until the terminal is termi-
nated and released by the program development system.

10. Via interactive commands from the user, the pro-
gram development system can initiate utility programs
to run within its allocated resources, for example screen
editors, compilers, assemblers, and linkers

Two important principles should be noted from these
examples, (1) The physical location of a process within
the system 100 multiprocessor environment is not criti-
cal to the operation of the system and (a) all communi-
cations between system and user processes is by means
of packet exchanges, even if processes happen to be
co-resident in the same processor. Most of the Level II
system functions and services are performed by a resi-
dent executive (REX) within the standard processor
module of each system processor. A ROM copy exists
in each processor to provide basic services to effec-
tively manage the processor within which it is resident.
The services include: interrupt handling, event manage-
ment. timer managemt, memory management, pro-
cess management, status monitoring. I/O service func-
tions, list processing, inter-process communications,
traps, wake-up and diagnostics.

These services together with the hardware provide
the primitive functions available to the privileged pro-
cesses in each processor. Note that REX provides ac-
cess to the executive services subsystem 904 which
mechanizes the dual inter-processor buses 912, 914 that
connect the multiple processes of the system 100. There
is also a unique extended resident executive (EXRBX)
for each type of processor. EXREX extends the ser-
vices functions of REX to include features peculiar to
each of the processor types. These include: physical
initialization, process type model and version indica-
tions, management of extended memory, mechanization

30

35

45

50

55

65

0042

26

of processor peculiar functions, and interface with any
auxiliary microprocessor.

At Level 1 the device handlers effect the logical and
physical I/O and control of the various devices that can

be attached to the system 100, including: disk drives,
magnetic tape units, line printers, smart terminals, dumb
terminals. voice channels, operator stations, remote line
concentrators, and discrete signal controllers. Device
handler processes are intimately connected with the
hardware they control and reside in the subsystem to
which the devices are attached. Initial contact with a

device handler by an application is via a Level 2 system
process.

The Level 1 system functions also include utilities
and transients which control various system and user
processes such as voice compression and record; voice
decompression and playback; spooler, etc. These pro-
cesses may reside within either the host space or idea]
space of the system lllll. Transient processes are created
on demand and are dedicated to a particular job. Resi-
dent processes are shared. Creation, if appropriate, and
access rights. are effected via Level 2 processes.

Among the Level 2 system functions job scheduling,
allocation and monitor (JSAM) is a major system pro-
cess that manages the allocation of processes to avail-
able processor resources. JSAM is responsible for creat-
ing jobs, monitoring the status of resources, recovering
jobs when resource failure occurs, and removing jobs
from the system when they tenninate. System device
manager (SYSDEV) receives requests to ownership of
any attached device by a job. SYSDEV manages the
allocation and overall configuration of the system de-
vices. Once the allocation has been made, the job own-
ing the device or channel communicates directly with
the level device handler. System directory manager
(SYSDIR) performs the management of all permanent
storage resources including the maintenance of user
data sets on both magnetic tape and disk, either on
mounted volumes or off-line. Once linkage to a data set
is made by a job, communications are between the job
and the Level 1 logical I/0 handler of the particular file
service processor responsible for the volume. Access
and control protocols for both datasets and devices are
common at the user level (Level 3). System device
log-on manager (SYSDLO) receives any activity on
devices not owned by a particular job from the handler
for that device. By consulting its tables, SYSDLO can
decide what action should be initiated when a given
combination of extemal, unsolicited stimuli occur. This

may result in a request to JSAM to start up a job in
response to the event. Various start-up parameters are
passed to the job to link it to the external events which
it has been created to service.

System monitor (SYSMON) provides the normal
system management functions, including general system
monitoring, reporting, and housekeeping. SYSMON
has many privileges available to it that are not available
to Level 3 supervisors. As such, a stricter log-on proce-
dure is used to gain access to this system. SYSMON
maintains a dynamic short-term database of recent sys-
tem activities. SYSMON permits activation of Level 3
supervisors to provide qualified terminals with access to
all or part of the dynamic database. Such Level 3 pro-
grams conform to the requirements of the application
system being supervised. Still another Level 2 system
function, system event logger (SYSLOG), maintains a
database of all logged events in the system 100. This log
can be used to generate application and system related



0043

4, 625,081
27

information. SYSLOG dates and time stamps each
event and stores the event record on a disk dataset.

Level 3 provides the system application programs. A
developed application, when scheduled by JSAM, is
given a unique job identification during the lifetime of 5
its invocation. A large number of identical jobs can
coexist to service multiple users and a variety of termi-
nal devices. A job can consist of single or multiple pro-
cesses (all bearing the same job ID) and a job can dy-
namically create and destroy processes during its life-
time (typically, transients at Level 1). The individual
processes of which a job is composed (minimum of one)
can be distributed across the system IIJIJ. The program
development system (PDS) is an example of a Level 3
program and provides a complete interactive program
development system that provides a single-user envi-
ronment for the development and testing of application
programs. Multiple program development systems can
be run concurrently on the system rm, alongside the
main application jobs of the system. Included in the
program development system are several Level 4 pro-
cesses which support the program. These include a
screen editor, a Pascal compiler, an SPM assembler, a
linker, a debugger, and various utilities.
E. System Program Architecture

Some Level 1 and 2 processes can exist in any subsys-
tem processor. When any process is to be initiated by
the kernel system, its resource requirements are first
analyzed, and the system initiates the process in what-
ever resource is available and appropriate.

Level 3 job supervisors, however, represent the
major processes of applications. As such they normally
reside only in the general purpose processors 942, 944 of
the information processing subsystem 906. A consider-
ation of the program architecture of the system 100
explains why this occurs.

Processors comprising the system 101] are designed to
be task specific. The system 100 processors have a com-
mon instruction set as well as a type dependent super-
set. The individual functions may include access to a
special set of control registers, a small set of extra in-
structions related to a direct memory access (DMA)
channel, or a set of special functions. In brief, the pro-
gramming environment within all processors controls a
main core of identical capabilities with subsets of special
capabilities unique to each processor type.

The instruction set of the system 100 processors opti-
mize execution speed by using a l6-bit instruction. This

2|]

25

30

35

45

.instruction is both a macro-instruction and a micro-

instruction, in that a machine cycle and an instruction
cycle are nearly always equal. A very close relationship
exists between each bit in the instruction and the actions

within the processor hardware, although there is a layer
of translation. This results in assembler generated code
producing very fast programs, which are ideal for pro-
cesses rponsible for real-time control and manage-
ment functions such as exist in the real-time subsystems
992, interactive services subsystems 252 and file services
subsystem 908. The system lilfl instruction sets provide
hardware control for both processors and various at-
tached devices.

Wherever possible, Level 3 processes in the system
100 are written in a high-level systems programming
language both for ease in the implementation and main-
tenance of complex applications, and excellent runtime
integrity. However, to compile high-level programs
into low-level instructions codes which will run along-
side Level 0, 1 and 2 processes in an unprotected ma-

5!]

55

65

0043

28

chine environment requires careful implementation by a
skilled user.

The system 100 provides the user with a fault tolerant
environment in which to run applications. In a typical
system, program development occurs along side the use
of the system for its prime and, presumably, high-availa-
bility tasks. New applications programs often incur
run-time errors. Active jobs have to be both protected
from having their code or data destroyed by other con-
current jobs, and prevented from inadvertently modify-
ing other processes. Application program protection is
assured with the system 100.

Two features which satisfy the above requirements in
the general purpose processors 942, 94-4 are:

1. A large memory space of up to 3 Megabytes per
general purpose processor is provided for loading pro-
gram and data segments of processes, togehter with a
mapping system that allows the memory space to be
assigned to processes in protected, controllable spaces.
This real memory space has a contiguous address range,
as viewed from the process to which it is assigned, but.
through the mapping scheme, physically comprises
demand-allocated, noncontiguous blocks of 4096 bytes.

2. Enhancements to the basic log of the standard
processor module (SPM) architecture allow normal
high-speed program memory (50 nsec access time) to be
used as a writeable control store (WCS). with the basic
standard processor module order codes executing like
microinstructions. This function is supported by the
addition of a hardware instruction decode table, addi-
tional instructions in the standard processor module
instruction set, and a number of extra machine registers.

These two enhancements have a beneficial effect.

Non-native instructions set can be executed in the gen-
eral purpose processors 942, 944 by loading micro-code
emulation sequences into the writable control store. An
example ofa non-native instruction set is a transportable
P-Code set which may be produced by a higher level
language such as Pascal or FORTRAN. The general
purpose processors 942, 944 and their nature instruction
set act as a host for the “ideal" machine which imple-
ments the higher level language through an "ideal"
machine instruction set. Due to the very high speed of
the host machine, the “ideal" machine instruction cycle
time is generally faster than similar 16-bit micro-coded
CPUs. In addition, the writable control store retains

flexibility for future incorporation of other non-native
(ideal) instruction sets, optimized to different task envi-
ronments. As a system 100 can incorporate a number of
general purpose processors (up to 26), it is conceivable
that different general purpose processors could be dedi-
cated to different applications each with a different
“tailor " high-level instruction set.

Programs encoded in the ideal machine instruction
set reside in the extended memory of a general purpose
processor. Each process assigned to a general purpose
processor is initially given a separate memory space to
operate in. The ideal machine instruction set of which
the program is comprised will not allow addressing
outside the range of the process’ allocated ideal address
space. Thus the process is both protected from pro-
grams in other ideal spaces and prohibited from modify-
ing any other process‘ space. It can use only the instruc-
tion set of the ideal machine, which, for non-privileged
uses, contains no method of accessing either the basic
support hardware, or other processrs in the system 100
except by restricted access to a limited set of the primi-
tive functions at Level 0.



0044

4,625,081
29

The ideal machine instruction set and the ideal mem-

ory space collectively form an idea] machine (IM). An
ideal machine provides a single user a uni-processor
environment for programs written in high-level lan-
guages, with logical separation and protection for multi-
ple concurrent processes running in other idea] ma-
chines co-resident in the same general purpose proces-
sor. From the programmer's view, the application task
is written to run in a stand-alone machine with a formal-

ized procedural interface to communicate with and use
system 100 resources resident in separate, distinct ma-
chine spaces whether in other ideal machines or other
system 100 processors. This meets the need to provide
an efficient, protected environment for application pro-cesses.

The ideal machine instruction set is a pseudomachine
code (or P-Code) derived from the P-Code originally
defined by Wirth (Institute for Inforrnatik, Zurich). The
P-Code set is an idealized instruction set for stack-based

machines, which are in turn the ideal target machines
for block-structured languages such as Algol, Pascal,
ADA, etc. These language types are the most efficient
and productive languages for implementing complex
systems.

Extended Pascal is the language supported on the
system 10!}. This is a superset of the ISO Pascal lan-
guage with an extension that interfaces to the system
100 kernel software. These extensions also enable multi-

ple Pascal processes to communicate with each other.
A single general purpose processor 942, 944 can sup-

port a large number of ideal machines, each one created
dynamically to implement a Level 3 job. Thus if the
system 100 is being used in a multi-terminal, singie-furIc-
tion application, each terminal would be owned by a
single-user job residing in its own ideal machine, with
each job responsible for one terminal. As program code
sharing occurs, and as jobs can dynamically acquire
more data space, the actual number of ideal machines
that can be accommodated per general purpose proces-
sor is application and time dependent, but 30 and -60
ideal machines, respectively, are typically low and high
figures for one general purpose processor. Thus a sys-
tem comprised ofone hundred terminals usingjust three
general purpose processors (to provide redundancy) is
perfectly feasible.

The relationships between the program, the system
100 architecture and the system functions are such that:

l. The host program spaces of the standard processor
modules (File Services, Interactive Services, Real-
Time) are considered privileged, and designing pro-
cesses to run in these machines requires a careful con-
sideration of the standard processor module and REX
architectures to ensure that system processes co-resi-
dentin this space are not affected.

2. It is feasible to write a major system task to run in
the host space at Level 3 in critical real-time jobs, as the
system software makes no specific distinction between
jobs and their relative hierarchical responsibility as
outlined in the preceding descriptions. The system 100
requires only those parameters related to the resources
the various job processes need (that is, an IM or a host
machine, and if a host machine, what type, if type-criti-
cal).

3. All of a general purpose processor's host program-
ming space is taken up by the ideal machine monitor
(IMM), which includes the P-code emulation micro-
code sequences. extension memory resource manage-
ment, I.M process management, and interface to REX

0044

ll}

20

25

30

35

45

SD

55

65

30
basic services. The IMM, together with REX and the
standard processor module hardware, for the ideal ma-
chine. The KM, in turn, is shared among the resident
P-code processes and their data spaces to form multiple
ideal machines.

Functionally, the system 100 is independent of the
relative physical location of processes. as all interpre-
cess communication is via logically addressed packets.
Processes not requiring specific hardware environments
offered by particular processor types can reside either
in the host or the ideal machine space. In particular,
processes that form the Level 2 system jobs are divided
between these areas. Processes in the ideal space are
written in extended Pascal, and each process, encoded
in P-code, resides in an individual ideal machine in a

general purpose processor 942, 944. System processes
that are critical to the overall dynamic perfonnance of
the system 100 are encoded directly to standard proces-
sor module machine code to gain extra efficiency. The
job scheduling and allocation monitor (JSAM) task is an
example of this type, and it is normally resident in an
executive services processor 916, 918. This processor
contains the inter-process communications controller
and, as JSAM is co-resident with the executive services

subsystem 904 device manager when hosted in this
processor, the reduced communication line between the
two produces an increase in efficiency.

FAULT TOLERANCE

A. Introduction

The rapidly growing volume and importance of in-
formation data requiring processed by computer sys-
tems and the attendant sensitivity of users to system
downtime was a major consideration in the system 100
design. Failsafe hardware with a highly fault-tolerant
software system was a design requirement. Added em-
phasis for system availability comes from real-time
(non-interruptable) operations with the always present
need for data integrity.

As the focal point for large volumes of independent
real-time information processing and transfers the sys-
tem 100 assumes a central role in the dynamic inter-
change of information among users. It must be continu-
ously available with no down-time for processor failure,
maintenance or reconfiguration. To this end, the system
100 has an up-time design goal of 99.997%. operating
24-hours a day, 365 days per year.

However intrinsically reliable hardware or software
elents are, failures will occur. Such failures can take
many forms, from component failure due to natural
aging, to sofware failure due to unforeseen transient
situations. Fundamental to the design of the system 100
is the ability to continue operation in spite of such fail-
ures. The system 100 achieves uncompromising levels
of system availability through its unique, designed-in
capacity to survive failure. This is not achieved through
the expensive and inefficient expedient of a fully redun-
dant "hot-standby". The distributed nature of system
100 hardware and software architecture allows the

system to automatically adapt around failed areas, while
being able to employ all resources still available.

Neither removal of failed components, nor the addi-
tion of serviceable hardware, whose serviceahility is
directly verified by the system. requires system down-
time. Failed processors and peripherals can be removed
from and replaced into system 100 without affecting its
ongoing operation. Replaced processors are automati-
cally integrated into the system’s pool of available re-



0045

4,625,081
31

sources. In a similar way new, improved or corrected
software can be introduced into an operating system
100 without requiring system downtime. In brief, a
system 100 can be reconfigured and extended in both
hardware and software without any affect on its ongo-
ing operation.

All application software can make use of the system
100's failure recovery mechanisms and redundant hard-
ware to achieve whatever level of failure response is
dictated by the applications.
B. Failure Characteristics and Effects

No system can provide 100% availability. Regardless
of the approach to fault detection, endurance and re-
covery, a set of circumstances may arise that the system

10

cannot survive. For example, a common method of l5
increasing operational availability is to have a dupli-
cated hot-standby system, that is, a system kept up-to-
date by tghe active system so it can quickly take over in
the event of failure. However. during the time required
for takeover, normally in the range of seconds or min-
utes, neither system is operational. Moreover, if the
standby system itself fails before the main system is
again operational, total failure occurs. The probability
of both systems failing may be remote, but is always
real.

A system fails when one or more components fail in
such a way that the system operational capacity falls
below designed minima. A system has not failed, that is,
it remains available, so long as design minima are ex-
ceeded. For so long as this condition exists, the total
system has not failed, whether or not one or more com-
ponent failures have occurred. System availability can
be improved by the following:

(1) Reducing the frequency of failures in system com-
ponents.

(2) Increasing the number of concurrent failures for
which the system can compensate.

(3) Reducing the time required to repair or replace a
failed component.

In the system 100, all three approaches have been
used. First, system availability is increased by increasing
the mean-time-between-failure {MTBF) of the system
hardware and software components. The use of proven
technology, automatic testing, burn-in procedures and
stringent quality control contributes toward low hard-
ware failure rates in the system 100. Typically, after
burn-in, hardware component MTBF remains very low
for an extended period of time, with a rise ultimately
occurring due to natural aging processes. Software
components on the other hand, become more reliable
with use, as all of the various states the program can
enter are exercised and any incipient errors are de-
tected, isolated and corrected.

It is generally true that if system software compo-
nents are resident and extensively used this insures high
software reliability, whereas new or infrequently used
application components typically have a higher failure
rate. To protect thr system 100 against such failures, the
"ideal" machines in which the application processes
execute are hardware protected environments, which
confine the effects of failure to the processes in the
“ideal" machines. Applications for the system 100 are
written in a structured, high-level, self-checking sys-
tems programming language that generates code limited
in scope to the ideal niacliine in which it will execute
with hardware "fences" rigidly prescribing the execu-
tion arena for the software.

20

25

30

35

45

50

55

65

32

As a further aid in reducing application software
errors, a large number of frequently exercised functions
are embedded in the system 100 software to minimize
the amount of application code required. This combina-
tion of features aids in achieving high system software
reliability and materially eliminates the possibility of
application software corrupting the system.

Second, availability of the system can be further in-
creased by designing it to be tolerant of certain sets of
faults. In the system 109 any singular hardware or soft-
ware failure can be survived by the system. Also, most
combinations of double failures and many sets of multi-
ple failures can be tolerated, depending on the relative
sites of the failures within the system.

Third, system susceptibility to failure can be lessened
by reducing the time during which any single failure
remains undetected in the system. In the system 100
extensive and frequency hardware and software check-
ing provides assurance that the occurrence of a failure is
detected quickly. Once detected, failures are immedi-
ately isolated to replaceable modules, reported, and
diagnostic tasks are initiated. If the fault proves to be
hardware, the offending element is logically removed
from the system. The nature of the fault is displayed.
and maintenance personnel can effect removal and re-
placement without disturbing other system operations.
If a transient or software fault occurs, all pertinent data
is recorded for subsequent disgnostic analysis. The
failed element is automatically returned to service sub-
sequent to passing diagnostic tests. In either case, actual
repair (replacement or return to service) seldom re-
quires more than a few minutes, and never requires
system shutdown.

The meaning of the term “system failure" must be
carefully defined when considering the Delta System
and the concept of fault tolerance. Normally, large
numbers of peripheral devices and charmels are at-
tached to the system 100. Ifa device, channel, line to the
processor, or interface fails, the user of the malfunction-
ing device perceives that the system has failed. What
has happened, more precisely, is that overall system
capability has been reduced although the system as a
whole is still available to the surviving users. Various
capabilities within the system 100 facilitate isolation of
and switching around such failures.

If a failure occurs in a processor, memory, bus, or
disk within the system 100, the system as a whole will
continue to operate. A degree of performance degrada-
tion may occur. depending upon the particular failure,
the system configuration, and the level of activity at the
time of failure. For example, if the system 101] has four
general purpose processors 942, 944. each of which is
50% loaded, and a single general purpose processor
fails, the processes that were running in the failed pro-
oessor will be rescheduled in the three survivors. Thus

the three remaining general purpose processors will be
66% loaded. This may change slightly the characteris-
tics and response times ofthe system during the time the
failed general purpose processor is being replaced.
However, if the general purpose processors had been
135% loaded. the survivors would end up with 100%
loads. This would certainly be noticeable in the result-
ing queue sizes and response times.

As the system 10!} is configured into distinct subsys-
tems, each containing multiple processors, it is possible
that more than one processor may fail, either in differ-
ent subsystems, or in the same subsystem. The perfor-
mance of the system under these multiple-failure situa-

0045



0046

4,625,081
33

tions (the probability of which is small) would be a
complex function of processor type and loading levels.

Although the system 100 uses redundant capacity to
survive failure, the utilization of that capacity fars ex-
ceeds simple hot-standby systems. Moreover, in the 5
event of a system 100 component failure, the processes
on the surviving processors are not interrupted. In con-
trast, for hot-standby schemes. all processes are sus-
pended when the failure is detected, and remain sus-
pended until takeover has been completed.
C. Fault Tolerance Capacity

Referring now to FIG. 9, there are a minimum of two
processors in any given subsystem with sufficient ca-
pacity for the survivor(s} to take on the load of any one
failed processor at the designed peak system load. Each 1
intelligent bus 912, 914 is separately managed and both
are active (that is, are used for interprocessor communi-
cation). In the event of failure of a bus 912, 914, or its
controlling processor 916, 918, the survivor provides a
single bus service adequate for the desigmspecified peak
system capacity.

As shown in FIG. ‘l, within the interactive services

subsystem 252 peripheral devices attach through dual-
port controllers to each U and V bus 704, 708. The
primary bus for each device is preassigned by system
software. In the event of either bus or ISS executive

processor 702, 706 failing, the surviving bus and bus
processor take over and provide a single bus service. If

the device controllers fails, all devices attached to the 3
device controller are lost to the syst. However, the
failed controller can be removed and replaced without
interrupting operation of other controllers on the bus.

Referring to FIG. 4, allocation of slots on each real-
time TDM bus 414, 416, is performed dynamically so as
to share the load. The allocated capacity of two buses
never exceeds the slot capacity of a single bus. Real-
time channels operate over an independent TDM bus
pair. Each bus is identical so that if one fails, the real-
time subsystem 230 (RTS) can operate using the survi-
vor. The real-time subsystem 230 will re-route data past
failed external transfer switches 402, 404 (ETS) and
internal transfer switches 606 (ITS).

Failure of a disk controller (that is, a file services
processor 934. 935 (FsP)). a disk drive unit, or the
volume mounted on it, can he survived. Critical datasets

are automatically maintained in duplicate on two vol-
uma controlled from two different file services proces-
sors 934, 936. With dual-port disk drive units, a single
data set can be accessed if the file services processor
controlling the volume fails. After a period in which a
duplicated dataset pair loses data synchronization due
to failure of one of the pair, the “lagging" dataset is
automatically resynchronized by the survivor when
either a replacement or repaired unit is returned to the
system.

D. Failure Detection and Recovery
The Delta System does not use a single, all-purpose

failure recovery mechanism. This would be as ineffi-
cient as trying to use a single processor type in all of the
various subsystems of the system 100. A variety of
methods are used for the detection of, and recovery
from, failure. Each technique is best suited to the type -
of failure expected, and the form of recovery required.
However, a set of characteristics common to all tech-

niques can be identified to illustrate the general ap-
proach to fault tolerance adopted in the system 100.
This approach stresses two key elements: insurance

2

2

3

4

5

5

0046

ID

5

O

5

0

5

5

D

5

60

65

34

against failure and an appropriate sequence of events to
be triggered in case of failure.

The system 100 is configured with sufficient redun-
dant capacity to survive failure. I-low that capacity is
utilized depends upon the processes that use it. For
example, when an application process is initiated by the
system, it can be declared as recoverable or nonrecov-
erable. If the processor in which it resides fails, and it
has been declared as nonrecoverable, no attempt will be
made by the system to relocate and restart that process
in alternative resources. However, if it has been de-
clared as recoverable by restart, it will be rescheduled
into suitable resources and restarted at a specified re-
covery entry point. (It might be illogical, in some in-
stances, to restart a process. For example, if the process‘
function were only to manage a device attached to the
processor that failed, there would be no point in restart-
ing that process somewhere else). Alternately, a recov-
erable critical process can invoke a hot-standby process
which will automatically take over if the primary pro-
cess fails.

To merely restart a process in the event offailure is of
no real help unless the new process can take over from
the point at which the failed process terminated. What
may be required in the restarted process is the overall
operating context of the failed process; the values of
variables, tables etc., that existed in the original process
prior to failure. These values are unavailable, of course,
once the processor hosting the process fails. This dic-
tates that a process requiring extensive contextual data
in order to restart must, periodically, checkpoint infor-
mation regarding its current state. The action of check-
pointing is similar to paying insurance. A process that
wants to survive failure must accept the checlrpointing
task overhead. The more often the checkpointing oc-
curs, the more transparent will be the takeover in the
event of failure, but the less time is left for the original
process to perform its mainline task. It is a matter of
degree, determined by the relative importance of the
task and the size ofits variable set. If, as is frequently the
case, the quantity of checkpointed data required is on
the order of that required originally to initiate the pro-
cess, the system itself is capable of holding each succes-
sive context set. Then, if failure occures, a newly-
created successor process is passed the last checkpoint
data by the system as its startup parameters. This allows
the new process to take over the functions of the de-
ceased process iii a logical manner.

The basic checkpoint service provided by the system
100 is limited to retention of 16 bytes of a single check-
point packet on behalf of a recoverable process. Each
checkpoint packet sent to the system, that is, to the job
scheduling and monitor (JSAM) subsystem, overwrites
the previous checkpoint. The last checkpoint sent is
available to the recovered process. Note that when a
process is restarted in an alternative resource, the re-
covered process has the same job number as the failed
process and therefore still owns any devices or datasets
owned and used by the failed process, together with any
nodes created by the failed process. Dispatched from
the restart entry point, the recovered process can use
the last checkpoint packet to determine a logical restart
sequence.

In a job that is recognized as a network of distributed
processes dedicated to the job, automatic recovery is
available only to the primary node of the network.
Failure of a subordinate node is reported to the node
that initiated it, which can then determine what action is



0047

4,625,081
35

required (that is, request that it be restarted, or withhold
such request if restart is illogical).

Automatic restart and system checkpoint are the
typical mechanisms used by application processes run-
ning in ideal machines. For example. a general purpose
processor might be hosting a number of program devel-
opment systems (PBS). To the terminal user of a pro-
gram development system, processor failure in this
instance would result in the loss of the current opera-
tion, a return to the command level of the program
development system, and the generation of a system
message explaining the change. At this time the user can
restart his program on alternate resources. This assumes
that the necessary resources are available for assign-
ment to the re-started job. These recovery mechanisms
represent a minimum overhead method for recovering
from processor failure.

In critical processes, a checkpointed restart may not
be acceptable if the failure of the critical process must
result in a takeover by a replacement that is transparent
to the rest of the system. The system software processes
themselves are the prime examples of such critical pro-
cesses. The replacement process must be fully informed
as to the last current state of the failed process. It would
be totally inefficient to attempt to checkpoint to the
system the current state of a complexc process—the
amount of data space required for checkpointing by the
job scheduling allocation and monitoring system
(JSAM) would be prohibitive. A suitable approach is
dual cooperating processing. (Non-critical processes
can make use of a disk dataset as a link between failed

and recovered processes for large checkpoint passing.)
For critical processes, the alternative to checltpointed

restart is the use of dual cooperating processes. in this
approach, the critical process invokes an active backup
in a separate processor. If one processor fails, the survi-
vor takes over on behalf of the failed process. During
their common lifetime, the cooperating processes main-
tain identical tables by various methods of communica-
tion. When one fails, takeover by the survivor is fast.
The system informs the survivor of the failure and auto-

matically reroutes all relevant packets. Within this ap-
proach, a number of different implementation schemes
are possible, each with its own attributes. ‘These
schemes are as follows: (1) master/slave hot-standby,
(2) hot-standby pair, (3) load-shared primary and sec-
ondary, and (4) dual parallel processes.

The characteristics and use of each mode of imple-
mentation are outlined in Section E below. Each is

applied where most appropriate in the Delta System.
Cooperating processes require far more self-n1anage-

merit by the members involved. The various schemes

are set up and maintained by the processes themselves,
using basic system mamangement and communication
services. This high “insurance overhead” has to be
traded off against the requirement for uninterrupted
availability and integrity of the process within the sys-
tem.

When failure occurs, the action of the system follows
a defined set of steps, namely;

1. Detect that a failure has occurred.

2. Protect the rest of the system from failure.
3. Endure the failure until repaired.
4. Isolate the failed component or element.
5. Repair or replace the failed component or element.
6. Recover the system to its state before failure.
An undetected failure within the system could rap»

idly cause loss of overall system integraity and eventual

0047

l0

l5

20

25

30

35

45

55

36

logical system failure. For example, an undetected bad
bit in a file services processor’s buffer memory could
cause corruption of data being passed to the disk, lead-
ing to catastrophic results some time in the future.
Whenever possible in the system 100, hardware error
detection is used to immediately invoke action.

The following hardware error checks and indicators
are provided in the system 100:

For each processor:
(1) Program memory parity error.
(2) Scratchpad memory parity error.
(3) Data memory error correction occurrence.
(4) Data memory double (uncorrectable) error.
(5) Watchdog timer error.
(6) Link stack overflow or underflow.
(7) Power-fail/restart.
(8) Interactive bus parity error.
(9) Executive bus parity error.
(10) Failure to accept a packet.
(1 1) Physical removal of a processor.
For extensions, where applicable:
(1) Failure of real time bus synchronization.
(2) Real-time bus parity error.
(3) Transfer switch failure.
(4) Real-time serial link failure.
(5) Disk read/write cyclic redundance check (CRC)error.

(6) Disk read positioning error.
For peripherals:
(1) Reports of errors in peripheral operations.
(2) Telephone subsystem line group controllers and

line interface boards.

(3) Magnetic tape controller.
(4) Loss of synchronization on a data link.
(5) Protocol timeouts.
Software errors are potentially the most dangerous to

the system. A straightforward corruption of code will
quickly cause a process trap. If the software (or REX)
detects any illogical condition not directly attributable
to an external source, or that an automatically detected
failure has occurred, the host processor is forced to
trap. Failed software can be indirectly detected either
by the watchdog timer firing, indicating an unserviced
event, or by other processes externally detecting illogi-
cal or illegal operations. What is difficult to detect is a
transient, but not fatal, malfunction of a process, or a
seemingly correct process behaving illogically. JSAM,
via responses to its frequent status requests, monitors
these transient invalid occurrences and traps the offend-
ing process if the frequency of such occurrences ex-
ceeds established system thresholds. It must be empha-
sized that failures of this type contribute to the learning
curve effect on software reliability, in that once the
cause is identified and ocrrected it can no longer con-
tribute to system glitches. Additional protectors against
invalid transient occurences exist as a part of built-in
system checks. and periodically involved diagnostic
utilities which reduce the probability of propogating
transient errors.

If a processor fails totally, it cannot contribute to the
error-detection mechanism except by failing to respond
to external stimuli. Frequently, at regular intervals,
JSAM polls each attached processor for a status report.
Failure to acknowledge indicates an inoperative proces-
sor. Similarly, failure of a processor to accept or re-
spond to packets from any source indicates malfunction.
Either condition forces 3SAM to logically remove the



0048

4,625,081
37

processor from the system and re-route all packets to
baskup processes if such backup processes are available.

Relative to a given processor, a hierarchical detec-
tion system exists. A processor is responsible for its
resident processes and the hardware and peripherals
associated with it. The processor itself is indirectly
tested as other processors in the system attempt to send
packets to it. All processors, in turn, are monitored by
the primary JSAM. At the same time, a duplicated slave
JSAM monitors the actions of primary JSAM. Its own
host processor is itself tested by the primary JSAM.
Failure of any processor is reported to or directly de-
tected by the primary JSAM. If the primary fails the
processor hosting the primary JSAM switches control
to the slave (backup) JSAM. Failure of the backup is
endured by the primary until the executive service pro-
cessor 9l6, 918 hosting the backup is replaced.

Following a processor-detected fault a hardware trap
is forced. This logically removes the processor from the
system, thereby protecting the system from any harm
that could be generated from a suspect processor. De-
pending on the nature of the faulty conditions which
forced the hardware trap, the sytem can:

1. Alert maintenance personnel to physucally remove
and replace or repair the trapped processor.

2. Run diagnostics in the faulty processor which, if
successfully executed, permits JSAM to reincorporate
the processor into the system.

Not all faults cause traps. For example, if the real-
time subsystems 902 (RTS) detects a failed external
transfer switch 402 (ETS), the real-time subsystem 902
processors logically remove the external transfer switch
402 from the system and rearrange the circuits and
channels through another external transfer switch.
However, if a real-time executive 406, -I03 detects that
the TDM bus it controls has filed, the real-time execu-
tive (together with its bus) traps.

When a processor enters the trapped state, the fol-
lowing sequence of events occur:

1. Normal processing is halted. All memory is pre-
served and only the trap handler is permitted to cite-cute.

2. All communication with other processors is bro-
ken, except for transfer of status and diagnostic packets.

3. The CPU’s registers and subroutine linkage stack
are saved in scrachpad memory.

4. JSAM is informed that the processor has entered a
trapped state and logically removed it from the system.

5. Copies ofthe Resident Executive’s area ofscratch-
pad mory and table associated with that processor
are logged to SYSMON and SYSLOG.

6. If a system programmers terminal is attached and
the processor has been reset to test mode, the processor
enters an interruptable idle loop, allowing the system
programmer to examine the processor. Otherwise the
processor automatically self-initiates power-up thereby
effecting a restart beginning with physical initialization
and start—up diagnostics.

If is trapped processor passes start-up diagnostics, it
can be assumed that the cause of failure was either a
software or hardware transient fault. JSAM notes the

time of restart so that, if the failure rate of a processor
exceeds a pre-determined threshold, JSAM will logi-
cally remove the processor from the system.

A totally failed processor is logically deleted from the
system and reported to the system monitor for removal.
A processor with no power can reside on a bus without
affecting bus traffic. Physical addition or removal of a

5

ll}

20

25

30

35

45

50

55

65

0048

38

processor is reported to JSAM by the executive ser-
vices subsystem 904 (ESS). Removal is equivalent to
failure. Addition increases the resources known to
JSAM.

A process that generates illogical or incorrect pack-
ets. but whose host processor responds correctly to
JSAM status requests and does not trap, is a rogue pro-
cess. The system has the following protection and de-
tection methods to survive such occurrences.

(1) A packet has a highly structured address format.
An attempt to send a packet with an incorrectly format-
ted address will be unsuccessful, and the originating
process will be reported to JSAM by the executive
services subsystem 704.

(2) An attempt to send a packet to a non-existing
address or job will also be rejected and reported.

(3) If a correctly address packet contains illogical
data (for example, a wrong function code or data held),
it is rejected by the receiving process. Processes use a
table-decode to act upon incoming packets. A basic rule
is that if it does not decode. it is rejected.

(4) The executive services subsystem 904 eventually
rejects packets from a process that sends a stream of
identical packets, and the executive services subsystem
904 reports the process to the System Monitor. This is
behavior indicative of a process that has entered an
endless loop. In such cases, JSAM will attempt to trap
the host of the offending process and, failing that, will
logically remove the host from the system.

A rogue process may result from insufficient imple-
mentations, testing, or intermittant hardware malfunc-
tion.

A trapped or failed processor removes from the sys-
tem the processes that were hosted by it. Whatever
insurance schemes were adopted by the failed processes
then come into effect.

As previously described, JSAM maintains a list of
processes active in each processor. When a processor
failure is reported, it inspects the associated list. Any
subordinate node processes wholly owned by a job are
reported by JSAM as failed to each originating process.
In this situation it is the responsibility of the original
process to request of JSAM that they be recovered and
to supply any startup parameters. The list entry for any
primary node process (that is. a process initiated in
response to an original create job request), is inspected
to determine if the node is flagged as a non-recoverable,
recoverable, or cooperating process.

If the process is recoverable, an attempt is made to
find a new host with sufiicient resources to accept an
invocation of a replacement process. If this cannot be
achieved, (of if the process is designated as non-recov-
erable), the job is killed and reported. Normally, how-
ever, the replacement process is initiated in a different
processor and passed the last checkpoint data as its
startup parameters. The new process will have the same
job number as the failed process. but a different Logical
Bus ID, as it has moved to a new location. A startup
task is to communicate this new ID to associated prfo-
cesses (especially device handlers of owned devices).

Examples of processes that adopt this recovery
method are the program development system running
in an ideal machine, and the data switch and event noti-
fication {DSl:-TN) process that is part of the real-time
subsystem 902. DSEN is a singular process that resides
in one of the real-time executive 406, 408 (RTES) and
handles the supervisory control channels to the Tele-
phone Room Subsystem 206. It does not maintain any



0049

4,625,08 1
39

tables, and as such can be automatically recovered if its
host RTE fails. It would be restarted in the surviving
RTE by JSAM.

If the JSAM process list indicates that a process in a
failed host was a cooperating process, the recovery
schemes are supported by the system, both when both
processes are present together, and also after one has
failed. This is accomplished in the following way:

(1) Each process in the system is identified by a Pro-
cess ID (PID), a 20-bit identification in the system.
Seven bits of the PID identify the processor that is
hosting the process. This is referred to as the Logical
Bus ID(LBlD) of the processor, and is a number in the
range 64 to 127. The LBID is assigned to the processor
when it is integrated into the system at power-up. When
a processors traps, its LBID is removed from the sys-
tem. This eliminates the possibility of continuing to
route packets to a trapped processor. The processor is
assigned a new LBID when it is put back into system
operation. This also makes clear that a process ID is
variable. depending upon which processor is assigned to
when initiated.

(2) Major software components require invariant
global addresses in the system, irrespective of the pro-
cessor in which they reside. A processor that hosts a
critical process (for example, the System Directory
Manager) is also assigned a Bus ID (in the range 0-63)
that is fixed for the particular software process it is
hosting. This means that any process wishing to com-
municate with, say, SYSDLR will always use the same
7-bit Bus ID, irrespective of the actual processor in
which SYSDIR resides. Such an ID is termed a System
Bus ID (SBID). The sender uses the SBID or LBID in
the packet header, and the executive services subsystem
904 maps SBIDS and LBIDS to Physical Bus Ids
(PBIDs) during packet transfer. If a processor hosts
more than one system process, then more than one
SBID may map to the same processor.

(3) Processes that use cooperating process recovery
schemes are also major software components, as they
are critical to system performance. SBIDS are therefore
normally assigned in sequential pairs, with the first
SBID relating to the processor that hosts the first of the
cooperating process pair, and the subsequent SBID
pointing to the processor hosting the second.

(4) JSAM and the executive services subsystem 904
use the SBID pair to advantage when handling packets
for duplicated processes. A “Use Code" associated with
the SBID pair tells the interprocess communication
subsystem how to translate an SBID to a PBID when
one of the pair fails.

0n failure of one of a cooperating pair, the following
sequence of events occur:

l. The surviving process, if originally primary, re-
mains primary and packets continue to be assigned to it.

2. If the surviving process is the backup process it is
now designated as primary and packets are rerouted to
it.

3. If the cooperating process is designated as recover-
able and resources are available, a new process is in-
voked and designated as the new backup. The surviving
primary then transfers its tables to the new backup and
and normal operation continues.

4. If adequate resources are not available, operations
continues with the surviving primary until the failed
procclssor is replaced and reports itself to the system.
Action is then as in (3). This is the normal sequence for
failed executive processors (that is, processors control-

0049

5

10

I5

20

25

30

35

45

55

65

40
ling one of a bus pair) as only two of each exist in the
system, each one hosting a member of a cooperating
pair.

Note that this scheme works equally well in maintain-
ing duplicated datasets as well as duplicate processes.
When a duplicated dataset is opened, the two file ser-
vices processors 934, 936 which are attached to the
volumes containing the two copies are assigned an
SBID pair for the purpose of subsequent record trans-
fers. This allows the SBID use code handling to be
taken advantage of in the event of failure.

A failed processor which cannot communicate or
which has been logically isolated by JSAM must obvi-
ously be removed to a test station for repair. However.
for any failure. including processors which subse-
quently pass diagnostics and are reassimilated, trap in-
formation is available in the system log and system
monitor. This trap infonnation contains the memory
and register dumps sent from the processor coincident
with the failure, and the log packets from it and from
other processors reporting operation, status and prob-
lems before and during failure.

A trapped processor offers considerable scope for
both passive and active diagnostics to isolate the cause
of the failure. Following a trap, a dump of selected
portions of memory is made to the log. which is then
available for analysis. The processor can be flagged to
inhibit automatic restart, thus the condition of the pro-
cessor‘s registers and Iinlt stack are available for inspec-
tion, either directly by requests from a console or tenni-
nal to the trapped processor or indirectly from the
dump. The processor's ports and connection to the bus
can be tested by special diagnostics initiated from a
console or terminal.

When the processor is restarted, either automatically
after the trap, or if flagged, after completion of diagnos-
tics, the restart sequence is essentially identical to that
of a processor newly-added to a Delta System:

(1) Physical Initia1ization—Checl:s the various mem-
ories in the processor and reinitializes all of the proces-
sor variables, flags, ports and scratchpad registers. The
extension board of the standard processor module also
performs a physical initialization to quiesce any at-
tached bus or devices.

(2) Start-Up Diagnostics—At the end of a physical
initialization the processor reports to JSAM. JSAM
then normally requests that REX load and execute the
startup diagnostic programs. These diagnostics verify
the operation of various processor functions, registers,
and self-checks such as parity and ECG. A detected
failure causes the processor to be inhibited from reas-
similation into the system.

(3) Logical Initializ.ation—After the processor re-
ports successful completion of diagnostics, JSAM re-
quests that a processor type-dependent initialization
program be run in the processor. Upon notification of
completion JSAM inspects its system resource file to
determine if this processor is currently required to host
any system processes. If so, REX is notified to load and
initiate the processes. This could include a backup pro-
cess to reform a pair of cooperating processes after a
period when the surviving primary has been operating
alone. When the new backup is running, the primary is
informed and proceeds to bring the backup up-to—date
by table transfers (or record transfers if a duplicated
dataset). The system is then in a position identical to
that which existed before the initial fault occurred.

E. Cooperating Processes



0050

4,625,081
41

In adopting a dual cooperating process approach to
sustained system functioning, several implementation
schemes have been used. Each has specific advantages
when used in the various subsystems and functional
areas of the Delta System. All system software pro-
cesses and some utilizies and handlers use dual processes
to guarantee uninterrupted system operation in the face
of processor or bus failure. The following sections de-
scribe four specific schemes used in the system 100. The
two aspects which characterize each particular scheme
are: (l) the relationship between each process during
normal system operation (that is, when both processes
exist) and (2) the reaction to failure to one ofthe process
parr.

During normal operation of a master slave hot-
standby pair of processes the user communicates only
with the master process. The master is responsible for
updating the slave‘s tables to maintain its takeover capa-
bility. If the master fails, the slave becomes the new
master and all subsequent interaction is between the
new master and the user. If either the master or the

slave fails it is reported. When the failed process is
restored, it becomes the slave to the surviving process.

This scheme is used for ISAM. One of the two execu-

tive services processors 916, 918 hosts the prime (mas-
ter) copy and the other hosts the backup (slave) copy.
The fully redundant master/slave hot-standby is used
because JSAM is the major fault-recovery mechanism
for the rest of the system, and must have a fast response
backup to recover.

During normal operation of a hog-stanby pair, the
user communicates with the prime process which acts
upon the request. The backup maintains the same infor-
mation as the prime, but does not act upon requests. if
the prime fails, JSAM notifies the backup that is is now
prime and it takes over the process to complete the
request.

This scheme is used mainly by system processes resi-
dent in ideal machines (Pascal-sourced processes run-
ning in a general purpose processor). Although the
backup is fully redundant, it is tying up only an ideal
machine, not a whole processor. As each general pur-
pose processor can host a large number of ideal ma-
chines, this scheme is not inefficient in machine usage
terms, but is highly efficient in terms of the reduction of
interprocessor data-exchange traffic. Due to the large
amounts of memory available in each general purpose
processor (up to 8 Mbytes), system processes tend to
build up large memory-resident data bases, which are
faster and more easily maintained than disk-resident
datasets. It would be very inefficient to have to pass this
data between a prime and a backup as in the master!-
slave scheme. It is far more efficient to let both the

prime and backup processes dynamically maintain them
by parallel processing.

Examples of system processes using hot-standby pairs
are SYSDEV (System Device Manager) and SYSDLO
(System Device Long-on Process).

A load—shared primary and secondary scheme is used
where dynamic load sharing is required between the
two processors. Each is assigned work by the prime,
based upon some specific load-sharing algorithm. When
one of the team fails, the survivor takes on the load of

the failed member. Obviously, the load assumed by
either member can be no more than 50% of total capac-
ity so that in the event of failure adequate capacity exists
for takeover, but the two lightly loaded members, dur-
ing normal operation, can provide better response time

20

25

30

35

45

SD

55

65

0050

42

than if a hog-standby scheme had been used. If the pair
is also driving duplicated hardware resources, this
scheme also shares the load on the hardware, thus im-

proving overall system performance.
This scheme is used in the real-time executives 406,

408 of the real-time subsystem 230 for the processes that
control circuit switching and supervision of the real-
time bus pair. This results in equal loading of time slot
assignments on the bus pair such that the task of recon»
stituting a failed bus interconnect is not biased depend-
ing on which bus fails. To speed the response of take-
over. each real-time executive -‘I06, 408 can directly
monitor the bus activity of the other real-time execu-
tive, and can immediately detect if the other has failed
(by detecting loss of the bus clock). In this event, the
survivor immediately begins the takeover sequence,
which must be completed very quickly in a real-time
environment.

A scheme using dual parallel processes can be used
when there is a static assignment of requests to copies of
the same process in different processors. The user is
directed to talk to one or another of the processes, de-
pending upon his particular request and how the request
maps onto the preassigned responsibilities of each pro-
cess in the pair. If one fails, however, the survivor takes
on the load. During normal operation, each member of
the pair ensures that the other’s tables are up-to-date
such that a takeover can occur.

This scheme is used with device handlers in the two

interactive service executives 102, 706 (Sxs). During
normal operation each interactive services executive is
responsible for a subset of the devices attached to the
U-V bus pair 704, 798. Each is host to copies of the
various device handlers required. When a user wishes to
communicate with a specific device, he passes a request
to SYSDEV. SYSDEV acquires the requested device
(if free) from either the primary or secondary interac-
tive services processor, depending upon a predefined
load-sharing plan. It is possible for a user to be talking
simultaneously to one interactive services processor for
one device and the other interactive services processor
for a physically different, but same type, device.

The comments on loading and response time for load
sharing discussed previously apply equally as well to
this scheme (that is, 50% loading at maximum, but faster
response and better hardware utilization).

The various techniques for achieving high integrity
with datasets are summarized below. A dataset can be

created as a duplicated dataset. This allows a prime
copy of the dataset to exist on a disk drive attached to
one file services processor 934 (FSP) and a backup on a
drive attached to a different file services processor 936.
During the sequence for control records, the record is
sent to the prime fle services processor 934 which up-
dates one copy of the file. The prime file services pro-
cessor 934 passes the record to the backup file services
processor 936., which updates the second GOP)’: and
responds to the user. In this way the user is assured of
successful updating of both copies. If one file services
processor 934, 933 fails, or the drive it controls falls, or -
the vcolume containing the dataset is scratched, subse-
quent records are sent to the surviving dataset. (which
is automatically prime) and changes to the dataset are
marked. When the failed dataset comes back on-line, the
two datasets are automatically resynchronized by copy-
ing changed records from the survivor to the lagging
dataset.



0051

4,625,081
43

PRINCIPLES OF OPERATION

A. Operational Principles
Underlying the functional organization of software

components of the system 100 is a general operational
structure that is consistent in any processor of the sys-
tem 100 and applies to all levels of software functional-
ity. Major system components, applications, utilities and
ideal machine monitors are all implemented using the
same set of basic techniques thus enforcing a rational
method of building both the system and the application
tasks.

Three major concepts are fundamental to all system
100 software. These are:

I. The Procesc—An identifiable separate element
consisting of a prgram which is resident and confuied to
a single processor in the system. Every processor in the
system 100 can host a large number of processes, where
each process can be an element of some larger func-
tional component.

2. The Job—A unit of work composed of a logical
group of processes created expressly for a purpose. The
component processes of a job can individually reside in
any of the processors of system 100, their allocation to
a processor determined by their resource requirements
and availability rather than any “a priori" assigrunent.
The system 100 supports a large number of concurrent
jobs. Jobs are created and terminated dynamically in
response to internal and external events.

3. The Packet—Each job is a cooperating set of sys-
tem-wide processes that intercommunicate by way of
discrete packets. A packet is a l6-word data structure
that any process can send to any other process, pro-
vided the identification of the destination process is
known. The transfer of packets between processes is
supported at the basic hardware and firmware level by
the buses, processors and resident executive of the sys-
tem 100.

The use of discrete packets to communicate between
the elements of a job formalizes cooperation and en-
sures high job reliability. Processes, jobs and packets
are described in detail in the following sections.

Referring now to the real-time executive -$08 shown
in FIGS. 45 and 6 by way of example, each processor
comprises a CPU 504, scratchpad 510, program mem-
ory SD6, 508, 614 and data memory 616, a firmware
resident executive 508 and dual port access to tile inter-
processor bus through a port control unit 502. Each
processor type can be extended with one of five normal
extension boards ('NEBs) that can extend the amount of
program and data memory, provide interfaces and
channels to attached devices or buses, and extend the
instruction set of the CPU.

A process is the basic component of all user and sys-
tem activities in the system 100. Each process resides in
a single hardware processor and perfonns work in the
system by using the resources of the processor that
hosts it. Associated with each process is some execut-
able program code resident -in the processor, together
with a set of data uniquely associated with the process,
called its “context", and a control data structure called

a process control block. Each process requests of the
processor hosting it the computational and other re-
sources required for execution. At any one time, a large
number of processes may be competing to use the pro-
cessor. Others may be dormant awaiting occurrence of
some internal or external event. One function of the

processor's resident executive (REX) is to manage the

0051

10

15

20

25

30

35

45

50

S5

65

44

allocation of its processing resources to each process as
the process become eligible for execution.

At any one given time, a processor is performing
work on behalf of only one specific process. When a
process is initiated, the processor's internal registers are
loaded with data describing the initial state of the pro-
cess. and the machine proceeds to execute the program
code associated with that process. The processor re-
mains dedicated to executing that program until control
is either voluntarily relinquished back to REX or some
external hardware interrupt occurs. The state of the
process when suspended, as described by the internal
machine registers, is saved in the process control block
(PCB). The process control block is enqueued to either
await an event or to complete once again for processor
resources. A certain area of the processor's scratchpad
memory that was assigned to the process when it was
created (its scratchpad context), and used by the pro-
cess when it ran, is also left untouched until the process
is allowed to execute again. The processor is assigned
by REX to the “context” of the next priority process
(by loading its desired register values, and pointing to
its private area of scratchpad). In this way, a previously
suspended process resumes execution, or a newly cre-
ated process begins its execution.

In uniprocessor (i.e., single cpu) machines, this tech-
nique of sharing the processing resources of the ma-
chine among a number of processes is tenned concur-
rent process operation or multi-processing, although
processes actually execute in a one-at-a-time sequence.
Concurrent process operation refers to a number of
processes resident in the machine which are all concur-
rently at some point of progress, with each one being
singularly advanced through its lifetime as it is allowed
to use the machine’s resources. In the system 180, simul-
taneous processing does occur as processes in physi-
cally different processors execute in parallel.

The difference between a process and a program
must be emphasized. A program is a static set of code
that is loaded into a processor, and used when executing
a process. A program is still a program even when it is
resident in a library on a disk. A process is a dynamic
entity that exists only in the processor with a processor
control block and a data context allocation. A process
uses a program to achieve its objectives. It is possible
for a number of like processes to use the same loaded
copy of program code in the same processor. When one
process suspends running at some point in a program,
another process may begin operating at a different point
in the same set of program code. What distinguishes one
process from another is its unique scratchpad memory,
data context and process control block which collec-
tively describe the process and its current state.

Every process that exists (i.e., has been created) in the
system 100 has two important identities.

Firat, each process is uniquely identified by Process
Identification (PID). This is a 20-bit code that locat a
specific process in the system (‘including both processor
and context). When individual processes communicate
with each other, the Process Identifications are used to
locate the destinations. Although the system 100 is con-
structed from a number of separate hardware proces-
sors, it is transparent at the individual process level. A
process can identify and communicate with any other
process, whether resident in the same or a different
processor location, with equal ease by way of the Pro-
cess Identification.



0052

4,625,081
45

A second identity that a process has in the system we
is the job number with which it is associated. This is an
organizational identity that is given to the initial process
when the job was created and further extended to apply
to any other processes created for the express purpose
of completing the job. A job is a complete, individual
functional entity created to perform a specific task. To
perform its task, more than one process may be created
in the various processors of the system III! to work
together to implement the job. Each job is assigned a
unique 16-bit job number, and each constituent process
is identified as being a member of the job by the same
16-bit number.

Processes communicate via packets of 16 words each.
Packets are of two basic types—process and data. Pro-
cess packets are used to synchronize operations, invoke
functions, request services, report status and respond to
any of these. Data packets are used to transfer blocks of
data from one process to another.

The sending process is responsible for packet con-
struction and format. Each packet begins with a header
consisting of the Process Identification of the target
processor and sendin process plus function codes de-
fined and used by the target process and sending pro-cess.

In data packets, the header is followed by one or
more bytes of control information and up to 23 bytes of
data.

In process packets, the header is expanded to include
the Process Identification ofthe source, thus facilitating
a reply from the target to the sending process. Most
process packets also include a job number or other
validation number, plus additional information as re-
quired by the receiving or subsequent processes.

A process sends a packet by invoicing a REX func-
tion, directly for privileged processes and via an ideal
machine function or procedure for restricted processes.
When a packet arrives for a process, either as an ex-
pected reply to a previously sent packet. or unsolicited,
an "event" is defined to have occurred. A suspended
process waiting for the packet is activated by the event
and can queue with other dispatchable processes to use
the processor in order to receive and interpret the
packet. A packet arriving unsolicited for a running
process is placed on its list ofevents awaiting action that
is maintained on its behalf by REX.

To ease the problem of decoding incoming packets. a
process can build a l6-entry branch table of alternative
start addresses. Each packet header includes a 4-bit
function code which can be used to index to a specific
routine within the process.

Packet transfers are handled on behalfof a process by
the REX in the host processor and by the Inter-Proces-
sor Communications Subsystem. The multiple REX
utilities in each of Delta’s processors and the executive
services subsystem 904 form a location independent
inter—process communications network. At the request
of the sending process, REX euqueues the packet or
block transmission request until either of the output
ports are available. When available, REX places the
packet in an output port of the processor and transfers
control of the port to inter-process communications.

Inter—process communications transfers the packet
out of the source host, over the high-speed executive
bus 912 or 914 to the port in the processor hosting the
destination process. (This could be the same processor
from which it was sent.) The arrival of the packet is
posted to the destination process as an event.

10

20

25

30

35

45

SO

55

65

0052

46

A job is an organization of one or more processes
invoked to perform a specific task. A job is a system-
wide entity that can be created or terminated by a single
request, and uniquely identified during its existence
from other jobs in the system by a job number. The
system 100 can concurrently host a large number of
different jobs.

A job consists of a set of processes. each resident in a
system 100 processor, and having a tree-structured hier-
archical relationship to each other. This structure is
referred to as a process network with each component
process termed a node of the network. Each job’s pro-
cess network has a single process called a primary node
that is created as the initial response to a request for a
job to be created.

As the primary node proces executes, it can request
that other processes be created. For example. this can
occur when the primary node requires the services of
other system 10!} resources not available in the proces-
sor in which the primary node resides, or it can occur
purely as an organization expedient. Each process cre-
ated by the primary node is subordinate to the primary
node. Thus, if the primary node is destroyed or termi-
nated and not restored, any nodes it created (i.e., any
processes it started in a different or the same processor)
are also terminated. As each process is created, its pro-
cess identification is passed bacl: to the creator; and the
process identification of the creator is passed to the new
process. This allows the primary node process and its
subordinate node processes to communicate with each
other by packet transfers. By this mechanism, a simple
star network of processes can be fonned.

To extend the network further, it is possible for each
subordinate node to itself create further sets of subordi-

nate nodes. The relationship between the node and its
created set of subordinate nodes is the same as that

which exists between the primary node and the
first set of subordinate nodes i.c., if a node is removed
then any nodes it creates are also removed. Each node
can communicate with the processes of the nodes it
creates or its own creator, but not with processes of
other nodes, or nodes below its own subordinates (un-
less explicitly given their process identification num-
bers). Thus the initial star-structure of the job's process
network is transformed into a general tree-structure.
The creation of subordinate processes can be carried to
anh depth. and nodes and sub-nodes can be dynamically
added or removed during the lifetime of the job. The
job's tree-structure is not a static organization, but can
expand and contract as required. If a node is removed.
all of the tree-structure below that point disappears. To
terminate a completed job, all that is required is to ter-
minate the primary node. Every process created is allo-
cated the job number of its creating process. Thus all
processes in a process network have the same job num-
her.

A process network can be likened to the structure of
a block-structured program. The main body of the pro-
gram (the primary node) can declare (create) and use
(send packet to) a number of procedures (subordinate
processes). Each of these procedures can themselves be
structured by internally declaring to it further proce-
dures (create a second level of subordinate processes)
that it can use, but which are not within the scope of the
main body of the program (the primary node only
knows the process identifications of the processes it
creates, not those of processes created below them.)



0053

4,625,081
47

As a process is a processor-level entity, a job is a
system-level entity. The primary node and subsequent
subordinate nodes are created in any processor thathas
sufficient resources available to host the nodes. The

inter-node links are set up by exchanging process identi-
fication numbers.

In many cases, a single primary node is all that is
required to realize: a job. This is a specific instance of the
general structure.

Jobs are initiated and processor resources are allo-
cated by a set of processes referred to as the job sched-
uling and allocation monitoring (JSAM) subsystem.
JSAM itself is an example of a job, and is bootstrapped
into existence when the system 100 is first powered—up.
One of ISAM’s first actions is to initiate all of the re-

quired system jobs bringing the system 100 up to opera-
tional readiness. JSAM can then accept requests to
create new jobs.

JSAM receives a request to creat a job as a single
packet. As JSAM’s process identification is fixed and
known globally, this can be sent from any process.
(Note: All level 2 system processes have fixed process
identification numbers and fixed job numbers so that
they can be addressed from anywhere in the system.)
Included in the request is a function identification that

defines the program required to be run as the primary
node, a function mode, and a set of start-up parameters
for the primary node. ISAM'sjob management routines
note the existence of a new job by creating a job control
block (JCB) that contains all relevant details relating to
thejob and is periodically updated to reflect the current
job status. As the process control block is to a process,
the job control block is to a job.

Job management passes the function ID to an area in
JSAM referred to as node management, which uses the
function ID to obtain from the system directory man-
ager the resource requirements of the program or pro-
grams capable of fulfilling the function requirements.
For each program, this includes the processor type
required, the processor-specific resources required
(DMA channels. for example), and any external devices
required. Node management attempts to find a proces-
sor with sufficient resources to match the needs of the

program. If it can find a processor not only with suffi-
cient resources available but also with the actual re-

quired program code already loaded, that processor is
the first choice. Otherwise, the first processor found
that is able to host the node process is selected. Node
management sends a create process request packet to
the REX of that processor, which loads the program (if 50
not already resident) and creates the process. A separate
function of J’SAM is to monitor and update the status
and loading of all processors. Thus, JSAM can effi-
ciently search for an acceptable host processor by inter-
nally inspecting its own processor status tables.

For any desired function, there may be more than one
program or program versions capable of fulfilling the
functional requirement under the following circum-stances:

1. Functionally equivalent programs which must be
adapted in order to conform to differences in the in-
struction repertoires to permit execution on different
processor types.

2. More than one mode or version of a processor type
or of REX may co-exist in a single system, particularly
during an upgrade or retrofit. Different program ver-
sions may be necessary to properly utilize the different
hardware versions.

5

20

25

35

45

55

65

48

3. A new version of a program may be introduced
into a system for limited operational testing alongside
the current version.

4. A new conditional version of a program can be
tentatively introduced in such a way that any subse-
quent processor failure causes the new program to be
removed from availability and replaced by the prede-
cessor version.

Where case one or two exists, a given function ID
will reference a list of one or more programs for each
processor type, model or version. Normally, each list
will include an operational version ofthe program to be
utilized with the associated hardware. In case four, if
the entire system is operating in the “conditional state",
then a conditional version of a program will always be
selected in lieu of an operational version. (The condi-
tional state must be set manually from a system console
and is automatically reset in the event of any processor
failure). In case three, the create job request can desig-
nate a mode (2 through 255). If a test version corre-
sponding to the mode exists, then it is to be used. Other-
wise, the current operational (or conditional) version is
to be used. The mode designation is applied to any
subsequent node requests initiated under that job num-
ber.

If node management cannot successfully initiate a
job's primary node, job management returns a negative
acknowledgement to the requesting process. This pro-
cess is responsible for effecting any subsequent retries.

Once a job's primary node is running, it can send
requests directly to JSAM’s node management to create
subordinate nodes. Node management acts upon these
requests identically to an initial request from job man-
agement for a primary node. To reduce the burden in

setting up a large number of subordinate nodes, a single
request can specify up to three function IDs in one
request, each one for a different subordinate node. Al-
ternatively, a single value called a node ID can be sup-
plied that references a node descriptor table in JSAM
with each entry containing up to five function IDs for
subordinate nodes If all of these nodes can be success-

fully initiated, node Inanagetnent responds to the re-
questor with the process identification numbers of each
node process created. This can be repeated to an arbi-
trary depth of sub-node creations.

Apart from providing node creation services while a
job is running, JSAM can provide failure recovery
services in the event a processor fails. JSAM is able to
do this since it is responsible for both monitoring the
status of each processor attached to the executive bus
912, 914 and managing the intelligent controllers of the
executive bus 912, 914 which perform all packet trans-
fers.

If ISAM detects, or learns, that a processor has failed
or trapped, it inspects its tables to identify what node
processes were resident in it. If any subordinate nodes
were hosted in the failed processor, the failure is re-
ported by sending an alert packet to the highest level
surviving control node which is responsible for restart-
ing the failed node, ifthis is the logically correct course
of action. If a primary node is detected to have failed,
and it is flagged as recoverable, JSAM will attempt to
reinitiate it in an alternative processor, restarting the
new primary node at a predefined restart address.
JSAM will pass to the rcinitialized primary node the last
16 bytes of checkpoint data stored by the processor
prior to the failure.

0053



0054

4,625,081
49

JSAM can also assist Level I and 2 system processes
to efficiently implement one of a number of prime!’-
backup recovery schemes through its ability to control
the routing of packets. Packets addressed to the prime
version of globally-ltnown paired system processes are
automatically rerouted to the surviving member of the
pair if failure occurs.

A process that originally sponsors a job request to
JSAM is not ignored once a job is underway. When a
process originally sends a job request to JSAM, it also
provides a reference number. When the job is success-
fully running (or rejected ifit can’t be started), JSAM
reports back to the requestor, quoting the reference
number, the process identification and status of the
primary node, together with the job number that JSAM
assigned.

A job can terminate in one of three ways. It can run
to completion and request the deletion of its own pri-
mary node it can fail to start after waiting its maximum
delay on a schedule queue. Or, it can be forcibly termi-
nated by a privileged process.

At the individual process level, within each proces-
sor, the time management services of REX can be used
to manipulate an arbitrary number of programmed tim-
ers. With these, time-dependent operations can be orga-
nized in the processor. At the system-wide level, it is
also possible to organize complete jobs on a periodic
basis. A request for JSAM to create a job can be made
on a time-scheduled basis rather than immediately. A
scheduled job request supplies, in addition to the usual
program ID and reference values, a time at which the
job request is to be acted upon. The time can be sched-
uled in six minute intervals for a given day of the week,
date and month or Julian date, and the same job can be
repeatedly rescheduled according to a variety of re-
gimes. Once the schedule time matures, the job request
is handled as if just received for immediate action. For
liner time control than six minutes, the primary node
can use its host REX to provide timer functions.

JSAM also allows individual packets to be stored and
then mailed to a specified proces at a predetermined
future time (again, at intervals of minutes and reschedu-
lable). Rather than send a packet directly to 3 process, a
scheduled activity packet can be sent to JSAM contain-
ing a packet header, is scheduled delivery time, resch-
edule criteria, and up to 16 bytes of data. Whert the time
matures, JSAM constructs a packet using the header
provided (which contains sending and recieving pro-
cess identificatlon numbers) inserts the user-supplied
data, and posts it to the destination.

Each system 100 process or supports two process
types, main processes and subprocesses. In operation,
both types are treated identically by the scheduling and
dispatching functions of REX. The differce between
the two is related to the hierarchy of their creation and
the use of a processor’s scratchpad memory.

To achieve very high speed tnulti-process operation,
processors in the system 100 have a large, 4096-word set
of working registers referred to as scratchpad memory.
Each word of this memory has a read/write time com-
patible with the other major registers in the procmofs
CPU. At any point in time, the state of a process is
reflected by both the contents of the CPU‘s internal

registers, and the content of a set of working registers in
scratchpad memory that the process is using. If a pro-
cess is to be suspended in favor of another process, the
current values of all of these locations must be pre-
served until the suspended process can execute again.

IO

15

20

25

30

35

45

5!}

55

65

0054

50

After saving a suspended processes’ "context". new
values reflecting the startup state of the replacement
process must be supplied. This register-swapping is an
overhead in multi-process environments and has to be
reduced to a minimum.

To achieve this in a system 100 processor, a pro-
cesses’ scratchpad register set is left untouched while it
is suspended. This is achieved by assigning each main
process its own private area of scratchpad memory,
called its context. During the lifetime of a process, its
context in scratchpad memory remains assigned for its
use only. Thus, when a main process is suspended, only
a small number of internal CPU registers need be saved,
as the contents of its context in scratchpad will be pre-
served until the process runs again. This reduces the
process swapping overhead to exchanging six SPU and
processor extension unit registers together with a select-
able depth of the subroutine link stack between the
process control blocks of the processes, where they are
saved while a process is suspended.

Scratchpad memory is divided into 32 pages of up to
128 registers each (128 registers equals 1 page). A con-
text consists of a part or all of a page. Page zero of
scratchpad is reserved for global use, page one is REX‘s
own context, and pages 2-31 are available for allocation
to other main processes. Each context must start on a
page boundary, therefore, 30 main processes can exist,
each with a context identification (CXID) equal to the
page number.

A page is further divided into eight packets of 16
words each. When a main process is created, the con-
text can consist of any number of packets from a mini-
mum of two to a maximum of eight. By convention, the
context is as small as is reasonable. All unassigned pack-
ets of scratchpad are retained by REX and are allocated
dynamically to existing processes (main or sub-
processes) as required. The approach to the use of the
scratchpad resource is thus to initiate processes with the
minimum packet allocation of context, and then request
more as requires.

As ISAM continously monitors the status of all sys-
tem 100 processors, it knows if a processor has any free
contexts available. This is taken into account by node
management when attempting to find an eligible host
processor.

Before a main process can be initiated, the code of the
program specified in the create process request must be
resident in the processor's program memory. It it is not,
REX sends a request to the system loader (part of the
system directory manager SYSDIR) to load the pro-
gram before creating the main process.

An initiated main process therefore consists of an
allocated context in scratchpad memory, a process con-
trol block constructed in data memory, and a program
in program memory. A new process is immediately
placed on the list ofdispatched processes to compete for
use of the processor's resources. This allows it to per-
form its own logical initialization which could perhaps
include requesting JSAM to create a set of subordinate
nodes which will be allocated under the same job num-
ber.

Within each separate context allocated in scratchpad
for main processes, more than one subprocess can oper-
ate. Each main process- can create subprocesses all of
which share the same context. These subprocesses
themselves can also create further subprocesses. Up to
255 subprocesses can share the same context as a single
main process. Each subprocess has a subprocess control



0055

4,625,081
51

block identical in format to a main process control
block and can compete on equal terms with a main
process for use of the machines resources. Subprocesses
can queue events in a manner similar to that of a main
process.

Main and subprocesses introduce a hierarchical struc-
ture into process organization. Only main processes can
be initiated by JSAM in response to a create node re-
quest, specifying a function ID. Once running, a main
process can then create any number (to 255) of concur-
rent subprocesses to implement the function of the
node. The program code used by the subprocess must
be loaded before the subprocess is created, and is usu-
ally part of the program loaded when the main process
is created.

In addition to the context ID (CXID), a subprocess
has an identifier called a subprocess ID (SPID) in the
range 1-255. A main process has a subprocess ID of
zero. Thus any process can be uniquely referred to by
its processor ID, CXID, or subprocess ID.

An example ofthe use of a subprocess can be found in
the file service subsystem 908 (ESS) which has a main
process resident in each file services processor 934, 936.
Once a dataset has been opened by a user, a READ or
WRITE access request is sent to prepare buffers for a
subsequent GET or PU'I‘ operation. In response to an
access request, the file services subsystem 908 creates a
specific subprocess to handle subsequent communica-
tions for all GET/PUT operations. Using this scheme,
it is possible for a user to specify multiple READ)’-
WRITE access requests, and perform concurrent GETs
and PUTS, each one being handled by a separate sub-
process in the file services subsystem 908. Each individ-
ual access subprocess is uniquely identified by the dif-
ferent subprocess ID returned to the user in response to
each READ/WRITE access request.

The shared main context of scratchpad is a useful
means by which main and subprocesses can communi-
cate. To provide a non-conflicting private context area
for each process any combination of the eight packets
that make up a context can be defined to preserve and
restore the context each time the subprocess is sus-
pended or dispatched. In each process control block,
and 8-bit field is used as a map of the context packets to
be swapped in from data memory when the process
executes. A related field in the process control block
points to a save area in data memory to which the same
packets are swapped when the process suspends. The
swapped packets are referred to as the subprocesses’
shadow context.

A variation of a main process exists called a bypass
main process. When a main process is created it can be
designated to not only receive all packets addressed to
itself (i.e., subprocess ID--0), but also all packets ad-
dressed to the context regardless of the subprocess ID
(i.e., subprocess ID 1 to 255). This can be used where a
main process needs to monitor packets being sent to its
own subprocesses.

Processes (main or sub) that are not suspended await-
ing some internal or external event are maintained on a
queue of dispatchable processes competing for the use
of the CPU. Each processes’ process control block
contains a bi-level dispatching priority, consisting of a
5-level class, and within each class, a ranking from zero
to 255. Therefore class zero, rank zero is the lowest
possible priority in the system, and class 4, rank 255 is
the highest.

10

20

25

30

35

45

55

65

52

REX always selects from the queue the highest prior-
ity disoatchahle process for execution. Once given con-
trol, the process is aliowed to execute until it volun-

tarily relinquishes control or is interrupted by a hard-
ware interrupt. Typically, a process can give control
back to REX when it WAITS or QUITS. or attempts to
perfonn an operation via some unavailable resource.
The process is then either terminated (i.e., after a
QUIT) or placed on one of a number of event queues,
each queue related to the reason the process was sus-
pended. When the appropriate event occurs, it can then
return to the dispatch queue to compete for use of the
CPU.

The dynamic activation and suspension of processes
is determined by the occurrence of events. An event is
any change of state, either hardware or software, that
can be recognized and communicated to a process.

An external hardware event ca.n cause an interrupt to
occur, causing an interrupt handling program to be
entered. All interrupt handling is managed by REX and
is transparent to the user’s process. Dispatched pro-
cesses run at the noninterrupt level 3, with REX‘s inter-
rupt handlers being able to run at interrupt levels 0, 1
and 2.

Processes can manage their activity by way of soft-
ware events. Typical software events include:

(1) Receipt of an input packet via REX.
(2) Expiration of a time interval.
(3) Completion of an I/O operation.
(4) Termination of a subprocecs.
(5) Availability of a resource.
(6) A signal from a coresident process.
(7) A user-defined event.
(3) Availability of a previously unavailable resource.
An event and its relationship to a process is defined

by a data structure called an event control block (ECB).
When an event occurs, an event control block describ-
ing the event is linked to the processes’ process control
block. If the process is executing, the event control
block can be actively checked by the process for occur-
rence. Alternatively, a process can wait for a specified
event to occur, or for any event related to that process
to occur. Until the event occurs, the process can be
suspended and other processes can use the machine.

Events can be either unsolicited or solicited. An un-

solicited event typically occurs when a packet arrives
unexpectedly for a process. This will be picked up by
the process either next time it checks its list of event
control blocks, or the next time it "waits" for any event.
A solicited event is one which is expected by the pro-
cess. For example, in a packet exchange, a confirmation
packet is often sent back from a destination process to
the sender. In this case, the sending process can set a
timer associated with the event, and when the event

actually occurs (in this example, the receipt of the re-
turn pacltet), the process can check to see ifthe event
occurred before or after the timer expired.

Packets are classified by each process into 16 function
code types, corresponding to the function code in the
packets addressed to the process. The process defines a
function code table that contains a program entry point
for each permissible function code. The table entry is
used as a vectored return address for the process when
the event is either actively or passively detected. The
function code in each packet header relates directly to
this vector table. Each acceptable function code causes
a hump to a specific handling area of the process when
the "packet received" event control block is checked or

0055



0056

4,625,081
53

waited upon. Packets containing function codes not
posted in the table are rejected by REX and discarded.

Also associated with the function code is the function

mask. This is a 16-bit mask that designates a function
code as an unsolicited event-type if the corresponding
bit in the mask is set. This allows packets with incorrect
pack function codes to be rejected and not be treated as
significant events. This provides a degree of protection
against ill-formed packets. Both the function mask and a
pointer to the function table are kept in the process
control block. For further decoding ofunsolicited pack-
et-related events, word 4 of the packet is normally re-
served for further packet function idtification. For
solicited events, the process can provide a 16-bit refer-
ence value to identify which event is which when multi-
ple events are expected.

Processes can explicitly generate future events by
setting timers. Timers are set up by a call to REX from
a process, which generates a timer event control block
and places it on a list of similar timed events that REX
manages. The process can continue execution, checking
for the occurrence of the timer expiration event di-
rectly, or can suspend until the time specified in the call
to REX matures. The timer period can be specified in
increments of 34 microseconds, l millisecond or 1 sec-
ond intervals, with a 16-bit value giving 65,536 incre-
merits.

Each processor in the system 1I]D uses its own hard-
ware clock to generate the basic 34 microsecond time
interval. The absolute clock values of all of the proces-
sors is regularly synchronized by JSAM, whose host
processor clock contains the system’s “master clock".

A further class of user-defined events relates to the

cooperative use of resources by a number of processes
and the synchronization of process activity related to
the use of a resource. For example, access to a common
stored data memory area by a number of processes, each
of which references and updates values in the area, must
be controlled such that only one process is performing
an update at any one time. This can be achieved by the
use ofa named binary semaphore managed by REX that
can be enqueued upon by processes wishing to access
the single-use resource. A process successfully request-
ing the use of the resource sets the semaphore. Any
other process requiring to access the resource first tests
the semaphore. If it is set, the process is suspended until
the semaphore is reset by the process currently using
the resource. The next enqueued process is then dis-
patched and the semaphore is reset. The binary sema-
phore acts as a one-process “gate" to the resource. An
individual semaphore is referenced by a user-supplied
16-bit number.

For access to limited multiple resources, a general
semaphore service is provided by REX. This is used in
a similar way to a binary semaphore except that it has an
associated counter, rather than a simple go/nogo binary
value. When the general semaphore is first set up by a
call to REX, an initial count is provided that reflects the
amount of resource available. Every access to the re-
source is preceded by a call to the general semaphore,
which decrements the value. If any process decrements
it to zero (indicathig exhaustion of the resource), the
calling process is suspended until another process fin-
ishes using one of the available resources and incre-
ments the value from zero. The suspended process is
then dispatched. Use of general semaphores permits a
number of processes to share a pool of devices (at some

25

30

35

45

50

55

65

0056

54

higher level than provided by the system device man-
ager}.
C. Inter-Process Packet Communications

Processes communicate with each other via packets.
A packet can be sent from any process in the system 100
to any other process in any processor. To send a packet,
a process constructs the 16-word packet in either data
memory or in the processes scratchpad context and then
calls a REX routine to send the packet. REX queues the
packet on the executive bus output ports of the proces-
sor, and loads the packet into the first free port (X or Y
bus ports). When the bus polling microprocessor (part
of the main interprocessor executive) polls the part, the
port responds that a packet is ready. The microproces-
sor reads the first word of the packet out of the port.
This first word contains a field which identifies the

logical address of the processor hosting the destination
process to which the packet is being sent. This logical
address is transformed (via a table look-up) to the physi-
cal address of the destination processor. The in-port of
that processor is checked. If it is busy (still unloading a
previously sent packet), the transfer request is queued
by the microprocessor which continues polling other
processor’s out-ports.

When the destination in-port becomes free. the
packet transfer is completed between the out-port ofthe
sending processor and the in-port of the receiving pro-
ccssor. The parity of each word is checked during trans-
fer. The REX of the receiving processor then transfers
the packet to data mory, places the pointer to the
packet in an event control block (having constructed an
event control block if the packet is unsolicited) and
posts the event control block to the receiving process.
The receiving process can then pick up the event con-
trol block (and hence the pointer to the packet) when it
next checks its list of evt control blocks or "Waits".

The function code in the packet header is used to vector
the receiving process to a service area for that packet
type, using the predeciared function code table.

During a transfer, the process that sent the packet has
a number of options. The simplest is to send the packet
and continue. However, for security, most interprocess
packet eschanges are in pairs, with the sending process
expecting some form of response from the receiver,
usually either a reply to the packet or an acknowledge-
ment of receipt. To facilitate this during the send opera-
tion, the sender can specify a return event control block
by which it can be informed if a return packet related to
this send operation is received, together with a time-out
value defining a maximum response time. At the receiv-
ing end, the destination process can use the REX “RE-
SPOND” facility to return a response packet to a
sender with minimum overhead.

The sequence of events for transferring a packet re-
quires the sending process to build and store the packet,
call send in REX and then await the return packet until
a post matching solicited ECB in REX activates a
wake—up sending process. The sending REX, upon the
occurrence of call send, places the packet on the bus out
queue, waits for a bus output port, and then passes con-
trol to the outstack handler. Upon receipt of the return
packet the sending REX activates the post matching
solicited ECB. The executive services subsystem 904
polls the processor outstacks until the packet is de-
tected. It then decodes the logical address to obtain the
physical address, polls the receiving processor instaclt,
and when available transfers the packet. The return



0057

4,625,081
55

packet is handled in the same manner by the executive
services subsystem 904.

Upon transfer of the packet to the instack, the receiv-
ing REX executes an instacit interrupt handler and posts
an unsolicited ECB. The return packet is output in a
manner similar to the sending REX procedure. The
receiving process checks the ECB‘s and upon finding
the packet, generates and sends the return packet.

A sending process can also define an event that in-
forms it as to when the packet actually leaves the host
processor which could be some period after it requested
the packet transfer due to a queue to use the executive
bus ports 51?, 519.

A method of sending a packet directly to a corresi-
dent process is provided by REX. This avoids having to
queue for use of the I/O ports, and is obviously much
quicker. However, no system-level check of this packet
transfer is possible as the executive services subsystem
904 is not involved. Also, in the system 10!] processes
can “lloat" from processor to processor as system con-
figuration changes, and general use of this method is not
encouraged.

The first three words of the 16-word data structure of

a standard packet contain the routing information
needed to identify the destination and the sending pro-
cess. The two 20-bit process identification codes are
packed into three words. each field having the follow-
ing meaning:
 

Word 0 FOODE Bits 15-12
CXID Bits ll-S
LBID Bits 7-0

Word 1 ASPID Bits 15-8
SPID Bits 7-0

Word 2 RFCODE Bits 15-12
RCXLD Bits ll-8
RLBID Bits 7-0 

1. Process Identification of Destination—This con-
sists of two fiels in Word 8 and one field in Word 1.
Word 0 contains:

LBID—The logical address of the destination pro-
cessor (range 64—12B) or the fixed address of a major
system jobs’ primary node, in which case this field is
termed the System Bus ID. A single physical procssor
can host as many System Bus ID’s as it hosts system
processes. System Bus ID’s are in the range 2-63. Inter-
Process Communication replaces either LBID or Sys-
tem Bus ID with the Physical Bus ID (PBID) after
consulting its polling tables prior to completing a packet
transfer. PBID range equals 0-31.

CXID—Context ID of destination process {O-31).
Word 1 contains the Subprocess ID (SPID) of the desti-
nation process within the main context (equals zero if
destination is the context main process).

2. Process Identification of Sending Process—Th.is is
contained in the upper byte of word 1 and word 2. Note
that to “turn“ a packet header around requires only
swapping words 0 and 2, and swapping the bytes ofword 1.

The four-bit function codes (FCODE) relate to the
sending and receiving (RFCODE) processes‘ function
table and provides a first-level filter for up to 16 classes
of packets that a process might receive.

Word 3 usually contains the Job Number of the send-
ing process, and enables the receiving process to vali-
date the packet’s source. Word 4 can contain further
fields identifying the exact identity of the packet, and
Word 5 is often used for control, status and error flags.

0057

5

I0

25

30

35

45

S0

55

60

65

56
Note that, apart from the header, the definition of the
meaning of the fields in a packet is the responsibility of
the sending and receiving processes.

Large amounts of data need to be moved through the
system when input/output operations occur. For exam-
ple, if the system 100 were being used to record voice,
voice data is moved from the RECORD process in a
real-time processor 410, 412 along the inter-processor
executive bus 912 od 914 and to the specific ACCESS
subprocess handling the transfer in a file services pro-
cessor 934, 936. Packets are still used to effect the trans-

fer, but these packets are built, sent and controlled by
the REX’s of the two processors involved; these func-
tions are invoked by calling REX input/output service
routines (IOSRS). Once REX has set up a multiple-
packet data transaction, it can use more efficient packet
formats than the standard format. reducing the 3-word
header to two words for the majority of packets. Fur-
ther, REX includes a sequence number in each packet
so that the order of data can always be preserved. Pack-
ets used in mass data transfer are referred to as immedi-

ate packets as they are addressed to REX‘s process (i.e.,
Context 1, Subprocess ID 0). Other processes can make
use of immediate packet formats to implement their
own data buffer transfers, via REX’s transaction man-
agement functions.
D. System Operation and Control

The time between power initially being applied to a
system 100 and it reaching operational readiness is
terrned the system walce-up period. During this period.
the system processes required to realize the particular
functional configuration of the system 100 are initiated
in suitable host processors. System walte~up is an auto-
matic sequence, guided by the job scheduling and allo-
cation monitor (JSAM), using the contents of the sys-
tem requirements fle (SRF) as a guide to the software
components required.

Wake-up takes place at two distinct levels. First, each
individual processor sequences through its own wake-
up cycle moving from physical initialization through to
diagnostic testing to logical initialization. This occurs
whenever power is applied to a processor, or when a
processor is attempting to recover from a trapped con-
dition caused by a software or hardware error. When
the processor has successfully reached the operational
status, it is available for JSAM to allocate processes to
it via create process requests.

The second wake-up sequence occurs at the system-
wide level. This is controlled by the primary JSAM,
resident in one of the two executive services processors
916, 918. The JSAM wake-up process itself is boot-
strapped into existence as one of the functions of the
physical initialization program which is ROM resident
in the bus control extension unit 922 of the primary
executive services processor 916. 918. Which one of the
two executive services processors 916, 918 hosts prime
JSAM is determined by which one completes physical
initialization first.

The sequence of events comprising system wakeup
from this point onward are as follows:

1. JSAM allows five seconds for other processors in
the system to initialize and report their operational sta-
tus to JSAM. JSAM then assigns logical bus ID’s to
each live processor.

2. JSAM selects a File Services Processor 934, 936
(FSP) that has attached to it a disk drive 930, 932 with
a system volume mounted (this is reported to JSAM as



0058

57

part of the file. services processor's wake-up status mes-
sage). The selected file services processor 934, 938 is
instructed by JSAM to continue initialization by load-
ing and running the System Directory Manager (SYS-
DIR). SYSDIR, as part of its wake-up sequence, initial-
izes the other related processrs in the file services pro-
cessor 941, 946 of the file services subsystem 908 (a
possible maximum of 26).

3. JSAM requests from SYSDIR a copy of the system
requirements file (SRF).

The system requirements file fonctains a list of the
processrs required to form an operational system.
JSAM inspects its list of operational processors and
sends create process requests to each processor that
provides a resource sufficient to host an entry in the
system requirements file. Major system components are
started first, and system bus [D's are assigned to them.
JSAM sets itself a time-out for this operation and any
unsatisfied system requirements file entries at the end of
this period are reported to the operator console for
consideration. This can occur if a necessary processor
fails to wake up.

The system requirements file is maintained by JSAM
after wake-up during the normal operation of the sys-
tem. If a new processor reports to JSAM at any time,
the system requirements file is inspected to see if any
outstanding processes need the resources provided by
the new processor. For example, if the processor host-
ing the back-up copy of JSAM fails, the absence of a
back-up JSAM is noted in the system requirement file.
When a replaced of repaired processor capable of host-
ing JSAM or executive services processor 916, 918
reports itself operational, JSAM will automatically
create a back-up JSAM in it.

Due to the very high availability of the system 100,
wake-up occurs at very irregular, infrequent intervals.
During normal system operation, re-configuration is
accomplished by editing records in the requirement and
configuration files from a system terminal 270, JSAM
can then dynamically adjust the system to reflect the
new configuration. ‘

Specifically, the Systems Programmer can:
(1) Create and send a packet to any process.
(2) Display scratchpad, program and data memory.
(3) Alter scratchpad, program and data memory.
(4) Load a program into a processor.
(5) Jump a processor to a program memory location.
Human control and interaction with a system 100 is

via system terminals, such as system terminal 270. A
number of different types of system terminal are sup-
ported, each providing varying degrees of access to the
system. Physically, each terminal consists of an intelli-
gent visual display unit (vdu) and keyboard with a mul-
tipartitioned screen that allows for a number of simulta-
neous display/interaction areas. After providing a log-
on iser ID and password, a system log-on menu is dis-
played. The choice selection of the user is checked
against his usage rights. Providing ID, password and
usage request agree, a system terminal 270 with a se-
lected level of access and control is presented. Four
types of system terminals are supported:

1. Systems Programmers Terminal—-The system pro-
grammer's tenninal gives the user full access to all of
the functions and utilities available at a system opera-
tor's terminal. In addition to the normal operations-ori-
ented functions, a System Programmer’s Terminal can
be used to interact directly with any of the Delta's pro-
cessors, providing a software front-panel control.

4,625,031

5

20

30

SD

55

60

65

0058

58
2. System Operator's Terrninal—Table 1 shows the

function and utilities available via this terminal. The

System Operator's Terminal is used for day-to-day con-
trol of the Delta by the System Manager. The functions
include:

(I) Set Time-of-Day, Date
(2) Remote Card Reader Interface
(3) Program Librarian Interface
(4) Program Loader Interface
(5) Change Logpac Parameters
(6) Change Alarm Message Parameters
(7) Remote Data Structure Access
(8) Disk Device Manager Operator Communications

(DVOLCOM)
(9) Magnetic Tape Device Manager Operator Com-

munication (MTVOLJCOM)
(10) System Spool Manager Operator Communica-

tions (SPOOLCOM)
(11) Program Library Maintenance
(12) System Log Manager Operator Communications

(SLOGOOM)
(13) Add a Device, Remove a Device (Smart/dumb

terminals, printers, real-time lines, SCS channels,
etc.)

(14) Mark a Device Inactive
3. Operator Terminal—Provides a sub-set of the ca-

pabilities of the system operator’s terminal, together
with functions for maintenance, field service, updating
user lD‘s and passwords, etc.

4. System File Maintenance Terminal—Provides the
capability to update records in system files via an inter-
active dialogue at the terminal. Each record update
request from the terminal is first verified with the chief
system user of the file before acting upon the request.
System files maintained from this terminal include:

(1) System Configuration File
(2) System Requirements File
(3) System Device File
(4) Program Library Descriptor File
(5) Function Library
(6) SYSDIR Descriptor File
(7) Node Descriptor File
(8) System File Maintenance Terminals‘ own descrip-

tor files

The system file maintenance (SFM) terminal can be
easily expanded to allow maintenance of other system
and application files. It is table driven and can be used to
update its own descriptor files. These descriptors not
only specify the record types to be updated, but also the
associated interactive screen display and dialogue.

As previously mentioned. logically different tenni-
nals use the same physical device—an intelligent vdu/-
keyboard with a multi-partitioned screen. The partition-
ing and function of each screen area is standard for all
tenninal taypes as is the man-machine dialogue. The
various screen areas may include utility name and sta-
tus, system status, a scrolled system log display. utility
partition no. 1, utility partition no. 2, function prompts,
a menu and error messages.

Simple functions can be invoked from the keyboard
by pressing one of five function keys, which activate
one of five options presented in the Function Print-
/Menu partition. The functions in the menu can be
switched between a large set of groups of five functions.

More complex utilities interact with the user via two
dedicated partitions in an individual fashion, but each
utility uses the same command interpreter accepting
from the keyboard commands with the general form:



0059

4,625,081
59

COMMAND P1, P2, . . . PN;Q1,Q2, . . . QM
Where

COMMAND is a utility-specific command
Pl . . . PN is a parameter passed to the utility
Q1 . . . QM is a parameter passed to the command 5

interpreter.
One screen partition is used to display log packets

being sent to the system log (SYSLOG). As SYSMON
is the backup process to SYSLOG, these packets are
available for immediate display at system terminals. As
log packets are generated for specific events by all sys-
tem processes, the system terminal 210 can show an
associated message describing the event that caused the
generation of the packet. The screen partition can be
scrolled through a buffer of received log packets. A
permanent copy of log packets is obtained by printing
the contents of the system log via a utility involved
from a system operator’s terminal.

The System Terminal software can be used to de-
velop application-specific utilities that can be invoked
and used from a system terminal. Specifically, the fol-
lowing services may be implemented:

1. Invoke a user-supplied utility (Le. a process) byname.

2. Provide ID and password security check against a
user supplied criteria.

3. Allow use of the utility screen partitions as either
two l0><-10, one 10x80 partitions or one 2x80 parti-non.

4. Allow the whole screen area to be used, apart from
the status and error message partitions. for the utility.

5. Provide a display buffer for any partitions previ-
ously defmed above, and automatically maintain the
screen partition to reflect the buffer‘s content.

6. Provide a command interpreter interface between
the utility and the terminal.

User-defined utilities provide a convenient method of
controlling and interacting with application systems,
while maintaining a consistent human interface to all 40
control functions.

The collection of processes providing system tenni-
nal functions are collectively referred to as the system
monitor (SYSMON), and are an example of a process
network. Each terminal manager invoked to interact
with a specific physical terminal is implemented as a
separate subprocess of a primary node process and a
number of co-resident subprocesses provide common
functions. The current version of SYSMON is source-
written in Pascal and resides in a number of Ideal Ma-

chines in a general purpose processor (One IM per
process). SYSMON shares a system bus ID pair with
SYSLOG. SYSLOG is the primary system bus ID -of
the pair and SYSMON the secondary system bus ID.

If either SYSLOG or SYSMON fail, log packets are
re~directed to the survivor which stores the packets
until the failed member is restored, and the stored pack-
ets are transmitted to the new copy.

The program development system generates SPM or
P-Code files as a result ofcompiling/assembling/linking
operations. These code files are loaded by REX into
processors in response to create process requests. A
mechanism which links the products of the program
development system and the requirements of REX, also
allows human intervention at the system level for opera-
tional and management purposes. Function and pro-
gram libraries consist of indexed string datasets resident
on system or user disk volumes.

10

20

25

30

35

4-5

50

55

65

0059

60
It is possible that several different variations of a

program may exist, all performing the same function but
each with different characteristics. This is especially
true in the system 100 which has a number of different
processors each with unique hardware attributes. For
example, the system error logger as a function could
have two programs available. One realized in SPM
machine code, and capable of running in any processor;
and a second, identical function program, written in
Pascal and realized in P-code, only capable of running
in a general purpose processor. Both of these programs
would, however, be indirectly identified by the same
function ID.

When a user requests a node creation as part of set-
ting up a process network, a function ID can be speci-
fied rather than a specific program ID to realize the
node’s process. JSAM can consult the function library,
using the function ID as a keyword. The entry corre-
sponding to the function ID keyword consists ofa list of
program descriptors each give a detailed description of
a program which could fulfill the requirements of the
function. JSAM thus has a set of programs that it can
match against the known resources of the system 100
when attempting to satisfy a create node request. After
performing a dialogue with the function library, JSAM
uses the selected program ID in its request to the chosen
host processor to create a process.

A function ID consists of three fields:

l. A Function reference number in the range 0-64.
2. A System Version in the range 0-255, used to select

between a number of Released Versions of the same
program.

3. A Mode value, range (L255.
User processes can interact directly with the function

library to scan potential programs. Furthermore, if a
program ID for a specific processor-type is required, a
function library name can be used which specifies the
processor type (via its normal extension board). The
specific program dcription entry for that processor is
returned. The user can specifically request a particular
program ID in the create node request to JSAM in
which case the function library dialogue is bypassed.
The function library is resident on the system volume
(duplicated, of course, on the system backup volume).
The contents of entries in the library can be manually
maintained from a system operator's console, and a
degree of automatic maintenance occurs when changes
are made to the program libraries (i.e., if a new version
of an existing program is created and entered in a pro-
gram library, the function library is conditionally up-
dated to reflect the change).

The function library provides a convenient logical
separation between functions and programs which can
be a very useful feature in the development phase of a
project. or to provide better capability to survive failure
by providing options to get around specific processor-
type nonavailability. Note that a number of function
IDs can be mapped to the same program, a useful fea-
ture in test environment.

The interface to the function library is provided by
the system directory manager (SYSDIR).

When source code is assembled and linked together,
the output of this process is referred to as a load module.
A load module contains from one to 16 separately
relocatable pieces called relocatable modules. Each
module is limited to 4096 words. The number of reloca-

table modules is further limited by size constraints in the
load request.



0060

4,625,081
61

A load module may be altered by changes called
patches, which may later be removed from the load
module. Each load module and related patch set consti-
tutes a unique progam on the system and therefore
constitutes a different historical version of that pro-
gram.

Since programs interact with other programs on the
system and interfaces sometimes change, there is also a
need to coordinate different versions of different pro-
grams. Therefore a system version refers to this coordi-
nated change.

All Programs reside in data sets called program li-
braries. There may be several different program librar-
ies in the system to allow distinctions such as system
version. application type or ownership.

A program library is an indexed data set contained on
either system or user volumes. The data set consists of
three different types of records. There exists one pro-
gram header record for each program in the library.
This record contains program related information,
which includes the latest load module number and latest

historical version number for the program.
Each historical version of a program has a corre-

sponding program version header. This record contains
information relating to that program version including
the names of the pieces that compose that version (i.e.,
load module and patches) and possibly a preprocessed
version of the program called a load program. This
processed copy of the program has all the patches (if
any) applied and is in a format that allows efficient
relocation and transfer of the program. Only those ver-
sions that are frequently called have load programs built
and retained.

The third type of record is a load module record,
which contains a particular load module and all the
patches that have ever been applied to that load mod-
tile.

The records are indexed by a key which contains the
record type, the program number, and the NEB type
and version. Program version headers also have the
historical version number in the key. Load module re-
cords contain the load module number in the key.

A particular historical version of a program can be
uniquely identified in the program library by its pro-
gram library name which consists of the program li-
brary ID, the program number, the NEH type and ver-
sion and the historical version number.

Programs are also identified by their external ID.
This ID is used as an external interface for human inter-

action. This ID consists of a part number, version num-
ber, date program loaded and an alphanumeric nick-name.

In order for a processor to execute a process, the
program code of that process must exist in program
memory. When it is not in memory, the program is
loaded by a request to SYSDIR. This request may be
sent in response to a create process request by the REX
of the processor that wants the program loaded, or it
may be forced by a process in another processor.

The requestor passes to REX the program ID of the
program to be loaded. This ID might either be known
by the process making the request or have been passed
to it by JSAM which learned the ID from a function
information request dialog, as explained earlier. If the
Program ID is a function library name, SYSDIR is used
to obtain the program library name by reading the func-
tion library record.

ll)

20

25

35

45

50

55

65

0060

62

There are a number of different types of load re-
quests. A normal load is one where the requester (i.e.,
REX) first requests the program load information (i.e.,
memory and resource requirements) and is then re-
tamed the memory addresses for loading the program.
A forced load allows the requestor to make a single
request to load the program, specifying the load ad-
dresses in the request.

Within the scope of normal and forced loads, a pri-
mary load is when a program is being loaded to a pro-
cessor and no other copies of that program code are
currently loaded in the same processor. A secondary
load (for those programs that allow it) is a load related
to a program that already has program code loaded.
This will load only process-related data memory mod-
ules, which are needed to handle multiple invocations of
the same program. Finally, an overlay request is a re-
quest to load selected code modules. This mechanism is
used to allow the partitioning of a program such that all
its code segments do not have to be resident in program
memory at the same time. An overlay request is a re-
quest to replace one or more of these overlayable
pieces.

The 16 relocatable modules in the load module of the

program may be of four different types. These are:
(1) Primary program memory modules
(2) Overlay program memory modules
(3) Program-related data memory modules
(4) Process-related data memory modules
The different load types outlined above cause differ-

ent combinations of these modules to be loaded into

memory. In a normal primary load, primary program
memory, program-related data memory and process-
related data memory modules are loaded. A secondary
load is a request to load only process-related data mem-
ory modules, as the other modules containing program
code will be shared from a previous primary load. An
overlay load is a request to load some of the overlay
program memory modules, as indicated by an accompa-
nying overlay map.

Process-related data memory modules allow an in-
voked process to access loaded and initialized private
data. This saves a process from having to acquire the
memory space dynamically and then initialize it. The
initialization can be done at assembly time and the mem-
ory acquisition effectively accomplished via a program
load.

Process-related data memory can also be used to hold
preinitialized program control information which will
be used by the system (e.g., process control block, event
control blocks).

It is the requestor's responsibility to manage and con-
trol secondary and overlay requests. That is, the re-
questor must know that a primary load was performed,
that the modules are in memory and where they reside
so that any subsequent relocations can be performed on
the new pieces. For overlay calls it is the requestor‘s
responsibility to know which pieces can overlay which
pieces, to keep track of which pieces are currently in
memory, and to mechanize transfers of control between
separate overlayable pieces. However, in normal system
operation, all program loading is managed on the users
behalf by REX, and this is only of concern in forced
load requests which bypass the REX of the target pro-cessor.

INPUT.’OUTPUT SERVICES

A. Overview



0061

4,625,081
63

The system 190 is a multi-media computer system
which utilizes failsafe architecture to provide very high
levels of availability and uninterrupted processing. It is
a tightly-coupled. distributed network of multiple high
speed processors, interconnected by a high speed
packet switching network, and a fully distributed fault
tolerant operating system that together provide a
uniquely flexible, high throughput processing system.
The modular architecture of the system allows the sys-
tem to be configurated to accommodate the most de-
manding input/output and processing requirements.

The unique hardware/software architecture of the
system 100 enables it to operate in environments which
mix real-time, voice communications, data communica-
tions, computational, interactive and transaction pro-
cessing. This fully integrated hardware/software design
eliminates the need to interface uniprocessors, store and
forward nodes, etc. to obtain the desired system capabil-
ities.

The function of the input/output services of the sys-
tem 100 is to manage all information transfers between
processes and attached devices. This includes the inter-
connection of real-time voice or data channels, acquisi-
tions of real-time data streams, data storage transfers,
and control of and communication with large numbers
of external devices. To accomplish this the system 100
utilizes multiple microprocessors, microcoded in ROM,
to control the internal high-speed packet switching as
well as the buses from the real-time, interactive and file
services subsystems. Further a comprehensive set of
1/0 services routines (ISORs) is available to processes
running in an ideal machine (IM). These can be used to
acquire, control and communicate with any device
attached to the system 100. The operational protocols
associate with the ideal machine I/0 service routines

are described in greater detail in Section B. A process,
once it obtains control ofan external device. has a direct
link with that device.

Applications, running in an ideal machine use the 1/0
services of the ideal machine monitor (IMM) which
directly use the host processor's resident executive
(REX) I/0 service routines. Privileged users, working
outside the IM environment creating assembler pro-
grams, can call directly on REX I/0 service routines. It
is at this level that a system designer would code cus-
tomized device handlers.

Two kernel system software components are in-
volved in I/O transactions. Before a user process can
communicate with a device. ownership of the device
must be acquired by the user process, or by some other
process within the same job network (i.e., a process
with the same job number). A user cannot talk to or
control devices not specifically owned by a job of
which the user process is a member. Device ownership
is achieved by a request to the system device manager,
(SYSDEV). SYSDEV checks to see if the device is
available, and if so, sets up a logical path between the
requestor and the device handler of the required device.
Transactions can then take place between the user and
the device handler directly with no intervention by
SYSDEV until the user returns the device to the ‘‘pool‘
of unowned devices.

The second kernel system process involved in 1/0
transaction initialization is the System Directory Man»
ager (SYSDIR}. When a user wishes to transfer data to
or from a device channel or dataset, the user must first
issue an Open request. In the case of datasets, the open
request is routed to SYSDIR. SYSDIR checks that the

0061

5

IO

20

25

30

35

45

50

55

65

64
requester has access rights to the named dataset, and on
which volume (disk or magnetic tape) it exists. SYSDIR
builds a communications path between the user and the
logical I/0 handler oi‘ the dataset through which all
subsequent transactions are handled.

The device and dataset handlers reside in the proces-
sors to which the device channels or data volumes are

physically attached. The handler receives the packets
generated by the REX of a processor requesting input!
output services and provides the logical to physical
interface functions needed to implement the request.

At any one time, the system 109 can be hosting a large
number of independent jobs with each job acquiring
and opening any number (within system limits) of de-
vices and datasets. Device handlers can accept concur-
rent requests for devices, and each handler can manage
multiple devices of the same class. Individual datasets
can be opened for simultaneous access by multiple users
and a range of access restrictions can be specified.
Spooling is also available for queueing output to a spe-
cific device type such as a printer.
B. Input/Output Protocol

A well-defined protocol exists for using devices and
datasets either through IMM Services or directly
through REX IOSR‘s. Privileged users (those operating
outside of the Ideal Machine environment) perform I/0
functions directly using REX IOSR’s, while other users
(those operating within the Ideal Machine environ-
ment) use the services of the ideal machine monotor
(IMM) which in turn calls REX IOSR sequences to
perform a particular function. These IMM IOSR func-

tions exist as groups of intrinsic Pascal procedures, ch
group addressing a particular area of the I/O protocol
and are listed as follows:

Acquire Device Procedures:
VACQNAME: Acquire by name.
VACQLIST: Acquire by type and sub-type.
Data Set Maintenance Procedures:
VCREATEDS: Create a new dataset.

VMODIFYDS: Modify an existing dataset.
Open Procedures:
VOPEN: Open a device for I/O.
VOPENDSET: Open a dataset for 1/0
Read Access Procedures:

VREADDEV: Prepare a device for a Get.
VREADCRT: Capture a CRT screen.
VREADDIRECT: Input from a direct dataset.
VREADKEY: Input from indexed clataset.
VREADNEXT: Read next record (indexed set).
VREADPREV: Read previous record (indexed).
Write Access Procedures:

VWRITEDEV: Prepare a device for a Put.
VWRITEDIRECT: Output to a direct dataset.
VWRITEKEY: Output to an indexed dataset.
Data Transfer Procedures:
VGET: Transfer from device or dataset.
VPUT: Transfer to device or dataset.
\/TRANSFER: Transfer between device or dataset.
Device Control Procedures:
VOONTROL: Send control and receive status.
Data Set Control Procedures:

VDELETEKEY: Delete a keyed record.
VRENAMEKEY: Rename a keyed record.
VALLOCATE: Mark direct records in use.
VRLSELEM: Release direct records for use.
VADDEXTENT: Increase extent of a dataset.
VMOVEWINDOW: Move window in subfile.
VINSERTMARK: Mark a record in a subfile.



0062

4,625,08 l
65

VDELETEMARK: Remove a mark in a subfile.
VINSERTELEM: Create a new element in subfile.
VDELETELEM: Delete an element in a subfile.
VMOVELEM: Move a set of subfile elements.

Access Completion Procedures:
VENDIO: Terminate a data transfer.
Close Procedures:

VCLOSE: Close an Open device or dataset.
Device Release Procedures:

VRLSEDEVICE: Release ownership to system.
For privileged users, REX provides several calls for

both device and dataset manipulation. The way in
which one of these basic IOSR calls is used is deter-

mined by the parameters supplied in the call. RE)-ts‘
basic set of l0SR’s include the following functions:

(1) OPEN
(2) CONTROL
(3) ACCESS
(4) GET
(5) PUT
(6) TRANSFER
(7) ENDIO
(8) CLOSE
(9) GETIOSTATUS
The above list is not eiihaustive and REX provides

functions which combine sequences of the basic set for
convenient use in commonly occurring I/O operations.
In general, each call to a REX function can choose
between a number of variations of the functions basic
service.

There are two types of calls to REX. One suspends
the calling process until the request is complete. The
second returns control to the caller immediately after
the request is initiated and provides the program origin
at which processing will recommence once the request
is complete.

This does not apply to I/O calls from applications
jobs running in an ideal machine where a process al-
ways suspends until the request has been completed.
This avoids concurrent operations building up in a sin-
gle ideal machine. Concurrency in the system 100 is
obtained by running concurrent singular processes each
in a separate ideal machine.

When a level 3 application process performs I/O, it
communicates with a level 1 process which provides a
logical interface to a device or dataset. However, before
this communication can begin, access to the handler has
to be gained by way of the Kernel System. Devices
have to be acquired from the system device manager
(SYSDEV) and datasets have to be created and opened
by way of the system directory (SYSDIR) catalogue.

To build a logical control channel to a specific device
(excluding datasets but including telephone lines in
voice applications), the device must first be acquired by
the process wishing to send or receive control mes-
sages. There are two basic ways to acquire a device.

Acquire-by-Name--Each physical device is uniquely
identified by its termination point at the system 100
interface. If more than one channel to a device exists (as
occurs, for instance, with operator stations and remote
line concentrators), any of the devices’ channel identi-
fiers can be used to name the device. Acquire-by-name
is used when a process has been specifically invoked as
a result of the system detecting activity on an unas-
signed device. The channel ID on which the stimulus
was received is passed to the invoked process as part of
its start-up parameters. The process acquires the device
by name and communicates with its device handler to

10

20

25

30

35

45

S0

65

0062

66

effect whatever subsequent action is predefined for the
process.

Acquire-by-Type—A process may need to acquire a
device with certain physical or logical characteristics
without regard to which particular device is assigned to
provide them. For example, if a magnetic tape drive is
needed, the user is not particularly concerned with
which drive is assigned, as long as one is made available
to receive data. In these circumstances, the user supplies
a device type code that identifies both the physical
device type required—(e.g., terminal, tape drive) and
also a hierarchical list of sub-type groups, each of which
identified one or more equally acceptable logical sub-
types within the physical type (operator's terminal,
supervisor’s terminal, etc.)

The acquire request, together with the device chan-
nel ID or the device type code and sub-type list, is sent
to SYSDEV. If a suitable device can be found, the
device channel handler is informed and SYSDEV

passes back to the user the process ID of the handler,
the channel identified for each channel plus tupe and
sub-type codes of the device. It’ the requested device
exists, but is already allocated, the user has two options
(indicated in the acquire request):

(1) To be informed the request was unsuccessful with
no further action.

(2) To have the request queued (with a queue priority
and time limit supplied by the user) until a suitable or
specific device becomes available.

If a requested device does not exist because it is out of
service or becomes so alter a request has been queued,
the user is notified that the request cannot be fulfilled.

The Create function allows a new dataset to be

formed with a number of attributes defined by the user
in the create request. The modify function allows the
attributes of an existing dataset to be subsequently
changed. A create request is passed to the system direc-
tory manager (SYSDIR) which maintains a catalogue
of all datasets known to the system 10!) either on disk
volumes or magnetic tapes. After validating the request,
SYSDIR enters the dataset details in the system direc-
tory and passes back to the user an indication as to the
success or failure of the request. Failure to create a
dataset could occur if a dataset with an identical name

already exists, if insufficient space exists to satisfy the
space needs of the dataset, or it‘ illegal attribute

values were supplied in the create request.
The attributes that can accompany the create request

include:

(1) Dataset name

(2) Dataset type _ _
(3) Hardware type (disk, magnetic tape)
(4) Creator's identity (often log-on user code)
(5) Access security information (covering groups of

potential users)
(6) Action regarding duplicated datasets
(7) Create or add to existing dataset
(8) Volume ID (if Add)
(9) Allowable extents
(10) Directory characteristics
(1 1) Record parameters
(12) Initial size required (if Create)
The Modify request enables the above attributes in an

existing dataset directory entry to be changed by theowner.

A user can request exclusive use of a complete disk
volume (magnetic tapes have single user access by na-
ture). If a user requests creation of a dataset without



0063

4,625,081
67

specifying a “Pack ID" of a volume owned by the user,
the dataset is created on any suitable public volume.

Devices no longer required by a job can be made
available for use by other users with the release func-
tion. Any subsequent attempts to communicate with the
device using the reference data allocated by the original
acquire function will end in rejection.

If a job terminates without releasing previously ac-
quired devices, they are automatically released. This is
initiated by the job scheduling, allocation and monitor-
ing kernel function (JSAM) which always informs SYS-
DEV when a job has terminated. SYSDEV in turn
informs the device handlers to purge their tables of
ownership of the terminated job. However, the pres-
ence of unreleased devices is an indication of a potential
fault condition, so such occurrences are logged for
analysis.

If a job terminates with open datasets, these are
closed by the system directory manager (via JSAM
request).

Once the initial dialogue with the kernel system is
complete, the user process communicates with a level 1
device or dalaset handler which is resident in the pro-
cessor to which the device channel or dataset volume is

physically attached. When a dataset is initially opened,
the open request is first passed to the kernel system
process SYSDIR before a level 1 handler is invoked.
The following functions apply to owned devices or
pre-existing datasets to which the user has the required
access right for the specific request.

An open request establishes a commtmications path
between the user process and the device channel han-
dler or dataset access process. In the case of datasets,
the user supplies his user ID along with the dataset
name. These are checked against the descriptions in the
system catalogue to verify the validity of the open re-
quest. In the case of devices, the user must supply a job
number and the appropriate channel ID of the one or
more obtained when the device was acquired. If the
device channel has already been opened by a previous
request and not closed, the current open request is re-
jected.

The open request establishes contact between control
processes at each end of the communication channel
which handle the subsequent data transfers.

Once an open has been performed, multiple read and
write accesses may be performed by the opener on the
device or dataset.

Read, write and update access requests establish the
conditions prerequisite to the transfer of data. They
check on the physical availability of the device or data-
set for date transfer (it could be busy with a previous
transfer) and effect all of the required actions at both
ends of the channel necessary to permit a subsequent
data transfer. This can involve the creation and loading
of buffers at the data source. For example, in the case of
dataset 1/0, a read access request would specify a logi-
cal record in a file. As a result, the required data is
transferred from the disk into a butter in the tile services

processor 934, 936 (FSP). Any subsequent “GET"
functions effect transfer of the data from the buffer to

the requestor. A write access request to a dataset allo-
cates an empty buffer into which a logical record will
be placed. An update acts initially as a read, but the
buffer which holds the user data is retained to permit
rewriting of all or any portion of the data back to the
disk. In other cases, external buffering is used. For ex-
ample, with the magnetic tape, the buffering is provided

0063

5

10

IS

20

25

30

35

45

55

65

68

in the magnetic tape controller. Note that for operator
stations, data buffering is assumed to exist in the tenni-
nal associated with the station whereas no audio buffer-
ing is assumed for the station headset.

Put and get request functions request the physical
transfer of data between the user process and buffers in
the device, channel controller, device handler or data-
set handler that were previously primed with a read or
write access request.

With a transfer request, a user process can initiate a
transfer of data between a source and destination chan-

nel or dataset without passing the data through the
user's process. Thus a user process can effect a data
transfer, for example, from a display record on disk to
an operator station CRT with no intervention required
by the user once initiated and with direct routing ofdata
through the system 100.

An access completion request clears the access path,
terminates the access and returns to the system any
associated buffers. To validate the request, particularly
for multiply-accessed datasets, the user specifies the
access reference value obtained from the system when
the read/write access was requested. When a sequence
of accesses is needed. each access completion request
can also be used to initiate the next access.

A close request deallocates the access control capac-
ity which was assigned as a result of the initial open
request from the user. Close clears the communication
path between the two. To reaccess the device or dataset
(except for device control only) the user would have to
reinvoke the open function.

Control data can be sent to devices and datasets by
way of IOSR control functions. This information may
be trapped by the device or dataset handler, or may be
transferred directly to the device itself.

The minimum requirement to be able to control a
device is for the device to be acquired, whereas a data-
set also has to be opened before any user interaction can
begin. Acquiring a device provides the user with
enough identification and authorization to talk directly
to the devices handler. Tltis is especially useful in man-
aging devices that do not generate or transfer data. For
example, the circuit switching function of the real-time
subsystem 230 does not pass data through the system
100. It interconnects real-time data channels. A user

who has acquired a set of these channels can send con-
trol parameters to the circuit-switcher specifying the
interconnection required without having to prepare
buffers or initiate control processes with Open./Close,
Read/Write requests.

IMM l0SR’s provide a group of control functions
that simplify the control of the more complex dataset
types available on the system 100. These functions pro-
vide access to the record-control sections of datasets,
allowing modifications to be made to the structure of a
dataset without having to read records from the datnset,
reducing the amount of physical disk I/0 required.

For privileged users working outside of the ideal
machine environment, REX provides a single parame-
ter driven proccdure for all control functions.

An acquire request returns the ID of a devices‘ chan-
nels and also the process ID of the devices to the user
handler. A privileged user can then use basic packet
transfer services to communicate with a device or data-

set handler in a totally self-structured way. This pro-
vides greater flexibility but transfers to the user the
responsibility for the correct packet-level protocol be-



0064

4,625,081
69

tween the user and the device handler which is nor-

mally the responsibility of REX.
C. Devices

In general, a singular device can include more than
one channel attached to the system 100. For example in
a voice application, an operator station consists of a
duplex data channel to a CRT and associated keyboard
plus an audio channel to and from the operators head-
set. If an application job needs an operator terminal, it
has to acquire the two channels simultaneously since it
makes little sense to attempt to utilize the two indepen-
dently. When a complex rnulti-channel device is re-
quested, SYSDEV’s device configuration tables list the
set of attached physical channels. If any one of the
channels is unavailable, another device is selected if an

acquire—by-type is being performed, or the acquire re-
quest is either enqueued or rejected if an acquire-by-
name is specified.

If the device is successfully acquired, SYSDEV re-
turns to the user the channel ID and process ID of each
channel associated with the device. This effectively
defines the communications link from the user to each
of the devices channels. The return link is established in

the open request and each control request.
The interactive service subsystem 903 can support:
(1) Smart terminals
(2) Dumb terminals
{3} Line printers
(4) Magnetic tape drives
(5) Synchronous and asynchronous channels
(6) Line concentrator data links
It should be noted that the magnetic tape unit is a

device that supports datasets. Before opening a tape
dataset, the tape drive is first acquired by the system
directory manager (SYSDIR) on the user's behalf. A
dataset open failure response will be returned to the
user if SYSDIR is unable to acquire a drive. Operator
requests to mount off-line tape volumes are passed to
the system monitor by SYSDIR as part of the open
process. Tape datasets conform to ANSI X3.27 format,
allowing archived data to be transported to other pro-
cessing systems.

A number of printers can be attached to a system 100,
of which a minimum of two are usually assigned as
system printers. These are not normally acquired di-
rectly by users, and are owned by the system spocler.
Data for printing on a system printer is passed by the
user to the spooler with a print request header, with the
spooler managing the transfer of print data to the
printer. Non-system printers can be acquired for private
use in the same way as any other assignable device. The
printer handler can operate in three modes.

Transparent mode-—with all printer control charac-
ters embedded in the data stream.

Edited transmission mode—in which the user sends

data in message blocks with the printer handler format-
ting the data according to a layout defined previously
by the user.

Line-oriented transmission mode—where data is sent

on a line-by-line basis, each line containing format infor-
mation in the first word.

The Printronix printer normally used with the system
100 contains a vertical forms unit that can be loaded

with predefined form layouts. A graph plotting mode
can be entered from the transparent mode.

The Real-Time Subsystem allows real-time data
channels to be attached to the system 100. Some of the
functions provided to the user include:

5

10

15

20

25

30

35

45

50

55

65

0064

70
(1) circuit switching,
(2) data recording,
(3) data playback,
(4) signal processing, and
(5) supervisory signallying and control.
One use of the real-time channels is for PCM-

encoded voice with a transfer rate of 64 K-bps. Equally,
any other information that uses the normal analog band-
width of the telephone system could be switched or
processed by the same functions. Variations of the real-
time channel interfaces enable non-PCM encoded data

to use the sybsystem—(e.g., telemetry, video, etc.) The
bandwidth available to a channel can be varied at the
expense of the total number of channels that can be
switched or processed.

Users can acquire real-time channels either by type or
by name. Individual circuit switching and control can
be accomplished with a simple acquire-control-release
protocol. Supervisory information and control data can
be received from and sent to owned channels. In tele-

phony applications this would be used to set dial tone
on a line, for the detection and generation of dial se-
quces, setting on-hook and off-hook conditions. for
seizing lines, etc. Furthermore, a number of channels
can be logically grouped by the owner and referred to
by a network ID. Within a network, one-to-one, one—to-
many and many-to-many interconnections can be set up
by the user simply by providing interconnect maps to
the circuit handler. Thus, in voice applications cross-
connects. broadcasts and conferencing can be imple-
mented through control functions. A complete network
interconnection can be torn down with a single com-
mand by referencing the network ID.

Signal processing functions such as record and play-
back are invoked as transient processes in the real-time
processors 410, 412 (RTPs}. User-written signal pro-
cessing functions can similarly be installed in the real-
time processors 410, 412, which has access to the data
channels attached to the real-time subsystem 230. Each
real-time processor 410, 412 can handle 16 input and 16
output channels. Typical real-time processor applica-
tions could include spectral analysis, filtering, and the
assembly or reassembly of subcommutated channels.

Record and playback functions allow data from real-
time channels to be stored on disk and subsequently
reconstructed as a real-time signal. To disk
storage requirements, voice messages and conversations
can be compressed during record. and decompressed
during playback by a real-time processor 410, 412 with
a compression ratio of better than 2 to 1. It would also
be possible to retrieve the data from disk for manipula-
tion and processing by an independent job. During
record, record markers are inserted in the data stream at

approximately one second intervals, allowing the stored
data to be the subject of a record orientated processing
operation (e.g., editing stored voice messages). The
record and playback processes function much as if they
were simple mechanical recording devices, although in
practice they are implemented as software processes
hosted by real-time processors 41!}, 412 (RTP).

Each real-time processor 4-10, 412 can concurrently
support approximately 8 record processes and I6 replay
processes. The job scheduling, allocation and monitor-
ing kernel function (JSAM) causes these processes to be
initiated in response to a request for a record or play-
back function. The owner supplies a dataset name and
channel ID for the transaction, and control information

to operate the machine-—initialize, record, replay, pause



0065

4,625,081
71

or terminate. The software “recording machine“ inter-
faces to both the real-time channel handler and the

dataset handler to actually implement the transfer using
standard REX lOSR‘s. In addition, the channel that is
the object of the record/playback transaction can, at
the same time, be involved in a circuit-switch network.
I). Datasets

Datasets recorded on magnetic tape volumes con-
form to the ANSI X32”.-' standard, initially with level I
support on single or multiple tape volumes. Tape data-
sets are restricted to direct access, fixed record length.
Each tape has an ANSI standard label which includes a
volume 11‘).

Disk dataseis comprise an integral number of physical
disk tracks. When a dataset is created the expected
number of tracks required by the user is specified in the
create request. This initial space allocation (or extent) is
in the form of contiguous tracks on the volume, making
accesses to the dataset optimized for high speed. Access
speed and transfer rate are factors which dominate over
space allocation efficiency, especially in communica-
tions environments. Further extents for a datascts’ re-

cords are requested if more space is needed.
As an extent is acquired, it is soft formatted into a

series of blocks, the block size being a dataset attribute
determined by the user. Since the disk drive controller
transfers data in units of blocks, the block size is set to
tracle—off access time versus buffer requirements in the
file services processor 934, 936.

A further parameter supplied by the creator is the
record element size. This is the unit of logical allocation
of disk space within a block and the block size must be
an integral number of record elements. The various
logical record types are all built from allocating record
elements within blocks within the dataset extent.

The system 10!) supports four different types of data-
set organizations, six logical data structures, and three
record types. The hierarchical aspects of dataset organi-
zation are as follows:

 

3 DATASET Single Volume, singular
ORGANIZATION: Multiple Volume, singular

Single Volume, duplicated
Distributed.

2 LOGICAL Block Direct Access.
DATA Mapped Direct Access.
STRUCTURE: Index Only,

Indexed integral.
Indexed sub-file,
Indexed chain.

1 RECORD Fixed length,
TYPE: Integral records.

Chained records,
Subfilc records. 

The user can either select a combination of characteris-

tics to build efficient structure that are specifically tai-
lored to individual applications (such as voice store and
forward), or can write a higher level of access and
control which uses the basic services provided by
Delta's I/0 system to realize a more general data orga-
nization, such as a database. The services provided by
the system directory manager (SYSDTR) and the file
services processors (F‘SPs) is comprehensive enough to
make either type of task both concise and efficient.

Dataset types can be categorized into direct access
and indexed. In direct access datasets, individual re-
cords are accessed by a numerical (ordinal) address
within the dataset. Indexed datasets allow access by
keyword, and also allow considerable manipulation of

0065

10

15

20

25

30

35

4-5

50

55

65

‘T2

the datasets‘ record structure without actually reading
or writing data records to and from disk. This is made

possible by the ability to access the control structures of
the dataset as well as actual data records. These control

structures not only include the index keys. but also
logical maps of the datasets’ internal record layout, and
mark tables that allow locations within the dataset to be

specifically “marl(ed" for future reference. The user has
full access to these control structures in the various

indexed type datasets allowing considerable scope for
complex record manipulation with minimum physical
data movement. It is also possible for the records within
an indexed dataset themselves to be direct-access files of

any length allowing "access-by-name" followed by
“access-by-record-number" to be accomplished within
a single opened dataset. Additionally. an indexed data-
set such as those used for voice recording can contain
records of arbitrary length, comprising of multiple
linked blocks.

The system 10!} supports multiple on-line disk and
tape volumes. Further, these volumes can be attached
to different file services processors 934, 936 (FSPs) or
interactive services subsystems 252 G855). To build a
communications path to a specific dataset, open re-
quests are passed to the system directory manager
(SYSDIR) for routing to the appropriate destination.

SYSDIR maintains dataset directories and manages
the construction of communications paths to datasets on
the various volumes. SYSDIR maintains the master

volume directory and the system catalogue which con-
tains an entry for every dataset known to the system.
whether on-line or off-line, together with the one or
more volume IDs on which it was created. When a

request to open a dataset is received, SYSDIR checks if
the volume containing the dataset is on-line, and ifso, to
which file service processor or interactive services sub-
system it is attached. If the requestor has access rights to
the requested dataset, the file service processor hosting
the volume containing the dataset is requested to initiate
a process to which subsequent Read/Write access re-
quests are passed by the user. The ID of this process is
returned to the requestor, completing the open process.

A volume that contains the master system catalogue
is referred to as a system volume. Two such volumes
normally exist and each also contains the various system
program libraries and data files required to run the
system 100. The two system volumes are attached to
separate file service processors 934, 936.

Each attached volume, including system volumes,
have a volume directory that contains the details of
datasets resident on that specific volume. \Vhen a vol-
ume is mounted and comes on-line. its volume ID is
passed to SYSDIR so that SYSDIR can decide which
datasets are available for opening.

When a new dataset is created, a 6—byte user code is
supplied by the creator. The owner can control subse-
quent accesses to the dataset and can specify that the
dataset be accessible only by the owner, be publicly
accessible by any user, or have Iiruited access as speci-
fied in an associated 16-bit access rights code.

This allows subgroup access to four different capabil-
ities: read, write, modify, and remove.

SYSDIR supports four basic dataset organizations,
any of which can be selected when a dataset is created.
These various options include:



0066

4,625,081
73

(1) Single volume, singular dataset—This is a dataset
that is confined to one volume, with only one copy of
the dataset in the system.

(2) Multiple-volume, singular dataset-—A multipart
dataset that exists on a number of volumes. Only one 5
copy of each part exists, and each part is opened indi-
vidually by referencing the dataset name and volume
ID.

(3) Single volume, duplicated dataset—A dutaset that
the system automatically duplicates by creating and
maintaining two identical copies of the dataset on differ-
ent volumes mounted on separate file service processors
934, 936. Duplication is transparent to the user, and
requires no special management to recover if one copy
becomes unavailable for a period. The second copy will
be automatically updated to reflect the latest state of the
surviving dataset. (This does not involve bulk copying
ofthe survivor. Changes that were made to the survivor
while the second was off-line are marked and only those
marked are transferred.)

(4) Distributed dataset—A dataset whose records can
exist on a number of volumes. This type of dataset can
be created to receive long records so that load-sharing
of file service processors 934, 936 occurs. This would
typically be required when real-time voice data is being
stored. A single voice record needs continuous data
storage for extended periods of time. With a distributed
dataset, the system selects, for each individual Open of
the dataset, a volume and associate file services proces-
sor 934, 936 that is currently least loaded. The record is 30
then allocated to that volume. The user process must
preserve in an application-maintained directory the
particular volume to which the record was sent (this
information is returned in response to the open request).

After a number of accesses, the individual records of 35
a distributed dataset become distributed across multiple
volumes independent of accession order. The i.nforrna-
tion that exists in the directory for this type of dataset
contains a list of volume IDs that contain records for
the dataset.

To maintain a duplicated distributed dataset, the user
may also request a concurrent Open on the next "least-
busy" drive controlled by a different file service proces-
sor 934, 936. In the case of distributed datasets, how-
ever, individual record duplication is managed entirely
by the user. SYSDIR simply selects the best volume to
send the duplicate copy. The user is responsible for both
writing the duplicates and recovering synchronization
after failure.

Block direct access datasets are the simplest dataset
type, with contiguous records accessed by an ordinal
record number. No control information is maintained

concerning the usage of records within the dataset—
this is the user’s responsibility. The record size is fixed
and equal to the record element size of the dataset ex-
tent which is specified when the file is created. As is
common with all datasets, a record can be "locked” to

permit a read-modify-write cycle to be performed
safely in environments where a single dataset is opened
by multiple users.

Mapped direct access datasets are similar to block
direct access datasets except that these datasets use
variable length records which may change in size dur-
ing the course of an access. Each record created in a
mapped direct access is identified hack to the user on an
individual record basis, the ID being used to reference
the record on subsequent accesses. This technique al-
lows multi-volume indexed datasets to be built, with an

ID

15

20

25

45

50

55

65

0066

74
index-only dataset {see next section) on one volume,
with its indexed memo entry pointing to the individual
records of a mapped direct access dataset on another
volume. These basic tools can be used to advantage in
implementing more general structures such as multi-
volume databases.

For all indexed datasets, records are referenced by an
associated key held in a directory control area within
the dataset. The key length is an attribute of the dataset
and can be up to 255 bytes in length although in practice
the smallest size possible is recommended. Either an
exact or an approximate match can be specified in the
access request. In addition to the basic read/write ac-
cess of a record, it is possible to access the next record,
to rename a key, to delete the record only or delete both
the record and its key. To minimize data movement, a
small amount of data can be stored with the key in the
key index. This is termed a memo, and it can be read to
or written from without accessing the whole of the
associated record.

An index only dataset can be created that has no data
area but contains only a key index. This allows the key
index maintenance and access routines used with nor-

mal indexed type datasets to be used with nonsupported
data structures created by the user. Verification and
recovery of such structures is the creator’s responsibil-
ity. The only meaningful data that can be transferred
during the index-only dataset access is the content of
the memo field. Accessing an index-only dataset returns
a record ID of the index identical to that returned from

accessing a mapped direct access datasets record. This
allows hierarchies of linked indexes to be constructed.

An indexed integral dataset is the most general pur-
pose dataset organization. Each individual record

within the dataset can be of variable length (up to a
maximum defined when the dataset was crted) with a
complete record transferred as a single operation.

In an indexed subfle dataset, each indexed record is
equivalent to a direct access dataset. A basic record
element is referenced via a key into the index of the
dataset (this points to the beginning of the contiguous
record elements making up the direct access subfile)
plus an ordinal address within the subfile (this offsets
the access to a point within the record elements making
up the subfile).

To add greater flexibility to the indexed subiile, ac-
cess to individual records in the subfile is directed

through a map called the logical sequence array (LSA).
A physical offset into the subfiles’ record elements is
made using the ordinal number provided in the access
request after it has been mapped through the logical
sequence array. By allowing the user to reorder and
replace the values in the logical sequence array, the
accession order of the physical records can easily be
changed. Thus data can be manipulated by manipulat-
ing the logical sequence array rather than the real data
records allowing the user to impose his own structure
within the records of an indexed subfile type with mini-
mum data movement. Each indexed subfile records has

its own logical sequence array.
An indexed chain dataset is similar to the indexed

subfile, except that there is no logical sequence array
and the order of records in the subfile is not easily
changed. The indexed structure is a set of non-contigu-
ous physical records successively linked by pointers
contained within each record element. Initial access to

a record element is via the key index augmented with
either the ordinal address ofthe physical record or with



0067

4,625,081
75

the identity of a marker associated with a user-desig-
nated point in the set of physical records. Within an
indexed chain dataset, a user can ‘'mark’’ any individual
record element using a value that is stored in a mark
table associated with the record. Subsequent access to
another record element in the same chain can then be

requested by any of four references:
(1) Absolute ordinal location relative to the beginning

of the subfile.

(2) A differential location relative to the last access.
(3) A reference by specific mark value.
(4) A specific number of marked locations, counted

from the last access.
The indexed chain dataset is useful whenever access

patterns are basically status. For example, a complete
program library could he maintained as a single indexed
chain dataset with each indexed entry at specific pro-
gram code file, which is accessed serially.

THE. APPLICATION ENVIRONMENT

A. Introduction

The system 1613 is a general purpose multi-media
computer system. The system is a tightly-coupled dis-
tributed network of multiple high speed processors,
interconnected by a high-speed packet switching net-
work and a fully distributed fault tolerant operating
system that together provide a uniquely flexible pro-
cessing environment. The system 100 is functionally
organized into five subsystems each consisting of multi-
ple processors perforrning specific functions (i.e., file
handling, interactive processing, real-time, executive or
general processing).

Application programs are supported by the informa-
tion processing subsystem 906. The information pro-
cessing subsystem 906 may contain from I to 26 general
purpose processors 942, 944 with each general purpose
processor having up to B M-bytes of user memory.
Application processing or development is supported by
the general purpose processors, which can directly
execute the pseudo-machine codes, or P-codes, gener-
ated by a high-level systems programming language
such as Pascal. The P-code set is a high-level machine
instruction set which is efficiently produced from block
structured procedural languages such as Pascal, “C",
ADA and FORTRAN.

The general purpose processors 942, 944 are sup-
ported by the other four subsystems for Input/Output,
real-time, file storage and executive services. These
systems utilize a system 10!) assembler to generate SPM
machine codes basic to all system 100 processors. To
produce both high-level Pascal programs, which oper-
ate in a general purpose processor, and low-level SPM
assembler programs to run in other system 100 proces-
sors, an interactive program development system (PDS)
provides the system designer with the following facili-
ties: (l) Pascal oomplier, (2) Pascal linker, (3) SPM
assembler, (4) SPM linker, (5) Screen editor, and (6)
programmer's utilities.

The Pascal language used with system 100 is the ISO
Pascal with extensions. The extensions fall into two

general categories:
(1) Those that enhance the basic capabilities of the

language, for example, extra character manipulator
routines not provided in the basic International Stan-
dards Organization (ISO) version, and

(2) Extensions that interface to the Kemel system and
lower level resources, allowing a Pascal program to call

0067

20

25

30

35

45

SO

55

65

'76
on the services of distributed hardware and software

functions of the system 10!).
Within this environment, a complete multifunction

application system utilizing all hardware/software re-
sources of the system 109 can be realized as a set of
programs coded in Pascal. Each Pascal program. when
scheduled as an active P-code process in the system,
runs in its own protected allocation of system resources
called an ideal machine (IM). This allows low-integrity
program development to occur along with production
processing of highly critical applications, without com-
promising overall system integrity. These activities may
occur concurrently in a single general purpose proces-
sor, simultaneously in multiple general purpose proces-
sors or a combination of both.

Each general purpose processor in system 100 has a
resident executive system (REX) and an ideal machine
monitor (IMM). REX contains programs to perform
physical initialization, interrupting handling, event and
process handling, memory management. I/O, list pro-
cessing and various computational and utility routines.
The ideal machine monitor provides programs to create
ideal machines, program loading, initiation, scheduling
and termination, extended memory management, ideal
machine I/0 interface, ideal machine program manage-
ment and the interfaces to permit use of REX system
services.

A general applications processor may have from
SOOK-bytes up to 8 M-bytes of user memory. Within this
memory each process, operating as P-code, has private
hardware-mapped virtual address space relative to
other co-resident processes. Communication to other
active processes in the system is through the ideal ma-
chine monitor. Within this environment, a large number
of processes may be active concurrently. These could
be multiple processes operating in a production mode,
processes in development or checkout under the pro-
gram development system or any combination of the
two. Each program development system that is active

' within the system 100 requires an ideal machine re-
source from a general purpose processor and an interac-
tive terminal. A systems designer can use the program
development system to create source text files, compile
or execute Pascal programs or assemble SPM programs.
Pascal programs can be tested interactively from a pro-
gram development system terminal whereas SPM pro-
grams require a systems console for checkout, and can
be loaded for execution only by processes outside of the
program development system.

Typically, a single P-code process would be sufficient
to run an application using calls to functions provided
by the Kernel system to satisfy its input, output and
storage demands. If a multi-invocation, single function
application is required (as will often occur, for example,
in telephone answering support services). then the de-
signer need only be concerned in programming the
service for one terminal. This is because the ideal ma-

chine architecture used in the general purpose proces-
sor allows multiple invocations of the same function to
be run concurrently with each innovation of the pro-
gram supporting just one terminal. To avoid inefficient
duplication of code, a single copy of an application's
P-code is shared within a general purpose processor if
more than one ideal machine is running the same func-
tion.

An applications designer will very rarely need to
program at the SPM level, as the Kernel system pro-
vides access to all of the processing resources and sup-



0068

4,625,081
77

ported peripheral devices. However, if an application
calls for a new device type to be added, an SPM level-1
device handler must also be written. Programs at the

SPM level execute as privileged tasks, thus a complete
knowledge of system hardware and software architec-
ture is needed to produce high-integrity programs that
do not interfere with existing system processes.
B. Program Spaces

The system 100 provides two distinct programming
environments—the host programming space and the
image programming space. The host space represents
the low-level programmability of the system 190 with
programs resident in the program memory of a proces-
sor and encoded in SPM machine code. The executive

services processors 916, 918, the disk data processors
934, 936, the interactive services executives 702, 706,

the real-time executives 4-06, 4-08, and the real-time pro-
cessors 410, 412 are all entirely programmed in SPM
machine code, as are the programs which mechanize
the ideal machines in the general purpose processors.
Their program memories collectively form the host
programming space of the system lllll. The resident
executive (REX) of each processor is contained in this
space as are hardware-coupled or speed-critical system
components. For example, device and dataset handlers,
real-time signal processing routines, the job scheduling,
allocation and monitoring function, etc., are considered
part of the host space. The SPM machine code set is
speed-optimized with a basic instruction cycle time of
133 ns. Spare program memory capacity exists in many
processors which can be used for any application pro-
cesses needing to be written in SPM code. In particular,
the real-time processors 410, 412, when not being used
to host dedicated functions such as Record/Playback,
are totally available for user-specified real-time signal
processing or other activities. If an application requires
extra host space beyond that configured in a processor
of a specific type, then additional processors of that
type can be configured into the system 100, up to the
global maximum of 32 processors in a single system.

The host-space is not the normal applications pro-
gramming environment. An intimate knowledge of the
basic machine architecture of the SPM is required to
utilize efficiently the large machine code set, and an
application has to interface directly with REX for sup-
port services. Further, if the spare host space capacity
of a minimum configuration system is used, then appli-
cation processes would have to be co-resident with
critical system processes, which would tend to reduce
the overall reliability of the system. For although REX
manages the program and data memories of a processor
on an allocation basis, it does not provide any intrinsic
memory protection as any such schemes would reduce
the overall perfonnance of the processor.

The image space provided in the general purpose
processors provides an excellent applications program-
ming environment. In the image space, each process
resides in its own isolated, protected memory space and
is implemented using a high-level instruction set, the
code of which can be efficiently generated from source
programs written in a systems programming language.
The image space instruction set in a general purpose
processor is implemented by using the program mem-
ory of the general purpose processor to host Pascal
P-code instruction emulation routines, the actual high-
level P-codes being fetched from the general purpose
processors data memory. Thus, in a general purpose
processor, the high-speed program memory is used in a

15

20

25

30

35

45

50

55

65

0068

78
fashion similar to a writeable microcode control mem-

ory and what is normally considered as data (user)
memory in other processors is used to hold both P-code
programs and process-related data.

General purpose processors are created by adding a
general purpose extension unit to a standard processor
module 500. P-code instruction emulation cycles are
optimized by an extension SPM instruction, jump vir-
tual, which vectors the SPM to a specific emulation
routine via any one of four 256-way hardware instruc-
tion decode tables. The jump is based on the contents of
a data memory location which contains the P-code to be
executed. The data memory capacity of the general
purpose processor may be extended to 3 M-bytes from
the normal limit of 123K-bytes to allow a large number
of co-resident P-code processes to exist and operate
concurrently. Each P-code process maps its 64K-byte
code space and separate 64-K.-byte data space via a set of
32 mapping registers to address physical memory loca-
tions in the 8 M-byte store range. To reduce process
context switching time to a minimum, each process is
assigned its own unique set of mapping registers from a
pool of 128 sets of 32 that are available in each general
purpose processor. These hardware features of the gen-
eral application processor allow a large number of fast
P-code processes to be supported with an effective
P-code instruction cycle time of between 4 and 5 micro-
seconds.

The ideal machine is a collective term used to de-

scribe the environment provided for a P-code process in
a general purpose processor. It emphasizes the isolated,
single-user resource that the general purpose processor
provides for each resident P-code process, with an
image machine architecture totally different from the
underlying host general purpose processor. Each P-
code process resides in its own ideal machine with 641(-
bytes of P-code program space of unique virtual mem-
ory, which can map to shared physical memory, to-
gether with an unshared 64K-bytes of data space avail-
able for the stack and heap of the process while it is
running. Both the code and data segments appear to be
internally contiguous, and do not overlap or interfere
with the code and data segments of other processes.

The P-codes in the code space are sequentially exe-
cuted by a P-machine implemented as an SPM software
emulator in a general purpose processor. The P-
machine not only provides basic P-code interpretation
and execution, but also provides access. via intrinsic
calls, to the rest of the system 100. A P-code process
executes "sequentially" until suspded during an 1/0
or an intrinsic call, although in practice a general pur-
pose processors CPU time is sliced on a “round-robin"
schedule between all of the nonsuspended P-code pro-
cesses resident in a general purpose processor.

An ideal machine environment of a P-code process
includes P-code module overlap from disk, up to 641(-
bytes of storage space, a stack and a heap (in inverted
storage space opposite a stack). When an application
process is being designed, no regard need be paid to the
final physical organization of the process. The only
restrictions being to keep the code generated to within
64K-bytes, and to ensure that stacks and heaps do not
overlap when the program runs (i.e., do not exceed a
total of 64K-bytes). Applications requiring code or data
segments larger than 64-K-bytes have recourse to a num-
ber of alternatives:



0069

4,625,081
79

(2) Sequential processes can use the segment overlay
facility provided by the ideal machine to swap in code
segments from disk.

(2) Concurrent processes can create a network of
P-code processes (or a mixture of P-code and SPM-
code processes) that communicate via signals, packets,
or shared memory files (if resident in the same general
purpose processor).

(3) Processes requiring large data spaces can acquire
unlimited amounts of free data memory by the memory
file mechanism. This allows a data structure to be built
which resembles a record-structured random access

dataset which is memory rather than disk resident. If
two or more P-code processes declare the same named
memory file, they can use its shared records if both are
resident in the same general purpose processor.

A P-code process can be used as a node in it jobs’
process network in the same way as an SPM-code pro-
cess. Once established, it can create further subordinate
processes it creates.

In most applications, the primary node of a job will
be a P-code process. Even if a job is real-time critical
and requires most of the application to be SPM-code
nodes, a high-level control program to initiate and or-
chestrate these processes will normally be written in
Pascal to provide a structured and maintainable pro-
gram. Applications which require a higher degree of
information processing and altorithmic logic reside
mostly in Pascal, using the access methods provided by
the kernel system to communicate with and control
devices and datasets. The majority of applications fall
into this class due to the accessability of system 100
resources provided by the ideal machine monitor oper-
ating system. Most applications will not require addi-
tional SPM processes to be programmed. Such pro-
gramming is needed only when a new device type is
being interfaced to the system to provide the necessary
software device manager.

Many of the level 2 kernel system functions are pro-
grammed in Pascal and reside in ideal machines in a

general purpose processor. The system device manager
(SYSDEV) which is responsible for assigning owner-
ship and access rights to all devices attached to system
100 is an example of this. SYSDEV uses large, memory-
resident tables to track the characteristics and changing
usage of devices. These tables are examples of memory
files. The large user 8 M-byte memory of the general
purpose processor allows virtual machines to use such
large data structures reducing the access frequency or
disk storage and so increasing overall system perfor-mance.

A P-code process is initially created using the pro-
gram development system to write and compile a Pas-
cal program. The generated P-code module is linked
with any required service routines, procedures or li-
brary modules to finally produce a load module. This
load module is then entered into a program library from
a system operator’s terminal and linked to an entry in
the system’s function library. This gives the P-code
program a standard program ID which can be used in a
create job or create node request to the job scheduling,
allocation and monitoring subsystem (JSAM). When
JSAM retrieves the program descriptor from the li-
brary, it notes that this is a P-code process and so needs
a general purpose processor with sufficient resources to
build an ideal machine to host the process. Having se-
lected a suitable general purpose processor, a create
Pascal process request is passed to the ideal machine

5

20

25

30

35

45

50

55

65

80

software in the general puppose processor. The ideal
machine monitor software creates a new ideal machine

for the P-code process and if the program is not already
loaded, loads the code into general purpose processor
data memory. The process is then dispatchable along
with any other processes in their own ideal machine
monitors.

ISAM can attempt to select a host general purpose
processor 942, 944 which already has the program P-
code loaded into data memory. The new process’s ideal
machine address space is then simply mapped out to the
memory locations containing the code, sharing the same
copy with any other processes running the same pro-
gram. This reduces start-up time by avoiding a program
load (although a load might still be required for process-
related data modules), and reduces the amount of data
memory needed for program space in identical, multi-
process applications. An alternative process allocation
strategy is to load-share across general purpose proces-
sors to improve the response time of the system. How-
ever, once each processor is running a copy of the same
program code, code-sharing as described above would
result from any further requests for the same program
function.
C. Ideal Machine Monitor Service Functions

Programs resident in ideal machines interface to the
rest of the system 100 using a set of ideal machine moni-
tor routines. Each routine is called as a procedure from
the Pascal program, and associated with each call is a
parameter list of variables supplied by the user and
resident in the user’s own data space. Ideal machine
monitor service routines are named as external in the
users program, and linkage to them from the call in the
nser’s program is made at link time.

The service functions provided by ideal machine
monitor can be classified into the following areas:

(1) Input/Output to devices and datasets.
(2) Inter-process communications and process initia-

tion.

(3) Event Management.
(4) Time Management.
(5) Memory Management.
The ideal machine monitor service routines either

map into specific requests to the REX services available
in the general purpose processor 942. 944, or are per-
formed directly by the idea} machine monitor subsys-
tem itself (for example. general purpose processor mem-
ory management functions). Ideal machine monitor
service routines that call equivalent REX functions
generate no P-code in the user's code space other than
a call to an ideal machine monitor intrinsic procedure.
Other ideal machine monitor service routines will in-

clude some code in the user's code space that generates
call sequences to basic REX filnctions.

I/O calls form the bulk of the services, and the stan-
dard interchange protocol established by REX is re-
llected in these procedures with the Ac-
quire—Open—Aooess—Close—Release sequence re-
quired. However, specific routines are included to sim-
plify the interface to the various dataset types that are
supported on the system 100. Thus, while many of the
1/0 calls can be equally applied to manage the data
channels that exist between devices or datasets, a sub-
set of these calls relate only to datasets.

The inter-process communication (IPC) routines
allow IM processes to use the basic packet mechanism
of the IPC network. A user process has access to primi-
tive functions of the system 100 through these proce-

0069



0070

4,625,081
81

dures, in that any legal packet type can be constructed
and dispatched by the IPC. Also included in these calls
are routines to create, identify and destroy sub-
processes. This allows the user to arbitrarily build com-
plex process networks in the system 100, consisting of 5
both P-code and SPM-code processes using any avail-
able and allocatable system resource.

The event management routines enable a process to
check for, and possibly wait on, a specified event.
Events can be generated by both hardware and soft-
ware and include interrupts, packet receipts, time-outs,
I/0 completion, process termination and signals from
other processes.

Time management routines allow initiation of timers
that can be used as the source ofan event at some future
time. This basic mechanism can be used to construct

complex process scheduling activities.
Memory management services allow a process to

obtain extra memory allocation from the large memory
space of the general purpose processor. A tmique Pascal
variable type is accessed via the memory management
routines—the memory file. To the user, this has the
characteristics of a random-access file-type, but uses
memory resident records rather than records stored on
mass storage devices. The owning process has access to
one record of the memory file at any one time, and the
record window is accessed via the data space of the
owning process. The memory file extends the data
space available to a process without increasing its basic
64K-bytes of virtual address space. Furthermore, multi-
ple processes can share the same named memory file
providing an efiective interprocess communications
technique for ideal machines is resident in the same
general purpose processor 942, 944.

The general nature of services provided to the user
by the ideal machine monitor is closely related to the
attributes of the system 100 as seen by the underlying
REX services. However, the structuring power of the
Pascal language enables these basic functions to be built
into more complex mechanisms as needed, but still al-
lows total control of, and access to, all the system 100resources.

The ideal machine monitor input/output services
routines {IOSRs) interface with the underlying REX
input/output services routines to perform a requested
I/O operation. The input/output services routines es-
tablish control and data paths between the user and the
devices and datasets attached to the system 100.

In general, an I/0 operation proceeds as follows. A
user requests that an I/0 function be performed by
calling the appropriate input/output services routines
and supplying a set of parameters that define the details
of the request. The ideal machine monitor input/output
services routines function formats the parameters into
REX input/output services routines call arguments and
invokes the appropriate REX input/output services
routines, or sequence of REX input/output services
routines. During this time, the user’s process is sus-
pended until the operation is complete. The ideal ma-
chine monitor input/output services routines retmns
either with a successful completion or an error with the
appropriate status to indicate why the operation was
unsuccessful.

The exact sequence in which ideal machine monitor
input/output services routines procedures need to be
executed largely depends on the specific device or data-
set being accessed. The ideal machine monitor input-

10

25

30

35

45

50

55

65

82
/output services routines procedures have been listed
previously.

All devices which are acquired and all datasets which
are open must have a unique file information block
(FIB) associated with them. The file information block
resides in the user's data space and contains descriptive
information about the device or dataset. This informa-

tion is used by the ideal machine monitor input/output
services routines and must exist from Acquire to Re-
lease for devices and from Open to Close for datasets.

The access control block (ACE) is used to maintain
information relevant to each particular access of a de-
vice or dataset. As such, at any given time, a unique
access control block must exist for each active access.

An access is established by the execution of one of the
access type verbs (e.g., VREAD, VWRITE . . . ) and
remains active until the access is completed (usually by
a VENDIO operation).

When a device is acquired, an acquire response mes-
sage is returned which contains the reference informa-
tion needed to open and access the device. To accom-
modate this, the ideal machine monitor input/output
services routines maintains the message packets in its
own environment with an associated unique identifier.
This identifier is then placed in the user's file informa-
tion block (FIB) for future reference as required by the
ideal machine monitor input/output services routines.

Interprocessor communication in the ideal machine is
accomplished by way of 16-word packets with the for-
mat of the packets left to the caller. The areas covered
by these procedures handle the sending of packets to
other processes, and also include the initiation, identif-
cation and termination of processes.

The following procedures and functions are available
related to inter-process communications and manage-
ment:

VSEND: Send a packet to a process.
VSIGNAL: Send a packet to a process within the

same processor.

VCREATE: Create a new subprocess.
VQUIT: Terminate the calling process.
VCREATORPID: Return the P11) of the creator of

the calling process.
VDECLAREFC: Declare the valid packet function

codes for the calling process.
VSELFPID: Return the PID of the calling process.
The event management procedures deal with the

detection of events and not the allocation or dealloca-

tion of event control books (ECBs). To the user of the
ideal machine, event control blocks are an internal

structure used totally by the system to maintain events
for the user.

The procedures and functions relating to event man-
agemt include:

VCHECK-EVENT: Check for the occurrence of an

event and return true if the vent has occurred,
otherwise, return false.

VWAIT: Make the calling process non-dispatchable
until an associated event occurs.

The procedures and functions furnished by the ideal
machine related to time management include:

VSTART-TIMER: Start a REX timer for the cur-

rent running process.
VCANCEL-TIMER: Cancel a timer that was set for

this process
VTIME: Return the current time to the caller.

The resource manager is an internal ideal machine
monitor function that handles the allocation, dealloca-

0070



0071

4,625,081
83

tion, and bookkeeping required to map the logical ad-
dress space of the ideal machines into the 8 megabytes
of physical memory in a general purpose processor. It
does this by using 256 segment maps, with each map
having 16 hardware registers. and each register map-
ping out to a single 4096 byte block. When a process is
initiated in an ideal machine, a data segment map of 16
physical memory address registers is allocated for the
processes‘ data segment. Then, if the program required
to run the process is not already loaded, a code segment
map is allocated and the program is loaded into the
mapped area. After the maps have been allocated, phys-
ical memory pages (of 4096 bytes each) are allocated as
required to accommodate the data memory require-
ments for the process. The first page of the Pascal stack
is reserved as a process communication area and is used
by the ideal machine monitor to manage the process.

In addition to the 64K-bytes of data memory that are
available for the Pascal stack and heap, a process may
use large memory files to extend the memory of the
Pascal heap.

Two memory files are allocated for a single process.
These files are managed on a record basis in a manner
similar to direct access files on disk. Any number of
such files (within general purpose processor memory
limits) may be opened and, at any given time, any re-
cord of an opened file can be mapped into a set of pages
on the heap of the user’s data segment. The internal
management of the data in a record is left to the user.
These memory tiles may be shared by multiple users.
However, memory files do not have to be shared in the
same order by all users (i.e., Process “n” could have
opened the files in the order D, C, B. A). Also, a mem-
ory file record can be mapped into more than one data
segment at the same time and a single memory file can
be opened multiple times by the same user.

The procedures and functions supported by the ideal
machine monitor relating to memory management in-clude:

VOPEN-Ml-3M—FILE: Open a memory tile for use by
the calling program. This is allocated as the next
4K byte page on the heap.

VSEEK-MEM-RCD: This function loads the re-

quested record in the map of the caller at the ap-
propriate place as established by VOPEN-MEM-
FILE.

VEXTEND-MEM-FILE: Extend the space allo-
cated for the associated memory file by an addi-
tional number of records.

A set of utility procedures and functions is provided
by the ideal machine monitor.

VGET-CREATE-PKT: Return the create request
packet to the caller.

VLOG-IT: Print the contents of a packet on the local
auxiliary extension board console.

D. Program Development System Overview
The program development system (PDS) is an inter-

active system: that allows the progranu-oer to edit, corn-
pile and link programs directly from a terminal. From
any of a number of program development terminals, a
programmer can invoke the creation of a program de-
velopment system to be run in an ideal machine. Each
program development system provides the programmer
with an environment similar to that of a stand-alone

minicomputer that is totally dedicated to the program-
mer‘s own tasks. The programmer is also freed from the
need to submit source programs to background batch-
streams for compilation and linking. In addition, pro-

10

15

20

25

30

35

45

55

65

0071

84

grams compiled for operation in ideal machines may be
executed directly from the terminal within the environ-
ment of the program development system.

The program development system operates in a 64K-
byte ideal machine and provides the following major
facilities:

(1) Interactive Screen Editor
(2) Pascal Compiler
(3) SPM Macro Assembler
(4) SPM Link Editor
(5) Pascal Linker
The program development system provides a conve-

nient, simplified interface to I/O services that can be
used to manage user files from the program develop-
ment system terrninal. Text, data and code files can be

copied and deleted using a simple dialogue, with text
and data files printed with a single command. A listing
of a user's dataset directory can be requested, and code
files can be displayed and patched from the program
development system terminal.

The program development system can be used to
check out Pascal program modules prior to integration.
The structured nature of the Pascal language and the
strong type-checking of variables perforrned by the
compiler reduces the normal checkout burden to verify-
ing correct logical operation. To aid in interactive
checking, the standard Pascal intrinsics READLN and
WRITELN are available to be inserted in the program,
with 1/0 directed to either the program development
system terminal or the printer. This allows user-speci-
lied program tracing. In addition, the full range of stan-
dard run-time error-messages defined for Pascal are
displayed at the program development system terminal.

These check-out facilities are not available once the

program module is integrated into an application system
running in its own virtual machine, as the program
development system operating system that provides
these services is no longer present. READ and WRITE
are replaced by the comprehensive I/O services pro-
vided by ideal machine monitor input/output services
routines.

The integration of SPM code into the host space of
system 101] is a privileged task calling for a special
means of debugging and testing. as well as responsible
action on the part of the user. Native SPM code cannot
be run directly under the program development sys-
tem—-only Pseudo-codes (P-codes) produced by the
Pascal Compiler can execute in an ideal machine. To
check out SPM programs, particularly those destined
for ROMS or those requiring testing in a stand-alone
processor, an auxiliary extension board (AEB) can be
used to debug code in the target processor in which it is
to reside. An auxiliary extension board, when plugged
into a processor, provides complete control of an SPM
via a soft “front panel", consisting of an interactive
terminal and a printer. To the programmer, an SPM
processor (together with a normal extension board) plus
an auxiliary extension board workstation provide a
complete stand-alone test and integration facility. In
addition, a processor equipped with an auxiliary exten-
sion board can co-exist and participate in the normal
operation of the system 100.

For most SPM programs, checkout does not require
an auxiliary extension board equipped processor. In-
stead, a system programmer’s terminal 270 operating
under the system monitor (SYSMON), can provide the
programmer with the ability to initiate, terminate, moni-
tor and alter SPM programs via the REX monitor.



0072

4,625,081
85

When a new program function has been successfully
tested, it is installed in the system program library from
where it can be invoked automatically in response to
external stimulus by the job scheduling, allocation and
monitoring (JSAM) function of the kernel system. In-
sertion of a new program into the library is carried out
from the system prograrnmers terminal 2'70 through the
system monitor. SYSMON also provides a program
development console which can be used to supervise
and manage all on-line program development systems.
E. Screen Editor and Utilities

Text files for input to either the SPM assembler or the
Pascal compiler are generated and modified from a
program development system terminal using the inter-
active screen editor. After invoking the editor, the user
is asked to define a text file that exists in his directory,
or alternatively, the name of a non-existent file that will
be created as a result of the edit session.

The user is presented with a “window" into the text
file with one terminal screen-full of data representing
the current window position. The initial position of the
window is at the top of the text file (or blank if a new
file). The top line of the display continuously displays
the current edit mode together with a list of the possible
options that are associated with that mode. In this way,
the user is always made fully aware of what options are
available at any given stage in the edit.

The main edit mechanism is the cursor. The cursor
can be moved around the screen and text can be in-

serted, deleted or change from the cursor position. Note
that the screen of the program development system
terminal is not the location where the actual text manip-
ulation is taking place—-this occurs in the program de-
velopment system virtual machine. However, the high-
speed link between the program development system
terminal and the system maintains an accurate and up-
dated image at the terminal of the current state of the
text file being edited. By selective screen erasure and
remote cursor control, the program development sys-
tem achieves this without successive complete screen
re-writes.

The following commands are available to the screen
editor user:

Adjust: Adjusts the indentation of the line that the
cursor is on. Uses the arrow keys to move. Moving
up (down) will adjust the line above (below) by the
same amount of the adjustment on the current line.
Repeat-factors are valid.

Copy: Copies what was last inserted/deleted/zapped
into the file at the position of the cursor.

Delete: Treats the starting position of the cursor as
the anchor. Use any moving commands to move
the cursor. "Etx” deletes everything between the
cursor and the anchor.

Find: Operates in Literal or Token mode. Finds the
target string. Repeat-factors are valid, direction is
applied. “S”=uses same string as before.

Insert: Inserts text. Can use backspace and delete to
reject part of an insertion.

Jump: Jumps to the beginning. end,-or previously set
marker.

Margin: Adjusts anything between two blank lines to
the margins that have been set. Command charac-
ters can be used to protect text from being mar-
gined. (Invalidates the copy buffer).

Page: Moves the cursor one page in the current direc-
tion. Repeat-factors are valid; direction is applied.

0072

30

40

45

50

65

86
Quit: Leaves the editor. Exit modes are Save, Exit. or

Return.

Replace: Operates in Literal or Token mode. Re-
places the target string with the substitute string.
Verify option asks to verify before it replaces. S-
option uses the same string as before. Repeat-fac-
tors replace the target several times. Direction is
valid.

Set: Sets Markers by assigning a string name to them.
Sets Environment for Autoindent, Filling, Mar-
gins, Token, and Command characters.

Verify: Redisplays the screen with the cursor cen-
tered.

Exchange: Exchanges the current text for the text
typed while in this mode. Each line must be done
separately. Back-space causes the original charac-
ter to reappear.

Zap: Treats the starting position of the last item
found/replaced/inserted as an anchor and deletes
everything between the anchor and the current
cursor position.

down-arrow: moves repeat-factor ("Repeat Factor"
is a number typed before a control command. Typ-
ing a "I" repeates indefinitely.) lines down

up-arrow: moves repeat-factor lines up
right-arrow: moves repeat-factor spaces right
left-arrow: moves repeat-factor spaces left
space: moves repeat-factor spaces in direction
back-space: moves repeat-factor spaces left
tab: moves repeat-factor tab positions in direction
return: moves to the beginning of line repeat-factor

lines in direction

" " “,” "—": change direction to backward
" " “,” "-4-": change direction to forward
“=": moves to the beginning of what was just found-

/replaced/inserted/exchanged
A set of utility functions are provided by the program

development system which allow the programmer to
manage the files and programs generated by the pro-
gram development system. A brief description of these
utilities is as follows:

I-Iex Dump Allows the user to display and update
disk files at the Hex code level. Options are:

Read: Read and display blocks of data in hex format.
Change: Change a byte of the displayed dump.
Update: Replace the updated block in the disk file.
Quit: Return to the editor.
Copy: Copy one file to another, with amendments if

the destination file exists, or create a new file if no
destination file is specified.

Delete: Delete a tile from the user’s directory.
List Directory: Displays or prints the user’s file direc-

tory.

Print: Print a text or data file, either immediately if
the printer is free, or spooled for later printing.

Execute: Load and execute a P-code file in the space
above the program development system code in
the ideal machine that hosts the program develop-
ment system. Run-time errors trap back to program
development system with a standard error mes-
sage. Ideal machine monitor Input/Output services
routines may be linked into the program.
READLN and WRITBLN are available to com-

municate with the program development system
and provide user-defined program flow tracing.

F. SPM Functions

The SPM macro assembler generates relocatable
SPM code segments from text file input. The object



0073

4,625,081
87

code produced by the assembler can be input to the
SPM link editor along with other object modules to
produce a final relocatable load module.

The major features of the macro assembler are:
(1) Segmentation-—The SPM program can be divided

into numbered sections with the CSECT (Control Sec-
tion) directive. The assembler concatenates the various
components of a CSECT into a contiguous code section
in the object module. Up to sixteen CSECTS can be
defined in a program module, with one section having
the attribute of COMMON. Common sections from all

object modules are overlayed by the linker.
(2) Macros—User defined code sequences can be

defined as named macros. Assemble time parameters
can be passed to the macro expansion, allowing SPM
programs to be structured out of tailored, functional
components. Establishing common libraries of well
tried macros is an efficient method of improving pro-
grammer productivity and program maintainability.

(3) Assembler Directives—The sequence of assem-
bler processing can be controlled by directives in the
text. In particular, the following two directives can be
used to skip forward through text as determined by
assembler evaluated expressions.

GOTO, Expression Symbol, Symbol, Symbol . . .
This skips to the next occurrence of a symbol, se-

lected orinally from a list of symbols as determined by
the evaluation of the expression in the GOTO.

JUMPVAL Expression 1, Relation, Expression 2,
Symbol

Skips to "Symbol" if the “Relation" between ‘Ex-
pression !’ and ‘Expression 2’ is true. These directives
allow parameter-driven variants of a. program to be
assembled. For example. the changing of a parameter
TEST from 1 to 0 could include or exclude test sections

of code from a program.
Include from Text Library—A secondary text source

can be defmed as input to the assembler. This contains
symbolically labeled sections of text that can be inserted
into the primary source text stream when called by a
LIBRARY directive. The format of the directive is:

LIBRARY. HOL(filenan1e) Symbol 1, Symbol 2 . . .
where “filename" is the name of the library file and
“Symbol” identifies a section to be included.

Other directives are available with the SPM assem-

bler. The assembler is a two-pass program that gener-
ates as output an assembly listing, a symbol dictionary
and an object code file. The additional directives are:

Input Control:
COLUMN: Define continuation of source text line

passed ‘I9 characters.
LIBRARY: Insert from library file.
LEND: End of library insert.
Output Control:
PRINT: Switch output hating on.
PRINTOFF: Switch output listing off
PAGE: Restore listing to top-of-page.
SPACE: Insert blank lines
TITLE: Title and sub-title definition.

TABSET: Indentation of macro expansion listing.
LINES: Lines per page control. -
OUTPUT: Allow output text from a macro expan-

sion.
Location Counter:
ABSOLUTE: Defines absolute code location.
RELOCATE: Defines code location as relocatable.
ORIGIN: Set location counter.

RESERVE: Reserve memory locations.

0073

88
BOUND: Set location counter to Modulo-n bound-

ary.

CSECT: Following code belongs to numbered con-
trol section.

COMMON: Following code belongs to common
control section.

Symbol Definition:
LABEL: Set an assembler symbolic label.
EQU: Define an expression equal to an argument.
LOCAL: Define a local (limited range) label.
SET: Redefine a symbol to an argument value.
SPNAME: Scratchpad symbol (as opposed to Prog.

Mem.)

SPEQU: Scratchpad symbol using scratchpad ad-
dress mode.

SPDEFAULT: Define address mode for all follow-

ing SPEQUS.
RENAME: Rename a symbol (Both values avail-

able).
ALIAS: Rename a symbol (Only new value avail-

able).
Data Generation:

DATA: Set data in memory (various formats).
BYFER: Form one 16-bit word from two 8-bit bytes.
Program Module Communications:
DEFINE: Declare a global symbol.
REFER: Reference an external global symbol.
Input Statement Processing:
END: End of text input.
GOT0: Skip to computed symbol.
JUMPVAL: Skip to symbol on condition.
VOID: Conditionally skip macro expansion.
Macro Definition:
META: Define a macro.
MEND: Terminate a macro defnition.
AMEND: Alternative macro exit.

Loop Control:
LOOP: Begin a repeated text insertion.
LOOP TEST: Conditional termination of repeat text

loop.
LOOP EXIT: Unconditional termination of repeat

text loop.
Object modules .produced by the assembler are input

to the SPM link editor. The output of the linker is a
further set of modules that can be submitted to the

relocating loader that loads program functions on be-
half of the system. The linker allows the various
CSECTS and COMMONS of the input object modules
to be further structured and rearranged such that a
logical sequential program is produced. A list of object
modules (up to 16) is submitted to the linker. The user
can then specify a particular CSECT value in the range
of 0 to 15. The input modules are then scanned and all
CSBCTS with the specified value are extracted. The
CSECT can contain both relocatable and absolute (i.e.,
fixed load address) code sections. An output load mod-
ule is specified, and the relocatable CSECT components
are oontiguously placed into it. The loading into the
output module of the CSECT can start at an offset from
the beginning of the output module. Absolute sections
of code are appended to the relocatable linked sections.
When all the CSECT components have been trans-
ferred, a further CSECT can be specified.

COMMON sections are treated in a similar way ex-
cept that each section is overlayed into the load module,
i.e., the space in the load module taken by a given set of
named common sections is equal to the size of the larg-
est common in the complete set of common sections.



0074

4,625,08 1
89

Any of 16 load module segments can be specified as
the output location of the link, and multiple CSECTS
and COMMONS can be directed to the same load seg-
ment. Any CSECT not specifically mentioned in a
transfer is default loaded to segment I}, and the default
link is to link every object module in the order submit-
ted into a single load module. Resolution ofglobal refer-
ences between the load module segments, and the as-
signment of relocatable values, finally takes place at
load time. As programs are eventually loaded by REX
into whatever memory resource is allocated (that is, not
into ltnown memory locations) the final relocation of a
program's load module takes place dynamically at load
time. Note that absolute program segments are nor-
mally used only for system functions such as REX,
EXREX and related programs.

During the linking process, the user is able to supply
undefined global references and can also reassign values
to global references.

As output, the linker produces:
(1) A load module with up to 16 segments.
(2) A list of global references sorted by value in al-

phabetical order.
(3) A segment load map.
(4) A cross-reference of globals versus segments.
The following link editor commands are available:
CLEANUP: Define program entry point for orderly

termination by the program.
EXTBASE: Set a default load module segment base.
EXTDEF: Set an undefined global reference, or

override current value.

EXTEQU: Replace all references to global symbol
“a” with value of symbol “b”.

LIST: List the output load module.
MODULE: Specify beginning of input list of object

modules.

OBJEND: End of list of object modules.
REFLIB: Library of reference values to be searched

for undefined global references.
SECTION: Assign a CSECT to a load module sec-

tion.

COMMON: Assign a COMMON to a load module
section.

START: Define a normal entry point.
G. Extended Pascal

The Pascal language supported by the program de-
velopment system is ISO Standard Pascal with certain
extensions. Pascal is the major tool with which applica-
tion systems are constructed. The Pascal compiler sup-
ported by the program development system generates
Pseudo-Code (P-code) that is directly executable by the
general purpose processor 942, 944 of the system 100.

Pascal source text files are created with the screen

editor and submitted to the compiler. The source text
may contain compiler control switches as defined in
Jensen & Wirth; however. the actual switches available
for use with extended Pascal are different from those

defined in the User Report. A monitor of progress of
the compilation is shown on the program development
system terminal, which displays numeric information
relating to each procedure as it is compiled (Pascal is a
single-pass compiler). If an error occurs, the line con-
taining the error is displayed with the offending error
highlighted. The user has the option of continuing with
the compilation to highlight other errors, or entering
the screen editor at that point to correct the error.

An include file mechanism is provided that allows
text to be included from a source library. The use of the

ID

45

SD

60

0074

90

include mechanism allows large programs to be subdi-
vided into segments for easier editing. However, once
segments have been successfully compiled and tested. if
is more efficient to link P-code segments together,
rather than include the original text in every compila-
tion.

Program development system Pascal compiler
switches include:

C: Place comment in code file (ex. for copyright)
F: Change byte-se x of output code
G: Control use of “GOTO" statement in program
It: Perform I/O check after each I/O operation
I(f): Include file “I” into source text
I..(f): Send compiler listing to file "f"
M(n): Limit error messages to “n"
P: Top-of-form
Q: Console compite trace enable flag
R: Allow run-time check of array subscripts and

variable subranges
The extensions to standard Pascal provided by ex-

tended Pascal are, in most cases, realized as procedure
and function calls. The extensions can be divided into

two classes—first, those that are satisfied by routines
intrinsic in the ideal machine interpreter, and second,
those that are satisfied by procedures in the program
development system itself. The implication of this clas-
sified is discussed in the next section.
H. Pascal Linker

The two major areas addressed by these extensions
are the provision of string functions for character ma-
nipulation, and extra fle control and access routines.

One specific extension to standard Pascal is the SEG-
MENT PROCEDURE declaration. This allows a pro-
gram to contain disk-resident procedures that are over-
layed into the ideal machine when referenced from the
program. In this way, a program can be sectioned into
components that do not need to be resident concur-
rently in the ideal machine, allowing a program to be
actually much larger than the 64K-byte code space
available in an ideal machine, which is a size limit dic-
tated by the 16-bit address range of P—codes. The net
code size requirement is therefore the sum of the com-
mon, or root, segment of the program plus the size of
the largest overlayed segment.

The following PDS Pascal extension procedures and
intrinsics are available:

BLOCKREAD: A function that reads a variable

number of blocks from an untyped fle.
BLOCKWRITE: A function that writes a variable

number of blocks to an untyped file.
CLOSE: Procedure to close files.
CONCAT: STRING intrinsic used to concatenate

strings.
DELETE: STRING intrinsic used to delete charac-

ters from STRING variables.

EXIT: Intrinsic _used to cleanly exit from the middle
of a procedure.

GOTOXY: Procedure used for v.d.u. screen cursor-

addressing whose parameters are column and li.ne
numbers.

FILLCHAR: Fast procedure for
PACKED ARRAY’s OF CHAR.

HALT: Halts a user program and return to Program
Development System command mode.

INSERT: STRING intrinsic used to insert characters
into STRING variables.

IORESULT: Function returning the result of the
previous I/O operation.

initializaing


