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Abstract - This paper deals with a new class of convolutlonal
codes called Turbo-codes, whose performances in terms of
Bit Error Rate (BER) are close to the SHANNON limit The

Turbo—Code encoder is built using a parallel concatenation of
two Recursive Systematic Convolutional codes and the

associated decoder, using a feedback decoding rule, is
implemented as P pipelined identical elementary decoders.

I - INTRODUCTION

Consider a binary rate R=l/2 convolutional encoder with

constraint length K and memory M=K-1. The input to the
encoder at time k is a bit dk and the corresponding codeword
Ck is the binary couple (Xk, Yk) withK-l

Xk Z Eglidk—ii=0
K-1

Y1: = Eg2idk—ii=0

where G1: {g1,-}, G2: {ggg } are the two encoder generators,
generally expressed in octal form.

It is well known, that the BER of a classical Non
Systematic Convolutional (NSC) code is lower than that of a

classical Systematic code with the same memory M at large
SNR. At low SNR, it is in general the other way round. The
new class of Recursive Systematic Convolutional (RSC)
codes, proposed in this paper, can be better than the best NSC
code at any SNR for high code rates.

A binary rate R=1/2 RSC code is obtained from a

NSC code by using a feedback loop and setting one of the
two outputs Xk or Yk equal to the input bit dk. For an RSC

code, the shift register (memory) input is no longer the bit dk

but is a new binary variable ak. If Xk=dk (respectively

Yk=dk), the output Yk (resp. Xk) is equal to equation (lb)
(resp. la) by substituting ak for dk and the variable ak is
recursively calculated asK-1

ak =dk + ):y,-ak_, mad.2 (2)r"-l

where 7; is respectively equal to g1,- if Xk=dk and to gg; if
Yk=dk. Equation (2) can be rewritten as

mod.2. (3)

m0d.2 g1,-=0,l (111)

mod.2 gm =0,1 (lb)

[(-1

dk = Z7iak—i;=o

One RSC encoder with memory M=4 obtained from an NSC
encoder defined by generators G1=37, G2=21 is depicted in
Fig.1.

Generally, we assume that the input bit dk takes

values 0 or 1 with the same probability. From equation (2),
we can show that variable ak exhibits the same statistical
property
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P,{a,, =0/a,=e,,..a,,_,=e,,_,}=11{d,, =2} =1/2 (4)
with e is equal toK-

e=Zly,e,. mod.2 e=0,1. (5)I=l

Thus the trellis structure is identical for the RSC
code and the NSC code and these two codes have the same

free distance df. However, the two output sequences {Xk} and
{Yk } do not correspond to the same input sequence [dkl for
RSC and NSC codes. This is the main difference between the
two codes.

When punctured code is considered, some output
bits Xk or Yk are deleted according to a chosen puncturing
pattern defined by a matrix P. For instance, starting from a
rate R=l/2 code, the matrix P of rate 2/3 punctured code is

11

Fig. 1b Recursive Systematic code.



ll - PARALLEL CONCATENATION OF RSC CODES

With RSC codes, a new concatenation scheme,
called parallel concatenation can be used. In Fig. 2, an
example of two identical RSC codes with parallel
concatenation is shown. Both elementary encoder (C; and
C;) inputs use the same bit dk but according to a different

sequence due to the presence of an interleaver. For an input
bit sequence {dk}, encoder outputs X); and Yk at time k are

respectively equal to dk (systematic encoder) and to encoder

C1 output Y 1),, or to encoder C; output Y;k. If the coded

outputs (Y1k, Yzk) of encoders C1 and C ; are used

respectively n; times and n; times and so on. the encoder C1
rate R1 and encoder C; rate R; are equal to

R1 =_"lfl2_ R2 =_"lfl2__ (5)
2n1+rt2 2n-2 +71,

Fig. 2 Recursive Systematic codes
with parallel concatenation.

The decoder DEC depicted in Fig. 3a, is made up of two
elementary decoders (DEC1 and DEC;) in a serial

concatenation scheme. The first elementary decoder DEC1 is
associated with the lower rate R1 encoder C1 and yields a
soft (weighted) decision. The error bursts at the decoder
DEC1 output are scattered by the interleaver and the encoder
delay L1 is inserted to take the decoder DEC1 delay into
account. Parallel concatenation is a very attractive scheme
because both elementary encoder and decoder use a single
frequency clock.

For a discrete memoryless gaussian channel and a
binary modulation, the decoder DEC input is made up of a
couple R], of two random variables xk and yk, at time k

x,,=(2d,,—1)+i,, (7a)
y,,=(2Y,‘ —1)+qk, (7b)

where 1'}, and qk are two independent noises with the same

variance G2. The redundant information yk is demultiplexed
and sent to decoder DEC1 when Yk =Y1k and toward decoder
DEC; when Yk =Y;k. When the redundant information of a

given encoder (C1 or C;) is not emitted, the corresponding
decoder input is set to zero. This is perfonned by the
DEMUX/INSERTION block.

It is well known that soft decoding is better than
hard decoding, therefore the first decoder DEC; must deliver
to the second decoder DEC; a weighted (soft) decision. The

Logarithm of Likelihood Ratio (LLR), A1(dk ) associated

with each decoded bit d), by the first decoder DEC1 is a

relevant piece of information for the second decoder DEC;

P, {d,, =1/observation} (8)
P, {dk = O/observation

where P,-{dk =i /observation}, i = 0, 1 is the a posteriori
probability (APP) of the data bit dk.

Al(dk) = L08

ykgi
INSEFITION

Fig. 3a Principle of the decoder according to
a serial concatenation scheme.

III - OPTIMAL DECODING OF RSC CODES WITH
WEIGHTED DECISION

The VITERBI algorithm is an optimal decoding
method which minimizes the probability of sequence error
for convolutional codes. Unfortunately this algorithm is not
able to yield the APP for each decoded bit. A relevant
algorithm for this purpose has been proposed by BAHL er al.
[1]. This algorithm minimizes the bit error probability in
decoding linear block and convolutional codes and yields the
APP for each decoded bit. For RSC codes, the BAHL et al.
algorithm must be modified in order to take into account their
recursive character.

III - 1 Modified BAHL et al. algorithm for RSC codes
Consider a RSC code with constraint length K; at

time k the encoder state Sk is represented by a K-uple

S; = {ak,a,‘_, ..... ..a,,_K+1). (9)
Also suppose that the information bit sequence {dk} is made

up of N independent hits dk. taking values 0 and l with equal
probability and that the encoder initial state So and final state
SN are both equal to zero, Le

S0 = SN: (0, O......0) = 0. (10)

The encoder output codeword sequence, noted

C1” = {C1 ..... "Ck...... ..C,.,}is the input to a discrete
gaussian memoryless channel whose output is the sequence

R1” ={R, ...... ..R,, ...... ..RN} where Rk=(xk,yk) is defined by
relations (7a) and (7b).



The APP of a decoded data bit dk can be derived

from the joint probability 2",(m) defined by

;(m)=P,{d, =i,s,,=m/121"} (11)
and thus, the APP of a decoded data bit dk is equal to

P,{d,, =1/1t,”} =9; 2';,(m), i=o,1 (12)
From relations (8) and (12), the LLR A(d,,) associated with
a decoded bit dk can be written as

Z/1'1.(m)

"“’*"“’gim'

Finally the decoder can make a decision by comparing
A (d,,) to a threshold equal to zero

(ilk =1 if A(d,,)>0

(2,, =0 if A(d,,) <0. (14)

In order to compute the probability ,1;( m), let us introduce

the probability functions a,';(m), mm) and y,.(R,,, m’, m)

P,{d,, = 1,5,, = m,R,"}

P,{Rr*}

fik(m)= (16)
P,{Rr”,i/Rf}

y,.(R,,,m',m)=P,{d, =1,R,,,s) =m/s,,_, =m’)}. (17)

The joint probability 2,‘), (m) can be rewritten using BAYES
rule

a;’,(m)= P,{d, =1, S, =m/Rf} (15)

P,{d,,=i,s,,=m,R{‘,1e,f’,,}
,t"k(m) = . (18)

Pr{Rlk'RlIrv-kl}
Thus we obtain

”"('"): P,{Rf} P,{R£ir/Rf}
(19)

Taking into account that events after time k are not

influenced by observation R{‘ and bit dk if state sk is known,

the probability 2.; (m) is equal

l'),(m)=a,';(m)fi,,(m). (20)

The probabilities a;;(m) and mm) can be recursively

calculated from probability ‘y,-(Rk,m’, m). From annex I, we
obtain

1 .

V Z7.-(Rt.m’,m)a)£_1(m’)
(1; (m) = . (21)

22 Z EYi(Rl-1'”/» m)‘7‘i-10"’)m m’i=0j=0
and

l’i(R1r+l» m»m,)Bk+l(m,)
(mm)= (22)

EX:%)fiOyi(Rk+l*m,'m)aIi(m’).m m K= 1=

The probability y,-(R,c,m’, m) can be determined from
transition probabilities of the discrete gaussian memoryless

1>,{d,, =1,s,, =m,R1"} p,{1e,§,,/(1,, =i,s,, =m,R,"}

channel and transition probabilities of the encoder trellis.

From relation (17), ')(,.(R,‘, m’, m) is given by

y,-(R,‘,m’,m)=p(R,, /dk =l',S,‘ = m,S,,_1 =m’)

q(d,, =i/S,, =m,S,,_1=m’)2z(S,, =m/S,(_1=m') (23)
where p(./.) is the transition probability of the discrete
gaussian memoryless channel. Conditionally to
(dk = 1', S1,, = m, S“ = m’), xk and yk are two uncorrelated
gaussian variables and thus we obtain

p(Rk /dk = 1', Sk = m,Sk_1= m’) =

p(x,, /d,, = L5,, = m,S,,_1=m’)

p(y* /d,, =i,S,, :m,Sk_, =m’). (24)
Since the convolutional encoder is a deterministic machine,

q(d, =1‘/S,, =m,S,_, =m’) is equal to 0 or 1. The

transition state probabilities 1r(S,, = m/S,‘_1 = m’) of the
trellis are defined by the encoder input statistic.

Generally,P,{d, =1} = P, {d,, = 0} =1/2 and since there
are two possible transitions from each

state,7r(Sk =m/S,(_1=m’)=l/2 for each of these
transitions.

Different steps of modified BAHL et al. algorithm

—Step 0 : Probabilities af,(m) and [3N(m) are
initialized according to relation (12)

a;;(o)=1 ag(m)=o Vm¢0, 1=0,1 (25a)

[3N(0)=1 /3,,,(m)=0 Vm:=0. (2512)

-Step 1 : For each observation Rk, the probabilities

oz,",(nl) and 7,-(R,z,m’, m) are computed using relations (21)
and (23) respectively.

-Step 2 : When the sequence R," has been

completely received, probabilities Bk (m) are computed using

relation (22), and probabilities a},(m) and fik(m) are

multiplied in order to obtain /t;,(m). Finally the LLR
associated with each decoded bit dk is computed from
relation (13).

IV- THE EXTRINSIC INFORMATION OF THE RSC
DECODER

In this chapter, we will show that the LLR A(dk)
associated with each decoded bit dk , is the sum of the LLR

of dk at the decoder input and of another information called

extrinsic information, generated by the decoder.
Using the LLR A(d)(-) definition (13) and relations (20) and
(21), we obtain

22: i7t(R),.m’,m)a,{_((m’)B),(m)
/l(r1,,)=mg . (26)

E2 Ey0(Rk1m’-m)ai-l(m’)flk(m)m m’j=0

Since the encoder is systematic (Xk = dk), the transition

probability p(x,‘ /d,‘ = L5,‘ = m,Sk_1 = m’) in expression

y,.(Rk,m’,m) is independent of state values Sk and Sk.1.
Therefore we can factotize this transition probability in the
numerator and in the denominator of relation (26)
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Fig. 3b Feedback decoder (under 0 internal delay assumptlon). d k

p(xk /d,, =1) +
p(x,, /d,‘ =0)

1 .

E2: Z71()’k~’"’»”‘)‘1I£—1(m')Bk(’")
mg . (27)

E; _Z:070(ykrm,vm)aI:-l(m’)fik(m')III m /=

Conditionally to dk=1 (resp. dk =0), variables xk are

gaussian with mean 1 (resp. -1) and variance 02, thus the
LLR A (dk) is still equal to

A(d,,)=;21-x,‘+VV,‘ (28)

A(dk):L0g

where

W): ‘_"A(dI:) l,,-,, =

2; Emi.m'.m2a.i-i(m'2/arm)
mg . (29)

E: ETo()’k»'"’- m)ai—1(m')l6k('")m nz’j=0

Wk is a function of the redundant information introduced by
the encoder. In general Wk has the same sign as (11,; therefore

Wk may improve the LLR associated with each decoded data

bit dk. This quantity represents the extrinsic information

supplied by the decoder and does not depend on decoder
input xk. This property will be used for decoding the two
parallel concatenated encoders.

V - DECODING SCHEME OF PARALLEL
CONCATENATION CODES

In the decoding scheme represented in Fig. 3a,
decoder DEC; computes ‘LLR A1(dk) for each transmitted

bit dk from sequences {xk} and {y;.,}, then the decoder DEC;

performs the decoding of sequence{dk} from sequences
{A1(dk)} and {yk}. Decoder DEC1 uses the modified BAHL

et al. algorithm and decoder DEC; may use the VITERBI
algorithm. The global decoding rule is not optimal because
the first decoder uses only a fraction of the available
redundant information. Therefore it is possible to improve the
performance of this serial decoder by using a feedback loop.

V-1 Decoding with a feedback loop
We consider now that both decoders DEC1 and

DEC; use the modified BAHL et al. algorithm. We have
seen in section IV that the LLR at the decoder output can be
expressed as a sum of two terms if the decoder inputs were
independent. Hence if the decoder DEC; inputs A1(dk) and
ygk are independent, the LLR A;(dk) at the decoder DEC;
output can be written as

A;(di)=f(A,(d,,))+Vé,, (30)
with

2

A1(d,,)=?xk+-W/1;,
From relation (29), we can see that the decoder DEC;

extrinsic information W;k is a function of the sequence

{A1(d,,)}n¢k. Since A 1(d,,) depends on observationR1N ,
extrinsic information W;k is correlated with observations xk

and y1k. Nevertheless from relation (29), the greater In-k I is,
the less correlated are A; (d,.) and observations xk, yk. Thus,

due to the presence of interleaving between decoders DEC1
and DEC;, extrinsic information W;k and observations xk,
y“, are weakly correlated. Therefore extrinsic information

W;k and observations xk. y“, can be jointly used for carrying
out a new decoding of bit dk. the extrinsic information

zk = W;k acting as a diversity effect in an iterative process.

In Fig. 3b, we have depicted a new decoding scheme
using the extrinsic information Wzk generated by decoder
DEC; in a feedback loop. This decoder does not take into
account the different delays introduced by decoder DEC1
and DEC; and a more realistic decoding structure will be
presented later.

The first decoder DEC; now has three data inputs,

(xk, ylk, gig and probabilities a;',,(m) and/31,(m) are
computed in substituting Rk ={xk, y1k] by Rk =(xk, ylk, zk) in

relations (21) and (22). Taking into account that zk is weakly
correlated with xk and y1k and supposing that zk can be

approximated by a gaussian variable with variance of :9 0'2,
the transition probability of the discrete gaussian memoryless
channel can be now factored in three terms



p(R,, /d, =i,S,, =m,S,,_, =m’) = p(x,,/.)p(y,,/.)p(z,,/.) (32)
The encoder C1 with initial rate R1, through the feedback

loop, is now equivalent to a rate R'1 encoder with

1 R11 = «
1 + R,

The first decoder obtains an additional redundant information

with zk that may significantly improve its performances; the

term Turbo-codes is given for this iterative decoder scheme
with reference to the turbo engine principle.
With the feedback decoder, the LLR A1(dk) generated by

decoder DEC; is now equal to
2 2

Al(dk) -‘-371:; +?Zk + “it (34)Z

where Wlk depends on sequence [Zn]n¢k. As indicated
above, information zk has been built by decoder DEC; at the

previous decoding step. Therefore zk must not be used as
input information for decoder DEC2. Thus decoder DEC;
input sequences at step p (p22) will be sequences

{zi.td.)}ana {ml with
./i1(d,,)=A1(d,,),n=0. (35)

Finally from relation (30), decoder DEC; extrinsic
information zk = Wgk, after deinterleaving, can be written as

3k = Wu = A2(dk )| ,i,(d,)=o (36)
and the decision at the decoder DEC output is

3,, = sign[A,(d,)]. (37)
The decoding delays introduced by decoder D E C
(DEC=DEC1+DEC2), the interleaver and the deinterleaver
imply that the feedback information zk must be used through

an iterative process as represented in Fig. 4a, 4b. In fact, the
global decoder circuit is composed of P pipelined identical
elementary decoders (Fig. 4a). The pth decoder DEC
(Fig. 4b) input, is made up of demodulator output sequences

(.01, and 01),, through a delay line and of extrinsic infomiation

(2),, generated by the (p-1)th decoder DEC. Note that the

variance of of the extrinsic information and the variance of

/l1(d,, ) must be estimated at each decoding step p.

V-2 Interleaving
The interleaver uses a square matrix and bits {dk}

are written row by row and read pseudo-randomly. This non—
uniform reading rule is able to spread the residual error
blocks of rectangular form, that may set up in the interleaver
located behind the first decoder DEC1, and to give the
greater free distance as possible to the concatenated (parallel)
eode.

VI - RESULTS

For a rate R=l/2 encoder with constraint length K=5,
generators G1=37, G2=21 and parallel concatenation
(R1=R;=2/3), we have computed the Bit Error Rate (BER)
after each decoding step using the Monte Carlo method, as a
function of signal to noise ratio Eb/N0 where Eb is the
energy received per information bit dk and N9 is the noise
monolateral power spectral density. The interleaver consists
of a 256x256 matrix and the modified BAHL et al. algorithm
has been used with length data block of N=65536 bits. In

From
demodulator

Fig. 4a Modular pipelined decoder, oorresponding to an
iterative processus at the feedback decoding.

(1) pt

Fig. 4b Decoding module (level p).

order to evaluate a BER equal to 10'5, we have considered
128 data blocks i.e. approximatively 8 X106 bits dk. The BER

versus Eb/N0, for different values of p is plotted in Fig. 5.
For any given signal to noise ratio greater than 0 dB, the BER
decreases as a function of the decoding step p. The coding
gain is fairly high for the first values of p (p=1,2,3) and

carries on increasing for the subsequent values of p. For p=18

for instance, the BER is lower than l()'5 at Eb/N0= 0,7 dB.
Remember that the Shannon limit for a binary modulation

with R=1/2, is P5 = 0 (several authors take Pg =10'5 as a

reference) for E1,/Ng= 0 dB. With parallel concatenation of

RSC convolutional codes and feedback decoding, the
performances are at 0,7 dB from Shannon's limit.

The influence of the constraint length on the BER
has also been examined. For K greater than 5, at

Eb/N0: 0,7 dB, the BER is slightly worst at the first (p=1)
decoding step and the feedback decoding is inefficient to
improve the final BER. For X smaller than 5, at

E),/N0: 0,7 dB, the BER is slightly better at the first

decoding step than for K equal to 5, but the correction
capacity of encoders C1 and C2 is too weak to improve the
BER with feedback decoding. For K=4 (i.e. 8-state

elementary decoders) and after iteration 18, a BER of 10'5 is
achieved at Eb/N0 = 0,9 dB. For K equal to 5, we have tested
several generators (G1, G2 ) and the best results were
achieved with G1=37, G2=21.
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Fig. 5 Blnary error rate given by Iterative decoding (p=1,....18)
of code of Hg. 2 (rate:1/2); interleaving 256x256.

For low signal to noise ratios, we have sometimes noticed
that BER could increase during the iterative decoding
process. In order to overcome this effect, we have divided the

extrinsic information 2;, by [ 1 + 9|/i1(d,‘)i ]with 8 = 0,15.

In Fig. 6, the histogram of extrinsic infomration (z)p
has been drawn for several values of iteration p, with all data
bits equal tol and for a low signal to noise ratio

(Eb/No: 0,8 dB). For p=l (first iteration), extrinsic

information (zlp is very poor about bit dk. furthermore the
gaussian hypothesis made above for extrinsic information

(z)p, is not satisfied! Nevertheless when iteration p increases,
the histogram merges towards a gaussian law with a mean

equal to 1. For instance, for p=13, extrinsic information (zlp
becomes relevant information concerning data bits.

VII CONCLUSION

In this paper, we have presented a new class of
convolutional codes called Turbo-codes whose performances
in terms of BER are very close to SHANNONS limit. The
decoder is made up of P pipelined identical elementary
modules and rank p elementary module uses the data
information coming from the demodulator and the extrinsic
information generated by the rank (p-1) module. Each
elementary module uses a modified BAHL er al. algorithm
which is rather complex. A much simpler algorithm yielding
weighted (soft) decisions has also been investigated for
Turbo-codes decoding [2], whose complexity is only twice
the complexity of the VITERBI algorithm, and with
performances which are very close to those of the BAHL et
al. algorithm. This new algorithm will enable encoders and



decoders to be integrated in silicon with error correcting
performances unmatched at the present time.

0% 5 __....~«v~ _]J ‘"3
NORMALIZED .1 0
SAMPLES

Fig. 6 Histograms of extrinsic information z after
iterations it 1.4.13 at Eb/No = 0.8 dB;
all information bits d=1.

ANNEX I : EVALUATION OF PROBABILITIES 05,‘; (m)

AND fi,,(m) .

From relation (15) probability 01;; (m) is equal to

Pr{d,, =1‘, 5,, =m.R,"“,R,,}

Pr{R1"",R,,}
aztm) =

Pr{d,, = i,S,, = m,Rk/R1"'1}

Pr{R,,/R{‘"} '
The numerator of a,i(m) can be expressed from state Sk_1
and bit dk .1.

Pr{d,, =1‘, s,, = m,R,./R,"“} =

(A1)

1

2 zP,{d,, = i,d,,_, =1, s,, = m. s,,_1= m',R,, /RIM} (A2)m‘ ,'=o

By using BAYES rule, we can write

Pr{dk = z,s,, = m,Rk/RF‘) =

1 Pr{d,,_1=j,S,H= m‘,R1""}
1.3:’,-{:0 P,{R1"_'}
P,{d,, =1, s,, =m,R,,/d,,_1 = j,S,,_1 = m',R{‘-1}. (A3)
By taking into account that events after time (k—1) are not

influenced by observation Rf“ and bit dk_1 if state SM is
known and from relation (17) we obtain

Pr{d,, = as,‘ = m, R,, /R1"“} =
1 .

Z207,-(R,.,m‘m)a,{_.(m’). (A4)m’ j=

The denominator can be also expressed from bit dk and state
St:

1

P,{R,,/R,""} =):_z0 Pr{d,, =i,S,, =m,R,,/R{"‘} (A5)HI l=

and from relation (A4), we can write :

,‘_1 1 1 I . I
Pr{R,/R, }=_>:z 2 ):y,.(R,,m m)a,{_,(m ). (A6)In m’ (=0 j=0

Finally probability (1,: (m) can be expressed from probability

0:}, ,1 (m) by the following relation

.: iy.-rRt.m'm)ai.1tm')
 _(A7)
Z2 2 Zr.-(R,..m’m)a,{_1(m')m m’ i=0 j=0

a;;(m)=

In the same way, probability |3k(m) can be recursively

calculated from probability Bk“ (m). From relation (16), we
have

_P.{Rt"+./s..=m} _
fik(m)- —

Z Z1:Pr{dIz+t '-"'»St+1 =m>’RI:v+2rRk+1/SI: '-'m}
(A8)

By using BAYES rule, the numerator is equal to
N 1 N .

P:-{Rim /51: = m} =2 zP.{Rm /SI.-+1: m}m'i=0

P,{d,+,=i,S,H1=m,'R,‘,,/S,‘ =m}. (A9)
By taking into account expressions of 1,-(Rk+1,m,m') and

Bk“ (m’), we can write

.5: )l:}’.'(Rk+1vm-m')»3k+1(m')

‘**"“" P,{1e,+./Rf‘ }
In substituting k by (k+I) in relation (A6), the denominator
of (A10) is equal to

Pr{R,..1/Rf} :2); f E y,.(R,.,,.m'm)a{(m'). (A11)in m’ i=0 j=0

Finally probability Bk (m)can be expressed from probability

Bk...1 (m'), by the following relation

2: 7’i(Rk+t»m» '71’ ).Bk+t(m')
fik(m): :1: i=0

:2 5 $:r.(R,.+1.m'm)a.£(m')m m’ i=0 j=0
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