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Analysis of Low Density Codes

and

Improved Designs Using Irregular Graphs

Michael G. Luby' Michael Mitzenmacheri

Abstract

In [6], Gallager introduces a family of codes based on sparse

bipartite graphs, which he calls low-density parity-check codes.
He suggests a natural decoding algorithm for these codes,
and proves a good bound on the fraction oferrors that can be
corrected. As the codes that Gallager builds are derived from

regular graphs, we refer to them as regular codes.

Following the general approach introduced in [7] for the

design and analysis oferasure codes, we consider error-conecting
codes based on random irregular bipartite graphs, which we

call inegular codes. We introduce tools based on linear pro-

gramming for designing linear time irregular codes with bet-
ter error-correcting capabilities than possible with regular

codes. For example, the decoding algorithm for the rate l/2

regular codes of Gallager can provably correct up to 5.17%
errors asymptotically, whereas we have found irregular codes
for which our decoding algorithm can provably correct up

to 6.27% errors asymptotically. We include the results of
simulations demonstrating the effectiveness of our codes on

systems of reasonable size.

1 Introduction

In [6], Gallager introduces a family of codes based on sparse

bipartite graphs, which he calls low-density parity-check codes.
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As the codes that Gallager builds are derived from regular

graphs, we refer to them as regular codes. He suggests a nat-
ural decoding algorithm for these codes, and proves a good
lower bound on the fraction of errors that can be corrected.

assuming that there are no short cycles in the underlying

graph. While much of his work concerns randomly chosen

graphs, his analysis does not directly apply to such graphs.
Instead, he constructs explicit graphs of large girth to which

his analysis does apply.

The main contribution of this paper is the design and

analysis of low-density parity-check codes based on irreg-
ular graphs. This work follows the general approach intro-
duced in [7] for the design and analysis of erasure codes.

There it is shown that using irregular graphs yields codes

with much better performance than regular graphs. In ac-
cordance with [7], we consider error-correcting codes based

on random irregular bipartite graphs, which we call inaugu-

lar codes. We develop tools based on linear programming

for designing linear time encodable and decodable irregular
codes with better error-correcting capabilities than regular

codes. For example. the rate l/2 regular codes of Gallager

can provably correct up to 5.17% errors, whereas we have
found irregular codes that can provably correct up to 6.27%.

The only method we currently have for constructing ir-

regular codes is by randomly choosing the irregular graph.
However, the analysis used by Gallager does not directly ap-

ply to randomly chosen graphs. Thus, to analyze the perfor-
mance of the irregular codes, we develop an analysis that ap-

plies to randomly chosen graphs. Using techniques from [8]
for studying random processes, we can calculate for a ran-

dom regular graph the fraction of erroneous bits for which

Gallager's original algorithm can correct all but an arbitrar-

ily small constant fraction of the errors. Once the number of
erroneous bits is reduced to this level, we switch from Gal-

lager‘s algorithm to one used by Spielrnan and Sipser in [15],
and prove that this new hybrid method successfully finishes
the decoding with high probability. 'l11is analysis easily ex-
tends to the irregular codes that we introduce. Additionally,
the bound on the probability of error we derive using this
methodology improves upon the bound derived by Gallager

for the regular graphs he explicitly constructed.



Gallager's decoding algorithm is a simplification of “be-
lief propagation" [14]. Belief propagation has been exten-

sively tested with Gallager's low-density parity-check codes
[2, 6, 1 1, 12, 17] and is strongly related to the highly success-

ful turbo codes [1, 3, 10. 5]. In a separate work, we describe
empirical tests on irregular codes using a full belief propa-
gation algorithm and demonstrate irregular codes with better

performance than regular codes [9]. We believe our analy-

sis here provides an important step towards analyzing codes
based on belief propagation techniques.

The paper proceeds as follows: in Section 2.1, we present

a description of regular codes and analyze Gallager’s decod-

ing scheme. We show in Section 2.2 how expander-based

arguments can be used in addition to the previous analysis
to demonstrate a decoding algorithm that works with high

probability for regular codes. We introduce irregular codes
in Section 3, where we demonstrate that our arguments gen-

eralize to irregular codes and describe how to find irregular
graphs that lead to good codes. In Section 4, we discuss some
simulation results that show the effectiveness of our analysis

for designing practical codes. We conclude with a discussion
of open problems.

2 Regular Codes

2.1 Analyzlng Regular Code:

We first review the codes developed by Gallager and his anal-

ysis [6]. Later we explain how his analysis combined with
the argument from [8] shows that his suggested decoding al-

gorithm corrects all but an arbitrarily small constant fraction

of the nodes with high probability for random regular codes.
The decoding algorithm of Gallager's that we analyze is an

example of hard decision decoding, which signifies that at

each step the state is derived from local decisions of whether
each bit is 0 or 1. and this is all the information the state con-

tains (as opposed to more detailed probabilistic information).

We note that Gallager also proposes a belief propagation type

decoding algorithm, which uses a more complicated state;
for more details. see for example [4, 9, ll, 17].

In the following we refer to the nodes on the left and
right sides ofa bipartite graph as its message nodes and check

nodes respectively. A bipartite graph with n nodes on the left
and r nodes on the right gives rise to a linear code of dimen-

sion I: _>_ n - r and block length n in the following way:
the bits of a codeword are indexed by the message nodes. A

binary vector x = ($1, . . . ,a:,.) is a codeword if and only
if Hx = 0, where H is the r x n incidence matrix of the

graph whose rows are indexed by the check nodes and whose
columns are indexed by the message nodes. In other words,

(:1, . . . , 2,.) is a codeword if and only if for each check node
the exclusive-or of its incident message nodes is zero.

An alternative approach is to allow the nodes on the right
to represent bits rather than restrictions. and then use a cas-

cading series of bipartite graphs. as described for example
in [16] or [7]. In this situation, we know inductively the cor-

check node

messsage node

check nodes

message nodes

Figure 1: Representing the code as a tree.

rect value of the check nodes in each layer when we correct
the message nodes, and the check nodes are the exclusive-or

of their incident message nodes.

In the sequel we focus on one bipartite graph only. and
assume that only the nodes on the left are in error. The anal-

ysis that we provide in this case works for either of the two

approaches given above, as we may inductively focus on just

one layer in the context ofcascading series of graphs [16, 7].
We call the linear codes that are obtained by either of the

above constructions regular codes.

Consider a regular random graph with the message nodes

having degree dg and the check nodes having degree d...

Vlfrth probability p a message node receives the wrong bit.

The decoding process proceeds in munds. where in each
round first the message nodes send each incident check node
a single bit and then the check nodes send each incident

message node a single bit. To picture the decoding pro-

cess. consider an individual edge (m, c) between a message
node in and a check node c, and an associated tree describ-

ing a neighborhood of m. This tree is rooted at m. and the
tree branches out from the check nodes of m excluding c. as
shown in Figure 1. For now let us assume that the neighbor-

hood of m is accurately described by a tree for some fixed
number of rounds.

Each message node in remembers the received bit r,,.

that is purported to be the correct message bit. (Thus, rm is
not the correct message bit with probability p.) Each edge

(m, c) remembers a bit g,,,_., that is a guess of the correct bit
of m. This bit is continually updated each round based on all
information that is passed from c to m. During each round

a bit is passed in each direction across edge (m, c). Each
round consists of an execution of the following script:



e For all edges (m, c) do the following in parallel:

— If this is the zeroth round, then set g,,._., to rm.

- If this is a subsequent round. then g,,._., is
computed as follows:

as if all the check nodes of m excluding c
sent the same value to m in the previous

round. then set g,,.,., to this value.

at else set g,,.,¢ to r,,..

- In either case. m sends g,,.,. to c.

e For all edges (m, e) do the following in parallel:

— the check node c sends to m the exclusive-or

of the values it received in this round

from its adjacent message nodes excluding m.

Of course the parallel work can easily be simulated se-

quentially. Moreover, the work per round can easily be coded
so that it is linear in the number of edges.

Let pg be the probability that m sends c an incorrect value

9..., in round i. Initially po = 11. Following the work of
Gallager. we determine a recursive equation describing the
evolution of p.- over a constant number of rounds.

Consider the end of the ith round, and consider a check
nodedofmotlrerthanc. Thenodec’ sendsm its correct

value as long as there are an even number (including possibly

0) message nodes other than m sending c’ the wrong bit. As

each bit was incorrectly sent to c’ with probability p,-. it is

easy to check that the probability that c’ receives an even
number of errors is

1 + (1 -22p.')d'_1 - (1)
Hence, the probability that m was received in error and sent

correctly in roundi + 1 is

- 2Pi)d'-1]d‘—l !
m[1+(1 2

and similarly the probability that m was received correctly
but sent incorrectly in round 1' + 1 is given by

1 ‘ (1 ‘ 2Pi)d'_l<1—po>[ 2 ]M.
This yields an equation for p.-+1 in terms of p.-:

M = ,,o _,,o
_ _ 4'.‘ 41-1

., (1 _,,o) _ (2)
Gallager's idea is then to find the supremum p‘ of all

values of pa for which the sequence p; is monotonically de-

creasing and hence converges to 0. Note. however. that even
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if p,- converges to 0, this does not directly imply that the pro-
cess necessarily corrects all message nodes. even with high

probability. This is because our assumption that the neigh-

borhood of (m, c) is accurately represented by a tree for arbi-
trarily many rounds is not true. In fact, even for any constant
number of rounds it is true only with high probability.

Gallager proves that, as the block length of the code and

girth of the graph grow large. this decoding algorithm works

for all po < p‘. Since random graphs do not have large girth.
Gallager introduced explicit constructions of regular sparse

graphs that do have sufficiently large girth for his analysis

to hold. We will shortly provide an analysis that shows that

Gallager's decoding algorithm successfully corrects a large

fraction of errors for a randomly chosen regular graph with
high probability. Then in Section 2.2 we show how to ensure

the decoding tenninates successfully with high probability
using a slightly different decoding rule.

Gallager notes that the decoding rule can be relaxed in

the following manner: at each round, there is a universal

threshold value b,~ (to be detennined below) that depends on
the round number. For each message node m and neighbor-
ing check node c. if at least b.- neighbors of m excluding c

sent the same bit to m in the previous round, then m sends
this bit to c in this round; otherwise m sends to cits initial bit

rm. The rest of the decoding algorithm is the same. Using
the same analysis as for equation (2), we may find a recursive

description of the pg. For convenience. we define

. 1+ ‘ 1- 5'“

y(y,t.J)= -2-3'-J [—¥ -
Also, for convenience we let z,- = 1 — 212,-. Then.

(dt E 1)9(=-'d"1.t.dz)

(3)

dg-I

12.-+1 = P0 - Po 2
£85;

dc-1

+ —P0) 2 1)g(-zfdr-lvtadl)I-=5;

We choose b.- so as to minimize p,-+1. To do this we com-

pare the odds ofbeing right initially to the odds ofbeing right
using the check nodes and the threshold bi. As determined

by Gallager. the correct choice of b.- is the smallest integer
that satisfies

1-Po

Po 5 (5)
25.-d.+1

1 — (1 — 2Pi)d'_1]
Note that b.~ is an increasing function of p,-; this is intu-

itive, since as 12,- decreases, smaller majorities are needed to
get an accurate assessment of m's correct value. Also. note

that while the algorithm functions by passing values along
the edges. it can also keep a running guess for the value of

each message node based on the passed values. The algo-
rithm continues until the proposed values for the message



nodes satisfy all the check nodes, at which point the algo-
rithm terminates with the belief that it has successfully de-

coded the message, or it can fail after a preset number of
rounds.

It follows simply from a similar argument in [8] that the

recursive description given by equation (4) is correct with

high probability over any constant number of rounds.

Theorem 1 Let i > 0 be an integer constant and let Z.- be
the random variable describing the fraction of edges set to

pass incorrect messages after i rounds of the above algo-
rithm Further; let p.- be as given in the recursion (4). Then
there is a constant e such thatfor any 6 > 0 and sufiiciently

large n we have

Pr(|Zs - pal > 6) < exp(-c6n)-

Proof: We sketch the proof. There are two considerations

requiring care. First, the neighborhood around a message bit
m may not take the font: of a tree. We show that this does
not happen too often with an edge exposure martingale ar-
gument. Second. even assuming the number of non-trees is
small. we still need to prove tight concentration of 11,- around

the expectation given that message bits may be wrong ini-
tially with probability po. This follows from a separate mar-
tingale argument, exposing the initial values at each node one
by one.

For the first consideration, it is easily seen that there is

a number -1 depending on i and the maximum degree of
the graph such that the probability that the neighborhood of
depth 2:‘ stemming from an edge is not a tree is 1/11. For
sufficiently large n the value 1/11 is less than c/4. Now by
exposing the edges one by one using an edge exposure mar-
tingale and applying Azuma’s inequality [13, Section 4.4] we
see that the fraction of edges with non-tree neighborhoods is

greater than 5/2 with probability at most exp(—ccn).
Now let Z.- be the expected number of edges set to pass

incorrect messages after i rounds. Then |Z,- — p.-| < e/2 with
high probability by the above. We can show that Z,- and Z.-
are close using a martingale argument, exposing the initial
values at the vertices one by one. Again using Azuma's in-

equality we obtain Pr(|Z.- - Z.-| '> 45/2) 5 exp(—ocn) for
some constant c (depending on i). This now gives the asser-
tion. Q.E.D.

Corollary 1 Given a random regular code with p.- as defined
by equation (4), if the sequence p.- converges to 0, then for
any 1; > 0 there is a sufliciently large message size n such
that Gallager's hard decision decoding conectly decodes all
but at most rm bits in some constant number r,, of rounds
with high probability.

2.2 completing the Work: Expander-based
Arguments

In the previous section we have shown that the hard deci-
sion decoding corrects all but an arbitrarily small constant

fraction of the message nodes for regular codes with suffi-

ciently large block lengths. The analysis, however. is not
sufficient to show that the decoding process completes suc-

cessfully. In this section. we show how to finish the decod-

ing process with high probability once the number of errors
is sufiiciently small using slightly different algorithms. Our
work utilizes the expander-based arguments in [15, 16].

We first define what we require in tenns of the bipartite

graph represented by the code being a good expander.

Definition 1 A bipartite graph has expansion (or. ,6) iffor
all subsets S of size at most an of the vertices on the left,

the size ofthe neighborhood N(S) ofS on the right satisfies
N(S) 2 fi|5(S)|. where 6(3) is the set ofedges attached to
vertices in S.

Following the notation of [15], we call a message node
corrupt if it differs from its correct value, and we call a check
node satisfied (respectively unsatisfied) if its value is (is not)
the sum of the values of its adjacent message nodes. The

work of [15] shows that if the underlying bipartite graph of a

code has sufficient expansion for sets of size up to am, then

both of the following algorithms can correct any set of an/2
errors:

Sequential decoding: if there is a message node that
has more satisfied than unsatisfied neighbors, flip the

value of that message node. Repeat until no such mes-

sage node remains.

Parallel decoding: for each message node. count the
number of unsatisfied check nodes among its neigh-

bors. Flip in parallel each message node with a major-
ity of unsatisfied neighbors.

Note that the above algorithms are very similar to Gal-

lager's hard decision decoding algorithm, except that here
we need not hold values for each (message node, check node)

pair. We call upon the results of [l5] to show that once we
use hard decision decoding to correct all but some arbitrar-

ily small fraction of the message nodes, we can finish the
process. The next lemma follows from Theorems 10 and 11
of [15].

Lemma 1 Leta > Oandfi > 3/4+eforsomefixede > 0.

Let B be an (or, £3) expander Then the sequential and par-
allel decoding algorithms correct up to om/2 enors. The

sequential decoding algorithm does so in linear time and
the parallel decoding algorithm does so in O(log 11) rounds.
with each round requiring a linear amount ofwork.

We use the following standard lemma to claim that the

graph we choose is an appropriate expander. and hence we
can finish off the analysis of the decoding process using the

previous lemma.

Lemma 2 Let B be a bipartite graphformedasfollows with
n nodes on the lefl and an nodes on the right, where or >



 
Figure 2: If the two left nodes are supposed to be 0. and all
other nodes are correct, then the majority tells the left nodes

not to change.

0 is a fixed constant. Suppose that a degree is assigned to
each node so that all lefl nodes have degree at leastfive, and

all right nodes have degree at most Cfor some constant C.
Suppose that a random pennutation is chosen and used to
match each edge out of a left node with each edge into a

right node. Then, with 1 - O(l/rt), for some fixed or > 0,
¢>0.andB = 3/4-I-6, Bisan (a,,6) expander:

We note that the restriction in Lermna 2 that the left de-

grees are at least five appears necessary. For example, it is
entirely possible for random graphs with degree three on the
left to fail to complete using the proposed sequential and

parallel algorithms even after almost all nodes have been
corrected. A problem occurs when the graph has a small
even cycle. In this case, if all the nodes in the cycle are
received incorrectly, the algorithm may fail to terminate cor-

rectly. (See Figure 2.) Even cycles of any constant length
occur with constant probability. so errors remain with con-

stant probability.

To circumvent this problem Gallager designs regular graphs

with no small cycles [6]. To circumvent this problem in ran-

dom graphs. we make a small change in the structure of the
graph. similar to that in [7]. Suppose that we use the previous
analysis to correct all but at most rrn message bits with high
probability. We add an additional 11’n check nodes, where n’
is a constant that depends on n. and construct a regular ran-

dom graph with degree 5 on the left between all the n mes-
sage nodes and the n'n check nodes. The decoding proceeds
as before on the original random graph. correcting all but at

most rrn message bits. We then use the 1/11 check nodes pre-
viously held in reserve to correct the remaining message bits
using the Sipser-Spielman algorithm. That this procedure
works follows directly from Lemmas 1 and 2. Moreover, as

both 17 and n’ can be made arbitrarily small by Corollary 1,
the change in the rate of the code due to this additional struc-
ture is negligible. and is ignored in the sequel.

It is worth noting that since explicit constructions are

known for regular expanders, using the previous analysis
(Theorem 1 and Lemma l) we may construct regular codes

with the same asymptotic perfonnance as Gallager's regular

codes that are guaranteed to work with probability exponen-
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tial in n. Gallager proved that his codes and decoding al-

gorithm worked correctly with probability exponential in a
root of rt. Hence our proof yields slightly better bounds on

the error probability in this case.

2.3 Theoretically Achlevable Error correction

For every rate. and for every possible left degree and corre-

sponding right degree. the value of p‘ can be computed by
the above analysis. A natural question to ask is which regu-

lar code can achieve the largest value of p‘. Among rate 1/2

regular codes, it turns out that the largestp‘ is achieved when
all left nodes have degree 4 and all right nodes have degree

8. in which case p‘ 2: 0.0517. Thus. combining Corollary 1,
Lemma 1, and Lemma 2. we have shown that when the cor-

responding bipartite graph is chosen randomly this code can
correct all errors with high probability when the initial frac-

tion of errors approaches 0.0517. All of these regular codes
run in linear time if we use the sequential decoding algorithm

in the final stage. This follows from the fact that we need to
run the hard decision decoding only for a constant number

of rounds (at linear time per round), and then the sequen-

tial decoding algorithm can fix the remaining errors in linear
time.

3 Irregular codes

3.1 Intultlon

Before we show how to derive irregular random graphs that

improve upon the performance ofGallager's low-density parity-
check codes. we offer some intuition as to why irregular

graphs prove useful. It is convenient to think of the process
as a game, with the message nodes and the check nodes as
the players. and each player trying to choose the right num-
ber of edges. A constraint on the game is that the message
nodes and the check nodes must agree on the total number of

edges. From the point of view of a message node, it is best
to have high degree. since the more infomtation it gets from
its check nodes the more accurately it can judge what its cor-
rect value should be. In contrast, from the point of view of

a check node. it is best to have low degree. since the higher

the degree of a check node, the more likely it is to transmit
incorrect guesses to the message node.

These two competing requirements must be appropriately
balanced. If one allows irregular graphs, there is more flex-

ibility in balancing these competing requirements. In fact,
for the decoding algorithm we describe below. the improved

perfonnance arises from varying the degrees of the message
nodes. Message nodes with high degree tend to their correct

value quickly. These nodes then provide good information
to the check nodes, which subsequently provide better in-

formation to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect. where high degree

message nodes tend to get corrected first, and then message
nodes with slightly smaller degree, and so on down the line.



3.2 Analyzlng Irregular code:

We now describe a decoding algorithm for codes based on

inegular graphs, or what we call imgular codes. Follow-

ing the notation used in [7], for an irregular bipartite graph
we say that an edge has degree 1’ on the left (right) if its
left (right) hand neighbor has degree 2'. Let us suppose we
have an irregular bipartite graph with some maximum left

degree d; and some maximum right degree d,. We spec-
ify our irregular graph by sequences (A1,Ag, . . . ,Ad,) and
(p1, pg, . . . , p4,). where A.- (p.-) is the fraction of edges with
left (right) degree 1'. Further, we define p(2:) := 2‘ p.-:r:"".

Our decoding algorithm in the case of irregular graphs is

similar to Gallager’s hard decision decoding as described in
Section 2.1. but generalized to take into account the varying

degrees of the nodes. Again we look at the process from the
point of view of an edge (m,c). Consider the end of the
ith round, and consider a check node c’ of m other than c.
The node c’ sends m its correct value as long as there are an

even number (including possibly 0) of other message nodes

sending c’ the wrong bit. As each bit was correctly sent to c’
with probability p.-. it is simple to check that the probability
that c’ receives an even number of errors is

1 + P(1 ‘ 21%)
2

Equation 6 is the generalization of equation I, taking into
account the probability distribution on the degree of c’.

Also similarly to Section 2.1, after round 1' a message

node m of degree 3' passes its initial value along (m, c) to
check node c unless at least b.~,, of the check nodes c’ adja-
cent to m other than c send m the same value. Note that now

the threshold value for a node depends on its degree. Also.

the value of b.-,_,- changes according to the round.
To analyze the decoding process. consider a random edge

(m, c). The left degree of (m, c) is j with probability A’. It
thus follows from the same argument as in Section 2.1 that

the recursive description for P.‘ is (again using z,- = 1 — 2p,-

. (6)

and g as defined in Equation (3))

(lg j-I J. _ 1
pm = P0 - EA; 120 Z ( t )9(p(z.~).t..7')

j=l t=br,5

2‘-1 J._ 1
+ <1 -1») Z ( t )g<-p(z.->.m'> <7)¢=b¢_5

We need to detennine b,~,,- so as to minimize the value of
p.-...;. As in equation (5). the best value of b,-,,- is given by the
smallest integer that satisfies:

< F + P(1 - 2Pr)]%"'-5+!— 1 — P(1 ‘ 213:‘) '

This equation has an interesting interpretation. Note that

2b¢_, — j + 1 is a constant fixed by the above equation. The
value 2b.-,, — j + 1 = b.~,;—(j—1—b;,,) can be interpretedas

1-Po
Po

(8)
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the difference between the number of check nodes that agree

in the majority and the number that agree in the minority. We
call this difference the discrepancy of a node. Equation (8)

tells us that we need only check that the discrepancy is above
a certain threshold to decide which value to send. regardless

of the degree of the node.

3.3 Dealgnlng Irregular Graphs

We now describe techniques for designing codes based on

irregular graphs that can handle larger probabilities of error
at potentially some expense in encoding and decoding time.
Given our analysis of irregular codes, our goal is to find se-

quences A = (A1,A2,...,Ad,) and p = (p;,p2,...,p¢,)
that yield the largest possible value of po such that the se-

quence of p.- decreases to 0 for a given rate. We frame this
problem in terms of linear programs. Our approach cannot
actually determine the best sequences A and p. Instead. our

technique allows us to determine a good vector A given a
vector p and the desired rate of the code. This proves suffi-
cient for finding codes that perform significantly better than

regular codes. (Similarly. we may also apply this technique
to determine a good vector p given a vector A and the de-
sired rate; as we explain below. however, this does not prove
useful in this setting.)

Let po be fixed. For convenience, we use z = 1 - 2::
below. For a given degree sequence p = (pi,/)2, . . . ,p.g,)
let the real valued function f(2) be defined by

4, ‘-1 ._

1(2) = no-Z)» [Po 12 (’ t ‘)g(p<z).t.:')j=l ¢=b.-_,
‘-1 .

+(1 - po) ‘:23, (J ; 1)9(-p(z).t.J')] .
where now

and the A,- are variables to be determined. Observe that con-
dition (7) now reads as p.-.” = f(p.-). For a given po and
right hand degree sequence p, we are interested in finding
a degree sequence (A1, . . . , A4,) such that the corresponding
function f(:5) satisfies f(z) < :1: on the open interval (0,120).
We begin by choosing a set L of positive integers which con-
stitute the range of possible degrees on the left hand side. To
find appropriate Ag, I E L. we use the condition f(:5) < :2:
above to generate linear constraints that the A; must satisfy

by considering different values of 2:. For example. by ex-
arnining the condition at z = 0.01. we obtain the constraint
f(0.01) < 0.01. which is linear in the /\¢.

We generate constraints by choosing for :c multiples of
po/N for some integer N. We also include the constraints
A; 2 0 for all I 6 L, as well as the constraint

EA./e = R2».-/an
(EL 0'

(9)



. where R is the rate of the code. This condition expresses the

fact that the number ofedges incident to the left nodes equals

the number of edges incident to the right nodes. We then

use linear programming to determine if suitable Ag exist that
satisfy our derived constraints. The choice for the objective
function is arbitrary as we are only interested in the existence
of feasible solutions.

Given the solution from the linear programming prob-
lem, we can check whether the Ag computed satisfy the con-

dition f(2) < 2: on (0,po). The best value for po is found

by binary search. Due to our discretization, there are usu-
ally some conflict intervals in which the solution does not

satisfy this inequality. Choosing large values for the tradeoff

parameter N results in smaller conflict intervals, although it
requires more time to solve the linear program. For this rea-
son we use small values of N during the binary search phase.

Once a value for po is found. we use larger values of N for

that specific po to obtain small conflict intervals. In the last

step we get rid of the confiict intervals by slightly decreasing
the value ofpo.

This linear programming tool allows for efficient search

for good codes. That is, given a vector p we can find a good
partner vector A. In a similar fashion, we can similarly find
a good partner vector p from a given A. However, our ex-
periments reveal that the best p vector for this decoding al-
gorithm is always the one where are the nodes on the right
have the same degree (or all nodes have as close to the same

degree as possible).

There is intuition explaining this phenomenon. From the

point of view of a message node in, it appears best if the ex-
pected number of other neighbors a neighboring check node
c has is as small as possible. This can be seen as follows.
At the end of the ith round, the probability that c sends the

correct vote to m is For small 12,- values, this is
approximately 1 — p,- 21:1 (i — 1)p,-. To maximize this prob-
ability. we seek to minimize 33;, (i — 1),»... which is exactly
the expected number of other neighbors c has. This quantity

is minimized (subject to the constraints 2:21 p,~ = 1 and
equation (9)) when all check nodes have equal degree, or
as nearly equal as possible. In contrast, we note that using
varying degrees for the check nodes is advantageous when
using a more complicated decoding algorithm based on be-

lief propagation [9].

Using the linear programming technique, we have con-
sidered graphs where the nodes on the left side may have

varying degrees and the nodes on the right side all have the

same degree. In other words. we have found good codes by
considering p vectors with just one non-zero entry. As we
shall see in Section 4. this sufiices to find codes with sig-

nificantly better performance than that given by codes deter-
mined by regular graphs.

It remains to show that the codes we derive in this man-

ner in fact function as we expect. That is. given a vector

(A1, . . . , A4). the right degree d,. and the initial error prob-

ability po. if the sequence p.- given by equation (7) is mono-
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tonically decreasing and hence convergesto 0. then the code

obtained from the corresponding irregular random graph cor-
rects a po-fraction of errors. with high probability. We first

note that the equivalent of Theorem 1 holds in this case as

well, by a similar proof (modified to take into account the
different degrees). That is, we can use the hard decision de-

coding algorithm to decrease the number of erroneous bits
down to any constant fraction.

To finish the decoding. we use the sequential algorithm
from Section 2.2. The overall decoding time is linear. To

prove the sequential decoding algorithm works, we need an
equivalent of Lemma 1 for irregular graphs.

Lernma3 Leta > Oandfi > 3/4+eforsomefixedc > 0.

Suppose that B is an irregularbipartite (oz, /3) expander, and
that d is the maximum degree on a left node of B. Then the

sequential decoding algorithm comects up to an/2d envrs
in linear time.

Proof: We follow Theorem 10 of [15]. We show that the

number of unsatisfied check nodes decreases after each step

in the sequential algorithm. Let V be the set of con'upt mes-
sage nodes. with |V| = v and |6(V)| = dv. Suppose there
are u unsatisfied check nodes and let s be the number of sat-

isfied neighbors of the corrupt variables. By the expansion
of B, we have

u + s > (3/4)d-v.

As each satisfied neighbor of V shares at least two edges

with V, and each unsatisfied neighbor shares at least one, we
have

do 2 u + 23.

It follows that

u > in/2, (10)

and hence there is some message node with more than 1/2 of
its incident check nodes unsatisfied. Hence at each step the

sequential algorithm may flip a message node and decrease
the number of unsatisfied check nodes.

Therefore the only way the algorithm can fail is if the
number of corrupt message nodes increases so that v 2 am

during the algorithm. But if v 2 an then. by Equation (10),

u > Jan/2 2 om/2. However, initially it is at most d
times the maximum number an/2d of initial message bit er-

rors, i.e.. initially it < an/2. As u decreases throughout the

course of the algorithm, we can not have that v 2 am during

the algorithm, and hence it cannot fail. Q.E.D.

It follows that the irregular codes we derive function as

we expect as long as our random graphs have sufiicient ex-

pansion. This expansion property holds with high proba-
bility if we choose the minimum degree to be at least five.
However. as stated previously, graphs with message nodes

of smaller degree may be handled with a small additional
structure in the graph.
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Gallager's decoding technique until it finishes. or until a pre-

specified number of rounds pass without success. In our ex-

periments it turns out that it is unnecessary to switch to the
modified decoding algorithm of Section 2.2 or use the ad-
ditional structure described in Section 2.2. as in our experi-

ence the hard decision decoding algorithm of Gallager fin-

ishes successfully once the number of errors becomes small.

We do not perform an actual encoding, but instead for
each trial use an initial message consisting entirely of zeroes.

To more accurately compare code quality. instead of intro-

ducing errors with probability p, we set the same number of

 
 

  

  
 
 

  

 
 

 

 

Table 13 P”3m°l°"5 °f °“’ °°d°5- errors (corresponding to a fraction p of the block length) in
each trial. It is worthwhile to note that even when the decod-

3_4 -i-hoorotieniiy Aehiounhio Errol. coneetion ing algorithm fails to decode successfully because too many
rounds have passed. it can report that failure back. We have

W6 ll3V¢ <l°5l8ll¢d 5°lll¢ llT’¢8lll3l' d°8l'°° 5¢‘lll°ll°¢5 ll5lll3 yet to see the decoding algorithm produce a codeword that
lll° lll'l°8l' Pl°8l‘3mllllll8 lll0lh°d°l°8Y d°S¢l’lb°d lll Slll’S°¢- satisfied all constraints but was not the original message. al-
tion 3.3. The codes we describe all have rate 1/2. These though thcorefically it is 0 possiblc event,

C0595 P¢l’f°l'lll “'5” ill Pl’8¢li¢° 35 W°ll 35 3¢°°l’dlll8 1° 0"’ Our implementation takes as input a schedule that de-
theoretical model. However, it is likely that one could find tehnines the disctennnct. Vniue gem. _ J’ + 1 at each t-ound_
C0595 ‘hm P°l'f°l'lll 5ll8llll)' b°ll¢’—l' 00555 ll5lll8 °lll' l°°hlll‘l“°5- This schedule can be calculated according to equation (8). In

ll ls W°l1ll ll°llll8 ‘hill Sll3llll°ll l-lPP°l' b°lllld (°l' ¢lllT°P)’ b°“lld) practice, however, the schedule detenrlined by equation (8)
for p‘ for codes of rate 1/2 is 11.1%. Although the irregular must he ntodiiied somewhat if the discrepancy thtechoid

904“ Wtl ll3V¢ d°5l8ll°d l0 ‘W9 3'9 fill’ fl’°lll ‘his llmllv “NY is changed prematurely, before enough edges transfer the
31¢ Still mllcll '30“?-l’ l-hall l’°8lll3l' °°d¢5- correct value, the decoding algorithm is significantly more

Code 14 and Code 22. described fully in Table 1 ate two likely to fail. Hence changing the threshold according to the
ll'l'¢8lll3l’ °°d°5 llllll W° d°5l8ll°d- F0‘ C°d° 14 3“ ll°d°5 °" round as given by equation (8) often fails to work well when
the right have degree 14. and for Code 22 all nodes on the the block size is small, since the variance in the number of
right have degree 22.‘ In both these codes, the minimum de- edges sending the eomeei value em he sidhifiennt in Pt-ac.
gree on the left hand side is five. This ensures that the graphs tice we find that suetching out the scheduie somewhat, so
have good expansion as needed in Lemma 2, and thus there is that the discrepancy thneehoid is changed after 3 few more
no need for the additional su'ucture discussed in Section 2.2. rounds thin the equations suggesh pi-events this nmbicnh at
USlll8 ll'l° lllllllllsls 0f 50050“ 3-2» We d¢l°l'llllll° 91° 3PPl'°' the expense of increasing the running time of the decoding
priate value of p‘ is approximately 0.0505 for Code 14 and aigotithnh
0.0533 for Code 22.

_ _ _ In our experiments, a random graph was constructed sep-
We can achieve even better perfonnance by considering amteh, for eaeh that at n eemdh enoi. i.ate_ No effort was

graphs with smaller degrees on the left. While such graphs made to test graphs oi. weed out notenthdh, had ones_ and
do not have sufficient expansion for Lemma 2 to hold. we hehee we expect that om. results would he shghth, hettei. if
°‘“ “‘'*° ‘h° “ddm°““l ‘“'“°‘“'° ‘“S°“s5°d i“ S°°‘i°“ 2'2 ‘° several random graphs were tested and the best ones chosen.
finish the decoding. For Code 10' all nodes on the right have Foiiowing the ideas of [15] and [1 iii’ when necessary we i-e_
degree 10, and for Code 14‘ all nodes on the right have de- move dedhie edges from our graphs
gree 14. Using the analysis of Section 3.2, we determine the
appropriate value ofp‘ is approximately 0.0578 for Code 10’ 4.1 some Experiments
and 0.0627 for Code 14'. Recall that 0.0517 is the best value

ofp‘ that is possible using regular graphs for rate l/2 codes. W° 53‘ d°5°l'lb° ¢XP°l'llll°lll5 0“ °°d°3 0‘ “W3 1/2 Wm‘ 15900
message bits and 8.000 check bits. In Figure 3, we describe

4 Expocimehtai aoeuite the performance of Code 14 and Code 22 that we introduced
in subsection 3.4. Each data point represents the results from

We include preliminary experimental results for new codes 2000 u.inis_ Recnii that the nnntont-iute vuiue ofn- is nnni-ox.
We have found “sins the linear Pl’°8l’°lllmlll8 ePPt°a°lt- 0“! imately 0.0505 for Code 14 and 0.0533 for Code 22. Recall
experimental design is similar to that of [15], whose results that he represents the euro, rote we would expect to he uhie

 

C9-ll 5° ¢°lllPal’°d Wm‘ °lll’S- to handle for arbitrarily long block lengths, and that we only

We describe a few important details of our experiments expeet id eppreaeh he esymptedeahy in nmetiee es the num.
and implementations. In our implementation. we simply run he, of nodes gi.ows_

I ,tetuiuy_ to hehuee the numb, otedeee we do chow one node on the Our results show that for block lengths of length 16.000
right to have a different degree. the codes appear to perfonn extremely well when a random
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Figure 3: Percentage of successes based on 2000 trials.

fraction 0.045 (or 720) of the original message bits are in
error. For the 2.000 trials. Code 14 never failed. and Code

22 failed just once. (In fact in 10.000 trials with this num-
ber of errors, Code 14 proved successful every time.) The

probability that the code succeeds falls slowly as the error
probability approaches p’. Further experiments with larger
block lengths demonstrate that performance improves with
the number of bits in the message, as one would expect.

These codes therefore perfonn better than the codes based
on regular graphs presented in [15]. albeit at the expense of
a greater (but still linear) running time. They also perform
much better than regular codes. For instance, as mentioned
before. the best regular code of rate 1/2 is obtained from
random regular bipartite graphs with degree 4 on the left and
degree 8 on the right. The perfonnance of this code is also
shown in Figure 3. Although the p‘ value for this regular
code is approximately 0.0517. in practice. with 16.000 mes-
sage bits this regular code failed 23 times in 2,000 trials with
a fraction of 0.045 errors.

We now consider Code 10’ and Code 14' introduced in

subsection 3.4. The experiments were run on l6,0()0 mes-

sage bits and 8,000 check bits for 2.000 trials. In our exper-
iments. we remove both double edges and some small cy-

cles, as suggested in [1 1]. Recall that the appropriate value
of p‘ is approximately 0.0578 for Code 10' and 0.0627 for
Code 14'. These codes again perform near what our analysis

suggests, and they significantly outperform previous simi-
lar codes with similar decoding schemes, including regular
codes.

In summary, irregular codes Code 14 and Code 22 appear
superior to any regular code in practice, and irregular codes
Code l0‘ and Code l4‘ are far superior to any regular code.

We have similarly found irregular codes that perform well at
other rates.

5 conclusion

We have proven that a class of linear time error-correcting
codes correct a large fraction of errors with high probabil-
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ity. We have also determined new codes based on irregu-
lar graphs that perform better than codes based on regular
graphs on systems of practical size. as well as described a
general technique for producing such codes.

Our work leaves several interesting open questions. An

ambitious project is to fully analyze the behavior of either
regular or irregular codes when using a decoding algorithm
based on belief propagation. Such decoding algorithms are
similar to the decoding algorithm of Gallager described in
Section 2.1. except that more extensive information is passed
through messages along the edges each round. Analyzing
these algorithms would be a significant breakthrough in the
theory of codes based on low-density parity-check matrices.
Another interesting question is to tie together more strongly
the theory and practice of these codes. Our equations that
describe the asymptotic behavior of the codes do not tell us
which codes perform best for reasonably sized systems (say,
with thousands or tens of thousands of bits). A more system-

atic approach rather than trial and error would be useful.
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