
/**/
/* GetInter.cpp */
/* Hui Jin */
/**/
/*
 file description:
 Get appropriate permutation for LDGM (LDPC) code for given
 degree sequence L and R.
 In first version. R sequence is constant.
 Author: Hui Jin
 date: 3/12/2000

 modification: 3/12/2000 first version.
 One important thing is, L and R should
be
 in decreasing order.
 4/5/2000 Second version. Leave GetInter() there.
 implement new version newGetInter()
using
 Gallager idea, similar to his ensemble
but has
 variable and check nodes reversed. See
page 38
 Book III.
 4/9/2000 Method II has problems, return to
GetInter(),
 but change the way the next number is
 generated.
 L and R should be
 in decreasing order !!!!
 And we should use the same .prm in
IRAsimu.
 4/12/2000 We are going to arrange the degree 2
nodes on
 the left, because those are causing
problems of
 short cycles in decoding.
 The main idea is to arrange them as a
path on
 nodes 0, t, 2t, 3t, ... (n-1)t, where t
is an
 integer that gcd(t,n)=1, and t is around
 sqrt(n). So this is like the right part
except
 in different order.
 In this way, We can make sure the
 shortest cycle consisting only degree 2
node is
 around 2t. Which is good.
 Degree sequence is still in decreasing

0001

CALTECH - EXHIBIT 2028
Apple Inc. v. California Institute of Technology

IPR2017-00219f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

order,
 but we take care of degree 2 nodes
first. The
 rest the same as 4/9/2000 version.
*/

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>

#include "vector.h"
#include "ldpc.h"
#include "paramfio.h"
#include "datatype.hh"
#include "random.hh"

void printusage()
{

printf("Usage: GetInter filename.prm infolen \n");
 exit(1);
}

void getLRdegree(degree_sequence& L, degree_sequence &R, char *
filename)
{
 ivector deg;

vector fe;
paramfio P;

 P.set_filename(filename);
P.read("variable degree", deg);
P.read("variable fraction", fe);
L.init(deg.getsize());
L.d = deg;
L.fe = fe;
P.read("check degree", deg);
P.read("check fraction", fe);
R.init(deg.getsize());
R.d = deg;
R.fe = fe;
L.edge_to_node();
R.edge_to_node();

}

0002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

/*
delete the index term from a list with length=len.
 index is in [0, len-1].
*/

void list_del(int list[], int len, int index)
{
 for(int i=index; i<len-1; i++)
 list[i]=list[i+1];
}

/*
3/12/2000 Hui Jin
get an interleaver for LDGM code.
Any two edge in the same variable node won't be in the same check
node, we
garantee the second part by imposing if two edges are adjacent to the
same
variable node, their permutation must be with distance >=k, which can
be
adjacent to the same check node.
help function: void list_del(int list[], int len, int index)
modification: 4/9/2000
 only check distance property in the same node.
*/
void getInter(int *_interleaver, degree_sequence & LV, int nv[], int
_len, int check_deg)
{

 //how many numbers left in the pool.
 int remain_len = _len;
 int k=0;
 int distance;

 int s_ch;

 //the set of all the numbers.
 int list[_len];
 int list_index;
 for(int m=0; m< _len; m++) list[m]=m;

 RandomGenerator rand;

 for(int i=0; i< LV.n; i++)
 for(int l=0; l< nv[i]; l++)
 for(int j=0; j<LV.d[i]; j++)
 {
 //randomly get a number in the remaining numbers.
 list_index = (int) floor(rand.UNI()*remain_len);

0003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 _interleaver[k]=list[list_index];
 distance=2*check_deg;
 //check if all the close positions have a permutation with
 // appropriate distance.
 s_ch=k-j;
 while(s_ch<k)
 { //if degree 2 nodes, special care.
 if(LV.d[i]==2) distance = 200;
 if(abs(_interleaver[s_ch]-_interleaver[k])>= distance)
s_ch++;
 else
 {
 list_index = (int) floor(rand.UNI()*remain_len);
 _interleaver[k]=list[list_index];
 s_ch=k-j;
 }
 }
 //we found the appropriate number, now delete that element
from the
 // remain list.
 list_del(list, remain_len, list_index);
 k++;
 remain_len--;
 }

}

int main(int argc, char* argv[])
{

if (argc !=3)
{

printusage();
}

degree_sequence LV;
degree_sequence LC;
int argcount = 1;

 getLRdegree(LV, LC, argv[argcount++]);

 int info_len= atoi(argv[argcount++]);

0004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 int nv[LV.n];
 int LEdge_num=0;
 double s=0;
 for(int i=0; i< LV.n-1; i++)
 {
 nv[i]= int(floor((s+LV.fn[i])*info_len) -
floor(s*info_len));
 s+=LV.fn[i];
 LEdge_num += nv[i] * LV.d[i];
 }

 nv[LV.n-1]= info_len -(int) floor(s*info_len);
 LEdge_num += nv[LV.n-1] * LV.d[LV.n-1];

 //assume here LC.av_degree() is constant
 int check_deg= (int) floor(LC. av_degree_node());

 int _len= LEdge_num;

 cout << "Total length permutation " << _len << endl;

 int _Interleaver[_len];

 getInter(_Interleaver, LV, nv, _len, check_deg);

 for(int i=0; i< _len; i++)
 cout << _Interleaver[i]<< endl;

}

0005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

