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New Sequences of Linear Time Erasure Codes
Approaching the Channel Capacity

M. Amin Shokrollahi

Bell Labs, Room 2C-353, 700 Mountain Ave, Murray Hill, NJ 07974, USA
amin@research.bell-labs.com

Abstract. We will introduce a new class of erasure codes built from
irregular bipartite graphs that have linear time encoding and decoding
algorithms and can transmit over an erasure channel at rates arbitrarily
close to the channel capacity. We also show that these codes are close
to optimal with respect to the trade-off between the proximity to the
channel capacity and the running time of the recovery algorithm.

1 Introduction

A linear error-correcting code of block length n and dimension k over a finite field
IFq—an [n, k]q-code for short—is a k-dimensional linear subspace of the standard
vector space IFn

q . The elements of the code are called codewords. To the code C
there corresponds an encoding map Enc which is an isomorphism of the vector
spaces IFk

q and C . A sender, who wishes to transmit a vector of k elements in
IFq to a receiver uses the mapping Enc to encode that vector into a codeword.
The rate k/n of the code is a measure for the amount of real information in each
codeword. The minimum distance of the code is the minimum Hamming distance
between two distinct codewords. A linear code of block length n, dimension k,
and minimum distance d over IFq is called an [n, k, d]q-code.

Linear codes can be used to reliably transmit information over a noisy chan-
nel. Depending on the nature of the errors imposed on the codeword during
the transmission, the receiver then applies appropriate algorithms to decode the
received word. In this paper, we assume that the receiver knows the position of
each received symbol within the stream of all encoding symbols. We adopt as
our model of losses the erasure channel, introduced by Elias [3], in which each
encoding symbol is lost with a fixed constant probability p in transit indepen-
dent of all the other symbols. As was shown by Elias [3], the capacity of this
channel equals 1 − p.

It is easy to see that a code of minimum distance d is capable of recovering
d−1 or less erasures. In the best case, it can recover from any set of k coordinates
of the encoding which means that d − 1 = n − k. Such codes are called MDS-
codes. A standard class of MDS-codes is given by Reed-Solomon codes [10]. The
connection of these codes with polynomial arithmetic allows for encoding and
decoding in time O(n log2 n log log n). (See, [2, Chapter 11.7] and [10, p. 369]).
However, these codes do not reach the capacity of the erasure channel, since
there is no infinite sequence of such codes over a fixed field.
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66 M. Amin Shokrollahi

Elias [3] showed that a random linear code can be used to transmit over the
erasure channel at any rate R < 1 − p, and that encoding and decoding can be
accomplished with O(n2) and O(n3) arithmetic operations, respectively. Hence,
we have on the one hand codes that can be encoded and decoded faster than
general linear codes, but do not reach the capacity of the erasure channel; and
on the other hand we have random codes which reach the capacity but have
encoding and decoding algorithms of higher complexity.

The paper [1] was the first to design codes that could come arbitrarily close
to the channel capacity while having linear time encoding and decoding algo-
rithms. Improving these results, the authors of [8] took a different approach and
designed fast linear-time algorithms for transmitting just below channel capac-
ity. For all ϵ > 0 they were able to produce rate R = 1 − p(1 + ϵ) codes along
with decoding algorithms that could recover from the random loss of a p fraction
of the transmitted symbols in time proportional to n ln(1/ϵ) with high proba-
bility, where n is the block length. These codes could also be encoded in time
proportional to n ln(1/ϵ). They belong to the class of low-density parity check
codes of Gallager [4]. In contrast to Gallager codes, however, the graphs used to
construct the asymptotically good codes obtained in [8] are highly irregular.

The purpose of the present paper is twofold. First, we prove a general trade-off
theorem between the proximity of a given Gallager code to the channel capacity
in terms of the loss fraction and the running time of the recovery algorithm of [8].
We show that in this respect, the codes constructed in that paper are close to
optimal. Next, we exhibit a different sequence of asymptotically close to optimal
codes which have better parameters than the codes in [8]. An interesting feature
of these codes is that the underlying bipartite graphs are right regular, i.e., all
nodes on the right hand side of the graph have the same degree. Since they are
theoretically better than their peers, we expect them to also perform better in
practice.

The organization of the paper is as follows. In the next section we will re-
view the construction of Gallager codes. Next, we prove upper bounds on the
maximum tolerable loss fraction in terms of the running time of the decoding al-
gorithm. The last two sections are concerned with the derivation of the sequence
of right regular erasure codes.

2 Codes from Bipartite Graphs

In this section, we will briefly review the class of codes we are interested in, and
the erasure recovery algorithm associated to them.

Our codes are similar to the Gallager codes [4] in that they are built from
sparse bipartite graphs. In contrast to Gallager codes, however, our codes will
be constructed from graphs that have a highly irregular degree pattern on the
left.

Let G be a bipartite graph with n nodes on the left and n − k nodes on the
right. G gives rise to a binary code of block-length n and dimension ≥ k in the
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following way: let the adjacency matrix of the graph G be given as

A =
(

0 H⊤

H 0

)

,

where H is some (n−k)×n matrix describing the connections in the graph. The
code defined by the graph is the code with parity check matrix H. A different
way of describing the code is as follows: we index the coordinate positions of
the code with the n nodes on the left hand side of the graph. The code consists
of all binary vectors (c1, . . . , cn) such that for each right node in the graph the
sum of the coordinate places adjacent to it equals zero. The block-length of this
code equals n, and its dimension is at least k since we are imposing n− k linear
conditions on the coordinates of a codeword. Expressed in terms of the graph,
the fraction of redundant symbols in a codeword is at most aL/aR where aL and
aR are the average node degrees on the left and the right hand side of the graph,
respectively. In other words, the rate of the code is at least 1 − aL/aR. This
description of the rate will be useful in later analysis. In the following, we will
assume that the rate is in fact equal to this value. This is because the statements
we will prove below will become even stronger if the rate is larger.

The above construction needs asymptotically O(n2) arithmetic operations to
find the encoding of a message of length k, if the graph is sparse. One can apply
a trick to reduce the running time to O(n) by a modification of the construction.
Details can be found in [8].

Suppose now that a codeword (c1, . . . , cn) is sent and that certain erasures
have occurred. The erasure recovery algorithm works as follows. We first initialize
the contents of the right hand nodes of G with zero. Then we collect the non-
erased coordinate positions, add their value to the current value of their right
neighbors, and delete the left node and all edges emanating from it from the
graph. After this stage, the graph consists of the erased nodes on the left and
the edges emanating from these nodes. In the next step we look for a right node in
the graph of degree one, i.e., a node that has only one edge coming out of it. We
transport the value of this node to its unique left neighbor ℓ, thereby recovering
the value of cℓ. We add cℓ to the current value of all the right neighbors of ℓ,
delete the edges emanating from ℓ, and repeat the process until we cannot find a
node of degree one on the right, or until all nodes on the left have been recovered.

It is obvious that, on a RAM with unit cost measure, the amount of arithmetic
operations to finish the algorithm is at most proportional to the number of edges
in the graph, i.e., to naL, where aL is the average node degree on the left. The
aim is thus to find graphs with constant aL for which the recovery algorithm
finishes successfully.

The main contribution of [8] was to give an analytic condition on the maxi-
mum fraction of tolerable losses in terms of the degree distribution of the graph.
More precisely, define the left and the right degree of an edge in the graph as
the degree of the left, resp. right node it is emanating from. Further, denote
by λi and ρi the fraction of edges of left, resp. right degree i, and consider the
generating functions λ(x) :=

∑

i λixi−1 and ρ(x) :=
∑

i ρixi−1. In the following
we will call the pair (λ, ρ) a degree distribution.
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