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TABLE I
WEIGHT DISTRIBUTION OF CODE

The minimum distance of is found through a computer to be
, which is two more than the best code given in [2] as of May 3,

1999. The weight distribution of code is shown in Table I.
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Linear-Time Binary Codes Correcting Localized Erasures

Alexander Barg and Shiyu Zhou

Abstract—We consider a communication model over a binary channel
in which the transmitter knows which bits of the -bit transmission are
prone to loss in the channel. We call this model channel with localized
erasures in analogy with localized errors studied earlier in the literature.
We present two constructions of binary codes with check

bits, where is the maximal possible number of erasures. One
construction is on-line and has encoding complexity of order and
decoding complexity of order . The other construction is recursive.
The encoding/decoding algorithms assume a delay of bits, i.e., rely on
the entire codeword. The encoding/decoding complexity behaves roughly
as and , respectively.

Index Terms—Defects, linear-time codes, localized erasures.

I. INTRODUCTION
We consider a communication model in which binary information

is transmitted from one party to the other over a channel which
can occasionally erase some of the transmitted bits. Information is
transmitted by -bit blocks. In contrast to the usual channel with
erasures we assume that the sender knows the part of the block where
erasures can (but not necessarily will) occur. Therefore, we call such
erasures localized. Information is transmitted by -bit blocks. Both
the sender and the receiver know that at most out of bits can be
possibly erased in the channel. The bit positions of possible erasures
become known to the sender before transmitting a block and can vary
from transmission to transmission. This is the only difference of our
model from the standard erasure channel. The receiver, as usual, can
only detect that certain bits of the -bit block are lost upon receipt,
i.e., erasures are visible at the receiving end.
This problem has a game-like flavor. Namely, supposing that the

channel always destroys exactly bits would make the problem
trivial: just send message bits outside these positions and
write anything in bits that will be erased. However, if some of these
bits arrive unscathed, the receiver would read them off and mix

with the actual information since it cannot tell the bits that are prone
to loss from the reliable bits of the block.
Our correspondence shows that the transmission can be organized

with a data overhead of bits ( is any positive number),
which is essentially the optimum, and that the delays introduced by
the sender/receiver are linear in .
Typically, codes correcting erasures are discussed in connection

with packet routing in networks employing the asynchronous transfer
mode and in the Internet. Generally, the most common causes for
the loss of packets are traffic congestion and buffer overflows,
which result in excessive delays. If a part of the message is not
received within a certain time interval, the receiving node issues a
retransmission request. However, in on-line applications such as, for
instance, real-time video transmission, retransmission is impossible.

Manuscript received March 8, 1998; revised March 8, 1999. The material
in this correspondence was presented in part at the 35th Annual Allerton
Conference, Monticello, IL, September 1997.
A. Barg is with Bell Laboratories, Lucent Technologies, 2C-375, Murray

Hill, NJ 07974 USA (e-mail: abarg@research.bell-labs.com).
S. Zhou was with Bell Laboratories, Lucent Technologies. He is now with

the Department of Computer and Information Science, University of Pennsyl-
vania, Philadelphia, PA 19104-6389 USA (e-mail: shiyu@cis.upenn.edu).
Communicated by F. R. Kschischang, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(99)07007-8.

0018–9448/99$10.00  1999 IEEE

Apple 11231f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


2548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

In this context we face the problem of retrieving the lost data at
the receiving end at the expense of having a certain data overhead
in the transmission. Consequently, coding theory solutions for load
balancing and decreasing delays in global networks have been a
recurrent topic in the literature [3], [8], [12], [13], and [15]. A general
idea of these works is the same. Namely, it is suggested to encode
the message with maximum distance separable (MDS) codes. If the
code has length and is used to encode message symbols, then
the message can be recovered from any -part of the codeword,
and the data overhead is symbols. There are three general
methods of constructing MDS codes known: redundant-residue codes,
Cauchy matrices, and Reed–Solomon (RS) codes (see [11, Sec. 10.9,
Exercise 11.7, and Ch. 10], respectively). These methods are utilized
in [3] (redundant-residue codes), [13] (Cauchy matrices), and [8], [15]
(Reed–Solomon codes). The complexity of these constructions is of
order -ary operations ( is the alphabet size) for encoding and
decoding. The encoding is performed either by matrix multiplication
or by polynomial evaluations; the decoding is basically Lagrange
interpolation for RS codes or Chinese remaindering for redundant-
residue codes. The alphabet size is related to the transmission
protocol. In [8], equals the length of the packet; in [15] it is the
number of packets in the image.
In our situation, the sender knows the set of positions of possible

erasures. This information is used in the encoding. More precisely,
the encoding mapping, which assigns a codeword to a given message
, depends both on the set of possible messages and the set of

positions of possible erasures. This implies that to every message
we associate a subset of codewords, and the code is formed by
the union of these subsets. A binary code of length corrects

localized erasures if for different messages these subsets are
disjoint (then the encoding mapping is invertible). Precise definitions
are given in the next section.
Two transmission problems studied previously are close to our

problem. The first is called codes for channels with (memory) defects
[9]. Under this model, codewords are stored in memory with some
cells stuck at either or . Therefore, no matter what is written in
these bits by the “sender,” the “receiver” always reads a fixed value.
The second model deals with codes correcting localized errors [5].
The definition is the same as of codes correcting localized erasures
except that now the transmitted bits inside a given set are either
received correctly or flipped in the channel.
There is a substantial difference between the minimal possible

number of check bits in binary codes correcting localized erasures
and binary codes correcting usual erasures. Namely, to correct
nonlocalized erasures one needs binary codes with minimum distance
at least . By the Varshamov–Gilbert bound, the redundancy of
the best known binary codes with distance is . On
the contrary, the minimum redundancy of a code of length that
corrects localized erasures is (see Proposition 2.1).
Our results show that this bound is essentially tight. The same

lower bound is valid for codes correcting defects [9]. For localized
errors the upper and lower bounds on the number of checks have order

[5]. A more detailed survey of the bounds and complexity
results for is given in [4].
As remarked above, for larger alphabets there exist MDS codes that

correct usual erasures with check symbols. The encoding/decoding
time is of order for RS codes and for codes of
Alon and Luby [2], which use check symbols. However,
an easy consequence of the Singleton bound [11] shows that the
size of the alphabet of an MDS code must be large, namely,

, where is the number of erasures.
Note also that the assumption of deterministic encoding/decoding

is essential since it is possible to construct probabilistic encod-

ing/decoding methods that ensure recovery of binary sequences with
at most erasures using check bits; see Luby et al. [10].
A number of recursive constructions of low-complexity codes for

different transmission models is known in the literature; see Ahlswede
et al. [1], Alon and Luby [2], Dumer [7], and Spielman [14]. The idea
of constructing low-complexity codes for all models is essentially the
same. Namely, first the code length is partitioned into a number
of shorter segments. A recursion is applied on each or some of these
segments. The recursion stops after reaching constant length or some

length depending in the complexity of codes used on these
small segments, so that the encoding and decoding of an optimal code
can be implemented by exhaustive search. This general construction
varies for different models since optimal codes are constructed in
different ways.
This idea was used by Spielman [14] to construct codes of length
and size correcting a small number of Hamming

errors. The encoding/decoding complexity is of order and
. These codes were used as a basis of recursion by

Alon and Luby [2], who suggested codes over a very large alphabet
correcting usual erasures. The number of check symbols of this
construction is . The complexity of encoding/decoding is

. Here must be very small since the construction relies on
error-correcting codes from [14]. In principle, a similar technique can
be used in our problem, but the parameters of the construction are
sharply restricted by the condition on .
Dumer [7] introduced polynomial-time codes that use

checks to correct defects. The complexity of encoding is
and of decoding . In our work we

rely on these constructions to construct codes correcting localized
erasures. This enables us to achieve linear encoding/decoding
complexity for localized erasures. The redundancy of codes is

, which is not possible for usual erasures with deterministic
encoding/decoding algorithms.

II. PRELIMINARIES
Let us define formally our problem. Let be the set of all binary

words of length . A binary code of length is any subset of .
The quantity is called the number of message bits (all
’s in the correspondence are base ). Let .

Suppose is a codeword submitted to the
transmission channel. We say that erasures are localized at
if the output of the channel is given by

or (1)

where is the erasure symbol. In other words, symbols outside
are never erased in the channel and symbols in may or may not be
erased. Suppose can be any -subset of , which becomes known
to the encoder (but not to the decoder) before transmission and can
vary from one block to the other. Then we speak of transmitting over
the channel with localized erasures.
Let be the set of messages. By encoding we mean

assigning a codeword used to transmit a given message over
the channel with erasures localized at . The encoding mapping is
defined by

where is the set of all -subsets of . Then
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Let be a decoding mapping which sends any codeword with at most
bits missing to . By definition, the code corrects localized

erasures if for any string with

or

for any .
We consider the problem of constructing codes correcting local-

ized erasures. Below we assume that and
.

Proposition 2.1: Let be a binary code of length used to
transmit messages from a set over the channel with localized
erasures. Then .

Proof: Let be the erasure operator which maps a codeword
to a sequence that satisfies (1). A necessary and sufficient

condition for to correct localized erasures is

(2)

for any and any . Let be a fixed
-subset of . The outcome of the transmission can be any set of
erasures on . Assume that erases all bits in .
The binary vector in the remaining bits should satisfy (2); thus

.

Below we adapt to our problem certain codes correcting defects.
The channel with defects can be defined as follows. Let and
suppose is a codeword submitted to a channel with defects. Suppose

. Then the output of the channel is a word with

.
(3)

Again we assume that becomes known to the encoder before the
transmission and can vary from block to block.
Let be a set of messages. The code is defined as

where is an encoding mapping. Codes for which the encoding
mapping is invertible are said to correct defects.

III. THE CONSTRUCTIONS

A. Overview
We shall present two constructions of binary codes correcting

localized erasures. As we have pointed out in the Section I, the
problem of correcting localized erasures is much related to the
problem of correcting defects [6], [7]. An advantage of locality is that
in our coding scheme the encoder knows exactly what the decoder
will receive. To achieve this, the encoder forces all the bits that can
possibly be erased to be ’s in its encoding, i.e., for any given
and the encoder forces all bits of the codeword
contained in to be . The decoder replaces all erased bits in the
received sequence by zeros. It turns out that in this way the encoder
can convey certain useful information (such as the number of possible
erasures in a segment) to the decoder in a fairly straightforward
manner, which is something difficult to achieve when dealing with
usual erasures.
In order to achieve linear time complexity, we propose to break

a block of linear size into segments of constant size and apply the
optimal code on each segment. In this way even though the time

complexity of the optimal code is super-linear, it only causes a
constant factor increase in the overall linear complexity. The optimal
code we shall use is due to Dumer [6]. The original purpose of the
code was to deal with asymmetric defects, i.e., defects with
in (3). It turns out that this construction can be easily reformulated to
correct localized erasures. We give the following theorem with proof
since it is important for understanding our constructions.

Theorem 3.1 [6]: For all , there exists an easily
constructible binary nonlinear code of length that corrects
localized erasures. The redundancy of the code is . The encoding
time of the code is and the decoding time is .
Moreover, in any codeword, all the bits corresponding to the possible
erasures are equal to .

Proof: Let be the subset of positions of possible erasures.
Let be the binary message of bits that we want to
send. Suppose that is divisible by , say (the
opposite case will be treated later). Partition into segments of
length The encoding is performed by viewing the vectors
as elements of GF and multiplying each of them by one and
the same element GF Each product is expanded
into a binary vector ; the codeword of length is
formed by concatenating all these vectors and the binary expansion
of as follows:

Element is chosen so that all the bits of this word with numbers
in be . Each product is a linear form of the variables

In total, binary coordinates in these products
must be . Each of these conditions defines a linear equation with
unknowns . A nontrivial system of homogeneous
equations with respect to unknowns always has a nontrivial
(not all-zero) solution.
Then the message can be encoded as follows. It is parti-

tioned into segments as described. Then the encoder computes ,
finds the products , and their binary expansions

. This defines the codeword.
Note that itself is a part of the sequence transmitted and is also

subject to erasures. If the set of possible erasures includes some
of the last coordinates of the transmitted sequence, then the
corresponding coordinates of are simply set to .
The decoder sets the erased coordinates to . Now the received

word exactly equals the codeword. Therefore, the decoder splits it
into segments of length and finds . The message is
found by computing , and taking the binary
expansions of these products.
Finally, if is not divisible by , say ,

then we partition the first part of the message into segments
of length and take the last segment of length .
All segments except the last are treated exactly as above. The last
segment is considered as an element of GF and multiplied
by GF . It is easy to see that the
construction described above remains valid, and the number of check
bits is still . This completes the proof.

In what follows, we use the term encoding/decoding when
we talk about the encoding/decoding of the code.

Remark: Note that the decoding is defined on the whole
space except for the subspace spanned by the first
coordinates (i.e., subspace of vectors with last zeros). In
particular, the code does not contain the all-zero codeword.
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In our constructions we need to extend the definition of
decoding to the entire space . Assume by definition that

decoding of any outputs a “message” of zeros.

In the first construction that we shall present, the coding scheme is
implemented on-line. That is, the codeword is broken into segments
each of constant length and the encoding/decoding is applied inde-
pendently on each segment. The second construction is an extension
of the work in [7]. It is a more complicated recursive construction
and cannot be implemented on-line, but it has asymptotically better
performance in terms of the encoding/decoding complexity.

B. On-Line Construction
In this section, we present a code construction and prove the

following.

Theorem 3.2: Given integer and such that
, there exists an easily constructible binary code of length

that corrects localized erasures and has redundancy .
The encoding complexity of the code is
and the decoding complexity is . Moreover,
the coding scheme can be implemented on-line.

Proof: We will describe the construction of the code, describe
encoding and decoding, compute its redundancy, and estimate its
complexity.
We begin with a message of bits. By assumption, the

set is known to the encoder. The set of code
coordinates is divided into subblocks of a smaller length
called segments (we assume without loss of generality that is a
multiple of ). The encoding procedure is applied to each of these
segments independently. The same holds for the decoding, so the
construction introduces only a constant delay and can be implemented
on-line.
Thus we need to describe what happens within a given segment

of length , where is taken equal to

(We remark that is not the minimal possible value of the constant.)
The construction relies on two more parameters

(4)

First, if the number of possible erasures in exceeds , the entire
segment is filled with zeros and is not used to transmit information.
Otherwise, since is of constant length, we could apply the optimal
code of Theorem 3.1 on it. This would solve our problem, were
the number of possible erasures in known to the decoder. To
communicate this number, we use a part (subsegment) of segment
with relatively few possible erasures. Such a subsegment of length
exists since itself has at most erasures. The final problem is
to communicate to the decoder the location of this subsegment.
Before describing the coding scheme in detail, we note one

inequality, useful for later analysis, which can be easily verified by
using our definitions of and and the assumption of the theorem

(5)

Encoding: More to the point, we shall partition into
consecutive subsegments each of length . Note
that by (5), so this partition is well-defined. Since ,

there is an index, say , such that . As said above,
does not carry any part of the message. Let be
the number of possible erasures in the remaining part of the segment.
We use the code to encode message bits
and transmit them on .
It remains to specify the use of to accomplish the goals

described above. A codeword of written on this subsegment,
is calculated from the codeword of written on , the
number , and the starting bit position of in . Let
be a binary vector, the first bits of which carry this position
and the last bits represent .
The codeword written on is calculated as follows. First, we

apply decoding to each subsegment of . This
is possible by the remark after Theorem 3.1. Denote the result of the
th decoding by . It is clear that each such decoding gives a bit
sequence of length . Next, compute

(6)

Finally, we encode with and write the result on .

Decoding: The decoding begins upon receipt of the first -bit
segment . If after replacing the erased bits by zeros, the decoder
observes an all-zero word, the segment is assumed not to carry any
information and discarded. By the remark after Theorem 3.1, the only
case when this can occur is when , i.e., this decision
coincides with the intentions of the encoder.
Otherwise, we decompose into subsegments

each of length . Then we apply the decoding on each
. Let be the output of the decoding on . Next

compute . By (6), the first bits of this
vector represent the (binary) number of the starting position of
and the last bits contain the number of erasures in .
So what remains is to isolate the segment and apply the

decoding on it. This gives the transmitted message.
Let us estimate the overall redundancy of the code. Let be

the collection of segments with the number of possible erasures
. The following parts of the -word do not

carry information: all the segments in , the subsegments of
the segments not in , and the redundant bits of codewords of

on these segments.
Let . Clearly, . The total number of

segments is and the number of erasures in all the segments
is at most . Therefore, for the overall redundancy

we get

(7)

where the last inequality follows from (5). We need to show that
for . Since (7) is linear in , it

suffices to show that the last expression in (7) is at most
for both and .
Case 1:

(7)
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Case 2:

(7)

where the last step makes use of (4).
To complete the proof it remains to estimate the complexity of

encoding and decoding. By Theorem 3.1, it is easy to see that the
time needed for encoding each segment is and for decoding
is . Therefore, the overall encoding time (on segments) is

and the overall decoding time is
.

C. Recursive Construction
As we mentioned in Section I, Dumer [7] gave a nearly optimal

construction of binary codes of length correcting defects with
redundancy, encoding time, and

decoding time. This construction can be easily modified to give
binary codes correcting localized erasures with the same amount
of redundancy and the same encoding/decoding complexity. In this
section, we outline an extension of that construction and derive a
coding scheme that satisfies the following properties.

Theorem 3.3: Given any such that
, there is an such that for any integer ,

there exists an easily constructible binary code of length that
corrects localized erasures and has redundancy .
The encoding complexity of the code is
and the decoding complexity is .

Here we point out that this construction is recursive and the coding
scheme cannot be implemented on-line.

Proof: We assume the existence of an easily constructible binary
code of any length correcting any localized erasures
that satisfies the properties required in the theorem. The construction
proceeds recursively and relies on this assumption as an induction
hypothesis.
As in Theorem 3.2, we present a constructive definition of the

code by specifying the encoding procedure. Then we describe the
decoding, compute the code redundancy, and estimate the necessary
complexities. The general encoding scheme is based on isolating a
large (linear-size) segment in which the fraction of possible
erasures is at most the same as in the entire block. This segment
does not carry message bits; instead, we encode on it the number of
possible erasures in the remaining part of . Encoding and decoding
on are performed with a code whose existence is guaranteed by the
induction hypothesis. The rest of the block length is used to transmit
message bits with codes of Theorem 3.1 and the information about
the location of . This is done similarly to Theorem 3.2.
Let us introduce notation for the partition described, specify the

parameters, and give a formal description of encoding and decoding.
Let , where In the remaining part we isolate an
auxiliary segment of length , which
is used to transmit the location of . Finally, the set
is partitioned into subsets each of length , called
blocks. Here

(8)

All the parameters are known both to the encoder and decoder and
form a part of the code description (transmission protocol).

Encoding: We are given a set of possible erasures and a
message of bits. Let be a segment
such that . Then we partition the subset into
consecutive segments of length each and fix one such segment
with . (This can be done even if .) Finally,
we partition the remaining part of into
consecutive blocks each of length .
Let . Block is used to transmit

message bits, protected against erasures with the code We
also need to transmit to the decoder the numbers and the starting
position of the auxiliary segment . In total this is
bits. These bits are encoded with the code, whose existence
constitutes the induction hypothesis. The encoding result is written
in . Note that

where follows by (8) and the assumption for the theorem and
holds for sufficiently large. Thus this step of the encoding

procedure is well-defined.
The only thing the encoder still needs to transmit to the decoder

is the starting position of the segment . Let us assume without loss
of generality that both and are multiples of . We partition
into segments each of length . Then by the

construction, we have that for some . For ,
let be the result of the decoding on
segment . Since is one of the consecutive segments of ,
to locate it we need bits. Let be the binary
representation of the segment number of . Let

and let carry the codeword obtained by
encoding of .

Decoding: The decoding begins upon receipt of bits of the
codeword. First we replace all the erased bits by . Then we
decompose into segments each of length
and apply the decoding on each segment .

Each decoding yields a -bit vector . Let
By the above, this is the binary number of the segment

in the partition into consecutive segments of length .
Upon having located , we apply the decoding recursively on
to obtain the number of possible erasures in and the starting
bit position of segment . Now we can recover all the segments

which carry the message. Decoding each of
them with the code , we get the transmitted message bits.
This completes the decoding.

Let us show that the amount of redundancy satisfies the requirement
of the theorem. The redundancy of the code consists of segments
and and the redundancy needed for each encoding on .
Therefore, the total is at most

Here in we used the obvious inequality which implies
that . Further, holds for sufficiently large.
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