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Abstract.

In this paper we discuss AWGN coding theorems for ensembles of coding systems which
are built from fixed convolutional codes interconnected with random interleavcrs. We

call these systems “turbo-like" codes and they include as special cases both the classical

turbo codes [1,2,3] and the serial concatentation of interleaved convolutional codes
We offer a general conjccture about the behavior of the ensemble (maximuni-likelihood

decoder) word error probability as the word length approches infinity. We prove this

conjecture for a simple class of rate l/q serially concatenated codes where the outer
code is a q-fold repetition code and the inner code is a rate 1 convolutional code with

transfer function l/(l + D). We believe this represents the first rigorous proof of a
coding theorem for turbolike codes.

1. Introduction.

The 1993 discovery of turbo codes by Berrou. Glavicux. and Thitimajshima [1] has
revolutionized the field of error-correcting codes. In brief. turbo codes have enough

randomness to achieve reliable communication at data rates near capacity, yet enough
structure to allow practical encoding and decoding algorithms. This paper is an attempt

to illuminate the first of these two attributes, i.e., the “near Shannon limit” capabilities
of turbo-like codes on the AWGN channel.

Our specific goal is to prove AWGN coding theorems for a class of generalized con-
catenated convolutional coding systems with interleavers. which We call “turbo-like"

codes. This class includes both parallel concatenated convolutional codes (classical

turbo codes) [1, 2. 3] and serial concatenated convolutional codes [4] as special cases.
Beginning with a code structure of this type, with fixed component codes and inter-

connection topology. we attempt to show that as the block length approaches infinity,

the ensemble (over all possible interleavers) maximum likelihood error probability ap-

proaches zero if [Sb/Nd exceeds some threshold. Our proof technique is to derive an

explicit expression for the ensemble input-output. weight enumerath (IOWE) and then
to use this expression. in combination with either the classical union bound, or the

recent “improved” union bound of Viterbi and Viterbi {9], to show that the maximum
likelihood word error probability approaches zero as N —+ 0c. Unfortunately the diffi-
culty of the first step. i.e.. the computation of the ensemble IOWB, has kept us from

full success, except for some very simple coding systems, which we call repeat and ac-

cumulatc codes. Still. we are optimistic that this technique will yield coding theorems

for a much wider class of interleaved concatenated codes. In any case, it is satisfying to
have rigorously proved coding theorems for even a restricted class of turbo-like codes.

Here is an outline of the paper. In Section 2 we quickly review the classical union

bound on maximum-likelihood word error probability for block codes on the AWGN

" Dariush Divsalar’s work, and a portion of Robert McEliece’s work, was performed
at JPL under contract with NASA. The remainder of McEliece's work, and Hui Jin's

work, was performed at Caltech and supported by NSF grant no. NOR-9505975,

AFOSR grant no. 5F49620-97—1—0313, and grant from Qualcomm.
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channel, which is seen to depend on the code’s weight enumerator. In Section 3 we

define the class of “turbo-like” codes, and give a formula for the average input-output

weight enumerator for such a code. In Section 4 we state a conjecture (the interleaver

gain exponent conjecture) about the ML decoder performance of turbo-like codes. In
Section 5, we define a special class of turbo-like codes. the repeat-and-accumulate codes,

and prove the ICE conjecture for them. Finally, in Section 6 we present performance

curves for some RA codes, using an iterative, turbo-like, decoding algorithm. This

performance is seen to be remarkably good, despite the simplicity of the codes and the

suboptimality of the decoding algorithm.

2. Union Bounds on the Performance of Block Codes.

In this section we will review the classical union bound on the maximum-likelihood

word error probability for block codes.

Consider a binary linear (12,19) block code C with code rate r = k/n. The (output)
weight enumerator (WE) for C is the sequence of numbers A0, . . . _ A", where A). de-

notes the number of codewords in C with (output) weight h. The input-output weight

enumemtor (IOWE) for C is the array of numbers Aw)“ w = 0,1,...,k, h = 0,1,...,n:
Aw), denotes the number of codewords in C with input weight w and output weight h.

The union bound on the word error probability Pw of the code C over a memoryless

binary-input channel, using maximum likelihood decoding, has the well-known form71

(2-1) PW 3 2A,,»h=l
n k

(2.2) = Z (Z A“) z“.h=l 211:]

In (2.1) and (2.2), the function 2:h represents an upper bound on the pairwise error
probability for two codewords separated by Hamming (output) distance h. For AWGN

channels. 2 = (mi/""0 where Eb/No is the signal-to-noise ratio per bit.

3. The Class of “Turbo-Like” Codes.

In this section, we consider a general class of concatenated coding systems of the type

depicted in Figure 1, with q encoders (circles) and q — l interleavers (boxes). The
ith code C, is an (n,,N,) linear block code, and the ith encoder is preceded by an

interleaver (permuter) P, of size N,, except C; which is not preceded by an interleaver,

but rather is connected to the input. The overall structure must have no loops, i.e.. it

must be a graph-theoretic tree. We call a code of this type a “turbo-like" code.

Define sq = {1, 2, . . . ,q} and subsets of 5,7 by s; = {i E 5,, : C, connected to input},
so = {i E 3., : C, connected to output }, and its complement 50. The overall system

depicted in Figure 1 is then an encoder for an (11,1'V) block code with n = 2,90 71,-.

If we know the IOWE Agim‘s for the constituent codes C,, we can calculate
the average IOWE Aw), for the overall system (averaged over the set of all pessible

interleavers), using the uniform interleauer technique (A uniform interleaver is
defined as a probabilistic device that maps a given input word of weight in into all

distinct permutations of it with equal probability p = l/ (1').) The result is

Q A“)

(3.1) Aw.h= Z Z Affilhin (‘33:;" "5'0 h .l' 3 i=2
fir..-» ‘ E o
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In (3.1) we have w; = w ifi e s]. and w.- = h,- if C.- is preceeded by 01- (see Figure 2.).

We do not give a proof of formula (3.1), but it is intuitively plausible if we note that

the term Aszihl/ is the probability that a random input word to C; of weight w.-
will produce an output word of weight hi.

For example, for the (112 +713 +114, N) encoder of Figure 1 the formula (3.1) becomes

 (2) (3) (4)

4 __ 2 AU) Al”?th Awafis Aim-hi
‘ "’v" _ '51-,” N3) N3 Nih‘.h3.h3.h4 w; 1113) (WA)(Ago-ha-t-h‘nh)

(2) (3) (‘0

2 AU) Aunhz Aftth Abnhn
N) (m) ("0'A,.hg.n3.h4 :41 hi hi

(h2+ha+h‘uh)

   

 

output
 

Figure 1. A “turbo-like" code with

S] = {1.2}, so = {2,3,4},30 =

 
Figure 2. C; (an (m, N‘) encoder) is connected to Cj

(an (111, NJ) encoder) by an interleaver of size N]. We
hi.have the “boundary conditions” NJ = n. and w, 

4. The Interleaving Gain Exponent Conjecture.

In this section we will consider systems of the form depicted in Figure 1, in which
the individual encoders are truncated convolutional encoders, and study the behavior

of the average ML decoder error probability as the input block length N approaches
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infinity. If Ax“ denotes the [OWE when the input block has length N, we introduce
the following notation for the union bound (2.2) for systems of this type:

1: N

(4.1) PUB‘i—i’z ( AL.) 2".111:]h=l

Next we define, for each fixed w 2 l and h 2 l.

(4.2) (1(u1. h) = lim sup logN A3,.”N—cc

It follows from this definition that if 111 and h are fixed.

Afihz" = 0(N"(w~">+*) as N —; 00,

for any 6 > 0. Thus if we define

(4.3) i3," = o(w. h).

it follows that for all m and h,

Ag'hzh = 0(Na”+‘) as N —a 30‘

for any 6 > 0. The parameter 6M, which we shall call the interleaving gain exponent

(ICE), was first introduced in and [3] for parallel concatenation and later in for
serial concatenation. Extensive numerical simulations, and theoretical considerations

that are not fully rigorous lead to the following conjecture about the behavior of the

union bound for systems of the type shown in Figure l.

The IGE Conjecture. There exists a positive number 70, which depends on the (1

component convolutional codes and the tree structure of the overall system, but not

on N, such that for any fixed En/No > "/o.as the block length N becomes large.

(4.4) 193,8 = 0(Ni’M)

Eq. (4.4) implies that if [3M < 0, then for a given Eb/No > 70 the word error prob-

ability of the concatenated code decreases to zero as the input block size is increased.

This is summarized by saying that there is word error probability interleaving gain.1

In [7], we discuss the calculation of 01(w. h) and {31" for a concatenated system of

the type depicted in Figure 1, using analytical tools introduced in and For
example, for the parallel concatenation of q codes, with q - l interleavers, we have

3M S ‘Q + 21

with equality if and only if each of the component codes is recursive. For a “classical”

turbo code with q = 2, we have HM = 0, so there is no word error probability inter-
leaving gain. This suggests that the word error probability for classic turbo codes will

not improve with input block size. which is in agreement with simulations.

1 There is a similar conjecture for the bit error probability which we do not discuss in
this paper. Suffice it to say that the interleaving gain exponent for bit error probability
is HM -1.
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As another example. consider the serial concatenation of two convolutional codes.
if the inner code is recursive then.

19 1

if,” S - +1,
rm, is the minimum distance of the out-er code. Therefore, for serial concate-

nated codes. if d‘} 2 3 there is interleaving gain for word error probability. (If the inner
code is nonrecursive :33; Z 0 and there is no interleaving gain.)

where d"

5. A Class of Simple Turbo—Like Codes.

In this section we will introduce a class of turbo-like codes which are simple enough
so that we can prOve the ICE conjecture. We call these codes repeat and accumulate

(RA) codes. The general idea is shewn in Figure 3. An information block of length
N is repeated q times, scrambled by an interleaver of size qN, and then encoded by
a rate 1 accumulator. The accumulator can be viewed as a truncated rate-1 recursive

convolutional encoder with transfer function l/(l + D). but we prefer to think of it as

a block code whose input block [1],. . . .r,.] and output block [311. . . . .y,.] are related
by the formula

lli=I1

3/2 =11+I2

y3=11+172+173

 

  
 

 
 

 

  

LENGTH N rate llq

[WEIGHT] [w] repetition [qw]

qN x qN
permutation

matrix

Figure 3. Encoder for a (qN. N) repeat and accumulate

code. The numbers above the input-output lines

indicate the length of the corresponding block, and

those below the lines indicate the weight of the block.

To apply the union bound from Section 2 to the class of RA codes. we need the
input-output weight. cnumcrators for both the. (gran) repetition code, and the (71,71)

accumulator code. The. outer repetition code is trivial: if the input block has length n,
we have

. (a) _ 0 ithéqw‘4in — { (") h = ([11).u!
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The inner accumulator code is leSS trivial, but it is possible to show that (again assuming
the input block has length n):

(53) A53. = (hulk—i 1— 1)‘
It follows then from the general formula (3.1), that for the (qN, N) RA code represented
by Figure 3. the ensemble IOWE is

QN AW) AU)

= Z w.h.qx~ hhh
hl=0 (qru)

N N-h h—l

(w) (LEW/2‘!) ([qw/ZI—l)

(W) 'qw

From (5.4) it is easy to compute the parameters a(w,h) and am in (4.2) and (4.3).
The result is

(5.4)

(5.5) a(w,h) = — 2

VIEW-l,
 

(5.6) [in = - [
It follows from (5.6) that an RA code can have word error probability interleaving gain
only if q 2 3.

we are now prepared to use the union bound to prove the ICE conjecture for RA
codes. In order to simplify the exposition as much as possible, we will assume for the

rest of this section that q = 4, the extension to arbitrary q 2 3 being straightforward

but rather lengthy. For q = 4, (5.6) becomes 6M = —1. so the ICE conjecture is

P39 = 0(N“) for Eb/No > '70 in this instance.
The union bound (2.2) for the ensemble of q = 4 RA codes is. because of (5.4).

4N h/2 (N)(4N-h)(h—l
(5.7) pa}? = Z Z w 2::N) 2111—1 zh‘h=2 111:] My

Denote the (u:.h)t,h term in the sum (5.7) by Tutu), h):

(z) (41:: (22:,N
(2.”)

Using standard techniques (e.g. [8, Appendix A]), it is possible to show that for all
(Iv-h):

Twang/amt» =

(5.8) TN(w'h) S DQMF(I-ul+l082 11‘

where D = 4/fi is a constant. a; = 10/4N, y = h/4N.

y .
F(x.y) =
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and H2(J.‘) = —:r log2(1t) - (l - z)log2(1 — 1:) is the. binary entropy function. The
maximum of the function F(I,y) in the range 0 5 2x 5 y S l — 2:: occurs at (1.3;) =

(0100,0371) and is 0.562281, so that if log? 2 < «0.562281, the exponent in (5.8) will
be negative.

Let us therefore assume that log2 z < -0.562'281, which is equivalent to Eb/No =
—(1/r)lnz = —4lnz 2 4 - ln2 ~ 0.562231 = 1.559 = [.928 dB. If E is defined to be

= — log; 2 + 0.562281, it follows from (5.8) for all to and h,

(5.9) T‘v(w, h) 5 02-”.

What (5.9) tells us is that if Eb/No > 1.928 dB, most of the terms in the. union bound

(5.7) will tend to zero rapidly. as N —o 00. The next step in the proof is to break the

sum in (5.7) into two parts, corresponding to those terms for which (5.9) is helpful.
and chase for which it. is not. To this end. define

def 3

hN = E log2 N.

and write
4N h/2

Pk? = Z 2 mm. h)h:2w=i

hN h/2 4N h/2

= Z Z TN(w,h) + Z Z TN(w,h)
h=2w=l h=hiv+lw=1

= s. + 52.

It's easy to verify that when N is large enough. .4wH'h/Awlh < 1 for h S hN and

In S h/‘2 5 hie/2. which shows Aw). is a decreasing function of w for large N. Thus
the sum 31 can be overboundcd as follows (we omit, some details):

h” h/2

s, = Z Z T~(w.h)h=2 u-=1

hN h/z’15:

= ZTy-(Lh) + Z Z TN(w-h)hz’l [1:2 “3:2

’15: h/2

= 0w“) + Z 2 new. h)h=2 w:2

hN h/z

s (xiv-U + Z 2 Alma"h=2 [11:2

hN M2

= 0(N“) + Z Z 0(h3/N2)zhh=2w=2

= 0m”) + ()(hfv/Nz)

= 0(N“).
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For the sum 32. we bound each term T~(m, h) by (5.9):

4.\-' M2

52: Z szvtuuh)
h=hx +1 u1=l

M24 N

sxzmw
liyJ-l 111.21

4N

= 0/2 X ’12-”
h~+1

‘2’ Eh-VUIN +1)

(.-V "3 log: N)

:V_2).

m

3DH

II o
A

We have therefore shown that for the ensemble of q = 4 RA codes. if Eb/No >
1.928 dB.

(5.10) P5? = 51+ 5... = 0(N‘ 1) + 0(N'l) = 0(;v-‘),

which as we saw above. is the [GE conjecture in this case.

Although the union bound gives a proof of the ICE conjecture for RA codes. the
resulting value of “m is by no means the best possible. Indeed. if we use the recent

Viterbi-Viterbi improved union bound to bound the sum 52. we can lower the value
of 7., considerably, e.g. for q = 4 from 1.928 dB to 0.313 dB. In Figure 4 and Table 1 we

display our numerical results on RA codes. There we compare the “cutoff threshold"
70 for RA codes with q in the range 3 s q S 8 using both the classical union bound

and the ViterbivViterbi improved union bound to the cutoff threshold for the ensemble

of all codes (i.e.. "random codes") of a fixed rate. We believe that these values of

7., can be reduced still further. for example by using the bound of instead of the
Viterbi~Viterbi bound.

(1 3 4 5 (5 7 8

RA Codes (Union Bound) 2.200 1.928 1.798 1.721 1.670 1.631

Random Cr)ch (Union Bound} 2.031 1.853 1.775 1.694 1.651 1.620

RA Codes (Viterbi Bound)

Random Codes (Viterbi Bound)

Binary Shannon Limit

1.112 0.313 —0.125 ~04“)? -—O.59'.-? —O.731

0.214 —O.‘22-1 —O.486 —0.662 —0.789 —().885

—0.-'195 -0.794 —0.963 —1.071 —1.150 -1.210

Table 1. Numerical data gleaned from Figure 4.

6. Performance of RA Codes with Iterative Decoding.

The results of this paper show that the performance of RA codes with maximum-

likelihood decoding is very good. However, the complexity of ML decoding of RA
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0.4 0.5 0.6

Code Rate R

Figure 4. Comparing the RA code "cutoff threshold" to
the cutoff rate of random codes using both the classical

union bound and the. Viterbi-Viterbi improved union bound.

codes. like that of all turbo-like. codes. is prohibitively large. But an important feature

of turbo-like codes is the availability of a simple iterative, message passing decoding

algorithm that approximates ML decoding. we wrote a computer program to imple»

ment this “turbo-like" decoding for RA codes with q = 3 (rate. 1/3) and q = 4 (rate

1/4). and the results are shown in Figure 5. We see in Figure 4. for example, that
the empirical cutoil' threshold for RA codes for q = 3 appears to be less than 1 dB.
compared to the upper bound of 1.112 dB found in Table 1.
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