
Combinatorics, Probability and Computing (1999) 8, 473–482. Printed in the United Kingdom
c

� 1999 Cambridge University Press

Studying Balanced Allocations with

Di↵erential Equations†

MICHAEL MITZENMACHER§

Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

(e-mail: michaelm@pa.dec.com)

Received 4 November 1997; revised 25 June 1998

Using di↵erential equations, we examine the greedy algorithm studied by Azar, Broder,

Karlin and Upfal for distributed load balancing [1]. This approach yields accurate estimates

of the actual load distribution, provides insight into the exponential improvement greedy

o↵ers over simple random selection, and allows one to prove tight concentration theorems

about the loads in a straightforward manner.

1. Introduction

Suppose that n balls are placed into n bins, with each ball being placed into a bin chosen

independently and uniformly at random. Let the load of a bin be the number of balls

in that bin after all balls have been thrown. It is well known that, with high probability,

the maximum load upon completion will be approximately log n
log log n [8]. (We use with high

probability to mean with probability at least 1 � O(1/n), where n is the number of balls.

Also, log will always mean the natural logarithm, unless otherwise noted.)

Azar, Broder, Karlin and Upfal considered how much more evenly distributed the load

would be if each ball had two (or more) choices [1]. Suppose that the balls are placed

sequentially, and each ball is placed into the less full of two bins chosen independently and

uniformly at random with replacement (breaking ties arbitrarily). In this case, they showed

that the maximum load drops to log log n
log 2 +O(1) with high probability. If each ball instead

† A preliminary version of this work appeared in the Proceedings of the 37th Annual IEEE Symposium on the

Foundations of Computer Science, October 1996.
§ Much of this work was done at U.C. Berkeley, supported by a fellowship from the O�ce of Naval Research

and by NSF grant CCR-9505448.

8 , 31 2 94 5 3 5 5 8 , 3 5 5 D935, 3 5 94 C ,31 2 94 5 ,94,1 93 5,0 5 C 35 1 5 0 1 46
. 1454 6 8 , 31 2 94 5 3 5 - 9 8 - 51 1 35 -5 5 -C 5 05 D935 / D 1 , , C2:53 85 -1 2 94 5 - 5 5 6 C 5 1D19 12 5 1

Apple 10221

f

Find authenticated court documents without watermarks at docketalarm.com.

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003946/resource/name/S0963548399003946a.pdf
http:/www.cambridge.org/core
https://www.docketalarm.com/

474 M. Mitzenmacher

has d choices, then the maximum load will be log log n
log d +O(1) with high probability. Having

two choices hence yields a qualitatively di↵erent type of behaviour from the single choice

case, leading to an exponential improvement in the maximum load; having more than

two choices further improves the maximum load by only a constant factor. This result has

important implications for distributed load balancing, hashing, and PRAM simulation [1].

Following Azar, Broder, Karlin and Upfal, we refer to the algorithm in which each

ball has d random choices as greedy(d). In this paper, we develop an alternative method

of studying the performance of greedy(d) using di↵erential equations. The di↵erential

equations describe the limiting performance of greedy(d) as the number of balls and

bins tends to infinity. As we will demonstrate, the description of the limiting performance

proves highly accurate, even when n is relatively small. In particular, we note that from

our results one can determine the fraction of bins of any fixed load at the end of the

process for the limiting case as n goes to infinity. These limiting quantities provide accurate

estimates for the fraction of bins of each fixed load for su�ciently large systems. This

analysis therefore adds significantly more detail to the previous analysis of [1]. Moreover,

besides giving more insight into the actual performance of greedy, our methods provide

a great deal of intuition behind the behavioural di↵erence between one and two choices.

Our motivation in studying this problem is twofold. First, we wish to demonstrate and

highlight this methodology, and encourage its use for studying random processes. While

this methodology is by no means new, its uses have been surprisingly limited. The technical

results justifying the relationship between families of Markov processes and di↵erential

equations date back at least to Kurtz [13, 14]. Karp and Sipser provided an early use of

this technology to analyse an algorithm for finding maximum matchings in sparse random

graphs [11]. Other past applications in the analysis of algorithms include [9, 12], and more

recently many more have been found (see, for example, [2, 3, 15, 17, 21], to name a few).

Our second motivation is to demonstrate the power of using two choices. This idea dates

back at least as far as the work of Eager, Lazowska and Zahorjan [7], who examined a

dynamic load balancing model based on viewing processors as single server queues. In the

static setting, this idea was also studied by Hajek [9], who used the same approach we un-

dertake to determine the fraction of empty bins. The aforementioned exponential improve-

ment in behaviour was noted and proved first in a paper by Karp, Luby and Meyer auf der

Heide [10]. The work by Azar, Broder, Karlin and Upfal examined a simpler model that

clarified the argument and provided many new results. Related work by the author [16, 17],

as well as by others [20], examines the power of two choices in dynamic settings. Continued

work in the area includes recent work by Stemann [19] and Czumaj and Stemann [6].

In the rest of the paper, we explain the derivation of the di↵erential equations that

describe the greedy strategy of [1] and compare the results from the di↵erential equations

with simulations. We also demonstrate how the equations give more insight into the

behaviour of greedy and how the equations relate to the work in [1].

8 , 31 2 94 5 3 5 5 8 , 3 5 5 D935, 3 5 94 C ,31 2 94 5 ,94,1 93 5,0 5 C 35 1 5 0 1 46
. 1454 6 8 , 31 2 94 5 3 5 - 9 8 - 51 1 35 -5 5 -C 5 05 D935 / D 1 , , C2:53 85 -1 2 94 5 - 5 5 6 C 5 1D19 12 5 1

2

f

Find authenticated court documents without watermarks at docketalarm.com.

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003946/resource/name/S0963548399003946a.pdf
http:/www.cambridge.org/core
https://www.docketalarm.com/

Studying Balanced Allocations with Di↵erential Equations 475

2. The di↵erential equations

In this section, we demonstrate how to establish a family of di↵erential equations that

can be used to model the behaviour of the greedy strategy of [1]. We begin the process

with m balls and n bins. We shall require for our analysis that m = cn for some constant

c. Balls arrive sequentially, and, upon arrival, each ball chooses d bins independently and

uniformly at random (with replacement); the ball is then placed in the least loaded of

these bins (with ties broken arbitrarily).

We first ask how many bins remain empty after the protocol greedy(d) terminates.

This question has a natural interpretation in the task-processor model: how many of

our processors are not utilized? The question can also be seen as a matching problem

on random bipartite graphs: given a bipartite graph with n vertices on each side such

that each vertex on the left has d edges to vertices chosen independently and uniformly

at random on the right, what is the expected size of the greedy matching obtained by

sequentially matching vertices on the left to a random unmatched neighbour? Our attack,

again, is to consider this system as n ! 1. This question has been previously solved

by Hajek using entirely similar techniques [9]. We shall briefly repeat his argument with

some additional insights. Once we show how to answer the question of the number of

empty bins, we shall extend it to the more general load balancing problem.

2.1. The empty bins problem

We set up the problem of the number of empty bins by developing a Markov chain with

a simple state that describes the balls and bins process. We first establish a concept of

time. Let Y (T) be the number of non-empty bins after T balls have been thrown. Then

{Y (i)}, i = 0 . . . m, is clearly a Markov chain. Moreover,

E[Y (T + 1) � Y (T)] = 1 �

✓
Y (T)

n

◆d

, (2.1)

since the probability that a ball finds all non-empty bins among its d choices is (Y (T)/n)d.

The notation becomes somewhat more convenient if we scale by a factor of n. We let t

be the time at which exactly nt balls have been thrown, and we let y(t) be the fraction of

non-empty bins. Then equation (2.1) becomes

E[y(t + 1/n) � y(t)]

1/n
= 1 � (y(t))d . (2.2)

We claim the random process described by equation (2.2) is well approximated by the

trajectory of the di↵erential equation

dy

dt
= 1 � yd, (2.3)

where this equation has been obtained from equation (2.2) by replacing the right-hand

side with the appropriate limiting value as n tends to infinity, dy/dt. That the random

8 , 31 2 94 5 3 5 5 8 , 3 5 5 D935, 3 5 94 C ,31 2 94 5 ,94,1 93 5,0 5 C 35 1 5 0 1 46
. 1454 6 8 , 31 2 94 5 3 5 - 9 8 - 51 1 35 -5 5 -C 5 05 D935 / D 1 , , C2:53 85 -1 2 94 5 - 5 5 6 C 5 1D19 12 5 1

3

f

Find authenticated court documents without watermarks at docketalarm.com.

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003946/resource/name/S0963548399003946a.pdf
http:/www.cambridge.org/core
https://www.docketalarm.com/

476 M. Mitzenmacher

process given by the Markov chain closely follows the trajectory given by the di↵erential

equation follows easily from known techniques, such as, for example, Kurtz’s theorem, or

the similar work on random graphs by Wormald [21]. (As previously mentioned, the balls

and bins process has a natural interpretation in terms of random bipartite graphs.)

To clarify this connection, here we state a form of Kurtz’s theorem, as given in [18,

Theorem 5.3]. We provide the necessary notation, and then relate the notation back to the

underlying balls and bins process. Suppose we are given a finite set of vectors {

~e1, . . . ,~ek}

in R

d. We consider an initial process ~x(t) with generator

Lf(~x) =
kX

i=1

�i(~x)(f(~x +~ei) � f(~x))

and a scaled process ~zn(t) with generator

Lnf(~x) =
kX

i=1

n�i(~x)

✓
f

✓
~x +

~ei

n

◆
� f(~x)

◆
.

The limiting operator L
1

satisfies

L
1

f(~x) =
kX

i=1

n�i(~x)hrf(~x),~eii,

and corresponds to the deterministic solution ~z
1

of the equation

d

dt
~z

1

(t) =
kX

i=1

�i(~z1

(t))~ei. (2.4)

We relate the above notation to the problem of keeping track of the fraction of non-

empty bins. For convenience, think of the times balls enter the system as being determined

by a Poisson arrival process at a rate of one per unit time. (This does not a↵ect the result;

it merely simplifies the discussion. See, for example, [13].) In the scaled process with n

balls and n bins, n balls arrive per unit time. The process is one-dimensional, and hence

~e1 = (1). The rate function �1 satisfies �1(~x) = 1 � xd1: this is just the probability that an

incoming ball lands in an empty bin. The limiting process is then given by the di↵erential

equation (2.4), which in this case is equivalent to equation (2.3); note that for convenience

we have dropped the vector notation and simply used the variable y.

Kurtz’s theorem states that the scaled processes approach the limiting process, with

error bounds similar to Cherno↵-like bounds.

Theorem 2.1 (Kurtz’s theorem [18], Theorem 5.3). Let �i(~x) : R

d
! R

+ be uniformly

bounded and Lipschitz continuous, and let ~z
1

be the unique solution of (2.4) with ~z
1

(0) =

~x(0). For each finite T there exist a positive constant C1 and a function C2 with

lim
✏#0

C2(✏)

✏2
2 (0,1) and lim

✏"1

C2(✏)

✏
= 1

8 , 31 2 94 5 3 5 5 8 , 3 5 5 D935, 3 5 94 C ,31 2 94 5 ,94,1 93 5,0 5 C 35 1 5 0 1 46
. 1454 6 8 , 31 2 94 5 3 5 - 9 8 - 51 1 35 -5 5 -C 5 05 D935 / D 1 , , C2:53 85 -1 2 94 5 - 5 5 6 C 5 1D19 12 5 1

4

f

Find authenticated court documents without watermarks at docketalarm.com.

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003946/resource/name/S0963548399003946a.pdf
http:/www.cambridge.org/core
https://www.docketalarm.com/

Studying Balanced Allocations with Di↵erential Equations 477

such that, for all n > 1 and ✏ > 0,

Pr

✓
sup

06t6T

|

~zn(t) �

~z
1

(t)| > ✏

◆
6 C1e

�nC2(✏).

Moreover, C1 and C2 can be chosen independently of ~x.

The connection between the balls and bins process and the di↵erential equation (2.3)

yields the following theorem.

Theorem 2.2. Suppose cn balls are thrown into n bins according to the greedy(d) protocol

for some constant c. Let Ycn be the number of non-empty bins when the process terminates.

Then limn!1

E[Ycn

n
] = yc, where yc < 1 satisfies

c =
1X

i=0

yid+1
c

(id + 1)
.

Proof. The preconditions for Kurtz’s theorem (the above or [14, Chapter 8]) are easily

checked for the one-dimensional system described by (2.3), so by Kurtz’s theorem we have

that this di↵erential equation is the correct limiting process.† Instead of solving (2.3) for

y in terms of t, we solve for t in terms of y: dt
dy

= 1
1�yd

=
P

1

i=0 y
id. We integrate up to

some time t, yielding

t =
1X

i=0

y(t)id+1

(id + 1)
. (2.5)

From equation (2.5), given d we can solve for y(t) for any value of t using, for example,

binary search. One can also attempt to find an equation for y in terms of d and t; standard

integral tables give such equations when d = 2, 3 and 4, for example. When t = c, all of

the balls have been thrown, and the process terminates. Plugging t = c into equation (2.5)

yields the theorem, with yc = y(c).

We may actually use Kurtz’s theorem to obtain a concentration result.

Theorem 2.3. In the notation of Theorem 2.2, |

Ycn

n
� yc| is, with high probability,

O

 r
log n

n

!
,

where the constant depends on c.

† Again, it appears that there might be a problem here since we consider events occurring at discrete time-steps,

instead of according to random times from a Poisson process. One can always adopt the convention that each

discrete time-step corresponds to an amount of time given by an exponentially distributed random variable.

In the limiting case, this distinction disappears.

8 , 31 2 94 5 3 5 5 8 , 3 5 5 D935, 3 5 94 C ,31 2 94 5 ,94,1 93 5,0 5 C 35 1 5 0 1 46
. 1454 6 8 , 31 2 94 5 3 5 - 9 8 - 51 1 35 -5 5 -C 5 05 D935 / D 1 , , C2:53 85 -1 2 94 5 - 5 5 6 C 5 1D19 12 5 1

5

f

Find authenticated court documents without watermarks at docketalarm.com.

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003946/resource/name/S0963548399003946a.pdf
http:/www.cambridge.org/core
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

