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Abstract

We design sequences of low-densily parily check codes thal provably perform at rales ex-
tremely close to the Shannen capacity. The codes are built from highly irregnlar bipartite graphs
with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based
on [1]. Additioually, based on the assumnplion that the wuderlying communication chaunel is
svmmetric, we prove that the probability densities at the message nodes of the graph satisfy
a certain symmelry, This enables us (o derive a succinet description of the densily evolution
tor the case of a belief propagation decoder. Furthermore, we prove a stability condition which
implies an upper bound on the fraction of errors that a belief propagation decader can correct
when applied to a code lnduced [rom a bipartite graph with a given degree distribution.

Our eodes are found by optimizing the degree structure of the underlving graphs. We develop
several strategies to perform this optimization. We also present some simulation results for fhe
codes found which show that the performance of the codes is very close to the asymptotic
theoretical bounds.

Inder Terms  Low densily parily check codes, beliel propagation, turbo codes, irregular
codes

1 Introduction

In this paper we present irrequfor low-density parity check codes (LDIPPCCs) which exhibit perfor-
mance exlremely close Lo the hest possible as delermined by the Shannon capacily [ormula. For
the additive white Gaussian noise channel {AWGXNC) the best code of rate one-half presented in
this paper has a threshold within (0.06dB from capacity, and simulation results show that our best
LDPCC of length 10% achieves a hit error probability of 107% less than 0.13dB away from capacity,
handily beating the hest (turbo) codes known so [ar.

LDPCCs possess several other distinet advantages over turbo-codes. First, the complexity of (heliel-
propagation) decoding is somewhat less than that of turbo-codes and, being fully parallelizable, can

potentially be performed at significantly greater speeds. Second, as indicated in a previous paper

(1], very low complexity decoders that closely approximate helief-propagation in performance may
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be (and have been) designed for these codes. Third, low-density parity check decoding is veriliable
in the sense that decoding to a correct codeword is a detectable event. One practical objection to
low-density parity-check codes has been that their encoding complexity is high. One way to get
around this problem is by slightly modifying the construction of codes from hipartite graphs to a
cascade of snch graphs, see [2, 3]. A dillerent solution [or practical purposes, which does not require

cascades, will be presented elsewhere [1].

Let us recall some basic notation. As is well known, low-density parity-check codes are well repre-
sented by bipartite graphs in which one set of nodes, the variable nodes, corresponds to elements
of the codeword and the other set of nodes, the check nodes, corresponds to the set of parity-check
constraints satislied by codewords of the code. Regular low-density parily-check codes are those [or
which all nodes of the same type have the same degree. Thus, a (3,6)-regular low-density parity-
check code has a graphical representation in which all variable nodes have degree 3 and all check

nodes have degree 6. T'he bipartite graph determining such a code is shown in lig. 1.

Figure 1: A (3,6)-regular code of length 10. There are 10 variable nodes and 5 check nodes. For
each check node ¢; the sum (over GF(2)) of all adjacent variable nodes is equal to zero.

For an irregular low-density parity-check code the degrees of each set of nodes are chosen accord-

ing to some distribution. Thus, an irregular low-density parity-check code might have a graphical
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representation in which hall the variable nodes have degree 5 and hall have degree 3, while hall
the constraint nodes have degree ¢ and half have degree 8. For a given length and a given de-
gree sequence (finite distribution) we define an ensemble of codes by choosing the edges. i.e., the
connections between variable and check nodes, randomly. Maore precisely, we enumerate the edges
eranating [rom Lhe variable nodes in some arbilrary order and proceed in the same way with the
edges emanating from the check nodes. Assume that the number of edges is £. Then a code (a par-
ticular instance of this ensemble) can be identified with a permutation on F letters. Note that all
elements in this ensemble are equiprobable. In practice the edges are not chosen entirely randomly

since cerlain potentially unlortunate events in the graph construction can be casily avoided.

In a recenl paper [1] we presented an asymplotic analysis of LDPCCs under message passing

decoding. Assume we have the following setup:

1. We are given an ordered lamily of binary-input discrete memoryless channels paramelerized
by a real parameter & such that il & < &9 then the channel with parameter &, is a physically
degraded version of the channel with parameter 8;. Further, each channel in this family fulfills

the channel symmetry condition
plyle =1) = p(—yle = =1) . (1)

2. A sequence of code ensembles C,(A. p) is specified. where n is the length of the code and
M) o= Zd" N1 (plx) = Zjil pirt1) s the variable (check) node degree sequence.

More precisely, A; (p;) is the [raction of edges ecmanating [rom variable (check) nodes of

jul dn plx)
Jo dw A=)

degree i. Note that the rate of the code is given in terms of A{z) and p(a) as 1 —
3. A message passing decoder is selected. By delinition, messages only contain eaxlvinsie inlor-
mation, i.e., the message emitted along an edge ¢ does not depend on the incoming message
along the same edge. lurther, the decoder fulfills the following symmetry conditions. I'lip-
ping the sign of all incoming messages at a variable node results in a flip of the sign of all
outgoing messages. The symmetry condition at a check node is slighlly more involved. Lot
¢ be an edge emanating from a check node ¢, Then flipping the sign of { incoming messages
arriving at node ¢, excluding the message along edge ¢, results in a change of the sign of the

autgoing message by (—1)°. In all these cases, only the sign is changed, but the reliability

remains unchanged.
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Under the above assumptions there exists a threshold 6* with the following properties: l'or any
¢ » 0 and & < & ihere exisis an n(c, é) such that almost every code! in C(A, p), n = nl(c, ),
has probability of error smaller than € assuming that transmission takes place over a channel with
parameter ¢. Conversely, if the transmission takes place over a channel with parameter & > &%,

then almost any code in C,{A, p) has probability of error uniformly bounded away from zero.”

I'urther, for the important case of helief propagation decoders a procedure was introduced that
cnables the ellicient computation ol é* to any desired degree ol accaracy. In [1] threshold values
and simulation results were given for a variety of noise models, but the class of low-density parity-
check codes considered was largely restricted to regulur codes, In the present paper we present
results indicating the remarkable performance that can be achieved by properly chosen irregular

codes.

The idea nnderlying this paper is quite straightlorward. Assume we are interested in transimission
over a particular memoryless channel using a particular message passing decoder. Since for every
given pair of degree sequences (A, p) we can determine the resulting threshold value 6%, it is natural
to search for those pairs which maximize this threshold.® ‘This was done, with great success, in
the case of erasure chanuels [5, 6, 7]. In the case of most other channels ol interest the sitnation is
much more complicated and new methods must be brought to hear on the optimization prohlem.
Fig. 2 compares the performance of the (3, 6)-regular LDPCC (which is the best regular such code)
with the performance of the best irregular LIPCC we found in our search and the performance of
the standard parallel turbo code introdnced by Berrou, Galvienx, and Thitimajshima [8]. All three
codes have rale one-hall and their perlormance under beliel propagalion decoding over the AWGNC
is shown for a code word length 10°. Also shown is the Shannon limit and the threshold value of
our hest LDPCC (o = 0.9718). I'rom this figure it is clear how much benefit can he derived from
optimizing the degree sequences. I'or n = 10% and a hit error probability of 1079, our best LDPCC
is only 0.13dDB away [rom capacity. This handily beals the perlormance ol turbo-codes. Even more
impressive, the threshold, which indicates the performance for infinite lengths, is a mere 0.06dB

away from capacity.

' More precisely, the fraction of codes for which the ahove statement is true converges exponentially {in ») fast
to 1.

*We conjecture that this is actually true for every code in Co (2, o).

Wao may also oplimive degree sequences under varions constraints. For example, the larger the degrees used 1he
larger the code size needs 1o be in order Lo approach the predicled asymptote. Therelore, it is highly desirable to
look for the best degree sequences with some a priori hound on the size of the degrees.
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Figure 2: Comparison of (3,6)-regular LDPCC, turbo code, and optimized irregular LDPCC. All
codes are of length 10° and of rate one-half. The bit error rate for the AWGNC is shown as a
function of £, /Ng (in dB), the standard deviation o, as well as the raw input bit error probability
Py

The empirical evidence presented in Fig. 2 together with the results presented in Section 3 beg the
question of whether LDPCCs can achieve capacity on a given binary-input memoryless channel. The
only result in this direction is that of [5] which gives an explicit sequence of degree distributions such
that, in the limit, the codes induced by these degree distributions achieve capacity on an erasure
channel. The following Theorem, due to Gallager, imposes, at least for the BSC, a necessary
condition in order for LDPCCs to achieve capacity: their maximum right degree d, must tend to
infinity.? Although this result bounds the performance of LDPCCs away from capacity, the gap is
extremely small and the gap converges to zero exponentially fast in d,. Hence, although of great

theoretical interest, the following theorem does not impose a significant practical limitation.

Theorem 1. [Gallager 61] Let C € C(A,p) be a LDPCC of rate . Let C be used over a BSC

with crossover probability ¢ and assume that each codeword is used with equal probability. If

*We conjecture that a similar statement (and proof) could be given for continuous channels.
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