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(‘HEN H ni.: .i'\ LOW-DEL.-\Y CELP CODER

speech coding standards now already exist for specific ap-

plications. To avoid proliferation of different 16 kb/s

standards and the potential difficulty of interworking be-
tween diiferent standards, "in June 1988 the CCITT de-

cided to investigate the possibility of establishing a single

16 kb/s speech coding standard for universal applica-
tions. The CCITT‘s intended applications include video-

phone, cordless telephone, digital satellite systems, Dig-
ital Circuit Multiplication Equipment (DCME), Public

Switched Telephone Network (PSTN), Integrated Service
Digital Network (ISDN), digital leased lines, voice store

and forward systems, voice messages for recorded an-

nouncements, iancl-digital mobile radio, packetized
speech, etc. [[2].

Because of the variety of applications this 16 kb/s

standard has to serve, the CCITT determined a stringent
set of performance requirements and objectives for the

candidate coding algorithms. Not every application would

need every requirement to be met. Yet, to be accepted by

the CCITT as a universal 16 kb/s standard, a candidate

algorithm must meet all of the requirements. The major

requirement was that the speech quality should be roughly

comparable to that of G.'i'21 while the one—way encoder!

decoder delay should not exceed 5 ms (the objective was

52 ms) [12]. In other words, the CCITT was looking for

a toll—quality low-delay speech coder at 16 kb/s.

The CCITT specifies the speech quality requirements

in terms of qdu, or the quantization distortion unit. By

definition, one encoding with a 64 lcb/s G.7ll PCM co-
dec introduces 1 qdu of distortion (CCITT Recommen-

dation (3.1 13). For asynchronous tandem connections, the

qdu of individual speech coders is Supposed to be addi-

tive. For example, N asynchronous tandeming stages of

G71 1 codees should result in N qdu. Another example is

that a single encoding ofa 32 kb/s G.72l ADPCM codec

is rated at 3.5 qdu, and therefore two ADPCM encodings
should be rated at ? qdu and four encodings at 14 qdu.
The CCITT performance requirements for the 16 kb/s
standard specify that, for a clear channel (i.e., no hit er-

rors), a candidate coder should produce 4 qdu or less for
a single encoding and 14 qdu or less for three asynchro-

nous tandeming stages. In effect, this says that a candidate

coder can be slightly worse than G321 ADPCM for a

single encoding, and three asynchronous encodings of the

candidate coder should match the speech quality of four

asynchronous encodings of G.?2l ADPCM. For noisy
channels, the CCITT required that, for random bit errors

at a bit error rate (BER) of 104 or 10-2, a candidate coder

should produce decoded speech quality not worse than that
of G.'r'2l ADPCM under the same conditions. In addi-

tion, the coder should pass network signaling tones such

as DTMF and CCITTSignaiing Systems No. 5, 6, and 7.

It was not so difficult to meet each one of these quality
requirements individually. However, in 1988. it was a

major challenge to create a 16 kb/s coder that would meet

all of these requirements simultaneously. Furthermore, the

addition of the 5 ms low-delay requirement made such an

attempt even more difficult.

R3l

Because of the low—delay requirement. none of the 16

kb/s coders mentioned above (CE-l_.P, MPLPC, AFC,
ATC, and SBC-ADPCM) could be used in their current

form. With all these well-established coders ruled out, the

only hope seemed to be backiirrii'rI-ridripriirc predictive

coders which derive their predictor coefiicients from pre-
viously quantized speech and thus do not need to buffer a

large frame of speech samples. (The G.'?2l ADPCM

coder belongs to this category.)
Prior to the CClTT‘s recent standardization effort at 16

kb/s, several researchers had previously reported their
work on low-deiay speech coding at 16 kb/s. Jayant and
Rarnamoorthy I13}, [14] used an adaptive posttilter to en-

hance l6 kb/s ADPCM speech and achieved a mean

opinion score (MOS) [15] of 3.5 at nearly zero coding

delay. Cox er in‘. [16] combined SBC and vector quanti-
zation (VQ) and achieved an MOS of roughly 3.5-3.3’ at

a coding delay of 15 ms. Berouti er at. {l?] reduced the

coding delay of an MPLPC coder to 2 ms by reducing the
frame size to 1 ms. However, the speech quality was
equivalent to 5.5—bit log PCM—a significant degradation.
Taniguchi er of. [18] developed an ADPCM coder with

rnultiquantizers where the best quantizer was selected once

every 2.5 ms. The coding delay of their real-time proto-

type codec was 8.3 ms. With the help of postfiltering, the

coder produced speech quality “nearly equivalent to a
7-bit p.~1aw PCM" [18]. but this was achieved with a non-

standard 6.4 kHz sampling rate and a resulting nonstan-

dard bandwidth of the speech signal. Gibson et al. [19],

[20] studied backward-adaptive predictive tree coders and

predictive treliis coders which should have low coding de-

lays. Unfortunately, they did not report the exact coding

delay or the subjective speech quality. Iyengar and Kabal

[21] also developed a backward-adaptive predictive tree

coder with a 1 ms coding delay and a level of speech qual-

ity equivalent to T-bit log PCM. Watts and Cuperman [22]

proposed a vector generalization of ADPCM with a delay

between 1 and 1.5 ms. They did not report the subjective

speech quality of the coder.
Since 1988, when the CCITT announced its intention

to standardize a 16 itbfs low—delay speech coder, there

has been a great deal of research activity in the area of

low-delay speech coding at 16 kb/s [23]—[38]. In re-
sponse to the CClTT’s standardization effort, we have

created a 16 kb/s coder called low-delay CELP, or LD-

CELP, which achieves high speech quality with a one-

way coding delay less than 2 ms [24], [29], [32], [33],
[35], [38].

The LD-CELP coder is a predictive coder that com-

bines: 1) high—order backward-adaptive linear prediction;

2) backward gain—adaptive vector quantization [39], [40]
for excitation; 3) the analysis-by-synthesis excitation

codebook search of CELP; and 4) adaptive postfiltering

[14], [41]. The low coding delay is achieved by using

backward-adaptive prediction to avoid the long speech

buffer required by forward—adaptive prediction, and by

using a small excitation vector size of oniy five sampies,

or 0.625 ms (assuming the standard 8 kHz sampling rate).

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


832 IEEE JOURN.-\L ON SELECTED ARE.-\S IN C().\'iML‘N|(?.-\'|‘IOi\".'§. VOL. ill. NO. 5. JUNE lull}

With the processing delay and transmission delay also in-

cluded, the total one-way coding delay can be less than

2 ms. This not only surpasses the CCITT delay require-

ment of 5 ms but actually meets" the objective of 2 ms.

This LD-CELP coder was submitted by AT&T to the

CCITT and has been the only candidate coder since 1989.

This coder has been implemented in real—time hardware

using the AT&T WEE” DSP32C floating—point digital sig-

nai processor, and the resulting hardware prototype
LD-CELP coder has been used in the ofhcial CCITT lab-

oratory tests.

In the standardization process, there were two phases

of laboratory testing. The first phase of testing was con-

ducted in late 1989 and early I990. while the second phase

was in early I991. The l_.D-CELP coder submitted for the

first phase of testing (called the Phase i coder from here
on) met all of the CCITT’s performance requirements ex-

cept fo1' the requirement of three asynchronous tandems.

Based on the Phase 1 test results, the Speech Quality

Experts Group (SQEG} of the CCITT indicated that the

LD-CELP coder could be standardized for point-to-point

applications but not for networking applications where

tandeming may occur. unless the code1' could be improved

to meet the tandeming performance requirement in the
Phase 2 test.

In late 1990 to early 1991, we improved the LD-CELP

coder‘s tanderning performance significantly and pro-
duced what we called the Phase 2 coder. The hardware

prototype Phase 2 coder was then tested in the second

phase of laboratory testing in 1991. From the Phase 2 test

results, the SQEG concluded that the 16 kb/s LD—CELP

coder “has at petformrmce eqnivrrieiit to or better than

G. 72!." and “meets (iii the speech qnriiity requirements

set by Sttidy Group XV and tested by Study Group XH "

[42]. Therefore. “the SQEG recommends’ that the

I6 kb/ 5 LD- CELF codec can be .5‘i(t.Jt(iat‘(iiZ€d as (I CC1TT
G Series Recommenriatian as regards to its speech quai-

ity” [42]. According to the current standardization sched-

ule, this 16 kb/s LD-CELP coder is expected to be stan-

dardized by the first half of 1992.

In this paper, we will describe the 16 kb/s LD-CELP
coding algorithm, its implementation, and its perfor-

mance. Section II introduces system concepts and pro-
vides an overview ofthe LD-CELP coder. Section III de-

scribes the LD-CELP coding algorithm. Section IV

discusses the implementation issues. Section V describes

the subjective and objective performance, and Section VI

gives some concluding remarks.

II. SYSTEM CONCEPTS AND Ovr-:RvtEw

In this section, we review the conventional CELP al-

gorithm [l] and then give an overview of the LD-CELP

algorithm and point out the differences between conven-

tional CELP and LD-CELP. Along the way. we also dis-

cuss the issue of coding delay.

A. Review 0fCon-uentioiiai CELP

A typical example of the conventional CELP speech

coder is shown in Fig. l. The CELP coder is based on the

“source—filter” speech production model [43], with the

short—term synthesis filter modeling the vocal tract and the

excitation VQ, together with the long-term synthesis fi1_

ter, modeling the glottal excitation. The CELP coder syn-

thesizes specch by passing a gain-scaled excitation se— '

quencc through long—term and short-term synthesis filters,
Both synthesis filters are all-pole filters containing either

a long-term or a short-term predictor in a feedback loop_

Basically, the CELP coder encodes speech frame—by-

frame, and within each frame it attempts to find the best

predictors, gain, and excitation such that a perceptually
weighted mean-squared error (MSE} between the input

speech and the synthesized speech is minimized.

The long-term predictor is often referred to as the pitch

predictor, because its main function is to exploit the pitch

periodicity in voiced speech. Typically, a one—tap pitch

predictor is used. in which case the predictor transfer
function is:

Pi(z) = fiz _"’ (1)

where p is the bulk delay or pitch period, and .6 is the

predictor tap. The short—term predictor is sometimes re-

ferred to as the LPC predictor, because it is also used in

the well-known LPC {linear predictive coding) vocoders

which operate at 2.4 kb/s or below. The LPC predictor

is typically a 10th-order predictor with a transfer function
of:

It}

‘Pita = a.-z (2)

where ti. through din are the predictor coefficients. The

excitation VQ codebook contains a table of codebook vec-

tors (or cotievectors) of equal length. The codevectors are

typicaily populated by Gaussian random nttmbers with

possible center clipping.

In the actual encoding process, the encoder first buffers

an input speech frame of about 20 ms or so, and then

performs linear predictive analysis [43] (or LPC niiniysis)

on the buffered speech. The resulting LPC parameters are

then quantized. The pitch predictor parameters, including

the pitch period and the predictor tap. are then determined
either in an open-loop fashion [1] or in a closed-loop fash-

ion [44]. The quantized LPC parameters and pitch pre-

dictor parameters are both sent as side infonnation to the

decoder. This scheme is called for'1vard—adciptive predic-
tion.

The input speech frame is further subdivided into sev-

eral equa1—length .sttbft'ames, or vectors, typically of size

4 to 8 ms. Then, for each vector. the encoder passes each
candidate codevector in the excitation VQ codebook

through the gain scaling unit and the two synthesis filters.

and then compares the corresponding filtered output vec-

tor with the input speech vector and computes the asso-

ciated perceptually weighted MSE distortion. The en-

coder repeats this process for all candidate excitation
codevectors and then identifies the codevector that mini-

mizes the perceptually weighted MSE distortion. This

f 
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