
1 
 

UNITED STATES PATENT AND TRADEMARK OFFICE 

_______________ 

BEFORE THE PATENT TRIAL AND APPEAL BOARD 

_____________ 

DELL INC. AND EMC CORPORATION Petitioner 

v.

REALTIME DATA LLC d/b/a IXO Patent Owner 

____________ 

U.S. Patent Nos. 9,054,728 and 7,161,506 
___________ 

                                                                                                                                      

DECLARATION OF SCOTT BENNETT, Ph.D. 

27 October 2016 

 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 1 of 152



2 
 

I, Scott Bennett, Ph.D., resident of Urbana, Illinois, hereby declare as 

follows: 

Introduction and Qualifications 

1. I have been retained by Winston & Strawn LLP to provide my 

opinions concerning the public availability of certain documents at issue in inter 

partes review proceedings for U.S. Patent Nos. 9,054,728 and 7,161,506. 

2. My curriculum vitae is appended to this document as Appendix A. 

From 1956 to 1960, I attended Oberlin College, where I received an A.B. in 

English.  I then attended Indiana University, where I received an M.A. in 1966 and 

a Ph.D. in 1967, both in English. In 1976, I received a M.S. in Library Science 

from the University of Illinois.  I also served at the University of Illinois at 

Urbana Champaign in two capacities.  First, from 1967 to 1974, I was an Assistant 

Professor of English; then from 1974 to 1981, I was an Instructor, Assistant 

Professor, and Associate Professor of Library Science. 

3. From 1981 to 1989, I served as the Assistant University Librarian for 

Collection Management, Northwestern University.  From 1989 to 1994, I served as 

the Director of The Milton S. Eisenhower Library at The Johns Hopkins 

University.  From 1994 to 2001, I served as the University Librarian at Yale 

University.  In 2001, I retired from Yale University.  

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 2 of 152



3 
 

4. Since then, I have served in multiple capacities for various 

organizations, including as a consultant on library space planning from 2004 to the 

present, as a Senior Advisor for the library program of the Council of Independent 

Colleges from 2001 2009, as a member of the Wartburg College Library 

Advisory Board from 2004 to the present, and as a Visiting Professor at the 

Graduate School of Library and Information Science, University of Illinois at 

Urbana Champaign, in the Fall of 2003.  I was a founding partner of Prior Art 

Documentation Services, LLC, in 2015. 

5. Over the course of my work as a librarian, professor, researcher, and 

author of numerous publications, I have had extensive experience with cataloging 

and online library management systems built around Machine-Readable 

Cataloging (MARC) standards.  As a consultant, I have substantial experience in 

authenticating documents and establishing the date when they were available to 

persons exercising reasonable diligence.  

6. In the course of more than fifty years of academic life, I have myself 

been an active researcher.  I have collaborated with many individual researchers 

and, as a librarian, worked in the services of thousands of researchers at four 

prominent research universities.  Members of my family are university researchers.  

Over the years, I have read some of the voluminous professional literature on the 

information seeking behaviors of academic researchers. And as an educator, I 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 3 of 152



4 
 

have a broad knowledge of the ways in which students in a variety of disciplines 

learn to master the bibliographic resources used in their disciplines.  In all of these 

ways, I have a general knowledge of the how researchers work.   

7. My work in this matter is being billed at my standard consulting rate 

of $88 per hour.  My compensation is not in any way contingent upon the outcome 

of this or any other inter partes review.  I have no financial or personal interest in 

the outcome of this proceeding or any related litigation.  

Scope of this Declaration 

8. I am not a lawyer and I am not rendering an opinion on the legal 

question of whether any particular document is, or is not, a “printed publication” 

under the law.  

9. I am, however, rendering my expert opinion on when and how each of 

the documents addressed herein was disseminated or otherwise made available to 

the extent that persons interested and ordinarily skilled in the subject matter or art, 

exercising reasonable diligence, could have located the documents before 

December 11, 1998.

10. I reserve the right to supplement my opinion in the future to respond 

to any arguments that the Patent Owner raises and to take into account new 

information as it becomes available. 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 4 of 152



5 
 

Materials Considered in Forming My Opinion 

11. In forming the opinions expressed in this declaration, I have reviewed 

the document and attachments referenced below.  Each item is a type of material 

that experts in my field would reasonably rely upon to in forming their opinions.

These materials were created in the ordinary course of business and were intended 

by the organizations creating them to be used by and relied on by members of the 

public. 

Document 1.  William H. Hsu and Amy E. Zwarico, “Automatic Synthesis 
of Compression Techniques for Heterogeneous Files,” Software: Practice 
& Experience, 25,10 (October 1995): 1097-1116.

12. The following Attachments are true and accurate representations of 

library material and online documents and records, as they are identified below. 

All attachments were secured on 17-21 October 2016. All URLs were available 

on 19 October 2016.  

Attachment 1a: Statewide Illinois Library Catalog record for Software: Practice 

& Experience  

Attachment 1b:  Depaul University Library catalog record for Software: 

Practice & Experience  

Attachment 1c: Copy of Hsu from the Depaul University Library 

Attachment 1d: Wiley Online Library index record for Hsu 

Attachment 1e: Copy of Hsu from the Wiley Online Library 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 5 of 152



6 
 

Attachment 1f: Copy of Hsu from the University of Illinois at Urbana-

Champaign Library 

Attachment 1g: Copy of Hsu from the University of Minnesota Library 

Attachment 1h: Copy of Hsu from the Illinois Institute of Technology Library 

13.  Helen Sullivan is a Managing Partner in Prior Art Documentation 

Services LLC (see http://www.priorartdocumentation.com/hellen-sullivan/ ).  Her 

primarily responsibility in our partnership is to secure the bibliographic 

documentation used in attachments to our declarations.   Ms. Sullivan secured all 

of the attachments listed above, except Attachment 1h, which I secured. 

Background Information 

14. Persons of ordinary skill in the art. I am told by counsel that the 

subject matter of this proceeding relates to systems and methods of data 

compression.  

15. I am told by counsel that persons of ordinary skill in this subject 

matter or art would have had an undergraduate degree in computer science, 

computer engineering, electrical and computer engineering, electrical engineering, 

or electronics and two years of experience working with data compression or a 

graduate degree focusing in the field of data compression.  Individuals with 

additional education or additional industrial experience could still be of ordinary 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 6 of 152



7 
 

skill in the art if that additional aspect compensates for a deficit in one of the other 

aspects of the requirements stated above.   

16. It is my opinion that such a person would have been engaged in 

advanced research starting at least in graduate school, learning though study and 

practice in the field and possibly through formal instruction the bibliographic 

resources relevant to his or her research. In the 1980s and 1990s such a person 

would have had access to a vast array of long-established print resources in 

electrical/computer engineering and computer science as well as to a rich and fast 

changing set of online resources providing indexing information, abstracts, and full 

text services for electrical/computer engineering and computer science. 

17. Library catalog records. WorldCat is the world’s largest public 

online catalog, maintained by the Online Computer Library Center, Inc., or OCLC, 

and built with the records created by the thousands of libraries that are members of 

OCLC.  WorldCat records appear in many different catalogs, including the 

Statewide Illinois Library Catalog.   

18. Periodical publications.  A library typically creates a catalog record 

for a periodical publication when the library receives its first issue.  When the 

institution receives subsequent issues/volumes of the periodical, the issues/volumes 

are checked in (often using a date stamp), added to the institution’s holdings 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 7 of 152



8 
 

records, and made available very soon thereafter—normally within a few days of 

receipt or (at most) within a few weeks of receipt. 

19. The initial periodicals record will sometimes not reflect all of the 

subsequent changes in publication details (including minor variations in title, etc.). 

20. Indexing. An ordinarily skilled researcher may discover material 

relevant to his or her topic in a variety of ways.  One common means of discovery 

is to search for relevant information in an index of periodical and other 

publications.  Having found relevant material, the researcher will then normally 

obtain it online, look for it in libraries, or purchase it from the publisher, a

bookstore, or other provider.

21. Indexing services commonly provide bibliographic information, 

abstracts, and full-text copies of the indexed publications, along with a list of the 

documents cited in the indexed publication.  Prominent indexing services include 

the Wiley Online Library, a multidisciplinary collection of online resources in the 

life, health and physical sciences, and in the social sciences and humanities (see 

http://olabout.wiley.com/WileyCDA/Section/id-390001.html ).   

Consideration of individual documents 

Document 1.  William H. Hsu and Amy E. Zwarico, “Automatic Synthesis 
of Compression Techniques for Heterogeneous Files,” Software: Practice 
& Experience, 25,10 (October 1995): 1097-1116.

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 8 of 152



9 
 

Authentication 

22.  Document 1 is a paper written by William Hsu and Amy Zwarico and 

published in the October 1995 issue of Software: Practice & Experience.  This 

paper is herein referred to Hsu. 

23. Attachment 1a is a true and accurate copy of the Statewide Illinois 

Library Catalog record for Software: Practice & Experience.  This record shows 

that Software: Practice & Experience is held by 598 libraries world-wide.   An 

ordinarily skilled researcher would have no difficulty identifying and locating 

library copies of this periodical. 

24. The DePaul University Library is one library holding this periodical.  

Attachment 1b is a true and accurate copy of the DePaul University Library catalog 

record for Software: Practice & Experience, showing the DePaul University 

Library holdings for Software: Practice & Experience include volume 25, number 

10. 

25. Attachment 1c is a true and accurate copy, in black and white, of Hsu 

from the DePaul University Library.  Attachment 1c includes the cover for the 

October issue of Software: Practice & Experience, the contents page, and the Hsu 

paper on pp. 1097-1116. Attachment 1c is in a condition that creates no suspicion 

about its authenticity.  Specifically, there are no visible alterations to the document, 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 9 of 152



10 
 

and Attachment 1c was found within the custody of a library – a place where if 

authentic it would likely be.   

26. Attachment 1d is a true and accurate copy of the item record for Hsu 

in the Wiley Online Library. Attachment 1e is a true and accurate copy of Hsu

from the Wiley Online Library.  This online version of Hsu is identical to 

Attachment 1c and includes, on the first page, the bibliographic information about 

the publication of Hsu.  Software: Practice & Experience is a Wiley publication.  

Attachments 1d and 1e were found in the Wiley Online Library—a place where if 

authentic they would likely be. 

Public accessibility 

27. Attachment 1c includes a library date stamp label indicating that 

October 1995 issue of Software: Practice & Experience was processed at the 

DePaul University Library on 25 October 1995.  Based on my experience, I affirm 

this date stamp has the general appearance of date stamps that libraries have long 

affixed to periodicals in processing them. I do not see any indications or have any 

reason to believe this date stamp was affixed by anyone other than library 

personnel on or about the date indicated by the stamp.   

28. This date stamp indicates the October 1995 issue of Software: Practice 

& Experience had been mailed to the DePaul University Library and to other 

subscribers (including other library subscribers) sometime in October 1995, or 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 10 of 152



11 
 

earlier, because it takes some time for the item to arrive at and to be processed by 

the library.  I therefore conclude that the October 1995 issue of Software: Practice 

& Experience would have been received by other subscribers, and that other 

subscribing libraries would have processed and made this issue available to their 

readers at about the same time. 

29. For example, Attachment 1f is a true and accurate copy, in color, of 

Hsu from the University of Illinois at Urbana-Champaign Library.  Attachment 1f

includes the bound volume cover; the covers for the July, August, September, 

October, November, and December issues of Software: Practice & Experience;  

and from the October issue a list of editors and other information about the journal, 

the contents page, and the Hsu paper  on pp. 1097-1116. 

30. Attachment 1f includes a library date stamp label indicating that July 

1995 issue of Software: Practice & Experience was processed at the University of 

Illinois at Urbana-Champaign Library on 24 July 1995.  Similar date stamp labels 

on the August, November, and December issues indicate they were processed at 

the library on 22 August, 27 November, and 14 December, respectively.  Date 

stamps on the covers of the September and October issues of Software: Practice & 

Experience are hard to read, even under magnification.  The September issue 

appears to have been processed by the University of Illinois at Urbana-Champaign 

Library on 2? September 1995, while the October issue appears to have been 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 11 of 152



12 
 

processed on ??October ????. This bound volume of Software: Practice & 

Experience, including the October 1995 issue, also bears on its inside back cover a 

February 1996  sticker from the Heckman Bindery, Inc., a major provider of 

periodical binding services.  

31. It is my opinion that based on these date markings, in the second half 

of 1995, the University of Illinois at Urbana Champaign regularly processed newly 

received issues of Software: Practice & Experience in the second or third week of 

the month indicated on the cover of each monthly issue.  I also infer that all issues 

of Software: Practice & Experience published in the second half of 1995 where in 

hand at the University of Illinois at Urbana-Champaign Library by December 1995 

or January 1996, when they were send to the Heckman Bindery to be bound as a 

volume.   

32. Attachment 1g is a third true and accurate copy, in color, of Hsu—this 

one from the University of Minnesota Library.  This copy includes the cover, a list 

of editors and other information about the journal, the contents page, and the Hsu 

paper. The cover page in Attachment 1g includes a library date stamp that is hard 

to read.  Under magnification, this date stamp indicates the October 1995 issue of 

Software: Practice & Experience was processed at the University of Minnesota 

Library on 20 October [1995], in close conformity to the evidence for processing 

issues of Software: Practice & Experience at the DePaul University Library and the 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 12 of 152



13 
 

University of Illinois at Urbana-Champaign Library. The year element in the date 

stamp is very hard to read, even when magnified.  Software: Practice & Experience 

was published monthly (as indicated on the page listing the journal’s editors).  In 

my experience, it would have been highly unusual for a library, such as the 

University of Minnesota Library, to have received this periodical a year later, in

1996. Thus, considering both my experience and the facts outlined in this 

declaration, it is my opinion that while the date stamp is only partially illegible, 

this volume was stamped received by the University of Minnesota Library on 20

October 1995. 

33. Attachment 1h is a fourth true and accurate copy, in color, of Hsu—

this one from the Illinois Institute of Technology Library.  This copy includes the 

spine of volume 25 and the cover of the October 1995 issue, a list of editors and 

other information about the journal, the contents page, and the Hsu paper.  The 

cover page in Attachment 1h in has a date stamp that indicates the October 1995 

issue of Software: Practice & Experience was processed at the Illinois Institute of 

Technology Library on 3 November 1995, in near conformity to the evidence for 

processing October 1995 issues of Software: Practice & Experience at the DePaul 

University Library, the University of Illinois at Urbana-Champaign Library, and 

the University of Minnesota Library.

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 13 of 152



14 
 

34. The copies of Hsu in Attachments 1c and 1f, 1g, and 1h from the 

DePaul University Library, University of Illinois at Urbana-Champaign Library, 

the University of Minnesota Library, and the Illinois Institute of Technology 

Library, respectively, are substantively identical.   

35. The evidence from four academic libraries indicates the October 1995 

issue of Software: Practice & Experience was mailed to subscribers in October 

1995, or earlier, and processed by these four libraries late in October or early in 

November 1995.  Allowing for some time between the date stamping of the 

October 1995 issue of Software: Practice and Experience and its appearance on 

library shelves, where it would be public available, it is my opinion that Hsu was 

publicly available at least by mid-November 1995. 

Conclusion 

36. Based on the evidence presented here—publication in an easily 

identified periodical, online availability, and library date stamps—it is my opinion 

that Document 1 is an authentic document and was available to the public at 

least by mid-November 1995.

Attestation 

37. I hereby declare that all statements made herein of my own 

knowledge are true and that all statements made on information and belief are 

believed to be true; and further that these statement were made with the knowledge 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 14 of 152



15 
 

that willful false statements and the like so made are punishable by fine or 

imprisonment, or both, under Section 1001 of Title 18 of the United States Code 

and that such willful false statement may jeopardize the validity of the application 

or any patent issued thereon. 

    27 October 2016  

_______________________________   __________________ 

Scott Bennett, Ph.D.      Date 
Managing Partner 
Prior Art Documentation Services LLC 

  

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 15 of 152



16 
 

EXHIBIT A: RESUME 

SCOTT BENNETT 
Yale University Librarian Emeritus 

 
711 South Race 

Urbana, Illinois 61801-4132 
2scottb@prairienet.org 

217-367-9896 
 
 
EMPLOYMENT 
 
Retired, 2001.  Retirement activities include: 

Managing Partner in Prior Art Documentation Services, LLC, 2015-.  This firm provides 
documentation services to patent attorneys; more information is available at 
http://www.priorartdocumentation.com  
Consultant on library space design, 2004- . This consulting practice is rooted in a research, 
publication, and public speaking program conducted since I retired from Yale University in 2001.   
I have served more than 50 colleges and universities in the United States and abroad with 
projects ranging in likely cost from under $50,000 to over $100 million.  More information is 
available at http://www.libraryspaceplanning.com/  
Senior Advisor for the library program of the Council of Independent Colleges, 2001-2009 
Member of the Wartburg College Library Advisory Board, 2004-  
Visiting Professor, Graduate School of Library and Information Science, University of Illinois at 
Urbana-Champaign, Fall 2003 

 
University Librarian, Yale University, 1994-2001 
 
Director, The Milton S. Eisenhower Library, The Johns Hopkins University, Baltimore, Maryland, 1989-
1994 
 
Assistant University Librarian for Collection Management, Northwestern University, Evanston, Illinois, 
1981-1989 
 
Instructor, Assistant and Associate Professor of Library Administration, University of Illinois at Urbana-
Champaign, 1974-1981 
 
Assistant Professor of English, University of Illinois at Urbana-Champaign, 1967-1974 
 
Woodrow Wilson Teaching Intern, St. Paul’s College, Lawrenceville, Virginia, 1964-1965 
 
EDUCATION 
 
University of Illinois, M.S., 1976 (Library Science) 
Indiana University, M.A., 1966; Ph.D., 1967 (English) 
Oberlin College, A.B. magna cum laude, 1960 (English) 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 16 of 152



17 
 

 
 
HONORS AND AWARDS 
 
Morningside College (Sioux City, IA) Doctor of Humane Letters, 2010 
 
American Council of Learned Societies Fellowship, 1978-1979; Honorary Visiting Research Fellow, 
Victorian Studies Centre, University of Leicester, 1979; University of Illinois Summer Faculty Fellowship, 
1969 
 
Indiana University Dissertation Year Fellowship and an Oberlin College Haskell Fellowship, 1966-1967; 
Woodrow Wilson National Fellow, 1960-1961 
 
PROFESSIONAL ACTIVITIES 
 
American Association for the Advancement of Science: Project on Intellectual Property and Electronic 
Publishing in Science, 1999-2001 
 
American Association of University Professors:  University of Illinois at Urbana-Champaign Chapter 
Secretary and President, 1975-1978; Illinois Conference Vice President and President, 1978-1984; 
national Council, 1982-1985, Committee F, 1982-1986, Assembly of State Conferences Executive 
Committee, 1983-1986, and Committee H, 1997-2001 ; Northwestern University Chapter 
Secretary/Treasurer, 1985-1986 
 
Association of American Universities:  Member of the Research Libraries Task Force on Intellectual 
Property Rights in an Electronic Environment, 1993-1994, 1995-1996 
 
Association of Research Libraries:  Member of the Preservation Committee, 1990-1993; member of the 
Information Policy Committee, 1993-1995; member of the Working Group on Copyright, 1994-2001; 
member of the Research Library Leadership and Management Committee, 1999-2001; member of the 
Board of Directors, 1998-2000 
 
Carnegie Mellon University:  Member of the University Libraries Advisory Board, 1994 
 
Center for Research Libraries:  Program Committee, 1998-2000 
 
Johns Hopkins University Press:  Ex-officio member of the Editorial Board, 1990-1994; Co-director of 
Project Muse, 1994 
 
Library Administration and Management Association, Public Relations Section, Friends of the Library 
Committee, 1977-1978 
 
Oberlin College:  Member of the Library Visiting Committee, 1990, and of the Steering Committee for 
the library’s capital campaign, 1992-1993; President of the Library Friends, 1992-1993, 2004-2005; 
member, Friends of the Library Council, 2003- 
 
Research Society for Victorian Periodicals: Executive Board, 1971-1983; Co-chairperson of the Executive 
Committee on Serials Bibliography, 1976-1982; President, 1977-1982 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 17 of 152



18 
 

 
A Selected Edition of W.D. Howells (one of several editions sponsored by the MLA Center for Editions of 
American Authors):  Associate Textual Editor, 1965-1970; Center for Editions of American Authors panel 
of textual experts, 1968-1970 
 
Victorian Studies:  Editorial Assistant and Managing Editor, 1962-1964 
 
Wartburg College: member, National Advisory Board for the Vogel Library, 2004- 
 
Some other activities:  Member of the Illinois State Library Statewide Library and Archival Preservation 
Advisory Panel; member of the Illinois State Archives Advisory Board; member of a committee advising 
the Illinois Board of Higher Education on the cooperative management of research collections; chair of 
a major collaborative research project conducted by the Research Libraries Group with support from 
Conoco, Inc.; active advisor on behalf of the Illinois Conference AAUP to faculty and administrators on 
academic freedom and tenure matters in northern Illinois. 
 
Delegate to Maryland Governor’s Conference on Libraries and Information Service; principal in 
initiating state-wide preservation planning in Maryland; principal in an effort to widen the use of mass 
deacidification for the preservation of library materials through cooperative action by the Association of 
Research Libraries and the Committee on Institutional Cooperation; co-instigator of a campus-wide 
information service for Johns Hopkins University; initiated efforts with the Enoch Pratt Free Library to 
provide information services to Baltimore’s Empowerment Zones; speaker or panelist on academic 
publishing, copyright, scholarly communication, national and regional preservation planning, mass 
deacidification. 
 
Consultant for the University of British Columbia (1995), Princeton University (1996), Modern 
Language Association, (1995, 1996), Library of Congress (1997), Center for Jewish History (1998, 2000-
), National Research Council (1998); Board of Directors for the Digital Library Federation, 1996-2001; 
accreditation visiting team at Brandeis University (1997); mentor for Northern Exposure to Leadership 
(1997); instructor and mentor for ARL’s Leadership and Career Development Program (1999-2000)  
 
At the Northwestern University Library, led in the creation of a preservation department and in the 
renovation of the renovation, for preservation purposes, of the Deering Library book stacks. 
 
At the Milton S. Eisenhower Library, led the refocusing and vitalization of client-centered services; 
strategic planning and organizational restructuring for the library; building renovation planning.  
Successfully completed a $5 million endowment campaign for the humanities collections and launched a 
$27 million capital campaign for the library. 
 
At the Yale University Library, participated widely in campus-space planning, university budget 
planning, information technology development, and the promotion of effective teaching and learning; 
for the library has exercised leadership in space planning and renovation, retrospective conversion of 
the card catalog, preservation, organizational development, recruitment of minority librarians, 
intellectual property and copyright issues, scholarly communication, document delivery services among 
libraries, and instruction in the use of information resources.  Oversaw approximately $70 million of 
library space renovation and construction.  Was co-principal investigator for a grant to plan a digital 
archive for Elsevier Science. 
 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 18 of 152



19 
 

Numerous to invitations speak at regional, national, and other professional meetings and at alumni 
meetings.  Lectured and presented a series of seminars on library management at the Yunnan 
University Library, 2002.  Participated in the 2005 International Roundtable for Library and Information 
Science sponsored by the Kanazawa Institute of Technology Library Center and the Council on Library 
and Information Resources. 
 
PUBLICATIONS 
 
“Putting Learning into Library Planning,” portal: Libraries and the Academy, 15, 2 (April 2015), 215-231. 
 
“How librarians (and others!) love silos: Three stories from the field “ available at the Learning Spaces 
Collaborary Web site,  http://www.pkallsc.org/ 
 
“Learning Behaviors and Learning Spaces,” portal: Libraries and the Academy, 11, 3 (July 2011), 765-789.    
 
“Libraries and Learning: A History of Paradigm Change,” portal: Libraries and the Academy,  9, 2 (April 
2009), 181-197.  Judged as the best article published in the 2009 volume of portal. 
 
“The Information or the Learning Commons: Which Will We Have?” Journal of Academic Librarianship, 
34 (May 2008), 183-185.  One of the ten most-cited articles published in JAL, 2007-2011. 
 
“Designing for Uncertainty: Three Approaches,” Journal of Academic Librarianship, 33 (2007), 165–179. 
 
“Campus Cultures Fostering Information Literacy,” portal: Libraries and the Academy, 7 (2007), 147-167.  
Included in Library Instruction Round Table Top Twenty library instruction articles published in 2007 
 
“Designing for Uncertainty: Three Approaches,” Journal of Academic Librarianship,  33 (2007), 165–179. 
 
 “First Questions for Designing Higher Education Learning Spaces,” Journal of Academic Librarianship, 33 
(2007), 14-26. 
 
“The Choice for Learning,” Journal of Academic Librarianship, 32 (2006), 3-13. 
 
With Richard A. O’Connor, “The Power of Place in Learning,” Planning for Higher Education, 33 (June-
August 2005), 28-30 
 
“Righting the Balance,” in Library as Place: Rethinking Roles, Rethinking Space (Washington, DC: Council 
on Library and Information Resources, 2005), pp. 10-24 
 
Libraries Designed for Learning (Washington, DC: Council on Library and Information Resources, 2003) 
 
“The Golden Age of Libraries,” in Proceedings of the International Conference on Academic Librarianship 
in the New Millennium: Roles, Trends, and Global Collaboration, ed. Haipeng Li (Kunming: Yunnan 
University Press, 2002), pp. 13-21.  This is a slightly different version of the following item. 
 
“The Golden Age of Libraries,” Journal of Academic Librarianship, 24 (2001), 256-258 
 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 19 of 152



20 
 

“Second Chances.  An address . . . at the annual dinner of the Friends of the Oberlin College Library 
November 13 1999,” Friends of the Oberlin College Library, February 2000 
 
“Authors’ Rights,” The Journal of Electronic Publishing (December 1999), 
http://www.press.umich.edu/jep/05-02/bennett.html 
 
“Information-Based Productivity,” in Technology and Scholarly Communication, ed. Richard Ekman and 
Richard E. Quandt (Berkeley, 1999), pp. 73-94 
 
“Just-In-Time Scholarly Monographs: or, Is There a Cavalry Bugle Call for Beleaguered Authors and 
Publishers?” The Journal of Electronic Publishing (September 1998), 
http://www.press.umich.edu/jep/04-01/bennett.html 
 
“Re-engineering Scholarly Communication: Thoughts Addressed to Authors,” Scholarly Publishing, 27 
(1996), 185-196 
 
“The Copyright Challenge: Strengthening the Public Interest in the Digital Age,” Library Journal, 15 
November 1994, pp. 34-37 
 
“The Management of Intellectual Property,” Computers in Libraries, 14 (May 1994), 18-20 
 
“Repositioning University Presses in Scholarly Communication,” Journal of Scholarly Publishing, 25 
(1994), 243-248.  Reprinted in The Essential JSP.  Critical Insights into the World of Scholarly Publishing.  
Volume 1: University Presses (Toronto: University of Toronto Press, 2011), pp. 147-153 
 
“Preservation and the Economic Investment Model,” in Preservation Research and Development.  Round 
Table Proceedings, September 28-29, 1992, ed. Carrie Beyer (Washington, D.C.: Library of Congress, 
1993), pp. 17-18 
 
“Copyright and Innovation in Electronic Publishing: A Commentary,” Journal of Academic Librarianship, 
19 (1993), 87-91; reprinted in condensed form in Library Issues: Briefings for Faculty and Administrators, 
14 (September 1993) 
 
with Nina Matheson, “Scholarly Articles: Valuable Commodities for Universities,” Chronicle of Higher 
Education, 27 May 1992, pp. B1-B3 
 
“Strategies for Increasing [Preservation] Productivity,” Minutes of the [119th] Meeting [of the 
Association of Research Libraries]  (Washington, D.C., 1992), pp. 39-40 
 
“Management Issues: The Director’s Perspective,” and “Cooperative Approaches to Mass 
Deacidification: Mid-Atlantic Region,” in A Roundtable on Mass Deacidification, ed. Peter G. Sparks 
(Washington, D.C.: Association of Research Libraries, 1992), pp. 15-18, 54-55 
 
“The Boat that Must Stay Afloat: Academic Libraries in Hard Times,” Scholarly Publishing, 23 (1992), 131-
137 
 
“Buying Time:  An Alternative for the Preservation of Library Material,” ACLS Newsletter, Second Series 3 
(Summer, 1991), 10-11 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 20 of 152



21 
 

 
“The Golden Stain of Time:  Preserving Victorian Periodicals” in Investigating Victorian Journalism, ed. 
Laurel Brake, Alex Jones, and Lionel Madden (London: Macmillan, 1990), pp. 166-183 
 
“Commentary on the Stephens and Haley Papers” in Coordinating Cooperative Collection Development: 
A National Perspective, an issue of Resource Sharing and Information Networks, 2 (1985), 199-201 
 
“The Editorial Character and Readership of The Penny Magazine: An Analysis,” Victorian Periodicals 
Review, 17 (1984), 127-141 
 
“Current Initiatives and Issues in Collection Management,” Journal of Academic Librarianship, 10 (1984), 
257-261; reprinted in Library Lit: The Best of 85 
 
“Revolutions in Thought: Serial Publication and the Mass Market for Reading” in The Victorian Periodical 
Press:  Samplings and Soundings, ed. Joanne Shattock and Michael Wolff (Leicester: Leicester University 
Press, 1982), pp. 225-257 
 
“Victorian Newspaper Advertising:  Counting What Counts,” Publishing History, 8 (1980), 5-18 
 
“Library Friends: A Theoretical History” in Organizing the Library’s Support:  Donors, Volunteers, Friends, 
ed. D.W. Krummel, Allerton Park Institute Number 25 (Urbana: University of Illinois Graduate School of 
Library Science, 1980), pp. 23-32 
 
“The Learned Professor: being a brief account of a scholar [Harris Francis Fletcher] who asked for the 
Moon, and got it,” Non Solus, 7 (1980), 5-12 
 
“Prolegomenon to Serials Bibliography:  A Report to the [Research] Society [for Victorian Periodicals],” 
Victorian Periodicals Review, 12 (1979), 3-15 
 
“The Bibliographic Control of Victorian Periodicals” in Victorian Periodicals: A Guide to Research, ed. J. 
Don Vann and Rosemary T. VanArsdel (New York: Modern Language Association, 1978), pp. 21-51 
 
“John Murray’s Family Library and the Cheapening of Books in Early Nineteenth Century Britain,” Studies 
in Bibliography, 29 (1976), 139-166.  Reprinted in Stephen Colclough and Alexis Weedon, eds., The 
History of the Book in the West: 1800-1914, Vol. 4 (Farnham, Surrey: Ashgate, 2010), pp. 307-334. 
 
with Robert Carringer, “Dreiser to Sandburg: Three Unpublished Letters,” Library Chronicle, 40 (1976), 
252-256 
 
“David Douglas and the British Publication of W. D. Howells’ Works,” Studies in Bibliography, 25 (1972), 
107-124 
 
as primary editor, W. D. Howells, Indian Summer (Bloomington: Indiana University Press, 1971) 
 
“The Profession of Authorship: Some Problems for Descriptive Bibliography” in Research Methods in 
Librarianship:  Historical and Bibliographic Methods in Library Research, ed. Rolland E. Stevens (Urbana: 
University of Illinois Graduate School of Library Science, 1971), pp. 74-85 
 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 21 of 152



22 
 

edited with Ronald Gottesman, Art and Error: Modern Textual Editing (Bloomington: Indiana University 
Press, 1970)--also published in London by Methuen, 1970 
 
“Catholic Emancipation, the Quarterly Review, and Britain’s Constitutional Revolution,” Victorian 
Studies, 12 (1969), 283-304 
 
as textual editor, W. D. Howells, The Altrurian Romances (Bloomington: Indiana University Press, 1968); 
introduction and annotation by Clara and Rudolf Kirk 
 
as associate textual editor, W. D. Howells, Their Wedding Journey (Bloomington: Indiana University 
Press, 1968); introduction by John Reeves 
 
“A Concealed Printing in W. D. Howells,” Papers of the Bibliographic Society of America, 61 (1967), 56-60 
 
editor, Non Solus, A Publication of the University of Illinois Library Friends, 1974-1981 
 
editor, Robert B. Downs Publication Fund, University of Illinois Library, 1975-1981 
 
reviews, short articles, etc. in Victorian Studies, Journal of English and German Philology, Victorian 
Periodicals Newsletter, Collection Management, Nineteenth-Century Literature, College & Research 
Libraries, Scholarly Publishing Today, ARL Newsletter, Serials Review, Library Issues, S[ociety for] 
S[cholarly] P[ublishing] Newsletter, and Victorian Britain: An Encyclopedia 

 

         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 22 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 23 of 152

 
  

I .
UNIV OF ILLINOIS F‘  

Worldcat Detailed Record
- Clrck on a ched(bmr to mark a record to be e-mailed or printed rn Marked Records.

Etal'‘F\.'iew : Mv Account | Options | Comments | Exit | menus
;-_ _ —_. I'.'__._‘ _w

.- aa-9

Software, practice & experience.
1971-
Ennlisll . SenalPubllca1ion : Periodical : Monlnlyfl lntemet Resource volumes ,25 cmCnlcl'res1er.Wiley irnerscience,

GEK Tm: Iran
Amws: htto:»Wwvvor3.rnterscience wilev conilcqi-l:rinl'|homel1752

Availability: Firstsearclr indicates your insljtulion subscribes 10 this -publication.
- Libraries worldwide that own item: 598 Q l.ll'U'CIF ILLIIIOIS
- 3 Search the Latalou atthe Lrbrarv of Unrversltv dfillrnors at Ur‘bana—CharrIDarqfl

External Resourufi: - Discover‘ UIUC Full Text. Interlrbrarx Loan Reguest- Crte This Item

F-M '.‘E-{ED
More Uke This: Advanced options

Browse Journal: Available Issues fr’-\l‘l |eFrrsll
Trtle: SDITWIIE, practice 8: experience.

Publication: Chichester Lwiley lnterscience,
Year: 1971-

Frequencv: Monthly, 2010-; Past: Quarierly, 1971-19'.-'6 Monthly, 197?-199? 15 issues a year,1998-1999 Monthly, plusthree additional issues rn Apt, July, and Nov.,2000-20018issuese year, 2009
Dacriptiun: volumes ;26 cm Vol.1, no.1 (Jan.-Mar. 19711]-

Language: English
Stalidard N0: ISSN: 0035-0644. Ol11er1uI'ma1's ISSN: 1097-0242‘. CODEN: SPEXBL National Library: 010675248. 120252—2. S30400000. 0098'r'9556. 013345367. LCCN: 75648615

Amms: him‘-'!wwIAG rnterscience wilev comr'cqi-oinflhon1el1T52
5uaJEcr(s)

D42.-scriptar: Computer sortware — Periodicals
Computer programming — Perrodrcals.
Computer programs — Perroclrcals
Programnialjon lnfom'raligue}—Periodigues
Langages de programnialion — Perrodigues.
Logrclels — PérrodrguesS0flW‘Hl'B
ProgramniierungZerlscrrmt.
S0fiW‘3fE!
Computer programming
Computer programs.
Computer sortware,
PrograrnniierungSoltware
Zellscnnft.

Genre_fFon11: Periodicals
Note(s): ‘line from coverlPuolisned John Wileyasons, Ltd .9005»

General ‘Info: Some rssues for 1995- accompanied by compactdiscsl\a'ols,1-20,1971-90 ivfcurrrulaied by CD—RDM ed Natianalhiizrlionraphy no: 010575248 Ollrerforrriatauailablez Sollware (Chicnester, England CD—ROM}‘
Online versior:.,So1lware, praclice 8. experience lonlinei

Claw Descriptors: LC: Qt‘-\?6.5, Dewey: 001.614-25105
Otherfiflai: Soliw pracl. exp.:So1lware. practice 8.e:-rperience (Prrnl). Also known as.. SP 3. E, Soliware prachce and expenence. Soliware, Sofmr pract. exper., <2005->

Material Type: Periodical {per} [nternel resource turl)
DocumentType: Serial; Internet Resource

DatecrfEr1try: 19750920
Update: 20150818

Anmsion No: OCLC:-
Database: Worldcat

W°fl¢5.!t.FE9M5.f|1F If -1-

Enr-slr | aiiul | Franrzis I fly l H_.f\_-3?; I -&_-l—L‘ .1 | ruxt $35. | r;r'.'.: ‘Ell-.3: l _'orI1s| Comments | 1
e 199z.zms ocu:

OCLC ‘ram: 3 C,:m:liri:ns

DELL rNc., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 23 of 152

 
I AskA Librarian



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 24 of 152

DePaul Unhrersity Library v Search v -v¢.'?' Renew Boolcsrlbfy Account ism iri'i _l_',§\ worldcat [ Sun in I

DE ULUNIVERSITY lUNIVERQTV UBRARY Llhl'3UBE to sesrcrii Libraries Worldwide V l Advanced Search

rs Return to Search Results E] CilefB<DDrl Print ._.V E-mail Add to list E Sricire “(J Perrnalinlc

Software, practice & experience.
Publisher: Chlchester : Wiley lnterscience EN 9?1-

Editioni'Forri'iat Q Joumal, magazine: Periodical '. English View all editions and formats Mme like this

DataDase' Worl dCat Sumac“Computer S|'3fl’|4'Jfll'B -- Periodicals.
Search this publication for other articles with the following words‘

‘-‘as_.__ Computer grmrarrzs —— Periodicals.
IE Computer grgrarnming --Periodicals.

fifi \."iew all subects
Fifi 

You are not connected lothe DePaul University Library network. Access to online content and services may require you to atithenticate with your library
Remote Lgiri

7 Find a copy online

Links to this item

DePauE University Library (1)
Access 'ourna|
Software. Practice and Experience, \M|ey Online Library 2015, (I996-present}

Other libraries U]
E Show all links from other librarres I l

7 Find a copy in the library

Click on "Get Current Status Information" to get current status lnlcirrnation about the item.

DePaul University Library L Get current Status Information i

E] Get it in the library

5 1 oopjes
Location Status

‘—“"3’\i' "W 0 i.-.13—v.3.i=.r19ae2no6:

E Hide item detafls

Loop Periodicals O v’13_v_3,5n953_mm6I Per.E|Ell.El5 SE31

l-Sha re

E Get it from this library group

3 8 group libraries own this item

Worldcat

Find ii in iinranes globally
fl Woddwide libraries own this item

' H Details

GenrelForm: Periodicals
Péri odiques

Additional Physical Format: Software (Chicnester, England : CDROM}
(DLC}sn 96031000
(OCoLC)34091184
Online version:
Software practice 8. experience (Clnllne)
(DLC}sn 97001402
(OCoLC)381'.’2045

Material Type: Periodical. lntemet resource

Document Type: Joumalr Magazine! Newspaper. lntemet Resource
ISSN: 0038-0544

0[1C Number: 1639246



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 25 of 152

Notes: l"it|e from cover.
Published‘. John Wiley & Sons. Ltd. <2UU5->

Description: volumes ; 25 cm

Other Titles: Software. practice 8; experience
SF & E
Software. practice and experience
Software
Soflw pract. exper

Loml System Bib Number: 353258

 
_>.. User-contributed reviews

:
Add legs for "Software practice & experience.'‘. 3

:i similar Items

Related Subjects: :12)

 

Computer soitware -- Periodicals.

Computer programs -- Periodicals.

Computer programming — Periodicals.

Programmation (lnformatiqu_] — Périodiques.

Langages cle programmation — Périodigues.

Logiciels -- Périodiques.
Software.

Programmierung.
Zeilschrifl.

Compmer programming.

Computer programs.

Computer software.

 Languages‘ Cesky; | Deutsch | English | Esuaiiol l Francais l llaliano l Nederlands | Porluoués l :'i:|:'.“l\-ir_i | 3l¥5' | EYou. Sign ll'l Register Mir '.".‘orlclCat Mv Lists Mir Walchlisl Mv REl:'lE’t'aS M‘ Tans Mv Saved Searches
Worlclcal: Q E fig Search

Legal: Cog r>orit©2ElDl-2016 OCLC. All riorits reserved. F‘rr.'ac" POIIC“ Terms and Conditions

WorldCat is the l'J‘DI'lEl5 largest library catalog. helping you find library materials onlirie.

DELL iNc., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 25 of 152



D
EL

L 
IN

C
., 

EM
C

 C
O

R
P.

, H
PE

 C
O

., 
 H

PE
S,

 L
LC

Ex
. 1

02
8,

 p
. 2

6 
of

 1
52

 
E0

oEaam_.__w.3...Eu

.2

H.moz_.:m>>>oz<M.E200mfioaoommoham
yr»-mvr

E. or62.anu.__..,_30

$2Emobo

wmzmEm%[%wmofiog.MMNE/R\EEN©QW 
N23on5..32..m_

  

runo._._.mm_.__._.00m_.__._..Eooos_m_.oz_._._m_n_n._....Q...mn~aomm2_w..8.mn8v91}._
tltl.3::5..fl!“-

I

xm....m.uJu.==.wm_a:nE:o.tnmafnfimmu.E_..o_..u.§._..a.._.SE96\...nt..2353...cc_mw..EE.nLoam.232E..6.m_:o_.._.u.....ua__o....25...a..__._nm._....2.$3..:a_m:o=uEEnEE:fltn.m....fl..m_r_m>.un.2_:o.:._._n..:a._u_w:..._wm._u__uc_.6.uuan.._u_._m.u..__..Eou.6anti5.?2ucoei5...noon..._am_.__ou»_.F..E.,m.m:ES.:3».Sn....»2.39__e._....._m.:535«.2.Eu_umgonnaamacouREE2:Ea:uw:.§nuan:3mmEu.__uu...a_..ma_E5..m._m..:.5u__£uu_u_..n.u..__LEEQUo2_m.au_.n.=._u_=..uauor:.3595.23ca9m._3»_...n_oo._on5:..35Em_=Eo.u.w.D$.503...0E"mcoaumm.5_ua.=.:..:an.2...ucaxmnnc__.5ou._o_,3:._.n3.2...__n_.=.._u_.__u_._cu2.::0.n.co__uofioonuE3..._m..=£c_E_m.._au.._m.u2.:.2E.3..._u:._2..__.__o3:038.".2EEE.5_.EEu_..._.=.._wE...*0«anon35ucuucuum._u.._a5EmtxnouE:mm=n._,u:__uE:u._a.__.=..__m_o_.._mca.63.6..9:«SBEBB;95—muctmunnw8._Sczu_:...nau2.:Euuucu2:.wm._u_.E¢noozzaoo 



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 27 of 152

SOFTWARE—-—F’RACT|CE AND EXPERIENCE

(Softw. pract. exp.)

CONTENTS

VOLUME 25, ISSUE No. 10 October 1995

Migration in Object-oriented Database Systems—A Practical Approach:

C. Huemer, G. Kappel and S. Vieweg ....................................................... .. 1065

Automatic Synthesis of Compression Techniques for Heterogeneous
Files: W. H. Hsu and A. E. Zwarico ........................................................... .. 1097

A Tool for Visualizing the Execution of Interactions on a Loosely—coupled
Distributed System: P. Ashton and J. Penny ........................................... .. 1117

Software Maintenance: An Approach to Impact Analysis of Objects
Change: 8. Ajila .......................................................................................... .. 1155

SPEXBL 25{10) 1065-1182 H995}
ISSN 0033-0644

Indexed or abstracted by Cambridge Scientific Abstracts, CompuMath Citation Index l|S|l.

Cornpuscience Database, Computer Contents, Computer Literature Index, Computing

Reviews, Current ContentsfEng, Tech 8:. Applied Sciences, Data Processing Digest, Deadline

Newsletter, Educational Technology Abstracts, Engineering Index, Engineering Societies

Library, 182 [International Bibliography of Periodical Literature}, Information Science Abstracts

[Pie-nurnl, INSPEC. Knowledge Engineering Review, Nat Centre for Software Technology,
Research Alert {lS|) and SCISEARCH Database (|Sl].

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 27 of 152.4... ..—_.—..-
an-..._... .. . g..-

l

l

l

l
E

I

l

l

l

i

F Process Scheduling and UNIX Semaphores: N. Dunstan and I. Fris ........ .. 1141

l

l
i

I

i

E

i
1

l
E

I

l



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 28 of 152

SOFTWi\RE—-—PR.A('.'1'ICE. AND EXPERIENCE. VOL. 2500), 1097-1116 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for
Heterogeneous Files

WILLIAM H. HSU

Department of Computer Science, University of Illinois at Urba.na_-Ckampaign, Urbana, IL 6180}, U.S.A.
(email: bhsu@cs.uiuc.edu, voice: (217) 244-1620)

AND

AMY E. ZWARJCO

Department of Computer Science, The Johns Hopkins University. Baits-nore, MD 2l2I8, U.S.A.
(email: amy@cs.jhu.edu, voice: (410) 516-5304)

SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data‘ such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stufillt,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adaptiveiselcctive data compression algorithms; redundancy metrics; heterogeneous files; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard-

ware standards, more techniques are under development. Historically, research in data com-
pression has been devoted to the development of algorithms that exploit various types of

redundancy found in a file. The shortcoming of such algorithms is that they assume, often

inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files.‘ For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and. audio data), achieves mediocre performance on

natural language text files, and performs poorly in general on high-redundancy binary data.

On the other hand, run length encoding works well on high-redundancy binary data, but
performs very poorly on text files. Textual substitution works best when multiple-character

strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038~0644:’95i101097-20 - Received 20 April 1994

©1995 by John Wiley & Sons, Ltd. Revised 5 February 1995

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 28 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 29 of 152

 i

1098 W. H. HSU AND A. E. ZWARICO 3

length of these strings decreases. These relative strengths and weaknesses become criti
when attempting to compress heterogeneous files. Heterogeneous files are those which c

tain multiple types of data such as text, images, binary, audio, or animation. Consequeni
their constituent parts may have different degrees of compressibility. Because most co

pression algorithms are either tailored to a few specific classes of data or are design

handle a single type of data at a time, they are not suited to the compression of hetefl
neous files. In attempting to apply a single method to such files, they forfeit the possibill

of greater savings achievable by compressing various segments of the file with differri
methods.

To overcome this inherent weakness found in compression algorithms, we have developl
a heterogeneous compressor that automatically chooses the best compression algorithm

use on a given variable-length block of a file, based on both the qualitative and quantii
tive properties of that segment. The compressor determines and then applies the selec

algorithms to the blocks separately. Assembling compression procedures to create a spec

ically tailored program for each file gives improved performance over using one progra
for all files. This system produces better compression results than four commonly availab

compression packages, PKZIP,’ Unix compress,’ Stujflt,‘ and Compact Pmi‘ for arbitraii
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compressi
system for heterogeneous files. The second is the development of a method of statist'

cal analysis of the compressibility of a file (its redundancy types). Although the conce%of redundancy types is not new,‘-7 synthesis of compression techniques using redundanc
measurements is largely unprecedented. The approach presented in this paper uses a straigh

forward program synthesis technique: a compression plan, consisting of instructions for eargblock of input data, is generated, guided by the statistical properties of the input data. 3
cause of its use of algorithms specifically suited to the types of redundancy exhibited b

the particular input file, the system achieves consistent average performance throughout dig
file, as shown by experimental evidence.

As an example of the type of savings our system produces, consider compressing :1
heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-

dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics. hi
this case, a reasonably sophisticated compression program might recognize the increas

savings achievable by employing Huffman compression, to better take advantage of the fac

that the majority of the data is graphical. However, none of the general-purpose compres-l
sion methods under consideration are optimal when used alone on this file. This is becaus

the text part of this file is best compressed by textual substitution methods (e.g., Lempel
Ziv) rather than statistical methods, while the low-redundancy data‘ and graphics parts

are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamicg
Huffman coding) rather than Lempel—Ziv or run-length encoding. This particular file totals
45K in length before compression. A compressor using pure dynamic Huffman coding onlyl

achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best‘
general-purpose Lempel—Ziv compressors currently available” achieves 18 per cent sav-
ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding on‘

the first and last segments and Lempelr-Ziv compression on the text segment in the middle, 1
achieving a 22 per cent savings and producing a compressed file of-length 35.6I(. This is
a 4 per cent improvement over the best commercial system. i

" This denotes. in our system, a file with a low rate of repeated strings.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

l

l

I

Ex. 1026, p. 29 of 152 l



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 30 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose of our experiments was to verify the conjecture that a selective system

for combining methods can improve savings on a significant range of heterogeneous files,

especially multimedia data. This combination differs from current adaptive methods in

that it switches among compression paradigms designed to remove very difierent types

of redundancy. By contrast, existing adaptive compression programs are sensitive only to
changes in particular types of redundancy, such as run-length, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the

type of redundancy present, such as from high run-length to high character repetition. The

superiority of our approach is demonstrated in our experimental section.
This paper begins with a presentation of existing approaches to data compression, includ-

ing a discussion of hybrid and adaptive compression algorithms and a description of four

popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained

from test runs of the completed system, and comparison of the system's perfonnance against

that of commercial systems. Finally, implications of the results and possibilities for future

work are presented.

RELATED WORK

It is a fundamental -result. of information theory that there is no single algorithm that per-

fonns optimally in compressing all files.‘ However, much work has been done to develop

algorithms and techniques that work nearly optimally on all classes of files. In this sec-

tion we discuss adaptive algorithms, composite algorithms, and four popular commercial

compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development

of adaptive compression algorithms, and the composition of various algorithms. Adaptive
compression algorithms attune themselves gradually to changes in the redundancies within a

file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman

coding” maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel—Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The

first variant, known as LZ77 or the sliding dictionary or sliding window method, selects

positional references from a constant range of preceding strings.1'“ These ‘back-pointers’
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.

When the dictionary —— a table of strings— from the file — is completely filled, the contents

are not discarded. Instead, an auxiliary dictionary is created and updated while compression

continues using the main dictionary. Each time this auxiliary table is filled, its contents are

‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which

two pages are used but only one is ‘active’ —- these are exchanged when one fills beyond

a preset threshold. Another adaptive variant of this algorithm is the Lempel—Ziv—Welch

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 30 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 31 of 152

-pg-!.4-u-«Isa:g.-.nn.--

-:r-hd:—-r.-_=_..‘nM——=u--nu-i'u-_u-u-30-a-u—IIa-ill-F-in-e-u-II-OhI
1

1100 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of LZ78 used in Unix compress.“ ‘2 Both LZW and LZ78
vary the length of strings used in compression.“ '2

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move-To-

Front (MTF) method, was developed by Bentley et at.” In MTF, the ‘word code’ for a
symbol is detennined by the position of the word in a sequential list. The word list is ordered

so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which

they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method

typically cannot directly handle drastic changes in file properties, such as an abrupt transition

from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. -As

the use of multimedia files increases, files exhibiting this sort of transition will become

more prevalent.
Our approach differs from adaptive compression because the system chooses each algo-

rithm (as well as the duration of its applicability) before compression begins, rather than

modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed

length strings of input, our heterogeneous compressor bases its compression upon statistics

gathered from larger blocks of five kilobytes. This allows us to handle much larger changes

in file redundancy types. This makes our system less sensitive to residual statistical fluctu-

ations from different parts of a file. We note that it is possible to use an adaptive algorithm

as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression

algorithms. Composition can either be accomplished by running several algorithms in suc-
cession or by combining the basic algorithms and heuristics to create a new technique. For

example, recent implementations of ‘universal’ compression programs execute the Lempel-—

Ziv algorithm and dynamic Huffman coding in succession, thus improving performance

by combining the string repetition-based compression of Lempel~Ziv with the frequency-

based compression strategy of dynamic Huffman coding. One commercial implementation

is LHarc.“‘-‘5 Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempel~Ziv algorithm, which filters Lempt-.1—Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved

by using Shannon-Fano tries‘ in conjunction with the Fia.la—Greene algorithm (a variant

of Lempel~—Ziv)"‘ in the PKZIP2 commercial package. Tries are used to optimally encode
strings by character frequency.” PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.”

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This

includes switching from among algorithms an arbitrary number of times within a file. The

algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file.

" A In‘: is a tree of variable tiegree 2 2 such that (1) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trio; (3) keys (strings) may be inserted as leav using the minimum number of characters which
distinguish them uniquely. Thus a generic hie containing the strings campurer and compare would have keys at a depth of-
five which share a common prefix of length four.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 31 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 32 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES HJR HETEROGENEOUS FILES 1101

The problem of heterogeneous files was addressed by Toal” in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-

mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for

each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks

would be independently compressed. Our system, however, performs more in-depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.

This entails not only the determination of qualitative data properties but the computation of

metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy

metrics) are fitted to observed parameters for a test library. Finally, a straightforward but

crucial improvement to the naive encapsulated-block method is the implementation of a

multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-

dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that

the overhead of changing compression schemes from one block to another dominated the

additional savings that resulted from selection of a superior compression method.” This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the

compression algorithm used.* We have detennined experimentally that merging contiguous

blocks whenever possible obviates the large majority of changes in compression method.

This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-
ally superior to commercially available systems. The four systems we studied are PKZIP,

developed for microcomputers running MS-DOS? Unix compress? and Stufflt Classic‘
and Compact Pro? developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel—Ziv algorithm.‘ It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its

string table if the amount of compression has decreased.

Stufilt makes use of two sets of algorithms: it first detects special-type files such as

image files and processes them with algorithms suited for high-resolution color data; for the

remaining files, it queries the operating system for the explicit file type given when the file

was created, and uses this information to choose either the LZW variant of Lempel~Ziv,“' 6
dynamic Huffman coding, or run—length encoding. This is a much more limited selection

process than what we have implemented. Additionally, no selection of compression methods

is attempted within a file. Compact Pro uses- the same methodology as Srufllt and compress,
but incorporates an improved Lempel—Ziv derived directly from LZ77." The public-domain

version of Stufllt is derived from Unix compress, as is evident from the similarity of their

performance results.

* For purposes of comparison. the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 410.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 32 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 33 of 152

1102 w. H. HSU AND A. E. ZWARICO

Compression systems such as Stufilr perform simple selection among alternative com-

pression algorithms. The important problem is that they are underequipped for the task of

fitting a specific technique to each file (even when ihe uncompressed data is homogeneous).
Stafiflt uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm - that is, no measures of

redundancy are computed. Earlier versions of Stufilr (which were extremely similar to Unix

compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor

over this approach are that it uses a two-dimensional lookup table, indexed by file proper-

ties and quantitative redundancy metrics, and — more important - that it treats the file as a

collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (SK in
the current implementation), each containing a potentially different type of data and thus

best compressed using different algorithms. The actual compression is accomplished in

two phases. In the first phase, the system determines the type and compressibility of each

block. The compressibility of each block of data is determined by the values of three

quantitative metrics representing the alphabetic distribution, the average run length and the

string repetition ratio in the file. If these metrics are all below a certain threshold, then the

block is considered fully compressed (uncompressible) and the program continues on to the

next block. Otherwise, using the block type and largest metric, the appropriate compression

algorithm (and possible heuristic) are chosen from the compression algorithm database. The

compression method for the current block is then recorded in a small atray-based map of
the file. and the system continues.

The second phase comprises the actual compression and an optimization that maximizes

the size of a segment of data to be compressed using a particular algorithm. In this optimiza-
tion, which is interleaved with the actual compression, adjacent bloclts for which exactly

the same method have been chosen are merged into a single block. This merge technique

maximizes the length of segments requiring a single compression method by greedily scan-

ning ahead until a change of method is detected. Scanning is performed using the array

map of the file generated when compression methods were selected from the database. A
compression history, needed for decompression, is automatically generated as part of this

phase.
The newly compressed segments are written to a buffer by the algorithm, which stores

the output data with the compression history. The system then writes out the compressed
file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible

than traditional adaptive systems to biases accrued when the data type changes abruptly

during compression. Adaptive compressors perfonn all operations myopically, sacrificing
the ability to see ahead in the file or data stream to detect future fluctuations in the type

of data. As a result, adaptive compressors retain the statistical vestiges of the old method

until these are ‘flushed out’ by new data (or balanced out, depending upon the process for

paging and aging internal data structures such as dictionaries). Thus adaptive compressors
may continue to suffer the effects of bias, achieving suboptimal compression. On the other

hand, by abruptly changing compression algorithms, our technique completely discards all
remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 33 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 34 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once

for switching to what will be the best compression method for an entire variable-length

segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are ‘online' (single—pass). This property increases

compression speed and, more important, gives the ability to compress a data stream (for

instance, incoming data packets in a network or modem transmission) in addition to files
in secondary storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the

metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter-
mined by the type of data contained in a block and the type of redundancy (if any) in the

data. These two properties are represented by four parameters: the block type, and the three

redundancy metrics. The block type describes the data in the block — text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average

run length in the file, and the string repetition ratio of the file. They provide a quantitative

measure of how compressible the block is and which type of redundancy is most evident

in the block. The use of both quantitative redundancy measures (redundancy metrics) and

qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held? and Salton.” We have refined the process for computing those attributes referred
to as datanalysis results by Held? and as statistical language characteristics by Salton” to

obtain an actual guide for compression. The remainder of this section describes how these
four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica-

tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of

binary data), natural language text, computer source code, low redundancy binary, digitized

audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,

and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non-natural language text contains primarily ASCII text but does not follow a

distribution of characters like that of human languages. Examples are computer typesetting

data, uuencoded and Binflex encoded data (which has the same character distribution as
binary— data but is converted to text for ease of transmission). Natural language text in-

cludes text written in English as well as other languages which are representable by the

Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic

alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-

ings). Computer source code uses the ASCII alphabet but characters are distributed with a

different frequency than in natural language text. Low-redundancy binaries usually contain

compressed data, but may also include data which is merely difficult to compress. Audio

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 34 of 152

).aLr.'"'-RE-!'I'-.F.--I-.—¢-'.,‘..'"'-"-‘-:":'.:.'-:_.—.-.*.'.r.1-av.‘-'2'
'.'-._'_"3'"



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 35 of 152._..‘;—.*...:-..:-'-'1".--'9'

1104 w. H. HSU AND A. E. zwxruco

data are very high in redundancy; audio files (and audio segments of multimedia files)

are-usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high—resolution graphics are not suited to Iossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the

Unix file command.” file works by examining the first 512. bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systems. new-file works in a similar fashion, with two modifications.

First, it examines and compares not only the first 512 bytes of a data set, but also 512

bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, new-file decides on the

‘most applicable’ data type by a majority vote (or the first data type detected in the case of
a three-way tie). The other change is that the known patterns of data have been increased

by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-

pressibility of a block of data. They are: the degree of variation in characterfrequency or

aiphabetic distribution, MAD; the average run length of the block, MRL; and the string

repetition ratio of the block, M33. In general, these three manifestations of redundancy are

independent. Each of the redundancy types is exploited by different compression algorithms.

Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In

arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffman“ and Shannon-

Fano” algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units
occurring next to one another, are exploited by run length encoding algorithms.23 In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a
run, plus a count of the number of identical strings following. Both alphabetic distribu-

tion and average run length are sometimes characterized as statistical redundancy metrics.“
Recurrent strings, which occur repeatedly in the input stream with any number of inter-

leaved symbols, are exploited by textual substitution algorithms such as Lempel—Ziv.""-'2
In these algorithms, recurrent instances are replaced with positional references (pointers) to

the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described

in texts by Storer' and Shannon.” Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character.” This was

determined experimentally by presenting fragments of (unfamiliar) English text to human

subjects and recording the frequency with which they guessed unknown letters. The frag-
ments were revealed character by character, so that letters at the end of long or uncommon

words were easiest to guess and letters at the beginnings of words were hardest. The ob-

servation that binary executables are known to possess high average run lengths is found

in Storer.‘ However, this property is rarely exploited or measured.

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 35 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 36 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1105

Each redundancy metric is calculated by a separate statistical sampling routine and nor-

malized using a gamma distribution function G to be a number between 0 and 10 so as

to simplify comparison among the different metrics. The gamma distribution was chosen

because the graph of each of the unsealed redundancy metrics for a test set of 50 files, when
plotted on a histogram, approximated a gamma distribution. Normal and x2 distributions
were also considered, but these proved to be too specific for the application (since they

are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf Ross”):

G.,(..«:,) /03‘ f.,(:..«) dz
A?_e—)\.,mt1-—I

firtmj X

I‘(t1-) i e_i’y"‘1 dy
where ff is the density function, I‘ is the gamma function, 2:7 is the unnorrnalized measure,

tT is the shape parameter for the gamma distribution, and A, is the scale parameter for

the gamma distribution. The 1' subscript simply represents the redundancy type under con-
sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, if and A.,

respectively, were determined by fitting the best gamma distribution curve to the data set.

This was done by performing the preferred compression method for each file and tabulating

the induced ratio among normalized metrics to yield the desired parameter values for each

segment. These were then averaged to obtain the empirical scaling parameters.
The alphabetic distribution metric (the degree of variation in character frequency) of a

block is calculated by taking the population (root-mean-square) standard deviation of the

ordinal values of characters in the block and dividing it by the block length (in bytes). The

MAn metric is calculated by the following formulas:

= 10 * GAD($ADl
0.’

block length in bytes

ZcEcharset(C — “)2
256 ’

where c is the ordinal value of a character and pr. is the average ordinal value of all characters

in a block. The normalization uses tap = 1.70 and AM; 2 53.0 as parameters.

The average run Length metric is obtained by dividing the number of bits in a block

by the number of runs. A run is defined to be a repetition of symbols (either bits or

bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f = 000] 111001110000 is a file of 16 bits, then the number of bit runs is 5, and the number

of byte runs is 2. The scaled metric MRL is obtained by:

MRL = 10 * GRL($RL>

file length in bits
33111. =

number of runs

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 36 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 37 of 152

W. H. HSU AND A. E. ZWARICO

with gamma distribution parameters tm_ = 0.50 and ARL = 12.0.

The string repetition ratio metric is the total number of n-bit strings in the block divided

by the number of distinct n-bit strings (up to 100K). In our implementation, 11. is 32, the
word size of our machine. The normalized metric M53 is obtained by:

M53 = 10 =t= GsR(:I2sR)

number of it hit strings

number of distinct rt bit strings
13311 =

with gamma distribution parameters tsp = 0.18 and Ask = 0.2.

The alphabetic distribution and average run length metrics can be calculated in linear
time. The string repetition ratio can be computed in O(n log n) time using a dictionary data

structure. For simplicity, and because a (small) constant amount of data is scanned, we use

an O(n2) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in

the current system). Our routine integrates fr (:3) by Simpson’s Rule with in. = 10 intervals.
The largest of the three metrics is assumed to represent the most significant type of

redundancy present in the block. It is expected that compression will decrease at least

one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are

smaller than 2.5, the file is considered not compressible, and the system records a verdict of

‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized njtetrics is then selected

and used in conjunction with the file type to select the appropriate compression algorithm
from the lookup table described in the following section. A negative compressibility test

does not always imply that all three metrics are below the threshold. In some cases, the

only redundancy type for which a metric is above the threshold accesses a null entry in the

database of compression algorithms. This is interpreted as a decision that the (poor) potential

for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table

illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the

column indices. Each entry of the table contains descriptors which are used to access the

code for an algorithm-heuristic pair. It should be noted that four of the entries are blank

(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that

it is above the threshold. As an example of using this table, consider a high-redundancy

binary executable file whose highest metric is the string repetition metric M511. Together,

this pair indicates that the Lempel—Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,” Lempel—Ziv,3
run length encoding (RLE),23 and JPEG for imagefgraphics compression.”

Arithmetic coding algorithms compress data by representing that data by an interval of

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 37 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 38 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HBTEROGENEOUS FILES 1107

Table 1. Database of compression algorithmsl

MAD MRL Men

ANSI arithmetic coding run-length encoding Lempel—Ziv
* byte-wise encoding freeze

hexadecimal arithmetic coding run-length encoding Lempel—Ziv
* n-bit run count freeze

natural language arithmetic coding * I..empel—Ziv
* * freeze

source code arithmetic coding run-length encoding Lempe1—Ziv
“ n-bit run count freeze

low redundancy run-length encoding Lempel—Ziv
binary n-bit run count *

audio run-length encoding Lempel—Ziv
byte-wise encoding freeze

low resolution run-length encoding Lempel-—Ziv
graphic n-bit run count freeze
high resolution JPEG run-length encoding JPEG

color graphic improved Huffman n-bit run count improved Huffman
high redundancy arithmetic coding run-length encoding Lempel—Ziv
binary * n-bit run count freeze
object arithmetic coding run-length encoding Lempel—Ziv

* byte-wise encoding freeze

1 Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An “ as the heuristic indicates
that no heuristic is used. 'I\«Vo ‘ indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional

to the number of symbols encoded, and the decrease in width is directly proportional to

the frequency of the original symbols. Thus the interval specifies the encoded message via

its bounds, with the precision (distance) of these bounds reflecting the information content

of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher

likelihood of actually achieving the theoretical lower bound.“ 23 Although early arithmetic
codingalgorithms performed too slowly to be of practical use,” the implementation of the
Witten—Neal—Cleary algorithm used here” is optimized for speed — at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is

referred to Bell er oil‘ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman

algorithm instead of arithmetic coding. We changed our implementation when we found

that then Witten—Neal—CIeary algorithm“ outperformed our implementation of dynamic
Huffman coding"’- 3” in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-

rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have

implemented a straightforward RLE algorithm for our database, based on the description in

Sedgewick.” In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel-Ziv com-

pression algorithm. It compresses data by replacing frequently occurring strings (with min-

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 38 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 39 of 152

H03 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first

occurrence. Our implementation is a straightforward array-based encoding with constant-

length codes. The algorithm maintains a dictionary of recurring strings in order to do the

compression. In our system, the Lempel—Ziv algorithm is augmented with the Freeze heuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that

is, it prevents the replacement of previously encountered strings, regardless of how long

ago or how infrequently the string has been encountered. Freeze is primarily a speed op-
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but

the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-

lar enough to the original as to be nearly indistinguishable by human perception, and that

repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at

a minimal tradeoff. For instance, a very-high-resolution color image can be compressed

with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,

always less than 1 per cent per compression, to be introduced during each compression. Our

system uses the JPEG system” for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios

of between 15-to-1 and 25-to-1. The potential for this substantial savings is obtained by
the Discrete Cosine Transfonn portion of the algorithm, a lossy method. This determines a

limit on the amount of savings that can then be achieved by any lossless compressor. The

actual savings are realized by a lossless portion, known as the back end which is applied

to the preprocessed image data. The implementation of this module used in our system”
is a Huffman coder. It is independent of the lossy front end and can be replaced with a

run-length or textual-substitution based algorithm, to be selected by the synthesis system.

In our implementation, we chose to retain the original Huffman back end, a different algo-

rithm from the general-purpose dynamic Huffman coder which we also studied."’' 3” This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after

lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but

were not used because of proprietary considerations.”

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis

module, which includes the database of compression algorithms. All modules are written in

C and were tested on a Unix platform. The program uses a data directed style of implemen-

tation for choosing the compression algorithm to apply to a block. Thus, additional block

types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be

updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver perfonns two iterative passes through the file. It first performs block analysis

on the file one 5K block at a time. This block size was chosen after experimentation showed

that the response of the system to changes in block type became roughly stable as block

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 39 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 40 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1109

size exceeded SK (i.e., did not significantly increase as block size did), and that a block size

of 5K yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous

compressor select a suboptimal algorithm for any block). Finally, we found that the highest

level of adaptivity without a noticeable decrease in accuracy was achieved at SK, hence
our choice of SK as the block size.

For each block, the system invokes the four analysis modules ~ three for metric compu-

tation and normalization and one to determine the file properties - and stores their output.

It then performs the metric comparison and combines the results with the file property to
complete the table lookup for the current block. An identifying tag for the selected algo-

rithm is written to the ‘compression plan’ , an array which stores one complete compression

instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive

normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between

variance in character frequency and alphabetic redundancy. Also, the behavior of these func-

tions at asymptotes led to poor approximation of the overall distribution of data segments
in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-

sulting in inferior compression; and selection approached randomness as metric values for

both string repetition and alphabetic distribution tended toward extreme values. Using the

gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the

compression method in exactly those cases where the other methods performed worse.
The second pass performs the compression of each block. In order to improve perfor-

mance, this pass includes a simple optimization step which circumvents the overhead of
restarting compression after each fixed length block by merging contiguous blocks that are

to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks

using the algorithm recorded in the compression plan. The compressed data is written to an

output buffer, while the compressed length (which indicates where in the compressed file

a compressed block begins and ends) and compression method are recorded in a separate
history_for reference at decompression time. If negative compression or no compression is

achieved, or if the block was already marked uncompressible, then the data is copied directly

to the output buffer (the full block length and a code for ‘no compression’ are recorded in

the compression history). Upon reaching the end of the blocks, the system writes out the

compressed data from the output buffers and prepends the encoded compression history to

produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets
the history tag and performs the necessary operations. The tags are a stored version of the

compression history in compact, encoded form. Since the heterogeneous system generates

different compression sequences for each file, and since the length of a compressed block

varies with both the length of the original block and the compression method used, these tags
are necessary to guide the decompression process. Currently only the compressed lengths

of each block and the method of compression are stored, but a checksum for the original

(decompressed) block length can be-added with negligible overhead. When executed in

reverse order on each compressed block, the instructions in the history tags result in the
original file. For simplicity and security, they are prepended to the compressed file (and

can easily be encrypted).

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p.40 of 152
I .-._ -



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 41 of 152

1110 w. H. HSU AND A. E. zwxmco

EXPERIMENTAL RESULTS

Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test files. These files

range in length from approximately 39K to 366K, with representative files from each of the

ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities

for image viewing, business, or audio processing, and hypothetical multimedia databases and

programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed in Table II.

To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series

of test files is listed in Table III. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those

which are likely to exist in a typical user environment). This was performed manually with

consideration toward combinatorial constraints and the criteria of realistic data modeling.

Since all of the files in the source collection originate from common commercial sources

or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably

simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix

compress and our heterogeneous compressor; a Macintosh for Srufilt and Compact Pro;
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that

the file lengths agreed exactly among all platforms.

Performance

In this section, we review and analyze the performance of the heterogeneous compressor

with respect to compression savings, as compared with four of the commercial systems

previously discussed; and execution time. Finally, we briefly note the implications of running

the experiments and compiling performance data on several different architectures.

Compression Savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Unix compress, PKZIP, Srujflt, Compact

Pro and the heterogeneous compression system. The heterogeneous compressor achieved

the greatest compression, with a total compressed length of 1828K. This represents an

additional savings of 162K (more than eight per cent) over the best commercial system

(Compact Pro V1.32), and 339K (nearly 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 2375K.

Table V compares the percentage savings obtained by our system to the savings obtained

by the commercial programs and the heterogeneous system. The last two columns show the

difference in per cent saved between the synthesis system and the best and average of the

four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of

20 cases and better than three of the four commercial systems in this one case (file 15).

The difference in compression for this file is only 0.02 per cent, whereas for all the other

files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 41 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 42 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1111

Table II. Files used to compose the test suite and their respective origins

File File File

designation name type

audiol cosby.snd SoundMaster Macintosh audio file

lowrdl ticker.txt ASCII characters from stock ticker

lowrd2 exsound compressed World Builder sound library
1owrd3 huff compressed Unix executable
lowrd4 appnote.uue uuencoded text

textl phrack.txt English text
text3 techbook.txt Unix news article

text4 quantal.txt English text
text5 attilla.fluff English text
textfi shadownfluff English text
text? quanta2.txt English text

execu] ad Unix executable
execu2 sh Unix executable

execu3 blob Silicon Graphics executable
execu4 zero Silicon Graphics executable
execu5 network2.exe IBM PC executable
execu6 hostname Unix executable

graphl compmiscdrw Lotus Freelance line drawing
graphz cornpperi.drw Lotus Freelance line drawing
graph3 computetzdrw Lotus Freelance line drawing
graph4 lowresrnpt MacPaint file
graph5 3dbar.drw Lotus Freelance 3-D bar chart
graphfi image.ppm PPM (high-resolution image) file
graph? grp4 MacPaint file

objecl testl.o Unix object file
objec2 test2.o Unix object file
objec3 test3.o Unix object file

sourcel table.c C source code
source2 freezes C source code

commercial compressor. The average of each column appears in the bottom row; note that
the ‘percent difference’ averages are not weighted by file length, as each file is considered

a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo-

rithms and heuristics used, improvement of the implementations that we use should yield

higher performance. This is evidenced by comparing the results of compressing a file dom-
inated by string repetitions by Unix compress and Compact Pro. Both are implementations

of the Lempel—Ziv algorithm. Unix compress has no heuristics, whereas Compact Pro is

a better implementation of LZ77.5' ” Compact Pro consistently outperforms compress. It
should be noted that the performance of the Freeze variant of Lempel—Ziv“ used in our sys-

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 42 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 43 of 152

File
number

NO%--JO'\(.Jl-l'-‘hlaJI~Jr--

W. H. HSU AND A. E. ZWARICO

Table III. Combinations of the test files and the resultant simulated data types

File

composition
textl -—- lowrdl

graph’! — object
lowrdl — text3 — graph4
graph? —-— execu3
audiol -—— graph]
text2 —~ lowrdl —- graph3
lowrd3 —- execul

graph2 — lowrd2 —- execoz

sourcel — lowrd3 — graphfi

audio] — text4
lowrdl -- execu4

graph’? — text5
lowrd2 — tcxté

text3 — audio] -— graphs
lowrdl -—- text4 — souroe2

text’? — iowrd2 — graph3

graph4 —-— audiol —— execufi
execu4 -—- graph’! —- text4
objec3 — low:-d3 —~ execufi

objecl — audiol —— execu2

Classification of
data modeled

news or stock report

object file for a graphics viewer
multimedia application (text/graphics)
graphics viewer

multimedia data file (soundlgraphics)
multimedia data file (textfgraphics)
commercial utility

multimedia application
(graphicslsoundiexecutable)
multimedia data or source file

(sourcefcompressed binary/image]
multimedia data file (sounditext)

statistical application with data
multimedia data file {text/graphics]
multimedia data file (soundftext)
multimedia data file flextisoundfgraphics)

source file for multimedia program
(textlsource code}
multimedia data file

(textfcompressed atidiotgraphics)

multimedia application (soundtgraphics)
multimedia application (gtaphicsltext)
commercial utility
audio application

tern does consistently better than compress and is comparable to Compact Pro on standard

industrial benchmarks? Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, in approximate units, the running time of the heterogeneous

compressor against those of the four commercial systems the savings rates of which for our

test files are documented above. The units are approximate for two reasons. First, because

the four test systems are commercial the source code for three of them is not publicly

available’, which renders an exact measure of user time infeasible. This concern is in part
assuaged by the non—multitasked, single-user nature of the microcomputer operating systems

on which three (compress for Linux notwithstanding) of the commercial systems reside.
Second, however, the drastic architectural and organizational differences among the various

native machines renders uniform comparisons unreliable. This applies even to normalized
execution times because the host machines differ not merely in clock cycle speed. but

in instruction set architecture and dynamic instruction frequencies for similar compression

algorithms. The exact running times reported in this section is only that of the heterogeneous

‘ As noted, however. the Lcrnpel-Ziv impletrtentation employed by Srufiir Ctmsic is nearly identical to that of ‘Unix compress.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

_.... __Ex.1n25np.4;m1_152_?



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 44 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1113

compressor. These comprise the non-commercial‘ compression systems for which source
code is available for profiling. For the commercial systems we report the observed wall

clock time to provide a standard of comparison. but note that the host machines vary in

computational power. ‘

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Compact Heterogeneous

number length compress v1.10 ' Pro v1.32. compressor
39.348 20.578 17,119 16,831 16,315
44,202 44,202 39.813 41,112 37,388

46,629 46,629 46,629 40,367 36,477
59,254 52,076 40,571 41,607 38,007

169.108 168.903 151,478 149,701 148,917 134,524

100,476 69,771 53,043 65,417 52,349 50,906
131,663 131,663 103 .544 106,643 109,979 96,429
220.644 190,971 137,886 173,677 137,401 127,384

301 ,805 145,993 112.503 137,685 115,096 103,730
255,306 204,457 191,373 206,193 183,313 168,675

59,305 30,178 22,782 29,701 22,858 21,774
51,715 51,715 43 ,032 46.462 44,107 40,229
63,189 63,189 58,247 59,569 59,934 54,481

14 196,789 176,276 196,789 172,486 151,057 137,052

15 148,908 73,555 63,748 75,595 64,618 63.778
16 164,535 141,067 132,992 135,245 110,093 104,175
17 203,912 203.912 184,657 189,398 202,821 170,564
18 200,640 128.675 107,728 125,461 104,711 101,674

19 366,557 265.1 '14 198,727 265,027 198,756 187,659
20 278,152 223,277 193,980 224,943 191,763 181,030

.—-.—-._-._.\ooo--:IO\UI«l->-.l..-Jl\J-—-
L-Jlxav-G

Total 3,102,137 2,432,201 2,096,646 2.312.653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above

appear in Table VI. All of the execution times are measured in wall‘ clock units except for
the heterogeneous compressor’s, which is a total of user times as reported by prof, the C

profiler under Unix. The wall clock time was empirically observed not to differ noticeably

from this total on an unloaded Unix machine. The commercial systems were similarly tested

on unloaded (or single-task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken
overruns on different Sun workstations of comparable power (documented below). A Unix

implementation of PKZIP was also tested on one of these Sun workstations, and achieved

an execution time of 56 s - only slightly better than the personal computer version. The

running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms of running time.

' For this purpose we continue to consider Unix compress commercial, due to its wide range of versions.

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 44 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 45 of 152

W. H. HSU AND A. E. ZWARICO

Table V. Percent savings for the test compression systems‘

Unix PKZIP Srufiir Compact Heterogeneous Best

compress v1.10 Classic Pro v1.32 compressor win
(% saved) (96 saved) (% saved) (% saved) (% saved) (‘BE diff.)
47-70 56-49 47-71 57-23: 58-54 1-31

0-00 9-93:: 8 -57 6-99 15-42 5-49
0-00 0-00 7-22 13-43»: 21-77 8-34

12-11 31-53:: 23-71 29-78 35-86 4-33
0-12 10-43 1 1-48 1 I -94* 20-4-5 8-51

30-56 47-21 34-89 47-90: 49-34 1-44
0-00 21 -36: 19-00 16-47 26-76 5-40

13-45 37-51 21-29 37-73:: 42-27 4-54

51-63 62-72* 54-38 61-86 65-63 2-91
19-92 25-04 19-24 28 -203 33-93 5-73
49-11 61-59: 49-92 61-46 63-28 1-70

0-00 16-79:: 10-16 14-71 22-21 5-42
0-00 7-82* 5-73 5-15 13-78 5-96

10-42 0-00 12-35 23-24»: 30-36 7-12

50-60 57-19* 49-23 56-61 57-17 -0-02
14-26 19-17 17-80 33-09* 36-69 3-60
0-00 9-44* 7-12 0-54 16-35 6-91

35-87 46-31 37-47 47-81* 49-33 1-51

19 27-67 45-79:: 27-70 45-78 48-80 3-02
20 19-73 30-26 19-13 31-06:: 34-92 3-86

3::-3-‘G;-;;:E\Dao-Ja\Ln.P»wN—
Average 19-16 29-83 24-21 31-55* 37-14 4-35

“ The started entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com-

pression plans from encapsulated primitives for heterogeneous files was illustrated. The use

of property analysis and redundancy metrics was experimentally successful, the latter veri-
fying the applicability of statistical data analysis to automatic programming in this domain.

The positive test results obtained with the primitive database currently available would

probably be even better with improved implementations of the algorithms and heuristics.

The statistical foundations of the heterogeneous system proved strong enough to be of def-
inite relevance to the operating systems community, and might be useful in an information

theoretic context. The benefits of data compression are ubiquitous in that savings through

compression are independent of hardware and storage capabilities; selective techniques in-
crease these savings by 3. significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization.
The increase in analysis accuracy that this would bring would demand more primitives and

heuristics - such need would arise in any case with the continuing development of new

files types, such as high-resolution animation and three~dimensional images.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 45 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 46 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

‘Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution Lime
(5) (min)

Unix compress so 26 0:26
PKZIP V1.10 67 1:07
Stufflt Classic 1152 19:12

Compact Pro v1.32 1594 26:34
Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file

is found to be of a lossily compressible data type. Typically, these include high—resolution
images (for JPEG) and speech, general high-definition audio, and high—resolution animation

files. A special case could be implemented specifying that when an entire file matching a

single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,

the lossy algorithm may be applied.
The difficulty is that without explicit information on where loss-perrnissible portions of

a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely

guarantee that no data will be distorted which the user is not willing to have distorted.

Thus no lossy methods can be safely applied to any segment in the block-based system.

Thus a heterogeneous system would require either full interactive guidance from a user
who could inspect the file or knew its contents, or would require improved magic numbers

which encoded the lengths of loss-permissible segments. The heterogeneous system could

then scan for these codes during the property analysis phase and preempt or modify metric-

based selection if a lossy algorithm is warranted. The latter approach seems far superior

to interactive compression, which places an intolerable burden of responsibility on users

(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized

(especially lossy) compression algorithms such as IPEG and MPEG. For example, by des-
ignating RLE compression '0 per cent alphabetic distribution, 100 per cent run length, 0

per cent string repetition‘ and by defining its single-type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate ‘40 per cent AD, 0 per cent

RL, 60 per cent SR‘ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for

files which our system uses, and would help in analysis of the performance of composite

compression techniques (which handle multiple redundancy types). Non-synthesized com-

posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table

that the database of primitives used in this heterogeneous system may not be as well-stocked

as it optimally could be. Storer‘ lists a plethora of optional heuristics which are applicable
to Lempel—Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We

are grateful to the faculty and staff of the JI-IU Computer Science Department, and to the
Brown University CS Department, for their assistance throughout this work.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 46 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 47 of 152

1116 w. 1-1. HSU AND A. E. ZWARICO

We would like to thank Leonid Broukhis, Graham Toal, and Kenneth Zcger for discus-

sions on some of the research reported here. We also thank Jonathan Eifrig, Bill Goodman,

and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re-

viewers for their comments and suggestions, especially for introduction to relevant literature
in arithmetic coding.

REFERENCES

James A. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD, 1988.
Phillip W. Katz. PKZIP. Commercial compression system, version 1.1, 1990.
Sun Microsystems, compress. Commercial compression system, operating system version 5.3, September
1992.

Raymond Lau, Stuffit Classic and Stufflt Deluxe. Commercial compression system, 1990.
Bill Goodman, Compact Pro. Commercial compression system, v1.32, 1991.
Terry A. Welch, ‘A technique for high performance data compression’, IEEE Computer, 17(6), 8-19 (1984).
Gilbert Held and Thomas R. Marshall, Data Compression." Techniques and Applications: Hardware and
Software Considerations, 3rd edn, John Wiley and Sons. 1991.
Leonid Broukhis, Freeze implementation of LZI-Iuf algorithm. comp.sources.misc archives, Internet, 1991.
Jean—Loup Gailly, comp.compression benchmark (Calgary test corpus). In compcompression FAQ list, J.
Gailly, (ed.), 1992.
Jeffrey S. Vitter, ‘Dynamic Huffman Coding’, ACM Transactions on Mathematical Software, (June I989).
J. Ziv and A. Lempel, ‘A universal algorithm for sequential data compression’, IEEE Transactions on
Information Theory, 23,(3), 337-343 (1977).
J. Ziv and A. Lempel, ‘Compression of individual sequences via variable~rate coding‘, IEEE Transactions
on Information Theory, 24(5), 530-546 (1978).
Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan and Victor K. Wei, ‘A locally adaptive data
compression scheme’, Communications of the ACM, 320-330 (April 1986).
Yooichi Tagawa, Haruhiko Okumura and Haruyasu Yoshizaki, LZHuf: encodingldecoding module for
Llriare. Compression system, version 0.03 (Beta), i989.
Haruyasu Yoshizaki, LHA: A high-performance filercompression program. Compression system, version
2.11, 1991.

Edward R. Fiala and Daniel H. Greene, ‘Data compression with finite windows‘, Communications of the
ACM, 490-505 (1989).
Ellis Horowitz and Sartaj Sahni, Fundamentals of Data .S'tructure.9 in Pascal, Computer Science Press,
Rockville, Maryland. second edition, 198?.
Graham Toal. Personal communication. Unpublished, 1992.
Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of lnfonnution by
Computer, Addison-Wesley, Reading, MA, 1989.
Ian F. Darwin, file (program). Berkeley Unix operating system, 1987.
David A. Huffman, ‘A method for the construction of minimum-redundancy codes‘, Proceedings of the
IRE, number 40, 1952, pp. 1098-1101.
Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communications, University of
Illinois Press, Urbana and Chicago, 1963.
Robert Sedgewick, Algorithms, 2nd edn, Addison-Wesley, Reading, MA, 1988.
Timothy C. Bell, John G. Cleary and Ian H. Witten, Text Compression, Prentice Hall. Englewood Cliffs,
New Jersey, 1990.
Sheldon Ross, A First Course in Probability, Macmillan Publishing Company, New York, third edition,
1988.

Ian H. Witten, Radford Neal and John G. Cleary. ‘Arithmetic coding for data compression’, Communica-
tions of the ACM, 30(6), 520—540 (1987).
Independent JPEG Group. 'JPEG image compression system’, thinlceom FTP archives, Internet, 1994.
Jean-Loup Gailly. compcompressionieomp.compressi0n.research FAQ list. J. Gailly (ed.), URL
http: I /mm . cis . ohio—st-.a.te .edu/hypertexflf aq/usenat Icompress ion-f aqftop .htm‘.L, 1994.
James A. Storer, image and Text Compression, Kluwer Academic Publishers, Norwell, MA, 1992.
Graham Tbal. C implementation of dynamic Huffman compressor by J. S. Vitter. comp.source.misc
archives, Internet, 1990.

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 47 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 48 of 152

Wiley Online Library & Logm I Register

luawasilaanpv
.1 Go to old article view

Practiceand Experience T-fie
Explore rhiournl > Advertisement

Article 5-'-Ht" I ‘ii. ‘~. la‘. lx

Wiley

Editing
heterogeneous files _

Services
William H. Hso, Amy E. Zwarico
Automatic synthesis of compression techniques for i

VlEW lSSL.lE TOE
First published: October 1995 Full publication history Volume 25, issue 10OCIODEF ‘I995
DOI: 10.1 UU2r'5pE.438U251UU3 Viewfsave citation pages 1997.11-i5

Cited by: 1 article Q Citation noois Translation

E") Services

Abstract

We present a compression technique for heterogeneous files, those files which contain multiple types
of data such as text, images, binary, audio, or animation. The system uses statistical methods to
determine the best algorithm to use in compressing each block of data in a file lpossiblya different
algorithm for each block). The file is then compressed by applying the appropriate algorithm to each
block. We obtain better savings than possible by using a single algorithm for compressing the file. The
implementation of a working version of this heterogeneous compressor is described, along with
examples of its value toward improving compression both in theoretical and applied contexts. We
compare our results with those obtained using four commercially available compression programs.
PKZIP, Unix compress, Stufflt, and Compact Pro, and show that our system provides better space
savings.

Manuscript
Formatting

Manuscript

_ _ _ Formatting
» Continue reading full article

‘.5 Related content

Articles related to the one you are viewing Manuscript
The articles below have been selected for you based on the article you are currently viewing Formatting

Compression techniques for Chinese text
Phil Vines, Justin Zobel
October ‘l 998

Lem pel-Ziv compression of highly structured documents Manuscript
joaquln Adiego, Gonzalo Navarro, Pablo de la Fuente Format]-jng25 January 2007'

Word-based text compression
Alistair Moffat

February 1939

Manuscript
Formatting

LZgrep: a Boyer—Moore string matching tool for Ziv—Lempe| compressed text
Gonzalo Navarro, jorma Tarhio
5 May zoos

Design and implementation of a file system with on-the-fly data compression for Gl~.lU.lLinux
Praveen B, Dee -



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 49 of 152

 

DELL |NC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 49 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 50 of 152

SOFl'W'ARB—PRACl"lCE AND EXPERIENCE. VOL. 25(ll‘J). 1097-! l 16 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for

Heterogeneous Files

WILLIAM H. HSU

Deparonent of Computer Science. University of Illinois at Urbano-Ckampaign, Urbana, IL 61801, U.S.A.
(email: bh.w@c.r.uiuc.edu, voice: (217) 2444620)

AND

AMY E. ZWARICO

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 2}2i'8, U.S.A.
(emaii: amy@cs.jhu.edu, voice: (410) 5 i‘ 6-5304)

SUMMARY

We present a compression technique for heterogeneous tiles, those files which contain multiple types of
data such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained lillg four commercially available compression programs, PKZIP, Unix compress, Srufifiit,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adnptiveiselectivc data compression algorithms; redundancy metrics; heterogeneous files; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard-

ware standards, rnorc techniques are under development. Historically, research in data com-

pression has been devoted to the development of algorithms that exploit various types of

redundancy found in a file. The shortcoming of such algorithms is that they assume, often

inaccurately, that files are homogeneous throughout. Consequently, each exploits only a

subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files.‘ For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and audio data), achieves mediocre performance on

natural language text files, and performs poorly in general on high-redundancy binary data.

On the other hand, run length encoding works well on high—redundancy binary data, but

performs very poorly on text files. Textual substitution works best when multiple-character

strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038-0644:’95:"101097-20 Received 20 April I994

©1995 by John “BBLE fiQo:,1EMc CORP., HPE co., Hlfeoieflédébmao’ 1995
Ex. 1026, p. 50 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 51 of 152

1098 W. H. HSU AND A. E. ZWARICO

length of these strings decreases. These relative strengths and weaknesses become critical
when attempting to compress heterogeneous files. Heterogeneous files are those which con-

tain multiple types of data such as text, images, binary, audio, or animation. Consequently,
their constituent parts may have different degrees of compressibility. Because most com-

pression algorithms are either tailored to a few specific classes of data or are designed to
handle a single type of data at a time, they are not suited to the compression of heteroge-

neous files. In attempting to apply a single method to such files, they forfeit the possibility

of greater savings achievable by compressing various segments of the file with different
methods.

To overcome this inherent weakness found in compression algorithms, we have developed

a heterogeneous compressor that automatically chooses the best compression algorithm to

use on a given variable-length block of a file, based on both the qualitative and quantita-

tive properties of that segment. The compressor detennines and then applies the selected
algorithms to the blocks separately. Assembling compression procedures to create a specif-

ically tailored program for each file gives improved performance over using one program

for all files. This system produces better compression results than four commonly available

compression packages, PKZIP,2 Unix compress? Stufi‘lt,“ and Compact Pros for arbitrary
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compression

system for heterogeneous files. The second is the development of a method of statisti-

cal analysis of the compressibility of a file (its redundancy types). Although the concept
of redundancy types is not new,” synthesis of compression techniques using redundancy

measurements is largely unprecedented. The approach presented in this paper uses a straight-

forward program synthesis technique: a compression plan, consisting of instructions for each

block of input data, is generated, guided by the statistical properties of the input data. Be-
cause of its use of algorithms specifically suited to the types of redundancy exhibited by

the particular input file, the system achieves consistent average performance throughout the

file, as shown by experimental evidence.
As an example of the type of savings our system produces, consider compressing a

heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-

dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics. In
this case, a reasonably sophisticated compression program might recognize the increased

savings achievable by employing Huffman compression, to better take advantage of the fact

that the majority of the data is graphical. However, none of the general-purpose compres-

sion methods under consideration are optimal when used alone on this file. This is because

the text part of this file is best compressed by textual substitution methods (e.g., Lempel—

Ziv) rather than statistical methods, while the low-redundancy data‘ and graphics parts

are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamic

Huffman coding) rather than Lempel—Ziv or run-length encoding. This particular file totals

45K in length before compression. A compressor using pure dynamic Huffman coding only
achieves about Tr’ per cent savings for a compressed file of length 42.2K. One of the best

general-purpose Lempel—Ziv compressors currently available” achieves 18 per cent sav-

ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding on

the first and last segments and Lempel—Ziv compression on the text segment in the middle,

achieving a 22 per cent savings and producing a compressed file of length 35.6K. This is

a 4 per cent improvement over the best commercial system.

" This denotes. in our system. a file with a low rate of repeated strings.

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1026, p. 51 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 52 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose of our experiments was to verify the conjecture that a selective system

for combining methods can improve savings on a significant range of heterogeneous files,

especially multimedia data. This combination differs from current adaptive methods in

that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to

changes in particular types of redundancy, such as run-length, which do not require changing

the underlying algorithm used in compression. Thus they cannot adapt to changes in the

type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-

ing a discussion of hybrid and adaptive compression algorithms and a description of four

popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained

from test runs of the completed system, and comparison of the system’s performance against

that of commercial systems. Finally, implications of the results and possibilities for future

work are presented.

RELATED WORK

It is a fundamental result of information theory that there is no single algorithm that per-

forms optimally in compressing all files.‘ However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial

compression packages-

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development
of adaptive compression algorithms, and the composition of various algorithms. Adaptive

compression algorithms attune themselves gradually to changes in the redundancies within a

file by modifying parameters used by the algorithm, such as the dictionary, during execution.
For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman

coding” maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel—Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The

first variant, known as LZ77 or the sliding dictionary or sliding window method, selects

positional references from a constant range of preceding strings.“ “ These ‘back-pointers‘
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.

When the dictionary — a table of strings from the file — is completely filled, the contents
are not discarded. Instead, an auxiliary dictionary is created and updated while compression

continues using the main dictionary. Each time this auxiliary table is filled, its contents are

‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which
two pages are used but only one is ‘active’ — these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel—Ziv—Welch

DELL |NC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 52 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 53 of 152

1100 W. H. use AND A. E. zwxrrrco

(LZW} algorithm, a descendant of LZ'}'8 used in Unix cornprass.“ '3 Both LZW and LZ78
vary the length of strings used in compression.“ '2

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move-'1"o-

Front (MTF) method, was developed by Bentley et at.” In MTF, the ‘word code‘ for a

sy mbol is determined by the position of the word in a sequential list. The word list is ordered

so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which

they are associated, such as a change in the alphabetic distribution. They do not exploit

changes across different redundancy types in the files. Therefore a so-called adaptive method

typically cannot directly handle drastic changes in file properties, such as an abrupt transition

from text to graphics. For example, adaptive Huffman compressors specially optimized for

text achieve disproportionately poor performance on certain image files. and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become

more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-
rithm (as well as the duration of its applicability) before compression begins, rather than

modifying the technique for each file during compression. In addition, while adaptive meth-

ods make modifications to their compression parameters on the basis of single bytes or fixed

length strings of input, our heterogeneous compressor bases its compression upon statistics

gathered from larger blocks of five kilobytes. This allows us to handle much larger changes

in file redundancy types. This makes our system less sensitive to residual statistical fiuctu-

ations from different parts of a file. We note that it is possible to use an adaptive algorithm

as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression

algorithms. Composition can either be accomplished by running several algorithms in suc-

cession or by combining the basic algorithms and heuristics to create a new technique. For

example, recent implementations of ‘universal’ compression programs execute the Lempel—

Ziv algorithm and dynamic Huffman coding in succession, thus improving performance

by combining the string repetition-based compression of Lernpel—Ziv with the frequency

based compression strategy of dynamic Huffman coding. One commercial implementation

is LHarc.""” Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempe1—Ziv algorithm, which filters Lempel—Ziv compressed output through a

Huffman coder. An example of a truly composite technique is the compression achieved
by using Shannon—Fano tries‘ in conjunction with the Frala—-Greene algorithm (a variant

of Lempel—Ziv)'5 in the PKZEPZ commercial package. Tries are used to optimally encode
strings by character frequency.” PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks."

Our approach generalizes the ideas of successively executing or combining different

compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The

algorithms themselves may be simple or composite and may be adaptive. All are treated as

atomic commands to be applied to portions of a file.

° A err’: is a tree of variable degree 2 2 such that (1) each edge is labelled with a character, and the depth of any node
represents one morn: than the number of characters required to identify it; (2) all internal nodes are intenrrediate and represent
prefixes of keys in the Erie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the strings computer and compare would have keys at a depth of
five which share a common prefix of length four.

DELL lNC., EMC CORP., HPE CO., HPES, LLC -

Ex. 1026, p. 53 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 54 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES son HETEROGENEOUS FILES I101

The problem of heterogeneous files was addressed by Toal” in a proposal for a naive

heterogeneous compression system similar to ours. In such a system, files would be seg-
mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for

each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would be independently compressed. Our system, however, perfonns more in-depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthennore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated-block method is the implementation of a
multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-

dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that
the overhead of changing compression schemes from one block to another dominated the

additional savings that resulted from selection of a superior compression method.” This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm used.* We have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method.

This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-

ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-DOS? Unix compress? and Stujflr Classic“
and Compact Pm,5 developed for the Apple Macintosh operating system. Each of these

products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel—Ziv algorithm.“ It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive

textual substitution algorithms, periodically tests its own performance and reinitializes its

string table if the amount of compression has decreased.

Stufilt makes use of two sets of algorithms: it first detects special-type files such as

image files and processes them with algorithms suited for high-resolution color data; for the

remaining files, it queries the operating system for the explicit file type given when the file

was created, and uses this information to choose either the LZW variant of Lempel—Ziv,“' 5
dynamic Huffman coding, or run-length encoding. This is a much more limited selection

process than what we have implemented. Additionally, no selection of compression methods

is attempted within a file. Compact Pm uses the same methodology as Stufilr and compress,

but incorporates an improved Lempel—Ziv derived directly from LZ77." The public-domain
version of Stufflr is derived from Unix compress, as is evident from the similarity of their
performance results.

" For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

DELL |NC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 54 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 55 of 152

1102 W. H. HSU AND A. E. ZWARICO

Compression systems such as Stufilt perform simple selection among alternative com-
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
Stufllr uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm — that is, no measures of

redundancy are computed. Earlier versions of Stufilt (which were extremely similar to Unix

compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor

over this approach are that it uses a two-dimensional lookup table, indexed by file proper-

ties and quantitative redundancy metrics, and — more important — that it treats the file as a

collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (SK in
the current implementation), each containing a potentially different type of data and thus

best compressed using different algorithms. The actual compression is accomplished in

two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is detennined by the values of three

quantitative metrics representing the alphabetic distribution, the average run length and the

string repetition ratio in the file. If these metrics are all below a certain threshold, then the

block is considered fully compressed (uncompressible) and the program continues on to the

next block. Otherwise, using the block type and largest metric, the appropriate compression

algorithm (and possible heuristic) are chosen from the compression algorithm database. The

compression method for the current block is then recorded in a small array-based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes

the size of a segment of data to be compressed using a particular algorithm. In this optimiza-

tion, which is interleaved with the actual compression, adjacent blocks for which exactly

the same method have been chosen are merged into a single block. This merge technique

maximizes the length of segments requiring a single compression method by greedily scan-

ning ahead until a change of method is detected. Scanning is performed using the array

map of the file generated when compression methods were selected from the database. A

compression history, needed for decompression, is automatically generated as part of this

phase.

The newly compressed segments are written to a buffer by the algorithm, which stores

the output data with the compression history The system then writes out the compressed

file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible

than traditional adaptive systems to biases accrued when the data type changes abruptly

during compression. Adaptive compressors perform all operations myopically, sacrificing

the ability to see ahead in the file or data stream to detect future fluctuations in the type

of data. As a result, adaptive compressors retain the statistical vestiges of the old method

until these are ‘flushed out‘ by new data (or balanced out, depending upon the process for
paging and aging internal data structures such as dictionaries). Thus adaptive compressors

may continue to suffer the effects of bias, achieving suboptimal compression. On the other

hand, by abruptly changing compression algorithms, our technique completely discards all

remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

DELL lNC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 55 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 56 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once

for switching to what will be the best compression method for an entire variable—length

segment. The primary advantage of adaptive compression techniques over our technique is

that the adaptive compression algorithms are ‘online‘ (single-pass). This property increases

compression speed and, more important, gives the ability to compress a data stream (for

instance, incoming data packets in a network or modern transmission) in addition to files

in secondary storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the

metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter-

mined by the type of data contained in a block and the type of redundancy (if any) in the

data. These two properties are represented by four parameters: the block type, and the three

redundancy metrics. The block type describes the data in the block — text, binary, graphical,

etc. The three redundancy metrics are the degree of variation in character frequency, average

run length in the file, and the string repetition ratio of the file. They provide a quantitative

measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and

qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held? and Salton.” We have refined the process for computing those attributes referred
to as datanalysis results by Heidi and as Statistical ianguage characteristics by Salton” to

obtain an actual guide for compression. The remainder of this section describes how these

four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica-
tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of

binary data), natural language text, computer source code, low redundancy binary, digitized

audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,

and binary object data. ANSI text is composed of characters from a superset of the ASCII

alphabet. Non-natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting

data, uuencoded and Br'nHex encoded data (which has the same character distribution as

binary data but is converted to text for ease of transmission). Natural language text in-
cludes text written in English as well as other languages which are representable by the

Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic

alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-

ings). Computer source code uses the ASCII alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio

DELL lNC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 56 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 57 of 152

1104 W. H. HSU AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)

are usually extremely large. Low-resolution graphics have long runs of contiguous repeated

bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution

graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and

comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the

Unix file command.“ file works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systems. new-file works in a similar fashion, with two modifications.

First, it examines and compares not only the first 512 bytes of a data set, but also 512

bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides

a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, newefile decides on the

‘most applicable’ data type by a majority vote (or the first data type detected in the case of

a three—way tie). The other change is that the known patterns of data have been increased

by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-

pressibility of a block of data. They are: the degree of variation in characterfrequency or

aiphabetic distribution, MAD; the average run iength of the block, MRL; and the string

repetition ratio of the block, MSR. In general, these three manifestations of redundancy are

independent. Each of the redundancy types is exploited by different compression algorithms.

Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In

arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffman“ and Shannon-

Fano” algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units

occurring next to one another, are exploited by run length encoding algorithms.” In these

algorithms, contiguous strings are replaced by a single occurrence of the string, called a

run, plus a count of the number of identical strings following. Both alphabetic distribu-

tion and average run length are sometimes characterized as statistical redundancy metrics.”
Recurrent strings, which occur repeatedly in the input stream with any number of inter-

leaved symbols, are exploited by textual substitution algorithms such as Lempel—Ziv.‘5-""2

In these algorithms, recurrent instances are replaced with positional references (pointers) to
the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described

in texts by Storer' and Shannon.” Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character.” This was
determined experimentally by presenting fragments of (unfamiliar) English text to human

subjects and recording the frequency with which they guessed unknown letters. The frag-
ments were revealed character by character, so that letters at the end of long or uncommon
words were easiest to guess and letters at the beginnings of words were hardest. The ob-

servation that binary executables are known to possess high average run lengths is found
in Storer.' However, this property is rarely exploited or measured.

DELL |NC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 57 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 58 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1105

Each redundancy metric is calculated by a separate statistical sampling routine and nor-
malized using a gamma distribution function G to be a number between 0 and 10 so as

to simplify comparison among the different metrics. The gamma distribution was chosen
because the graph of each of the unsealed redundancy metrics for a test set of 50 files, when

plotted on a histogram, approximated a gamma distribution. Normal and X2 distributions
were also considered, but these proved to be too specific for the application (since they

are both specific parametric cases of the gamma distribution). The gamma distribution is

defined as follows (cf Ross”):

G.,(z:.,) E’ f.,[1:)d2:
ATe—)\.,z(/\TI)£,-—l

f1'(-17) pm)
00

[‘(t.,) /0 e_yy“"1dy
where f., is the density function, I‘ is the gamma function, :..-2, is the unnormalized measure,

t, is the shape parameter for the gamma distribution, and A, is the scale parameter for

the gamma distribution. The 1' subscript simply represents the redundancy type under con-

sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, t,- and AT

respectively, were determined by fitting the best gamma distribution curve to the data set.

This was done by performing the preferred compression method for each file and tabulating

the induced ratio among normalized metrics to yield the desired parameter values for each

segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metric (the degree of variation in character frequency) of a
block is calculated by taking the population (root~mean-square) standard deviation of the

ordinal values of characters in the block and dividing it by the block length (in bytes). The

MAD metric is calculated by the following formulas:

= 10 * GAD(3«'AD)
0.’

block length in bytes

Zcecharset (C _ “)2
256 '

where c is the ordinal value of a character and pi is the average ordinal value of all characters

in a block. The nonnalization uses rm = 1.10 and AM; = 53.0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block

by the number of runs. A run is defined to be a repetition of symbols (either bits or

bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f = 000l1ll00l11000O is a file of 16 bits, then the number of bit runs is 5, and the number

of byte runs is 2. The scaled metric MRL is obtained by:

MRL =3 10 it GRL(.’L"R[_)

file length in bitsIIIRL =
number of runs

DELL lNC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 58 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 59 of 152

1106 W. H. HSU AND A. E. ZWARICO

with gamma distribution parameters in = 0.50 and AR; = 12.0.
The string repetition ratio metric is the total number of 11-bit strings in the block divided

by the number of distinct n.-bit strings (up to 100K). In our implementation, n is 32, the
word size of our machine. The normalized metric M5]; is obtained by:

Msn = 10 * GsR(3?sR)

number of 11 bit strings

number of distinct it hit strings
1'51: =

with gamma distribution parameters tsg = 0.18 and /\5R = 0.2.

The alphabetic distribution and average run length metrics can be calculated in linear

time. The string repetition ratio can be computed in O(n log rt) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use

an O(n2) version. New strings are stored in an array rather than a binary tree, which would

require more insertion overhead (and is not worth while for the 5K block length used in

the current system). Our routine integrates f, (:12) by Simpson’s Rule with n = 10 intervals.
The largest of the three metrics is assumed to represent the most significant type of

redundancy present in the block. It is expected that compression will decrease at least

one of the metrics, and experiments conducted on a wide variety of files have proven this

convention to be reliable. Experiments have also shown that if all the normalized metrics are

smaller than 2.5, the file is considered not compressible, and the system records a verdict of

‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,

the file is considered compressible. The maximum of the normalized metrics is then selected

and used in conjunction with the file type to select the appropriate compression algorithm

from the lookup table described in the following section. A negative compressibility test

does not always imply that all three metrics are below the threshold. In some cases, the

only redundancy type for which a metric is above the threshold accesses a null entry in the

database of compression algorithms. This is interpreted as a decision that the (poor) potential

for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the

column indices. Each entry of the table contains descriptors which are used to access the

code for an algorithm-heuristic pair. It should be noted that four of the entries are blank

(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that

it is above the threshold. As an example of using this table, consider a high-redundancy

binary executable file whose highest metric is the string repetition metric Msk. Together,
this pair indicates that the Lempel—Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,“ Lempel—Ziv,”
run length encoding (RLE),33 and IPEG for imageigraphics compression.”

Arithmetic coding algorithms compress data by representing that data by an interval of

DELL lNC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 59 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 60 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 110?

Table 1. Database of compression algorithmsl

MAD Mat

ANSI arithmetic coding run-length encoding
* byte—wisc encoding

hexadecimal arithmetic coding run-length encoding
* rt-bit run count

natural language arithmetic coding *II 1:

source code arithmetic coding run-length encoding
-n-bit run count

low redundancy run-length encoding
binary n—bit run count
audio run-length encoding Lempel—Ziv

byte-wise encoding freeze

low resolution run-length encoding Lempel—Ziv
graphic n—bit run count freeze
high resolution JPEG run-length encoding JPEG
color graphic improved Huffman n-bit run count improved Huffman

high redundancy arithmetic coding run-length encoding Lempel—Ziv
binary * n-bit run count freeze
object arithmetic coding run-length encoding LempeI—Ziv

* byte-wise encoding freeze

l Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An * as the heuristic indicates
that no heuristic is used. Two "‘ indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional

to the number of symbols encoded, and the decrease in width is directly proportional to

the frequency of the original symbols. Thus the interval specifies the encoded message via

its bounds, with the precision (distance) of these bounds reflecting the information content

of the message. The end result is that arithmetic coding achieves, in practice, much better

space savings than Huffman coding and its dynamic implementations because of its higher

likelihood of actually achieving the theoretical lower bound.” 2“ Although early arithmetic
codingaigorithms perfonned too slowly to be of practical use,” the implementation of the
Witten—Nea1—Cleary algorithm used here“ is optimized for speed — at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is

referred to Bell et all‘ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman

algorithm instead of arithmetic coding. We changed our implementation when we found

that then Witten—Neal—Cleary algorithm” outperformed our implementation of dynamic
Huffman coding'°' 3” in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-

rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these

runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in

Sedgewick.” In addition, bitwise and bytewise encoding are available as heuristics and the

parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel—Ziv com-

pression algorithm. It compresses data by replacing frequently occurring strings (with min-

DELL lNC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 60 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 61 of 152

1103 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant-

length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lernpe1—Ziv algorithm is augmented with the Freeze heuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that

is, it prevents the replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountered. Freeze is primarily a speed op-
timization. since it requires less computation than paging heuristics such as least recently

used (LRU) or least frequently used (LFU), but it has been shown to work well for all but

the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression

scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-

lar enough to the original as to be nearly indistinguishable by human perception, and that

repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at

a minimal tradeoff. For instance, a very-high-resolution color image can be compressed

with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,

always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG system” for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and Iossless parts, typically achieves compression ratios

of between 15-to-1 and 25—to—1. The potential for this substantial savings is obtained by

the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a

limit on the amount of savings that can then be achieved by any Iossless compressor. The

actual savings are realized by a Iossless portion, known as the back end which is applied

to the preprocessed image data. The implementation of this module used in our system”
is a Huffman coder. It is independent of the lossy front end and can be replaced with a

run-length or textual-substitution based algorithm, to be selected by the synthesis system.

In our implementation, we chose to retain the original Huffman back end, a different algo-

rithm from the general-purpose dynamic Huffman coder which we also studied.” 3” This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after

lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the

use of arithmetic coding back ends, which were found to be experimentally superior but

were not used because of proprietary considerations.”

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis

module, which includes the database of compression algorithms. All modules are written in

C and were tested on a Unix platform. The program uses a data directed style of implemen-

tation for choosing the compression algorithm to apply to a block. Thus, additional block

types, compression algorithms and heuristics, and redundancy metrics can be added to the

system with minimal modification of the source code. Only the database would have to be

updated and the block analysis routines extended; the rest of the program would remain the
531113.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one SK block at a time. This block size was chosen after experimentation showed

that the response of the system to changes in block type became roughly stable as block

DELL |NC., EMC CORP., HPE C0., HPES, LLC -

Ex. 1026, p. 61 of 152



         DELL INC., EMC CORP., HPE CO.,  HPES, LLC - 
 Ex. 1026, p. 62 of 152

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 109

size exceeded SK (i.e., did not significantly increase as block size did), and that a block size

of 5K yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous

compressor select a suboptimal algorithm for any block). Finally, we found that the highest

level of adaptivity without a noticeable decrease in accuracy was achieved at 5K, hence
our choice of 5K as the block size.

For each block, the system invokes the four analysis modules — three for metric compu-

tation and normalization and one to detennine the file properties — and stores their output.
It then performs the metric comparison and combines the results with the file property to

complete the table lookup for the current block. An identifying tag for the selected algo-

rithm is written to the ‘compression plan’ , an array which stores one complete compression

instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is

recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive

normalization method: direct algebraic scaling with experimentally determined constants

for each metric. This did not, however, accurately reflect the statistical relationship between

variance in character frequency and alphabetic redundancy. Also, the behavior of these func-

tions at asymptotes led to poor approximation of the overall distribution of data segments

in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-

sulting in inferior compression; and selection approached randomness as metric values for

both string repetition and alphabetic distribution tended toward extreme values. Using the

gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the

compression method in exactly those cases where the other methods performed worse.

The second pass performs the compression of each block. In order to improve perfor-

mance, this pass includes a simple optimization step which circumvents the overhead of

restarting compression after each fixed length block by merging contiguous blocks that are

to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks

using the algorithm recorded in the compression plan. The compressed data is written to an

output buffer, while the compressed length (which indicates where in the compressed file

a compressed block begins and ends) and compression method are recorded in a separate

history for reference at decompression time. If negative compression or no compression is

achieved, or if the block was already marked uncompressible, then the data is copied directly

to the output buffer (the full block length and a code for ‘no compression’ are recorded in

the compression history). Upon reaching the end of the blocks, the system writes out the

compressed data from the output buffers and prepends the encoded compression history to

produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets

the history tag and performs the necessary operations. The tags are a stored version of the

compression history in compact, encoded form. Since the heterogeneous system generates

different compression sequences for each file, and since the length of a compressed block
varies with both the length of the original block and the compression method used, these tags

are necessary to guide the decompression process. Currently only the compressed lengths

of each block and the method of compression are stored, but a checksum for the original
(decompressed) block length can be added with negligible overhead. W'hen executed in

reverse order on each compressed block, the instructions in the history tags result in the

original file. For simplicity and security, they are prepended to the compressed file (and

can easily be encrypted).

DELL lNC., EMC CORP., HPE co., HPES, LLC -

Ex. 1025, p. 52 of 152


