
Apple 1062 (Part 2 of 3)
U.S. Pat. No. 8,504,746

Chapter 8

such as mice and other pointing devices, as well as specialized devices such as

data—acquisition units and controllers.

For example, a data acquisition unit might send periodic sensor readings to a

PC. The controller chip’s I/O pins could connect to analog—to»digital cone

verters that convert sensor readings to digital signals. A host PC could use

the USB link to request the latest readings periodically. Or the PC might

send signals to control relays, motors, or other devices that the chips I/O

pins control.

Instead of just repeating what’s in the chips data sheet, I’ll focus on whats

important to know before you start working with the chip. I’ll also explain

anything that I found difficult or confusing to understand from the data

sheet alone. When it’s time to use the chip, check the data sheet for details.

Features and Limits

One compelling reason for choosing the 363743 for a project is inexpensive

chips. Typical prices for the chip are a few dollars each in small quantities.

And the chip contains an internal oscillator that eliminates the need to pro-

vide an external timing reference.

The chip is available in both through~hole (DIP) and surface~mount

(SOIC) packages. If you have experience with assemblyelanguage programr

ming (or are willing to learn), the assembly~code instructions aren’t too hard

to master. The chip has 8 Kilobytes of program memory. With optimiza»

tion, the code required to support USB communications can fit in l Kilo»

byte, leaving 7 Kilobytes for other functions.

The essential tool for developing is the Developer’s Kit, which includes a

development board, assembler, and debugging application. You’ll probably

also want the CY3649 Hi-Lo PROM Programmer with the adapter base

and matrix card for the enCoRes, all available from Cypress.

The ’63743 isn’t suitable for every projecr. The chip is low speed, which

means that you can’t use bulk or isochronous transfers and the fastest maxi”

mum latency for interrupt transfers is 8 bytes per 10 milliseconds. Unlike

some early controllers, the ’63743 does support Interrupt OUT transfers. It

182 USB Complete

,Appie 1062 (Part 2. of 3)
us. PatNo. 8,504,746

Inside a USB Controller: the Cypress enCoRe

INTERNAL XTAL WAKE'UP RAM 12-BIT CAPTURE SP1OSCILLATOR OSCILLATOR TIMER 256 BYTES TIMER TIMERs

EPROM g L
RIsc6K/8K 3::::>+fCORE <3 :>

BROWN OUT AT
RESET

INTERRUPT use PORT I PORT O
CONTROLLER ‘3‘ ENGINE GPIO GPIO

WATCH

DOG ATIMER

LOW 3.3VVOLTAGE -——————~

RESET REGULATOR

PI.O-PI.7 PO.O—PO.7

VREG

Figure 8-2: The Chips in Cypress’ enCoFie series have the essentials for USB

communications and general port l/O.

you can get by with less memory or 1/0, the series has chips with 6K of pro—

gram memory and twelve I/O pins.

Inside the Chip

Figure 8—2 shows the chip’s architecture. The CPU is an 8—bit RISC

(reduced instruction set computer). It can access program memory, RAM,

general—purpose l/O ports, and of course, a USB port. The USB port is

actually an auto—switching port that supports both USB and the PS/Z inter—

face for mice and other pointing devices. This feature is handy for designing

devices that can plug into either port type. A variety of interrupt and reset

sources can interrupt the CPU.

The frequency of the internal 6—Megahertz oscillator is accurate to within

1.5%, as required, for low—speed USB. If an application requires a more pre—

cise clock source, the chip can instead use an external oscillator.

USB Complete 183

Chapter 8

Figure 8—3 shows the pinouts of the ’63743 and the ’63723, Which has four

fewer I/O pins.

Memory

The on~chip memory of the 363743 consists of 8 kilobytes (OOOOh to

lFFFh) of OTP PROM for program storage and 256 bytes ofRAM (00h to

FFh) fer temporary data storage. There are also 34 byte—Wide l/O registers,

each with a defined purpose.

The organization of the program memory is similar to that of other micro»

controllers. Program execution begins at 00h. Addresses 00h and 01h con~

tain a jump to the address Where the main program code begins. Addresses

02h through 17h are interrupt vectors that hold the addresses to jump to

when one of the chips eleven interrupts occurs. Here is an example inter»

rupt—vecror table in firmware:

ORG 00h

jmp reset ; device reSet

jmp bue_reset ; USB reset interrupt

jmp error ; lZS—microsecond interrupt

jmp lmswtimer

jmp endpointO

11024—millisecond interrupt

Endpoint O interrupt

~.

~.

P®.®_l V 74 P04
P01 7 25 P®.5

P®.2 3 22TP®.6

P®.e:1 U l8:lP®.4 P®.3 4 21"P@.7
P®,i"2 17 P05 P1.® 5 2®:]Pi.i_

P0.2'“ 3 16 "Pe.6 P1.2“ 6 19 :lPl.3

P®.3:4 15_P®.7 P1.4|:7 18 P15

P1.®:5 14 P1.1 Pi.6"8 1 -P1.7

vss“6 13 D+/SCLK vssEQ 16:D+/SCLK

VPP 7 l2EDe/SDATA VPPEIQ l5:lD—/SDATA
VREG 8 11_vcc VREGTll 14—vcc

XTALiN/P2.1 9 l®:><T/\LOUT XTALIN/P2.1:l2 13 XTALOUT

CY7C63722/23 'cv7cas742/43

Figure 8—3: The enCoRe series includes chips with 12 and 16 1/0 pins.

184 USB Complete

Inside a USB Controller: the Cypress enCoRe

jmp endpointl ; Endpoint l interrupt

jmp endpoint2 ; Endpoint 2 interrupt

jmp spi ; SP1 interrupt

jmp capture_a ; Capture timer A interrupt

jmp capture_b ; Capture timer B interrupt

jmp gpio ; GPIO interrupt

jmp wakeup ; Wake—up interrupt

Each interrupt vector jumps to the location specified by a label. Unused

interrupts should never occur, but the firmware should include jumps even

for these interrupts. A typical interrupt—service routine (ISR) for an unused

interrupt would just return the firmware to the calling location with regis—

ters unchanged.

The interrupt vectors are stored in order of priority, with the highest priority

at 000211. Program memory from 0018b to IFDFh is available for storing
the rest of the code.

The 256 bytes of RAM must hold two data stacks and 8 bytes each of buffer

data for Endpoints 0, 1, and 2 (if all are used), as well as any other tempo—

rary data (Figure 8—4). The endpoint buffers use addresses E8h through
FFh.

The stacks are last in, first out (LIFO) structures for short—term storage of

addresses and register contents. The RAM has two pointers for accessing the

two stacks. The Program Stack Pointer (P8P) begins at 0011 on reset and

grows up, while the Data Stack Pointer (USP) may be set by firmware to

E8h or lower and grows down. The firmware needs to be sure that the stacks

don’t grow so large that they bump into each other in the middle. To reserve

general~purpose RAM for other uses, such as storage for variables, set the
DSP to an address lower than E8h. This frees the locations from that

address through E7h for other uses without having to worry that one of the
stacks will overwrite them.

The Program Stack Pointer

The Program Stack Pointer (P5P) holds the address the code will jump to on

returning from a call to a subroutine or interrupt—service routine. For inter;

rupts, the PSP also stores the states of the zero and carry flags. The firmware

USB Complete 185

Chapter 8

AFTER RESET, FIRMWARE MUST
SET THE DA“A STACK POINTER
TO A VALUE LESS THAN E8H
(TO ENABLE USING ALL
3 USB ENDPOINTS).

TH E PROGRAM STACK POINTER THE PROGRAM STACK GRows UP
18 oOH ON RESET. 49 -

EFH

ENDPOINT Q

F8H
ENDPOINT 1

FQH
ENDPOINT 2

ml

USER VARIABLES

THE DATA STACK GROWS DOWN

l

/{\

Figure 8-4: The enCoRe’s RAM contains the USB endpoint buffers, the

program and data stacks, and whatever variables the firmware requires.

186

doesn’t have to do anything to manage the PSP. It’s all done automatically by
the hardware and the CALL, RET, and RETI instructions.

On reset, the PSP points to 00h. The PSP can handle multiple, nested sub‘

routines and interrupts. Each routine returns to the instruction after the last
instruction that executed before the call.

For example, if the PSP is pointing to 00h when an instruction in program
memory calls a subroutine, the CALL instruction will cause the PSP to save

the address of the following instruction in addresses 00h and 01h. The

CALL also increments the PSP by two bytes (to 02h in the example) so it’s
ready to store another location if needed. The RET instruction that returns

from the routine places the value pointed to by the PSP in the program

counter and decrements the PSP by two. Program execution then continues
where it left off before the routine was called.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The same thing happens in interrupt—service routines, except that the values

of the zero and carry flags are also saved and restored.

The Data Stack Pointer

The Data Stack Pointer (DSP) holds data stored by PUSH instructions. For

example, PUSH A stores the contents of the accumulator on the data stack.

The DSP decrements one byte before storing a byte. A POP instruction

removes the most recently stored byte and increments the DSP.

The default value of DSP on reset is not where it should remain. Unless the

chip isn’t using USB at all, the firmware must set the DSP to a new value

before doing any PUSH instructions. On reset, the DSP is 00h. From here,
the first PUSH instruction would cause the DSP to decrement to the top of

RAM (FFh), which is byte 7 in Endpoint 0’s buffer. For this reason, before

pushing any bytes, the firmware should set the DSP pointer to E8h or
lower:

 ; Store the 389’s new beginning address

; in the accumulator.

mov A, 70h

; Swap the contents of the accumulator with the DSP.

swap A, dsp

Use a lower value if you want to reserve more bytes for firmware use, or a

higher value the firmware needs fewer bytes.

USB Communications

The firmware monitors and controls the serial interface engine (STE) by

accessing registers. There are nine registers whose functions relate directly to

USB communications: an address register, three endpoint mode registers,

three endpoint counter registers, a status and control register, and an inter—

rupt—enable register.

Device Address

The USB Device Address Register holds the 7—bit address assigned by the

host during enumeration. The firmware must detect the Set_Address

USB Complete 187

Chapter 8

request, send a handshake in response to the request, and store the received

address in this register. Bit 7 must be set to 1 to enable the serial interface

engine to respond to USB traffic.

Modes

188

The USB Endpoint 0 Mode Register contains information about the last

received data packet at Endpoint 0. Both the SIE and firmware can change
the registers contents.

Three PID bits indicate the type of the transactions token packet: Setup,

IN, or OUT During the data phase ofa Setup transaction, the STE sets the

Setup bit to 1. To prevent incoming data from being overwritten, the chip

doesn’t allow firmware to write to any USB buffer while the Setup bit is l.

Firmware can’t change this bit until all of the transactions data bytes have
been received.

The ACK bit is set when a transaction completes with ACK.

Four Mode bits determine how the STE will respond to Setup, TN, and

OUT transactions. Depending on the type of transaction, the firmware can

request the SIE to return ACK, NAK, Stall, a 0—byte data packet, or nothing
at all. In some cases, the STE changes the mode after a transaction’s ACK.

For example, when the mode is Ach OUT, after returning an ACK in

response to receiving OUT data, the SIE sets the mode to Nak OUT. This

gives the firmware time to retrieve the data that was ACKed. After retrieving

the data, the firmware can change the mode bits back to Ack OUT to enable

accepting new data at the endpoint.

For me, understanding the use of these mode bits was the most confusing

part in using these chips. Cypress provides four pages of documentation

about how the chip responds in every circumstance. I found it useful to

group the modes according to what type of endpoint would use them, and

in what situations. Table 8—3 shows the modes used by Endpoint 0. Each of

these modes accepts Setup transactions, as control endpoints must.

The complements to Endpoint 0’s mode register are the USB Endpoint 1

Mode Register and USB Endpoint 2 Mode Register. These have the same

USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8~3: Modes used by Endpoint O in the USB Endpoint 0 Mode Register.

Endpoint 0 must accept Setup transactions.

 Nak In/Out

Encod-

ing

Responseto
Transaction

Setup

IN

NAK

ACK

same

Mode Typical Use
after

 No transfer is in progress;

waiting for a Setup transaction.

 Ignore In/Out

Status In Only

 Nak Out —

Status In

Ack Out ~

Nak In

Status Out Only

Stall In/Out

accept

 0100

ignore

same
Control Read transfer, status

stage. Return ACK on receiving

a 0—byte data packet with the

correct data toggle.

831116
No transfer is in progress;

waiting for a Setup transaction.

ignore
same

No transfer is in progress;

waiting for a Setup transaction.

accept 0—byte
data

Stall same Control Write transfer, status

stage. For an IN transaction,

return a 0—byte data packet.

accept

101 I accept

0—byte
data

NAK S £11116 Control Write transfer, status

stage. For an IN transaction,

return a O—byte data packet.

Nak

In/Out
Control Write transaction, data

stage.

Nak In ~

Status Out
I l 10 accept

 same Control Read transfer, data or

status stage. For an IN
transaction, return NAK. For an

OUT transaction, return ACK on

receiving a ()—byte data packet

with the correct data toggle.

Ack In ~

Status Out
l | l l accept

data check Nak In

— Status

Out

Control Read transfer, data or

status stage. For an IN
transaction, return data. For an

OUT transaction, return ACK on

receiving a 0—byte data packet

with the correct data toggle.

mode and ACK hits as Endpoint 0’s mode register. They don’t have the PID

bits because these endpoints support either IN or OUT transactions only.

These registers also each have a Stall bit.

USB Complete 189

Chapter 8

Endpoints l and 2 use different mode settings than Endpoint 0 because

they never respond to Setup packets, while Endpoint 0 must do so. Table

84 shows the modes used by Endpoints] and 2. The table also shows how
firmware can use the Stall bit to cause the STE to return. Stall in Ack In and

Ack Out modes.

Endpoint Status and Control

Each of the three endpoints also has a USB Endpoint Counter Register

that contains information about the data packet that is next to transmit, is

being transmitted, or has just transmitted. Each contains a four—bit count, a

data—toggle bit, and a data~valid bit.

The four Byte Count bits hold the number of data bytes in a transaction.

For IN transactions, the value indicates how many bytes will be sent from

the endpoints buffer in the next transaction, not including the CRC bytes.

Valid values are 0 through 8. For Setup and OUT transactions, the value

indicates how many data bytes were received in the last transaction, plus the

two CRC bytes. Valid values are 2 through 10. Setup and OUT counts are

locked until the firmware reads the register.

For Setup and OUT transactions, the Data Valid bit is 1 it the received
CRC value was correct.

The Data 0/ 1 Toggle bit indicates the data packets data toggle state, For lN

transactions, firmware sets the value. For Setup and OUT transactions, the

STE sets the bit to match the received data»toggle state.

USB Status and Control

190

The USB Status and Control register has two bits used in USB communi—

cations, four bits that USB or PS/2 communications may use, and one bit

for PS/Z communications only.

The SlE sets the USB Bus Activity bit to 1 on detecting any USB activity or

in other words, a non—idle bus. The firmware can use this bit along with the

l~millisecond interrupt—service routine to decide whether the chip should

USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8—4: Modes used by Endpoints 1 and 2 in their USB Endpoint Mode

Registers. Endpoints 1 and 2 don’t accept Setup transactions

Encod- Response to Mode Typical Use

ing Transaction after

Setup IN OUT ACK

ignore — The endpoint is disabled.

 Disable

Nak Out

ignore

1000 ignore ignore NAK — An OUT endpointisn’tready to

ignore

receive data.

Ack Out 1001 ignore ignore ACK Nak An OUT endpoint is ready to

(Stalle) Out receive data.W1 . .

Ack Out ignore ignore stall — An OUT endpomt is halted.
(Stallzl)

,._l W

Nak In 1100 ignore NAK ignore — An IN endpoint has no data to
send.

Ack In (Stall—:0) l 10] ignore data ignore Nak In An IN endpoint has data to send..J.

Ack In (Stallzl) ignore stall ignore ~ An IN endpoint is halted.

enter the Suspend state. If the bit remains 0 For more than three millisecr

ends, the chip must enter the Suspend state.

The VREG Enable bit can enable 33V at the chips VREG output. This

output is intended for pulling up the USB’s pull—up resistor to D— on the
bus. Because VREG is under firmware control, code can remove and restore

the output voltage to simulate device removal and attachment. VREG’S out-

put impedance is about 200 ohms, so the resistors value should be 1.3K to

meet the l .5K specification.

The USB Reset , PS/Z Activity Interrupt Mode bit selects whether to inter

rupt on a USB reset or on PS/2 activity.

Three Control bits enable firmware to set the USB or PS/2 lines to specific

states, including USB’S J, K, and SEO states. If the host has previously

enabled a device’s Remote—Wakeup ability with a Setheature request, the

firmware can use the ForcerK state to send a Resume signal to tell the host

that the device wants to communicate. Chapter 19 has more on resume sig—

naling.

USB Complete 191

Chapter 8

The PS/Z Pullup Enable bit can enable internal pull—up resistors on the
SCLK and SDATA lines used in PS/Z communications.

The Port 2 Data Register holds the states of four read—only bit values at an

auxiliary input port (Port 2). 'lwo bits are the states of D+ and D— when

using USB, or the states of SCLK and SDATA when using PS/Zr The other

two bits can sometimes serve as general—purpose inputs. If the pull—up on

USB’s D~ uses an external voltage source or if the device doesn’t support

USB, the VREG output can be disabled and the pin can serve as a gen
eral—purpose input whose state is read at P20. When the internal clock is

enabled, there is no timing reference at XTALIN, and this pin can serve as a

generalvpurpose input whose state is read at Bit P21.

The final USBrrelated register is the USB Endpoint Interrupt Enable Reg-

ister, which enables interrupts for Endpoints 0, 1, and 2. I cover this register

in more detail below, under Interrupt Processing,

Other I/O

In addition to the USB port, the enCoRe has built—in support for three

other [/0 interfaces. Firmware can use the general—purpose ports for any

purpose. Some of the general~purpose bits can function as an SP1 synchro~
nous serial interface. And the USB interface is switchable between USB and

a l’S/2 interface.

General-purpose l/O

192

For interfacing to circuits besides the USB port, the chip has 16 versatile

l/O pins on two 8—bit ports. Each can function as an input or output.

Inputs can have pull~ups or not, and CMOS or TTL thresholds. Outputs

can be CMOS with selectable driver strength or open drain. Each input can

trigger an interrupt. A data register and two mode registers for each port

control the configuration of each pin.

USB Complete

inside a USB Controller: the Cypress enCoRe

VCC

m9

SPI BYPASS
(PO,5‘PO.7 ONLY) CONTROL 14K

 DATA OUT
REGISTER “DO ‘—‘_U

INTERNAL
DATA BUS

PORT WRITE
CMOS/TTL

THRESHOLD
SELECT

PORT R

INTERRUPT POLARITY BIT

INEEETEPT —~;>TO INTERRUPT CONTROLLER

 INTERRUPT ENABLE BIT
01 IS ON FOR RESISTIVE OUTPUT (LOW SOURCE CURRENT).
03 IS ON FOR STRONG SOURCE CURRENT.
O2 IS ON FOR LOW, MEDIUM, OR HIGH SINK CURRENT.

Figure 8—5: Two GPlO register bits for each pin determine whether the pin is an

input or output and the amount of source and sink current an output is capable
of.

The Circuits Inside

Figure 86 shows the circuits inside each port pin. Table 8—5 shows the

effects of combinations of settings.

To configure a bit as an input, the firmware writes O to the matching bits in

the Mode 0 and Mode 1 registers. For TTL input thresholds, write 1 to the

Data bit; for CMOS, write 0. A TTL low input must be 0.8V or less, and a

TTL high input must be 2.0V or greater. CMOS input thresholds are cen-

tered at around half the power—supply voltage. For low—tovhigh transitions,

the thresholds are 40% and 60% of the supply voltage. For high—to—low

transitions, the thresholds are slightly lower. This adds hysteresis to keep

inputs from oscillating on noisy or slowly changing inputs.

USB Complete 193

Chapter 8

Table 8~5z Two Mode bits and a Data bit determine the configuration and state of

each general-purpose I/O bit.

Register Output Output Drive Strength input Threshold

Data Mode 0 Mode1 State

 uen’ied high impdncae i H CMOS

0 medium (8 mA) sink current CMOS

0 O undefined high impedance TTL
1

l
1 strong (2111A) source CMOS

current

l (l 0 low (2 mA) sink current CMOS

(open drain on)

1 0 l resistive (14K pull—up, CMOS
low source current)

1 l 0 high (50 mA) sink current CMOS

1 l 1 strong (2 mA) source current CMOS

194

The other modes control the strength of the source and sink currents for

outputs. Any output pin can sink up to 50 milliamperesj but only one pin

can do so at a time. The combined sink current For all pins shouldnit exceed

70 milliamperes. For source current, the combined maximum is 30 milliarn~

peres. Use current—limiting resistors to limit the output current.

Interrupts

A transition on a GPIQ pin can cause an interrupt. Additional register hits

configure the pins interrupt capability. 'Writing 1 to a pin’s bit in the GPIO

Interrupt Enable Register enables a transition on the pin to trigger a GNU

interrupt. The GPIO bit in the Global Interrupt Enable Register must be

set to l as well. A pin’s hit in the GPIO Interrupt Polarity Register deter»

mines whether a rising (l) or falling (0) edge triggers the interrupt.

All of the GPlO pins share an interrupt, so the firmware may need to deter—

mine which pin caused the interrupt. It can do so by reading the port. The

interrupt latency, or time it takes for the CPU to enter the interruptwservice

routine, is under 3 microseconds, so an interrupt signal should be greater

than 3 microseconds wide if the interruptecrvicc routine needs to detect

which pin caused the interrupt.

USB Complete

Inside a USB Controller: the Cypress enCoRe

SPI Port

The enCoRe includes hardware support for an SP1 (Serial Peripheral Inter—

face) port. SP1 is a synchronous serial interface suitable for short—range com»

munications, often on the same circuit board, though cables of ten feet or so

shouldn’t be a problem in most environments. Compared to USB, SP1

doesn’t require nearly as much support in hardware or code, so it’s used by

many simple and inexpensive chips.

Chips with SP1 interfaces include serial EEPROMS and analog—to-digital

converters. The enCoRe’s Development System includes a couple of SP1

peripherals that can connect to the chip. Motorola introduced SP1, so the

681-101 and other Motorola microcontrollers have SP1 interfaces. A

peripheral that needs more processing power than the enCoRe could use an

enCoRe to manage USB communications and use the SP1 interface to pass
information between the enCoRe and another microcontroller.

An SP1 bus has one master and one or more slaves. As with USB’S host, the

master initiates all SP1 traffic. The enCoRe’s SP] can Function as a master or

slave. The number of wires varies with the application. In addition to a

common ground, an SP1 interface has MlSO (master in, slave out), MOSI

(master out, slave in), and SCK (serial clock) lines. When there is more than

one slave connected, each must also have an *SS (slave select) line. if there is

just one slave, *SS can often be tied low at the slave to select it permanently.

On a master, MOSI, SCK, and any *SS pins are outputs and MISO is an

input. On a slave, MISO is an output and MOSl, SCK, and *SS are inputs.

On the enCoRe, the SP1 interface uses GPIO pins. Four pins have assigned
functions: M081 is P05, M1SO is P06, and SCK is P07. On a slave, *SS is

P04. On a master, the *SS outputs can be any spare GPIO pins.

The hardware handles the clocking and sending and receiving of the SP1

data bits. A communication consists of the master writing one or more bytes

to a slave, followed by an optional reply. For example, to write a byte to

serial EEPROM, the master sends a write instruction, Followed by an

address and data. The slave sends nothing. To read a byte from EEPROM,

USB Complete 195

Chapter 8

the master sends a read instruction followed by an address. and the slave

sends the data in reply.

Writing to the SP1 Data Register fills a transmit buffer, which causes the

data to load into a shift register for transmitting. Received SP] data is loaded

into a receive buffer, where the firmware can retrieve it by reading the SPI

Data Register.

The enCoRe’s interface is flexible enough to communicate with just about

any SP1 chip. An SPI Control Register enables the firmware to select mas»

ter or slave mode, a clock frequency from 62.5 Kbits/sec. to 2 Mbits/sec.,

and a clock polarity and phase. The clock polarity and phase select the

clock’s idle state (0 or 1) and whether data is written and read on rising or

falling clock edges. Some SP1 chips support only master or slave or a single

clock phase and polarity.

Two additional bits in the SP1 Control Register indicate when the transmit

buffer is full and when an 8~bit transfer is complete. Completing a transfer

also triggers an SP1 interrupt so the firmware can get ready for another
transfer.

The PSI2 Interface

196

Although this book is about USB, I shouldn’t entirely neglect the enCoRe’s

PS/Z option. The term PS/Z can refer to the mouse, keyboard, or paralw

lei—port interface IBM included years ago in its model PS/2 computer. in

this case, were talking about the mouse interface, which became a favored

alternative to the serial (RS~232) and bus interfaces that were the options

until USB came along.

A PS/2 mouse uses a synchronous serial interface that has a single data line

and a clock line. The interface also has +5V and ground lines. The device

provides the clock for communications in both directions. The device sends

mouse data synchronized to the clock pulses. The data format uses ll bits: :1

Start bit of 0, eight data bits sent least significant bit first, an odd parity bit,

and a Stop bit of 1. The host reads the data on the clocks falling edge. As

with a USB mouse, the data contains information about button presses and

the amount and direction of mouse movement.

USB Complete

Inside a USB Controller: the Cypress enCoRe

A long low on the data line tells the device that the hosr wants to send. a

command and generates a P5/2 interrupt in the device.

Having an interface that supports both USB and PS/2 makes it easy to

design a pointing device that can use either. The device will need firmware

to support both. For PS/Z, the firmware is responsible for writing each clock

pulse and data bit by setting Control bits in the USP) Status and Control

Register. Of course, a design can also use only USB, only PS/2, or even nei—
ther.

Other Chip Capabilities

The enCoRe has many other capabilities worthy of mention. Timer func—

tions enable performing periodic tasks and measuring intervals. Many event

types can trigger interrupts. And several registers enable monitoring and

controlling the CPU and managing power.

Timer Functions

The chips have hardware support for a variety of timing functions, includ—

ing generating interrupts for periodic tasks and measuring intervals.

Performing Periodic Tasks

For tasks to be done periodically, there are three options: the l—millisecond,

128—microsecond, and Wake—up timer interrupts. The Wake—up interrupt

provides less precise, but longer, timing intervals than the other two timers.

If the chip is in the Suspend state, this interrupt will wake it. But firmware

can also use this interrupt to perform periodic tasks when the chip isn’t sus—
pended.

The timing interval of the Wake—up interrupt is the chips tWAKE period

multiplied by the value indicated by three Wake~up Timer Adjust bits in the

Clock Configuration Register. The available values are the eight powers of

2 from 1 through 128. The tWAKE value varies with the supply voltage and

temperature, and can range from 1 to 5 milliseconds. So for example, if

tWAKE is 128, the interval may be anywhere from 128 to 640 milliseconds.

USB Complete 197

Chapter 8

198

To select an interval more precisely, the firmware can enable the Wake‘up

timer, use the chips Free—running timer to measure the interval, and select

the Wake—up Timer Adjust value that most closely matches the desired inter—
val.

With any of these timers, to time a longer interval, the firmware can main«

tain a counter in the interrupt—service routine. The routine increments the

counter on each interrupt until the desired number of intervals has elapsed.

Measuring Intervals

The enCoRe has a free—running timer that provides a way to measure inter—

vals and, timer capture registers that enable measuring the time between

events at 1/0 pins.

The 12—bit freevrunning timer increments once per microsecond, The timer

rolls over on a count of FFFh, enabling firmware to measure periods up to

4.096 milliseconds (or longer by cascading counts). The count is stored in

two registers. The firmware can read just one register at a time, yet it will

want to know the states of all 12 hits at the same time. To make this possi~

ble, reading the Timer LSB (least significant byte) Register also leads the

'timer’s upper four bits into a temporary register. Reading the Timer MSB

(most significant byte) Register reads the temporary register. 80 sequential

reads of these two registers gives the count at the time ofithe first read.

The chip can also measure intervals betWeen events at the GPIO pins Port

0.0 (Capture A) and Port 0.1 (Capture B). Six registers configure the timers

and hold the results, which can correspond to the times of rising and falling

edges at each pin.

The Capture Timers Configuration Register has three functions. Four bits

enable interrupts on the rising and falling edges of Capture A and B. One

bit selects whether to save the time of the first edge or the most recent edge.

Three bits select a prescale value that determines which 8 of. the Free—run»

ning timer’s 12 bits are saved on an interrupt. Using lower bits gives better

precision but shorter range, while higher bits give longer range but less pre—
crsron.

USB Complete

inside a USB Controller: the Cypress enCoRe

The Capture Timers Status Register indicates whether a rising or falling

edge has occurred on Capture A or B. The four Capture Timer Data Regis—

ters hold the timer counts for rising and falling edges at the two port pins.

The difference between the counts stored at two events equals the time in

microseconds between them.

interrupt Processing

The firmware uses two registers to control which interrupts are enabled, plus

two additional registers to enable individual GPIO interrupts. The USB

Endpoint Interrupt Enable Register has three bits that enable interrupts

for Endpoints O, 1, and 2. The Global Interrupt Enable Register enables

the other interrupt sources: Wake up, General-purpose l/O, Capture Timer

A, Capture Timer B, SP], 1 .024—millisecond timer, 128—microsecond timer,

and USB Reset or PS/Z Activity. Writing 1 to an interrupt’s bit enables the

interrupt, while writing 0 masks, or disables, the interrupt.

Interrupt Service Routines

When an interrupt occurs, the chips hardware disables all interrupts, clears

the Global Interrupt Enable bit and jumps to the interrupts assigned inter—

rupt-vector location in program memory. This location typically contains a

jump to an interrupt-service routine. The interruptrservice routine is

responsible for carrying out whatever needs to be done in response to the

interrupt’s event and for ensuring that all registers are in the expected states

on exiting the routine.

On entering an interruptvservice routine, the hardware automatically stores

the Program Counter’s value and the states of the Carry and Zero flags. On

exiting the routine, these values are automatically restored. So the inter—

rupt—service routine can do what it wants with these values, and other code
won’t be affected. The firmware is responsible for saving and restoring any

other values that need to be preserved. A typical example saves and restores

the contents 01C the accumulator (A) and index register (X). Here is an exam—

ple interruptvservice routine that uses push and pop to preserve the con-

tents of these registers while also allowing the interrupt—service routine to

use the registers:

USB Complete 199

Chapter 8

DoNothing_ISR:
;Save the contents of the accumulator

push A

;Push the contents of the index register

push X

;Add code to service the interrupt here

;Pop values that were preserved

;in thc revcrs order they were saved (last first)

pop X

pop A
reti

GPIO Interrupts

For the general—purpose I/O (GPIO) interrupts, a Port Interrupt Enable

Register for each port allows the firmware to enable or disable the interrupt

for each I/O pin. A transition on a port pin will result in an interrupt only if
several things are true:

° The GPIO bit in the Global Interrupt Enable register is set to 1.

° The pitfs bit in its ports Port Interrupt Enable register is 1.

° The polarity of the transition on the port pin matches the polarity set in

the pins bit in the corresponding Port interrupt Polarity Register.

0 If any previous GPIO interrupt has occurred, that pin’s state must have

returned to the inactive, or non~trigger state, or the pins bit in the Port

Interrupt Enable register must have been set to 0 (and may optionally

then be set back to I), For a low~towhigh interrupt trigger, the non~trigger
state is low; For a high«to~low trigger, the non—trigger state is high.

USB Endpoint Interrupts

The USB endpoint interrupts trigger on sending or receiving the last packet

in a transaction. In a Setup transaction, an interrupt occurs when the device

returns ACK or receives a flawed data packet. In an IN transaction, an inter,

rupt occurs on receiving the host’s ACK or if the device returns a NAK or

Stall. In an OUT transaction, an interrupt occurs when the device returns

ACK, NAK, or Stall or receives a flawed data packet.

200 USB Complete

Inside a USB Controller: the Cypress enCoRe

Timer Interrupts

The timer interrupts occur at intervals of 1.024 milliseconds and 128

microseconds. The firmware can use these interrupts for any purpose. One

use for the 1—millisecond interrupt is to measure the amount of time with no

USB activity to determine whether or not to enter the Suspend state.

Deciding whether to enter the Suspend state requires firmware support. The
code must maintain a count of the number of milliseconds that the bus has

been idle and cause the chip to enter the Suspend state when the count

equals or exceeds 3. The count can be stored in any spare location in RAM.

To find out if the bus has been idle, the firmware reads the bus~activity bit in

the USB Status and Control register. If the bit is 0, there has been no bus

activity and the firmware should increment the suspend counter. If the bit is

1, there has been activity, and the firmware should clear the suspend counter

and the bus activity bit by writing 0 to each:

1ms_timer:

; Sample l—millisecond timer routine

; that checks bus activity and enters the Suspend

; state if there has been no bus activity for over

; 3 milliseconds.

push A

lms_suspend_timer:
; To check for bus activity,

; read the bus~activity bit

; in the USB Status register.

iord usb_status

and A, BUS_ACTIVITY

;If it’s no: 0, there has been bus activity.

jnz bus_ac:ivity

;If it’s 0, there has been no bus activity

;since the last 1millisecond interrupt

;-ncrement the suspend counter to keep track of

;:he amount 0:? time with no bus activity.

inc [suspendcount]

mov A, [suspend_count]

;flas it been over 3 milliseconds?

USB Complete 201

Chapter 8

202

cmp A, 04h

jz usbwsuspend
usb_suspend:

; Before entering the Suspend state,

-:f yes, enter the Suspend state.

; enable the Qeset interrupt.

mov A, (USB_QESET_:

iowr g obal_int

 :NT}

;:f no, we’re finished checking for bus activityu

j p ms_timer‘done

; Set the Suspend bit in the control register

; and ieeenable interrupts.

iord control

or A, SUSPEND
ei

iowr control

;On exiting Suspend, program execution begins here.
nop

; Look for bus activity.

; if there has been none,

iord usb_status

and A, BUS_ACT:VITY

jz usb_suspend

; Exit the Suspend state.

; Enable the l-milliscond and Reset interrupts.

mov A, (lMS_INT \‘Us

iowr globaliint

bus_activity;

3_Rss:Tm"NT>

; Bus activity was detected.

; Reset the Suspend counter to O.

mov A, 00h;

mov [suspend_count], A

; Clear the bus—activity bit.

iord usbmstatus

and A, ~BUS_ACT:
:VITY

return to the Suspend state.

USB Complete

Inside a USB Controller: the Cypress enCoRe

iowr usbmstatus

mswtimer_done:
;Exit the l—millisecond timer :SR.

POP A
reti

The Wake—up interrupt occurs at intervals set by firmware. If the chip is in

the Suspend state, the Wake—up interrupt will wake it. The \X/ake—up inter—

rupt is enabled whenever the Wakeup Interrupt Enable bit in the Global

Interrupt Enable Register is I, even if hardware or firmware has disabled

interrupts.

Interrupt Status

The Processor Status and Control Register has two bits that relate to

interrupts.

The Interrupt Enable Sense bit shows whether interrupts are enabled (1) or

disabled (0) Firmware can control its state with the instructions DI (disable
 interrupts), E: (enable interrupts), and RET: (return from interrupt—service

routine and revenable interrupts. The hardware disables interrupts on enter—

ing an interrupt—service routine and re~enables them on exiting.

When interrupts are disabled, the IRQ Pending bit in the Processor Status

and Control register indicates when an interrupt has occurred but has been

ignored because interrupts are disabled. The bit remains set until the inter—

rupt(s) are enabled and serviced.

CPU Status, Control, and Clocking

The Processor Status and Control Register contains seven hits that relate

to the chips overall operation. Two bits can stop the CPU, two bits relate to

resets, and three bits relate to interrupts. In addition the Clock Configura—

tion Register has bits that relate to resets and CPU clocking.

USB Complete 203

Chapter 8

204

Halting the CPU

To stop the CPU, the HALT instruction sets the Run bit in the Processor

Status and Control Register to 0. The CPU stops executing instructions
until a reset occurs. The CPU resumes at address or

\Writing 1 to the Suspend bit in the Processor Status and Control Register

puts the chip in the Suspend state. The chip stops executing instructions

until there is USB activity or a pending, enabled interrupt occurs. The CPU

resumes at the instruction following the instruction that set the Suspend bite

Resets

The CPU supports three types of reset: Low Voltage, Brown Out, and

Watch Dog. Each is triggered by a different event, A fourth type of reset is

the bus reset that a USB host may request to restart USB communications.

On a Low—Voltage or Brown—Out reset, the chip is placed in a known state;

the PSP and DSP are set to O, the USB address is set to O, interrupts are dis«

abled, and registers return to their default states. The GPIO, USB, and

VREG pins are high impedance. USB communications are disabled. A chip

using an external clock switches to the internal clock. After a short delay,

program execution begins at 0. After reset, the firmware is responsible for

writing the desired default values to registers and variables After enabling

USB communications, the chip has to wait to be enumerated by the host

before it can do other USB communications“

A useful Feature is the ability to shut the chip down automatically if the sup

ply voltage is low and start it up again when voltage is restored. The

Lovaoltage and Brown«Out resets perform this function“

A LowsVoltage Reset occurs when the supply voltage is below the lowwolt»

agewreset voltage of 3.5 to 4.0V. This reset also acts as a powerwon reset that

occurs when power is first applied to the chip. The internal oscillator runs,

but the chip is held in reset until the supply voltage reaches the reset thresh~

old and 24 to 60 milliseconds has elapsed. The delay gives the supply volt—

age time to stabilize,

After power up, a Low’Voltage Reset occurs any time the supply voltage falls

below the threshold, unless firmware has set the Low Voltage Reset Disable

USB Complete

Inside a USB Controller: the Cypress enCoRe

bit in the Clock Configuration Register, or unless the device is in the Sus~

pend state.

When the Low~Voltage Reset isn’t enabled, the Brown—Out Reset takes over.

This reset does nothing until the supply voltage is below about 2.5V. The

Brown—Out Reset is also active when the chip is in the Suspend state. This

enables a suspended chip to have a lower supply voltage and still preserve the

states of registers and memory. If the voltage falls below 2. 5V and a

Brown—Out reset occurs, the chip remains in reset until the supply reaches

the low—voltage reset threshold.

The Watch—Dog Reset prevents the firmware from hanging by requiring the

firmware to reset a watch—dog timer periodically. it the timer isn’t reset,

something has gone wrong and the firmware restarts. To prevent a

Watch—Dog Reset, firmware must write any value to the Watch Dog

Restart Register at least once every 10 milliseconds. If it fails to do so, the

watch—dog timer overflows and triggers a reset. This reset behaves like the

Low—Voltage and Brown—Out resets, except that the chip will continue to

use an enabled external clock and the reset delay is just 2 to 4 milliseconds.

The interrupt—service routine for the 1—millisecond timer might seem a nat—

ural place to write to the Watch Dog Restart Register, but it’s possible for

firmware to stall or get stuck in a loop while still being able to service this

interrupt. So it’s best to reset the watch dog in the firmware’s main task loop

and also in any other routines that may take longer than 10 milliseconds.

Firmware can’t disable the Watch Dog interrupt. The Processor Status and

Control Register has a bit that indicates if a Watch Dog reset has occurred,

and a bit that indicates if a Low Voltage or Brown—out reset has occurred.

A USB Bus reset occurs when the host sends a reset by bringing both USE

signal lines low for at least 10 milliseconds. This doesn’t reset the CPU. it

just calls the USB Bus Reset interruptwservice routine. The bus-reset routine

must cause the chip to stop USB communications and wait to be enumer—

ated. And if this is necessary, the firmware is likely to want to start fresh

from 00h as it does on the other resets. Here is example bus—reset code that
does this:

bus_reset:

USB Complete 205

Chapter 8

206

;Disable USE communications, then reset the firmware.

; Return Stall to IN and OUT token packets.

mov a, STAJL_IN_OUT

iowr epO_mode
; Enable U83 address 0.

mov a, ADDRESS_ENABLE

iowr usb_address

; Disable Endpoints l and 2.

mov a, T"SABME

iowr epl_mode

flwreggmfle

; Set the program stack pointer to O.

mov A, 00h

mov pep, a

; Execute reset code.

jmp reset

Selecting and Controlling the Clock

A very convenient feature of the enCoRe is its on—chip oscillator. Theres no

need to connect an external crystal or resonator unless the device needs a

more precise frequency for other Functions. An external clock can be a cryse

tal oscillator or ceramic resonator, plus any required capacitors at the XTA-

LIN and XTALO UT pins.

The Clock Configuration Register has Four bits that relate to clocking the

CPU. The chip always uses the internal clock on power up and on returning

from a Low—Voltage or Brown—Out reset, Firmware can then set the External
Oscillator Enable bit to 1 to switch the CPU to an external clock. If this bit

is O, the XTALIN pin is a generalvpurpose input (P2.1).

When using the internal clock, the internal Clock Output Disable bit deterv

mines whether XTALOUT is a logic high or a 6~Megahertz clock.

When using an external clock, the External Clock Resume Delay bit selects

one of two delay times when switching to the external clock or waking from

the Suspend state with the external clock enabled. As a rule, ceramic resona~

tors can use the HEB—microsecond delay, while crystals will need the 4- milli»

second delay.

USB Complete

Inside a USB Controller: the Cypress enCoRe

When firmware has set the Precision USB Clocking Enable bit to l, the

clock frequency meets USB’s 1. 5% tolerance requirements.

Power Management

The chip requires a power supply of4.0 to 5.5V DC.

To save power and to comply with the USB specification, the chip can enter

a Suspend state that powers down everything except what’s needed to detect

USB activity and whatever external interrupts are enabled. The onvchip

oscillator stops, so there is no clock to cause program instructions to exe—

cute. The chip just waits for an event that will end the Suspend state.

The events that will end the Suspend state are non—idle activity at the USB

receiver, the triggering of an enabled interrupt at an I/O pin, an SPI slave

interrupt, or a Wake—Up interrupt.

The chip enters the Suspend state by writing 1 to the Suspend bit in the

Processor Status and Control Register. Program execution stops. When an

event brings the chip out of the Suspend state, program execution begins at

the instruction following the iowr instruction that suspended the chip.

The firmware can put the chip into the Suspend state at any time, but it

must do so if there has been no USB activity (including low—speed

keepaalive signals) for three milliseconds. And as Chapter 19 explains, a

device suspended for this reason must consume very little bus power, as little

as 500 microamperes in some cases.

There are some things the firmware can do to ensure the lowest possible

power consumption. The firmware should set unused bits on ports 0 and 1

to pull~up mode. On 18—lead packages, this includes P1.2 though P1.7,

which are not brought out to external pins. The GPIO interrupt bits in the

Port 0 and 1 Interrupt Enable Registers should all be 0, even if the GPIO bit

in the Global Interrupt Enable Register is 0.

USB Complete 207

Chapter 8

208 USB Completa

Writing Firmware: the Cypress enCoRe

9

Writing Firmware:

the Cypress enCoRe

Whatever controller chip you select for a project, it won’t be much use until

you write the code that enables it to communicate with the host and the

other circuits in your peripheral. In this chapter, I again use the Cypress

enCoRe series an example, this time to Show what’s involved in writing and

debugging USB firmware, including a review of development tools. Even if

you’re using a different chip, this chapter will give you an idea of what the

process involves.

Hardware and Firmware Responsibilities

In a USB transfer, the CY7C63743’S serial interface engine handles many of

the tasks, but the firmware still has plenty to do. Here is a look at the

responsibilities of each.

USB Compiete 209

Chapter 9

What the Hardware Does

210

These are the tasks the hardware does on its own:

Detects new incoming packets.

Translates received information from the encoded format used on the

USB’S data lines.

Determines whether a transaction is directed to the chips USB address

and if not, ignores the transaction.

For transactions with Endpoint 0, determines the transaction type

(Setup, IN, or OUT) and sets a bit in the endpoint’s USB Mode register

to indicate which type it is.

For received data, the hardware also does the following:

Stores valid received data in the endpoints buffer or toggles a register bit
to indicate an error in received data.

Sets the count in the Endpoint Counter Register to match the number of

received bytes.

Stores the data—toggle state of valid received data.

Calculates CRC values, compares them to the received CRC values, and

takes action on detecting an error.

Sends the appropriate handshake to the host.

Triggers an interrupt so the firmware can prepare for the next transac»
tion.

For data to be transmitted, the hardware also does the following:

Translates data to be transmitted from the bytes in the USB buffer to the
format used on the USB’s data lines.

Sends the number of bytes specified in the Endpoint Counter Register

onto the USE lines in response to the host’s IN token packet.

Calculates and sends CRC bits with the data.

Sends a data—toggle code with the data.

On receiving a handshake from the host, triggers an interrupt.

USB Complete

Writing Firmware: the Cypress enCoRe

What the Firmware Does

The firmware’s job in USB communications is to supplement the hardware’s

capabilities and ensure that the device exchanges data as needed in both

directions. The following code is adapted from Cypress’ example firmware.

Endpoint 0 Interrupts

An interrupt at Endpoint 0 indicates activity that the firmware should check

into. On receiving an Endpoint 0 interrupt, the firmware pushes the accu—

mulator and index registers. The firmware checks the ACK bit in the End—

point 0 Mode Register and exits if the transaction didn’t complete with an

ACK. Otherwise, the firmware checks the same register to find out whether

a Setup, IN, or OUT token packet was received, then jumps to a routine to
handle it:

endpointO:

push X

push A

; Read the epO*mode register to enable writing to

; the endpoint's buffer.

iord ep0_mode

; If EPO_ACK isn't set, the transaction didn't

; complete with an Ack, so exit the routine.

and A, EPO_ACK

jz epOfidone

; Bit 5, 6, or 7 in ep0_mode is set to indicate

; whether the transaction type is Setup, In, or Out.

; Find out which it is and jump to handle it.

iord ep0_mode
asl A

jc epOwsetup_received
asl A

jc ep0_inwreceived
asl A

jC ep0_out_received

ep0_done:

DOPA

popX

USB Complete 211

Chapter 9

reti

If it’s 3 Setup transaction, the firmware determines which request it is and

jumps to a routine to handle it:

epOwsetupmreCeived:

; Clear the Setup bit to enable

; writing to Endpoint 0’s buffer.

mov A, NAK_IN_OUT

iowr epOgmode

; Extract the 5—bit meequestType in

; Endpoint 0’s byte 0.

mov A, [meequestType]

; Bits 2, 3, and 4 are unused here, so set to O:

and A, E3h

push A

; Shift right 3 places to move bits 5, 6, 7

; into bits 2, 3, and 4’s places.
asr A

asr A

as; A

; Save the result.

mov {intitemp], A

; OR the result with the original value

; to restore bits 0, 1,

pop A

or A, [int_temp]

; Clear bits 5, 6, & 7 (unused).

and A, th

; Shift left to multiply by two because the

; the index table’s jumps are two bytes each.
asl A

; Use a jump table to get the address to jump to

; to handle the request indicated in meequestType.

jacc meequestType_jumptable

Sending Data to the Host

When a request requires Endpoint 0 to send data to the host in the Data

stage, the firmware stores two values and calls an

initialize_control_read routine to get ready For the expected IN

212 USB Complete

Writing Firmware: the Cypress enCoRe

Uanfimdonkl'Thexmhm maximummdatamcount 8 dm mnountofdam.

available to send.

initializeficontrol_read:

ep0_transtype indicates the transaction type.
The firmware uses this value to decide how to

respond to token packets.

~.~.

.~.I

; If the firmware has jumped here,

; it’s a control Read transaction:

mov A, TRANSwCONTROLflREAD

mov [ep0_transtype], A

; Set the data toggle to l

mov A, DATA_TOGGLE

mov [ep0_datafltoggle], A

; Find the lesser of the requested data (in wLengthhi

and wLengthlo) and the maximum data available

; (in maximum_data“count).

Store this value in maximum_datawcount.

\.

~.

; If wLengthhi > O,

; maximum_data_count is the smaller value.

mov A, [wLengthhi]

cmp A, 00h

jnz initialize_controlwreadfidone

; If wLengthhi = O and wLengthlo > maximum_data_count

; maximumfldataflcount is the smaller value.

mov A, [wLengthlo]

cmp A, [maximum_data_count]

jnc initialize_control_readvdone

; Otherwise, wLengthlo is the smaller value.

mov A, [wLengthlo]

mov [maximum_data_count], A

initialize_control_read_done:

jmp control_read_data_stage

The firmware then loads data into Endpoint 0’s buffer and configures the

endpoint to return the data when the host sends an IN token packet.

USB Complete 213

Chapter 9

control_readwdata_stagez

; Load Endpoint 0’s buffer with data to send.

; Initialize the index register.

mov X, 00h

; "i all 0: the data has been sent, we’re done.

mov A, [maximumudata_count]

cmp A, 001

jz dmabuffer_load_done

dmabufferwload:

; Load a byte number into the buffer.

mov A, X

; If the bu"‘er is full, we’re done.

cmp A, 08h

jz dmabuffer_load_done

; The data to send begins at

; (datagstart + control_read_table).

mov A, [data_start]

index control_read_table

; Use the X regis:er to step through

; Endpoint O’s buffer.

mov [X + epO_dmabuffO], A

inc X

; data_start points to the byte to send.

inc [dataflstart]

; maximum_data_count is the number of bytes

; remaining to send.

dec [maximum_data_count]

; If no bytes remain, we’re done.

jz dmabuffer_loadfldone

; Otherwise, loop to load more data.

jmp dmabuffer_load

dmabu "er_load_done:

; Unlock the counter register.

iord ep0_count

; Place the number of bytes loaded and

; the data toggle value in the counter register.
mov A, X

or A, [epO_data_toggle]

iowr ep0_count

214 USB Complete

Writing Firmware: the Cypress enCoRe

; Configure Endpoint O to return data on the next IN

; token packet or to check for a O—byte data packet
; in an OUT transaction.

mov A, ACK‘IN_STATUS"OUT

iowr epOflmode

; Toggle the data toggle.

mov A, DATA_TOGGLE

xor [epofidatamtoggle], A

POP A

For) X
reti

If there are more data packets, the device loads these into the endpoint

buffer in the same way. When the host is finished requesting data, it sends a

Orbyte data packet in the Status stage. The devices endpoint responds with

ACK and the firmware jumps to routine that sets the endpoints mode and

the transaction type:

control_read_status_stage:

; Configure Endpoint O to return a O—byte data packet

; in case there is another IN packet.

mov A, STATUS_:N_ONLY

iowr ep0_mode

; No transaction is in progress.

mov A, TRANS_NONE

mov [ep0_transtype], A

pop A

pop X
reti

Receiving Data from the Host

When a request requires the host to send data to Endpoint 0 in the Data

stage, the firmware calls an initialize_control_write routine to

prepare to receive data in the expected OUT transaction(s). The variables

wLengthlo amiwLengthhi hddrheanmuntofdmathehofisawit
will send.

initialize_control_write:

USB Complete 215

Chapter 9

-
epOwtranstype indicates the transaction type.

; The firmware uses this value to decide how to

respond to token packets.~.

; If the firmware has jumped here,

; the transaction type is control Write:

mOV A, TRANS_CONTROL_WRITE

mov [epOMtranstype], A

; Initialize the data toggle to 15

mov A, DATA_TOGGLE

mov [ep0_data_toggle], A

;Send ACK in response to OUT packets,

;which will contain the Control Write data.

;Send NAK in response to IN packets (not expected).

mov A, ACK_OUT_NAK_INe

iowr ep0_mode

; Return Erom Endpoint O’s ISR.

pop A

pop X
ret i

.When the host sends data in an OUT transaction, the device stores the data

in the endpoints buffet and triggers an interrupt to handle it, The firmware

umxthetokmipmketmuiep0_transtypevduetofinnptotheappnnxr
ate routine:

control_writewdatawstage:

; If the data—valid bit isn't set,

; we’re done with the data stage.

iord ep0_count

and A , DATAWVALIID

jz control_write_datawstage_done

; Compare the received data toggle

; with the expected value.

iord epO_count

and A, DATA_TOGGLE

xor A, [epOidata_toggle]

; If it’s incorrect,

; we’re done with the data stage.

216 USB Complete

Writing Firmware: the Cypress enCoRe

jnz control_writewdata_stage_done

I

I
Copy the received bytes to data memory.

This example copies two bytes.

mov A, [ep0_dmabuff0]

mov [data_bytem0], A

mov A, [ep0_dmabuffl]

mov [dataflbyteml], A

;Toggle the data—toggle bit.

mov A, DATA~TOGGLE

xor [epOwdatautoggle], A

If all of the data has been received,

configure Endpoint O to send a O—byte data packet

in response to an IN packet (the transfer's status

stage) or to Stall an Out packet (not expected).

mOV A, STATUS_:NWONLY

iowr ep0_mode

control_write_datawstage_done:
I

Return from Endpoint 0’s ISR.

pOPA

FOPX
reti

After the endpoint has responded to the O—byte IN transaction in the Status

stage, an interrupt triggers and the firmware re—configures the endpoint and

sets epO__transtype:

control_write_status_stagez
I

I

I

I

I

I

I

Jump here if the device has received an IN token

packet with ep0_transtype = TRANSWCONTROL#WRZTE.

The device has sent a O—byte IN data packet to

complete the transfer because ep0_mode was set to

Status_Iannly at the end of the data stage.

Configure Endpoint O to return ACK on receiving

a O—byte data packet and to return Stall on :Ns.

mov A, STATUS_OUTHONLY

iowr epmeode

USB Complete 217

Chapter 9

; No transfer is in progress.

mov A, TRANS_NONE

mov [epO_transtype], A

; Return from Endpoint 0’s ISRu

pop A

pop X
reti

Handling Interrupt Transfers

The code for handling interrupt transfers at Endpoints 1 and 2 isn’t as com»

plicated, because these transfers don’t have multiple stages to manage. On an

IN endpoint, the interrupt triggers after the endpoint has sent data or a

NAK in a transaction. Here is code that enables Endpoint 1 to respond to

IN interrupts:

218

endpointl:

push A

; Get ready for the next transaction.

; Toggle the data toggle.

mov A, 80h

xor [epl_data_toggle], A

; Set the eventwmachine variable to indicate that

; no transaction is in progress.

mov A, NO_EVENT_PENJiNG

mov [event_machine], A

; If the endpoint has been set to Stall,

; set the mode to Stall INS and OUTS.

mov A, [epl_stall]

cmp A, FFh

jnz endpointlwdone

mov A, STALL_IN_OUT

iowr eplflmode

endpointl*done:

FOP A
reti

USB Complete

Writing Firmware: the Cypress enCoFle

In a similar way, the interruptvservice routine for an OUT endpoint

retrieves the received data (as in a Control \X/rite transaction) and gets ready

for the next transaction.

Other Responsibilities

The examples above show the essence of USB communications with the

CY7C63743. There are other details, of‘coursc. For example, during control

transfers the firmware must check periodically to find out if another Setup

token has arrived, and if so, abandon the current transfer and start the new

one. The firmware must also remember to clear the watch—dog timer in any

loop that might otherwise allow the timer to run without a reset For 10 mil—

liseconds. I also haven’t covered the specifics of how to respond to each con—

trol request. Again, Cypress provides example code for the essential

functions and my website (wwvar. com) has firmware examples that build.

on Cypress’ examples.

Hardware Development Tools

For project developing for the enCoRe, Cypress offers a Development Kit

for debugging code and third—party PROM programmers for storing code in

the chips’ PROMs.

The Development Kit

The CY3654 Development Kit enables you to test your code and circuits

and find problems quickly.

The system includes a set of circuit boards (Figure 9—1) and a debugging

program that together enable you to load your assembled or compiled code
from a PC to the board’s RAM. The RAM emulates the controllers PROM.

You can run and debug code while using your PC to monitor and control

program execution. Downloading to RAM makes it easy to modify the

code. Manufacturers of other USB chips have similar development systems

for their chips.

USB Complete 219

Chapter 9

To use the Development Kit, you need a PC running 'Windovvs 98 or later

with available USB and R8232 ports.

The Platform Board

The Development Kit’s main Platform board doesn’t contain an enCoRe

chip. Instead it has circuits that emulate the functions of the chip While

allowing you to monitor and control program execution.

Figure 91 shows a typical setup. The Platform board contains the circuits

that emulate the microcontroller. it has connectors for a Personality Board
and an R8232 connection to a PC. The Platform board also has a USB

connector for possible future use as an alternative to the RS-232 connection.

Figure 9—1: in the CY3654 Development System, a Personality Board attaches

on top of the main Development Board. An RS—232 port enables communicating

with the monitor program. A cable and Target Adapter connect the Personality

Board to an Application Board (right), which has a USB port.

220 USB Complete

Writing Firmware: the Cypress enCoRe

The Personality Board configures the emulator for a specific chip. A series of

similar chips may share the same Personality Board. For example, all of the

enCoRes use the P05 board, while the CY7C634/5/6XX chips use the P02
board.

A cable assembly connects the Personality Board to a Target Probe Adapter

that in turn connects to the Application Board.

The Application Board contains the USB connector and a prototyping area.

The board supports several example applications, with components for some

installed. You can use your own application board in place of the one pro—
vided .

The development kit connects to a PC via both USB and RS—232 interfaces.

These may, but don’t have to, connect to the same PC. The USB interface of
course carries the USB communications between a PC and the device’s USB

port. The debugger uses the RS—232 interface to send object code and to

send and receive debugging information such as breakpoints and register

contents. The board uses an external power supply, which is included.

The Application Board has several features for experimenting:

° Solder pads for the GPTO pins.

' A header for a cable to a logic analyzer or other circuits that connect to

the GPIO pins.

' A temperature converter that uses an SP1 interface (Dallas Semiconduo

tor 1381722).

’ An EEPROM that uses an SPI interface (Xicor X25020).

° Solder pads for four surface—mount LEDs, with two installed.

' Solder pads for three surface—mount push~button switches, with one
installed.

° Solder pads for adding LinX Technologies’ TXM and RXM RF interface
modules.

° Prototyping area.

USB Complete 221

Chapter 9

222

Setting Up the Development Board

Setting up the Development Board for use requires attaching live compo—

nents in series. There are a few places where you can plug something in

wrong, so I’ll go over the steps:

1. Plug the Personality Board into the Development Board. The Personality

Board rests on top of the Development Board. The bottom of the Personal-a

ity Board has two headers that plug into connectors on the Development

Board. The connectors are keyed so you can’t plug them in backwards.

2. Plug one end of the cable assembly into the Personality Board. One end

of the cable assembly has a circuit board with two 40vpin sockets (jl and

J2). These mate with the two 40-pin headers on the Personality Board.

These connectors are not keyed, so be sure to plug the cable in correctly. The

sockets and pins are labeled (J1 and J2). The cable should point away from

the Development Board, not across it.

3. The Personality Board has one jumper. Leave)8 open to use bus power to

power the Application Board’s circuits. Jumper J8 to power the Application

Board from the Development Board’s supply, with a limit of 100 milliam~

peres°

4. Plug the other end of the cable assembly into a Target Adapter.]3 and M

on the cable assembly are two 40~pin sockets that mate with pins on one of

the provided Target Adapters. The Application Board uses the 24P DIP

Adapter. These connectors are keyed.

5. Plug the Target Adapter’s pins into the DIP socket on the Application

Board. This connection is not keyed. The cable should point away from the

Application Board, not lie across it.

6. Connect an RS—232 cable From the Development Board to your PC’S

serial port.

7. Connect a USB cable from the Applicarian Baum”: USB connector to a

USB port on your PC. Dan} use the USB connector on the larger Develop»
ment Board.

8. Plug the power supply into an AC outlet and the Development Board’s
connector.

USB Complete

Writing Firmware: the Cypress enCoRe

Form D a
Part? Data
Port2 Dave
Poi-t0 li‘iEEVmpl Enable
PM“ irr'e'luplEnalfle
Pam] lmC'Iupl Pular‘iiy
PM i interrupt Pnlarity
Pom] MutiaE
Ponfl ivlnr , ‘

Porti Modqu , : l , _ 7- A jnm rm;Pom Modal _ '
USB DEViEB Attire 5:;
EP0 CeunterR ter

vEPU Mode Register
YEP i Counter Register
EF' i Mode Register
EPZ Counter Register

,EP 2 Mi; “mightierUSE Elia Y Control
,Glubui lnle'rupl Enable
Enclpoinl interrupt End
Tints! (L3E‘i .
Tin, .r (WISH) ' . ’ m'
WOliTl'lClCJngmE' Clear , I ' - gumglg

IimarAHusmg : , ‘ ‘ ggg
lunar AFallmg , ‘2. ‘ l‘lJUSil
"VIM , E] 7- - mum-ii;

i ue Timer E Falling
m Timer [31: ring .:

mute Tim Elotus31"chth rte.
SP! Conlrril Register

‘ Clock oniigurotlnn infill-l-’rncnc:rr Status. 8 (to [W]

wile? om;

im- maul: - res-rt; veet'ar

jmr- bus lug-lul > bus reset interrupt

jmg airm- - 1‘2‘Elus interrupt

w ~ LUSUAxus interrupt

hay aluminum - endpom-t D intertupt

Jury cntipuiutl, - enclpnint i intrrrupf.

jmp error ‘ endpnint z interrupt.

DD DU ‘ Iii]
UL‘ ’ ' ill] illl ill: ill] iiil
lJl] UU illl llli ll] ii]
rm i'll'i il-‘l [iii 00 00
no on on no no no
an 00 on Mi 00 [it]
00 ' CID EiL'i I31] [ID ED
00 0'] Di] I30 [)0 GD
[IO 0|] DU DU IJEl

Juliana.” in. mi trauma

Figure 9-2: Cypress’ CYDB monitor and debugger enables you to control

program execution and view the status of memory and registers.

The Debugger

The companion to the development board is the CYDB debugger, or moni—

tor program. In addition to enabling you to load and run your firmware, the

debugger has features that can help enormously in tracking down program

bugs.

Figure 9—2 shows the user screen, which you can customize to show the

information you want. The View menu allows you to select which windows

USB Complete 223

Chapter 9

224

display, including program and data memory, CPU and I/O registers, and
breakpoints.

The Development Kit comes with a manual that guides you through setting

up the system and getting started with the debugger.

Here’s an example ofhow to use the Development Kit to run your firmware:

I. Write your source file in assembly code and use the Cyasm assembler to

create an object file. The object file can be a .rom or hex file, and contains

your firmware’s machine-code instructions in an ASCII Hex format. For

your device to enumerate, it will also need an INF file on the host, as

described in Chapter 11. If your firmware identifies the device as HID class,

you can use the HID INF file that’s provided with Windows.

3. Plug in the Development Board’s power supply and connect the RS—232
and USB cables to the host PC.

4. Run the debugger.

5. Configure the debugger for your development hardware. From the Con-

figure menu, select Target to display the Configure Target/Emulator win~

dow. Figure 9—3 shows the window as it appears after the configuration

process is complete. Click the Connect button. In the window that appears,

select a COM port and click OK. When the debugger has finished the con—

figuration communications, the text under the Current Emulator Configu—

ration label changes from Not Connected to Connected, and the Connect

button’s caption changes to Update. Click OK to close the window.

6. Download and run your code. To download code to the emulator, click

the DL button or select Run, Download from the menu. In the Window that

appears, select a hex or .7077; file and a listing file and click OK. The debug—

ger loads the selected file into the emulator’s memory and displays the

selected listing file.

To run the firmware, click the R button or select Run, Run from the menu.

If all is well, the firmware will run and Windows will enumerate the device.

The R button will be grayed out and the Stop button will appear as a solid
red circle.

USB Complete

Writing Firmware: the Cypress enCoRe

mm“ '

Figure 9-3: In the CYDB debugger, use the Configure Target/Emulator window

to establish communications with the development board.

To stop the code, click the Stop button or click Run, Stop in the menu. To

restart at the instruction where the firmware stopped, click Run. To restart

from the beginning of program memory, click Reset.

Debugging Tips

The debugger enables you to precisely monitor and what the device’s firm—

ware is doing.

You can execute a portion of your application, then examine the states of all

of the device’s registers and RAM, or even change their contents on the fly.

You can set a breakpoint to find out when and if a section of code executes.

You can single—step through the code to find out exactly What the code does
and where it branches. The Platform board’s hardware and firmware disable

the Watch Dog timer during single—stepping.

USB Complete 225

Chapter 9

For example, it you suspect that a routine in your firmware never executes,

you can use the monitor program to set a breakpoint in the routine. If the

monitor stops program execution at the breakpoint, you know that the rou~

tine is executing. If you suspect the routine isn’t doing what you intended,

you can single~step through it and watch the contents of any registers and

memory locations or interest in each step. The CPU Registers window

shows the current value of the program counter (PC) and the listing file’s

display shows your code. To update the display of the emulated chip’s regis—

ters and memory, click View > Refresh.

You can use your own application along with the development tools to test

the firmware in its intended use. For example, you can run an application

that enables users to click buttons to send and receive HID reports. You can

keep the debugger open at the same time as you run your own application.

This way, you can watch what’s going on inside the emulated chip as your

application runs.

One thing thatis missing in the debugger is the ability to search a listing file

for specific text. This makes it hard to find a specific line of code to set a

breakpoint. So i keep a copy of the listing tile loaded into a word processor

and use that for searching. \When l find the line of code For looking for, l

note the line number and switch back to the debugger to set the breakpoint.

PROM Programming

226

'When your code looks OK on the emulator and you’re ready to try it out in

a chip’s PROM, you’ll need a PROM programmer. Several vendors have

programmers that are capable of this. An inexpensive one is the CY3649

HiwLo PROM Programmer, available from Cypress.

Programming chips in the enCoRe series requires two additional compo—

nents, the CY3083—DP48 Adapter Base, which adapts the programmer for a

specific package type, and the CY3083~08 Matrix (Lard, which routes the

signals for a specific pinout. Both are available from Cypress.

Figure 94 shows the programmer, and Figure 9—5 shows the programmer

applications display. The programmer is the same one provided with some

USB Complete

Writing Firmware: the Cypress enCoRe

Figure 9-4: Cypress offers an inexpensive programmer and adapters for the

enCoRe series and other chips. The photo shows an Adapter Base inserted into

the programmer’s ZIF socket. The Adapter Base holds a matrix card and a chip

to be programmed.

of the now discontinued Starter Kits for the CY7C63000 series. If the pro—

grammer is labeled c“Programmer for Starter,” it’s usable with the enCoRes if

you update the software and get the Adapter Base and Matrix Card. If the

programmer is labeled “Programmer for CYGBO...,” it won’t work with the
enCoRes.

The programmer connects to the PC Via an R3232 serial port. (The unit

was probably adapted from an existing design that predates USE.) As with

other EPROM programmers, you place the chip to be programmed in a

zero—insertion—force (ZIP) socket and flip the lever to lock in the chip.

These are the steps to program a chip:

1. Insert the Matrix Card into the Adapter Base and place the Adapter Base

into the programmer’s ZIP socket and lock it into place

USB Complete 227

Chapter 9

is Stall Kit USE: Emurammm

. C‘V‘PR F88

Ml r.

Type : CWCBBH3 [24 pin DIP]

Addlllkif l CVJUflEfiDI-‘tittwt-U'V'jUB‘d—OH

NONE

lit} Base arlrlr.: com [FIFE]

Baudrato: 9600

Rtarl Fnd

Davina. lllllllllill'] 001 HH—
Buffer: 000mm 001 FDF
Butter Checksum :BCBd

Bullet SirelByLeslflK

File Formats:

Elna ‘
ilntel HEX
MOTOROLAERQCnrd

File start: snowman

File and: toomFFF
Butt start: cannon

Figure 9-5: The software for Cypress Semiconductor’s EPROM programmer

enables you to program a file in any of several formats into Cypress chips,

verify, and protect the code from copying by blowing the security fuse.

2. Place a chip to be programmed into the Adapter Base’s ZIF socket and

lock it into place.

3. 1n the Setup window, select a COM port and bit rate, A message will

inform you when the software has located the programmer,

4. From the Device menu, select the device to be programmed.

5. From the File menu, select Load File to Buffer. Select a hex file created by

the Cyasm assembler. The programmer software is 16~bit, so long file and

folder names will be truncated. In the window that appears, select file For-

mat 2 Intel Hex, File Start = 0000, File End : IFFE Buffer Start 2 0000,

and Unused Bytes : Don’t Care.

6. Click Auto, then OK. This will cause the programmer to do four things

in sequence. The programmer will verify that the chip is erased (contains all

228 USB Complete

Writing Firmware: the Cypress enCoRe

FPS). It will program the buffers file into the PROM, beginning at OOOOh. It

will verify that the chips contents match the buffer.

The Security button blows the chips security fuse to prevent anyone from

reading the code stored in the chip. Anyone who tries to read the code in the

device will see only FFS. Once the security fuse is blown, the device can no

longer be programmed.

You can also do an individual blank check, program, verify, and security pro—

tection of the code. An edit menu enables you to edit individual bytes in

buffer, search, move blocks of bytes, and fill areas with a value.

I found the programming software to be a little quirky. At higher bit rates,

the programmer sometimes failed to read or program the device. After

switching to 9600 bps, a device that failed at a higher bit rate passed the

blank test but refused to be programmed until I re-erased. At slower rates, l

had no problems. Because the amount to be programmed is small, the pro—

gramming completes quickly enough even at a slower bit rate.

USB Complete 229

Chapter 9

230 USB Complete

How the Host Communicates

10

How the Host

Communicates

A USB peripheral is of no use if its host PC doesn’t know how to communi—

cate with it. Under Windows, any communication with a USB peripheral

must pass through a device driver that knows how to communicate both

with the system’s USB drivers and with the applications that access the
device.

This chapter explains how Windows applications communicate with USB

devices and explores the options for device drivers.

Device Driver Basics

A device driver is a software component that enables applications to access a

hardware device. The hardware device may be a printer, modem, keyboard,

video display, data’acquisition unit, or just about anything controlled by cir—

cuits that the CPU can access. The device may be inside the computer’s

USB Complete 231

Chapter 10

enclosure (an internal disk drive. for example) or it may use a cable to con—

nect to the computer (as with a keyboard or mouse). The device may be a

standard peripheral type or a unique design for a special purpose. It may be
a one«of—a~kind, custom device. Some device drivers are class drivers that

handle communications with a variety of devices that have similar functions.

Insulating Applications from the Details

232

A device driver insulates applications from having to know details about the

physical connections, signals, and protocols required to communicate with a

device. Applications are the programs that users run, including everything

from popular word processors and databases to specialnpurpose applications
that support custom hardware.

A device driver can enable application code to access a peripheral when the

application knows only the peripherals name (such as HP Laserjet) or the

device’s Function (joystick). The application doesn’t have to know the physiv

cal address of the port the peripheral attaches to (such as 37811), and it

doesn’t have to explicitly monitor and control the handshaking signals that

the peripheral requires (Busy, Strobe, and so on). Applications don’t even

have to know whether a device uses USB or another interface. The applica»

tion code can be the same for all interfaces, with the hardware—specific
details handled at a lower level.

A device driver accomplishes its mission by translating between applica~

tion—level and hardware—specific code. The application—level code uses func—

tions supported by the operating system to communicate with device

drivers. The hardware—specific code handles the protocols necessary to access

the peripherals circuits, including detecting the states of status signals and

toggling control signals at appropriate times.

Windows includes application programmer’s interface (API) functions that

enable applications to communicate with device drivers. Applications writ»

ten in Visual Basic, C/C++, and Delphi can call API functions. Three func—

tions that device drivers may support for reading and writing to USB devices
are ReadFile, WriteFile, and DeviceloControl.

USB Complete

How the Host Communicates

Although APT functions simplify the process of communicating with hard—

ware, they tend to have specific and rigid requirements for the values they

pass and return. it’s not unusual for a mistake in an API call to result in an

application or even a system crash.

To make programming simpler and safer, Visual Basic has its own controls

for common tasks. For example, applications can use the Printer Object to

send data to printers and the MSComm control to communicate with

devices that connect to RS—232 serial ports. The controls provide an easier

and more failsafe programming interface for setting parameters and

exchanging data. The underlying code within the control may use APl func—

tions to communicate with device drivers, but the control insulates applicav

tion programmers from dealing with the sometimes arcane details of the API
calls.

Visual Basic doesn’t have a generic control for USB communications, how#

ever. How an application communicates with a USB device varies with the

driver assigned to the device. For example, a Visual‘Basic application can

use the Printer object to communicate with a USB printer.

Some device drivers are monolithic drivers that handle everything from

communicating with applications to reading and writing to the ports or

memory addresses that connect to the device’s hardware.

Other drivers, including Windows drivers for USB devices, use a layered

driver model where each driver in a series performs a portion of the commu—

nication. The top layer contains a function driver that manages communica—

tions between applications and the lower—level bus drivers. The bottom layer

contains a bus driver that manages communications between the function

driver and the hardware. One or more filter drivers may supplement the
function and bus drivers.

The layered driver model is more complicated as a whole, but it actually

simplifies the job of writing drivers. Devices can share code for tasks they

have in common. Plus, the drivers that handle communications with the

system’s USB hardware are built into Windows, so driver writers don’t have

to provide them. Writing a device driver for a USB device is typically much

USB Complete 233

Chapter 10

easier than writing a driver that has to handle the details of accessing the
hardware.

Options for USB Devices

234

There are several approaches to obtaining a driver for a device. Sometimes

you can use a driver that’s included with Windows or provided by a chip

vendor or other source. For other devices, you may need to write a custom

driver. A variety of toolkits are available to simplify and speed up the task of

driver writing. Sometimes more than one way will work, and the choice

depends on a combination ofwhatis easier, cheaper, and offers better perfor»
mance.

Standard Device Types

Many peripherals fit into standard classes such as disk drives, printers,

modems, keyboards, and mice. All of these are available with a choice of

interfaces, including USE. For example, a keyboard may use the original legw

acy keyboard interface or USB. A disk drive may use any of a number of

interfaces, including ATAPL SCSI, printer—port, EBB—1394, and U53.

Windows includes class drivers for many standard device types. When

devices in a class may have different interfaces, supplemental drivers can

support the various interface options. And if a device has features or capabil—

ities beyond what the class driver supports, a device—specific filter driver can

support these as needed.

Custom Devices

Some peripherals are custom devices intended for use only with specific

applications. Examples include data—acquisition units, motor controllers,

and test instruments. Windows has no knowledge of these devices, so it has

no built~in drivers for them. Devices like these may use custom drivers, or

they may be designed so they comply with the requirements For a supported

class. For example, a data—acquisition device may be able to use the HID
drivers.

USB Complete

How the Host Communicates

How Applications Communicate with Devices

To understand what the device driver has to do, you .need to understand

where the driver fits in the communications path of a data transfer. Even if

you don’t need to write a driver for your device, understanding the drivers

role will help in understanding the applicationvlevel code that you do write.

What is a Device Driver?

In the most general sense, a device driver is any code that handles communi—
cation details for a hardware device that interfaces to a CPU. Even a short

subroutine in an application can be considered a device driver. Under Win—

dows, the code for most drivers, including USB drivers, differs from applica—

tion code because the operating system allows the driver code a greater level

of privilege than it allows to applications.

User and Kernel Modes

Under Windows, code runs in one of two modes: user or kernel. Each

allows a different level of privilege in accessing memory and other system

resources. Applications must run in user mode. Most drivers, including all

USB drivers, run in kernel mode, though a USB device .may also have a sup—

plementary user~mode driver.

In user mode, Windows limits access to memory and other system resources.

Windows won’t allow an application to access an area of memory that the

operating system has designated as protected. This enables a PC to run mul~

tiple applications at the same time, with none of the applications interfering

with each other. In theory, even if an application crashes, other applications

are unaffected. Of course in reality it doesn’t always work that way, but that’s

the theory. On Pentiums and other X86 processors, user mode corresponds

to the CPU’s Ring 3 mode.

In kernel mode, the code has unrestricted access to system resources, includ—

ing the ability to execute memory—management instructions and control

access to I/O ports. On Pentiums and other x86 processors, kernel mode

corresponds to the CPU’s Ring 0 mode.

USB Complete 235

Chamer10

APPLICATIONS

WIN32 API CALLS USER
MODE

w1N32 SUBSYSTE

1/0 REQUEST PACKETS ___________

i
:UNCTION DRIVERS l

; — - : \ KERNEL
i/O R_QUEST RACK_ts MODE

BUS DRIVERS

_mw:£:fARDWARE~SPECIFiC INi—RIAc~
:1

HARDWARE 1

Figure 104: USB uses a layered driver model under Windows, with separate

drivers for devices and the buses they connect to“

Under Windows 98 and Me, applications can access l/O ports directly,

unless a low—level driver has reserved the port, preventing access. Under

Windows NT and 2000, only kernel—mode drivers can access l/O ports.

Figure 10~1 shows the major components of user and kernel modes in a
USB communication.

Applications and drivers each use their own language to communicate with

the operating system. Applications use WinBZ APl Functions. Drivers come

municate with each other using structures called l/O request packets (lRPs).

236 USBCompmm

How the Host Communicates

Windows defines a set of lRPs that drivers can use. Each lRP requests a sin—

gle input or output action. A function driver for a USB device uses lRl’s to

pass communications to and from the bus drivers that handle USB commw

nications. The bus drivers are included with Windows and require no pro—

gramming by applications programmers or device-driver writers.

The Win32 Driver Model

USB device drivers for Windows must conform to the Win32 Driver Model

defined by Microsoft for use under Windows 98 and later, including Win—
dows 2000 and Me. These drivers are known as WDM drivers and have the

extension .sys. (Other file types may also use the .sys extension)

Like other lowvlevel drivers, a WDM driver has abilities not available to

applications because the driver communicates with the operating system at a

lower, more privileged level. A WDM driver can permit or deny an applica

tion access to a device. For example, a joystick driver can allow any applica~

tion to use a joystick, or it can allow one application to reserve the joystick
for its exclusive use. Other abilities that Windows reserves for WDM and

other low—level drivers include DMA transfers and responding to hardware

interrupts.

Driver Models for Different Windows Flavors

The Win32 Driver Model provides a common driver model for use by any
device under Windows 98 and later. Earlier versions of Windows used dif—

ferent models for device drivers. Windows 95 used VXDs (virtual device

drivers). Windows NT 4 used a type of driver called kernel—mode drivers.

Developers who wanted to support both Windows 95 and Windows NT

had to provide a driver for each. But a single WDM driver can work under
both Windows 98 and Windows 2000.

The USB bus drivers included with Windows are WDM drivers. Although
Windows 98 continues to support VXDs, USB devices must have WDM

function drivers because their function drivers must communicate with the

WDM bus drivers.

USB Complete 237

Chapter 10

The Win32 Driver Model isn’t completely new, but was built on existing

components. A WDM driver is basically an NT kernel-mode driver with the

addition of Windows 95’s Plug—and—Play and power—management features.

The final editions of Windows 95 (versions OSR 2,] and higher) had some

support for WDM drivers. These editions weren’t available to retail customw

ers, but were available only to vendors who installed the software on the

computers they sold. Beginning with Windows 98, the WDM support was

much expanded and improved.

How can two different operating systems, which previously required very

different drivers, now use the same drivers? Windows 98 includes the driver

ntkemwxd, which tricks WDM drivers into thinking they’re communicating

with an NT—like operating system° All WDM drivers running on Windows

98 require this driver, which is included with Windows 98.,

Programming Languages

Application programmers have a choice in programming languages, includ—

ing Visual Basic, Delphi, and Visual C++. But to write a driver for a USB

device, you need a tool that is capable of compiling a WDM driver, and this

means using Visual C++. The exception is driver toolkits that provide a

generic driver and either require no programming at all or permit you to use

other C compilers or Delphi to customize a generic driver with a user»1node

component.

Layered Drivers

238

In the layered driver model used in USB communications, each layer han—

dles a piece of the communication process. Dividing communications into ,

layers is efficient because it enables different devices that have tasks in com~

mon to use the same driver for those tasks. For example, all kinds of devices

may use USB, so it makes sense to have one set of drivers to handle the

USE—specific communications that are common to all. including these driv»

ers with Windows means that device vendors don’t have to provide them.

The alternative would be to have each device driver communicate directly

with the USB hardware, with much duplication 01C effort.

USB Complete

How the Host Communicates

USB Driver Layers

The portion of Windows that manages communications with devices is the

1/0 subsystem. The subsystem has several layers, with each layer containing

one or more drivers that handle a set of related tasks. Requests pass in

sequence from one layer to the next. Within the I/O subsystem, the I/O

manager is in charge of communications. One element within the I/O sub’

system is the USB subsystem, which includes the drivers that handle

USB—specific communications for all devices.

The set of protocols used by the drivers is called a stack. (This is different

from the CPU stack introduced in Chapter 8.) You can think of the layers as

being stacked one above the next, with communications passing in sequence

up and down the stack. Applications are at the top of the stack, and the USB
hardware is at the bottom of the stack.

The Function Driver

A function driver enables applications to talk to a USB device using API

functions. The APT functions are part of Windows WinBZ subsystem,

which is also in charge of user functions such as running applications, man—

aging user input via the keyboard and mouse, and displaying output on the
screen. To communicate with a USB device, an application doesn’t have to

know anything about the USB protocol, or even if the device uses USB at
all.

The function driver also knows how to communicate with the lower~level

bus drivers that control the hardware. Figure 10—2 shows how these work

together in USB communications. The function driver is often referred to as

the device driver, though a complete device driver actually encompasses

both the function driver and bus drivers. The function driver may be a class

driver or a devicerspecific driver.

When a device or subclass has requirements beyond what a class driver han—

dles, a supplemental driver called a filter driver can add the needed capabili«

ties. An upper filter driver resides above the class driver. Requests from

USB Complete 239

Chapter 10

APDLICATIONS

UPPER FILTER DRIVER
SUPPORTS DEVICE—SPECIFIC

CAPABILITIES

CLASS :UNCTION DRIVER » _

DEF 1 NE 5 A US 3R D :CFUISNIEOSM Ar UuNsCETRI OINN TDERRIFVAECREINTERFACE FOR A CLASS -
FOR CUSTOM HARDWARE.

ENABLES DEVICES TO COMM NICATE
WITH THE SYSTEM'S USB DRIVERS.

LOWER FILTER DRIVER

LSB LLB DRIVER

USBdJB.SYS):
TIA_IZES PORTS

 IN'

USB BUS~CLASS DRIVER
(USBD.SYS):

MANAGES U83 TRANSACTIONS,
POWER. BLS 'NUM-RAIION.

HOST CO TROLLER DRIVER

(UHCI.SYSJ OPENHCI.SYSJ EHCI.SYS):
COMMU ICATES WITd

LARDWARE.

Figure 102: USB communications use a host controller driver, Class driver, hub

driver, and a function driver that may consist of one or more files.

240

applications pass through the upper filter driver before being passed to the
class driver. A lower filter driver resides between the Class driver and bus

drivers. A class driver may pass requests to a lower filter driver, which in turn

passes them to a bus driver. Lower filter drivers can enable a single Class

driver to support multiple interfaces, with each driver supporting the

ciass—specific operations required for an interface. For example, Windows

provides a driver that enables the HID~Class driver to communicate with the
USB bus drivers.

USB Compiete

How the Host Communicates

Some USB devices may use yet another type of driver, called a legacy virtual~

ization driver. To communicate with the keyboard, mouse, and joystick,

Windows 98 uses the virtual device drivers (VXDs) inherited from Windows

95. When one of these peripherals has a USB interface, a legacy virtualiza»
tion driver translates between the device’s HID interface and the VXD’s

interface. The legacy virtualization driver is a VXD that knows how to talk
to the HID driver.

The Bus Drivers

The USB’s bus drivers consist of the root~hub driver, the bus-class driver,

and the host—controller driver. The root—hub driver manages the initializing

of ports and in general manages communications between device drivers
and the bus~class driver. The bus—class driver manages bus power, enumera—

tion, USB transactions, and communications between the root—hub driver

and the host—controller driver. The host—controller driver enables the host

controller hardware to communicate with the USB system software. The

host controller connects to the bus. The host—controller driver is separate

from the buseclass driver because Windows supports multiple types of host

controllers, each with its own driver.

The bus drivers are part of Windows, and application and device—driver
writers don’t have to know the details about how they work. Perhaps because

of this, Microsoft provides very little in the way of documentation for them.

If you want to know more about how the lowvlevel communications work,
one source of information is the source code and other documentation from

the Linux USB Project.

Communication Flow

One way to better understand what happens during a USB transfer is to

look at an example. The following are the steps in a USB transfer with a

data—acquisition device that uses a custom function driver.

Preliminary Requirements

Before an application can communicate with a device, several things must

happen. The device must be attached to the bus. Windows must enumerate

USB Complete 241

Chapter 10

242

the device and identity the driver for the device. And the application that
will access the device must obtain a handle that identifies the device and

enables communications with it.

When a device is attached, Windows’ Device Manager handles enumeration

automatically, as described in Chapter 5. To identify which driver to use,

Windows compares the retrieved descriptors with the information in its INF

files, as described in Chapter 1 l .

The handle is a unique identifier that Windows assigns to an instance of the

device. An application gets the handle by calling the CreateFile API function
with a symbolic link that identifies the device.

Some drivers explicitly define a symbolic link for each device they control.

For example, Cypressj KZMSbJj/S driver identifies the first EszSB chip as
ezusb‘O. If there are additional EZ—USBs, the driver identifies them as

ezusb-l, ezusb—Z, and so on up.

Other drivers use a newer method supported by Windows, Where the symw
bolic link contains a globally unique identifier (GUID). The GUID is a

128~bit number that uniquely identifies an object. The object may be any
class, interface, or other entity that the software treats as an object.

Windows defines GUle for standard objects such as the HID class. For

unique devices, developers can obtain a GUID using the guidgen.€x€ pro—
gram included with Visual C++. The GUID is then included in the driver
code.

The guidgm program uses a complex algorithm that takes into account a
machine identifier, the date and time, and other factors that make it

extremely unlikely that another device will end up with an identical GUID.

The algorithm was originally defined by the Open Software Foundation.

The standard format for expressing GUIDs divides the GUID into five sets

of hex characters, separated by hyphens. This is the GUID for the HID
class: 745a],7a0—74d3~1 1d0—b6fe—00a0c90f’57da

Applications can use API calls to retrieve class and device GUIDs from the

operating system.

USB Complete

How the Host Communicates

The User’s Role

When a device is attached and ready to transfer data, the host may request a

transfer. To read data from a data—acquisition unit, the user might click a

button in a data—acquisition application. Or a user might select an option

that causes the application to request a reading once per minute. Or periodic

data acquisitions might start automatically when the device’s driver is loaded

or when the user runs the application.

The Application’s Role

The Windows API includes three functions for exchanging data with

devices: ReadFile, WriteFile, and DeviceloControl. A driver may support

any combination of these. Each call includes the request, other required
information such as the data to write or amount of data to read, and the

device’s handle. The Platform SDK section in the MSDN library docu—

ments these functions.

Although the names suggest that they’re used only with files, WriteFile and

ReadFile are general—purpose functions that can transfer data to and from

any driver that supports them. The data read or data to be written is stored

in a buffer specified by the call. A call to ReadFile doesn’t necessarily cause

the driver to retrieve data from the device. The call may instead return data

that was requested previously and stored in a buffer. The details vary with

the driver. Chapter 15 has more on how to use ReadFile and WriteFile.

DeviceIoControl is another way to transfer data to and from buffers.

Included in each DeviceIoControl request is a code that identifies a specific

request. Unlike ReadFile and WriteFile, a single DeviceIoControl call can

transfer data in both directions. The driver specifies What data, if any, to pass
in each direction for each code. Some codes are commands that don’t need

to pass additional data.

Windows defines control codes used by disk drives and other common

devices. These are examples:

IOCTL_STORAGE_CHECK__VERIFY determines if media is

present and readable on removable media.

IOCTL_STORAGE_LOADMMEDIA loads media on a device.

USB Complete 243

Chapter 10

244

IOCTLQSTORAGBI}ET‘MEDEAWTYPES returns the types of
media supported by a drive.

A driver may also define its own control codes. Because the codes are sent

only to a specific driver, it doesn’t matter if other drivers use the same codes.

The driver for Cypress” thermometer application for the CY7C63001

defines codes to get the temperature and button state, set LED brightness,

and read and write to the controllers RAM and ports. This is a Visualeasic
declaration for DeviceloControl:

Declare Function DeviceIoControl Lib "kernelB2" _

(ByVal hDevice As Long, _

ByVal deoControlCode As Long,

lpInBuffer As Any, _

ByVal nInBafferSize As Long,

LpOutBuffer As Any, w

3yVal n0ut3uffersize As Long,

;pBytesReturned As Long, _

Lvaerlapped As OVERLAPPED)

As Long

This is a call that uses the control code 04h:

ltemp = DeviceIoControl

(hgjrernd,

Windows may support additional API functions for transferring data with

devices in a particular class. For example, the functions HidWGetFeature and

HidD_SetFeature read and send Feature reports to Hillclass devices.

The Device Driver’s Role

When an application calls an API function that reads or writes to a USB

device, Windows passes the call to the appropriate function driver. The

driver converts the request to a format the USB bus-class driver can under~
stand,

USE Complete

How the Host Communicates

As mentioned earlier, drivers communicate with each other using structures

called 1/C) Request Packets (lRPs). For USB communications, the lRPs con—

tain structures called USB Request Blocks (URBs) that specify protocols for

configuring devices and. transferring data. The URBS are documented in the
Windows DDK.

A function driver requests a transfer by creating an URB and submitting it
in an IRP to a lower—level driver. The bus and host—controller drivers handle

the details of scheduling transactions on the bus. For interrupt and isochro—

nous transfers, if there is no outstanding IRP for an endpoint when its

scheduled time comes up, the transaction is skipped.

For transfers that require multiple transactions, the function driver submits

a single IRP for the entire transfer. All of the transfer's transactions are then

scheduled without requiring further communications with the function
driver.

if you’re using an existing function driver (rather than writing your own),

you need to understand how to access the driver’s application—level interface,

but you don’t have to concern yourself with iRPs and URBs. if you’re writ—

ing a function driver, you need to provide the lRPs that communicate with

the system’s USB drivers.

The Hub Driver’s Role

The hosts hub driver resides between a device—specific or USB~class driver

and the USB bus—class driver. The hub driver handles the initializing of the

root hub’s ports and any devices downstream of the ports. This driver

requires no programming by device developers. Windows includes the hub

driver usb/aub.5ys.

The Bus-class Driver’s Role

The USB bus—class driver translates communication requests between the

hub driver and the host—controller driver. It handles bus enumeration, power

management, and some aspects of USB transactions. These communica—

tions require no programming by device developers. Windows includes the

bus'class driver usbalsys.

USB Complete 245

Chapter 10

246

The Host—controller Driver’s Role

The host—controller driver communicates with the host~controller hardware,

which in turn connects to the bus. The host—controller driver requires no

programming by device developers.

There are three types of host controllers. Two are for low— and full~speed

communications only and one is for high—speed communications only. The

low— and full~speed controller types are the Open Host Controller interface

(OHCI) and Universal Host Controller Interface (UHCU. High—speed con~
trollers must use the Enhanced Host Controller Interface (EHCl). The USB

lmplementers Forums website has links to the specifications.

Controllers that conform to the OHCI standard use the driver Upfflkfljys,

and controllers that conform to the UHCI standard use the driver “hairy/5.

Both drivers provide a way for the USB hardware to communicate with the

bus—class driver. Although they differ in how they do so, in most cases the

differences are transparent to driver developers and application program—
mers.

The two drivers take different approaches to implementing the hostvconw

troller’s functions. UHCI places more of the communications burden on

software and allows the use of simpler, cheaper hardware. OHCI places

more of the burden on the hardware and allows simpler software control.

UHCI was developed by Intel and OHCI was developed by Compaq,
Microsoft, and National Semiconductor.

The two host controller types do have some differences in performance. An

OHCI controller is capable of scheduling more than one stage of a control

transfer in a single frame, while a UHCI controller always schedules each

stage in a different frame. For bulk endpoints with a maximum packet size

less than 64 bytes, the Windows UHCI driver attempts no more than one

transaction per frame, while an OHCI driver may schedule additional transv

actions in a frame. And an OHCI controller will poll an interrupt endpoint

at least once every 32 milliseconds, even if the endpoint descriptor requests a

maximum latency of 255 milliseconds, while UHCl controllers can, but

don’t have to, support less—frequent polling.

USB Complete

How the Host Communicates

An EHCI controller handles high-speed communications only. To support

all three speeds, a PC must have an EHCI controller and either a compan—

ion OHCI or UHCI controller in the PC or a 2.0—Compliant hub, which

performs the function of a host controller for low— and full—speed devices.
An EHCI host controller and a companion 1.x host controller can share a

single bus. Users and application programmers don’t have to know or care

which host controller is communicating with a device.

The Device’s Role

After a transmission leaves the host’s port, data may pass through additional

hubs. Eventually the data reaches the hub that connects to the device, and

this hub passes the data on to the device. The device recognizes its address,

reads the incoming data, and, takes appropriate action.

The Response

Most communications require a response, which may include data sent in

response to the request or a packet with a status code. This information trav—

els back to the host in reverse order: through the device’s hub, onto the bus,

and to the 13st hardware and software. A device driver may pass a response

on to an application, which may display the result or take other action.

Ending Communications

When an application closes or otherwise decides that it no longer needs to

access the device, it uses the API function CloseHandle to free system
resources.

More Examples

Communications with other USB devices follow a similar pattern, though

there can be differences in how the transfer initiates and in how the device

driver handles communications.

Other examples of a user initiating a transfer are clicking on a USB drives

icon to view a disk’s folders or clicking Print in an application to send a file

to a USB printer. In each of these examples, nothing happens until the

USB Complete 247

Chapter 10

application requests a communication and the device driver fills a buffer

With data to send or makes a buffer available for received data.

In some cases, the driver causes the host to continuously request data from a

device whether or not an application has requested it. For example, a key—

board driver causes the host to make periodic requests for keypress data

because there is no way for an application to predict when a key will be

pressed.

The host also sends requests to enumerate devices on system power—up or

device attachment. The devices hub causes the host to initiate these requests

when the hub notifies the host of the presence of a device. A device can use

the USB’s remote~wakeup feature to initiate a transfer by signaling its hub,

and in turn the host, to request resuming communications.

Choosing a Driver Type

How do you decide whether to use an existing driver, a custom driver, or a

combination? Sometimes the choice is limited by what’s available for the

device. From there it depends on a combination of the performance you

need, cost, and speed of development.

Drivers Included with Windows

When it’s feasible, the easiest approach to accessing a USB device is to use a

driver included with Windows. This way, there are no drivers to write or

install and any Windows computer can access the device. Chapter 12 has

details about the class drivers available in Wrindows. For custom designs, the

most useful of these are the HID drivers and possibly the massustorage
driver.

Vendor-supplied Drivers

Another way to communicate with a device is to use a driver supplied by the

chips vendor. The ideal is a ready~toeinstall, generalapurpose driver, along

with complete, commented source code in case you want to adapt it for use
with a particular device. The driver should also include documentation that

248 USB Complete

How the Host Communicates

shows how to open a handle to the device and read and write to it in appli—
cation code. The usefulness of vendor—supplied drivers varies. A driver is

much less useful if it’s buggy, doesn’t include the features you need, or has

sketchy documentation that makes it hard to understand and use.

Chapter 12 describes drivers from FTDl for use with its USB UART chip

and from SigmaTel for use with its IrDA—to'USB bridge chip

Custom Drivers

Sometimes there is no generic or vendor driver that includes the transfer

types you want to use or has the performance you need. Or you may want to
define custom DeviceloControl codes. In these cases, the solution is to cre-

ate a custom device driver. The next section discusses this option.

Writing a Custom Driver

If you don’t have experience writing device drivers, creating a WDM driver

is not a trivial task. It requires an investment in tools, expertise in C pro—

gramming, and a fair amount of knowledge about how Windows communi—
cates with hardware and applications. On the positive side, writing a USB

driver is easier than writing a driver for a device that connects to the ISA

bus. Plus, a variety of products can help to simplify and speed up the pro—
CCSS .

Requirements

The minimum requirement for writing a device driver from scratch is

Microsoft’s Visual C++, which is capable of compiling WDM drivers. The

compiler also includes a programming environment and a debugger to help

during development.

Beyond this basic requirement, other tools can help to varying degrees,

including the Windows Device Developer’s Kit (DDK), a subscription to

Microsoft’s Developer’s Network (MSDN), driver toolkits, and advanced

debuggers.

USB Complete 249

Chapter 10

The Windows DDK includes example code and developer—level documenta—
tion. The USBnrelated documentation includes tutorials on WDM drivers

and HiDs and source code for USB drivers.

For bulk transfers, the DDK includes source and compiled code, documen‘

ration, and an example application for the Winning/5 driver. The driver is

designed to work with just about any USB chip that supports bulk transfers.

Applications use ReadFile and WriteFile for data transfers. in a similar way,
the DDK includes the isonshsys driver for handling isochronous transfers. if

you decide to use either of these, check the USB lmplementers Forum’s

webboard for tips and fixes before you begin!

The DDK also has a filter—driver example and the moview utility. The exam“

ples can be a useful starting point in developing your own drivers. You can
download the Windows DDK from Microsoft’s website.

MSDN is Microsoft’s subscription service to massive quantities of docu~

mentation, examples, and developer’s tools for Microsoft products. The top—

ics covered include WDM driver development and USB, with quarterly

updates. There are several levels of subscription that enable you to get the
documentation alone or with varying amounts of Microsoft applications
and development tools. Much of the information and other tools are also

downloadable From Microsoft’s website.

How to write a USB driver from scratch is a much bigger topic than this

book has room for. Some excellent books cover the topic in detail, including
WDM device—driver writing in general as well as sections specifically about

USB. Three good books are Programming 1/06 Microsofi W/inn’ows Driver

Model by Walter Oney, Wiring W/inn’ows WDM Device Drivers by Chris

Cant, and Developing Windows NI Device Drivers by Edward N. Dekker

and Joseph M. Newcomer. (NT drivers are similar to WDM drivers, and the

book includes material on WDM and USB.) Chapter 17 describes

Microsoft’s programs for driver testing and digital signing.

Using a Driver Toolkit

A driver toolkit provides a way to jump start driver development by doing as

much of the work for you as possible. Toolkits that support creating USE

250 USB Complete

How the Host Communicates

drivers are available from BSQUARE, Jungo Ltd, and Compuware

NuMega.

There are two general categories of toolkits. One provides a generic driver

that handles USB communications, generates an INF file, and provides

other assistance in enabling applications to use the driver. This approach is

very fast and requires no programming at all to create the driver, but it can’t

handle every situation. Other toolkits provide libraries and other tools that

assist in writing a custom driver for a device. This approach is more flexible

but requires programming expertise.

Toolkits that Use a Generic Driver

All USB communications follow the protocols defined in the specification,

so it makes sense that a single generic driver should be able to communicate

with just about any device. A generic driver would have to support all four

transfer types, including vendor—defined control requests, plus it should sup—

port the power management and l’lug—and—Play capabilities required of all
WDM drivers. Additional functions such as the ability to retrieve descrip»

tors or select a configuration or interface are useful as well.

Two toolkits enable a device to use a generic driver: BSQUARE’S WinRT for

USB and Jungo’s WinDriver USB. These toolkits require no driver pro—

gramming at all.

WinRT for USB. WinRT for USB includes a kernel—mode driver and sev»

eral supporting files. The driver supports synchronous and asynchronous

transfers of all four types, retrieving descriptors and the device GUID,

selecting an interface, and registering for device notification to detect when

a device is removed from the bus. For example, to request an interrupt trans—

fer, an application calls the function WinRTlnterruptTransfer, passing the

device handle, endpoint number, buffer length, and a buffer. The function

returns a status code and the number of bytes transferred.

To create the files needed to support a device, you develop your device firm—

ware, store the firmware in the device, and attach the device to the bus. To

make the required setup files for the driver, run the WinRT for USB Con—

USB Complete 251

Chapter 10

 «a. Ufifi Tran
‘9, Intel CEJFlABKEB PSI to USB Uni-Trail Host Conlmller
5% Run! Huh

: ‘9 Device :orneeted USDI lumtm lntel‘locc Device
:3...E GE

Cypress USB Thermometer
was???" so: SSE Dy};

Host controller 0: ”Intel 8237’IABrEB PC! to USB Universal
Successfully built USB tree

, we _ _ "'mastitisatsgrmsmur , V7 7 V _
i X No devit .nnnecled Dem 1‘: DEL—JULJ‘I‘ILUL I _
= X No devrce connected - hm“ ' UXQlUU
: X No device counseled . '7 "l'cttiS: UI‘ZUE‘J

; I: eSLibCl D3300- , ‘ 02:00
, t Uxus cu)

irhfen-Jr 0333qu ”Cypress Elemicorujuecor" " '
idkroducL: 0143802

, hedl‘iev ,. UXJUUD
iM-‘zultl ll. , Larger: ‘I‘zl’l'l

I iE‘L'acluct: ’JXU‘A
iSeria leunher: ‘jXUD
lLIHLlIflCOHIigchlL .‘on: 2 JxUl

’evi «:e -:ormec:ed
"1 022:0].

Couriec b10115 :atua:

:nt Cont" it; '\
 1401A?

Ude

miter l—‘i pet-5: l W}
, v

, ktfigfigfififilfimimflmwmwmmwA.WuWMWMAMW....................... _ WM ”A acme. cm.»i.c._..c....i.,.smm._

lost Controller"

Figure 10—3: The WinRT USB console detects attached devices, displays
descriptors, and creates a driver and the setup files for a device.

252

sole application (Figure 106) and select your device from the tree of

detected USB devices. The Console prompts you for a symbolic name for

your device, which can be anything you specify, and other optional informa—

tion. The Console then makes the setup files and offers to install the driver

on the current system. For testing, the WinRT for USB Wizard creates a

sample Visual C++ application.

In addition to the driver file, there are two C header files containing the

function prototypes and data types for calling the functions in the driver

and error codes and .0171 and .[z'é files that enable applications to access the

functions in the driver. Chapter 15 has more about using .d[[and .129 files.

When you distribute the device, you also distribute the INF file created by

the Console application, l/Wz'nRTUséIdZZ, LVinRTUsbsys, and any application

software you provide.

USB Complete

How the Host Communicates

Applications can also access WinRT USB’s functions from the provided

ActiveX control. To enable using the control with Visual Basic, you add it to

a project by clicking Project > Components > Controls and selecting the

WinRT—USB control. The Object Browser then shows the supported classes

and their properties, functions, and subroutines. This line of Visual~Basic

code performs a bulk transfer:

returnlength = WinRTUsbl.BulkTransfer(O, size, buffer)

There are two editions of WinRT for USB. One is for use with Windows

98, Windows 2000, and Window Me. The other enables you to provide a

driver for use on Windows NT 4.

WinDriver USB. Jungo’s WinDriver USB takes a somewhat different

approach but also can provide a driver without requiring you to write any

code. The WinDriver Wizard generates files that you compile to create a
custom user—mode driver in an .exe file. The uservmode driver communi—

cates with the provided kernel’mode driver windrvmys. You can compile the

files generated by the Wizard using Visual C++, C++ Builder, or Delphi.
WinDriver will also create an INF file for the device.

The WinDriver Wizard enables you to select your device from those

detected, then test it immediately by reading and writing data (Figure 10—4).

You can then request the Wizard to create the driver files. When the driver is

installed, applications communicate with the device using device—specific

functions such as MyDevicewOpen and MyDevice_GetDevicelnfo.

For faster performance, you can move portions of your code from the

user—mode driver to a kernelvmode driver called a Kernel Plugln, which you

compile with Visual C++. For debugging, the included DebugMonitor

application enables you to monitor activities handled by windrvmj/s. Win—
Driver USB’s drivers run under Windows 98 and Windows 2000.

Toolkits that Provide Libraries for Creating a Custom Driver

The completely automated toolkits aren’t suitable for every device. They

can’t create filter drivers, and you may want a completely custom driver to

achieve the best possible performance. Three products for creating custom

USB Complete 253

Chapter 10

1‘: ' Drinker Wizard

W _

Figure 10-4: WinDriver’s Driver Wizard enables you to test your device firmware

by reading and writing to it, then creates the files you compile to create a
custom driver for the device.

drivers are BSQUARE’S WinDK, Comquare Numega’s DriverWorks, and
Jungo’s KernelDriver.

Each of these has Wizards and code libraries that do much of the work for

you. You need to fill in the provided skeleton code and compile the driver.

The driver’s performance is the same as if you had written the driver from
scratch.

Each of these toolkits is capable of generating driver code for any device

type, not just USB devices. WinDK has an optional USB extension that

enables you to use the same source code to create a driver that will run on
Windows NT 4.

254 USB Complete

How Windows Selects a Driver

11

How Windows Selects a

Driver

When Windows detects a new USB peripheral, one of the things it has to do

is decide which device driver applications should use to communicate with

the device and if necessary, load the selected driver. This is the job ofWin—

dows’ Device Manager, which uses class and device installers and [NF files
to find a match.

This chapter explains how these components work together to select drivers
for newly attached devices. I also show how to create an INF file that will

cause the Device Manager to select the correct drivers.

The Process

The Device Manager is a Control'Panel applet that’s responsible for install—

ing, configuring, and removing devices. The Device Manager also adds
information about each device to the system registry, which is the database

USB Complete 255

Chapter 11

that Windows maintains For storing critical information about the hardware

and software installed on a system.

In Windows 98, display the Device Manager by rightmclicking the My Com—

puter icon on the desktop and selecting Properties, then the Device Man~

aget tab. Or select Start Menu > Settings > Control Panel > System > Device

Manager. in Windows 2000, it’s the same except for one more click after

System: System > Hardware > Device Manager.

The device and class installers are DLLs. \X/indows has default installers that

the Device Manager uses to locate and load drivers for devices in the classes

supported by the operating system (such as Hle), The Device Manager
and the installers together are also responsible for displaying dialog boxes as
needed to prompt users for information.

The IN F tile is a text file containing information that helps Windows iden—
tity a device. The file tells Windows what driver or drivers to use and what

information. to store in the registry.

Searching for ENF Files

256

When ”Windows enumerates a new USB device, the Device Manager corn~
pares the data in all of the system’s lNF tiles with the information in the

descriptors retrieved from the device on enumerating A typical PC can
accumulate hundreds of TNF files, so Windows 98 and Windows 2000 have

ways to speed up the search,

To prevent having to read through all of the INF tiles each time a new
device is detected, Windows 98 maintains a driver information database

with information culled from its INF tiles. The database files are drvdrzmbz'n

and dwz’dxfiin, stored in the m'ndowAin/‘foldert

You can View the contents of these tiles in a text editor or word processor.

(Ignore the extra characters in the tiles.) Don’t change the contents of the

tiles, however; when you’re finished viewing, just close the files without sav—

ingt

Drvidxbin lists every Vendor and Product 11) in the lNF files, along with
the manufacturer name, provider name” and description. Drvdatri.&in

USB Complete

How Windows Selects a Driver

matches manufacturers with INF files that contain information about their

products. After retrieving the Vendor and Product IDs from a device, the

Device Manager uses the information in these two files to find the manufac—

turer and the INF file with information about the specific product.

Windows 2000 doesn’t have these database files, but instead uses PNF (pre—

compiled INF) files to speed searching. During device installation, Win—
dows 2000 creates a PNF file and stores it in the same folder as the device’s

INF file. The PNF contains much of the same information as the INF but

in a format that enables quicker searching. Windows 98 systems may have
PNFs also.

The Registry’s Role

The system registry stores information about all installed devices, Whether

or not they’re attached and enumerated. When a new device is enumerated,

the Device Manager stores information about the device in the registry.

To learn what kinds of information the Device Manager finds and stores,

you can View (and edit) the registry’s contents using the regediwxe utility
that comes with Windows.

A word of caution: the system registry is a vital and essential component of

Windows. It’s so important that Windows maintains multiple backup copies

in case the current copy becomes unusable. Be extremely careful about mak—

ing changes to the registry If you goof and want to restore the registry to its

previous state, boot to the DOS prompt and type scameg firestorm Just View—

ing the registry is safe, however.

The registry arranges its contents in a tree structure. Information about USB

devices is in a couple of places:

HKEYNLOCAL_MACHINE\Enum\USB

lists all USB devices.

HKEY indicates a registry key, which is an item in the registry structure.

I-IKEY__LOCAI._MACI"IINE is a pointer to a data structure containing

information about the system’s hardware and installed software.

USB Complete 257

Chapter 11

USB devices are also listed in this branch:

HKEY_LOCAL__MACHINE\System\Curren tControlSet\
Services\Class

The Class branch has sub-branches for various categories. The USB branch

lists the USB host controller and root hub, as Figure ll~l shows. A USB

peripheral doesn’t necessary show up in the USB branch; it may be in a

branch that pertains to the peripherals function, Standard peripheral types

like keyboards, mice, and printers have their own branches, and will show

up there. HID~class devices also have an entry in the HID branch. cher

peripherals, such as digital cameras, may be in the USB branch. it the

Device Manager can’t figure out what to do with a device, it may call it an

Unknown, Device and place it in the USE branch. A custom peripheral can
also create its own branch.

The Control Panel

The Device Manager is also responsible for adding attached devices to the

Device Manager’s window, as Figure 11—2 shows.

The Device Manager’s display shows only the USB devices that are currently

detected. You can unplug a device while viewing the display and watch the

device’s listing disappear. Plug the device back in, and its listing pops back.

An exclamation point over the device’s icon means that there was a problem

communicating with the device or finding a driver. An X over the icon

means that the device is present but disabled, possibly by the user. To view

additional information about a device, select the device and click Properties.

What the User Sees

What you see on the screen when you attach a new USB peripheral depends
on what drivers and INF file the device uses and whether or not the device

has been attached and enumerated previously,

258 USB Complete

' Went—tut

PCMClA
Ports
Printer

, PrinterUpgrade
_ SCSIAdapter
. System

Tape
, "apel'lmttmller

‘apeDetection
‘hermusta

Unknawn
USB

 {Default}
Dew-Loader

(I;.fr 5fit2.3
Diagnostic-Mode

S

94t”a Drive rD rateI r

DwerDesc

E numProp Page 5

= 63 lanath
lr‘utEIe ctio n

i M etch: ngDevlce Id
lthtvlF/Driver

Prim :1 e W am e

.,9i (gs..;

ElupportNonComp

How Windows Selects a Driver

 (value not: .)
”*lxlTKEFtN”

DxtlflDUUUUU [1]]
“ 5—11—1998"

"Intel BE3?1AB,*‘EB PCI to USB Universal Host Controller”

"eyeclass,r:lll..L|SBEnLImPropPages”
"USBINF"

“UniversErlHCDDeu"

"PCIWEN_BUBBEtDE‘vL? 1'2"

“ul’rctlsgrs”
”ltrticzrosot't“

[Ixt'JflUDL’IEHJD (If!)

"t

: Ports

' Printer

Printerlslpgrade
SCSlAdapter
System
"ape

‘apeController
'apeEJetectimn

 * 'lt Brmuab

U nknown

 “3L 9 at:
«WE DevLoader

,.

£93 I ntF’at l1

fipfjlnfBemion
{53 lvl etch In 9 D evi 03 l cl

:3 N TM PD I'NE! r

' . ,Lfigproviderl‘iame

(value not set)
"*l‘xlTliERN”
" 5—11—1998“
”USB RootHub"

"USBINF"
”StandardHub Dew“

”LISEKRDOT_HUB“
”tlISllthlb FE:

 ”Micro , ’

Figure 11—1: The registry’s Class\USB branch has information about the

system’s host controller and root hub.

Specific Device Listings

When you attach a device, Windows displays a window with the message

New Hardware Found. if the device descriptors include a Product String,

under Windows 98 SE and later, the window displays the string. Otherwise,

USB Complete 259

Chapter 11

S stem Pm erties

Hard dlSk controllers
Human lnterface Devices

“g Keyboard
Modern
Monitors

' Ports {com a LPT)
J Sound, h-‘lL‘lEIZI and game controllers;

V) Thermusb
5% Universal serial bus controller

- 13%? lntel 823T'1ABIEB PCl to UEiEl Universal Host Controller
sfib use RootHub

Figure 11~2: The Control Panel’s Device Manager lists all attached and
enumerated devices.

260

it displays Unknown Device. If the device has never been enumerated on the

system, Windows will need to locate a driver.

If Windows doesn’t find a matching INF file, it runs the Add New Hard”

ware Wizard (Figure 11—3). You see a Window recommending letting the

Wizard search for the best driver for the device. When you accept the rec-

ommendation and select Next, the 'Wizard requests a location to search.

If the device comes with a driver on disk, specify the drive containing the

disk. When the Wizard finds the file, it displays the tilename and announces

that it’s ready to install the driver: (To make things as easy as possible for

users, vendors should store the INF file in the root directory of the product’s

disk.) Click Next, and the Wizard displays Please wait while mndows builds

oz driver information Jammy.

USB Complete

How Windows Selects a Driver

Add New Hardmr Wieard

Add NewiHardware Wizard

Figure 11—3: Windows’ Add New Hardware Wizard searches for and installs

drivers for newly attached devices.

The Wizard copies the INF file to the system’s IN I4 folder, loads the driver(s)

specified in the file, lists the device in the Device Manager, and displays a

window letting you know that it has finished installing the required soft—

ware. The Device Manager’s listing shows the device description, manufao

turer, and provider name From the INF file.

USB Complete 261

Chapter 11

If the device has been enumerated previously, the system already has the

information it needs, so no windows need to be displayed. The enumeration

should be invisible except for a short delay that prevents the cursor from

selecting items while Windows finds the correct INF file and loads any
needed drivers.

Generic Device Listings

If a newly attached device uses only the standard HID drivers, it doesn’t

need its own INF file to identify it. On the first attachment, the Device

Manager will determine that the device belongs to the HID class, and when

it can’t find a Vendor and Product ID match, will decide that the generic

HID drivers are the best fit.

But because there was no exact match, the Device Manager will play it safe

and run the Add New Hardware Wizard to give you a chance to select a bet—

ter driver (by specifying a drive to search, for example). If you accept the

default selections, Windows looks for a driver in the system’s INF folder,

selects the INF file for the HID class (biddeuz‘nf for Windows .98 or

input. z'fiffor Windows 2000), and loads the HID drivers. The Device Man:

ager lists the device as a Standard HID Device, with no indication of its spew
cific function or manufacturer,

Inside an INF File

262

The Device Manager looks for INF files in the system’s INF folder. The

default locations are \wina’awflz‘nffor Windows 98 and \wz‘annffor Win«

dows 2000. By default, this is a hidden foider. If you don’t see the folder in

My Computer, select View > Folder Options > View, then under Hidden

Files, select Show allfi/es. Do not click Hilda/file extensiamfiir énownfile types.

Examining the existing files is a good way to learn about the kinds of things
contained in the files and how the information is structured. Your PC is sure

to have plenty of INF files to examine. The INF file for the HID class is Mat

deuz'nf in Windows 98 and inputtinf‘in Windows 2000. INF files can be

long and complicated, but the basics are fairly straightforward. In most

cases, you canereate an INF file by adapting one that’s similar to what you

USB Complete

How Windows Selects a Driver

need. Vendors of USB controller chips often provide examples. The Wine
dows DDK also has documentation on the contents and structure of INF

files.

INF files for Windows 2000 have a few changes compared to Windows 98,

including the need, for :1 Services section that specifies how and when a
driver’s services are loaded. The DDK documentation has more details

under [NF File Sections and Directives.

Listing 11:1 is an INF file for a custom HID under Windows 98. I used

hidden infand Cypress’ example INF files as models for the file. Figure 11—4

and Figure 11—5 show the information that the Device Manager displays

after enumerating a device with this INF file.

Syntax

The information in an INF file must follow a few syntax rules, which will

look familiar if you have experience with the .mi files commonly used in
Windows 3.x.

° The information is arranged. in sections, with each section containing

one or more items. The section name is in square brackets []. A carriage

return/line feed begins a new item. Some of the section names (Version,

ClassInstall) are standard names that Windows will look for. Other sec—

tions match values specified in other sections. For example, if the Manu—

facturer section designates the manufacturer as Lakeview, the INF file
will also have a Lakeview section. The sections can be in any order,

though most follow the same convention, and the order of the items

within a section can be critical. So if you’re adapting an example, keep

the order of items in the sections the same.

° A semicolon (;) indicates a comment.

° A backslash (\) at the end of a line acts as a line continuator, unless it’s

enclosed in quotes (“\”).

0 Text enclosed in percent symbols (%sampletext%) refers to a string. For

example, you might have the following item:

provider=%Provider%

USB Complete 263

Chapter 11

Syéterrl Prbpertiee

.W drives;

 wjaptera

,, oppv duel; controlle “i
3- Bid dial-1 mntroll

‘3 uman lnlen‘ama Dev“? '-

 33 M LF‘T)

idea and game [:rJr‘ilmllerE

Figure 11-4: The Device Manager displays information obtained from the

device’s lNF file. The device is listed both as an HID compliant device and as a

device matching the description and Manufacturer in the lNF file.

264 USB Complete

How Windows Selects a Driver

‘ 'v M M 3 2 ,‘v‘TfiD (mine m .‘x-‘illdj
- “Elm lDPARSESYS
"Elm lDCLABSBYS
“Elvl‘, lDUSElBYS

LAWIN DOWS \ E
C: \Wl N D 0W8 R S
C:\\l’vll‘dDO\l\:‘S\S\r’
l3: \Wl N D OWE l, SY

 EOE/"J

Figure 11-5: The information displayed by the Device Manager includes the

Provider name and drivers specified in the device’s lNF file.

USB Complete 265

Chapter 11

[Version]

Signature=”$CHZCAGO$"
CLass:HID

ffl’le GU'T) ‘zor H"DS

ClaSSGUZD: 745al7aO—74d3~lld0wb6fe~OOaOc90f57da}

provider=%Provider%

LayoutFile=Layout.inf, layout1.inf

[Classlnstall]

AddregzclasshAddReg

[Class.AddReg]

HKR,,Installer,,mmci.dll

[Manufacturer]

%Mngame%:Lakeview

[Lakeview]

;Uses Lakeview Research’s Vendor :3 (0925)

;Uses the Product :3 1234

%USB\V:D_O925&PZD_1234.DeviceDesc%=SampleHID,

US%\V D_O925&P1Dw1234

[DestirationDirs]

USBHZD.CopyLis: = 11 ; LDIDfiSYS

; ___ I

Hamg114:(8mmt1d2)AdaMmBINFmehemSMMMOwsmmflemedmer
touseknthedefica

266 USB Complete

How Windows Selects a Driver

[SampLeHID]

CopyFiles=SampLeHID.CopyList

AddReg=SampleH:D.AddReg

[SampleHID.AddReg]

HKR,,DevLoader,,*ntkern

, HKR,,NTMPDriver,,"hidusb.sys"

[SampleHID.CopyList]

hidusb.sys

hidclass.sys

hidparse.sys

[Strings]
Provider=”Microsoft"

Mngame=”USB Complete"

USB\VID_O925&P"J_1234.DeviceDesc="Sample USB human interface
device (HID)"

Listing 11-1: (Sheet 2 of 2) A device’s INF file helps Windows locate the driver
to use for the device.

with an item in the Strings section that defines the provider string:

Provider:”USB Complete"

° Some items set the value of an entry. For example, this item defines the

device’s class entry as HID:
Class:HID

' Some items specify information to store in the system registry:

HKR,,Installer,,mmci.dll

Sections

An INF file includes sections that help Windows identify the device, find

the appropriate drivers, and store information about the device in the sys-

tem registry Here is the purpose of each section in the example INF file:

USB Complete 267

Chapter 11

268

Version

The Version section is the file’s header. Every INF file must have one.

The Version section in the example file has these items:

[Version]

Signature="$CHICAGO$"
C1ass=HID

;The GUID for HIDS

ClassGUID:{745a17a0—74d3—1ldO—b6fe—OOaOC90f57da}

provider=%Provider%

LayoutFilezlayout inf, layoutl.inf

The Signature key specifies which operating system the INF file is intended

for. For devices that use WDM drivers, the value can be $Wind0ws 98$,

$Windows NT$, or $Chicago$, no matter which operating system the PC

is using. Chicago was a beta name used when Windows 95 was under devel—

0pment and its use is still valid under later editions of Windows.

The Class key specifies the class for devices installed with this file. The

example specifies the HID class.

The ClassGUID key specifies the GUID in the registry for devices installed

with this file. A GUID is a 128—bit identifier. The example is the GUID for
the HID class. It uses the standard GUID format. There’s more on GUIDS

later in this chapter.

The Provider key names the creator of the INF file. In the example, 0/0Pro»

vider% refers to a string defined, later in the file.

The LayoutFile key names the source disks and files needed to install the

driver for the device. Because the HID drivers are included with Windows,

the example specifies files that contain installation information for the Win«

dows setup. These files are also INF files. The information is in the Source”
DisksFiles and SourceDisksNames sections of the files.

Classlnstall

The Classlnstall section installs a new class in the Class section 0F the regisw

try. The Device Manager processes this secrion only if a device’s class isn’t yet

installed in the operating system.

USB Complete

How Windows Selects a Driver

The example Classlnsrall section has one item:

[ClassInstall]

Addreg=Class.AddReg

The Addreg key adds a class description to the system registry. In the exam—

ple, the keys value refers to the ClassAddreg section, which specifies an
installer file:

[Class.AddReg]

HKR,,Installer,,mmci.dll

HKR stands for HKEY_ROOT, which is the base registry key for the sec—

tion that the AddReg appears in. This is typically under System\Currene

ControlSet\Enum\Root, then a specific key for the device.

The installer file mmczla’ll in the example is included with Windows 98 and

is stored in the \windowshysz‘em folder.

Manufacturer

The Manufacturer section identifies the device (or devices) and names the

Install section for each. Every INF file must have this section.

In the example, the Mngame string (defined later in the file) is set to the
value Luz/review:

[Manufacturer]

%Mngame%=Lakeview

The Lakeview section has additional information:

[Lakeview]

;Uses Lakeview Research’s Vendor ID (0925)

;Uses the Product ID 1234

%USB\VID_O925&PID“1234.DeviceDesc%=SampleHID,

USB\VID_O925&PID_1234

This section names the device’s Vendor and Product IDs. When the Device

Manager finds a match between these and the IDs retrieved from the device

on enumerating, it knows that it has found the right INF File.

USB Complete 269

Chapter 11

270

DestinationDirs

The DestinationDirs section names the folder or folders that any CopyFiles,

RenFiles, and DelFiles items will use. In the example, SampleHlDCopyList

is the name of a section that has a CopyFiles item. The value is a logical disk

identifier (LDID) of 1 l, which is the system directory. The Device Informa-

tion (INF) File Refirem‘e in the Windows DD‘K documentation lists other
LDID values.

[Destina:ionDirs]

SampleH:D.CopyList : 11

The SampleI—HD section has the Copyhiles item and an AddReg item:

[SampleHID]

CopyFiles:SampleH:D.CopyList

AddReg:SampleH:D.AddReg

These items name other sections in the file.

The SampleHIDCopyList section lists the drivers for the device:

{SampleHID.CopyList]

hidusb.sys

hidclass.sys

hidparse.sys

These are the drivers For generic HID—class devices. Theyjre stored in \wmu

daws\5yst€m32\drivers or \wirznr\sysrem32\drivers.

The SampleHIDAddReg section adds registry information for the device;

[SampleHID.AddRegl

HKQ,,DevLoader,,*ntkern

HKQ,,fTMPDriver,,"hidusb.sys"

DevLoader names nr/eem.vxa’ as the VXD (virtual driver) that loads the drivv

ers. Ntkemwxd in turn loads the driver named in NTMPDriver. in the

example, this is Moms/9.335. Both files are included with Windows 98. You

won’t find the file m/ecmmxa’ on your system because it’s archived in, or

bound into, the file vmm32wcd for quicker loading.

Strings

The Strings section defines the Strings referred to by items in other sections.

Each item matches an item surrounded by percent signs in another section.

USB Complete

How Windows Selects a Driver

80, for example, the provider in the Version section is equal to %Provider%,

which equals Micmmfi (since they are the source of the drivers).

[Strings]
Provider=”Microsoft"

Mngame="USB Complete"

USB\VID_0925&PID_1234.DeviceDeSC="Sample USB human
interface device (HID)"

The Generic INF File for Hle

The generic INF file for HIDS is bidder). infin Windows 98 and input. infin

Windows 2000. Every Windows system should have one of these files. It’s

similar to the sample file in Listing 11—1. The Device Manager uses this file

to install any HID that doesn’t have its own INF file. The file also has Ven—

dor and Product IDs and descriptions for several manufacturers devices, so
these don’t need their own INF files.

Creating INF Files

If you need to create an INF file for a device, Microsoft provides several

tools to help in creating the file and ensuring that it has all of the required

sections in the correct format. This section describes the tools and also gives

some tips that can come in handy when you’re experimenting with INFs.

Tools

For creating INF files, Microsoft provides infm'it for Windows 98 and Gm—

infi CMeINE and InfCrztRma’y for Windows 2000.

The Windows 98 DDK includes the infidit application (Figure 11—6),

which enables you to examine and edit INF files. To protect the installed

INF files, infidz't hides the windowdinffolder, so to View an installed file,

you’ll need to copy it to a different folder. You can also use any text editor to
View and edit INF files.

The Windows DDK includes two tools for Windows 2000 INF files: Gminf

for creating files and (Ila/«INF for checking 21 files structure and syntax.

USB Complete 271

Chapter 11

\ushhidioinf

m Class Install Section aamp eHiD

M}! Dislr~ Names Section _- UP'iatEInj—s
j Manufacturer :5 Update- Ini Fieida
j Install Sections _'iCOP‘iF File Sectians Sampleflil'i.I'LfnpgrLista f RenFiles

tiarnpleHle I; DelFilee
:UlJyFlles SEWUHS A‘ AddReg SearipleI-Iilzukddfieg
Rename Files Sections- AddRegMnClnbber
DelFilee Sections 1 DelReg
Add Registry Bedlam /; LDgCanlg
Add Registry Nu Replace Sections: Update Autoeaee .bat Sections

Delete Registryfiectiuns ”Pdat'i ConfiQ-SYS SECtLOI’JE‘

Log Conlig Sections 11-11 to Registry Sections

Update Auioexecbat Sections R‘Eb'j'jt aft‘er Install ND
Update Coniig 3% '99me Restart. after install No
lni tile tn Regrets: Sections

' Update IHI file Sections
Update lNIflelda Sedans
lafliscellaneous Sections

> Strings Rectirm

272

1—6: Windows 98’s infediz‘ tool enables you to View and edit INF files.

The Geninf application has an INF wizard that asks you questions about

your device and creates an lNF file for it” The documentation warns that the

created file is a skeleton that may not be fully valid and is likely to need

additions or revisions. The application includes specific support for some
device classes.

C/J/eINF is a Perl script that requires a Perl interpreter, which you can down»

load free from wwwczcz‘ivewarecvm and other sources. The script runs From

an MS—DOS prompt and creates an HTML page that annotates an INF file

with errors and warnings as needed.

For drivers that will use digital signing as described in Chapter 17,

Microsoft provides the [nszltRmdy application, which looks for errors that

could interfere with the digital signature and thus prevent driver insralla~

tion. [nfCatReao/y is available from, the WHQL website at

www. micmsofi. com/hunter;

USB Complete

Tips

How Windows Selects a Driver

Here are some tips for using and experimenting with INF files:

A commercial products Vendor ID must be an official ID assigned by the

USB Implementers Forum. My examples use the Vendor ID of 0925h,

which is assigned. to my company, Lakeview Research. The owner of the

Vendor ID is responsible for ensuring that each product and version has a

unique set of IDs. Borrowing someone else’s Vendor ID can lead to conflicts

if the owner of the ID uses the same values for a different product.

As described above, for experimenting with HIDs, you can use Windows’

generic INF file, instead of an INF file containing your Vendor ID. The

Device Manager will show the device as a generic HID, rather than using

the name you provide in an INF file.

When experimenting with different settings in an INF file, you may find

that at times the Device Manager remembers information from previous

INF files, even if you deleted the previous file and the information about the

device in the registry, powered down, and rebooted.

Under Windows 98, unless you follow a specific procedure when changing

the contents of an INF file, Windows may fail to rebuild the driver informa«
tion database.

To ensure that Windows 98 is aware of any changes you’ve made to an INF

file, follow this procedure:

I. Save a copy of the new INF file that you want to use. Save it under

another name (such as mydrivexnew) or in a location other than the system’s
INF folder.

2. Attach the device and allow the Device Manager to enumerate it.

3. In the Device Manager’s window, select the device’s entry and select
Remove.

4. Deleting the entry in the Device Manager causes the device’s INF file to

be saved in the windows\infl0tber folder, with the vendor's name added to

the beginning of the filename. For example, Lakeview’s file mydrivettz'nf

would become [akevz'ewmydriven mf Delete this file as well. In some cases,

USB Complete 273

Chapter 11

274

such as the system’s INF files, the infiet/aer folder won’t have anything to
delete.

5. Copy the INF file you want to use to the wina’owsanfolder. Be sure the

file has an extension of .inf(such as nay/driver. inf).

6. Unplug and re~attach the device. Windows will rebuild the driver infor—

mation database using your new INF file.

Another way to accomplish the same thing under Windows 98 is described

in Microsoft’s article Q139206, Hardware List Nat [{Ddateel Afier Installing

New .inf File. The article suggests renaming the driver information database

to force Windows to rebuild it. In the windowsan folder, rename aim)»

databz'n to elrwlataxxx and rename alrw'olxlz'n to alrvz'elxxxx. (By renaming

the files rather than deleting them, you can restore them if necessary.)

Another workaround is to use a different Product ID each time, in both the

INF file and the device firmware.

Under Windows 2000, to remove all information about a device, delete or

change the extension of its INF and PNF files. When Windows stores the

files in \winnt\z’nfi it may rename them oein*.infand oem fivnfi where * is a

number. To find the correct files, use the Final > Files or Folders utility avail—

able from Windows’ Start menu. Browse to the \wz‘nnflinffolder and in the

Containing 7.9m text box, enter V]D_xxxx&“P[Dnyy}/y, where xxxx is the ven—

dor ID and yyyy is the product ID, both in hexadecimal.

If you do a lot of experimenting and don’t delete each device when you’re

done with it, the registry will fill with entries from your various configura—

tions. When you no longer need a registry key, you can delete it from within

regeelirexe (but see my cautions above about the registry).

The INF files that ship with Windows all have file names with no more than

eight characters plus the 3—character extension. Microsoft says that this is

due to “technical issues with the product install,” but that INF files added

after Windows is installed may use longer file names,

USB Complete

Device Classes

Device Classes

Most devices aren’t totally unique, but instead share many qualities with

other devices. For example, all printers receive and print data and send status
information back to the host. All mice send information about mouse

movements and button clicks to the host. All disk drives transfer files

between a disk and the host.

When a group of devices or interfaces share many attributes or when they

provide or request similar services, it makes sense to define the attributes

and services in a class specification. The specification then serves as a guide

for device developers and device~driver writers.

This chapter describes USB’s defined classes and takes a closer look at both

common and more unusual peripheral types and how you can use classes to

simplify developing on both the host and device sides.

USB Complete 275

Chapter 12

Uses of Classes

Classes offer several, advantages. They make it easier to develop device drivv

ers and firmware because the work of defining the attributes and services the

device will use has been done, leaving only the implementation details. If

both the driver writer and firmware developer follow the same specification,

the driver should have no problem communicating with the device. Wilk

dows and other operating systems include drivers for common classes. if

your devices class is supported by the operating system, you don’t have to

provide a driver with the device.

When a device in a supported class has unique features or abilities, the

device vendor can provide a filter driver that adds capabilities to the class

driver included with the operating system. Adding a filter driver is easier

than writing the complete driver.

Even if the device’s class isn’t supported by the operating system, it may be in

the future. If you design the firmware and driver to comply with the class

specification, it will be compatible with any driver added in future editions

of the operating system.

The USB Implementers Forum releases class specifications developed, by

Device Working Groups Whose members have expertise and interest in a

particular area. A special case is the hub class, which is defined in the main

USB specification rather than in its own document. The operating system

must support the hub class because the host requires a root hub to do any
communications at all.

Elements of a Class Specification

276

All class specifications are based on the Common Class specification, which

describes What information a class specification should contain and how the

specification document should be organized. A class specification defines the

number and type of endpoints supported by the class. A specification may

also define formats for data to be transferred, including both general data

and status and control information. Many class specifications also define

functions or capabilities that describe how the data being transferred will be

USB Complete

Device Classes

used. For example, the HID class has Usage Tables that define how to inter~

pret data sent by keyboards, mice, joysticks, and other devices.

A class specification may define class—specific items for the standard descrip~

tors as well. as class—specific descriptors, interfaces, endpoint usages, and con—

trol requests. For example, the device descriptor for a hub includes a

bDeviceClass value of 09h to indicate that the device belongs to the hub

class. The hub must also have a hub—class descriptor, with a descriptor type

of 29h. Hubs also support class—specific requests. When the host sends a

Get_Port_Status request to a hub with a port number in the index field, the

hub responds with status information for the port. (Chapter 18 has more on

hubs.) A class may also require a device to support specific endpoints or

comply with tighter timing for standard requests.

Defined Classes

In addition to the hub class, specifications for several other classes have been

released. However, just because a specification exists doesn’t mean that Win—
dows includes drivers for the class. Table 12—1 shows the class drivers added

in each edition of Windows.

The following are classes with released specifications:

Audio Device. Devices that transfer audio, voice, or sound and related con—

trols. Windows 98 Gold (original) and later include an audio driver. Win—

dows 2000 and Me also have a MIDI driver that supports the MIDI

protocol for music control.

Chip/Smart Card Interface Devices. For devices that conform to the

ISO/lEC 7816 specification.

Communications Device. Telephones, modems, and other telecommuni—

cations devices. Windows 98 SE and later include a modem driver.

Content Security. Supports protected and controlled distribution of digital
content.

Device Firmware Upgrade. For updating program code in a device.

USB Complete 277

Chapter 12

Table 12—1: Microsoft adds new USB driver support with each release of

Windows. The releases are listed top to bottom from earliest to latest. Each

release also includes the drivers provided with earlier releases.

Windows Edition

Windows 98 Gold

USB Version USB Drivers Added

Compliance WM

1.0 Audio

(original) HID 1.0 (includes keyboard, pointing devices)

Windows 98 SE 1.1 Communications (modem)

HID 1.1 (adds the ability to do interrupt OUT transfers)

Still image capture (scanner, camera)

(first phase/preliminary)

Windows 2000, 1.1 Mass storage

Windows Me (20 SUPP?“ MIDI (in the audio driver)
expected In an . _ ‘ . . -mm‘miwmi_____

update) Printer. This driver can also be distributed for use With
Windows 98.

Still image capture (scanner, camera) (enhanced)

278

Human Interface Device (HID). Keyboards, mice, joysticks, or any device

that transfers blocks of information to or from the host at moderate rates,

using control or interrupt transfers. Windows 98 Gold and later include

HlD 1.0 drivers. Windows 98 SE and later include HID l.l drivers, which

support interrupt OUT transfers. The Monitor class describes Hle that

provide user controls on display monitors (not the display interface itself).

The Physical Interface class supports Hle that use real~time physical

feedback, such as force—feedback joysticks. The Power class describes Hle

that provide power'supply control, including control for power conserva

tion and uninterruptible power supplies.

IrDA Bridge Device. To replace or supplement a motherboardwmounted
erA transceiver.

Mass Storage. For CID—ROM, tape, floppy drives, etc. Windows 2000 and

Windows Me include a mass—storage driver (Mariana/5).

Printer. The printer interface (not the page—description, protocols). 'Win—

dows 2000 and Windows Me include a printer driver (ushprimsys), and the

driver can be distributed for use with Windows 98.

USB Complete

Device Classes

Imaging. For scanners and still—image (not video) cameras. Windows 98 SE

included a preliminary version that was enhanced in Windows 2000 and

Windows Me (uséscansys).

Other class specifications under development are Device Bay Controllers

and PC Legacy Compatibility. All of the specifications are available from the

USB Implementers Forum website.

For more details about a class, see the class specification and, for most classes

supported under Windows, the DDK has further documentation.

The provided class drivers aren’t installed until a device requires them. So for

example, a Windows 2000 system won’t show the mass—storage driver ush—

52f0my5 until a device that requires it is attached and the device’s INF file

causes the driver to be installed. A driver may be archived in a file on the sys—

tems hard drive, or the user may have to insert the Windows install disk to
retrieve the file.

Matching a Device to a Class

Many peripherals are standard types such as the keyboards, mice, printers,

and disk drives found on most desktop systems (though not always with

USB interfaces). Other peripherals perform non—standard functions such as

data acquisition or motor control for specific applications. The following

sections contain advice on how to select a class for various applications.

Standard Peripheral Types

Standard peripheral types are likely to have built—in drivers. For the most

part, users and application programmers don’t have to know or care whether

a device uses USB or another interface type. The hardware—specific commu~

nications are handled at a lower level and present a common interface to

applications. For example, users can access files on a hard drive in exactly the

same ways whether the drive uses USB, ,ATAPI, SCSI, {BEE-1394, or a par—

allel—port interface.

USB Complete 279

Chapter 12

280

Keyboard, Mouse and Joystick

The keyboard, mouse, and joystick are the big three of the HID class.

“Mouse” includes trackballs and other pointing devices. HIDs also encom—

pass various other game controls. All Windows editions support USB ver-

sions of these peripherals.

Many applications don’t need to access these devices directly. For example, a

Visual—Basic application doesn’t have to read mouse clicks to find out it“ a

user has clicked on an option button because the buttons click event exe—

cures automatically when this occurs.

Windows provides two ways for applications to communicate directly with

Hle: Windows API functions and the APIs supported by DirectX, which

enables faster, more direct access to the hardware. However, Windows 2000

doesn’t allow applications to use API calls or DirectX to access the system

keyboard or mouse.

Besides supporting standard peripherals, the HID class is a good, gen,

eral-purpose class for other uses. For this reason, the following chapters have
much more detail about how to use HIDS.

Mass Storage Devices

The mass—storage class encompasses disk drives, including floppies, hard
drives, CD8, and so on. Other devices that transfer files in one or both direcw

tions can use this class as well.

On a PC, all devices that use a mass—storage driver appear as drives in My

Computer. Users can use the same interface to copy, move, and delete files.

For example, for a digital camera that uses a mass—storage driver, the camera’s

memory appears to the operating system like any other drive. There’s no

need for proprietary software to access the images in the camera.

The many types ofmedia supported by the mass—storage class have different

internal structures. Several industrydstandard sets of command blocks, or

command descriptor blocks, enable controlling and reading status intormaw

tion from different device types. Floppies, CDs, tape drives, and Flash mem~

ory each typically use a different command—block set.

USB Complete

Device Classes

The mass-storage class supports two transport protocols that determine

which transfer types the device and host use to send command, data, and
status information.

Bulleonly transport uses bulk transfers for most communications. It uses

control transfers only to clear a Stall condition on a bulk endpoint and to

send class'specific requests. The two class—specific requests supported are

Bulk Only Mass Storage Reset (reset the device) and Get Max Lun (get the

number of logical units the device supports).

Control/bulk/ interrupt (CB1) transport uses bulk transfers for transferring

data and control transfers to clear a Stall condition on a bulk endpoint and

to send class—specific requests. The single class—specific request is Accept

Device—Specific Command, which enables the host to send a command

block. A CB1 device may use either interrupt or control transfers to signal

the completion of commands.

In the device’s interface descriptor, the value 08h in the blnterfaceClass field

indicates that the device is mass—storage class. The b1nterfaceSubClass field

specifies the supported command—block set. The blnterfaceProtocol field

contains a code indicating the supported transport protocol.

There are separate specifications for each transport protocol, plus a UFI

Command Specification for removable media.

There are several approaches to writing or obtaining a mass—storage driver

for a device. Windows 2000 and Windows Me include a driver that sup-

ports bulk'only and CB1 devices. Microsoft hasn’t provided much docu—

mentation for the driver, but the class specification can serve as a guide to

firmware design, and applications can access devices in the same way they

access other system drives.

Windows 98 doesn’t have a mass—storage driver, so device vendors will have

to provide one. Microsoft provides source code for a mass—storage driver for

use under Windows 98 (described in knowledge base Article ID Q257751).

Cypress Semiconductor has a mass-storage reference design for its EZ—USB

chip. The design works with Windows 2000’s driver and with a free driver

provided by Cypress for use with Windows 98.

USB Complete 281

Chapter 12

282

For OEMs (original equipment manufacturers) whose existing devices have

standard SCSI, ATA, or ATAPI interfaces, SCM Microsystems has USB

Intelligent Cables and drivers that quickly add USB capability to the

devices. Many hard drives, CD drives, tape drives, and some scanners use

either SCSI, ATA (AT attachment), originally known as IDE, or ATAPI (AT

attachment packet interface), an extension to EIDE. The EUSB—Sl product
contains a microcontroller and an ASIC that convert between the device’s

existing SCSI interface and USB. In a similar way, the EUSB—C product
converts between ATA and ATAPI devices and USE. The cables are available

only to OEMs, not to end users.

Printers

Windows 2000 and Windows Me include a USB printer driver and

Microsoft also permits distributing the driver for use with Windows 98. The

printer vendor must supply a highdevel, user-mode driver that is layered

above the print spooler. The interface to the USB printer driver is similar to

the interface for parallel printers, so a single driver often works without

modification with both USE and the parallel port.

Cameras and Scanners

The still—image capture, or imaging, specification was created to support

still—image (not video) digital cameras. Other devices that have similar

requirements, such as scanners, fit into the class as well. Version 1.0 was

released in July 2000.

The Photographic and Imaging Manufacturers Association (PIMA) devel«

oped the PIMA 15740 Standard, which describes requirements for transfer—

ring files and for controlling digital still cameras. USB’s specification is
based on this standard.

The class supports bulk IN and bulk OUT endpoints for sending both

image and non~image data, plus an interrupt IN endpoint for event data.

Three class~specific requests are required and one is optional. The required

requests are Cancel Request (cancel a bulk transfer), Device Reset Request

(the device returns to the Idle state if the bulk pipe has stalled), and Get

Device Status (the host receives information about a transfer cancelled by

USB Complete

Device Classes

the device). Optional is Get Extended Event Data (the device returns infor—

mation about an event or condition.)

The interface descriptor in the device identifies a still—image device, with the

bInterfaceClass field set to 06h to indicate an image interface and bInter~

faceSubClass set to 01h to indicate a still—image capture device.

Windows 98 SE included a preliminary version of a still—image driver that

was enhanced in Windows 2000 and Windows Me. The driver supports

USB, SCSI, and BEBE—1394.

Windows 2000 and Windows Me support the Microsoft Windows Image

Acquisition (\WIA) architecture, which is built on the Microsoft Still Image

Architecture (STI) used in previous Windows editions. The device vendor

needs to supply only a user~mode WIA minidriver that provides a

device—specific interface to the generic still'image driver. The Windows
DDK has more details about how to use the driver.

For Windows 98 Gold and probably Windows SE, you’ll need to provide a
device driver.

If all that is needed is a way to transfer image files from a camera, another

option is to use a mass—storage driver, as described, earlier.

Audio Applications

Audio has been supported beginning with Windows 98 Gold, so there
should be no need to write an audio driver. Windows 2000 and Windows

Me added a MIDI driver. Audio functions are often part of a device that also

supports video, storage, or other functions.

An audio function consists of an Audio Interface Collection containing one

or more device interfaces. The AudioControl interface accesses controls such

as volume, mute, bass, and treble. One or more AudioStreaming interfaces

transport data representing audio to or from the device. One or more M I D-

IStreaming interfaces transport MIDI data to or from the device.

The default control endpoint responds to class—specific requests. Isochroe

nous endpoints transfer data for the streaming interfaces. Some isochronous

USB Complete 283

Chapter 12

endpoints may require an additional isochronous synch endpoint. An

optional interrupt IN endpoint transfers status information.

MIDI (musical instrument digital interface) is a standard for controlling

synthesizers, sound cards, and other electronic devices that generate music.

A MIDI representation of a sound includes values for pitch, length, volume,

and other characteristics. A pure MIDI hardware interface carries asynchrov

nous data at 31.25 kilobits per second. USB MIDI carries MIDI data but
doesn’t use MIDI’s hardware interface.

The audio and MIDI specifications have the details needed to implement—

ing an audio interface.

Modems

The modem driver included with \Windows 98 SE and later (mbsemyr) is
compatible with modems that use the Abstract Control Model defined in

the communications class specification. A modem used by programs that

call the Windows Telephony Application Programming Interface (TAPI) to

make data, fax, or voice calls must have its own INF file; descriptors that

place the device in the communications class aren’t sufficient. The Windows

DDK includes a Modern Development Kit with tools, sample INF files, and

information for creating and testing INF files for AT (data) and A'II-rV (data.
+ voice) command. modems.

Non-standard Functions

284

One of the great things about USB is that you’re not limited to a few stan~

dard peripheral types. Applications can communicate with any peripheral if

the operating system has a driver for the it. Some peripherals require custom

drivers. But even when :1 devices purpose is very different from typical

peripherals, it’s often possible to design the device to fit into a defined class.

Devices that Transfer Data at Moderate Speeds

Motor controllers and data—acquisition units are two examples of specialized

peripherals that aren’t found on most PCs. For a motor controller, the host

may send configuration and control requests to the device, which then pro»

USB Complete

Device Classes

vides the signals required to carry out the requested tasks. A controller may

also send status information to the host. For data acquisition, a device may

collect data from sensors and sends the results periodically to the host, and

the host may send configuration or control requests to the device.

For devices in both of these categories, or any device that transfers data at

low to moderate speeds, you may be able to design the device to fit the HID

class, eliminating the need to provide a custom driver.

A HID doesn’t have to be a standard peripheral type, and it doesn’t even

need a human interface. The only requirement is that the descriptors stored

in the device must conform to the requirements for HIDrclass descriptors,

and the device must send and receive data using interrupt or control trans—

fers as defined in the HID specification.

The main limitation to HID communications is the available transfer types.

For device—to—host data transfers, HIDs can use interrupt or control trans—

fers. For host~tovdevice transfers, Windows 98 SE or later, including Win—

dows 2000 and Me, will use interrupt transfers if an OUT interrupt pipe is
available. Otherwise the host will use control transfers to send data to the

device. The original release of Windows 98 complies only with the HID 1.0

specification and uses control transfers for all host—to—device data.

As Chapter 3 explained, interrupt transfers aren’t the fastest transfer type,

and they don’t have the guaranteed transfer rate of isochronous transfers

(though they do have guaranteed maximum latency). Control transfers have

no guaranteed rate or latency. But even with these limitations, the simplicity

of using the HID functions makes the class attractive when the limits are

acceptable.

Upgrading PIS-232 Devices

The RS—232 serial port is a good, generalvpurpose interface that has been

with the PC since its beginning. There are probably thousands of different

RS—232 peripherals in use. Microsoft and Intel’s PC 2001 System Design

Guide doesn’t forbid RS—232 ports, but it discourages them in favor of

newer, more powerful and flexible interfaces like USB. Just about any device

USB Complete 285

Chapter 12

286

that uses RS—232 can be implemented with USB. There are several

approaches to making the switch.

RS232 modems of course can be designed for USB’s modern class.

For many other devices, FTDI’S FT8U232AM USB UART provides a quick

way to upgrade a design to USE. The chip converts an existing R3232

serial device to USB while requiring minimal design changes and no changes

to host software. (Figure 12—1).

A typical device with an R8232 interface contains a UART that converts

between the serial data used in RS—232 communications and the parallel

data used by the CPU’s internal buses. The signals on the line side of the

UART connect to converters that translate between RS—232 voltages and the

5V logic used by the CPU. The line side of the converter connects to a cable

that connects to the remote device.

The USB UART converts between USB and RS—232, including not just the

data lines but also RTS, CTS, and the other status and control signals used

in R3232 communications. One set of pins on the USB UART looks like

the line side of a conventional UART, with pins for data and handshaking

signals. Two other pins connect to a USB transceiver,

The chip requires no programming except the optional storing of Vendor;

Product, and Device TDs and strings in a serial EEPROM.

To adapt an R3232 design for USB, you replace the original UART’s con«

nections to the RS—232 converters with connections to the complimentary

signals on the USB UART. Store the IDs and other optional information in
a serial EEPROM that connects to the USB UART and add a USB connec~

tion to the USB transceiver. The device firmware requires no changes

because the original UART will think it’s talking to an RS—232 device as
usual.

But providing the device hardware is only half of the job. The other half is

the device driver. For the least disruption to existing applications, the driver

should cause application software to treat the device as if it were still

attached to a COM port. FTDI provides drivers that do just that under

USB Complete

Device Classes

TXDATA TXD -——- -— TXD -“--"~ _
RXDATA RXD RXD ~—*—————

———-—- RTS RTS# " RTS‘t
RS—232 PARALLEL INTERFACE—v*~4ee- CTS CTS# ——~M*———-CTS# '“’————— TO OTHER DEVICE

INTERFACE CIRCUITSTO HOST _DTR DTth —— DTRtt —“‘_
DSR DSR# -e~~w*~'DSR#

DCD DCD# ——~*~—-— DCD# [333333;RI RI# Rl# —

MAX3245 OR EQUIVALENT
TTL/RS—ZSZ CONVERTER

DEVICE UART

TYPICAL RSv232 DEVICE

3.3V OUT

1.5K TXD TXD ———~—-——- -
RXD RXD *“-“*“""

USB D+ RTS# ——vee—~w-RTS# ———-———INTERFACE PARALLEL INTERFACE
TO HOST DA CTS# CTS# —““‘“" TO OTHER DEVICE

DTR# -“-——--DTR# CIRCUITS
EESK DSR# *VVAA‘- DSR#
EECS DCD# DCD#
EEDATA RI#-———-*-RI# ‘“*-*~*~ '

FT8U232AM
USB UART DEVICE UART

DIN

DOUT SERIAL EEPROMCONTAINING
CS VENDOR APRODUCT IDS
SK

RS—232 DEVICE CONVERTED TO USB

Figure 12-1: FTDl’s USB UART can convert devices with PIS-232 interfaces to

USB. A free device driver provided by FTDl causes the device to appear like a

conventional COM—port device to host applications.

Windows and other operating systems. An RS—232 design converted for

USB with an FTDI UART can use exactly the same application software as

the RS—232 version.

Another approach to upgrading RS—232 devices is to redesign the device to

eliminate the COM—port interface entirely. The device will probably be

cheaper to manufacture because there’s no need for a UART, but the device

USB Complete 287

Chapter 12

288

will need new application software and possibly a custom device driver.

Many R8232 devices, such as uninterruptible power supplies and the

point~ollsale devices described below, can be designed as HIDs. Others will

use bulk transfers and may require a custom driver.

Pointuof-Sale Devices

Point~ofisale (POS) devices include bar—code scanners, displays, receipt

printers, cash drawers, coin dispensers, and other devices used in sales transw

actions. Traditionally these have used RS—232 interfaces, and they’re ideal

candidates to upgrade to USB.

Most P08 devices can be designed to fit into the HID class. The HID Poim‘

ofSale [Lt/age E6165 document defines data Formats for bar~code scanners,

weighing devices, and magnetic stripe readers. The document is available

From the USB lmplementers Forums website.

Other approaches for PCS devices are designed to make upgrading from

RS~232 as easy as possible. R5232 POS devices can use the USB UART

described above to enable applications to access the device the same as if it

were still connected to a COM port.

Another option is the EPiC driver and associated USB protocol from

Inside/Out Networks. The driver enables applications to access a device as if

it were a COM—port device. This approach requires the device to contain a

USB controller with device firmware that uses the licensed protocol.

Replacing Non-standard Parallel Port Devices

Besides the R9232 serial port, another port that all PCs had from the

beginning was the parallel port, originally intended for connecting a printer.

Like the serial port, the parallel port has found many other uses over the

years. The parallel port is faster than the serial port, so it became a favored
connection for scanners and disk drives. This became even more true when

the ports began supporting the new, faster PS/Z, enhanced parallel port

(EPP) and extended capabilities port (ECP) modes. in each of its modes, the

parallel port uses a defined protocol for exchanging bytes of data along with
status and control information.

USB Complete

Device Classes

Another category of parallel—port devices uses custom protocols. The origi—

nal port had 8 outputs, 5 inputs, and 4 open—collector, bidirectional lines.

Under Windows 3.x and 9X, applications can read and write directly to the

port addresses, and under Windows NT and 2000 all that’s needed to access

the ports is a kernel—mode driver available at low cost or free from several

sources. 'What resulted was an assortment of devices following no standard

use of the ports input and outputs. For example, one popular use involved

connecting combinations of decoders, flip—flops, and data selectors to

expand the number of inputs and outputs applications could access.

But as with RS—232, Microsoft and Intel are discouraging the parallel ports

use in favor of USB and REE—1394. And this brings up the question of

what to do with all of the existing designs.

For drives, scanners, and other standard device types, the logical solution is

to design the device to comply with the appropriate USB class specification.

A quick solution for parallel printers is to use a USB printer adapter. The

adapter’s driver causes the operating system to see the printer as a network

printer. Adapters are available from several vendors. A printer adapter isn’t a

solution for parallel—port scanners, drives, and so on, because the firmware

and driver are designed for use only with the PCS printer drivers.

For devices that use non—standard parallel-port communications, the solu—

tion is to redesign the interface for USE. This requires adding a USB micro—

controller to the device, possibly providing a device driver, and revising the

application software to match the driver’s requirements. The parallel port

has 17 signal pins, so to emulate them all requires at least that many l/O

pins on the microcontroller. But many designs can get by with the 16 HO

pins available on smaller, cheaper controller chips. If you must have 17 bits

on a chip with a small footprint, Cypress’ CY7C63743 has 16 1/0 pins plus

two additional inputs that are available if the chip uses the internal oscillator

or an external source for D35 pull—up.

Applications that access the port at low and moderate speeds can probably
use the HID drivers included with Windows. This means there are no driv—

ers to write, but you’ll need to rewrite the application software to use the

API calls for accessing Hle.

USB Complete 289

Chapter 12

290

If you want to make minimal changes to the application software, provide a

driver that supports custom DeviceloControl functions that emulate the

functions used by the original application. For example, you could define an

loControlCode for a status—port read Function that reads five inputs with bit

values of hit 3 through bit 7 and even inverts bit 7 to match what the paral—

lel~port hardware does. Instead of reading the status—port address with an

lnp function, applications would call DeviceloControl with your loCon—

trolCode for the status~port read emulation.

PC-to—PC Connections

USB doesn’t allow peripherals to exchange data directly. All communications

must go through a host. There’s no way for two hosts to send. data to each

other without going through a peripheral. There is, however, a way to enable

two PCs to communicate using their USB ports. Each PC can connect to a

USB peripheral, and the two peripherals can communicate with each other
via a shared buffer.

Cypress Semiconductor’s AN27208C is designed for this purpose. It’s a sin“

gle chip containing two USB cores. Each core connects to a USB transceiver

and a shared 2—Kilobyte buffer. Cypress provides a driver that causes each

PC to see the other as a network—connected PC. You add only a single crys~

tal, an EEPROM for storing a VII) and PH), and few other components.

But you don’t have to build your own PC~to~PC cable. it’s a popular enough

application that ready—made products are avaiiahle, including Cypress’
EZ—Link.

Wireless Links

Replacing a USB cable with a wireless connection isn’t a simple task. The

main reason is that USB transactions involve communicating in both direc—

tions with tight timing requirements. For example, when a host sends a

token and data packet in the data stage of an interrupt transaction. the

device must respond quickly with ACK or another code in the handshake

packet. Designing a wireless link to do this while also meeting all of USB’s

timing and other requirements would be a challenge.

USB Complete

Device Classes

An easier solution when you need a wireless connection is to use a conven~

tional wired connection to a USB device that also supports a wireless inter—

face. The device at the other end of the wireless link doesn’t have to support
USB at all.

SigmaTels STlr42005 takes this approach with its IrDA—to—USB bridge chip

for wireless applications. erA is a standard for communications that use

infrared energy instead of cables. The bridge’s USB interface connects to a

USB hub, and the erA interface communicates with IrDA—capable devices.

The bridge translates between the two interfaces. SigmaTel provides a driver

for use with the chip.

A similar approach would work for devices that use radio‘fi‘equency wireless
com munications.

USB Complete 291

Chapter 12

292 USB Complete

Human Interface Devices: Firmware Basics

13

Human Interface

Devices:

Firmware Basics

The human interface device (HID) class was one of the first USB classes to

be supported under Windows. On PCs running Windows 98 or later, appli—

cations can communicate with HIDs using the drivers built into the operat—

ing system. For this reason, USB devices that fit into the HID class are some

of the easiest to get up and running.

This chapter shows how to determine whether a peripheral will fit into the

human—interface class, explains the firmware requirements that define a

device as a HID and enable it to exchange data with its host, and introduces

the six HID—specific control requests. The next three chapters describe the

reports that HIDs use to exchange information and how to access Hle

from applications.

USB Complete 293

Chapter 13

What is a HID?

Before you can know whether or not you can use Windows HID drivers to

communicate with a device, you need to know whether your device fits in
the HlD class.

The designation human interface suggests that the device interacts directly

with people. A device may detect when someone presses a key or moves a

mouse or joystick, or the host may send a message that translates to a joy»

stick effect that the user experiences. The classic examples of l-lle are key—

boards, mice, and joysticks. Other Hle include front panels with knobs,

switches, buttons, and sliders; remote controls; telephone keypads; and

game controls such as data gloves and steering wheels.

But a HID doesn’t have to have a human interface at all, It just needs to be

able to function within the limits of the class’s specification. These are the

major abilities and limitations of HID—class devices:

' The data exchanged resides in structures called reports. The devices firmr

ware must support the HID report format. The host sends and receives

data by sending and requesting reports in control or interrupt transfers.

The report format is flexible, and can handle just about any type of data.

‘ Each transaction can carry a small to moderate amount of data. For a

low-speed device, the maximum is 8 bytes per transaction. For a

full~speed device, the maximum is 64 bytes per transaction. For a

high/speed device, the maximum is 1024 bytes per transaction. A long

report can use multiple transactions.

0 A device may send information to the computer at unpredictable times.

For example, there’s no way for the computer to know when the user will

press a key on the keyboard, so the host’s driver polls the device periodi—

cally to obtain new data.

’ The maximum speed of transfers is limited, especially at low and full

speeds. As Chapter 4 explained, a host can guarantee a low—speed intern

rupt endpoint no more than 1 transaction per 10 milliseconds, for a

maximum of 800 bytes per second. A host can guarantee a fullrspeed

endpoint up to l transaction per millisecond, for a maximum of 64,000

294 USB Complete

Human Interface Devices: Firmware Basics

bytes per second, or a high—speed endpoint up to 3 transactions per 125

microseconds, for a maximum of 24.576 Megabytes per second.

0 There is no guaranteed rate of transfer. If the device is configured for
10—millisecond intervals, the time between transactions may be any

period equal to or less than this. The exception is devices configured to
transfer data every frame at full speed or every microframe at high speed.

Since these are the fastest possible polling rates, the endpoint is guaran‘
teed to have this exact bandwidth available.

' Under Windows 98 Gold (original), interrupt OUT transfers aren’t sup,

ported, so all host—to—device data must use control transfers.

Although many HIDs mostly send data from the device to the host, a HID
can also receive data from the host. The classic example of host—to—device

HID communications is the force~feedback joystick, Where users experience

effects that match their actions, such as greater resistance when pulling the

stick to cause a simulated airplane to climb or when getting a bite on a sim~

ulated fishing rod.

Any device that can live within the class’s limits is a candidate to be a HID.

The specification mentions bar«code readers, thermometers, and voltmeters

as examples of HIDs that may not have a conventional human interface.
Each of these sends data to the computer and may also receive requests that

configure the device. Examples of devices that mostly receive data are

remote displays, control panels for remote devices, robots, and devices of

any kind that receive occasional or periodic commands from the host.

The HID interface may be just one of multiple USB interfaces supported by

a device. A video display may have a HID interface for software control of

brightness, contrast, and refresh rates, While using the conventional video
interface to send the data to be displayed. A USB speaker that uses isochro—

nous transfers for audio may also have a HID interface for controlling vol—

ume, balance, treble, and bass. A HID interface is often cheaper than

traditional physical controls.

Two essential documents for working with HIDs are Device Class Definition

for Human Interface Devices, which defines the HID class, and HID Usage
file/es, which defines values that help the host understand and use the HID

USB Complete 295

Chapter 13

data. Both documents are products of a USB Device Working Group. The

members are affiliated with the member companies of the USE Implement—

ers Forum. The documents are published by the Implementers Forum and
available on the Forum’s website.

Hardware Requirements

296

A HID interface must conform to the requirements of the HID class as

defined in the specification. The document describes the required descripu

tors, the Frequency of. transfers, and the transfer types available.

To comply with the specification, the interfaces endpoints and descriptors
must meet several requirements.

Endpoints

All HID transfers use either the Default Control Pipe or an interrupt pipe,
A HID must have an interrupt IN endpoint for sending data to the host. An

interrupt OUT endpoint is optional.

The specification defines uses for each pipe. Table 13—1 shows the transfer

types and. their uses in HIDs.

You can think of the data that the host and device exchange as being of two

types: low-latency data that must get to its destination as soon as possible,

and configuration data or other data that doesn’t have critical timing
requirements. (By configuration data, I’m referring to data sent in HID

reports, not the host’s requesting and selecting of device configurations on
enumerating.)

The Control Pipe

The control pipe for a HID carries the standard USB requests as well as six

class—specific requests defined in the HID specification. 'va0 of the

HID—specific requests, Set_Report and GetwReport, provide a way for the

host and device to transfer a block of any kind of data to or from the device.

The host uses Set_Report to send reports and Get_Report to receive reports.

The other four requests relate to configuring the device. Set_IdIe and
Get__Idle set and read the Idle rate, which determines Whether or not a

USB Complete

Human Interface Devices: Firmware Basics

Table 13—1: The transfer type used in a HID transfer depends on the chip’s

abilities and the requirements of the data being sent.

Transfer Source of Data Type of Data Required Wlndows

Type Pipe?

Device Data that doesn’t have critical timing yes Windows 98

(IN transfer) requirements. and later

Host Data that doesn’t have critical timing

(OUT transfer) requirements, or any data if there is

no OUT interrupt pipe.

interrupt Device Periodic or lowelateney data. yes

(IN transfer) J
Host Periodic or low—latency data. no Windows 98

(OUT transfer) SE and later

device resends data that hasn’t changed since the last poll. Set_Protocol and

Getfll’rotocol set and read a protocol value, which can enable a device to

function with a simplified protocol when the HID drivers aren’t loaded on
the host.

Interrupt Transfers

The interrupt pipe or pipes provide an alternate way of exchanging device

data, especially when the receiver must get the data quickly or periodically.

An interrupt lN pipe carries data to the host, and an interrupt OUT pipe

carries data to the device. Control transfers can be delayed if the bus is very

busy, but once the device is configured, the bandwidth for interrupt trans—

fers is guaranteed to be available. HIDs aren’t required to have interrupt

OUT pipes. If there is no interrupt OUT pipe, the host sends all reports on

the control pipe, using Set_Report requests.

The ability to do Interrupt OUT transfers was added in version 1.1 of the

USB specification, and the option to use an interrupt OUT pipe was added

to version 1.1 of the HID specification. A HID driver that complies only

with version 1.0 (including the drivers in Windows 98 Gold) won’t support

interrupt OUT transfers.

USB Complete 297

Chapter 13

Firmware Requirements

298

For the host’s drivers to communicate with a HID, the device’s firmware

must meet certain requirements. The devices descriptors must identify the

device as having a HID interface, and the firmware must support an inter»

rupt IN endpoint in addition to the Default Control Pipe. The firmware

must also contain a report descriptor that defines the format for transmitted
and received device data.

To send data, the specification requires the firmware to support Get_Report

control transfers and interrupt IN transfers, and to receive data, the firm

ware must support Set_Report control transfers and may also support inter—

rupt OUT transfers.

All HID data must use a defined report format that defines the size and con—

tents of the data in the report. Devices may support one or more reports. A

report descriptor in the device’s firmware describes the reports, and may also
include information about how the receiver of the data should use it.

A value in each report defines the report as an Input, Output, or Feature

report. The host receives data in Input reports and sends data in Output

reports. Feature reports may travel in either direction.

For Input reports, the HID drivers in all releases of Windows 98 and later

use interrupt transfers. For Output reports, the transfer type depends on

what endpoints the device supports and which edition of Windows is

installed. The original release ofWindows 98 (Windows 98 Gold) complies

only with version 1.0 of the HID specification, and the HID driver uses

control transfers for Output reports. Windows 98 SE, Windows 2000, and

Windows Me comply with version 1.1 of the specification, so the HID

driver uses interrupt transfers for Output reports if the interface has an

interrupt OUT endpoint. Otherwise it uses control transfers. If the HID

interface doesn’t have an interrupt OUT endpoint or if the firmware sup—

ports both transfer types for Output reports, the HID will be compatible

with any Windows edition. Feature reports always use control transfers.

A report format can be simple or complex. The rest of this chapter and

Chapter 14 have much more about report formats.

USB Complete

Human Interface Devices: Firmware Basics

Identifying a Device as a HID

As with any USB device, a HID’s descriptors tell the host what it needs to

know to communicate with the device. Listing 13~1 shows example device,

configuration, interface, class, and endpoint descriptors For 3 HI D—class joy—
stick. The host learns about the HID interface when it sends a

Get_Descriptor request for the configuration containing the HID interface.

The configurations interface descriptor identifies the interface as HID-class.

The HID class descriptor specifies the number of report descriptors sup

ported by the interface. During enumeration, the HID driver retrieves the

HID class and report descriptors.

Descriptor Contents

The device and configuration descriptors .have no HIDrspecific informa«

tion. The device descriptor contains a field for a class code, but this isnt

where the device is defined as a HID. Instead, the interface descriptor is

where the host learns that a device, or more properly, a device interface,

belongs to the HID class. If the class—code byte in the device’s interface

descriptor is 3, the interface is a HID.

Other fields that contain HID—specific information in the interface descrip—

tor are the subclass and protocol fields, which can specify a boot interface.

Boot interfaces

The subclass field has just one active setting. A subclass of 1 indicates that

the device supports a boot interface. When a device has a boot interface, the

device will be usable when the host’s HID drivers aren’t loaded. This might

occur when the computer boots directly to DOS, or when viewing the sys—

tem setup screens that you can access on bootup, or when using Windows

Safe mode for system troubleshooting. A keyboard or mouse with a boot

interface can use a predefined, simplified protocol supported by the BIOS of

many hosts. The BIOS loads from ROM or other non—volatile memory on

bootup and is available in any operating-system mode. The HID specifica~

tion defines boot‘interface protocols for keyboards and mice.

USB Complete 299

Chapter 13

device_desc_tablez

db 12h Descriptor length (18 bytes)

db Olh ; Descriptor type (Device)

db OOh,Olh ; Complies to USB Spec. Release (1.00)

db 00h ; Class code (0)

db 00h ; Subclass code (0)

db 00h ; ?rotocol (No specific protocol)

db 08h ; Max. packet size for EPO (8 bytes)

db B4h,04h ; Vendor ID (Cypress)

db th,OFh ; Product ID (joystick = OXOFIF)

db 88h,02h ; Device release number (2°88)

db 00h ; Mfr string descriptor index (None)

db 00h ; ?roduct string descriptor index (None)

db 00h ; Serial No. string descriptor index (None)

db Olh ; Number of possible configurations (1)

endwdevice_descmtable:

config_desc_table:

db 09b ; Descriptor length (9 bytes)

db 02h ; Descriptor type (Configuration)

db 22h,00h ; Total data length (34 bytes)

db Olh ; Interface supported (1)

db 01h ; Configuration value (1)

db 00h ; Index of string descriptor (None)

db 80h ; Configuration (Bus powered)

db 32h ; Maximum power consumption (lOOmA)

Interface_Descriptor:

db 09h ; Descriptor length (9 bytes)

db 04h ; Descriptor type (Interface)

db 00h ; fumber of interface (0)

db 00b ; Alternate setting (0)

db Olh ; Number of endpoints supported

db 03h ; Class code (HID)

db 00h ; Subclass code (None)

db 00h ; 9rotocol code (None)

db 00h ; Index of string(None)

Listing 13-1: Descriptors for a HID—class joystick (Sheet 1 of 2)

300 USB Compiete

Human interface Devices: Firmware Basics

Class_3escriptorz

db 09h ; Descriptor length (9 bytes)

db 21h ; Descriptor type (HID)

db OOh,Olh ; HID class release nimber (1.00)

db 00h ; Localized country code (None)

db 01h ; # of Hid class descriptors to follow (1)

db 22h ; Report descriptor type (HID)

; Total Length of report descriptor

db (end_hid_report_desc_table ~ hid_reportvdesc_table),OOh

Endpoint_Descriptor:

db 07h ; Descriptor length (7 bytes)

db 05h ; Descriptor type (Endpoint)

db 81h ; Encoded address (Respond to IN, 1 endpnt)

db 03h ; Endpoint attribute (Interrupt transfer)

db 06h,00h ; Maximum packet size 6 bytes

db OAh ; Polling interval (10 ms)

end_configfidesc_table:

Listing 13—1: Descriptors for a HID—class joystick (Sheet 2 of 2)

If a device does have a boot interface, the protocol field indicates if the

device supports the keyboard (1) or mouse (2) interface. A value of zero

indicates no device, and values 5—255 are reserved. A subclass of zero means

that the device doesn’t support a boot protocol. Values 2 through 255 are
reserved.

The HID Usage Tables document defines the keyboard and mouse boot

descriptors. The BIOS doesn’t need to read a descriptor From the device

because it knows what the boot protocol is and assumes that the device will

support it. So a boot device doesn’t have to include a boot—interface descrip—

tor in firmware; it just has to support the boot protocol if the host hasn’t

requested the protocol defined in the report descriptor. When the operating

system loads, the HID drivers use the HID—specific request Sct__l)rotocol to

cause the device to switch from the boot protocol to the report protocol.

USB Complete 301

Chapter 13

Draft 4 Compliance

During the development of the HID 1.0 specification, a change was made

to the ordering of descriptors in HID firmware. In the early versions, the

descriptors were stored and retrieved in this order:

Configuration

Interface

Endpoint

HID

By Draft 4 of the specification, the order had changed to:

Configuration

Interface

HID

Endpoint

The change means that the HID descriptor is associated with an interface,

rather than an endpoint. If a HID has two endpoints, the device doesn’t

need a HID descriptor for each.

 A device that complies with HID 1.0 or later uses the Draft 4 ordering. A

USB test utility (such as HIDVieW, described in Chapter I 7) that checks for

Draft 4 compliance is examining the order of the descriptors.

HID Class Descriptor

The main purpose of the HID class descriptor is to identify additional

descriptors for use in HID communications. The class descriptor has seven

or more fields, depending on the number of additional descriptors. TahIe
13-2 shows the fields.

The Descriptor

bLength. The length in bytes of the descriptor.

bDescriptorType. The value 21h indicates the HID class.

302 USB Complete

Human Interface Devices: Firmware Basics

Table 13-2: The HID class descriptor has 7 or more fields in 9 or more bytes.

Offset Field Description

(decimal)

0 bLength Descriptor size in bytes

rl bDescriptorTypc 21h indicates the HID class

5 bcdHlD HID specification release number (BCD) T

4 bCountryCode Numeric expression identifying the country for
localized hardware (BCD)

5 bNumDescriptors 1 Number of subordinate class descriptors supported

[:6 bDescriptorType 1 The type of class descriptor
7 wDescriptorLength 2 Total length of report descriptor

bDescriptorType 1 Constant identifying the type of descriptor.

Optional, for devices with more than one descrip-
tor.

10 wDescriptorLength 2 Total length of descriptor. Optional, for devices
with more than one descriptor. May be followed by

additional wDescriptorType and

wDescriptorLength fields.

The Class

bcdHID. The HID specification number that the device and its descriptors

comply with. In BCD (binary~coded decimal) format. The value is a 4—char—

acter hexadecimal value with a decimal point assumed in the middle. For

example, Version 1.0 is OlOOh; Version l.l is 0] 10h.

bCountryCode. If the hardware is localized for a specific country, this field

is a code identifying the country. The HID specification lists the codes. If
the hardware isn’t localized, this field is 00h.

bNumDescriptors. The number of class descriptors that are subordinate to

this descriptor.

bDescriptorType. The type (report or physical) of a descriptor that is sub—

ordinate to the HID class descriptor. Every HID must support at least one

report descriptor. An interface may support multiple report descriptors and

one or more physical descriptors.

WDescriptorLength. The length of the descriptor described in the previous
field.

USB Complete 303

Chapter 13

Additional bDescriptorType, WDescriptorLength (optional). If there are

additional subordinate descriptors, the descriptor type and length for each

follow in sequence.

Report Descriptors

304

A report descriptor defines the format and uses of the data that carries out

the purpose of the device. If the device is a mouse, the data reports mouse

movements and button clicks. if the device is a relay controller, the data

contains codes that specify which relays to open and close.

The report descriptor needs to be flexible enough to handle devices with

very different purposes. The data should be stored in a concise form so it

doesn’t waste storage space in the device or bus time when the data trans—

mits. The HID report descriptor achieves both of these at a price of a format

that’s more complex and less readable than a more verbose format might be.

The format doesn’t limit the type of data in a report, but the report descrip»

tor must describe the size and contents of the report in advance. A report

descriptor’s contents and length vary with the device, and can be short and

simple, long and complex, or anywhere in between.

A report descriptor is a type of class descriptor. The host retrieves the

descriptor by sending a Get_Descriptor request with the Value field contain»

ing 22h in the high byte and the report ID in the low byte. The default

report 1D is 00h.

One way to get a feel for what a report descriptor contains and how it’s

structured is to look at one. Listing 13~2 is a bare~bones report descriptor

that describes an input report that sends two bytes of data to the host and an

Output report that sends two bytes of data to the device. Other report

descriptors build on, this basic format, so a short descriptor like this is a good

place to start understanding report descriptors in general.

The items in the example descriptor are required in all descriptors. Some

items apply to the entire descriptor, while others are specified separately for

the input and output data. More complicated report descriptors may use

additional instances of these same items along with other optional items.

USB Complete

Human Interface Devices: Firmware Basics

hid_report_desc_table:

db 06h, A011, FFh ; Usage Page (vendor defined)

db 09h, ASh ; Usage (vendor defined)

db Alb, 01h ; Collection (Application)

db 09h, A6h ; Usage (vendor defined)

;The input report

db 09h, A7h ; Usage (vendor defined)

db 15h, 80h ; Logical Minimum (~127)

db 25h, 7Fh ; Logical Maximum (128)

db 75h, 08h ; Report Size (8) (bits)

db 95h, 02h ; Report Count (2) (fields)

db 81h, 02h ; Input (Data, Variable, Absolute)

;The output report

db 09h, A9h ; Usage (vendor defined)

db 15h, 80h ; Logical Winimum (e128)

db 25h, 7Fh ; Logical Maximum (127)

db 75h, 08h ; Report Size (8) (bits)

db 95h, 02h ; Report Count (2) (fields)

db 91h, 02h ; Output (Data, Variable, Absolute)

db COh ; End Collection

end_hid~report_desc_table:

Listing 13-2: This report descriptor enables sending and receiving of two bytes.

Each item in the example report consists of a byte that identifies the item

and one or more bytes containing the item’s data. Here is what each item in

the example descriptor specifies:

The Usage Page item is identified by the value 06h and specifies the general

function of the device, such as generic desktop control, game control, or

alphanumeric display (to name just a few). You can think of the Usage Page
as a subset of the HID class. In the example descriptor, the Usage Page is the

vend0r~defined value FFAOhh. The HID specification lists values for differ—

ent Usage Pages and values reserved for vendor—defined Usage Pages.

USB Complete 305

Chapter 13

The Usage item is identified by the value 09h and specifies the function of

the individual report. Just as the Usage Page is a subset of the class, the

Usage is a subset of the Usage Page. For example, Usages available for

generic desktop controls include mouse, joystick, and keyboard. Because the

examples Usage Page is vendor—defined, all of the Usages in the Usage Page
are vendor—defined also. In the example, the Usage is ASh.

The Collection (Application) item begins a group of items that together

perform a single function, such as keyboard or mouse. Each report descripa
tor must have an Application Collection to enable Windows to enumerate

it. The Usage item that follows the Collection item names the function of

the collection. In the example, it’s the vendor—defined value A6.

The Logical Minimum and Maximum have values of 15h and 25h and

specify the range of values that the report can contain. Negative values may
be expressed as two’s complements. In the example, the values 80b and 7Fh

indicates a range of—128 to +127.

The Report Size item has a value of 75b and indicates how many bits are in

each reported data item. In the example, each data item is eight bits.

The Report Count item has a value of 95h and indicates how many data

items the report contains. In the example, each report contains two data
items.

The final item specifies whether the report carries data from the host to the

device (91h) or from the device to the host (81h), along with other informa
tion about the data.

The End Collection item closes the Application Collection.

HID-specific Requests

306

The HID specification defines six HID~specific control requests. Table 136

lists the requests, and the following pages describe each request in more
detail.

All HIDs must support Get_Report, and boot devices must support
Get_Protocal and Set_Protocol. The other requests (Set__Report, Get_Idle,

USB Complete

Human interface Devices: Firmware Basics

Table 13-3: In addition to the eleven standard control requests, Hle may

support up to six HlD—specific requests.

Request # Request Data Value Index Data Data Required
source Length stage ?

(bytes) contents

01 h Get_ device report interface report report yes

Report type, length
report ID

02h Get_ device report ID interface 1 idle no
Idle duration

03h Get_ rdevice 0 interface I protocol required
Protocol for boot

I devices
09h Set_ host report interface report report no

Report type, length

report ID

OAh Set_ host idle interface 0 none no

duration,

report ID

_ protocol interface 0 none required
Protocol for boot

devices

_l

and Set_Idle) are optional. If a device doesn’t have an Interrupt OUT end

point or if it is communicating with a 1.0 host such as Windows 98 Gold, it

will need to support Set_Report to receive data from the host. Devices that

don’t support Feature reports will send data using interrupt transfers only

and thus have no use for Get_Report, but to comply with the specification,

they should support the request in case a host should decide to use it. A

device will enumerate and transfer data under Windows without supporting

this request, however.

USB Complete 307

Chapter 13

GeLReport

Purpose: Enables the host to receive data from a device in control transfers.

Request Number: 01h

Source of Data: device

Data Length: length of the report

Contents of Value field: The high byte contains the report type (i=input,

2:0utput, 3=Feature), and the low byte contains the report TD. The

default report ID is 0.

Contents of Index field: the number of the interface that supports this

request.

Contents of data packet in the Data stage: the report

Comments: The HID specification advises that the host should not use

this request to obtain periodic data. (It should use interrupt transfers

instead.) The request is intended only for obtaining the state of feature
items or other information that the host needs to know when it initializes

the device. However, a host using a boot protocol might use Get_Report to
receive keypress or mouse data.

All 1-1le must support this request.

308 USB Complete

Human Interface Devices: Firmware Basics

Set_Report

Purpose: Enables a device to receive data from the host in control transfers.

Request Number: 09h

Source of Data: host

Data Length: length of the report

Contents ofValue field: The high byte contains the report type (lzlnput,

2=Output, 3=Feature), and the low byte contains the report ID. The

default report ID is 0.

Contents of Index field: the number of the interface that supports this

request.

Contents of data packet in the Data stage: the report

Comments: If a device doesn’t have an Interrupt OUT endpoint or if the

host complies only with version 1.0 of the HID specification, this request is

the only way the host can send data to the device. For other devices, the

host may use this request to send Feature reports or other information that

that isn’t time—sensitive. HIDS aren’t required to support this request.

USB Complete 309

Chapter 13

Get_l|dle

Purpose: The host reads the current Idle rate from a device.

Request Number: 02h

Source of Data: device

Data Length: 1

Contents of Value field: The high byte is 0. The low byte indicates the

report ID that the request applies to. If the low byte is 0, the request applies

to all of the device’s Input reports.

Contents of Index field: the number of the interface that supports this

request.

Contents of data packet in the Data stage: the Idle rate, expressed in
units of 4 milliseconds.

Comments: See SetmIdle for more details. HIDs aren’t required to support

this request.

310 USB Complete

Human Interface Devices: Firmware Basics

Set___ldle

Purpose: Saves bandwidth by limiting the reporting frequency of an inter~

rupt IN endpoint when the data hasn’t changed since the last report.

Request Number: OAh

Source of Data: none

Data Length: 0

Contents of Value field: The high byte sets the duration, or the maximum

amount of time between reports. A value of 0 means that there is no maxi—

mum and the device will report only when the report data has changed.

Otherwise, the device returns a NAK. The low byte indicates the report ID

that the request applies to. If the low byte is O, the request applies to all of

the device’s Input reports.

Contents of Index field: the number of the interface that supports this

request.

Contents of data packet in the Data stage: none

Comments: The duration is in units of 4 milliseconds, which gives a range

of 4 to 1,020 milliseconds. No matter what the duration value is, if the

report data has changed since the last report sent, on receiving a request,

the device sends a report. If the data hasn’t changed and the amount of time

specified in the duration value hasn’t elapsed since the last report, the device

returns a NAK. If the data hasn’t changed and the amount of time specified

in the duration value has elapsed since the last report, the device sends a

report. A duration value of 0 indicates an infinite duration; the device sends

a report only if the report data has changed, and responds to all other inter—

rupt IN requests with NAK.

HIDs aren’t required to support this request. On enumerating a HID, the

Windows HID driver attempts to set the idle rate to 0. If the HID supports

the request, it will send a report only if the report data has changed. If the

HID returns a Stall in response to this request, the request isn’t supported

and the device can send reports whether or not the data has changed.

USB Complete 311

Chapter 13

Get__Protocol

Purpose: The host learns Whether the boot or report protocol is current‘y
active on the device.

Request Number: 03h

Source of Data: device

Data Length: 1

Contents ofValue field: 0

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: The protocol. 0=hoot proto»
col, Izreport protocol.

Comments: Boot devices must support this request.

312 USB Complete

Human Interface Devices: Firmware Basics

Sethrotocol

Purpose: The host specifies Whether to use the boot or report protocol.

Request Number: OBh

Source of Data: host

Data Length: 1

Contents ofValue field: 0

Contents of Index field: the number of the interface that supports this

request.

Contents of data packet in the Data stage: 0=B00t Protocol; 1=Report
Protocol

Comments: Boot devices must support this request.

USB Complete 313

Chapter 13

Transferring Data

When enumeration is complete, the host has done all of the following: it has
identified the device interface as a HID, it has established pipes with the
supported endpoints, and it has learned what report formats to use in send—

ing and receiving data.

The host uses control transfers to send and receive Feature reports contain«
ing additional configuration data or other data that doesn’t have critical time

ing requirements. For example, a control~panel application for a video

monitor may use control transfers to send settings to the monitor. The host

uses interrupt transfers to send and receive periodic, lowvlatency data in

Input and Output reports. The device’s firmware must have the comple~
mentary code to respond to the host’s requests.

Sendling Data to the Host

314

The host receives data after requesting it in an interrupt or control transfer.

To respond to an interrupt transfer, the device’s firmware needs only to have

the requested data in its transmit buffer and to be configured to send the

data in response to an interrupt IN request. For Cypress’ enCoRe series,

doing this requires writing a value to Endpoint 1’s transmit configuration
register to enable transmitting and to specify the number of bytes to send
and the data~toggle bit’s value.

Below is example code for the enCoRe that prepares two bytes to transmit

on the next interrupt IN transfer:

On receiving a Sethonfiguration request, enable the Endpoint 1 interrupt:

; Set the endpoint mode to NAK Ins and Outs

mov A, AK_IN¥OUT

iowr eplfimode

; Enable Endpoint O and 1 interrupts.

mov A, ZEPO_INT l Ep1_INT

iowr endpoint_int
mov A, 00h

; Reset the data toggle.

mov [epl_data_toggle], A

USB Complete

Human Interface Devices: Firmware Basics

To prepare to send data to the host, copy the data to Endpoint 1’s buffer and

configure the endpoint to return data in an IN transaction:

mov A, [datambyte_0]

mov [eplwdmabuffo], A

mov A, [data_byte_l]

mov [ep1_dmabuffl], A

; Configure Endpoint l to send 2 bytes.

mov A, 02h

; Keep the data toggle the same.

or A, [epl_data_toggle]

mmrngmmt

; Configure the endpoint to send data in IN

; transactions.

mov A, ACK_IN

iowr ep1_mode

After sending the data, in Endpoint 1’s interrupt service routine, toggle the

data toggle so it will be correct for the next transaction:

; Toggle the data toggle.

mov A, 80h

xor [epl‘data_toggle], A

The details will vary for other chips. When the device has no data to send,

the endpoint should be configured to return NAK.

Responding to a Get_Report request for a Feature report is much like

responding to any control Read request. Control transfers are more compli—

cated than interrupt transfers because of their multiple stages, but you can

use the code for other control Read requests as a model. The device must be

able to detect the request in the Setup stage, write the requested report data

to the USB output buffer for transmitting in the Data stage, and acknowl—

edge the host’s 0-length data packet in the Status stage.

Receiving Data from the Host

The host receives data after requesting it in an interrupt or control transfer.

As explained earlier, a host may use control or interrupt transfers for Output

reports. The chip’s architecture and descriptors determine whether or not

the HID interface has an interrupt OUT pipe available. The host always

uses Set_Report control requests to send Feature reports.

USB Complete 315

Chapter 13

316

If the interface has an interrupt OUT endpoint and needs to receive

low—latency data, the endpoint should be configured to receive report data.

Typically, when new data arrives, an interrupt informs the device of the

event. An interrupt~service routine in the firmware then does whatever is

necessary with the data, either using the data right away or storing it for later

use. The interrupt-service routine should also do whatever is needed to pre—
pare the endpoint to receive a new report.

If the interface doesn’t have an interrupt OUT endpoint, the firmware must

detect Set_Report control requests and handle the report data in the

requests. The chip must do the same to receive Feature reports. A device that

has an interrupt OUT endpoint should also be able to receive reports in

Set_Report control transfers so it can receive Feature reports, or Output

reports if it happens to communicate with a LG host.

A, Set__Report request consists of at least three transactions. The host ini~

tiates a Setup transaction that specifies the request and the number of bytes

in the report, followed by one or more data transactions with the report

data. The device returns a response in the Status stage.

For a Set‘Report request, the device must be able to detect the request in

the Setup stage, receive the report data in the Data stage, and send a hand—

shake in the Status stage. These are the steps a device typically follows to

handle a Set_Report request:

l . The device detects a Setup packet, stores the data in the transactions data

packet, returns ACK, and triggers an interrupt that causes the firmware to

jump to an interr‘upt«service routine.

2. The interrupt—service routine does the following:

9 Detects the code that indicates the arrival of a Set_Report request.

' Reads the report—length, report-type, and reporeID parameters in the
Setup transaction.

' Ensure that Endpoint 0 is configured to accept the data following an
OUT token packet.

3. When the interrupt~service routine ends, the device returns to normal

operation until it receives an OUT token packet indicating that the host is

USB Complete

Human Interface Devices: Firmware Basics

sending data to the control endpoint in the Data stage. After receiving the

data, the endpoint returns a status code in the handshake packet. An inter—

rupt causes the firmware to jump to an interrupt—service routine for the end—

point.

4. The interrupt—service routine does Whatever is needed with the received
data.

5. If additional data packets are expected in the Data stage, repeat steps 3

and 4 for any additional OUT transactions, up to the Length value in the

Setup transaction.

6. In response to an IN token packet in the Status stage, the endpoint sends

a O—length data packet and the host returns ACK.

Below is enCoRe code that executes on detecting a SetflReport request. The

code finds out how many bytes to read and configures Endpoint O to receive

data in an OUT transaction. This involves setting two configuration bits.

setwreport:

; Find out how many bytes to read in the OUT

; transaction(s) that will follow.

; This value is in WLengthlo.

; (WLengthhi is unused for this device).

; Save the length in data_count.

mov A, [wLengthlo]

mov [datawcount], A
mov A, O

mov [wLengthhi], A

; Unlock the counter register so it can be updated

; with the number of bytes in the data stage.

iord epOicount

; Enable receiving data in an OUT transaction.

jmp initialize_control~write

initialize_controlmwrite:

; The firmware uses the value in ep0_transtype to

; decide how to respond to a token packet.

mOV A, TRANS_CONTROLwWRITE

mov [epOfltranstype], A

USB Complete 317

Chapter 13

; Set the data toggle.

mov A, DATA_TOGGLE

mov [ep0_data_toggle], A

; Send ACK in response to OUT packets,
; which will contain the Control Write data.

; Send NAK in response to ZN packets (not expected).

mov A, ACK_OUT_NAKMZIN

iowr epOmmode

;Return from the Endpoint O ISR.

pop A

pop X
reti

The Chip then waits for the arrival of the OUT token packet to begin the
Data stage. When an Endpoint O interrupt occurs, the code checks for em

OUT packet, and if one has arrived, it stores the received data and returns a

O~byte data packet in the Status stage:

control_write_data~stage:

; Jump here on receiving an Out packet in the

; Data stage of a Control Write transfer.

; If the data—valid bit isn't set,

; we’re done with the data stage.

iord epOmcount

and A, DATA4VALID

jz controlfiwritemdatamstage~done

; Check the data~toggle bit. If it's incorrect,

; we’re done with the Data stage.

iord epOicount '

and A, DATA_TOGGLE

xor A, [ep0_data_toggle]

jnz controlmwrite_data_stage_done

; Copy the report's bytes to data memory.

mov A, [epOgdmabuffO]

mov [data_byte_0], A

mov A, [epOwdmabuffl]

mov [datawbyteul], A

318 USB Complete

a,

Human interface Devices: Firmware Basics

;Toggle the data~toggle bit.

mOV A, DATAMTOGGLE

xor [epOmdata_toggle], A

; Configure Endpoint O to send a Oebyte data packet

; in response to an IN packet (the transfer‘s Status

; stage) and to Stall an Out packet.

mov A, STATUSvIN_ONLY

iowr ep0_mode

control_write_data_stage~done:

; Return from Endpoint 0’s ISR.

mm A

POP X
reti

[\finr sending the 0~byte dara packcn the endrxnnt E ready for another
transfer.

USB Complete 319

Chapter 13

320 USB Complete

Human Interface Devices: Reports

14

Human Interface

Devices: Reports

Chapter 13 introduced the reports that HIDs use to exchange data. A report

can be a buffer of undefined bytes, or it can be a complex assortment of

items, each with assigned functions and units. This chapter shows how to

design a report to fit a specific application.

Report Structure

A report descriptor may contain any of dozens of items arranged in various

combinations. It can be long and complex, short and simple, or anywhere in

between. The advantage of a more complex descriptor is that the device can

provide detailed information about the data it sends and expects to receive.

The descriptor can specify the values’ uses and what units to apply to the

raw data, and it can tell applications whether or not a device supports a par~

ticular feature, such as force feedback on a joystick.

USB Complete 321

Chapter 14

But just because the specification supports an item that applies to a device

doesn’t mean that the report has to include it. For custom devices that are

intended for use with a single application, the application often knows the

report format in advance, so there’s no need to request the information from

the device. For example, when the vendor of a data~acquisition unit. creates

an application for use with the unit, the vendor already knows what data

format the device will use in its reports. At most, the application might

check the product ii) and version number from the device descriptor to

learn whether it can request a particular setting or action.

Some of the details about report structures can get tedious, and it’s not neca

essary to understand every nuance about them in most cases. 30 feel free to

skim through the details. You can always come back to them later if you
need to.

The report descriptor consists of a series of items that describe the values to

be transferred. Each item has a defined scope, and some items may apply to

multiple values, eliminating the need to repeat.

Using the HID Descriptor Tool

322

The HID Descriptor Tool (Figure 144) is a free utility available from the

USB lmplementers Forum. it helps in creating report descriptors, and will

also check your descriptors structure, reporting any errors it finds. instead

of having to look up the values that correspond to each item in your report,

you can select the item from a list and enter the value you want to assign to

it, and the software will add the item to the descriptor. You can also add

items manually. The Parse Descriptor function displays the raw and inter—

preted values in your descriptor and comments on any errors found. When

you have a descriptor with no errors, you can convert it to the syntax

required by your firmware. The tool has limited support For vendor—specific

items, and may flag these as errors.

USB Complete

3A6 EJ’MXIMUM
ES IG NATO R_I ND EX
ES IGNATORJ‘II NIM LIM
E S IG hit-\TCI R_MA‘»<IM UM

STRING_IND EX
‘iTR I NGJ‘I I N IMUM
STRINGJ!I.»‘-‘LXIMUI"I
-0 L L ECTIO N
END_CDLLECTIDN

UTPUT
EfiTUR E

LOGICALJI IN IM UM
OGICALJIAXII'iUM
H YS ICALJ‘I I N IM UM
HYSICALJ’MXIM UM

I U N IT__EXPCI N E NT

 EPORT_SIZE

EPORT_ID
- REPORT_CQUNT

PUSH

, HIDVDescnptm Tool (DT) — [135:1 .hid
b about, 7 ’ '

COLLECTION (,flppiicafiun) $4.1 01
USAGE (Pcw‘i nterj O? 01
COLLECTION (Phy‘si Eat) A1 00

LISWSE " :1 09 30
USM‘SE J 09 :‘v
LDGICMLJ’IINIMLIM (O) 15 DO
LOGICALJ’MXIMLIM (3:! 25 03
REPORT_CCIUHT (2:1 9'5 03
REPORT_5IZE (2} F5 02
INPUT (Data,'dar_.Ab5'j 31 02
REPORTJZOIJHT (4) 95 O4
REPORT_SIZE (l) .75 01
INF‘LIT (tirtst,'»‘ar‘,Absj 81 C13
USfi.GE_P.thE (Button) 05 0'3

Human Interface Devices: Reports

1:; 14:; O L"USAGE reame P ;

USAGEJ'IINIMUM (But’tml 1)
USAGEMMKXIMUM {Button 6)
LOGIQQLJIIINIMUM (CI)
LCIGIQALJtAXIMLIM (1)
REPORT CUUNT (6)
FEP'DRT,.IZE (1:1
INPUT (Dataflar‘fitbs)
REPQRT_CDUI'3T (2
INPUT (Cnst,"u’ar,fi.b5}
ENDJCDLLECTION

ENDJZOLLECTIDN

 Uhl: 13d;
Elli Ed)
4M 4d)
EI‘II' Bit)
BM 3d)
Ah: 10de
CM Ifldj
Eh I Idldjl

iUItI' 15d]
‘I Eh I: IBEI]
idll’l [20d]
IBh I

TEI‘IE t

 I.If

mi,

I erlv: De

Game Pad

Applicatlon
Pointer

, Lir £th
IIIEI 3[I e >11
05131 .4 I, e ‘r'

IE JEI Logical litirm’num U
2. 33 Logimll‘fiaxln‘iurn El
55 JE Reportliiount 2
F5 32 Report Size 2
SI 32 Input (\far'lable)
95 34 Report Count 4
72. 31 Report Size 1
SI 13 Input (Camel-tam,"It'arialjleji
I15 JEI Usaqe Page Elupn

Figure 14-1: The HID Descriptor Tool helps in creating and testing HID report

descriptors.

USB Complete 323

Chapter “14

Predefined Values

A report descriptor can contain values that describe specific uses. There are

several documents that define the Usage and other values that reports may

contain. The first place to look is the HID Usage 1/?sz document. This has

tables of values for generic desktop controls, simulation controls, game con«

trols, LEDS, buttons, telephony devices, and more. The document also tells

you where to find values that are defined elsewhere. Some are in the HID

specification, while others are in the class specifications for specific device

types such as monitor, power, and imaged-ass devices.

The HID specification defines two report item types: short items and long

items. As of HlD 1.], there are no defined Long items, and the type is just
reserved for future use.

Short: items

A Short item’s l—byte prefix specifies the item type, item tag, and item size.

These are the elements that make up the prefix byte:

Bit Number Contents Description

meltm Tag i uNmeic value ttha lildlCclSthG item’tttnlncio
6

5

Item Type item scope: Main, Global, or Local

Item Size Number of bytes in the item

The item tag (bits 4-7) indicates the item’s function.

The item type (bits 3 and 2) describes the scope of the item: Main (00),

Global (01), or Local (10). Main items define or group the data fields in the

descriptor. Global items describe the reported data. Local items define chart

acteristics of individual controls in the data. (This chapter has more infor-

mation about these.)

324 USB Complete

Human Interface Devices: Reports

The item size (bits 1 and 0) indicates how many data bytes the item con—

tains. Note that an item size of 3 (1 1 in binary) corresponds to 4 data bytes:

Item Size Number of

Data Bytes

Long Items

A Long item uses multiple bytes to store the same information as the Short

item’s 1~byte prefix. A Long item’s 1—byte prefix (FEh) identifies the item as

a Long item. In addition, the item has a byte that specifies the number of

data bytes, a byte containing the item tag, and up to 255 bytes of data.

The Main Item Type

A Main item defines or groups data items within a report descriptor. There

are five subtypes with the Main item type. The Input, Output, and Feature

items each define fields in the report. Collection and End Collection items

don’t define fields, but instead group related items within a report. The
default value for all Main items is 0.

Input, Output, and Feature Items

Table 14—1 shows the supported values for the Input, Output, and Feature

items, including the item tag and the meanings of the bits in the value that

follows the tag.

An Input item can apply to any control, sensor reading, or other informa—

tion that the device sends to the host. An Input report contains one or more

Input items. The host uses interrupt IN transfers to request Input reports.

An Output item applies to information that the host sends to the device. An

Output report contains one or more Output items. Output reports contain

data that reports the states of controls, such as whether to open or close a

USB Complete 325

Chapter 14

Table 144: The data included with Input, Output, and Feature Item Tags

describes the report data.

Main Item Tag Bit Number Meaning tr bit m 0 Meaning if bit a 1

Input 0 Data Constant

(IOOOOOHH’ where 1 Array Variable
nn=the number of data ~~

bytes) 2 Absolute Relative
3 No wrap Wrap

4 mmmmmmm_—Linear Non-linear

r5 Preferred state No preferred state

WwwwwwM N 0 null position Null state

Reserved MW m—

Bit field Buffered bytes

981 wwwwww “Reserved?

Output 0 Data Constant

e:

bytes) 2 Absolute Relative
3 No wrap Wrap

4 ”””””_ Linear Non-linear

5 Preferred state No preferred statemmmmmmmm

o No null position Null state

Tm”— Non-volatile Volatile

8 Bit field Buffered bytes

9—31 Reserved J

Feature 0 _. MMWWWWWWWW Data Constant

(lOl lOOnn, where 1 Array Variable
nnzthe number of data [,
bytes) 2 ‘wwmAmbsolute ‘ Relative

3 No wrap Wrap

4 Linear Non—linear

5 Preferred state No preferred state

6 No null position Null state

7 Non—volatile Volatile

8 Bit field Buffered bytes

9—31 Reserved -mwmmwm,iiiiiiiiiiiiiiii 7

326 USB Complete

Human Interface Devices: Reports

switch or the intensity to apply to an effect. As explained earlier, if an inter—

rupt OUT pipe is available, a HID 1.1~compliant host uses interrupt OUT

transfers to send Output reports. Otherwise, the host uses Set_Report con—

trol requests.

A Feature item normally applies to information that the host sends to the

device. However, it’s also possible for the host to read Feature items from a

device. A Feature report contains one or more Feature items. Feature reports

typically contain configuration settings that affect the overall behavior of the
device or one of its components. Feature reports normally control settings

that you might otherwise adjust in a physical control panel. For example,

the host may have a Virtual (on—screen) control panel to enable users to select
and control features. The host uses control transfers with Set_Report and

Get__Report requests to send and receive Feature reports.

Following each item tag are 32 bits that describe the data. At most, only 9 of
the bits are used, with the rest reserved. The device firmware and host soft—

ware may use or ignore this information.

The bit functions are the same for Input, Output, and Feature items, except

that Input items don’t support the volatile/non~volatile bit. These are the
uses for each bit:

Data I Constant. Data means that the contents of the item are modifiable
(read/write). Constant means the contents are not modifiable (read—only).

Array I Variable. This bit specifies whether the data reports the state of

every control or just reports the controls that are active. Reporting only the
active controls results in a more compact report for devices such as key—

boards, where there are many controls (keys) but only one or a few are active
at the same time.

For example, if a keypad has eight keys, setting this bit to Variable would

mean that the keypad’s report would contain a bit for each key. In the report

descriptor, the report size would be one bit, the report count would be eight,

and the total amount of data sent would be eight bits. Setting the bit to

Array would mean that each key has an assigned index, and the keypad’s

report would contain only the index of the keys that are active. With eight
keys, the report size would be three bits, which can report a key number

USB Complete 327

Chapter 14

328

from 0 through 7. The report count would equal the maximum number of

simultaneous keypresses that could be reported. if the user can press only
one key at a time, the report count would be 1 and the total amount of data

sent would be just 3 bits. if the user can press all of the keys at once, the

report count would be 8 and the total amount of data sent would be 24 bits.

The specification recommends returning 0 when no controls are active, and

specifying a Logical Minimum of 1 and a Logical Maximum equal to the
number of controls.

Absolute I Relative. Absolute means that the value is based on a fixed ori—

gin; Relative means that the data indicates the change from the last reading.

A joystick normally reports absolute data (the joystick’s current position),
while a mouse reports relative data (how far the mouse has moved since the

last report).

N0 Wrap I Wrap. Wrap indicates that the value rolls over if it continues to

increment after reaching its maximum or continues to decrement after

reaching its minimum. A value specified as No Wrap that exceeds the limits

may report a value outside the specified limits. This bit doesn’t apply to
Array data.

Linear I Non—linear. Linear indicates that the measured data and the

reported value have a linear relationship. A graph of the reported data and

the property being measured forms a straight line. in nondinear data, a

graph of the reported data and the property being measured forms a curve.

This bit doesn’t apply to Array data.

Preferred State I No Preferred State. Preferred state indicates that the con—

trol will return to a particular state when the user isn’t interacting with it. A

momentary pushbutton has a preferred state (out) when no one is pressing

it. A toggle switch has no preferred state; it remains in the state selected by
the last user. This bit doesn’t apply to Array data.

No Null Position I Null State. Null state indicates that the control supports
a state where it isn’t sending meaningful data. A control indicates that it’s in

its null state by sending a value outside the range defined by its Logical Minw
imum and Maximum. No Null Position indicates that the control can

always be assumed to be sending meaningful data. A hat switch on a joystick

USB Complete

Human lnterface Devices: Reports

is in a null position when it isn’t being pressed. This bit doesn’t apply to

Array data.

Non—volatile I Volatile. The Volatile bit applies only to Output and Feature

reports. Volatile means that the device can change the value on its own,

without host interaction, as well as when the host sends a report requesting

the device to change the value. For example, a control panel may have a con—
trol that users can set in two ways. They may use a mouse to click a setting

in a window on the host to cause the host to send a report to the device, or

they may press a physical button on the device. Non—volatile means that the

device changes the value only when the host requests it in a report.

When the host is sending a report and doesn’t want to change a volatile

item, the value to assign depends on whether the data is defined as relative

or absolute. If a volatile item is defined as relative, a report that assigns a

value of 0 should result in no change. If a volatile item is defined as absolute,

a report that assigns an out—of—range value should result in no change.

This bit doesn’t apply to Array data.

Bit Field l Buffered Bytes. Bit Field means that each bit or a group of bits

in a byte can represent a separate piece of data and the field doesn’t represent

a single quantity. The application interprets the contents of the field. Buff—

ered Bytes means that the data consists of one or more bytes. The report size

for Buffered Bytes must be eight. This bit doesn’t apply to Array data.

Collection and End Collection Tags

All of the report types can use Collection and End Collection items to group
related items.

There are three defined types of collections: application, physical, and logi—

cal. Vendors can also define their own collection types. Collections can be

nested. Table 14—2 shows the values of the Collection and End Collection

tags and the defined. values for the different collection types.

An application collection contains items that have a common purpose or

together carry out a single function. For example, the boot descriptor for a

USB Complete 329

Chapter 14

Table 14-2: Data values for the Collection and End Collection Main ltem Tags.

Main ltem Typemm Value ifiescription

Collection (A l h) 00h ' ' ” Physical

out Application W

02h """""""’ Logical

03h—7Fh ' Reserved m

80h~FFh """"" Vendor-defined

End Collection (COh) Klone Closes a collection

keyboard groups the keypress and LED data in an application collection. All

reports must be in an application collection

A physical collection contains items that represent data at a single geometric

point. A device that collects a variety of sensor readings from multiple loca

tions might group the data for each location in a collection. The boot

descriptor for a mouse groups the button and position indicators in a physi~
cal collection.

A logical collection terms a data structure consisting of items of different

types that are linked by the collection. An example is the contents of a data

buffer and a count of the number of bytes in the buffer.

Each collection begins with a Collection item and ends with an End Collec—

tion itemt All Main items between the Collection and End Collection items

are part of the collection. Each collection must have a Usage tag (described
below).

If a report contains an unknown vendor~detined collection type, the host

should ignore all Main items in the collection. if a known collection type
has an unknown Usage, the host should ignore all items in the collection.

The Global Item Type

330

Global items identify reports and describe the data in them, including char«
acteristics such as the data’s function, maximum and minimum allowed val»

ues, and the size and number of report items. A Global item tag applies to

every item that follows until the next Global tag. This saves storage space

USB Complete

Human interface Devices: Reports

because there’s no need to repeat values that don’t change from one item to

the next. There are 12 defined Global items, shown in Table 14—3.

Identifying the Report

Report ID is a prefix that may precede the report data in a data packet. A

device can support multiple reports of the same type, with each containing

different data and having its own ID. This way, a transfer doesn’t have to

include every piece of data every time. However, in many cases the simplic—

ity of having a single report is more important than the need to reduce the

bandwidth used by reports to the absolute minimum.

In a descriptor, a Report ID item applies to all items that follow until a new

Report ID. IF there is no Report ID item, the default ID of zero is assumed.

A descriptor should not declare a Report ID of zero. Input, Output, and

Feature reports can share a Report ID.

Ifone or more report types has multiple Report IDs, every report must have

a declared ID. For example, if an interface supports Report IDs 1 and 2 for

Feature reports, any Input or Output reports must also have a Report ID

greater than 0.

In a transfer that uses a Set_Report or GetmReport request, the host specifies

a report ID in the Setup transaction, in the low byte of the Value field. In an

interrupt transfer, if the interface supports more than one report ID, the

report ID should be the first byte sent with a report. If the interface supports

only the default report ID of zero, the report ID should not be sent with the

report in an interrupt transfer.

Under Windows, applications should always precede a report to be sent with

a report ID. If the ID is O, the HID driver doesn’t send it on the bus with

the report data. In a similar way, reports read into an application always

begin with a report ID. The HID driver inserts an ID of zero before the

report data if necessary.

When a HID supports multiple report IDs for Input reports of different

sizes, Windows HID driver always uses buffers large enough to hold the

longest report. Shorter reports that are not a multiple of the maximum

USB Complete 331

Chapter 14

Table 143: There are twelve defined Global items.

Global lltem Type

Value (nn indicates

the number of bytes

Description

that follow)

Usage 010111000111 V ‘7 D611’6s L1211a’s usaWitci 0‘ i

Logical Minimum 000101nn Smallest value that an item—will report.

Logical Maximum 00100111n Largest value that an item will report.

Physical Minimum 001101n11 The logical minimum expressed ‘inMphysical units.

Physical Maximum 010001nn M— The logical maximum expressed in physical unitsi

Dhit exponent 010101nn Base 10 exponent of units. _
Unit 01 10011111 Unit values "m000000000

Report Size 0111011111 W”””””M Size or an item’s fields in bits.

Report 1D 100001nn Prefix that identifies a report. D

Report Count 100101nn The numbewrmof data fields for an item

11311111 101001nn Places a copy of the global item state table on the
stack.

Pop 101101nn Replaces the item state table with the last structure

pushed onto the stack.

Reserved 1 10001nn to For future use. ''''''
111101nn

packet size must terminate with a 0'length data packet to let the host know
that all of the data has been sent.

Windows HID driver uses interrupt transfers to retrieve input reports.

When there are multiple Input Report iDs, the driver has no way to request

a specific report. On receiving the IN token packet, the device returns What»

ever report is in its buffer, so the device firmware must decide which report

to make available. The HID driver stores the received report and its ID in its
buffer.

Describing the Data’s Use

The items that describe how the data Will be used are Usage Page, Logical

and Physical Maximums and Minimums, Unit, and Unit Exponent. All of

these help the receiver of the report to interpret the report’s data. All but the

Usage Page are involved with converting ravv report data to values with units

332 USB Complete

Human Interface Devices: Reports

attached. These items make it possible for a report to contain data in a com—

pact form, with the receiver of the data having the responsibility of convert—

ing the data to meaningful values. However, the sender of the report data

may instead choose to do some or all of the converting.

Usage Page. An item’s Usage is a 32-bit value that describes its function.

The Usage is made up of two 16—bit parts: the Usage Page, which is a Global

item, and the Usage Index, which is a Local item. Multiple items may share

a Usage Page while having different Usage Indexes. After a Usage Page

appears in a report, all Usage Indexes that follow will use that Usage Page

until a new one is declared. Re—using the Usage Page reduces the amount of

data that the descriptor has to store and send.

The HID Usage Tables document lists the defined Usage Pages and their
values and also names the document section or other document that

describes each page and its indexes. There are Usage Pages for many com”

mon device types, including generic desktop controls (mouse, keyboard,

joystick), digitizer, bar—code scanner, camera control, and various game con—

trols. Specialized devices may not have a defined Usage Page. In this case, a

vendor can define the Usage Page. Values from FFOOh to FFFFh are reserved

for vendor—defined Usage Pages.

Logical Minimum and Logical Maximum. The Logical Minimum and

Maximum define the limits for reported values. The limits are expressed in

“logical units,” which means that they use the same units as the values they

describe. For example, if a device reports readings of up to 500 milliamperes

in units of 2 milliamperes, the Logical Maximum is 250.

Negative values may be expressed as two’s complements. Bit 7 is a sign bit

that indicates whether the value is positive (0) or negative (1). The values 0

to 7Fh are the positive decimal values 0 through 127, and FFh to 80h are

the negative decimal values —1 through —128. To find the negative value rep—

USB Complete 333

Chapter 14

334

resented by a two’s complement, complement each bit and add 1 to the

result. HER? are some €Xanlpl€33

lNegative Value Expressed as a Two’s Complement; FFh FDh 80h
Complement each bit: 00h 02h 7Fh

Add l: 0111 03h 80h

Value Expressed as a Negative Number (decimal): — l. ~3 —128

The HID specification says that if both the Logical Minimum and Maxiw

mum are considered positive, there’s no need for a sign bit. For example, a

range from 0 to 255 can have a Logical Minimum of 00h and a Logical

Maximum of FFh. A device will enumerate and transfer data without prob

lems whether the Logical Minimum and Maximum are expressed. as signed

or unsigned values. The receiver of the data has to know whether or not the

data can be negative.

The HIDView utility (described in Chapter 17) assumes the use or signed

values. With a Logical Minimum of 00h and a Logical Maximum of FFh, it

reports the error, “Logical Minimum must be less than the Logical Maxiw

mum.” It doesn’t report this error with a minimum of 80h (—l 28) and maxi-

mum of‘7F (+127). On the other hand, the HID Descriptor Tool reports an

error if you use a minimum of 80b and maximum of 7Fh, while it accepts
00h and FFh.

The Physical Minimum, Physical Maximum, Unit Exponent, and Unit

items define how to convert the reported values into more meaningful units.

Physical Minimum and Physical Maximum. The Physical Minimum and,

Maximum define the limits for the value when expressed in the units

defined, by the Units tag. In the earlier example of values of 0 through 250

in units of 2 milliamperes, the Physical Minimum is O and the Physical

Maximum is 500. The receiving device uses the logical and physical limit

values to obtain the value in the desired units. in the example, reporting the

data in units of 2 milliamperes means that the value can transfer in a single

byte, with the receiver of the data using the Physical Minimum and Maxi»

mum values to translate to milliamperes. The price is a loss in resolution,

USB Complete

Human Interface Devices: Reports

compared to reporting 1 bit per milliampere. If the report doesn’t specify the

values, they default to the same as the Logical Minimum and Maximum.

Unit Exponent. The Unit Exponent specifies what power of 10 to apply to

the value obtained after using the logical and physical limits to translate the

value into the desired units. The exponent can range from —8 to +7. A value

of 0 causes the value to be multiplied by 10”, or 1, which is the same as

applying no exponent. These are the codes:

0_12l34]5{67
0% 01h 02h 03h O4hl05h106h 07h

For example, if the value obtained is 1234 and the Unit Exponent is OEh,
the final value is 12.34.

Exponent

Code
—8 —7 16 -5 —4 —3 -2 -1
08h 09h lOAh OBh OCh ODh OEh OFh

Unit. The Unit tag specifies what units to apply to the report data after it’s

converted using the Physical and Unit Exponent items. The HID specifica—

tion defines codes for the basic units of length, mass, time, temperature, cur~

rent, and luminous intensity. Most other units can be derived from these.

Specifying a Unit value can be more complicated than you might expect.

Table 14—4 shows values you can work from. The value can be as long as

four bytes, with each nibble having a defined function. Nibble 0 (the least

significant nibble) specifies the measurement system, either English or $1

(International System of Units), and whether the measurement is in linear

or angular units. Each of the nibble positions that follow represents a quality

to be measured, with the value of the nibble representing the exponent to

apply to the value. For example, a nibble with a value of 2 means that its

corresponding value is in units squared. A nibble with a value of ODh, which

represents ~5, means that the units are expressed as 1/units3. These expo—

nents are separate from the Unit Exponent value, which is a power of ten

applied to the data, rather than an exponent applied to the units.

Converting Raw Data

To convert raw data to values with units attached, three things must occur.

The firmware’s report descriptor must contain the information needed for

USB Complete 335

Chapter 14

Table 14-4: The units to apply to a reported value are a function of the

measuring system and exponent values specified in the Unit item

Nibble Quality Measuring System (Nibble 0 vaiue)

Number Measured None (0) 31 Linear (1) SI notation English English '"
(2) Linear (3) Rotation (4)

1 Lenth 7 None Centimeters RCa1an ‘ ers

.2 W Mass None Grams ‘ Slugs
3 Time None Seconds m...

4 Tempera- None Fahrenheit [Celsius VAture

5 Current None Amperes W
5 Luminous None Candelas

intensity

7 Reserved None M

the conversion. The sender of the data must send data that matches the

specification in the descriptor. And the receiver of the data must apply the

conversions specified in the descriptor.

Below are examples of descriptors and raw and converted data. Remember

that just because a tag exists in the HID specification doesn’t mean you have

to use it. If the application knows what format and units to use for the val»

ues it’s going to send. or receive, the firmware doesnt have to specify it.

To measure time in seconds, up to a minute) the report descriptor might
include this information:

Logical Minimum: 0

Logical Maximum: 60

Physical Minimum: 0

Physical Maximum: 60

Unit: 1003h. Nibble O = 3 to select the English Linear measuring
system (though in this case, any value from 1 to 4 would work).
Nibble 3 z 1 to select time in seconds.

Unit Exponent: 0

‘With this information, the receiver knows that the value sent equals a num«
ber of seconds.

336 USB Complete

Human Interface Devices: Reports

Now, What if instead you want to measure time in tenths of seconds, again

up to a minute? You would need to increase the Logical and Physical Maxi—

mums and change the Unit Exponent:

Logical Minimum: 0

Logical Maximum: 600

Physical Minimum: 0

Physical Maximum: 600

Unit: 1003h. Nibble O = 3 to select the English Linear measuring

system. Nibble 3 == 1 to select time in seconds.

Unit Exponent: OFh. This represents an exponent of —1, to indicate
that the value is expressed in tenths of seconds rather than seconds.

Sending values as large as 600 will require 3 bytes, which the firmware spec—

ifies in the Report Size tag.

To send a temperature value using one byte to represent temperatures from

—20 to 110 degrees Fahrenheit, the report descriptor might contain the fol—

lowing:

Logical Minimum: v128 (80h expressed as a two’s complement)

Logical Maximum: 127 (7Fh)

Physical Minimum: —20 (ECh expressed as a two’s complement)

Physical Maximum: 110 (6Eh)

Unit: 10003h. Nibble 0 is 3 to select the English Linear measuring

system, though in this case, any value from 1 to 4 is OK. Nibble 4 is
l to select degrees Fahrenheit.

Unit Exponent: 0

These values ensure the highest possible resolution, because the transmitted

values can span the full range from 0 to 255.

In this case the logical and physical limits differ, so converting is required.

To find the resolution, or number of bits per unit, use this equation:

Resolution = _

(LogicalWMaximum A Logica1_Minimum) / W

((Physical_Maximum — Physical_Minimum) *

(10 A Unit_Exponent))

USB Complete 337

Chapter 14

With the example values, this works out to 1.96 bits per degree, or 0.5]

degree per hit.

To convert a value to the specified units, use this equation:

Value = _

ValuewiniLogicalfiUnits *

((Physicaleaximum — Physical_Minimum) *

(10 A Unit_Exponent)) /

(LogicaleaXimum — Logicaleinimum)

if the value in logical units (the raw data) is 63, the converted value in the

specified units is 32 degrees Fahrenheit.

Specifying velocity in centimeters per second requires a Unit value that con—

tains units of both centimeters and seconds, From Table 144, the Unit

value to use is 10.1 lb. Nibble 0 : 1 to select the SI measuring system, nibble

, : 1 to select length in centimeters, and nibble 3 = l to select time in sec,
Ofld&

To illustrate how complicated it can get, the Unit value for volts is FOD121h,

which indicates the 81 Linear measuring system in units of

(cm2)*(gm)/(sec‘3)*(amp"). However, remember that the Unit value only

specifies the units. All the receiver has to do is identify the Units value and

assign the units to received data; there’s no need to do the calculations

implied in the Units value.

Describing the Data’s Size and Format

'Ivvo Global items describe the size and format of the report data.

Report Size specifies the size in bits of an input, Output, or Feature item’s

fields. Each field contains one piece of data.

Report Count specifies how many fields an Input, Output, or Feature item

contains. For example, For two 8~bit fields, Report Size is 8 and Report

Count is 2. For ten 4—bit fields, Report Size is 4 and Report Count is 10. For

one 16bit Field, Report Size is 16 and Report Count is 1.

A single input, Output, or Feature report can have multiple items, each with

its own Report Size and Report Count.

338 USB Complete

Human Interface Devices: Reports

Saving and Restoring Global Items

The final two Global items enable saving and restoring sets of Global items.

These allow flexibility in the report formats while using minimum storage

space in the device.

Push places a copy of the Global—item state table on the CPU’s stack. The
Global—item state table contains the current settings for all previously

defined Global items.

Pop is the complement to Push. It restores the saved states of the previously

pushed Global item states.

The Local Item Type

Local items define qualities of the knobs, switches, buttons, and other con—

trols that a report returns data for. A Local item applies to all controls that

follow within the Main item, until a new value is assigned. Local items don’t

carry over to the next Main item. Each Main item begins fresh, with no
Local items defined.

Local items relate to general usages, body—part designators, and strings. A

Delimiter item enables grouping sets of Local items. Table 14—5 shows the

values and meaning of each of the items.

Usage. The Local Usage item is the Usage Index that works together with

the Global Usage Page to describe the function of an item or collection. As

with the Usage Page, the HID Usage Tables document lists many Usage

Indexes. For example, the Buttons Usage Page uses Local Usage Indexes

from 1 to FFFFh to specify individual buttons, with a value of 0 meaning

no button pressed.

A report may assign one Usage to multiple controls, or it may assign a differ—

ent Usage to each control. If a report item is preceded by a single Usage, that

Usage applies to all of the item’s controls. If a report item is preceded by

more than one Usage, and the number of controls equals the number of

Usages, each Usage applies to one control, with the Usages and controls

USB Complete 339

Chapter 14

Table 1.4—5: There are ten defined Local items.

Local Item Type Value (nn indicates the Heseription
number of bytes that
follow)

Usage 0000 0nn

An iidex that describes the use foran
item or collection.

Usage Minimum 0001 10nn The starting Usage associated with an
array or bitmap.

Usage Maximum 001010nn The ending Usage associated with an

array or bitmap.

Designator Index 0011 '10nn Designates the body part used for a con—
trol.

Designator Minimum 0|0010nn The starting Designator associated with

an array or bitmap.

Designator Maximum 010110nn The ending Designator associated with an

array or bitmap.

String Index 011110nn Associates a string with an item or con—
trol.

String Minimum 100010nn The first string index when assigning a
group of sequential strings to controls in

an array or bitmap.

String Maximum 1001 10nn The last string index when assigning a

group of sequential strings to controls in

i— an array or bitmap.
Delimiter 101010nn The beginning (1) or end (0) of a set of

Local items.

Reserved 101011nn to 1111101111 For future use.

pairing up in sequence. In the following example, the report contains two

bytes. The first byte’s Usage is X, and the second byte’s Usage is Y.

Report Size (8

Report Count (

Usage (X),

Usage (Y),

Input (Data, Variable, Absolute),

),

2),

If a report item is preceded by more than one Usage and the number of corn

trols is greater than the number of Usages, each Usage pairs up with one

control, and the final Usage applies to all of the remaining controls. In the

following example, the report is 16 bytes. Usage X applies to the first byte,

340 USB Complete

Human Interface Devices: Reports

Usage Y applies to the second. byte, and a vendor—defined Usage applies to

the third through 16th bytes.

Usage (X)

Usage (Y)

Usage (vendor defined)

Report Count (16),

Report Size (8),

Input (Data, Variable, Absolute)

Usage Minimum and Maximum. The Usage Minimum and Maximum

can assign a single Usage to multiple controls. The Following example

reports the state (0 or 1) of each of three buttons. The Usage Minimum and

Maximum assign the Button Usage Page to all three items. The item uses

one bit per button.

Logical Minimum (0)

Logical Maximum (1)

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage Minimum (1)

Usage Maximum (3)

Input (Data, Variable, Absolute)

The Usage Minimum and Maximum can also assign a single Usage to a

series of array items.

Designator Index. For items with a Physical descriptor, the Designator

Index specifies the body part the control uses.

Designator Minimum and Maximum. When a report contains multiple

controls with the same Designator, the Designator Minimum and Maxi-

mum can specify which controls the Usage applies to.

String Index. An item or control can include a string index to associate a

string with that item or control. The strings are stored in the same format

described in Chapter 5 for product, manufacturer, and serial—number

strings.

String Minimum and Maximum. When a report contains multiple con—

trols with the same String Index, the String Minimum and Maximum can

speciFy which controls the Usage applies to.

USB Complete 341

Chapter 14

Delimiter. The Delimiter defines the beginning (1) or end (0) of a local

item. A delimited local item may contain alternate usages for a control. This

enables different applications to define a device’s controls in different ways

For example, a button may have a generic use (Buttonl) and a specific use

(Send, Quit, etc)

Physical Descriptors

A physical descriptor describes the part or parts of the body intended to acti~

vate a control. For example, each finger might have its own assigned control“

A physical descriptor is a type of class descriptor. The host can retrieve a

physical descriptor by sending a GetmDescriptor request With 23h in the

high byte of the Value field and 00h in the low byte of the Value field.

Physical descriptors are optional. For most devices, they either don’t apply at

all or the information they could provide has no practical use. The HID

specification has more information on how to use physical descriptors, for
those devices that need them.

Padding

342

To pad a descriptor so it contains a multiple of eight bits, the descriptor may

include a Main item with no assigned Usage. The following exampie

describes an Input report that transfers three bits with data and five hits of

padding:

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage Minimut (1)

Usage Maximum (3)

Input (Data, Variable, Absolute)

Report Size (5),

Input (Constant)

USB Complete

Human Interface Devices: Host Application Primer

15

Human Interface

Devices:

Host Application Primer

Chapter 13 and Chapter 14 described human—interface—device communica—

tions from the device’s perspective and the report format that Hle use to

exchange data with the host. This chapter introduces the Windows func—

tions that applications can use to communicate with HIDs. Applications

may use any programming language that can call API functions. Chapter 16

has example code in Visual Basic and Visual C++. Much of the information

in this chapter applies to communicating with any USB device, not just
HIDs.

USB Complete 343

Chapter 15

Host Communications Overview

Windows 98 and Windows 2000 include everything applications need to
communicate with HID-class devices. There’s no need to install drivers

because Windows has them built in.

How the Host Finds 3 Device

344

Communicating with a HID isn’t as simple as opening a port, setting a few

parameters, and then reading and writing data, as you can do with R8332

and parallel ports. Before an application can exchange data with a HID, it

has to identify the device and get information about its reports. To do this,

the application has to jump through a few hoops by calling a series of AH

functions. The application first finds out what Hle are attached to the sys»
tern: It then examines information about each until it finds one with the

desired attributes. For a custom device, the application can search for spea

ciiic Vendor and Product IDs, Or the application can search for a device of a

particular type, such as a mouse or joystick

After finding a device, the application can exchange information with it by

sending and receiving reports.

Table l5~l lists APl functions used in establishing communications and

exchanging data with a HID, The functions are listed in a typical order that

an application might call them.

USB Complete

Human Interface Devices: Host Application Primer

Table 15—1: Communicating with HIDs uses a variety of API functions. These are

the major functions used in identifying a HID and sending and receiving reports.

API Function DLL Purpose

HidD_GetHidGuid hid.dll Obtain the OMB for the HID class

rSetupDiGetClassDevs setupapidll Return a device information set contain-
ing all of the devices in a specified class.

SetupDiEnumDevicelnterfaces setupapidll Return information about a device in the
device information set.

SetupDiGetDevicelnterfaceDetail setupapidll Return a device pathname.

SetupDiDestroyDevicelnfoList setupapidll Free resources used by SetupDiGetClass—
Devs.

CreateFile kernel32.dll Open communications with a device.

HidD_GetAttributes hid.dll Return a Vendor ID, Product ID, and
Version Number.

HidD_GetPreparsedData hid.dll Return a handle to a buffer with informa—
tion about the device’s capabilities

iHidPfiGetCaps hid.dll Return a structure describing the device’s
capabilities.

HidD_FreePreparsedData hid.dll Free resources used by
HidD_GetPreparsedData.

WriteFile kernel32.dll Send an Output report to the device.

ReadFile kernel32.dll Read an Input report from the device.

HidDflSetFeature hid.dll Send a Feature report to the device.

HidD_GetFeature hid.dll Read a Feature report from the device.

CloseHandle kcrnel32.dll Free resources used by CreateFile. _J

Documentation

The functions are in three DLLs whose documentation is spread among sev—

eral areas in the Windows DDK documentation and the MSDN library.

These are DLLs that contain functions used in HID communications:

Filename Type of Functions Included

HID communications.

setupapidll Finding and identifying devices

kernel32.dll Exchanging data, other general functions

USB Complete 345

Chapter 15

The functions that relate only to HID communications are in bide/[1 and

are documented in the DDK, under Kernet~Mode Drivers > Driversfor Input

Devices. Functions related to detecting devices are in setnpnpidll and are

documented in the DDK under Setup, Plug Ci‘Plnjt and Power Management
> Device Installation Functions and also in the Platform SDK under Device

Management Functions. These functions apply to all Plug—and—Play devices,

including USB devices. Functions relating to opening communications,

reading lnput reports, and writing Output reports are in term/32. at]! and are

documented in the MSDN library, in the Platform SDK under File [/0.

Many other devices also use these functions.

Windows 98 SE added seven HlD functions to those supported by Win—

dows 98 Gold. Windows 2000 and Windows Me support the new functions
as well. The Windows 2000 DDK documentation includes the added func—

tions; the Windows 98 DDK doesrft.

The HID Functions

346

Hie/.511] supports many more functions than the essentials listed in Table

1.54. The following three tables together comprise a complete list of the

HID functions grouped by purpose. Functions whose names begin with

Hid? are available to both applications and device drivers. Functions

whose names begin with HidD are available only to applications.

Table l5—2 lists functions that applications use to learn about a HID.

Table .153 lists functions that applications use in reading and writing

reports. Table 15—4 lists functions that applications use in configuring the

input buffer to receive reports. The documentation also names three func~

tions for future use: HidD_GetConfiguration., HidD_SetConfiguration,

and HideTranslateUsagesTolSO4ZScanCodes.

 You can use these functions with just about any HID~class device,

including custom designs. Windows 2000 doesn’t allow applications to

use the functions to access the system keyboard or mouse, but applica»

tions don’t normally need to do so because the operating system provides

other ways to communicate with the keyboard and mouse.

USB Complete

Human Interface Devices: Host Application Primer

Table 15-2: Applications can use these functions in 17:21.6!!! to learn about a
device.

Function

HidD_GetAttributes

 lPurpose

Retrieves the HID’s Vendor ID, Product ID, and Version
N umber.

 HidD_FreePreparsedData

HidDfiGetHidGuid
 Frees resources used by HidDwGetPreparsedData.

Obtains the GUID for the HID class.

HidD_GetIndexedString* Retrieves a string identified by an index.

HidD_GetManufacturerString* Retrieves the string that identifies the device manufacturer.

HidD_GetPhysicalDescriptofk

Retrieves the string that identifies the physical device.

HidDflGetPreparsedData Retrieves a handle to a buffer with information about the

device’s capabilities.

HidD_GetProductString* Retrieves the string that identifies the product.

HidD_GetSerialNumberString* Retrieves the string containing the device’s serial number.

HidP_GetButtonCaps Retrieves the capabilities of all buttons in a report.

HidP_GetCaps

Retrieves a pointer to a structure describing the device’s

apabilities.
e

lHidP_GetLinkCollectionNodes Retrieves an array of structures that describes the relation—
ship of link collections Within a top—level collection.

HidP_GetSpecificB uttonCaps Retrieves the capabilities of buttons in a report. The request

can specify a Usage Page, Usage, or Link Collection.

HidP_GetSpecificValueCaps Retrieves the capabilities of values in a report. The request

can specify a Usage Page, Usage. or Link Collection.

Retrieves the capabilities of all values in a report. HidP_GetValueCaps

lHidPWMaxUsageListLength Retrieves the maximum number of buttons that a report can

return. Can specify a Usage Page.

HidP_UsageListDifference Compares two button lists and find the buttons that are set
in one list and not in the other.

*not supported under Windows 98 Gold.

DirectX

An alternative to using API functions for accessing HIDS is to use

Microsoft’s DirectX components. DirectX enables control of system hard

ware, including HIDS. DirectX originated as a tool for game programmers

with a goal of providing fast access to hardware. Instead of having to poll an

USB Complete 347

Chapter 15

Table 15-3: Applications can use these functions in Maid/Z to read and write

reports.

Function

HidD_GetFeature

HidD_SetFeature

 Purpose

Retrieves a Feature report.

Sends a Feature report.

HidP_GetButt0ns

HidP_GetB uttonsEx l

Returns a pointer to a buffer containing the Usage of each
button that is pressed. Can specify 21 Usage Page.

Returns a pointer to a buffer containing the Usage and

Usage Page of each button that is pressed.

HideGetScaledUsageValue

HidP_GetU sageValue

HidP__GetUsageVal ueArray

Returns the signed result of a value that has been adjusted
for its scaling factor.

Returns a pointer to a value.

HidP_SetButtons

HidP_Sc:tSCaledUsageValue
logical representation used by the device, and inserts it in a
report.

llidP_SetUsageValue Sets a value.

HidP,SMetUsageValueArray

input buffer with ReadFile, you can configure the DirectX software compow
nents to notify an application when data is available to read.

The Directlnput components of DirectX enable communications with

Hle under C++, Delphi, or Visual Basic. The DirectX SDK has examples
in Visual C++ and Visual Basic. The sampies are oriented towards commu—

nicating with standard device types. The documentation suggests that you

can use DirectX to communicate with any HID, but provides Few details on
how to do 30.

Using API Functions

The examples in this chapter use Microsoft’s Visual Basic and Visual C++.

As explained in Chapter 10, an API function is a part of Windows’ Applicae
tion Programmer’s Interface, which contains thousands of functions that

applications can use to communicate with the operating system. The execut~

348 USB Complete

Human Interface Devices: Host Application Primer

Table 15—4: Applications can use these functions in Maid/Z to control the driver’s

input buffer for reading reports.

Purpose

Function

HidD_FlushQueue*

HidD_GetNurnInpu[Buffersik

Empty the input buffer.

Retrieves the size of the ring buffer the driver uses to store

input reports. The default is 8.

HidDwSetNumInputBuffers* Sets the size of the ring buffer the driver uses to store input
reports.

*Not supported under Windows 98 Gold.

able code for the functions resides in dynamic linked library (DLL) files pro—

Vided with Windows.

Before getting into the details of the functions themselves, I’ll present some

background on how to call API functions from Visual Basic and Visual C++

applications. If you’re already familiar with using API calls, or if you want to

get right to the HID—specific functions, you can skip over the these intro—

ductory sections. I’ll begin with Visual C++.

Using Visual C++

To use an API function, a Visual C++ application needs three things: the

ability to locate the file containing the function’s compiled code, a function

declaration, and a call that causes the function to execute.

Applications that access 1-1le will call functions contained in Maid/Z and

setupdpi.d[[. Each of the DLLs has two companion files, a library file (laid. lib

and setupapijz'b) and one or more header files (bidpifi, Mahdi/J, bidusagefi,

and setupapz'h). The header file contains the prototypes, structures, and

symbols for the functions that applications may call, and the library file

eliminates the need for the application to get a pointer to the function in the
DLL.

A DLL contains compiled code for the functions that it exports, or makes

available to applications. For each exported function, the DLES library file

contains a stub function whose name and arguments match the name and

arguments of one of the DLL’s functions. The stub function calls its corre—

sponding function in the DLL. During the compile process, the linker

USB Complete 349

Chapter 15

350

incorporates the code in the library file into the application’s executable file.

When the application calls a function in the library file, the function of the
same name in the DLL executes.

The bz'ddll and serupapz'dll files are included with Windows. They’re typi

cally stored in the wind0w5\5ystem 0r windaws\rystem32\drivers folder. (In

Windows 2000, substitute wifim for windows.) Both are standard locations

that Windows searches when DLL functions are called. The library and
header files are included in the DDK.

The header files for other common Windows functions are included auto»

matically when you create a project. For example, aficwz’n/J adds headers for
common Windows and MFC functions.

To include a API function in an application, you need to do the following:

1. Add the library files to the project. In Visual C++, click Project > Settings

> Link > Category: Input. In the Defect/library modules box enter bidz’d)

and serupdpzdib. In the same Window, if necessary, you can enter a path for

the library files under Additional library/path.

2. Include the header files in one of the application’s files. Here’s an example:

extern "C" {
#inelude ”hidsdi.h"

#include <setupapi.h>

The #inelude directive causes the contents of the named file to be

included in the file, the same as if they were copied and pasted into it.

The extern "C" modifier enables a C++ module to include header files

that use C naming conventions. The difference is that C++ uses name deco»—

ration, or name mangling, on external symbols. The punctuation around

the file name determines where the compiler will search for the file, and in

what order. This is relevant if you have different versions of a file in multiple
locations!

Enclosing the file name in brackets (<setupapi .h>) causes the compiler to

search for the file first in the path specified by the compilers /[option, then

in the paths specified by the Include environment variable. Enclosing the

USE Complete

Human Interface Devices: Host Application Primer

file name in quotes ("hidsdi .h") causes the compiler to search for the file

first in the same directory as the file containing the #include directive,

then in the directories of any files that contain #include directives for that

file, then in the path specified by the compiler’s /] option, and finally in the

paths specified by the Include environment variable.

3. Call the function. Here is code that declares the variable HidGuid and

passes a pointer to it in the function HidD*GetHidGuid in M61511]:

GUID HidGuid;

HideGetHidGuid (&HidGuid) ;

Using Visual Basic

In Visual Basic, the process of calling API functions is different than in

Visual C++. In place of an include file, the application needs a module con—

taining Visual—Basic declarations for the DLES functions and structures.

Some of these, but not all, are provided with Visual Basic. You don’t need

library files, as Visual Basic requires only the DLL’s name and the DLL itself

in a standard or specified location.

You can write a lot of Visualeasic applications without ever coding an API

call. Visual Basic provides its own syntax and controls for performing com—

mon Functions. For example, to print a file, you can use Visual Basic’s

Printer Object instead of AP] functions. The Printer Object provides an eas—

ier and more fail~safe way to access printers. When you run the application,

the code that executes may call API functions, but Visual—Basic program—

mers are insulated from having to make the calls directly.

But sometimes you may want to do something that Visual Basic doesn’t sup—

port explicitly. In these cases, which can include communicating with

HIDS, Visual—Basic applications can call API functions.

In a Visual—Basic application, the code to call an API function follows the

same syntax rules as the code to call any function. But instead of placing the

function’s executable code in a routine Within the application, the API func—

tion requires only a declaration that enables Windows to find the DLL con—

taining the Function’s code.

USB Complete 351

Chapter 15

Calling APT functions in Visual Basic requires some extra knowledge. The

documentation included with Visual Basic doesn’t offer much guidance,

Microsoft’s documentation for the API functions uses C syntax to show how
to declare and call the functions. The D’DK includes the declarations in

header files that Visual C++ programmers can include in applications. To

use an API function in Visual Basic, you need to translate the declaration
and function call from C to Visual Basic.

The process is more complicated than a simple wordeforwword translation,

mainly because Visual Basic doesn’t support all of CS structures, and it

stores string variables in a different format. Before you can translate, you

need to understand exactly What the function is passing and returning. Even

if you have an example to work from, understanding What the function is

doing helps in using it correctly.

For greater detail on APl calls in Visual Basic, I recommend Dan Apple—

man’s books, especially Dan Applemdrz’s W715? AP] Puzzle Book and Tumrz'a!

fir Visual Basic Programmers. This is the book I used as a reference in figur—

ing out how to call the API functions in this chapter.

To use an API function in a Visual Basic program, you need three things:

the DU; containing the function, a declaration that enables the application
to find and use the function, and a call that causes the function to execute.

The Declaration

352

This is a Visual—Basic declaration for the APT function WriteFile, which you
can use to write data to a HID (as well as to files and other devices):

Public Declare Function WriteFile _

Lib "kerne132" _

(ByVal hFile As Long, fl

ByRef lpBuffer As Byte, m

ByVal nNumberOfotesToWrite As Long, *

ByRef leumberOfotesWritten AS Long,

ByVal lvaerlapped As Long)

As Long _

The declaration includes several pieces of information:

‘° The function’s name (WriteFile).

USB Complete

Human interface Devices: Host Application Primer

' The values the function will pass to the operating system (hFile, lpBuffer,

nNumberOfotesToWrite, leumberOfotesWritten, and lvaer—

lapped). The names use the convention of adding a prefix to indicate the

type of data the variable contains: h=handle, lpzlong pointer, and so on.

° The data types of the values passed (Long, Byte).

' Whether the values will be passed by value (ByVal) or by reference

(ByRef).

° The name of the file that contains the executable code for the function

(kemeBZ all!) .

° The data type of the value returned For the function (Long). A few API

calls have no return value and may he declared as subroutines rather than
functions.

The declaration must be in the Declarations section of a module. You might

want to place the declarations for API functions and the user—defined types

they pass in a separate module (a .545 file) in your project. This will make

them easy to add to multiple projects.

Visual Basic’s documentation includes the file win324pi¢xz§ which contains

declarations for many API calls. You can add this file as a module in your

project, or you can cut and paste the declarations you need into another

module in the project. However, the file doesn’t include every API call, espe~

' cially newer ones like those that relate to HID communications.

To declare a funCtion not included in win32dpz’.txt, the starting point is

Microsoft’s documentation, which includes a declaration in C, comments,

and sometimes an example. You can also find C declarations in the header
files included in the DDKS. Sometimes these header files have useful com—

ments as well. The header files are text files that you can View in any word

processor.

USB Complete 353

Chapter 15

354

These are header files that have HID—related declarations:

File Name Contents

hid.h HID user—mode declarations and functions

hidpih Public interface to the HID parsing library

hidsdih Public definitions for the code that implements the HID
DLL

hidusageh HID usages

setupapih Setup services

Sometimes the function’s documentation names the header file. If not, a

quick way to find it is to use the Find > Files or Folders utility available from

'Windows’ Start menu. In the Named text box, enter W, and in the Contain—

ing 723% text box, enter the name of the function whose declaration you

want to find. Be sure that Include Subfalders is checked, and let Windows go

to work finding the file for you.

In some cases, the translation from C to Visual~Basic syntax is fairly straightw

forward. In others, the C parameters don’t correspond in a simple way to the
alternatives in Visual Basic.

These are some general guidelines for creating Visual—Basic declarations:

Variable Types
fl

C and Visual Basic each use different terms to specify variable types, and (1

supports more variable types than Visual Basic. However, to specify a vari»

able type for an API call, all you really have to do is determine the variables

USB Complete

Human Interface Devices: Host Application Primer

length, then use a Visual—Basic type that matches. These are some of the C

types and their Visual—Basic equivalents:

C Type rVisual—Basic Type
CHAR

USHORT

USAGE

ULONG Long
HWND

BOOLEAN

DWORD

LP_ (long pointer prefix)

Pg (long pointer prefix)

PCTSTR String

To avoid problems that can result from passing the wrong variable type, an

,API declaration should declare variables as specific types if possible. In some

cases, an application may use a variable in multiple ways, each requiring a

different type. There are two ways to handle this. You can create multiple

declarations, using the Alias keyword to give each a different name, or you

can declare the variable As Any and specify the variable type in the func—
tion call.

ByRef and ByVal

For each variable, you have a choice of passing it by reference (ByRef) or by

value (ByVal). These parameters have the same meanings as when you use

them in the functions and subroutines you write in Visual~Basic applica’

tions. Often either will work. But the concept is important to understand

when calling API functions, because many of the functions have variables

that must be passed a specific way.

ByRef and ByVal determine what information the call passes to enable the

function to access the variable. Every variable has an address in memory

where its value is stored. When an application passes a variable to a func—

tion, it can pass the variables address or the value itself. The information is

passed by placing it on the stack, which is a temporary storage location used

(among other things) to pass values to functions.

USB Complete 355

Chapter 15

356

Passing a variable ByRef means that the function call places the address of

the variable on the stack. if the function changes the value by writing a new

value to the address, the new value will be available to the calling application

because the new value will be stored at the address where the application

expects to find it. The address passed is called a pointer, because it points to,

or indicates, the address where the value is stored.

Passing a variable ByVal means that the function call places the value of the

variable on the stack. The value at the variables original address in memory

is unchanged. If the function changes the value, the calling application won’t

know about it because the function has no way to pass the new value back to

the application.

Passing ByRef is the default, but you can include the ByRef parameter in

declarations if you Wish. This way, you can quickly see if you’ve forgotten to

assign the parameter to a value. If the declaration doesn’t include ByVal or

ByRef, you can specify either when you call the function.

For all variable types except strings, there are two situations where you must

pass a variable ByRef:

0 The called function changes the value and the calling application needs

to use the new value. Passing ByRef enables the calling application to
access the new value.

0 The variable is a user~def1ned type. You can’t pass user—defined types

ByVal in Visual Basic.

String variables are a special case. Visual Basic uses a format called BSTR for

storing strings in memory. The BSTR format differs from the format

expected by API calls. In memory, a BSTR string consists of four bytes con~

taining the strings length in bytes followed by the strings characters in Uni—

code (2 bytes per character). in contrast, most Windows 98 APl functions

expect a string to consist of a series of ANSI character codes (1 byte per

character), followed by a null (0) termination. Windows 2000 supports two

versions of most functions, one that uses Windows 983 ANSI format and

one that uses Unicode characters followed by a null termination.

USS Complete

Human Interface Devices: Host Application Primer

Fortunately, there is a solution that doesn’t require the application code to

translate between formats. If the string is declared ByVal, Visual Basic cre—

ates a copy of the string in ANSI format and passes a pointer to the string.

In other words, declaring a Visual~Basic string ByVal actually causes the

string to be passed ByRef in the expected format. If the function will change

the contents of the string, the application should initialize the string to be at

least as long as the longest expected returned string.

For various reasons, some structures can’t be passed either ByRef or ByVal.

In these cases, there is an alternate way. It requires creating a byte array equal

to the structures size, then using Visual Basic’s undocumented VarPtr opera—

tor to pass the byte array’s address ByVal. When the function returns, the

application can copy the data from the byte array into a structure, which is a

uservdefined variable type.

Passing Nulis

When an optional parameter is a pointer, a function may accept a null value

(zero) to indicate that the function call isn’t using the pointer.

For example, CreateFile includes a parameter that points to a secur

dry—attributes structure. The parameter is declared ByRef:

ByRef lpSecurityAttributes As SECURWTY_ATTRfiBUTES

If the call isn’t using security attributes, the application should pass zero. But

if you pass a value of zero ByRef, the function actually passes the address of a

memory location that contains zero. Windows 98 handles the call without

error, but Windows 2000 returns Invalid access to memory location.

In Visual C++, the solution is to pass a NULL constant. In Visual Basic,

declare the parameter ByVal as a Long:

ByVal lpSeeurityAttributes As Long

Then pass a value of 0 in the function call.

If a parameter is declared As Any and you want to pass a Long, use a trailing

8: (for example, 0 &) to ensure that the value is passed as a Long.

USB Complete 357

Chapter 15

358

Functions and Subroutines

Most API routines are functions, which have a return value that the declara—

tion must also specify. A Few are subroutines, with .no return value. You can

declare these as subroutines, or as functions with the returned value ignored.

Providing the DLL’s Name

Each declaration must also name the file that contains the function’s execut—

able code. The file is a DLL. When the application runs, Windows loads the

named DLLs into memory (unless they’re already loaded).

In most cases, the declaration only has to include the file name and not the

location. The DLLs used for HID communications are included with Win“

dows. When the first HID enumerates on the system, the DLLs are stored

in standard locations (such as \wz’ndownsysz‘em) that the operating system

searches automatically. The operating system also searches the application’s

working directory For a. DLL. in the Visualbasic environment, the working

directory is Visual Basic’s directory, not your applications directory. if you

use a DLL that isn’t stored in a standard Windows directory or the applica»

tion’s working directory, the declaration must specify the location.

For some system files, such as key/716132, the .a’[/ extension is optional in the
declaration.

Strings

As mentioned earlier, Windows 98 and Windows 2000 differ in how they

store strings. Windows 98 stores each character as an 8wbit ANSI code, while
Windows 2000 stores each character as a 16bit Unicode. To handle the ditL

ference, there are two versions of API calls that pass string variables. The

8—bit version ends inA (ANSI), and the 16~bit version ends in W(wide), For

example, there is a SetupDiGetClassDevsA function and a SetupDiGet»
ClassDevsW Function.

Both Windows 98 and Windows 2000 support the ANSI versions. Win-

dows 98 supports very few Unicode functions. Windows 2000 uses Unicode

internally, but can convert to and from ANSI as needed.

U813 Complete

Human Interface Devices: Host Application Primer

Structures

Some of the API functions used in HID applications pass and return struc—

tures, which contain multiple items that may be of different types. The doc
umentation for the API funcrions includes documentation for the structures

used by the calls. The header files contain declarations for the structures in

C syntax.

Here again, Visual Basic uses different syntax and translating is required. In
Visual Basic, you can declare structures as user—defined types. Some of the

structures translate in a straightforward way. For example, the Visual—Basic

declaration for the HIDD_ATTRIBUTES structure consists of Long and

Integer variables that translate directly from the USHORT and ULONG

types in the C declaration:

Public Type HIDD_ATTRIBUTES

Size As Long

VendorZD As Integer

ProductID As Integer

VersionNumber As Integer

End Type

You can then declare a variable of the user-defined type:

Dim DeviceAttributes As HiJD_ATTKIBUTES

Before passing the structure in an API call, the Size property must be set to

the size of the structure in bytes. The LenB operator will do this:

DeviceAttributes.Size : LenB<DeViceAttributes)

The HidD__GetAttributes APl function can then pass the structure ByRef:

Public Declare Function HidDwGetAttributes

Lib "hid.dll” _

(ByVal HidDeviceObject As Long,

ByRe: Attributes As H:DD_ATTRZBUTES)

As Long

When an application calls the function, the function can change the values

in the structure, and the application will see the new values.

USB Complete 359

Chapter 15

Calling a Function

After the code has declared a function and any user~defined types it passes,
the application may call the function.

Here is a call to the HidD_GetAttributes function declared above:

Dim Result as Long

Result = HidD_GetAttributes

(HidDevice, _
DeviceAttributes)

HidDevice is a Long value returned by a previous API call. Result is

non—zero on success. DeviceAttributes is a structure containing the Vendor

ID, Product ID, and product version number retrieved from the device dur«

ing enumeration.

Two lUseful Routines

360

In addition to the basic API functions for USB communications, there are a

couple of other API functions that I’ve found useful in I—IID and other

applications. One copies data in memory, and the other returns text describ~

ing the last error detected by the operating system.

Moving Data in Memory

The API function RthoveMemory transfers a series of bytes from one locaw

tion in memory to another? This function is useful for copying raw data
between byte arrays and structures. This is the declaration:

Public Declare Function RthoveMemory _
Lib "kerne132"

(dest As Any, W

src As Any, _

ByVal Count As Long)

AS Long

Rather than declaring the data address’s (src) and destination (dest) as spe—

cific types, the values are declared As Any to allow flexibility in using the
function. Count is the number of bytes to copy.

USB Complete

Human Interface Devices: Host Application Primer

Here RthoveMemory copies four bytes from a structure into a byte array

whose address will be passed in a call to the SetupDiGetDeViceInterf‘aCCDe—
tail function.

Call RthoveMemory -

(DetailDataBuffer(O), _

MyDevicelnterfaceDetailData,

4)

Viewing Errors

The second useful function is FormatMessage, which returns text describing
the last error that Windows detected.

This is the function’s declaration:

Public Declare Function FormatMessage _

Lib "kerne132" #

Alias "FormatMessageA" _

(ByVal dwFlags As Long,

ByRef lpSource As Any, #

ByVal deessageId As Long,

ByVal deanguageId As Long,

ByVal lpBuffer As String,

ByVal nSize As Long, _

ByVal Arguments As Long)

As Long

The function also uses the following system constant:

Public Const FORMAT_MESSAGEwFROM_SYSTEM = &HlOOO

I use FormatMessage in a Visual—Basic function that returns the string con-

taining the error message. During debugging, I call the function after mak—

ing an API call and display the error, either in a list box or using a

debugprint statement in the immediate window. This code is adapted from

an example in Dan Appleman's W762 AP] Puzzle 800%:

Private Function GetErrorString _

(3yVal LastError As Long)

As String

'Returns the error message for the last error.

Dim Bytes As Long

USB Complete 361

Chapter 15

Jim ErrorString As String

ErrorString = String$(129, O)

Bytes : FormatMessage

(FORMAT_MESSAGE”FROM_SYSTEM, _

oa, _

LastError, _

O’ h.

ErrorStrings,

128, __
O)

‘Subtract two characters from the message to

‘strip the CR and LF.

If Bytes > 2 Then

GetErrorString : Left$<ErrorString, Bytes — 2)
End If

 End Function

Device Attachment and Removal

Other capabilities an application might want are detecting when a device is

attached or removed from the bus and controlling whether or not an

attached device is enabled. Windows provides ways to do this;

USBVieW

One way to search for a device is to search a list of every attached device.

The Windows DDK includes C source code for the USBView application

(Figure 154), which displays in tree form all hosts, hubs, and devices

attached to the hubs. You can also View each device’s descriptors. The code
uses DeviceloControl functions to retrieve the information. For a

Visual~l3asic application that does the same thing, I recommend the Displ—

ayUSB example in John Hydcs hook, USB Design by Ekdmple, which, by the

way, is an excellent companion to this book.

362 USB Complete

Human Interface Devices: Host Application Primer

237IAB§EB PTl to USB bniveisal Host Controller

. Rootlelul:

 eucecannemed: Generalpurpose
I [an11]Nan/iannnmmcd

[PailE]DevrceConnev:leci. USE S‘Dmposile DE'WCE
, [P0113]NoDeviceCnnnectetl
annd] Nnfin'minnfinnnnnerl

IPDEZJ DeviceCDnnecied. RDLFEUUU
., [Peril] NcDeurceCc waded

[Part4]Nc«DevreeCe‘1nected
_ Mi

Figure 15-1: The USBView utility in the Windows DDK displays all hosts, hubs,
and device attached to hubs.

Searching for a Device

To find out if a specific device is attached, an application can search using

the Plug and Play/Device Management functions listed in Table 15—1 and

described in greater detail in the next chapter. Searching can also reveal if a

previously attached device has been removed. An application will also learn

that a device is removed when it attempts to communicate and receives the
error invalid band/e.

Device Notification

Another way to learn of newly attached or removed devices uses Windows’

RegisterDeviceNotification function. In calling the function, an application

can pass a pointer to a structure containing the (IUID of a device interface
to monitor and a handle to a window to receive the event notifications.

USB Complete 363

Chapter 15

When a device with a matching interface is attached or removed, the win—

dow receives a message such as DBTMDEVICEJRRRIVAL or

DBT_DEVICEvREMOVPLCOMPLETF with a pointer to a structure
that identifies the device. Attachment or removal of a device also results in a

DB'ILDEVNODES_CHANGED message that indicates that an event of

some type has occurred. Another way to detect a specific device’s arrival or

removal is to investigate further on receiving a

DBT_DEVNODES_CHANGED message. To find out whether a device

has been removed, attempt to open a handle to it. To search for newly

attached devices, use the Plug—and—Play functions.

A call to UnRegisterDeviceNotification causes the notifications to cease. A

Windows 2000 application should call this function before closing. Because

of buggy behavior, Windows 98 applications shouldn’t use UnRegistetDevL
ceNotification.

Enabling and Disabling Devices

364

The Windows 2000 DDK documents Setup functions that can enable or
disable a device in software.

The CMwRequesLDevicemEject function prepares a device for safe removal

and physically ejects media that are ejectable. The SetupDiChangeState
function can disable a device or load drivers for and start a device.

USB Complete

Human Interface Devices: Host Application Example

16

Human Interface

Devices:

Host Application

Example

With the previous chapters’ information about reports and how to call API

functions, we’re now ready to communicate with a HID. In this chapter, I

present code that applications can use to communicate with HID-class

devices. The examples are in, both Visual—Basic and Visual C++. Headings

identify text that is specific to a language. Much of the information applies

to communications with any USB device.

USB Complete 365

Chapter 16

Finding a Device

The first task is to find the device you want to communicate with. This

involves examining properties of the Hle available on a system and look—

ing for a match, either in Vendor and Product IDs or in device capabilities.

A series ofAPl calls will accomplish this. The process uses many of the same

Setup functions you would use to locate other USB devices.

Obtain the GUID for the HID Class

Before an application can communicate with a HID, it must obtain the glo~

bally unique identifier (GUID) for the HID class. Chapter 10 introduced

the GUID, which is a 128—bit value that uniquely identifies an object. in

this case, the object is the HID class. The GUTD value is included in the file

bide/45517, so in theory you could hard—code it into the application. But you

can also obtain the GUID by using an API function that reads the value

from the system. Doing it this way, you’ll be sure to have the correct value in

the expected format.

The API call to retrieve the GUID for the HID class is HidD_GetitiidGuid.

The application doesn’t have to do anything with the GUID itself. It just

passes the GUlD’s address to other APl functions.

Visual C++

This is the function’s declaration:

VOID

HidDflGetHidGuid(
OUT LPGUID HidGuid

) ;

This is the code to call the function:

HidID_GetHidGuid ((EcliidGuid) ;

Visual Basic

This is the functions declaration:

Public Declare Sub HidDmGetHidGuid _
Lib "hid.dll”

366 USB Complete

Human Interface Devices: Host Application Example

(ByRef HidGuid As GUZD)

This routine has no return value, so it can be declared as a subroutine, as

above. Or you can declare it as a function, with a return value of type Long,

and ignore the returned value:

Public Declare Function HidD_GetHidGuid _

Lib "hid.dll" _

(ByRef HidGuid As GUID)

as Long

The GUID is returned in the variable HidGuid, which has the following

user—defined type:

Public Type GUID

Da:al As Long

Data2 As Integer

Data3 As Integer

Da:a4(7) As Byte

End Type

HidGuid is declared byRef because Visual Basic requires user—defined types

to be passed byRef.

The call to get the GUID is:

Call HidD_GetHidGuid(HidGuid)

01'

Dim Result as Long

Result = HidDaGetHidGuid(HidGuidl

Get an Array of Structures with Information about the Hle

The GUID enables the application to get information about a system’s

Hle. The functions to do this are Windows Device Management Func—

tions. There are two sets of essentially identical documentation for these in

the Windows DDK documentation and in the Platform SDK in the

MSDN documentation.

The SetupDiGetClassDevs function returns the address of an array of struc—

tures containing information about all attached and enumerated Hle.

USB Complete 367

Chapter 16

Visual C++

This is the function’s declaration:

 HDEVINFO

SetupDiGetClassDevs(

IN LPGUID ClassGuid, OPTIONAL

IN ?CTSTR Enumerator, OPTIONAL

IN {WND hwndParent, OPTIONAL

IN DWORD Flags

);

This is the code to call the function:

hDevInf028etupDiGetClassDevs

(&HidGuid,

NULL,

NULL,

DIGCF_PRESEN‘I‘|DIGCFVINT1RFACWUEVICE> ;

Visual Basic

This is the function’s declaration:

Public Declare Function SetupDiGetClassDevs _

Lib "setupapi.d11" _

Alias "SetupDiGetClassDevsA"

(ByRef ClassGuid AS GUID, _

ByVal Enumerator AS String,

ByVal hwndParent As Long,

ByVal Flags As Long)

As Long

This is the code to call the function:

Public Const DIGCF_PRESENT : &H2

Public Const DIGCF_DEVICEINTERFAC: &H10

L H

 hDevInfo = SetupDiGetClassDevs

(HidGuid, w

VbNullString,

0,

(DIECFWPRESENT Or DIGCF_DEV:CEINTERFACE))

368 USB Complete

Human Interface Devices: Host Application Example

Details

ClassGuid is HidGuid, the value returned in the last call. Enumerator and

hwndParent are unused. The flags are two system constants defined in the

file setupapifj.

The flags tell the function to look only for device interfaces that are cur—

rently present (attached and enumerated) and that are members of the HID

class, as specified in the ClassGuid parameter.

The value returned, hDevlnfo, is the address of an array of structures con”

taining information about all attached and enumerated Hle. Again, there’s
no need to access the individual elements in the collection. You need the

value only so you can pass it on in the next API call.

When the application is finished using the array pointed to by hDeVInfo, it

should free the resources used by calling the APT function SetupDiDestroy«

DevicelnfoList, as described later in this chapter.

Identify Each HID Interface

The next call is to SetupDiEnumDeVicelnterfaces, which retrieves a pointer

to a structure that identifies an interface in the previously retrieved Device—

lnfoSet array. Each call must specify one interface by passing an array index.

To retrieve information about all of the interfaces, an application can use a

loop to step through the array, incrementing the array index until the funCv

tion returns zero, indicating that there are no more interfaces. The GetLas—
tError API call will then return No more dam is available.

How do you know if an interface is the one you’re looking for? You don’t,

yet. The application needs more information before it can decide if it wants

to use an interface. If the function returns multiple interfaces, the applica—

tion will need to investigate each in turn, until it either finds what it’s look—

ing for or determines that the desired interface isn’t present.

Again, the use for any returned pointers is to pass them on to the next func—
tion so we can learn more about the interfaces.

USB Complete 369

Chapter 16

Visual C++

This is the function’s declaration:

 BOOLEAN

SetupDiEnJmDeviceinterfaces(

:N {DEVINFO DevicelnfoSet,

:N PSP_DEVINFOWDATA DeviceInfoData, OPTIONAL

ZN LPGUID InterfaceClassGuid,

IN DWORD Memberindex,

OUT PSPNDEVICEWINTERFACT UATA DevicelnterfaceData
);

This is the declaration for DevicelntcrfaceData’s type:

J.

typedef struct _SPwDEV:CE_INTERFACE_DATA {
DWORD chize;

GUID InterfaceClassGuid;

DWORD FLags;

ULONG_PTR Reserved;

} SP_DEVICE_INTERFACE_JATA,

*PSP_DEV"CE_TNT4RFACEH3ATA;

And this is the code to call the function:

 devInfoData.chize = sizeof(devlnfoData);

Result=SetupDiEnumDevicelnterfaces

(hDevInfo,

0,

&HidGuid,

Memberlndex,

&devInfoData);

Visual Basic

This is the function’s dcclaration:

Public Declare Function SetupDiEnumDeviceinterfaces

Lib "setupapi.dll” _

(ByVal DeviceInfoSet As Long,

3yVal DeviceInfoData As Long, ‘

ByRef :nterfaceClassGuid As GUZD,

3yVal Memberlndex As Long,

3yRe: DevicelnterfaceData ¥

As SP_DEVICE_INTERFACEWDATA)

As Long

370 USB Complete

Human Interface Devices: Host Application Example

DevicelnterfaceData is a user—defined type:

Public Type SP_DEVICE_INTERFACEMDATA

ebSize As Long
InterfaceClassGuid As GUZD

Flags As Long

Reserved As Long

End Type

This is the code to call the function:

Dim Result as Long

Dim Memberlndex as Long

Dim MyDeviceInterfaeeData AS SPwDEVICE_INTERFACE_DATA
'Store the size of the structure

MyDeviceInterfaeeData.CbSize =

LenB(MyDeviceInterfaceData)

Result = SetupDiEnumDevicelnterfaces

(DevieeInfoSet,

O’_

HidGuid, _

Memberlndex,

MyDeviceInterfaceData)

Details

The parameter chize is the size of the SPWDEVICEJNTERFACEfiDATA

structure in bytes. Before calling SetupDiEnumDeVicelnterfaces, the size

must be stored in the structure that the function will pass. Use the sizeof

operator in Visual C++ or the LenB operator in Visual Basic to retrieve the

size, which is 28 bytes: 4 for each Long and 16 for the GUlD, which con—

tains one Long (4 bytes), two Integers (4 bytes), and eight Bytes. The other
values in the structure should be zero.

Two of the values passed to this function are values returned previously:

HidGuid and DevicelnfoSet. DevicelnfoData is an optional pointer to an

SP_DEVINFO_DATA structure that limits the search to interfaces of a par—

ticular device. Memberlndex is the index of the DevicelnfoSet array. MyDe—

vieelnterfaceData is the returned structure that identifies an interface of the

requested type, which in this case is a HID.

USB Complete 371

Chapter 16

Get the Device Pathname

372

The next API call, SetupDiGetDeVicelnterfaceDetail, returns yet another
structure. This time the structure relates to a device interface identified in

the previous call. The structures DevicePath member is a device pathname

that the application can use to open communications with the device.

Before calling this function for the first time, there’s no way to know the

value of DevieelnterfaceDetailDataSize, which must contain the size in

bytes of the DevicelnterfaceDetailData structure. Yet the call won’t return

the structure unless it has this information, The solution is to call the func»

tion twice, The first time, GetLastError will return the error The dam med

passed to or system call is [00 small, but the RequiredSize parameter will con'
J

tain the correct value for DevicelnterfaceDetailDataSize, The second time,

you pass the returned value and the function succeeds.

Visual C++

This is the function’s declaration:

BOOLEAN

SetupDiGetDevieelnterfaeeDetail(

IN HDEVINFO DeviceinfoSet,

ZN PSP_DEVICE~:NTERFACE_DATA DeviceinterfaeeData,

OUT PSP_:3W"CALINTERFACQQETAILWDATA

DeviceInterfaceDetailData, OPTIONAL

ZN DWORD DeviceInterfaceDetaiLDataSize,

OUT PDWORD RequiredSize, OPT;O_AL

OUT PSPiDEVINFOWDATA Device"nFoWata OPTIONAL
) ;

This is the declaration for DevicelnterfaceDetaill)ata’s structure:

typedef struct ‘SP_Di
DWORD CbSize;

TCHAR DevicePath [ANYSIIZEWARRAY] ,-

} SPMDEVICE__INTERFACEWZDETA“";_DATA,

* PSPWDEVI CEfiINTERFACR_DT.TA“,L_DATA,~

LLJ
VICE I'TERFACE_DETAILMDATA {

This is the code to call the function twice, first to get the structures size, and

second to get a pointer to the structure:

// Get the Length value,

USB Complete

Human lnterface Devices: Host Application Example

ll

// The call will return with a "bu;fer too small"

// error which can be ignored.

Result = SetupDiGetDeviceInterfaceDetail

(hDevInfo,

&devInfoData,

NULL,

0,

&Length,

NULL);

// Allocate memory for the hDevInfo structure,

// using the returned Length.
detailData =

(PSPMDEV:CE_INTERFACE_DETAIL_DATA)malloc(Length);

// Set chize in the detailData structure.
detailData —> cbsize =

Sizeof(SPwDEVICE_INTERFACEMDETAIL_DATA);

// Call the function again, this time passing it the

// returned buffer size.

Result = SetupDiGetDevice:nterfaceDetail

(hDeVInfo,

&dev:nfoData,

detailData,

Length,

&Required,

NULL);

Visual Basic

The function’s declaration is:

Public Declare Function _

SetupDiGetDeviceInterfaceDetail

Lib "setupapi.dll" _

Alias ”SetupDiGetDeviceInterfaceDetailA"

(ByVal DevicelnfoSet As Long,

ByRef DeviceInterfaceData w

As SPwDEVICE_INTERFACE_DATA, "

ByVal DeviceInterfaceDetailData As Long, _

ByVal DeviceInterfaceDetailDataSize As Long,

ByRef Requiredsize As Long,

ByVal DeviceInfoData As Long)

USB Complete 373

Chapter 16

As Long

The structure returned in DevicelnterfaceDetailData is a user-defined type;

Public Type SP_DEV“C.:‘_ NT«:aFACE_DETAIL*JATA

chize As Long

DevicePath As String

End Type

Because of the different string formats used by Visual Basic and C, you can’t

pass this structure in the usual way, using ByRef to pass the structures

address. But there is a way around the problem. The first step is to allocate a

buffer in memory to hold the structure. Then you can use the VarPtr opera»

tor to get the starting address of the buffer, and pass the address ByVal,

‘When the function returns, you can copy the data in the buffer into a Devi»

celnterfaceDetailData structure, or just extract the data of interest, which is

the device pathname.

This is the code for the first call:

Dim Needed as Long

Result = SetupDiGetDeviceInterfaceDetail

(DeviceinfoSet, _

MyDevice"nterFacefiata,

0,

O, N.

Needed,

0)

DevicelnfoSet and MyDeVicelnterfaceData are structures returned by previ—

ous calls. After calling this function, Needed contains the buffer size to pass
in the next call.

Before calling the function again, we need to take care of a few things.

The DetailDara variable to be passed in the next call is set to equal the value
returned in Needed:

Dim DetailData as Long
DetailData = Needed

Dim DetailDataBuffer() as Byte

The size of the structure to be returned is stored in its chize parameter:

'Store the structure's size.

374 USB Complete

Human Interface Devices: Host Application Example

MyDeviceInterfaceDetailData.CbSize =

Len(MyDeviceInterfaceDetailData)

Because we’re going to pass only the address of a byte array for the returned

structure, we need to allocate enough memory in the array to hold the struc—
ture:

 ReDim DetailDataBuffer(Needed)

The first four bytes of the byte array hold the arrays size, which can be cop—

ied from the chize property in the MyDeviceInterfaceDetailData structure:

Call RthoveMemory _

(DetailDataBuffer(O), _

MyDeviceInterfaceDetailData,
4)

Now we’re ready to call SetupDiGetDeviceInterfaceDetail again:

'Call SetupDiGetDeViceinterfaceDetail again.

'This time, pass the address
'of the first element of DetailDataBuffer

'and the returned required buffer size in DetailData.

Result : SetupDiGetDeviceInterfaceDetail

(DeviceInfoSet, _

MyDeviceInterfaceData, _

VarPtr(DetailDataBuffer(O)), _

DetailData, _

Needed, _
o)

VarPtr(DetailDataBufferm)) is the starting address of the byte array that will

contain the MyDevicelnterfaceDetailData structure. DetailData holds the

size returned by the previous call.

The item of interest in the returned structure is the device pathnarne to be

used in additional API calls. To extract the pathname from the byte array,

convert the byte array to a string, convert the result to Unicode for compati—

bility with Visual Basic, and strip the chize characters from the beginning

of the string.

'Convert the byte array to a string.
DevicePathName = CStr(DetailDataBuffer())

'Convert to Unicode.

DevicePathName = StrConv(DeVicePathName, vanicode)

USB Complete 375

Chapter 16

'Strip CbSize (4 Characters) from the beginning.

DevicePathName = W

Right$(DevicePathName, LenCDevicePathName) — 4)

Get a Handle for the Device

Now that we have a device pathnarne, we’re ready to open communications

With the device itself. The first step is the all—purpose function CreateFile,

which can open a handle to a file or any device Whose driver supports Cre—

ateFile. Devices with HID interfaces are among these,

On success, the value returned by CreateFile is a handle that other API func»

tions can use to exchange data with the device.

Visual C++

This is the function’s declaration:

HANDLE CreateFile(

LPCTSTR lpFileName,

DWORD deesiredAccess,

DWORD dehareMode,

LPSECURZTYRATTRIBUTES lpSecurityAttributes,

DWORD dwCreationDisposition,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile

> i

This is the code to call the function:

DeviceHandle=CreateFile

(detailData—>Devicepath,

GENERIC_READIGENERZC_WRITE,

FZLEMSHARE_READIFZLE#SHARE_WRITE,

OPE- EXISTING,

Visual Basic

This is the function’s declaration:

Public Declare Function CreateFile w
Lib "kernel32"

376 USB Complete

Human Interface Devices: Host Application Example

Alias "CreateFileA" _

(ByVal lpFileName As String, _

ByVal deesiredAccess As Long,

ByVal dehareMode As Long, _

ByVal lpSecurityAttributes As Long, _

ByVal dwCreationDisposition As Long,

ByVal dwFlagsAndAttributes As Long,

ByVal hTemplateFile As Long)

As Long

And this is the code to call the function:

Dim HidDevice As Long

HidDevice = CreateFile fl

(DevicePataName, _

GENERIC_READ Or GENERIC_WR:TE,
 w 2i

(FILE_SHARE*READ Or FILE_SHARZM RITE), _

O, _

OPENWEXISTING, _

0'.
O)

The function passes a pointer to the DevicePathName string returned in the

previous call. The parameter is declared as a String to be passed ByVal,

because ofVisual Basic’s different string format, as explained earlier.

The constants passed by the call are defined in several locations, including

Lamar/0 and swim/J, and must be declared in a declarations section of a

module in the Visuaerasic application:

Public Const GENERICWREAD = &HBOOOOOOO

Public Const GENERICVWRITE = &H4000OOOO

Public Const F:LE_SHARE_READ : &Hl

Public Const F:LE_SHARE_WRITE = &H2

Public Const OPEN_EXISTING = 3

Details

When the application no longer needs to access the device, it should free

system resources by calling the Closel—landle API function, as described later

in this chapter.

USB Complete 377

Chapter 16

Read the Vendor and Product IDs

378

One way to identify Whether or not a device is the one you want is to get its

Vendor and Product IDS and compare them with the TDS for the product

you’re looking for. This is the way to find custom devices that don’t fit Stan»

dard usages. For other devices, this information may not be important, and

if not, you can skip this step.

The API function HidD_GetAttributes retrieves a pointer to a structure

containing the Vendor and Product IDs and the product’s version number.

Visual C++

This is the function’s declaration:

BOOLEAN

HidD_GetAttributes(

IN HANDLE HidDeViceObject,

OUT PHIDJMATTR:BUTES Attributes
) ;

The HlDD_ATTRIBUTES structure contains the information about the

device:

typedef struct fiHIDDJXTTRIBUTES {
ULONG Size;

USHORT VendorID;

USHORT ProductlD;

USHORT VersionNumber;

} H:DD_ATTRIBUTES, *PH:DD_ATTR:BUTES;

This is the code to retrieve the structure:

// Set the Size member to the number of bytes
// in the structure.

Attributes.Size = sizeof<Attributes);

Result : Hid3_GetAttributes
(DeviceHandle,

&Attributes);

Visual Basic

This is the declaration for the function:

Public Declare Function HidDwGetAttributes

USB Complete

Human Interface Devices: Host Application Example

Lib ”hid.dll” _

(ByVaI HidDeviceObject As Long, fl

ByRef Attributes AS H:DD_ATTRIBUTES)

As Long

The HIDD_ATTRIBUTES structure contains the information about the

device:

Public Type HIDD_ATTRIBUTES

Size As Long

Vendorlj As Integer

ProduotID As Integer

Versionfiumber As Integer

End Type

This is the code to retrieve the structure:

Dim DeviceAttributes AS HIDDflATTRIBUTES

‘Set the Size property to the number of bytes
'in the structure.

DeviceAttributes.Size = LenB(DeviceAttributes)

Result = HidD_GetAttributes
(HidDevice,

DeviceAttributes)

Details

The HidDeViceObject parameter is the handle returned by CreateFile. If the
function returns a non—zero value, the DeviceAttributes structure filled

Without error.

The application can then compare the retrieved values with the desired Ven—
dor and Product IDs and version number.

If it isn’t a match, the application should use the CloseHandle API call to

close the handle to the interface. The application can then move on to test

the next HID detected by SetupDiEnumDeviceInterfaces. When the appli—

cation is finished examining the HIDS, it should free the resources reserved

by SetupDiGetClassDevs by calling SetupDiDestroyDeviceInfoList.

USB Complete 379

Chapter 16

Get a Pointer to a Buffer with Device Capabilities

Another way to find out more about a device is to examine its capabilities
You can do this for a device Whose Vendor and Product IDs matched the

values you were looking for, or you can examine the capabilities for an
unknown device.

The first task is to get a pointer to a buffer with information about the

device’s capabilities. The APT call to do this is HidDflGetPrepatsedData.

Visual C++

This is the function’s declaration:

BOOLEAN

HidD_GetPreparsedData(

IN HANDLE HidDeviceObject,

OUT PHID?_PREPARSEDMDATA *PreparsedData
);

This is the code to call the function:

PHIDPfiPREPARSEJ_JAlA BreparsedData;

HidDWGetPreparsedData

(DeviceHandle,

&Preparsed3ata);

Visual Basic

This is the Functions declaration:

Public Declare Function Hid3_GetPreparsedData

nib "hid.dll" w

(ByVal HidDeviceObject As Long,

3yRef PreparsedData As Long)

AS Long

This is the code to call the function:

Result = HidD_GetPreparsedData

(Hidjevice,

PreparsedData)

HidDeviceObject is the handle returned by CreateFiie. PrepatsedData is a

pointer to the buffer containing the data. The application doesn’t need to

380 USB Complete

Human Interface Devices: Host Application Example

access the data in the buffer; it just needs to pass its starting address to
another APT function.

When the application no longer needs to access the PreparsedData, it should

free system resources by calling HidD_FreePreparsedData, as described later

in this chapter.

Get the Device’s Capabilities

The HidP_GetCaps function returns a structure that contains information

about the device’s capabilities. The structure contains the device’s Usage,

Usage Page, report lengths, and the number of button capabilities, value

capabilities, and data indices for Input, Output, and, Feature reports, as

stored in the device’s firmware. If you didn’t use the Vendor and Product IDs

to identify the device, the capabilities information can help you decide if

you want to continue communicating With the device. Even if you know

that you have the device you’re looking for, the report lengths and other

information are useful in determining What kinds of data you can transfer.

Not every item in the structure applies to all devices.

Visual C++

This is the function’s declaration:

NTSTATUS

HidP_GetCaps(

IN PHIDP_PREPARSED*DATA PreparsedData,

OUT PHIDP_CAPS Capabilities
> ;

This is the declaration for the HIDl’_CAPS structure:

typedef struct "HZDP_CAPS {
USAGE Usage;

USAGE UsagePage ;

USHORT InputReportByteLength ;

US-ORT OutputReportByteLength ;

USTORT FeatureReportByteLength ;

USHORT NumberLinkCollectionNodes ;

USHORT NumberInputButtonCaps ;

USB Complete 381

