Chapter 8

such as mice and other pointing devices, as well as specialized devices such as
data-acquisition units and controllers.

For example, a data acquisition unit might send periodic sensor readings to a
PC. The controller chip’s I/O pins could connect to analog-to-digital con-
verters that convert sensor readings to digital signals. A host PC could use
the USB link to request the latest readings periodically. Or the PC might
send signals to control relays, motors, or other devices that the chip’s /O
pins control.

Instead of just repeating what’s in the chip’s data sheet, I'll focus on what’s
important to know before you start working with the chip. I'll also explain
anything that I found difficult or confusing to understand from the data
sheet alone. When it’s time to use the chip, check the data sheet for details.

Features and Limits

One compelling reason for choosing the *63743 for a project is inexpensive
chips. Typical prices for the chip are a few dollars each in small quantities.
And the chip contains an internal oscillator that eliminates the need to pro-
vide an external timing reference.

The chip is available in both through-hole (DIP) and surface-mount
(SOIC) packages. If you have experience with assembly-language program-
ming (or are willing to learn), the assembly-code instructions arent too hard
to master. The chip has 8 Kilobytes of program memory. With optimiza-
tion, the code required to support USB communications can fit in 1 Kilo-
byte, leaving 7 Kilobytes for other functions.

The essential tool for developing is the Developer’s Kit, which includes a
development board, assembler, and debugging application. You'll probably
also want the CY3649 Hi-Lo PROM Programmer with the adapter base

and matrix card for the enCoRes, all available from Cypress.

The °63743 isnt suitable for every project. The chip is low speed, which
means that you can't use bulk or isochronous transfers and the fastest maxi-
mum latency for interrupt transfers is 8 bytes per 10 milliseconds. Unlike
some early controllers, the ’63743 does support Interrupt OUT transfers. If

182 USB Complete

Apple 1062 (Part 2.of 3)
U.S. Pat. No. 8,504,746

Inside a USB Controller: the Cypress enCoRe

INTERNAL XTAL WAKE-UP RAM 12-8IT CAPTURE || gp;
0SCILLATOR [=>10SCILLATOR | | TIMER | |256 BYTES|| TIMER TIMERS
8-BIT @ @ @ ﬁ @
EPROM
g/oK = Risc (G >
CORE
BROWN OUT ?
RESET
INTERRUPT UsB PORT 1 PORT ©
CONTROLLER [<F | ENGINE GPIO GPlO [
WATCH
DOG
TIMER @ £\ 3
Joho 3 3y Uss ¢
OLTAGE ' = s
RESET REGULATOR TRANSCE IVER

Figure 8-2: The chips in Cypress’ enCoRe series have the essentials for USB
communications and general port I/O.

you can get by with less memory or I/O, the series has chips with 6K of pro-
gram memory and twelve I/O pins.

Inside the Chip
Figure 8-2 shows the chip’s architecture. The CPU is an 8-bit RISC

(reduced instruction set computer). It can access program memory, RAM,
general-purpose I/O ports, and of course, a USB port. The USB port is
actually an auto-switching port that supports both USB and the PS/2 inter-
face for mice and other pointing devices. This feature is handy for designing
devices that can plug into either port type. A variety of interrupt and reset
sources can interrupt the CPU.

The frequency of the internal 6-Megahertz oscillator is accurate to within
1.5%, as required for low-speed USB. If an application requires a more pre-
cise clock source, the chip can instead use an external oscillator.

USB Complete 183

Chapter 8

Figure 8-3 shows the pinouts of the ’63743 and the ’63723, which has four
fewer I/O pins.

Memory

The on-chip memory of the ’63743 consists of 8 kilobytes (0000h to
1FFFh) of OTP PROM for program storage and 256 bytes of RAM (00h to
FFh) for temporary data storage. There are also 34 byte-wide I/O registers,
each with a defined purpose.

The organization of the program memory is similar to that of other micro-
controllers. Program execution begins at 00h. Addresses 00h and 01h con-
tain a jump to the address where the main program code begins. Addresses
02h through 17h are interrupt vectors that hold the addresses to jump to
when one of the chip’s eleven interrupts occurs. Here is an example inter-
rupt-vector table in firmware:

ORG Q0h

jmp reset ; device reset

jmp bus_reset ; USB reset interrupt

jmp error ; 1l28-microsecond interrupt
jmp 1lms_ timer ; 1.024-millisecond interrupt

jmp endpoint0 ; Endpoint 0 interrupt

Po.o] 1 ~ 241 ro. 4

Po.1]2 23[1pre.5

Y Pe.2[]3 221 pro.6

Po.o]! 181 P0o.4 Pe.30 4 21 dP0o.7

Po.1[]2 17[Po.5 PL.o]5 20 P11

Po.20] 3 16 re.6 PL.2[]6 190P1.3

Pe.3 4 15dr0.7 PL.40}7 18[pP1.5

Pl.ol]5 140p1.1 PL.6[]8 17dr1.7
vss [6 13 O D+/SCLK vss[]9 16 1Dp+/SCLK
vep [7 12[1D-/SDATA VPPL] 10 15 [D-/SDATA

VREG[] 8 11 [Jvce VREG[] 11 14 dvce
XTALIN/P2.1[]9 1© [OXTALOUT XTALIN/P2.1[] 12 13 I XTALOUT

CY7C63722/23 CY7C63742/43

Figure 8-3: The enCoRe series includes chips with 12 and 16 1/O pins.

184 USB Complete

Inside a USB Controller: the Cypress enCoRe

jmp endpointl ; Endpoint 1 interrupt

jmp endpoint?2 ; Endpoint 2 interrupt

jmp spi ; SPI interrupt

jmp capture a ; Capture timer A interrupt
jmp capture b ; Capture timer B interrupt
jmp gpio ; GPIO interrupt

Jjmp wakeup ; Wake-up interrupt

Fach interrupt vector jumps to the location specified by a label. Unused
interrupts should never occur, but the firmware should include jumps even
for these interrupts. A typical interrupt-service routine (ISR) for an unused
interrupt would just return the firmware to the calling location with regis-
ters unchanged.

The interrupt vectors are stored in order of priority, with the highest priority
at 0002h. Program memory from 0018h to 1FDFh is available for storing
the rest of the code.

The 256 bytes of RAM must hold two data stacks and 8 bytes each of buffer
data for Endpoints 0, 1, and 2 (if all are used), as well as any other tempo-
rary data (Figure 8-4). The endpoint buffers use addresses E8h through
FFh.

The stacks are last in, first out (LIFO) structures for short-term storage of
addresses and register contents. The RAM has two pointers for accessing the
two stacks. The Program Stack Pointer (PSP) begins at 00h on reset and
grows up, while the Data Stack Pointer (DSP) may be set by firmware to
E8h or lower and grows down. The firmware needs to be sure thar the stacks
don’t grow so large that they bump into each other in the middle. To reserve
general-purpose RAM for other uses, such as storage for variables, set the
DSP to an address lower than E8h. This frees the locations from that
address through E7h for other uses without having to worry that one of the
stacks will overwrite them.

The Program Stack Pointer
The Program Stack Pointer (PSP) holds the address the code will jump to on

returning from a call to a subroutine or interrupt-service routine. For inter-
rupts, the PSP also stores the states of the zero and carry flags. The firmware

USB Complete 185

Chapter 8

AFTER RESET, FIRMWARE MUST
SET THE DATA STACK POINTER
TO A VALUE LESS THAN E8H
(TO ENABLE USING ALL

3 USB ENDPOINTS) . —>
THE DATA STACK GROWS DOWN
THE PROGRAM STACK POINTER THE PROGRAM STACK GROWS UP

IS @0H ON RESET.

FFH
ENDPOINT @

F8H
ENDPOINT I

FoH
ENDPOINT 2

E8H

USER VARIABLES

Figure 8-4: The enCoRe’s RAM contains the USB endpoint buffers, the
program and data stacks, and whatever variables the firmware requires.

186

doesn’t have to do anything to manage the PSP It’s all done automatically by
the hardware and the CALL, RET, and RETT instructions.

On reset, the PSP points to 00h. The PSP can handle multiple, nested sub-
routines and interrupts. Each routine returns to the instruction after the last
instruction that executed before the call.

For example, if the PSP is pointing to 00h when an instruction in program
memory calls a subroutine, the CALL instruction will cause the PSP to save
the address of the following instruction in addresses 00h and 01h. The
CALL also increments the PSP by two bytes (to 02h in the example) so it’s
ready to store another location if needed. The RET instruction that returns
from the routine places the value pointed to by the PSP in the program
counter and decrements the PSP by two. Program execution then continues
where it left off before the routine was called.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The same thing happens in interrupt-service routines, except that the values
of the zero and carry flags are also saved and restored.

The Data Stack Pointer

The Data Stack Pointer (DSP) holds data stored by PUSH instructions. For
example, PUSH A stores the contents of the accumulator on the data stack.
The DSP decrements one byte before storing a byte. A POP instruction
removes the most recently stored byte and increments the DSP.

The default value of DSP on reset is 7ot where it should remain. Unless the
chip isn’t using USB at all, the firmware must set the DSP to a new value
before doing any PUSH instructions. On reset, the DSP is 00h. From here,
the first PUSH instruction would cause the DSP to decrement to the top of
RAM (FFh), which is byte 7 in Endpoint 0’s buffer. For this reason, before
pushing any bytes, the firmware should set the DSP pointer to E8h or
lower:

; Store the DSP’s new beginning address

; in the accumulator.

mov A, 70h

; Swap the contents of the accumulator with the DSP.

swap A, dsp
Use a lower value if you want to reserve more bytes for firmware use, or a
higher value the firmware needs fewer bytes.

USB Communications

The firmware monitors and controls the serial interface engine (SIE) by
accessing registers. There are nine registers whose functions relate directly to
USB communications: an address register, three endpoint mode registers,
three endpoint counter registers, a status and control register, and an inter-
rupt-enable register.

Device Address
The USB Device Address Register holds the 7-bit address assigned by the

host during enumeration. The firmware must detect the Set Address

USB Complete 187

Chapter 8

request, send a handshake in response to the request, and store the received
address in this register. Bit 7 must be set to 1 to enable the serial interface
engine to respond to USB traffic.

Modes

188

The USB Endpoint 0 Mode Register conrains information about the last
received data packet at Endpoint 0. Both the SIE and firmware can change
the register’s contents.

Three PID bits indicate the type of the transaction’s token packet: Setup,
IN, or OUT. During the data phase of a Setup transaction, the SIF sets the
Setup bit to 1. To prevent incoming data from being overwritten, the chip
doesn’t allow firmware to write to any USB buffer while the Setup bit is 1.
Firmware cant change this bit until all of the transaction’s dara bytes have
been received.

The ACK bit is set when a transaction completes with ACK.

Four Mode bits determine how the SIE will respond to Setup, IN, and
OUT transactions. Depending on the type of transaction, the firmware can
request the SIE to return ACK, NAK, Stall, a 0-byte data packet, or nothing
at all. In some cases, the SIE changes the mode after a transaction’s ACK.
For example, when the mode is Ack OUT, after returning an ACK in
response to receiving OUT data, the SIE sets the mode to Nak OUT. This
gives the firmware time to retrieve the data that was ACKed. After retrieving
the data, the firmware can change the mode bits back to Ack OUT to enable
accepting new data at the endpoint.

For me, understanding the use of these mode bits was the most confusing
part in using these chips. Cypress provides four pages of documentation
about how the chip responds in every circumstance. I found it useful to
group the modes according to what type of endpoint would use them, and
in what situations. Table 8-3 shows the modes used by Endpoint 0. Each of
these modes accepts Setup transactions, as control endpoints must.

The complements to Endpoint 0’'s mode register are the USB Endpoint 1
Mode Register and USB Endpoint 2 Mode Register. These have the same

USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8-3: Modes used by Endpoint 0 in the USB Endpoint 0 Mode Register.
Endpoint 0 must accept Setup transactions.

Mode Encod- |Response to Mode |Typical Use
ing Transaction after
ACK
Setup |IN ouT

Nak In/Out 0001 accept [NAK |NAK |same |No transfer is in progress;
waiting for a Setup transaction.

Status Out Only {0010 |accept |Stall |[check |same |Control Read transfer, status
stage. Return ACK on receiving
a O-byte data packet with the
correct data toggle.

Stall In/Out 0011 |accept |Stall |Stall |same |No transfer is in progress;
waiting for a Setup transaction.

Ignore In/Out |0100 |accept |ignore |ignore |same |No transfer is in progress;
waiting for a Setup transaction.

Status In Only |0110 |accept |0-byte |Stall same |Control Write transfer, status

data stage. For an IN transaction,

return a O-byte data packet.
Nak Out - 1010 jaccept |O-byte |[NAK |same |Control Write transfer, status
Status In data stage. For an IN transaction,

return a O-byte data packet.
Ack Out - 1011 Jaccept |NAK |ACK |Nak Control Write transaction, data
Nak In In/Out |stage.
Nak In - 1110 |accept |NAK |[check |same |Control Read transfer, data or
Status Out status stage. For an IN

transaction, return NAK. For an
OUT transaction, return ACK on
receiving a 0-byte data packet
with the correct data toggle.

Ack In - 1111 |accept |data check |Nak In |Control Read transfer, data or
Status Out - Status [status stage. For an IN
Out transaction, return data. For an

OUT transaction, return ACK on
receiving a O-byte data packet
with the correct data toggle.

mode and ACK bits as Endpoint 0’s mode register. They don’t have the PID
bits because these endpoints support either IN or OUT transactions only.
These registers also each have a Stall bit.

USB Complete 189

Chapter 8

Endpoints 1 and 2 use different mode settings than Endpoint 0 because
they never respond to Setup packets, while Endpoint 0 must do so. Table
8-4 shows the modes used by Endpoints 1 and 2. The table also shows how
firmware can use the Stall bit to cause the SIE to return Stall in Ack In and

Ack Out modes.

Endpoint Status and Control

Fach of the three endpoints also has a USB Endpoint Counter Register
that contains information about the data packet that is next to transmit, is
being transmitted, or has just transmitted. Fach contains a four-bit count, a

data-toggle bit, and a data-valid bit.

The four Byte Count bits hold the number of data bytes in a transaction.
For IN transactions, the value indicates how many bytes will be sent from
the endpoint’s buffer in the next transaction, not including the CRC byres.
Valid values are 0 through 8. For Setup and OUT transactions, the value
indicates how many data bytes were received in the last transaction, plus the
two CRC bytes. Valid values are 2 through 10. Setup and OUT counts are
locked until the firmware reads the register.

For Setup and OUT transactions, the Data Valid bit is 1 if the received
CRC value was correct.

The Data 0/1 Toggle bit indicates the data packet’s data toggle state. For IN
transactions, firmware sets the value. For Setup and OUT transactions, the
SIE sets the bit to match the received data-toggle state.

USB Status and Control

190

The USB Status and Control register has two bits used in USB communi-
cations, four bits that USB or PS/2 communications may use, and one bit
for PS/2 communications only.

The SIE sets the USB Bus Activity bit to 1 on detecting any USB activity or
in other words, a non-idle bus. The firmware can use this bit along with the
1-millisecond interrupt-service routine to decide whether the chip should

USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8-4: Modes used by Endpoints 1 and 2 in their USB Endpoint Mode
Registers. Endpoints 1 and 2 don’t accept Setup transactions.

Mode Encod- |Response to Mode |Typical Use
ing Transaction after
Setup |IN out |ACK
Disable 0000 |ignore |ignore |ignore |- The endpoint is disabled.
Nak Out 1000 |ignore |ignore |NAK |- An OUT endpoint isn’t ready to
receive data.
Ack Out 1001 |ignore |ignore |[ACK |Nak An OUT endpoint is ready to
(Stall=0) Out receive data.
Ack Out ignore |ignore |stall - An OUT endpoint is halted.
(Stall=1)
Nak In 1100 |ignore |NAK |ignore |- An IN endpoint has no data to
send.
Ack In (Stall=0) | 1101 |ignore |data ignore |Nak In |An IN endpoint has data to send.
Ack In (Stall=1) ignore |stall ignore |- An IN endpoint is halted.

enter the Suspend state. If the bit remains 0 for more than three millisec-
onds, the chip must enter the Suspend state.

The VREG Enable bit can enable 3.3V at the chip’s VREG output. This
output is intended for pulling up the USB’s pull-up resistor to D- on the
bus. Because VREG is under firmware control, code can remove and restore
the output voltage to simulate device removal and attachment. VREG's out-
put impedance is about 200 ohms, so the resistor’s value should be 1.3K to
meet the 1.5K specification.

The USB Reset - PS/2 Activity Interrupt Mode bit selects whether to inter-
rupt on a USB reset or on PS/2 activity.

Three Control bits enable firmware to set the USB or PS/2 lines to specific
states, including USB’s J, K, and SEO states. If the host has previously
enabled a device’s Remote-Wakeup ability with a Set_Feature request, the
firmware can use the Force-K state to send a Resume signal to tell the host
that the device wants to communicate. Chapter 19 has more on resume sig-
naling.

USB Complete 191

Chapter 8

The PS/2 Pullup Enable bit can enable internal pull-up resistors on the
SCLK and SDATA lines used in PS/2 communications.

The Port 2 Data Register holds the states of four read-only bit values at an
auxiliary input port (Port 2). Two bits are the states of D+ and D- when
using USB, or the states of SCLK and SDATA when using PS/2. The other
two bits can sometimes serve as general-purpose inputs. If the pull-up on
USB’s D- uses an external voltage source or if the device doesnt support
USB, the VREG output can be disabled and the pin can serve as a gen-
eral-purpose input whose state is read at P2.0. When the internal clock is
enabled, there is no timing reference at XTALIN, and this pin can serve as a
general-purpose input whose state is read at Bit P2.1.

The final USB-related register is the USB Endpoint Interrupt Enable Reg-
ister, which enables interrupts for Endpoints 0, 1, and 2. I cover this register
in more detail below, under Interrupt Processing.

Other I/O

In addition to the USB port, the enCoRe has built-in support for three
other 1/O interfaces. Firmware can use the general-purpose ports for any
purpose. Some of the general-purpose bits can function as an SPI synchro-
nous serial interface. And the USB interface is switchable between USB and
a PS/2 interface.

General-purpose /O

192

For interfacing to circuits besides the USB port, the chip has 16 versatile
I/O pins on two 8-bit ports. Fach can function as an input or output.
Inputs can have pull-ups or not, and CMOS or TTL thresholds. Outputs
can be CMOS with selectable driver strength or open drain. Each input can
trigger an interrupt. A data register and two mode registers for each port
control the configuration of each pin.

USB Complete

Inside a USB Controller: the Cypress enCoRe

GPIO (2 BITS)
MODE

SPI BYPASS

(PQ.5-P0.7 ONLY) ::::>___* CONTROL 14K
DATA OUT

REGISTER __{DET

1 _—4Q2

é%iEREG% PORT WRITE —
CMOS/TTL -
THRESHOLD
SELECT
1 Za

!

~

PORT READ

INTERRUPT POLARITY BIT me
] IN[%E?gPT -§>TO INTERRUPT CONTROLLER

‘INTERRUPT ENABLE BIT }7

Q1 1S ON FOR RESISTIVE QUTPUT (LOW SOURCE CURRENT).
Q3 IS ON FOR STRONG SOURCE CURRENT.
Q2 15 ON FOR LOW, MEDIUM, OR HIGH SINK CURRENT.

Figure 8-5: Two GPIO register bits for each pin determine whether the pin is an
input or output and the amount of source and sink current an output is capable
of.

The Circuits Inside

Figure 8-5 shows the circuits inside each port pin. Table 8-5 shows the
effects of combinations of settings.

To configure a bit as an input, the firmware writes 0 to the matching bits in
the Mode 0 and Mode 1 registers. For TTL input thresholds, write 1 to the
Data bit; for CMOS, write 0. A T'TL low input must be 0.8V or less, and a
TTL high input must be 2.0V or greater. CMOS input thresholds are cen-
tered at around half the power-supply voltage. For low-to-high transitions,
the thresholds are 40% and 60% of the supply voltage. For high-to-low
transitions, the thresholds are slightly lower. This adds hysteresis to keep
inputs from oscillating on noisy or slowly changing inputs.

USB Complete 193

Chapter 8

Table 8-5: Two Mode bits and a Data bit determine the configuration and state of
each general-purpose I/O bit.

Register Output Output Drive Strength Input Threshold

Data

Mode 0 | Mode 1 |State

0

0 0 undefined |high impedance CMOS

0 0 medium (8 mA) sink current |CMOS

l
0
]

0 0 undefined |high impedance TTL
1
1

0 1 strong (2mA) source CMOS
current

1 0 0 low (2 mA) sink current CMOS
(open drain on)

1 0 1 resistive (14K pull-up, CMOS
low source current)

1 | 0 high (50 mA) sink current |CMOS

1 1 1 strong (2 mA) source current |CMOS

194

The other modes control the strength of the source and sink currents for
outputs. Any output pin can sink up to 50 milliamperes, but only one pin
can do so at a time. The combined sink current for all pins shouldn’t exceed
70 milliamperes. For source current, the combined maximum is 30 milliam-
peres. Use current-limiting resistors to limit the output current.

Interrupts

A transition on a GPIO pin can cause an interrupt. Additional register bits
configure the pin’s interrupt capability. Writing 1 to a pin’s bit in the GPIO
Interrupt Enable Register enables a transition on the pin to trigger a GPIO
interrupt. The GPIO bit in the Global Interrupt Enable Register must be
set to 1 as well. A pin’s bit in the GPIO Interrupt Polarity Register deter-
mines whether a rising (1) or falling (0) edge triggers the interrupt.

All of the GPIO pins share an interrupt, so the firmware may need to deter-
mine which pin caused the interrupt. It can do so by reading the port. The
interrupt latency, or time it takes for the CPU to enter the interrupt-service
routine, is under 3 microseconds, so an interrupt signal should be greater
than 3 microseconds wide if the interrupt-service routine needs to detect
which pin caused the interrupt.

USB Complete

Inside a USB Controller: the Cypress enCoRe

SPI Port

The enCoRe includes hardware support for an SPI (Serial Peripheral Inter-
face) port. SPI is a synchronous serial interface suitable for short-range com-
munications, often on the same circuit board, though cables of ten feet or so
shouldn’ be a problem in most environments. Compared to USB, SPI
doesnt require nearly as much support in hardware or code, so it’s used by
many simple and inexpensive chips.

Chips with SPI interfaces include serial EEPROMs and analog-to-digital
converters. The enCoRe’s Development System includes a couple of SPI
peripherals that can connect to the chip. Motorola introduced SPI, so the
68HCI11 and other Motorola microcontrollers have SPI interfaces. A
peripheral that needs more processing power than the enCoRe could use an
enCoRe to manage USB communications and use the SPI interface to pass
information between the enCoRe and another microcontroller.

An SPI bus has one master and one or more slaves. As with USB’s host, the
master initiates all SPI traffic. The enCoRe’s SPI can function as a master or
slave. The number of wires varies with the application. In addition to a
common ground, an SPI interface has MISO (master in, slave our), MOSI
(master out, slave in), and SCK (serial clock) lines. When there is more than
one slave connected, each must also have an *SS (slave select) line. If there is
just one slave, *SS can often be tied low at the slave to select it permanently.

On a master, MOSI, SCK, and any *SS pins are outputs and MISO is an
input. On a slave, MISO is an output and MOSI, SCK, and *SS are inputs.

On the enCoRe, the SPI interface uses GPIO pins. Four pins have assigned
functions: MOSI is P0.5, MISO is P0.6, and SCK is P0.7. On a slave, *SS is
P0.4. On a master, the *SS outputs can be any spare GPIO pins.

The hardware handles the clocking and sending and receiving of the SPI
data bits. A communication consists of the master writing one or more bytes
to a slave, followed by an optional reply. For example, to write a byte to
serial EEPROM, the master sends a write instruction, followed by an
address and data. The slave sends nothing. To read a byte from EEPROM,

USB Complete 195

Chapter 8

the master sends a read instruction followed by an address, and the slave
sends the data in reply.

Writing to the SPI Data Register fills a transmit buffer, which causes the
data to load into a shift register for transmitting. Received SPI data is loaded
into a receive buffer, where the firmware can retrieve it by reading the SPI
Data Register.

The enCoRe’s interface is flexible enough to communicate with just about
any SPI chip. An SPI Control Register enables the firmware to select mas-
ter or slave mode, a clock frequency from 62.5 Kbits/sec. to 2 Mbits/sec.,
and a clock polarity and phase. The clock polarity and phase select the
clock’s idle state (0 or 1) and whether data is written and read on rising or
falling clock edges. Some SPI chips support only master or slave or a single

clock phase and polarity.

Two additional bits in the SPI Control Register indicate when the transmit
buffer is full and when an 8-bit transfer is complete. Completing a transfer
also triggers an SPI interrupt so the firmware can get ready for another
transfer.

The PS/2 Interface

196

Although this book is about USB, I shouldnt entirely neglect the enCoRe’s
PS/2 option. The term PS/2 can refer to the mouse, keyboard, or paral-
lel-port interface IBM included years ago in its model PS/2 computer. In
this case, were talking about the mouse interface, which became a favored
alternative to the serial (RS-232) and bus interfaces that were the options
until USB came along.

A PS/2 mouse uses a synchronous serial interface that has a single data line
and a clock line. The interface also has +5V and ground lines. The device
provides the clock for communications in both directions. The device sends
mouse data synchronized to the clock pulses. The data format uses 11 bits: a
Start bit of 0, eight data bits sent least significant bit first, an odd parity bit,
and a Stop bit of 1. The host reads the data on the clock’s falling edge. As
with a USB mouse, the data contains information about button presses and
the amount and direction of mouse movement.

USB Complete

Inside a USB Controller: the Cypress enCoRe

A long low on the data line tells the device that the host wants to send a
command and generates a PS/2 interrupt in the device.

Having an interface that supports both USB and PS/2 makes it easy to
design a pointing device that can use either. The device will need firmware
to support both. For PS/2, the firmware is responsible for writing each clock
pulse and data bit by setting Control bits in the USB Status and Control
Register. Of course, a design can also use only USB, only PS/2, or even nei-
ther.

Other Chip Capabilities

The enCoRe has many other capabilities worthy of mention. Timer func-
tions enable performing periodic tasks and measuring intervals. Many event
types can trigger interrupts. And several registers enable monitoring and
controlling the CPU and managing power.

Timer Functions

The chips have hardware support for a variety of timing functions, includ-
ing generating interrupts for periodic tasks and measuring intervals.

Performing Periodic Tasks

For tasks to be done periodically, there are three options: the 1-millisecond,
128-microsecond, and Wake-up timer interrupts. The Wake-up interrupt
provides less precise, but longer, timing intervals than the other two timers.
If the chip is in the Suspend state, this interrupt will wake it. But firmware
can also use this interrupt to perform periodic tasks when the chip isn't sus-

pended.

The timing interval of the Wake-up interrupt is the chips eWAKE period
multiplied by the value indicated by three Wake-up Timer Adjust bits in the
Clock Configuration Register. The available values are the eight powers of
2 from 1 through 128. The tWAKE value varies with the supply voltage and
temperature, and can range from 1 to 5 milliseconds. So for example, if
tWAKE is 128, the interval may be anywhere from 128 to 640 milliseconds.

USB Complete 197

Chapter 8

198

To select an interval more precisely, the firmware can enable the Wake-up
timer, use the chip’s free-running timer to measure the interval, and select
the Wake-up Timer Adjust value that most closely matches the desired inter-

val.

With any of these timers, to time a longer interval, the firmware can main-
tain a counter in the interrupt-service routine. The routine increments the
counter on each interrupt until the desired number of intervals has elapsed.

Measuring Intervals

The enCoRe has a free-running timer that provides a way to measure inter-
vals and timer capture registers that enable measuring the rime between
events at I/O pins.

The 12-bit free-running timer increments once per microsecond, The timer
rolls over on a count of FFFh, enabling firmware to measure periods up to
4.096 milliseconds (or longer by cascading counts). The count is stored in
two registers. The firmware can read just one register at a time, yet it will
want to know the states of all 12 bits at the same time. To make this possi-
ble, reading the Timer LSB (least significant byte) Register also loads the
timer’s upper four bits into a temporary register. Reading the Timer MSB
(most significant byte) Register reads the temporary register. So sequential
reads of these two registers gives the count at the time of the first read.

The chip can also measure intervals between events at the GPIO pins Port
0.0 (Capture A) and Port 0.1 (Capture B). Six registers configure the timers
and hold the results, which can correspond to the times of rising and falling
edges at each pin.

The Capture Timers Configuration Register has three functions. Four bits
enable interrupts on the rising and falling edges of Capture A and B. One
bit selects whether to save the time of the first edge or the most recent edge.
Three bits select a prescale value that determines which 8 of the free-run-
ning timer’s 12 bits are saved on an interrupt. Using lower bits gives better
precision but shorter range, while higher bits give longer range but less pre-
cision.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The Capture Timers Status Register indicates whether a rising or falling
edge has occurred on Capture A or B. The four Capture Timer Data Regis-
ters hold the timer counts for rising and falling edges at the two port pins.
The difference between the counts stored at two events equals the time in
microseconds between them.

Interrupt Processing

The firmware uses two registers to control which interrupts are enabled, plus
two additional registers to enable individual GPIO interrupts. The USB
Endpoint Interrupt Enable Register has three bits that enable interrupts
for Endpoints 0, 1, and 2. The Global Interrupt Enable Register enables
the other interrupt sources: Wake up, General-purpose 1/0, Capture Timer
A, Capture Timer B, SPI, 1.024-millisecond timer, 128-microsecond timer,
and USB Reset or PS/2 Activity. Writing 1 to an interrupts bit enables the
interrupt, while writing 0 masks, or disables, the interrupt.

Interrupt Service Routines

When an interrupt occurs, the chip’s hardware disables all interrupts, clears
the Global Interrupt Enable bit and jumps to the interrupt’s assigned inter-
rupt-vector location in program memory. This location typically contains a
jump to an interrupt-service routine. The interrupt-service routine is
responsible for carrying out whatever needs to be done in response to the
interrupt’s event and for ensuring that all registers are in the expected states
on exiting the routine.

On entering an interrupt-service routine, the hardware automatically stores
the Program Counter’s value and the states of the Carry and Zero flags. On
exiting the routine, these values are automatically restored. So the inter-
rupt-service routine can do what it wants with these values, and other code
won't be affected. The firmware is responsible for saving and restoring any
other values that need to be preserved. A typical example saves and restores
the contents of the accumulator (A) and index register (X). Here is an exam-
ple interrupt-service routine that uses push and pop to preserve the con-
tents of these registers while also allowing the interrupt-service routine to
use the registers:

USB Complete 199

Chapter 8

200

DoNothing ISR:

;Save the contents of the accumulator
push A

;Push the contents of the index register
push X

;iAdd code to sgervice the interrupt here
;Pop values that were preserved

;in the reverse order they were saved (last first)
pop X

pop A

reti

GPIO Interrupts
For the general-purpose I/O (GPIO) interrupts, a Port Interrupt Enable

Register for each port allows the firmware to enable or disable the interrupt
for each I/O pin. A transition on a port pin will result in an interrupt only if
several things are true:

¢ The GPIO bit in the Global Interrupt Enable register is set to 1.
 The pin’s bit in its port’s Port Interrupt Enable register is 1.

¢ The polarity of the transition on the port pin matches the polarity set in
the pin’s bit in the corresponding Port Interrupt Polarity Register.

¢ If any previous GPIO interrupt has occurred, that pin’s state must have
returned to the inactive, or non-trigger state, or the pin’s bit in the Port
Interrupt Enable register must have been set to 0 (and may optionally
then be set back to 1). For a low-to-high interrupt trigger, the non-trigger
state is low; for a high-to-low trigger, the non-trigger state is high.

USB Endpoint Interrupts

The USB endpoint interrupts trigger on sending or receiving the last packet
in a transaction. In a Setup transaction, an interrupt occurs when the device
returns ACK or receives a flawed data packet. In an IN transaction, an inter-
rupt occurs on receiving the host’s ACK or if the device returns a NAK or
Stall. In an OUT transaction, an interrupt occurs when the device returns

ACK, NAK, or Stall or receives a flawed data packet.

USB Complete

Inside a USB Controller: the Cypress enCoRe

Timer Interrupts

The timer interrupts occur at intervals of 1.024 milliseconds and 128
microseconds. The firmware can use these interrupts for any purpose. One
use for the 1-millisecond interrupt is to measure the amount of time with no
USB activity to determine whether or not to enter the Suspend state.

Deciding whether to enter the Suspend state requires firmware support. The
code must maintain a count of the number of milliseconds that the bus has
been idle and cause the chip to enter the Suspend state when the count
equals or exceeds 3. The count can be stored in any spare location in RAM.

To find out if the bus has been idle, the firmware reads the bus-activity bit in
the USB Status and Control register. If the bit is 0, there has been no bus
activity and the firmware should increment the suspend counter. If the bit is
1, there has been activity, and the firmware should clear the suspend counter
and the bus activity bit by writing 0 to each:

lms_timer:

; Sample 1-millisecond timer routine

; that checks bus activity and enters the Suspend
; state if there has been no bus activity for over
; 3 milliseconds.

push A

lms_suspend timer:

; To check for bus activity,

; read the bus-activity bit

; in the USB Status register.

iord usb_status

and A, BUS ACTIVITY

;If it’s not 0, there has been bus activity.
jnz bus_activity

;If it’s 0, there has been no bus activity
;since the last 1-millisecond interrupt.

; Increment the suspend counter to keep track of
;the amount of time with no bus activity.

inc [suspend_ count]

mov A, [suspend count]

;Has it been over 3 milliseconds?

USB Complete 201

Chapter 8

202

cmp A, 04h

;If yes, enter the Suspend state.

jz usb suspend

;If no, we’re finished checking for bus activity.
jmp ms_timer done

usb suspend:

; Before entering the Suspend state,
; enable the Reset interrupt.

mov A, (USB_RESET INT)

iowr global int

; Set the Suspend bit in the control register
; and re-enable interrupts.

iord control

or A, SUSPEND

ei

iowr control

;On exiting Suspend, program execution beging here.
nop

; Look for bus activity.

; If there has been none, return to the Suspend state.
iord usb status

and A, BUS ACTIVITY

jz usb_suspend

; Exit the Suspend state.

; Enable the l1-milliscond and Reset interrupts.
mov A, (1MS_INT | USB_RESET INT)

iowr global int

bus activity:
; Bus activity was detected.

; Reset the Suspend counter to 0.
mov A, 00h;
mov [suspend count], A

; Clear the bus-activity bit.

iord usb_ status
and A, ~BUS ACTIVITY

USB Complete

Inside a USB Controller: the Cypress enCoRe

iowr usb_status

ms_timer done:
;Exit the l1-millisecond timer ISR.

pop A

reti
The Wake-up interrupt occurs at intervals set by firmware. If the chip is in
the Suspend state, the Wake-up interrupt will wake it. The Wake-up inter-
rupt is enabled whenever the Wake-up Interrupt Enable bit in the Global
Interrupt Enable Register is 1, even if hardware or firmware has disabled
interrupts.

Interrupt Status

The Processor Status and Control Register has two bits that relate to
interrupts.

The Interrupt Enable Sense bit shows whether interrupts are enabled (1) or
disabled (0). Firmware can control its state with the instructions DI (disable
interrupts), EI (enable interrupts), and RETT (return from interrupt-service
routine and re-enable interrupts. The hardware disables interrupts on enter-
ing an interrupt-service routine and re-enables them on exiting.

When interrupts are disabled, the IRQ Pending bit in the Processor Status
and Control register indicates when an interrupt has occurred but has been
ignored because interrupts are disabled. The bit remains set until the inter-
rupt(s) are enabled and serviced.

CPU Status, Control, and Clocking

The Processor Status and Control Register contains seven bits that relate
to the chip’s overall operation. Two bits can stop the CPU, two bits relate to
resets, and three bits relate to interrupts. In addition the Clock Configura-
tion Register has bits that relate to resets and CPU clocking.

USB Complete 203

Chapter 8

204

Halting the CPU

To stop the CPU, the HALT instruction sets the Run bit in the Processor
Status and Control Register to 0. The CPU stops executing instructions
until a reset occurs. The CPU resumes at address 0.

Writing 1 to the Suspend bit in the Processor Status and Control Register
puts the chip in the Suspend state. The chip stops executing instructions
until there is USB activity or a pending, enabled interrupt occurs. The CPU
resumes at the instruction following the instruction that set the Suspend bit.

Resets

The CPU supports three types of reset: Low Voltage, Brown Out, and
Watch Dog. Each is triggered by a different event. A fourth type of reset is
the bus reset that a USB host may request to restart USB communications.

On a Low-Voltage or Brown-Out reset, the chip is placed in a known state:
the PSP and DSP are set to 0, the USB address is set to 0, interrupts are dis-
abled, and registers return to their default states. The GPIO, USB, and
VREG pins are high impedance. USB communications are disabled. A chip
using an external clock switches to the internal clock. After a short delay,
program execution begins at 0. After reset, the firmware is responsible for
writing the desired default values to registers and variables. After enabling
USB communications, the chip has to wait to be enumerated by the host
before it can do other USB communications.

A useful feature is the ability to shut the chip down automatically if the sup-
ply voltage is low and start it up again when voltage is restored. The
Low-Voltage and Brown-Out resets perform this function.

A Low-Voltage Reset occurs when the supply voltage is below the low-volt-
age-reset voltage of 3.5 to 4.0V. This reset also acts as a power-on reset that
occurs when power is first applied to the chip. The internal oscillator runs,
but the chip is held in reset until the supply voltage reaches the reset thresh-
old and 24 to 60 milliseconds has elapsed. The delay gives the supply volt-

age time to stabilize.

After power up, a Low-Voltage Reset occurs any time the supply voltage falls
below the threshold, unless firmware has set the Low Voltage Reset Disable

USB Complete

Inside a USB Controller: the Cypress enCoRe

bit in the Clock Configuration Register, or unless the device is in the Sus-
pend state.

When the Low-Voltage Reset isn't enabled, the Brown-Our Reser takes over.
This reset does nothing until the supply voltage is below about 2.5V. The
Brown-Out Reset is also active when the chip is in the Suspend state. This
enables a suspended chip to have a lower supply voltage and still preserve the
states of registers and memory. If the voltage falls below 2.5V and a
Brown-Out reset occurs, the chip remains in reset undl the supply reaches
the low-voltage reset threshold.

The Watch-Dog Reset prevents the firmware from hanging by requiring the
firmware to reset a watch-dog timer periodically. If the timer isn't reset,
something has gone wrong and the firmware restarts. To prevent a
Watch-Dog Reset, firmware must write any value to the Watch Dog
Restart Register at least once every 10 milliseconds. If it fails to do so, the
watch-dog timer overflows and triggers a reset. This reset behaves like the
Low-Voltage and Brown-Out resets, except that the chip will continue to
use an enabled external clock and the reset delay is just 2 to 4 milliseconds.

The interrupt-service routine for the 1-millisecond timer might seem a nat-
ural place to write to the Watch Dog Restart Register, but it’s possible for
firmware to stall or get stuck in a loop while still being able to service this
interrupt. So it’s best to reset the watch dog in the firmware’s main task loop
and also in any other routines that may take longer than 10 milliseconds.

Firmware can’t disable the Watch Dog interrupt. The Processor Status and
Control Register has a bit that indicates if a Watch Dog reset has occurred,
and a bit that indicates if a Low Voltage or Brown-out reset has occurred.

A USB Bus reset occurs when the host sends a reset by bringing both USB
signal lines low for at least 10 milliseconds. This doesn’t reset the CPU. It
just calls the USB Bus Reset interrupt-service routine. The bus-reset routine
must cause the chip to stop USB communications and wait to be enumer-
ated. And if this is necessary, the firmware is likely to want to start fresh
from 00h as it does on the other resets. Here is example bus-reset code that
does this:

bus reset:

USB Complete 205

Chapter 8

206

;Disable USB communications, then reset the firmware.
; Return Stall to IN and OUT token packets.

mov a, STALL IN OUT

iowr ep0_mode

; Enable USB address 0.

mov &, ADDRESS ENABLE

iowr usb_address

; Disable Endpoints 1 and 2.
mov a, DISABLE

iowr epl mode

ilowr ep2_ mode

; Set the program stack pointer to 0.
mov A, 00h

mov psp, a

; Execute reset code.

jmp reset

Selecting and Controlling the Clock

A very convenient feature of the enCoRe is its on-chip oscillator. Theres no
need to connect an external crystal or resonator unless the device needs a
more precise frequency for other functions. An external clock can be a crys-
tal oscillator or ceramic resonator, plus any required capacitors at the XTA-

LIN and XTALOUT pins.

The Clock Configuration Register has four bits that relate to clocking the
CPU. The chip always uses the internal clock on power up and on returning
from a Low-Voltage or Brown-Out reset. Firmware can then set the External
Oscillator Enable bit to 1 to switch the CPU to an external clock. If this bit
is 0, the XTALIN pin is a general-purpose input (P2.1).

When using the internal clock, the Internal Clock Output Disable bit deter-
mines whether XTALOUT is a logic high or a 6-Megahertz clock.

When using an external clock, the External Clock Resume Delay bit selects
one of two delay times when switching to the external clock or waking from
the Suspend state with the external clock enabled. As a rule, ceramic resona-
tors can use the 128-microsecond delay, while crystals will need the 4 milli-
second delay.

USB Complete

Inside a USB Controller: the Cypress enCoRe

When firmware has set the Precision USB Clocking Enable bit to 1, the
clock frequency meets USB’s 1.5% tolerance requirements.

Power Management
The chip requires a power supply of 4.0 to 5.5V DC.

To save power and to comply with the USB specification, the chip can enter
a Suspend state that powers down everything except what’s needed to detect
USB activity and whatever external interrupts are enabled. The on-chip
oscillator stops, so there is no clock to cause program instructions to exe-
cute. The chip just waits for an event that will end the Suspend state.

The events that will end the Suspend state are non-idle activity at the USB
receiver, the triggering of an enabled interrupt at an 1/O pin, an SPI slave
interrupt, or a Wake-Up interrupt.

The chip enters the Suspend state by writing 1 to the Suspend bit in the
Processor Status and Control Register. Program execution stops. When an
event brings the chip out of the Suspend state, program execution begins at
the instruction following the iowr instruction that suspended the chip.

The firmware can put the chip into the Suspend state at any time, bur it
must do so if there has been no USB activity (including low-speed
keep-alive signals) for three milliseconds. And as Chapter 19 explains, a
device suspended for this reason must consume very little bus power, as little
as 500 microamperes in some cases.

There are some things the firmware can do to ensure the lowest possible
power consumption. The firmware should set unused bits on ports 0 and 1
to pull-up mode. On 18-lead packages, this includes P1.2 though P1.7,
which are not brought out to external pins. The GPIO interrupt bits in the
Port 0 and 1 Interrupt Enable Registers should all be 0, even if the GPIO bit
in the Global Interrupt Enable Register is 0.

USB Complete 207

Chapter 8

208 USB Complete

Writing Firmware: the Cypress enCoRe

9

Writing Firmware:
the Cypress enCoRe

Whatever controller chip you select for a project, it won't be much use until
you write the code that enables it to communicate with the host and the
other circuits in your peripheral. In this chapter, I again use the Cypress
enCoRe series an example, this time to show what’s involved in writing and
debugging USB firmware, including a review of development tools. Even if
youre using a different chip, this chapter will give you an idea of what the
process involves.

Hardware and Firmware Responsibilities

In a USB transfer, the CY7C63743’s serial interface engine handles many of
the tasks, but the firmware still has plenty to do. Here is a look at the
responsibilities of each.

USB Complete 209

Chapter 9

What the Hardware Does

210

These are the tasks the hardware does on its own:

Detects new incoming packets.

Translates received information from the encoded format used on the

USB’s data lines.

Determines whether a transaction is directed to the chip’s USB address
and if not, ignores the transaction.

For transactions with Endpoint 0, determines the transaction type
(Setup, IN, or OUT) and sets a bit in the endpoint’s USB Mode register
to indicate which type it is.

For received data, the hardware also does the following:

Stores valid received data in the endpoints buffer or toggles a register bit
to indicate an error in received data.

Sets the count in the Endpoint Counter Register to match the number of
received bytes.

Stores the data-toggle state of valid received data.

Calculates CRC values, compares them to the received CRC values, and
takes action on detecting an error.

Sends the appropriate handshake to the host.

Triggers an interrupt so the firmware can prepare for the next transac-
tion.

For data to be transmitted, the hardware also does the following:

Translates data to be transmitted from the bytes in the USB buffer to the
format used on the USB’s data lines.

Sends the number of bytes specified in the Endpoint Counter Register
onto the USB lines in response to the host’s IN token packet.

Calculates and sends CRC bits with the data.
Sends a data-toggle code with the data.

On receiving a handshake from the host, triggers an interrupt.

USB Complete

Writing Firmware: the Cypress enCoRe

What the Firmware Does

The firmware’s job in USB communications is to supplement the hardware’s
capabilities and ensure that the device exchanges data as needed in both
directions. The following code is adapted from Cypress’ example firmware.

Endpoint 0 Interrupts

An interrupt at Endpoint 0 indicates activity that the firmware should check
into. On receiving an Endpoint 0 interrupt, the firmware pushes the accu-
mulator and index registers. The firmware checks the ACK bit in the End-
point 0 Mode Register and exits if the transaction didn’t complete with an
ACK. Otherwise, the firmware checks the same register to find out whether
a Setup, IN, or OUT token packet was received, then jumps to a routine to

handle it:

endpointO:
push X
push A

; Read the ep0 mode register to enable writing to
; the endpoint's buffer.

iord epO_mode

; If EPO_ACK isn't set, the transaction didn't

; complete with an Ack, so exit the routine.

and A, EPO ACK

jz ep0_done

; Bit 5, 6, or 7 in ep0 mode is set to indicate

; whether the transaction type is Setup, In, or Out.
; Find out which it is and jump to handle it.

iord ep0_mode

asl A

je ep0_setup received
asl A

je ep0_in received

asl A

je ep0_out_ received
ep0_done:

POPA
popX

USB Complete 211

Chapter 9

212

reti

If it’s a Setup transaction, the firmware determines which request it is and
jumps to a routine to handle it:

ep0_setup received:

; Clear the Setup bit to enable

; writing to Endpoint 0’s buffer.
mov A, NAK IN OUT

iowr epO mode

; Extract the 5-bit bmRequestType in

; Endpoint 0’s byte 0.

mov A, [bmRequestTypel

; Bits 2, 3, and 4 are unused here, so set to 0.
and A, E3h

push A

; Shift right 3 places to move bits 5, 6, 7

; into bits 2, 3, and 4’s places.

asr A
asr A
asr A

; Save the result.

mov [int temp], A

; OR the result with the original wvalue

; to restore bits 0, 1.

pop A

or A, [int temp]

; Clear bits 5, 6, & 7 (unused).

and A, 1Fh

; Shift left to multiply by two because the

; the index table’s jumps are two bytes each.
asl A

; Use a jump table to get the address to jump to
; to handle the request indicated in bmRequestType.
jacc bmRequestType jumptable

Sending Data to the Host

When a request requires Endpoint 0 to send data to the host in the Data
stage, the firmware stores two values and calls an
initialize control read routine to get ready for the expected IN

USB Complete

Writing Firmware: the Cypress enCoRe

transaction(s). The value maximum data count is the amount of data

available to send.

initialize control read:

; ep0 _transtype indicates the transaction type.
The firmware uses this value to decide how to
; respond to token packets.

; If the firmware has jumped here,
it’s a control Read transaction:
mov A, TRANS CONTROL READ

mov [ep0_transtypel]l, A

; Set the data toggle to 1
mov A, DATA TOGGLE
mov [ep0_data toggle], A

; Find the lesser of the requested data (in wLengthhi
; and wLengthlo) and the maximum data available

; (in maximum data count).

; Store this value in maximum data count.

; If wLengthhi > 0,

; maximum data count is the smaller value.
mov A, [wLengthhi]

cmp A, 00h

jnz initialize control read done

; If wLengthhi = 0 and wLengthlo > maximum data count
; maximum data count is the smaller value.

mov A, [wLengthlo]

cmp A, [maximum data count]

jnc initialize control read done

; Otherwise, wLengthlo is the smaller value.
mov A, [wLengthlo]
mov [maximum data count], A

initialize control read done:
jmp control read data stage

The firmware then loads data into Endpoint 0’s buffer and configures the
endpoint to return the data when the host sends an IN token packet.

USB Complete 213

Chapter 9

control read data stage:

; Load Endpoint 0's buffer with data to send.

; Initialize the index register.

mov X, 00h

; If all of the data has been sent, we’re done.
mov A, [maximum data count]

cmp A, 00h

jz dmabuffer load done

dmabuffer load:

; Load a byte number into the buffer.
mov A, X

; If the buffer is full, we’re done.

cmp A, 08h

jz dmabuffer load done

; The data to send begins at

; (data start + control read table).

mov A, [data start]

index control read table

; Use the X register to step through
; Endpoint 0’s buffer.
mov [X + ep0 dmabuffoO], A

inc X
; data start points to the byte to send.
inc [data_start]

; maximum data count is the number of bytes
; remaining to send.

dec [maximum data count]

; If no bytes remain, we’re done.

jz dmabuffer load done

; Otherwise, loop to load more data.

jmp dmabuffer load

dmabuffer load done:

; Unlock the counter register.

iord epO0_count

; Place the number of bytes loaded and

; the data toggle value in the counter register.
mov A, X

or A, [ep0_data_ togglel

iowr epO_count

214 USB Complete

Writing Firmware: the Cypress enCoRe

; Configure Endpoint 0 to return data on the next IN
; token packet or to check for a 0-byte data packet
; in an OUT transaction.

mov A, ACK IN STATUS OUT

iowr ep0_mode

; Toggle the data toggle.
mov A, DATA TOGGLE
xor [ep0 data toggle], A

pop A
pop X
reti

If there are more data packets, the device loads these into the endpoint
buffer in the same way. When the host is finished requesting data, it sends a
0-byte data packet in the Status stage. The device’s endpoint responds with
ACK and the firmware jumps to routine that sets the endpoint’s mode and
the transaction type:

control read status stage:

; Configure Endpoint 0 to return a 0-byte data packet

; in case there is another IN packet.

mov A, STATUS IN ONLY
iowr epO_mode

; No transaction is in progress.
mov A, TRANS NONE
mov [ep0_transtypel, A

pop A
pop X
reti

Receiving Data from the Host

When a request requires the host to send data to Endpoint 0 in the Data
stage, the firmware calls an initialize control write routine to
prepare to receive data in the expected OUT transaction(s). The variables
wLengthlo and wLengthhi hold the amount of data the host says it

will send.

initialize control write:

USB Complete 215

Chapter 9

; ep0_transtype indicates the transaction type.
; The firmware uses this value to decide how to
; respond to token packets.

; If the firmware has jumped here,

; the transaction type ig control Write:
mov A, TRANS CONTROL WRITE

mov [ep0_ transtypel, A

; Initialize the data toggle to 1.
mov A, DATA TOGGLE
mov [ep0 data toggle], A

;Send ACK in response to OUT packets,

;which will contain the Control Write data.

;Send NAK in response to IN packets (not expected).
mov A, ACK OUT NAK INe

iowr epO_mode

; Return from Endpoint 0’s ISR.

pop A
pop X
ret 1

When the host sends data in an QUT transaction, the device stores the data

in the endpoint’s buffer and triggers an interrupt to handle it. The firmware

uses the token packet and ep0_transtype value to jump to the appropri-

ate routine:

216

control write data stage:

; If the data-valid bit isn't set,
; we’re done with the data stage.
iord epO count

and A, DATA VALID

jz control write data stage done

; Compare the received data toggle
; with the expected value.

iord ep0_ count

and A, DATA TOGGLE

xor A, [ep0 data toggle]

; If it’s incorrect,

; we’'re done with the data stage.

USB Complete

Writing Firmware: the Cypress enCoRe

jnz control write data_ stage_ done

; Copy the received bytes to data memory.
; This example copies two bytes.
mov A, [ep0 dmabuffo]

mov [data byte 0], A
mov A, [ep0_dmabuffl]
mov [data byte 1], A

;Toggle the data-toggle bit.
mov A, DATA TOGGLE
xor [ep0 _data toggle], A

If all of the data has been received,

configure Endpoint 0 to send a O-byte data packet
; in response to an IN packet (the transfer's status
; stage) or to Stall an Out packet (not expected).

mov A, STATUS IN ONLY
iowr epO mode

control write data stage done:
; Return from Endpoint 0’s ISR.
POPA
popX
reti

After the endpoint has responded to the 0-byte IN transaction in the Status
stage, an interrupt triggers and the firmware re-configures the endpoint and
sets ep0_transtype:

control write status_stage:

Jump here if the device has received an IN token
; packet with ep0 transtype = TRANS CONTROL WRITE.
The device has sent a 0-byte IN data packet to
complete the transfer because ep0 mode was set to
Status In Only at the end of the data stage.

Configure Endpoint 0 to return ACK on receiving
; a 0-byte data packet and to return Stall on INs.
mov A, STATUS OUT ONLY

iowr epO_mode

2

USB Complete 217

Chapter 9

; No transfer is in progress.
mov A, TRANS NONE
mov [ep0 transtypel, A

; Return from Endpoint 0’'s ISR.

pop A
pop X
reti

Handling Interrupt Transfers

The code for handling interrupt transfers at Endpoints 1 and 2 isnt as com-

plicated, because these transfers don’t have multiple stages to manage. On an

IN endpoint, the interrupt triggers after the endpoint has sent data or a
NAK in a transaction. Here is code that enables Endpoint 1 to respond to

IN interrupts:

218

endpointl:

push A

; Get ready for the next transaction.
; Toggle the data toggle.

mov A, 80h

xor [epl data toggle], A

; Set the event machine variable to indicate that
; no transaction is in progress.

mov A, NO EVENT PENDING

mov [event machine], A

; If the endpoint has been set to Stall,
; set the mode to Stall INs and OUTs.
mov A, [epl stall]

cmp A, FFh

jnz endpointl done

mov A, STALL IN OUT

iowr epl mode

endpointl done:

pop A
reti

USB Complete

Writing Firmware: the Cypress enCoRe

In a similar way, the interrupt-service routine for an OUT endpoint
retrieves the received data (as in a Control Write transaction) and gets ready
for the next transaction.

Other Responsibilities

The examples above show the essence of USB communications with the
CY7C63743. There are other details, of course. For example, during control
transfers the firmware must check periodically to find out if another Setup
token has arrived, and if so, abandon the current transfer and start the new
one. The firmware must also remember to clear the watch-dog timer in any
loop that might otherwise allow the timer to run without a reset for 10 mil-
liseconds. I also haven’t covered the specifics of how to respond to each con-
trol request. Again, Cypress provides example code for the essential
functions and my website (www.Lvr.com) has firmware examples that build
on Cypress’ examples.

Hardware Development Tools

For project developing for the enCoRe, Cypress offers a Development Kit
for debugging code and third-party PROM programmers for storing code in
the chips’ PROMs.

The Development Kit

The CY3654 Development Kit enables you to test your code and circuits
and find problems quickly.

The system includes a set of circuit boards (Figure 9-1) and a debugging
program that together enable you to load your assembled or compiled code
from a PC to the board’s RAM. The RAM emulates the controller’s PROM.
You can run and debug code while using your PC to monitor and control
program execution. Downloading to RAM makes it easy to modify the
code. Manufacturers of other USB chips have similar development systems

for their chips.

USB Complete 219

Chapter 9

To use the Development Kit, you need a PC running Windows 98 or later
with available USB and RS-232 ports.

The Platform Board

The Development Kit’s main Platform board doesn’t contain an enCoRe
chip. Instead it has circuits that emulate the functions of the chip while
allowing you to monitor and control program execution.

Figure 9-1 shows a typical setup. The Platform board contains the circuits
that emulate the microcontroller. It has connectors for a Personality Board
and an RS-232 connection to a PC. The Platform board also has a USB

connector for possible future use as an alternative to the RS-232 connection.

A

Figure 9-1: In the CY3654 Development System, a Personality Board attaches
on top of the main Development Board. An RS-232 port enables communicating
with the monitor program. A cable and Target Adapter connect the Personality
Board to an Application Board (right), which has a USB port.

220

USB Complete

Writing Firmware: the Cypress enCoRe

The Personality Board configures the emulator for a specific chip. A series of
similar chips may share the same Personality Board. For example, all of the

enCoRes use the P05 board, while the CY7C634/5/0xx chips use the P02
board.

A cable assembly connects the Personality Board to a Target Probe Adapter
that in turn connects to the Application Board.

The Application Board contains the USB connector and a prototyping area.
The board supports several example applications, with components for some
installed. You can use your own application board in place of the one pro-

vided.

The development kit connects to a PC via both USB and RS-232 interfaces.
These may, but don’t have to, connect to the same PC. The USB interface of
course carries the USB communications between a PC and the device’s USB
port. The debugger uses the RS-232 interface to send object code and to
send and receive debugging information such as breakpoints and register
contents. The board uses an external power supply, which is included.

The Application Board has several features for experimenting:

* Solder pads for the GPIO pins.

* A header for a cable to a logic analyzer or other circuits that connect to

the GPIO pins.

e A temperature converter that uses an SPI interface (Dallas Semiconduc-
tor DS1722).

e An EEPROM that uses an SPI interface (Xicor X25020).
* Solder pads for four surface-mount LEDs, with two installed.

* Solder pads for three surface-mount push-button switches, with one
installed.

* Solder pads for adding Linx Technologies’ TXM and RXM RF interface

modules.

* Prototyping area.

USB Complete 221

Chapter 9

222

Setting Up the Development Board

Setting up the Development Board for use requires attaching five compo-
nents in series. There are a few places where you can plug something in
wrong, so I'll go over the steps:

1. Plug the Personality Board into the Development Board. The Personality
Board rests on top of the Development Board. The bottom of the Personal-
ity Board has two headers that plug into connectors on the Development
Board. The connectors are keyed so you can't plug them in backwards.

2. Plug one end of the cable assembly into the Personality Board. One end
of the cable assembly has a circuit board with two 40-pin sockets (J1 and
J2). These mate with the two 40-pin headers on the Personality Board.
These connectors are 7ot keyed, so be sure to plug the cable in correctly. The
sockets and pins are labeled (J1 and J2). The cable should point away from
the Development Board, not across it.

3. The Personality Board has one jumper. Leave J8 open to use bus power to
power the Application Board’s circuits. Jumper J8 to power the Application
Board from the Development Board’s supply, with a limit of 100 milliam-
peres.

4. Plug the other end of the cable assembly into a Target Adapter. |3 and J4
on the cable assembly are two 40-pin sockets that mate with pins on one of

the provided Target Adapters. The Application Board uses the 24P DIP
Adapter. These connectors are keyed.

5. Plug the Target Adapter’s pins into the DIP socket on the Application
Board. This connection is not keyed. The cable should point away from the
Application Board, not lie across it.

6. Connect an RS-232 cable from the Development Board to your PC’s
serial port.

7. Connect a USB cable from the Application Boards USB connector to a
USB port on your PC. Don’t use the USB connector on the larger Develop-
ment Board.

8. Plug the power supply into an AC outlet and the Development Board’s

CONNECtor.

USB Complete

Writing Firmware: the Cypress enCoRe

ik : sue | tpe
Part (1 Dala ODn 0xB8 R
Part1 Data 001 0B AW
Poit2 Data 002 02 R

| PortinteruptEnable OxB4 (042 W

| Portt interruptEnable k05 Oxdd W
Port Interrupt Polarity 005 Ied2 W
Fort 3 Intenmupt Poleeity 0x07 0x42
ot Modal OOz Oxd2
Portd Model OxBb 042 g 5
Part 1 Woded Oxle - 0<42 E a6 Bé [05]
Port1 Model Ox0d - 0xd2

{USB Device Address 0«10 k00 4 g ., BE [105]
EP O Counter Pegister Oxf1 x00 /

EPOMode Pegister 0xi2 000 0& 83 Db [0S]

(EF 1 Counter Register O0xi3 - 0x00 §
EP 1 Modle Reyister Oxtd 000 ; GGc 80 14 [05]
EP 2 Counter Fegister 0x16 0«00

{EP 2 Mode Register 016 0x00
UBB Slatus & Control Oxf Ux18

L Global Interrupt Enable 0x20 000
EndpointintermptEna.. @1 Tl
Tirner (LSB) 0x24 Oxida Aclidrass
Timer (M3B) 025 Gt (R Lo
Watchdsg Timer Clear 0x26 - 0x00 | oot
Caplure Timer ARising 0x4) 0200 i 120
Caplure Timer A Fallng - 0x41 000 g 5000030

s Ceplure Tiner B Rizng. 0x42 0x00 2
Caplure Timer 8 Faling - 0x43 000 50 IRL ra 0 la 28

Coplure Tirer Gonfigu.. 04 D200 / 000G ; Al 7319 oo 13

Capture Timer Status x5 0«00 BAY 3231 2d4 BD 5% 219 80
5P Data Register 0x60 - 000 : , s

- 5P Contral Register Ox61 00
Clock Configuration Ot 000

- Processor Status & Co. Oxdf 71

;.!.Q)i'#.‘kkk‘h’}ﬂ‘le inc-.-‘:rrup'\: vector table *Asdkdtdracdadadd

oRE OO0k
1B [05]) jmp reset ; reset vector

Jrup bz resst ; bus reset interrupt
14 [05] Jap Brror ; 128us interrapt
g Lus_tins ; 1.024ms interrupt
G endpointd ; endpoint U interrupt

I endpoeintl ; endpoint 1 interrupt.

g error ; endpoint 2 intervupt

o
0 a0
onean

0000030 a 04 00

0000040 05 .00
0 - 00
o600 [i
o :an o]
0040 o] f]
o nn

Figure 9-2: Cypress’ CYDB monitor and debugger enables you to control
program execution and view the status of memory and registers.

The Debugger

The companion to the development board is the CYDB debugger, or moni-
tor program. In addition to enabling you to load and run your firmware, the
debugger has features that can help enormously in tracking down program

bugs.

Figure 9-2 shows the user screen, which you can customize to show the
information you want. The View menu allows you to select which windows

USB Complete 223

Chapter 9

224

display, including program and data memory, CPU and I/O registers, and
breakpoints.

The Development Kit comes with a manual that guides you through setting
up the system and getting started with the debugger.

Here's an example of how to use the Development Kit to run your firmware:

1. Write your source file in assembly code and use the Cyasm assembler to
create an object file. The object file can be a .7om or .hex file, and contains
your firmware’s machine-code instructions in an ASCII Hex format. For
your device to enumerate, it will also need an INF file on the host, as
described in Chapter 11. If your firmware identifies the device as HID class,
you can use the HID INF file that’s provided with Windows.

3. Plug in the Development Board’s power supply and connect the RS-232
and USB cables to the host PC.

4. Run the debugger.

5. Configure the debugger for your development hardware. From the Con-
figure menu, select Target to display the Configure Target/Emulator win-
dow. Figure 9-3 shows the window as it appears after the configuration
process is complete. Click the Connect button. In the window that appears,
select a COM port and click OK. When the debugger has finished the con-
figuration communications, the text under the Current Emulator Configu-
ration label changes from Not Connected to Connected, and the Connect
button’s caption changes to Update. Click OK to close the window.

6. Download and run your code. To download code to the emulator, click
the DL button or select Run, Download from the menu. In the window that
appears, select a .hex or .7om file and a listing file and click OK. The debug-
ger loads the selected file into the emulator’s memory and displays the
selected listing file.

To run the firmware, click the R button or select Run, Run from the menu.
If all is well, the firmware will run and Windows will enumerate the device.
The R button will be grayed out and the Stop button will appear as a solid
red circle.

USB Complete

Writing Firmware: the Cypress enCoRe

Configure Trget!EmuIatm

Figure 9-3: In the CYDB debugger, use the Configure Target/Emulator window
to establish communications with the development board.

To stop the code, click the Stop button or click Run, Stop in the menu. To
restart at the instruction where the firmware stopped, click Run. To restart
from the beginning of program memory, click Reser.

Debugging Tips

The debugger enables you to precisely monitor and what the device’s firm-
ware is doing.

You can execute a portion of your application, then examine the states of all
of the device’s registers and RAM, or even change their contents on the fly.
You can set a breakpoint to find out when and if a section of code executes.
You can single-step through the code to find out exactly what the code does
and where it branches. The Platform board’s hardware and firmware disable
the Watch Dog timer during single-stepping.

USB Complete 225

Chapter 9

For example, if you suspect that a routine in your firmware never executes,
you can use the monitor program to set a breakpoint in the routine. If the
monitor stops program execution at the breakpoint, you know that the rou-
tine is executing. If you suspect the routine isnt doing what you intended,
you can single-step through it and watch the contents of any registers and
memory locations of interest in each step. The CPU Registers window
shows the current value of the program counter (PC) and the listing file’s
display shows your code. To update the display of the emulated chip’s regis-
ters and memory, click View > Refresh.

You can use your own application along with the development tools to test
the firmware in its intended use. For example, you can run an application
that enables users to click buttons to send and receive HID reports. You can
keep the debugger open at the same time as you run your own application.
This way, you can watch what’s going on inside the emulated chip as your
application runs.

One thing that’s missing in the debugger is the ability to search a listing file
for specific text. This makes it hard to find a specific line of code to set a
breakpoint. So I keep a copy of the listing file loaded into a word processor
and use that for searching. When I find the line of code I'm looking for, I
note the line number and switch back to the debugger to set the breakpoint.

PROM Programming

226

When your code looks OK on the emulator and you're ready to try it out in
a chips PROM, you'll need a PROM programmer. Several vendors have
programmers that are capable of this. An inexpensive one is the CY3649
Hi-Lo PROM Programmer, available from Cypress.

Programming chips in the enCoRe series requires two additional compo-
nents, the CY3083-DP48 Adapter Base, which adapts the programmer for a
specific package type, and the CY3083-08 Matrix Card, which routes the
signals for a specific pinout. Both are available from Cypress.

Figure 9-4 shows the programmer, and Figure 9-5 shows the programmer
application’s display. The programmer is the same one provided with some

USB Complete

Writing Firmware: the Cypress enCoRe

Figure 9-4: Cypress offers an inexpensive programmer and adapters for the
enCoRe series and other chips. The photo shows an Adapter Base inserted into
the programmer’s ZIF socket. The Adapter Base holds a matrix card and a chip
to be programmed.

of the now discontinued Starter Kits for the CY7C63000 series. If the pro-
grammer is labeled “Programmer for Starter,” it’s usable with the enCoRes if
you update the software and get the Adapter Base and Matrix Card. If the

programmer is labeled “Programmer for CY630...,” it won't work with the
enCoRes.

The programmer connects to the PC via an RS-232 serial port. (The unit
was probably adapted from an existing design that predates USB.) As with
other EPROM programmers, you place the chip to be programmed in a
zero-insertion-force (ZIF) socket and flip the lever to lock in the chip.

These are the steps to program a chip:

1. Insert the Matrix Card into the Adapter Base and place the Adapter Base
into the programmer’s ZIF socket and lock it into place

USB Complete 227

Chapter 9

ass Stan Kit U3E Programmer

AT CYPRFESS
Type @ C¥TCR3T43 (24 pin DIP)
Adapler | CYI0H3-DRAUHCYI0HI-0Y
NOME
10 Rase addr. : GOMI (AFR)
Baudratc: 9600

File Formats : File Status : Start ... End

- Binn . : Newice: NOBO0D 00TFDF
Fils start: jgo00000 | Buffer: 000000 001FDF
MOTOROLA S Record | Butfer Checksum :8CE4
Unused Dytes : Flla end: J00001FFF ﬁ Bulfer Sice(Byles)BK
& Don't Care Buff start: :

~ 00 ChE

Figure 9-5: The software for Cypress Semiconductor's EPROM programmer
enables you to program a file in any of several formats into Cypress chips,
verify, and protect the code from copying by blowing the security fuse.

228

2. Place a chip to be programmed into the Adapter Base’s ZIF socket and
lock it into place.

3. In the Setup window, select a COM port and bit rate. A message will
inform you when the software has located the programmer.

4. From the Device menu, select the device to be programmed.

5. From the File menu, select Load File to Buffer. Select a . /ex file created by
the Cyasm assembler. The programmer software is 16-bit, so long file and
folder names will be truncated. In the window that appears, select file for-
mat = Intel Hex, File Start = 0000, File End = 1FFE Buffer Start = 0000,
and Unused Bytes = Don’t Care.

6. Click Auto, then OK. This will cause the programmer to do four things

in sequence. The programmer will verify that the chip is erased (contains all

USB Complete

Writing Firmware: the Cypress enCoRe

FFs). It will program the buffer’s file into the PROM, beginning at 0000h. It
will verify that the chip’s contents match the buffer.

The Security button blows the chip’s security fuse to prevent anyone from
reading the code stored in the chip. Anyone who tries to read the code in the
device will see only FFs. Once the security fuse is blown, the device can no
longer be programmed.

You can also do an individual blank check, program, verify, and security pro-
tection of the code. An edit menu enables you to edit individual bytes in
buffer, search, move blocks of bytes, and fill areas with a value.

I found the programming software to be a little quirky. At higher bir rates,
the programmer sometimes failed to read or program the device. After
switching to 9600 bps, a device that failed at a higher bit rate passed the
blank test but refused to be programmed until | re-erased. At slower rates, I
had no problems. Because the amount to be programmed is small, the pro-
gramming completes quickly enough even at a slower bir rate.

USB Complete 229

Chapter 9

230 USB Complete

How the Host Communicates

10

How the Host
Communicates

A USB peripheral is of no use if its host PC doesn’t know how to communi-
cate with it. Under Windows, any communication with a USB peripheral
must pass through a device driver that knows how to communicate both
with the system’s USB drivers and with the applications that access the

device.

This chapter explains how Windows applications communicate with USB
devices and explores the options for device drivers.

Device Driver Basics

A device driver is a software component that enables applications to access a
hardware device. The hardware device may be a printer, modem, keyboard,
video display, data-acquisition unit, or just about anything controlled by cir-
cuits that the CPU can access. The device may be inside the computer’s

USB Complete 231

Chapter 10

enclosure (an internal disk drive, for example) or it may use a cable to con-
nect to the computer (as with a keyboard or mouse). The device may be a
standard peripheral type or a unique design for a special purpose. It may be
a one-of-a-kind, custom device. Some device drivers are class drivers that
handle communications with a variety of devices that have similar functions.

Insulating Applications from the Details

232

A device driver insulates applications from having to know dertails about the
physical connections, signals, and protocols required to communicate with a
device. Applications are the programs that users run, including everything
from popular word processors and databases to special-purpose applications
that support custom hardware.

A device driver can enable application code to access a peripheral when the
application knows only the peripheral’s name (such as HP Laser]et) or the
device’s function (joystick). The application doesn’t have to know the physi-
cal address of the port the peripheral atraches to (such as 378h), and it
doesn’t have to explicitly monitor and control the handshaking signals that
the peripheral requires (Busy, Strobe, and so on). Applications don’t even
have to know whether a device uses USB or another interface. The applica-
tion code can be the same for all interfaces, with the hardware-specific
details handled at a lower level.

A device driver accomplishes its mission by translating between applica-
tion-level and hardware-specific code. The application-level code uses func-
tions supported by the operating system to communicate with device
drivers. The hardware-specific code handles the protocols necessary to access
the peripheral’s circuits, including detecting the states of status signals and
toggling control signals at appropriate times.

Windows includes application programmer’s interface (API) functions that
enable applications to communicate with device drivers. Applications writ-
ten in Visual Basic, C/C++, and Delphi can call API functions. Three func-

tions that device drivers may support for reading and writing to USB devices
are ReadFile, WriteFile, and DeviceloControl.

USB Complete

How the Host Communicates

Although API functions simplify the process of communicating with hard-
ware, they tend to have specific and rigid requirements for the values they
pass and return. It’s not unusual for a mistake in an API call to result in an
application or even a system crash.

To make programming simpler and safer, Visual Basic has its own controls
for common tasks. For example, applications can use the Printer Object to
send data to printers and the MSComm control to communicate with
devices that connect to RS-232 serial ports. The controls provide an easier
and more failsafe programming interface for setting parameters and
exchanging data. The underlying code within the control may use API func-
tions to communicate with device drivers, but the control insulates applica-
tion programmers from dealing with the sometimes arcane details of the API
calls.

Visual Basic doesn’t have a generic control for USB communications, how-
ever. How an application communicates with a USB device varies with the
driver assigned to the device. For example, a Visual-Basic application can
use the Printer object to communicate with a USB printer.

Some device drivers are monolithic drivers that handle everything from
communicating with applications to reading and writing to the ports or
memory addresses that connect to the device’s hardware.

Other drivers, including Windows drivers for USB devices, use a layered
driver model where each driver in a series performs a portion of the commu-
nication. The top layer contains a function driver that manages communica-
tions between applications and the lower-level bus drivers. The bottom layer
contains a bus driver that manages communications between the function
driver and the hardware. One or more filter drivers may supplement the
function and bus drivers.

The layered driver model is more complicated as a whole, but it actually
simplifies the job of writing drivers. Devices can share code for tasks they
have in common. Plus, the drivers that handle communications with the
system’s USB hardware are built into Windows, so driver writers don’t have
to provide them. Writing a device driver for a USB device is typically much

USB Complete 233

Chapter 10

easier than writing a driver that has to handle the details of accessing the
hardware.

Options for USB Devices

234

There are several approaches to obtaining a driver for a device. Sometimes
you can use a driver that’s included with Windows or provided by a chip
vendor or other source. For other devices, you may need to write a custom
driver. A variety of toolkits are available to simplify and speed up the task of
driver writing. Sometimes more than one way will work, and the choice
depends on a combination of what's easier, cheaper, and offers better perfor-
mance.

Standard Device Types

Many peripherals fit into standard classes such as disk drives, printers,
modems, keyboards, and mice. All of these are available with a choice of
interfaces, including USB. For example, a keyboard may use the original leg-

acy keyboard interface or USB. A disk drive may use any of a number of
interfaces, including ATAPI, SCSI, printer-port, IEEE-1394, and USB.

Windows includes class drivers for many standard device types. When
devices in a class may have different interfaces, supplemental drivers can
support the various interface options. And if a device has features or capabil-
ities beyond what the class driver supports, a device-specific filter driver can
support these as needed.

Custom Devices

Some peripherals are custom devices intended for use only with specific
applications. Examples include data-acquisition units, motor controllers,
and test instruments. Windows has no knowledge of these devices, so it has
no built-in drivers for them. Devices like these may use custom drivers, or
they may be designed so they comply with the requirements for a supported
class. For example, a data-acquisition device may be able to use the HID
drivers.

USB Complete

How the Host Communicates

How Applications Communicate with Devices

To understand what the device driver has to do, you need to understand
where the driver fits in the communications path of a data transfer. Even if
you don’ need to write a driver for your device, understanding the driver’s
role will help in understanding the application-level code that you do write.

What Is a Device Driver?

In the most general sense, a device driver is any code that handles communi-
cation details for a hardware device that interfaces to a CPU. Even a short
subroutine in an application can be considered a device driver. Under Win-
dows, the code for most drivers, including USB drivers, differs from applica-
tion code because the operating system allows the driver code a greater level
of privilege than it allows to applications.

User and Kernel Modes

Under Windows, code runs in one of two modes: user or kernel. Fach
allows a different level of privilege in accessing memory and other system
resources. Applications must run in user mode. Most drivers, including all
USB drivers, run in kernel mode, though a USB device may also have a sup-
plementary user-mode driver.

In user mode, Windows limits access to memory and other system resources.
Windows won't allow an application to access an area of memory that the
operating system has designated as protected. This enables a PC to run mul-
tiple applications at the same time, with none of the applications interfering
with each other. In theory, even if an application crashes, other applications
are unaffected. Of course in reality it doesn’t always work that way, but that’s
the theory. On Pentiums and other x86 processors, user mode corresponds

to the CPU’s Ring 3 mode.

In kernel mode, the code has unrestricted access to system resources, includ-
ing the ability to execute memory-management instructions and control
access to I/O ports. On Pentiums and other x86 processors, kernel mode

corresponds to the CPU’s Ring 0 mode.

USB Complete 235

Chapter 10

APPLICATIONS

WIN32 API CALLS USER
MODE

WIN32 SUBSYSTEM

[/70 REQUEST PACKETS

FUNCTION DRIVERS

KERNEL
[/0 REQUEST PACKETS MODE

BUS DRIVERS

HARDWARE-SPECIFIC INTERFACE

HARDWARE

Figure 10-1: USB uses a layered driver model under Windows, with separate
drivers for devices and the buses they connect to.

Under Windows 98 and Me, applications can access 1/O ports directly,
unless a low-level driver has reserved the port, preventing access. Under
Windows NT and 2000, only kernel-mode drivers can access I/O ports.

Figure 10-1 shows the major components of user and kernel modes in a
USB communication.

Applications and drivers each use their own language to communicate with
the operating system. Applications use Win32 API functions. Drivers com-
municate with each other using structures called I/O request packets (IRPs).

236 USB Complete

How the Host Communicates

Windows defines a set of IRPs that drivers can use. Each IRP requests a sin-
gle input or output action. A function driver for a USB device uses IRPs to
pass communications to and from the bus drivers that handle USB commu-
nications. The bus drivers are included with Windows and require no pro-
gramming by applications programmers or device-driver writers.

The Win32 Driver Model

USB device drivers for Windows must conform to the Win32 Driver Model
defined by Microsoft for use under Windows 98 and later, including Win-
dows 2000 and Me. These drivers are known as WDM drivers and have the
extension .sys. (Other file types may also use the .sys extension.)

Like other low-level drivers, a WDM driver has abilities not available to
applications because the driver communicates with the operating system at a
lower, more privileged level. A WDM driver can permit or deny an applica-
tion access to a device. For example, a joystick driver can allow any applica-
tion to use a joystick, or it can allow one application to reserve the joystick
for its exclusive use. Other abilities that Windows reserves for WDM and
other low-level drivers include DMA transfers and responding to hardware
interrupts.

Driver Models for Different Windows Flavors

The Win32 Driver Model provides a common driver model for use by any
device under Windows 98 and later. Earlier versions of Windows used dif-
ferent models for device drivers. Windows 95 used VxDs (virtual device
drivers). Windows NT 4 used a type of driver called kernel-mode drivers.
Developers who wanted to support both Windows 95 and Windows NT
had to provide a driver for each. But a single WDM driver can work under
both Windows 98 and Windows 2000.

The USB bus drivers included with Windows are WDM drivers. Although
Windows 98 continues to support VxDs, USB devices must have WDM

function drivers because their function drivers must communicate with the

WDM bus drivers.

USB Complete 237

Chapter 10

The Win32 Driver Model isnt completely new, but was built on existing
components. A WDM driver is basically an NT kernel-mode driver with the
addition of Windows 95’s Plug-and-Play and power-management features.
The final editions of Windows 95 (versions OSR 2.1 and higher) had some
support for WDM drivers. These editions weren't available to retail custom-
ers, but were available only to vendors who installed the software on the
computers they sold. Beginning with Windows 98, the WDM support was
much expanded and improved.

How can two different operating systems, which previously required very
different drivers, now use the same drivers? Windows 98 includes the driver
ntkern.vxd, which tricks WDM drivers into thinking they’re communicating
with an N'T-like operating system. All WDM drivers running on Windows
98 require this driver, which is included with Windows 98.

Programming Languages

Application programmers have a choice in programming languages, includ-
ing Visual Basic, Delphi, and Visual C++. But to write a driver for a USB
device, you need a tool that is capable of compiling a WDM driver, and this
means using Visual C++. The exception is driver toolkits that provide a
generic driver and either require no programming at all or permit you to use
other C compilers or Delphi to customize a generic driver with a user-mode

Component.

Layered Drivers

238

In the layered driver model used in USB communications, each layer han-
dles a piece of the communication process. Dividing communications into -
layers is efficient because it enables different devices that have tasks in com-
mon to use the same driver for those tasks. For example, all kinds of devices
may use USB, so it makes sense to have one set of drivers to handle the
USB-specific communications that are common to all. Including these driv-
ers with Windows means that device vendors don’t have to provide them.
The alternative would be to have each device driver communicate directly
with the USB hardware, with much duplication of effort.

USB Complete

How the Host Communicates

USB Driver Layers

The portion of Windows that manages communications with devices is the
I/O subsystem. The subsystem has several layers, with each layer containing
one or more drivers that handle a set of related tasks. Requests pass in
sequence from one layer to the next. Within the I/O subsystem, the I/O
manager is in charge of communications. One element within the I/O sub-
system is the USB subsystem, which includes the drivers that handle
USB-specific communications for all devices.

The set of protocols used by the drivers is called a stack. (This is different
from the CPU stack introduced in Chapter 8.) You can think of the layers as
being stacked one above the next, with communications passing in sequence
up and down the stack. Applications are at the top of the stack, and the USB
hardware is at the bottom of the stack.

The Function Driver

A function driver enables applications to talk to a USB device using API
functions. The API functions are part of Windows Win32 subsystem,
which is also in charge of user functions such as running applications, man-
aging user input via the keyboard and mouse, and displaying output on the
screen. To communicate with a USB device, an application doesnt have to

know anything about the USB protocol, or even if the device uses USB at
all.

The function driver also knows how to communicate with the lower-level
bus drivers that control the hardware. Figure 10-2 shows how these work
together in USB communications. The function driver is often referred to as
the device driver, though a complete device driver actually encompasses
both the function driver and bus drivers. The function driver may be a class
driver or a device-specific driver.

When a device or subclass has requirements beyond what a class driver han-
dles, a supplemental driver called a filter driver can add the needed capabili-
ties. An upper filter driver resides above the class driver. Requests from

USB Complete 239

Chapter 10

APPLICATIONS

UPPER FILTER DRIVER
SUPPORTS DEVICE-SPECIFIC
CAPABILITIES

CLASS FUNCTION DRIVER
DEFINES A USER
INTERFACE FOR A CLASS

LOWER FILTER DRIVER
ENABLES DEVICES TO COMMUNICATE
WITH THE SYSTEM'S USB DRIVERS.

CUSTOM FUNCTION DRIVER
DEFINES A USER INTERFACE
FOR CUSTOM HARDWARE.

USB HUB DRIVER
(USBHUB.SYS) :
INITIALIZES PORTS

USB BUS-CLASS DRIVER
(USBD.SYS) :
MANAGES USB TRANSACTIONS,
POWER, BUS ENUMERATION.

HOST CONTROLLER DRIVER
(UHC1.SYS, OPENHCI.SYS, EHCI.SYS):
COMMUNICATES WITH
HARDWARE .

Figure 10-2: USB communications use a host controller driver, class driver, hub
driver, and a function driver that may consist of one or more files.

240

applications pass through the upper filter driver before being passed to the
class driver. A lower filter driver resides between the class driver and bus
drivers. A class driver may pass requests to a lower filter driver, which in turn
passes them to a bus driver. Lower filter drivers can enable a single class
driver to support multiple interfaces, with each driver supporting the
class-specific operations required for an interface. For example, Windows
provides a driver that enables the HID-class driver to communicate with the

USB bus drivers.

USB Complete

How the Host Communicates

Some USB devices may use yet another type of driver, called a legacy virtual-
ization driver. To communicate with the keyboard, mouse, and joystick,
Windows 98 uses the virtual device drivers (VxDs) inherited from Windows
95. When one of these peripherals has a USB interface, a legacy virtualiza-
tion driver translates between the device’s HID interface and the VxD’s

interface. The legacy virtualization driver is a VxD that knows how to talk
to the HID driver.

The Bus Drivers

The USB’s bus drivers consist of the root-hub driver, the bus-class driver,
and the host-controller driver. The root-hub driver manages the initializing
of ports and in general manages communications between device drivers
and the bus-class driver. The bus-class driver manages bus power, enumera-
tion, USB transactions, and communications between the root-hub driver
and the host-controller driver. The host-controller driver enables the host
controller hardware to communicate with the USB system software. The
host controller connects to the bus. The host-controller driver is separate
from the bus-class driver because Windows supports multiple types of host
controllers, each with its own driver.

The bus drivers are part of Windows, and application and device-driver
writers dont have to know the details about how they work. Perhaps because
of this, Microsoft provides very little in the way of documentation for them.
If you want to know more about how the low-level communications work,
one source of information is the source code and other documentation from

the Linux USB Project.

Communication Flow

One way to better understand what happens during a USB transfer is to
look at an example. The following are the steps in a USB transfer with a
data-acquisition device that uses a custom function driver.

Preliminary Requirements

Before an application can communicate with a device, several things must
happen. The device must be attached to the bus. Windows must enumerate

USB Complete 241

Chapter 10

242

the device and identify the driver for the device. And the application that
will access the device must obtain a handle that identifies the device and
enables communications with it.

When a device is attached, Windows Device Manager handles enumeration
automatically, as described in Chapter 5. To identify which driver to use,
Windows compares the retrieved descriptors with the information in its INF

files, as described in Chapter 11.

The handle is a unique identifier that Windows assigns to an instance of the
device. An application gets the handle by calling the CreateFile API function
with a symbolic link that identifies the device.

Some drivers explicitly define a symbolic link for each device they control.
For example, Cypress’ ezusb.sys driver identifies the first EZ-USB chip as
ezusb-0. If there are additional EZ-USBs, the driver identifies them as
ezusb-1, ezusb-2, and so on up.

Other drivers use a newer method supported by Windows, where the sym-
bolic link contains a globally unique identifier (GUID). The GUID is a
128-bit number that uniquely identifies an object. The object may be any
class, interface, or other entity that the software treats as an object.

Windows defines GUIDs for standard objects such as the HID class. For
unique devices, developers can obtain a GUID using the guidgen.exe pro-
gram included with Visual C++. The GUID is then included in the driver
code.

The guidgen program uses a complex algorithm that takes into account a
machine identifier, the date and time, and other factors that make it
extremely unlikely that another device will end up with an identical GUID.
The algorithm was originally defined by the Open Software Foundation.

The standard format for expressing GUIDs divides the GUID into five sets
of hex characters, separated by hyphens. This is the GUID for the HID
class: 745a17a0-74d3-11d0-b6fe-0020c90f57da

Applications can use API calls to retrieve class and device GUIDs from the
operating system.

USB Complete

How the Host Communicates

The User’s Role

When a device is attached and ready to transfer data, the host may request a
transfer. To read data from a data-acquisition unit, the user might click a
button in a data-acquisition application. Or a user might select an option
that causes the application to request a reading once per minute. Or periodic
data acquisitions might start automatically when the device’s driver is loaded
or when the user runs the application.

The Application’s Role

The Windows API includes three functions for exchanging data with
devices: ReadFile, WriteFile, and DeviceloControl. A driver may support
any combination of these. Each call includes the request, other required
information such as the data to write or amount of data to read, and the

device’s handle. The Platform SDK section in the MSDN library docu-

ments these functions.

Although the names suggest that they’re used only with files, WriteFile and
ReadFile are general-purpose functions that can transfer data to and from
any driver that supports them. The data read or data to be written is stored
in a buffer specified by the call. A call to ReadFile doesnt necessarily cause
the driver to retrieve data from the device. The call may instead return data
that was requested previously and stored in a buffer. The details vary with
the driver. Chapter 15 has more on how to use ReadFile and WriteFile.

DeviceloControl is another way to transfer data to and from buffers.
Included in each DeviceloControl request is a code that identifies a specific
request. Unlike ReadFile and WriteFile, a single DeviceloControl call can
transfer data in both directions. The driver specifies what data, if any, to pass
in each direction for each code. Some codes are commands that don’t need
to pass additional data.

Windows defines control codes used by disk drives and other common
devices. These are examples:

IOCTL_STORAGE_CHECK_VERIFY determines if media is

present and readable on removable media.

IOCTL_STORAGE_LOAD_MEDIA loads media on a device.

USB Complete 243

Chapter 10

244

[OCTL_STORAGE_GET _MEDIA_TYPES returns the types of
media supported by a drive.

A driver may also define its own control codes. Because the codes are sent
only to a specific driver, it doesn’t matter if other drivers use the same codes.
The driver for Cypress thermometer application for the CY7C63001
defines codes to get the temperature and button state, set LED brightness,
and read and write to the controller’s RAM and ports. This is a Visual-Basic
declaration for DeviceloControl:

Declare Function DeviceloControl Lib "kernel32"
(ByVal hDevice As Long,
ByVal dwIoControlCode As Long,
lpInBuffer As Any, _
ByVal nInBufferSize As Long,
lpOutBuffer As Any,
ByVal nOutBufferSize As Long,
lpBytesReturned As Long,
lpOverlapped As OVERLAPPED)
As Long

This is a call that uses the control code 04h:

ltemp = DeviceloControl

(hgDrvrHnd,

as,

1In,

1InSize,

10ut, _

10utS8ize,

1size,

gOverlapped)
Windows may support additional API functions for transferring data with
devices in a particular class. For example, the functions Hid_GetFeature and

HidD_SetFeature read and send Feature reports to HID-class devices.

The Device Driver’s Role

When an application calls an API function that reads or writes to a USB
device, Windows passes the call to the appropriate function driver. The
driver converts the request to a format the USB bus-class driver can under-
stand.

USB Complete

How the Host Communicates

As mentioned earlier, drivers communicate with each other using structures
called I/O Request Packets (IRPs). For USB communications, the IRPs con-
tain structures called USB Request Blocks (URBs) that specify protocols for
configuring devices and transferring data. The URBs are documented in the

Windows DDK.

A function driver requests a transfer by creating an URB and submitting it
in an IRP to a lower-level driver. The bus and host-controller drivers handle
the details of scheduling transactions on the bus. For interrupt and isochro-
nous transfers, if there is no outstanding IRP for an endpoint when its
scheduled time comes up, the transaction is skipped.

For transfers that require multiple transactions, the function driver submits
a single [RP for the entire transfer. All of the transfer's transactions are then
scheduled without requiring further communications with the function
driver.

If you're using an existing function driver (rather than writing your own),
you need to understand how to access the driver’s application-level interface,
but you don’t have to concern yourself with IRPs and URBs. If you're writ-
ing a function driver, you need to provide the IRPs that communicate with
the system’s USB drivers.

The Hub Driver’s Role

The host’s hub driver resides between a device-specific or USB-class driver
and the USB bus-class driver. The hub driver handles the initializing of the
root hub’s ports and any devices downstream of the ports. This driver
requires no programming by device developers. Windows includes the hub
driver usbhub.sys.

The Bus-class Driver’s Role

The USB bus-class driver translates communication requests between the
hub driver and the host-controller driver. It handles bus enumeration, power
management, and some aspects of USB transactions. These communica-
tions require no programming by device developers. Windows includes the
bus-class driver usbd.sys.

USB Complete 245

Chapter 10

246

The Host-controller Driver’s Role

The host-controller driver communicates with the host-controller hardware,
which in turn connects to the bus. The host-controller driver requires no
programming by device developers.

There are three types of host controllers. Two are for low- and full-speed
communications only and one is for high-speed communications only. The
low- and full-speed controller types are the Open Host Controller Interface
(OHCI) and Universal Host Controller Interface (UHCI). High-speed con-
trollers must use the Enhanced Host Controller Interface (EHCI). The USB
Implementers Forum’s website has links to the specifications.

Controllers that conform to the OHCI standard use the driver openhei.sys,
and controllers that conform to the UHCI standard use the driver whci.sys.
Both drivers provide a way for the USB hardware to communicate with the
bus-class driver. Although they differ in how they do so, in most cases the
differences are transparent to driver developers and application program-
mers.

The two drivers take different approaches to implementing the host-con-
troller’s functions. UHCI places more of the communications burden on
software and allows the use of simpler, cheaper hardware. OHCI places
more of the burden on the hardware and allows simpler software control.
UHCI was developed by Intel and OHCI was developed by Compaq,

Microsoft, and National Semiconductor.

The two host controller types do have some differences in performance. An
OHCI controller is capable of scheduling more than one stage of a control
transfer in a single frame, while a UHCI controller always schedules each
stage in a different frame. For bulk endpoints with a maximum packet size
less than 64 bytes, the Windows UHCI driver attempts no more than one
transaction per frame, while an OHCI driver may schedule additional trans-
actions in a frame. And an OHCI controller will poll an interrupt endpoint
at least once every 32 milliseconds, even if the endpoint descriptor requests a
maximum latency of 255 milliseconds, while UHCI controllers can, but
don’t have to, support less-frequent polling.

USB Complete

How the Host Communicates

An EHCI controller handles high-speed communications only. To support
all three speeds, a PC must have an EHCI controller and either a compan-
ion OHCI or UHCI controller in the PC or a 2.0-compliant hub, which
performs the function of a host controller for low- and full-speed devices.
An EHCI host controller and a companion 1.x host controller can share a
single bus. Users and application programmers don't have to know or care
which host controller is communicating with a device.

The Device’s Role

After a transmission leaves the host’s port, data may pass through additional
hubs. Eventually the data reaches the hub that connects to the device, and
this hub passes the data on to the device. The device recognizes its address,
reads the incoming data, and takes appropriate action.

The Response

Most communications require a response, which may include data sent in
response to the request or a packet with a status code. This information trav-
els back to the host in reverse order: through the device’s hub, onto the bus,
and to the PC’s hardware and software. A device driver may pass a response
on to an application, which may display the result or take other action.

Ending Communications

When an application closes or otherwise decides that it no longer needs to
access the device, it uses the API function CloseHandle to free system
resources.

More Examples

Communications with other USB devices follow a similar pattern, though
there can be differences in how the transfer initiates and in how the device
driver handles communications.

Other examples of a user initiating a transfer are clicking on a USB drive’s
icon to view a disk’s folders or clicking Print in an application to send a file
to a USB printer. In each of these examples, nothing happens until the

USB Complete 247

Chapter 10

application requests a communication and the device driver fills a buffer
with data to send or makes a buffer available for received data.

In some cases, the driver causes the host to continuously request data from a
device whether or not an application has requested it. For example, a key-
board driver causes the host to make periodic requests for keypress data
because there is no way for an application to predict when a key will be
pressed.

The host also sends requests to enumerate devices on system power-up or
device attachment. The device’s hub causes the host to initiate these requests
when the hub notifies the host of the presence of a device. A device can use
the USB’s remote-wakeup feature to initiate a transfer by signaling its hub,
and in turn the host, to request resuming communications.

Choosing a Driver Type

How do you decide whether to use an existing driver, a custom driver, or a
combination? Sometimes the choice is limited by what's available for the
device. From there it depends on a combination of the performance you
need, cost, and speed of development.

Drivers Included with Windows

When it’s feasible, the easiest approach to accessing a USB device is to use a
driver included with Windows. This way, there are no drivers to write or
install and any Windows computer can access the device. Chapter 12 has
details abour the class drivers available in Windows. For custom designs, the
most useful of these are the HID drivers and possibly the mass-storage
driver.

Vendor-supplied Drivers

248

Another way to communicate with a device is to use a driver supplied by the
chip’s vendor. The ideal is a ready-to-install, general-purpose driver, along
with complete, commented source code in case you want to adapt it for use
with a particular device. The driver should also include documentation that

USB Complete

How the Host Communicates

shows how to open a handle to the device and read and write to it in appli-
cation code. The usefulness of vendor-supplied drivers varies. A driver is
much less useful if it's buggy, doesn’t include the features you need, or has
sketchy documentation that makes it hard to understand and use.

Chapter 12 describes drivers from FTDI for use with its USB UART chip
and from Sigma'Tel for use with its IrDA-to-USB bridge chip

Custom Drivers

Sometimes there is no generic or vendor driver that includes the transfer
types you want to use or has the performance you need. Or you may want to
define custom DeviceloControl codes. In these cases, the solution is to cre-
ate a custom device driver. The next section discusses this option.

Writing a Custom Driver

If you don’t have experience writing device drivers, creating a WDM driver
is not a trivial task. It requires an investment in tools, expertise in C pro-
gramming, and a fair amount of knowledge about how Windows communi-
cates with hardware and applications. On the positive side, writing a USB
driver is easier than writing a driver for a device that connects to the ISA
bus. Plus, a variety of products can help to simplify and speed up the pro-

CESS.

Requirements

The minimum requirement for writing a device driver from scratch is
Microsofts Visual C++, which is capable of compiling WDM drivers. The
compiler also includes a programming environment and a debugger to help
during development.

Beyond this basic requirement, other tools can help to varying degrees,
including the Windows Device Developers Kit (DDK), a subscription to
Microsoft’s Developer’s Network (MSDN), driver toolkits, and advanced
debuggers.

USB Complete 249

Chapter 10

The Windows DDK includes example code and developer-level documenta-
tion. The USB-related documentation includes tutorials on WDM drivers
and HIDs and source code for USB drivers.

For bulk transfers, the DDK includes source and compiled code, documen-
tation, and an example application for the bulkusb.sys driver. The driver is
designed to work with just about any USB chip that supports bulk transfers.
Applications use ReadFile and WriteFile for data transfers. In a similar way,
the DDK includes the 7sousb.sys driver for handling isochronous transfers. If
you decide to use either of these, check the USB Implementers Forum’s
webboard for tips and fixes before you begin!

The DDK also has a filter-driver example and the usbview utility. The exam-

ples can be a useful starting point in developing your own drivers. You can
download the Windows DDK from Microsoft’s website.

MSDN is Microsoft’s subscription service to massive quantities of docu-
mentation, examples, and developer’s tools for Microsoft products. The top-
ics covered include WDM driver development and USB, with quarterly
updates. There are several levels of subscription that enable you to get the
documentation alone or with varying amounts of Microsoft applications
and development tools. Much of the information and other tools are also
downloadable from Microsoft’s website.

How to write a USB driver from scratch is a much bigger topic than this
book has room for. Some excellent books cover the topic in derail, including
WDM device-driver writing in general as well as sections specifically about
USB. Three good books are Programming the Microsoft Windows Driver
Model by Walter Oney, Writing Windows WDM Device Drivers by Chris
Cant, and Developing Windows NT Device Drivers by Edward N. Dekker
and Joseph M. Newcomer. (N'T drivers are similar to WDM drivers, and the
book includes material on WDM and USB.) Chapter 17 describes
Microsoft’s programs for driver testing and digital signing,

Using a Driver Toolkit

250

A driver toolkit provides a way to jump start driver development by doing as
much of the work for you as possible. Toolkits that support creating USB

USB Complete

How the Host Communicates

drivers are available from BSQUARE, Jungo Ltd., and Compuware
NuMega.

There are two general categories of toolkits. One provides a generic driver
that handles USB communications, generates an INF file, and provides
other assistance in enabling applications to use the driver. This approach is
very fast and requires no programming at all to create the driver, but it can't
handle every situation. Other toolkits provide libraries and other tools that
assist in writing a custom driver for a device. This approach is more flexible
but requires programming expertise.

Toolkits that Use a Generic Driver

All USB communications follow the protocols defined in the specification,
so it makes sense that a single generic driver should be able to communicate
with just about any device. A generic driver would have to support all four
transfer types, including vendor-defined control requests, plus it should sup-
port the power management and Plug-and-Play capabilities required of all
WDM drivers. Additional functions such as the ability to retrieve descrip-
tors or select a configuration or interface are useful as well.

Two toolkits enable a device to use a generic driver: BSQUARE’s WinRT for
USB and Jungos WinDriver USB. These toolkits require no driver pro-

gramming at all.

WinRT for USB. WinRT for USB includes a kernel-mode driver and sev-
eral supporting files. The driver supports synchronous and asynchronous
transfers of all four types, retrieving descriptors and the device GUID,
selecting an interface, and registering for device notification to detect when
a device is removed from the bus. For example, to request an interrupt trans-
fer, an application calls the function WinRTInterruptTransfer, passing the
device handle, endpoint number, buffer length, and a buffer. The function
returns a status code and the number of bytes transferred.

To create the files needed to support a device, you develop your device firm-
ware, store the firmware in the device, and attach the device to the bus. To

make the required setup files for the driver, run the WinRT for USB Con-

USB Complete 251

Chapter 10

5 Intel B2371AB/ED POl to USE Universal Host Controller Cypress USB Thermomster

-4 Foot Hub , WinRT for USB Devics
-+ Device connected: USE Human Interlace Device . S o . i

Yprsss USH Thermometer o .
inss Unb Ihermanste Device Descriptor:

| bedUsE: 0x0100 -

X Mo device connecled bDeviceClass: 0x00
bDe Ox=00
bDe 0z00

bMaxPacksts : Uz08 (&)
1 idvendor: 0x04B4 "Cypress Hemiconductor”

ldProduct: 0x0002

bodbevice: Ox0009

iManufacturer: 0x01
| irroduct: Ox0z

i%erialbunber: 0x00

biumConfigurations: O=0L

] Connectionitatus: Device connected
o Current Config Value: 0x0l1

| Device Bus Spesd: Liow
Device Address: 0xU04
Open Pipes: 1

Detected Windows Bxx}ersidn 4.k1kD.£l
Host controller 0: "Intel 8237 1ABIEB PGl to USE Universal Host Controller”
Successtully built USB tree

Figure 10-3: The WIinRT USB console detects attached devices, displays
descriptors, and creates a driver and the setup files for a device.

252

sole application (Figure 10-3) and select your device from the tree of
detected USB devices. The Console prompts you for a symbolic name for
your device, which can be anything you specify, and other optional informa-
tion. The Console then makes the setup files and offers to install the driver
on the current system. For testing, the WinRT for USB Wizard creates a
sample Visual C++ application.

In addition to the driver file, there are two C header files containing the
function prototypes and data types for calling the functions in the driver
and error codes and .d/[and ./ib files that enable applications to access the
functions in the driver. Chapter 15 has more about using .4/ and ./ib files.

When you distribute the device, you also distribute the INF file created by
the Console application, WinRT Usb.dll, WinRT Usb.sys, and any application

software you provide.

USB Complete

How the Host Communicates

Applications can also access WinRT USB’s functions from the provided
ActiveX control. To enable using the control with Visual Basic, you add it to
a project by clicking Project > Components > Controls and selecting the
WinRT-USB control. The Object Browser then shows the supported classes
and their properties, functions, and subroutines. This line of Visual-Basic
code performs a bulk transfer:

returnlength = WinRTUsbl.BulkTransfer (0, size, buffer)

There are two editions of WinRT for USB. One is for use with Windows
98, Windows 2000, and Window Me. The other enables you to provide a
driver for use on Windows NT 4.

WinDriver USB. Jungos WinDriver USB takes a somewhat different
approach but also can provide a driver without requiring you to write any
code. The WinDriver Wizard generates files that you compile to create a
custom user-mode driver in an .exe file. The user-mode driver communi-
cates with the provided kernel-mode driver windrvr.sys. You can compile the
files generated by the Wizard using Visual C++, C++ Builder, or Delphi.
WinDriver will also create an INF file for the device.

The WinDriver Wizard enables you to select your device from those
detected, then test it immediately by reading and writing data (Figure 10-4).
You can then request the Wizard to create the driver files. When the driver is
installed, applications communicate with the device using device-specific
functions such as MyDevice_Open and MyDeVice_GetDeviceInfo.

For faster performance, you can move portions of your code from the
user-mode driver to a kernel-mode driver called a Kernel Plugln, which you
compile with Visual C++. For debugging, the included DebugMonitor
application enables you to monitor activities handled by windrvr.sys. Win-

Driver USB’s drivers run under Windows 98 and Windows 2000.

Toolkits that Provide Libraries for Creating a Custom Driver

The completely automated toolkits aren’t suitable for every device. They
can’t create filter drivers, and you may want a completely custom driver to
achieve the best possible performance. Three products for creating custom

USB Complete 253

Chapter 10

Diw}er Wizard

dtart listening to Pipefl

Resaurces

Figure 10-4: WinDriver’s Driver Wizard enables you to test your device firmware
by reading and writing to it, then creates the files you compile to create a
custom driver for the device.

drivers are BSQUARE'’s WinDK, CompuWare Numega’s DriverWorks, and

Jungo’s KernelDriver.

Each of these has Wizards and code libraries that do much of the work for
you. You need to fill in the provided skeleton code and compile the driver.
The driver’s performance is the same as if you had written the driver from
scratch.

Each of these toolkits is capable of generating driver code for any device
type, not just USB devices. WinDK has an optional USB extension that
enables you to use the same source code to create a driver that will run on

Windows NT 4.

254 USB Complete

How Windows Selects a Driver

11

How Windows Selects a
Driver

When Windows detects a new USB peripheral, one of the things it has to do
is decide which device driver applications should use to communicate with
the device and if necessary, load the selected driver. This is the job of Win-
dows’ Device Manager, which uses class and device installers and INF files

to find a match.

This chapter explains how these components work together to select drivers
for newly attached devices. I also show how to create an INF file that will
cause the Device Manager to select the correct drivers.

The Process

The Device Manager is a Control-Panel applet that’s responsible for install-
ing, configuring, and removing devices. The Device Manager also adds
information about each device to the system registry, which is the database

USB Complete 255

Chapter 11

that Windows maintains for storing critical information about the hardware
and software installed on a system.

In Windows 98, display the Device Manager by right-clicking the My Com-
puter icon on the desktop and selecting Properties, then the Device Man-
ager tab. Or select Start Menu > Settings > Control Panel > System > Device
Manager. In Windows 2000, it’s the same except for one more click after
System: System > Hardware > Device Manager.

The device and class installers are DLLs. Windows has default installers that
the Device Manager uses to locate and load drivers for devices in the classes
supported by the operating system (such as HIDs). The Device Manager
and the installers together are also responsible for displaying dialog boxes as
needed to prompt users for information.

The INF file is a text file containing information that helps Windows iden-
tify a device. The file tells Windows what driver or drivers to use and what
information to store in the registry.

Searching for INF Files

256

When Windows enumerates a new USB device, the Device Manager com-
pares the data in all of the system’s INF files with the information in the
descriptors retrieved from the device on enumerating. A typical PC can
accumulate hundreds of INF files, so Windows 98 and Windows 2000 have
ways to speed up the search.

To prevent having to read through all of the INF files each time a new
device is detected, Windows 98 maintains a driver information database
with information culled from its INF files. The database files are drvdata. bin
and drvidx. bin, stored in the windows\inffolder.

You can view the contents of these files in a text editor or word processor.
(Ignore the extra characters in the files.) Don't change the contents of the
files, however; when you're finished viewing, just close the files without sav-

ing.
Drvidx.bin lists every Vendor and Product ID in the INF files, along with

the manufacturer name, provider name, and description. Drvdata.bin

USB Complete

How Windows Selects a Driver

matches manufacturers with INF files that contain information about their
products. After retrieving the Vendor and Product IDs from a device, the
Device Manager uses the information in these two files to find the manufac-
turer and the INF file with information about the specific product.

Windows 2000 doesn’t have these database files, but instead uses PNF (pre-
compiled INF) files to speed searching. During device installation, Win-
dows 2000 creates a PNF file and stores it in the same folder as the device’s
INF file. The PNF contains much of the same information as the INF but

in a format that enables quicker searching. Windows 98 systems may have
PNFs also.

The Registry’s Role

The system registry stores information about all installed devices, whether
or not they're attached and enumerated. When a new device is enumerated,
the Device Manager stores information about the device in the registry.

To learn what kinds of information the Device Manager finds and stores,
you can view (and edit) the registry’s contents using the regedit.exe utility
that comes with Windows.

A word of caution: the system registry is a vital and essential component of
Windows. It’s so important that Windows maintains multiple backup copies
in case the current copy becomes unusable. Be extremely careful about mak-
ing changes to the registry. If you goof and want to restore the registry to its
previous state, boot to the DOS prompt and type scanreg /restore. Just view-
ing the registry is safe, however.

The registry arranges its contents in a tree structure. Information about USB
devices is in a couple of places:

HKEY LOCAL_MACHINE\Enum\USB
lists all USB devices.

HKEY indicates a registry key, which is an item in the registry structure.
HKEY_LOCAL_MACHINE is a pointer to a data structure containing

information about the system’s hardware and installed software.

USB Complete 257

Chapter 11

USB devices are also listed in this branch:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\

Services\Class

The Class branch has sub-branches for various categories. The USB branch
lists the USB host controller and root hub, as Figure 11-1 shows. A USB
peripheral doesn’t necessary show up in the USB branch; it may be in a
branch that pertains to the peripheral’s function. Standard peripheral types
like keyboards, mice, and printers have their own branches, and will show
up there. HID-class devices also have an entry in the HID branch. Other
peripherals, such as digital cameras, may be in the USB branch. If the
Device Manager can't figure out what to do with a device, it may call it an
Unknown Device and place it in the USB branch. A custom peripheral can
also create its own branch.

The Control Panel

The Device Manager is also responsible for adding attached devices to the
Device Manager’s window, as Figure 11-2 shows.

The Device Manager’s display shows only the USB devices that are currently
detected. You can unplug a device while viewing the display and watch the
device’s listing disappear. Plug the device back in, and its listing pops back.
An exclamation point over the device’s icon means that there was a problem
communicating with the device or finding a driver. An X over the icon
means that the device is present but disabled, possibly by the user. To view
additional information abourt a device, select the device and click Properties.

What the User Sees

258

What you see on the screen when you attach a new USB peripheral depends
on what drivers and INF file the device uses and whether or not the device
has been attached and enumerated previously.

USB Complete

: estEdltur

PCMCIA
Forts
Printer
i PrinterUpgrade
1 SCSlAdapter

] System

1 Tape

.} TapeController
TapeDetection
Thermush
Unknewn

USB

J DesvlLoader

ﬁ;;jDiagnusticMDde

al j DriverDate

«*53 DriverDesc
EnumPropPages

) InfPath

Inflection

tdatchingDewviceld
MTHPDriver
*j@ Providarblame

“’"E SupporianComp

How Windows Selects a Driver

fvalue not set)
N TRERN"

0x00000000 (0)

" 5-11-1958"

"Intel B23F1AB/ER FCIto LISE Universal Host Controller
"gysclazs.dlLUSBEnumPropPages”
"USE INF"

"UniversalHCD Dey"
"PCIVWEN_BOBEADEY 7112

"uhcd sys"
"Microsoft”
Dx00000000 (0

FCMCIA
Ports
Printer
FrinterUpgrade
SCElAdapter

1 Bystemn

Tape

.1 TapeContraller

: Tapeletaction
| Therrmush

Untknown

&ba Devloader
DrivetDiate

‘353 DOriverDesc

] IniPath

135?’3 InfSection

ﬂb} MatchingDeviceld
NTWMPOrver

§b} ProviderName

At

[walue not set)
NTRERN

" 5-11-1943"
"JSE Root Huk"
MISEINMF
"StandardHub Dew"
MISBYROCT_HUB"
"ushhub sys"
"ticrosoft”

Figure 11-1: The registry’s Class\USB branch has information about the
system’s host controller and root hub.

Specific Device Listings

When you attach a device, Windows displays a window with the message
New Hardware Found. 1f the device descriptors include a Product String,
under Windows 98 SE and later, the window displays the string. Otherwise,

USB Complete

259

Chapter 11

System Properties

Hard disk controll

Hurman Irterface Devices
Keyboard

todem

System devices
Tape drive contrallers
Tape drives
Thermush

- @%9 Intel 8237 148/EB PClto USE Universal Host Controller
&P USB Root Hub

Figure 11-2: The Control Panel’s Device Manager lists all attached and
enumerated devices.

260

it displays Unknown Device. If the device has never been enumerated on the
system, Windows will need to locate a driver.

If Windows doesn’t find a matching INF file, it runs the Add New Hard-
ware Wizard (Figure 11-3). You see a window recommending letting the
Wizard search for the best driver for the device. When you accept the rec-
ommendation and select Next, the Wizard requests a location to search.

If the device comes with a driver on disk, specify the drive containing the
disk. When the Wizard finds the file, it displays the filename and announces
that it’s ready to install the driver. (To make things as easy as possible for
users, vendors should store the INF file in the root directory of the product’s

disk.) Click Next, and the Wizard displays Please wait while Windows builds

a driver information database.

USB Complete

How Windows Selects a Driver

Add New Hardware Wizard

Figure 11-3: Windows’ Add New Hardware Wizard searches for and installs
drivers for newly attached devices.

The Wizard copies the INF file to the system’s INF folder, loads the driver(s)
specified in the file, lists the device in the Device Manager, and displays a
window letting you know that it has finished installing the required soft-
ware. The Device Manager’s listing shows the device description, manufac-
turer, and provider name from the INF file.

USB Complete 261

Chapter 11

If the device has been enumerated previously, the system already has the
information it needs, so no windows need to be displayed. The enumeration
should be invisible except for a short delay that prevents the cursor from
selecting items while Windows finds the correct INF file and loads any
needed drivers.

Generic Device Listings

If a newly attached device uses only the standard HID drivers, it doesnt
need its own INF file to identify it. On the first attachment, the Device
Manager will determine that the device belongs to the HID class, and when
it can’t find a Vendor and Product ID match, will decide that the generic
HID drivers are the best fit.

But because there was no exact match, the Device Manager will play it safe
and run the Add New Hardware Wizard to give you a chance to select a bet-
ter driver (by specifying a drive to search, for example). If you accept the
default selections, Windows looks for a driver in the system’s INF folder,
selects the INF file for the HID class (hiddev.inf for Windows 98 or
input.inf for Windows 2000), and loads the HID drivers. The Device Man-
ager lists the device as a Standard HID Device, with no indication of its spe-
cific function or manufacturer.

Inside an INF File

262

The Device Manager looks for INF files in the system’s INF folder. The
default locations are \windows\inf for Windows 98 and \winni\inf for Win-
dows 2000. By default, this is a hidden folder. If you don't see the folder in
My Computer, select View > Folder Options > View, then under Hidden
Files, select Show all files. Do not click Hide file extensions for known file types.

Examining the existing files is a good way to learn about the kinds of things
contained in the files and how the information is structured. Your PC is sure
to have plenty of INF files to examine. The INF file for the HID class is /id-
dev.inf in Windows 98 and input.inf in Windows 2000. INF files can be
long and complicated, but the basics are fairly straightforward. In most
cases, you can create an INF file by adapting one that’s similar to what you

USB Complete

How Windows Selects a Driver

need. Vendors of USB controller chips often provide examples. The Win-
dows DDK also has documentation on the contents and structure of INF

files.

INF files for Windows 2000 have a few changes compared to Windows 98,
including the need for a Services section that specifies how and when a

driver’s services are loaded. The DDK documentation has more details
under INF File Sections and Directives.

Listing 11-1 is an INF file for a custom HID under Windows 98. I used
hiddev.infand Cypress example INF files as models for the file. Figure 11-4
and Figure 11-5 show the information that the Device Manager displays
after enumerating a device with this INF file.

Syntax

The information in an INF file must follow a few syntax rules, which will
look familiar if you have experience with the .ini files commonly used in

Windows 3.x.

¢ The information is arranged in sections, with each section containing
one or more items. The section name is in square brackets []. A carriage
return/line feed begins a new item. Some of the section names (Version,
ClassInstall) are standard names that Windows will look for. Other sec-
tions match values specified in other sections. For example, if the Manu-
facturer section designates the manufacturer as Lakeview, the INF file
will also have a Lakeview section. The sections can be in any order,
though most follow the same convention, and the order of the items
within a section can be critical. So if you're adapting an example, keep
the order of items in the sections the same.

e A semicolon (;) indicates a comment.

e A backslash (\) at the end of a line acts as a line continuator, unless it’s
enclosed in quotes (“\”).

 Text enclosed in percent symbols (Yosampletext%) refers to a string. For
example, you might have the following item:

provider=%Provider%

USB Complete 263

Chapter 11

System Prbbeﬂies

mpLter
COROM

Dizk drives

U Display adaptars
Flappy disk contrallers
Hard disk contrallers

4 Human Interface Devices

4 HID-carmpliant device
Sample LUSE Humean Interface Device (HID);
foard

Accdern

by
hdonitors

Arise

8 retwork adapters

Figure 11-4: The Device Manager displays information obtained from the
device’s INF file. The device is listed both as an HID compliant device and as a
device matching the description and Manufacturer in the INF file.

264

USB Complete

How Windows Selects a Driver

ANDIOW,)
CHWINDOWSYSYSTEMYWRRI2 VXD (ntharnsxd)
CAWINDOWS,SYSTEMA\HIDPARSE SYE
CAWINDOWSA\SYSTEMYHIDCLASS . SYS
CAWINDOWS\SYSTEMVHIDUSE.SYS

Figure 11-5: The information displayed by the Device Manager includes the
Provider name and drivers specified in the device’s INF file.

USB Complete 265

Chapter 11

[Version]
Signature="SCHICAGOS™
Class=HID

;The GUID for HIDs
ClassGUID={745a17a0-74d3-11d0-b6fe-00a0c90f57da}

provider=%Provider$%
LayoutFile=layout.inf, layoutl.inf

[ClassInstalll
Addreg=Class.AddReg

[Class.AddReg]
HKR, ,Installer, ,mmci.dll

[Manufacturer]
sMfgName$=Lakeview

[Lakeview]

;Uses Lakeview Research’s Vendor ID (0925)
;Uses the Product ID 1234

$USB\VID_0925&PID 1234 .DeviceDesc%=SampleHID,
USB\VIDWO 925&PID 1234

[DestinationDirs]
USBHID.CopyList = 11 ; LDID SYS

Listing 11-1: (Sheet 1 of 2) A device’s INF file helps Windows locate the driver
to use for the device.

266 USB Complete

How Windows Selects a Driver

[SampleHID]
CopyFileg=SampleHID.CopyList
AddReg=SampleHID.AddReg

[SampleHID.AddReg]
HKR, ,DevLoader, , *ntkern
- HKR, ,NTMPDriver, , "hidusb.sys"

[SampleHID.CopyList]
hidusb.sys
hidclass.sys
hidparse.sys

[Strings]

Provider="Microsoft™

MfgName="USB Complete"

USB\VID 0925&PID 1234 .DeviceDesc="Sample USB human interface
device (HID)™"

Listing 11-1: (Sheet 2 of 2) A device’s INF file helps Windows locate the driver
to use for the device.

with an item in the Strings section that defines the provider string:

Provider="USB Complete"
* Some items set the value of an entry. For example, this item defines the
device’s class entry as HID:

Class=HID
* Some items specify information to store in the system registry:

HKR, ,Installer, ,mmci.dll

Sections
An INF file includes sections that help Windows identify the device, find

the appropriate drivers, and store information about the device in the sys-
tem registry. Here is the purpose of each section in the example INF file:

USB Complete 267

Chapter 11

268

Version
The Version section is the file’s header. Every INF file must have one.

The Version section in the example file has these items:

[Version]

Signature="SCHICAGOS"

Class=HID

; The GUID for HIDs

ClassGUID={745a17a0-74d3-11d0-b6fe-00a0c90£f57da}

provider=%Provider%

LayoutFile=layout.inf, layoutl.inf
The Signature key specifies which operating system the INF file is intended
for. For devices that use WDM drivers, the value can be $Windows 989,
$Windows NT$, or $Chicago$, no matter which operating system the PC

is using. Chicago was a beta name used when Windows 95 was under devel-
opment and its use is still valid under later editions of Windows.

The Class key specifies the class for devices installed with this file. The
example specifies the HID class.

The ClassGUID key specifies the GUID in the registry for devices installed
with this file. A GUID is a 128-bit identifier. The example is the GUID for
the HID class. It uses the standard GUID format. There’s more on GUIDs
later in this chapter.

The Provider key names the creator of the INF file. In the example, %Pro-
vider% refers to a string defined later in the file.

The LayoutFile key names the source disks and files needed to install the
driver for the device. Because the HID drivers are included with Windows,
the example specifies files that contain installation information for the Win-
dows setup. These files are also INF files. The information is in the Source-
DisksFiles and SourceDisksNames sections of the files.

Classlinstall

The ClassInstall section installs a new class in the Class section of the regis-
try. The Device Manager processes this section only if a device’s class isn't yet
installed in the operating system.

USB Complete

How Windows Selects a Driver

The example ClassInstall section has one item:

[ClassInstall]

Addreg=Class.AddReg
The Addreg key adds a class description to the system registry. In the exam-
ple, the key’s value refers to the Class.Addreg section, which specifies an
installer file:

[Class.AddReg]

HKR, ,Installer, ,mmci.dll
HKR stands for HKEY_ROOT, which is the base registry key for the sec-
tion that the AddReg appears in. This is typically under System\Current-
ControlSet\Enum\Root, then a specific key for the device.

The installer file mmei.dll in the example is included with Windows 98 and
is stored in the \windows\system folder.

Manufacturer

The Manufacturer section identifies the device (or devices) and names the
Install section for each. Every INF file must have this section.

In the example, the MfgName string (defined later in the file) is set to the
value Lakeview:

[Manufacturer]
$MfgName%=Lakeview

The Lakeview section has additional information:

[Lakeview]
;Uses Lakeview Research’s Vendor ID (0925)
;Uses the Product ID 1234
$USB\VID_0925&PID 1234 .DeviceDesc%=SampleHID,
USB\VID 0925&PID 1234
This section names the device’s Vendor and Product IDs. When the Device
Manager finds a match between these and the IDs retrieved from the device

on enumerating, it knows that it has found the right INF file.

USB Complete 269

Chapter 11

270

DestinationDirs

The DestinationDirs section names the folder or folders that any CopyFiles,
RenFiles, and DelFiles items will use. In the example, SampleHID.CopyList
is the name of a section that has a CopyFiles item. The value is a logical disk
identifier (LDID) of 11, which is the system directory. The Device Informa-
tion (INF) File Reference in the Windows DDK documentation lists other
LDID values.

[DestinationDirs]
SampleHID.CopyList = 11

The SampleHID section has the CopyFiles item and an AddReg item:

[SampleHID]
CopyFiles=SampleHID.CopyList
AddReg=SampleHID.AddReg

These items name other sections in the file.

The SampleHID.CopyList section lists the drivers for the device:

[SampleHID.CopyList]

hidusb.sys

hidclass.sys

hidparse.sys
These are the drivers for generic HID-class devices. They're stored in \win-
dows\system32\drivers or \winnt\system32\drivers.

The SampleHID.AddReg section adds registry information for the device:

[SampleHID.AddReg]

HKR, ,DevLoader, , *ntkern

HKR, ,NTMPDriver, , "hidusb.sys"
Devloader names nztkern.vxd as the VxD (virtual driver) that loads the driv-
ers. Ntkern.vxd in turn loads the driver named in NTMPDriver. In the
example, this is hidusb.sys. Both files are included with Windows 98. You
won't find the file ntkern.vxd on your system because it’s archived in, or
bound into, the file vmm32.vxd for quicker loading.

Strings

The Strings section defines the strings referred to by items in other sections.
Each item matches an item surrounded by percent signs in another section.

USB Complete

How Windows Selects a Driver

So, for example, the provider in the Version section is equal to %Provider%,
which equals Microsoft (since they are the source of the drivers).

[Strings]

Provider="Microsoft"

MfgName="USB Complete"

USB\VID_O925&PID__1234.DeviceDeSC:"Sample USB human
interface device (HID)"

The Generic INF File for HIDs

The generic INF file for HIDs is hiddev.inf'in Windows 98 and input.infin
Windows 2000. Every Windows system should have one of these files. It’s
similar to the sample file in Listing 11-1. The Device Manager uses this file
to install any HID that doesn’t have its own INF file. The file also has Ven-
dor and Product IDs and descriptions for several manufacturers’ devices, so
these don’t need their own INF files.

Creating INF Files

If you need to create an INF file for a device, Microsoft provides several
tools to help in creating the file and ensuring that it has all of the required
sections in the correct format. This section describes the tools and also gives
some tips that can come in handy when you're experimenting with INFs.

Tools

For creating INF files, Microsoft provides infedir for Windows 98 and Gen-
inf, ChkINE and InfCatReady for Windows 2000.

The Windows 98 DDK includes the infedir application (Figure 11-0),
which enables you to examine and edit INF files. To protect the installed
INF files, infedit hides the windows\inf folder, so to view an installed file,

you'll need to copy it to a different folder. You can also use any text editor to

view and edit INF files.

The Windows DDK includes two tools for Windows 2000 INF files: Geninf
for creating files and ChRINF for checking a file’s structure and syntax.

USB Complete 271

Chapter 11

stestiusbhidioinf
Class Install Section Zection Neme JarmpleHID
{2] Disk Mames Section Updatelnis
1 tanufacturer Update Ini Fields
1 Install Sections Copy File Sections ZBarap leHID. CopyList
_____ 51 samaleHID EenFiles
A C‘-DpyFiIers Sections pelfiles
. 2ddReq Garop LeHID. AddReo
o | Rename Files Sections Addf{e;jmoclabber
DalFiles Sections |pelrag
Add Registry Sections LogConfig
Add Registry No Replace Sections { Update Autoexen.bat Sections
1| Delete Registry Sections Update Config.sys Sections
Log Config Sections JINI to Registry Sections
Update Autoexec bat Sections |Reboot after Install o
.) J|Restart after install Ho
Update Config sys Sections ‘
1 Initile to Registry Sections
=7 Update INI file Sections
{ Update NI fields Sections
Miscellsneous Bections
{1 Strings Section

Figure 11-6: Windows 98’s infedit tool enables you to view and edit INF files.

272

The Geninf application has an INF wizard that asks you questions about
your device and creates an INF file for it. The documentation warns that the
created file is a skeleton that may not be fully valid and is likely to need
additions or revisions. The application includes specific support for some
device classes.

ChkINF is a Perl script that requires a Perl interpreter, which you can down-
load free from wwuw.activeware.com and other sources. The script runs from
an MS-DOS prompt and creates an HTML page that annotates an INF file

with errors and warnings as needed.

For drivers that will use digital signing as described in Chapter 17,
Microsoft provides the /nfCatReady application, which looks for errors that
could interfere with the digital signature and thus prevent driver installa-

tion. InfCatReady is available from the WHQL website at

www.microsoft.com/hwtest.

USB Complete

Tips

How Windows Selects a Driver

Here are some tips for using and experimenting with INF files:

A commercial products Vendor ID must be an official ID assigned by the
USB Implementers Forum. My examples use the Vendor ID of 0925h,
which is assigned to my company, Lakeview Research. The owner of the
Vendor 1D is responsible for ensuring that each product and version has a
unique set of IDs. Borrowing someone else’s Vendor ID can lead to conflicts
if the owner of the ID uses the same values for a different product.

As described above, for experimenting with HIDs, you can use Windows’
generic INF file, instead of an INF file containing your Vendor ID. The
Device Manager will show the device as a generic HID, rather than using
the name you provide in an INF file.

When experimenting with different settings in an INF file, you may find
that at times the Device Manager remembers information from previous
INF files, even if you deleted the previous file and the information about the
device in the registry, powered down, and rebooted.

Under Windows 98, unless you follow a specific procedure when changing
the contents of an INF file, Windows may fail to rebuild the driver informa-
tion database.

To ensure that Windows 98 is aware of any changes you've made to an INF
file, follow this procedure:

1. Save a copy of the new INF file that you want to use. Save it under
another name (such as mydriver.new) or in a location other than the system’s

INF folder.
2. Attach the device and allow the Device Manager to enumerate it.

3. In the Device Manager’s window, select the device’s entry and select
Remove.

4. Deleting the entry in the Device Manager causes the device’s INF file to
be saved in the windows\inflother folder, with the vendor's name added to
the beginning of the filename. For example, Lakeview’s file mydriver.inf
would become lakeviewmydriver.inf. Delete this file as well. In some cases,

USB Complete 273

Chapter 11

274

such as the system’s INF files, the inflother folder won't have anything to
delete.

5. Copy the INF file you want to use to the windows\inf folder. Be sure the
file has an extension of .inf (such as mydriver.inf).

6. Unplug and re-attach the device. Windows will rebuild the driver infor-
mation database using your new INF file.

Another way to accomplish the same thing under Windows 98 is described
in Microsoft’s article Q139206, Hardware List Not Updated After Installing
New .inf File. The article suggests renaming the driver information database
to force Windows to rebuild it. In the windows\inf folder, rename drv-
data.bin to drvdata.xxx and rename drvidx.bin o drvidx.xxx. (By renaming
the files rather than deleting them, you can restore them if necessary.)
Another workaround is to use a different Product ID each time, in both the
INF file and the device firmware.

Under Windows 2000, to remove all information about a device, delete or
change the extension of its INF and PNF files. When Windows stores the
files in \winnt\inf, it may rename them oem ™ inf and oem*pnf, where *is a
number. To find the correct files, use the Find > Files or Folders utility avail-
able from Windows Szart menu. Browse to the \winn#\inf folder and in the
Containing Text text box, enter V[D_xxxxé“P[D_yyyy, where xxxx is the ven-
dor ID and yyyy is the product ID, both in hexadecimal.

If you do a lot of experimenting and don’t delete each device when you're
done with it, the registry will fill with entries from your various configura-
tions. When you no longer need a registry key, you can delete it from within
regedit.exe (but see my cautions above about the registry).

The INF files that ship with Windows all have file names with no more than
eight characters plus the 3-character extension. Microsoft says that this is
due to “technical issues with the product install,” but that INF files added
after Windows is installed may use longer file names.

USB Complete

Device Classes

Device Classes

Most devices aren’t totally unique, but instead share many qualities with
other devices. For example, all printers receive and print data and send status
information back to the host. All mice send information about mouse
movements and button clicks to the host. All disk drives transfer files
between a disk and the host.

When a group of devices or interfaces share many atcributes or when they
provide or request similar services, it makes sense to define the attributes
and services in a class specification. The specification then serves as a guide
for device developers and device-driver writers.

This chapter describes USB’s defined classes and takes a closer look at both
common and more unusual peripheral types and how you can use classes to
simplify developing on both the host and device sides.

USB Complete 275

Chapter 12

Uses of Classes

Classes offer several advantages. They make it easier to develop device driv-
ers and firmware because the work of defining the attributes and services the
device will use has been done, leaving only the implementation details. If
both the driver writer and firmware developer follow the same specification,
the driver should have no problem communicating with the device. Win-
dows and other operating systems include drivers for common classes. If
your device’s class is supported by the operating system, you don’t have to
provide a driver with the device.

When a device in a supported class has unique features or abilities, the
device vendor can provide a filter driver that adds capabilities to the class
driver included with the operating system. Adding a filter driver is easier
than writing the complete driver.

Even if the device’s class isn’t supported by the operating system, it may be in
the future. If you design the firmware and driver to comply with the class
specification, it will be compatible with any driver added in future editions
of the operating system.

The USB Implementers Forum releases class specifications developed by
Device Working Groups whose members have expertise and interest in a
particular area. A special case is the hub class, which is defined in the main
USB specification rather than in its own document. The operating system
must support the hub class because the host requires a root hub to do any
communications at all.

Elements of a Class Specification

276

All class specifications are based on the Common Class specification, which
describes what information a class specification should contain and how the
specification document should be organized. A class specification defines the
number and type of endpoints supported by the class. A specification may
also define formats for data to be transferred, including both general data
and status and control information. Many class specifications also define
functions or capabilities that describe how the data being transferred will be

USB Complete

Device Classes

used. For example, the HID class has Usage Tables that define how to inter-
pret data sent by keyboards, mice, joysticks, and other devices.

A class specification may define class-specific items for the standard descrip-
tors as well as class-specific descriptors, interfaces, endpoint usages, and con-
trol requests. For example, the device descriptor for a hub includes a
bDeviceClass value of 09h to indicate that the device belongs to the hub
class. The hub must also have a hub-class descriptor, with a descriptor type
of 29h. Hubs also support class-specific requests. When the host sends a
Get_Port_Status request to a hub with a port number in the Index field, the
hub responds with status information for the port. (Chapter 18 has more on
hubs.) A class may also require a device to support specific endpoints or
comply with tighter timing for standard requests.

Defined Classes

In addition to the hub class, specifications for several other classes have been
released. However, just because a specification exists doesnt mean that Win-
dows includes drivers for the class. Table 12-1 shows the class drivers added
in each edition of Windows.

The following are classes with released specifications:

Audio Device. Devices that transfer audio, voice, or sound and related con-
trols. Windows 98 Gold (original) and later include an audio driver. Win-
dows 2000 and Me also have a MIDI driver that supports the MIDI

protocol for music control.

Chip/Smart Card Interface Devices. For devices that conform to the
ISO/IEC 7816 specification.

Communications Device. Telephones, modems, and other telecommuni-
cations devices. Windows 98 SE and later include a modem driver.

Content Security. Supports protected and controlled distribution of digital
content.

Device Firmware Upgrade. For updating program code in a device.

USB Complete 277

Chapter 12

Table 12-1: Microsoft adds new USB driver support with each release of
Windows. The releases are listed top to bottom from earliest to latest. Each
release also includes the drivers provided with earlier releases.

Windows Edition USB Version USB Drivers Added
Compliance
Windows 98 Gold 1.0 Audio
(original) HID 1.0 (includes keyboard, pointing devices)
Windows 98 SE 1.1 Communications (modem)
HID 1.1 (adds the ability to do interrupt OUT transfers)
Still image capture (scanner, camera)
(first phase/preliminary)
Windows 2000, 1.1 Mass storage
Windows Me (2.0 support TNiTRT (in the audio driver)
expected in an - R — .
update) Printer. This driver can also be distributed for use with
Windows 98.
Still image capture (scanner, camera) (enhanced)

278

Human Interface Device (HID). Keyboards, mice, joysticks, or any device
that transfers blocks of information to or from the host at moderate rates,
using control or interrupt transfers. Windows 98 Gold and later include
HID 1.0 drivers. Windows 98 SE and later include HID 1.1 drivers, which
support interrupt OUT transfers. The Monitor class describes HIDs that
provide user controls on display monitors (not the display interface itself).
The Physical Interface class supports HIDs that use real-time physical
feedback, such as force-feedback joysticks. The Power class describes HIDs
that provide power-supply control, including control for power conserva-
tion and uninterruptible power supplies.

IrDA Bridge Device. To replace or supplement a motherboard-mounted
IrDA transceiver.

Mass Storage. For CD-ROM, tape, floppy drives, etc. Windows 2000 and
Windows Me include a mass-storage driver (usbstor.sys).

Printer. The printer interface (not the page-description protocols). Win-
dows 2000 and Windows Me include a printer driver (usbprint.sys), and the
driver can be distributed for use with Windows 98.

USB Complete

Device Classes

Imaging. For scanners and still-image (not video) cameras. Windows 98 SE
included a preliminary version that was enhanced in Windows 2000 and
Windows Me (usbscan.sys).

Other class specifications under development are Device Bay Controllers
and PC Legacy Compatibility. All of the specifications are available from the
USB Implementers Forum website.

For more details about a class, see the class specification and for most classes
supported under Windows, the DDK has further documentation.

The provided class drivers arent installed until a device requires them. So for
example, a Windows 2000 system won't show the mass-storage driver wusb-
stor.sys until a device that requires it is attached and the device’s INF file
causes the driver to be installed. A driver may be archived in a file on the sys-
ter’s hard drive, or the user may have to insert the Windows install disk to
retrieve the file.

Matching a Device to a Class

Many peripherals are standard types such as the keyboards, mice, printers,
and disk drives found on most desktop systems (though not always with
USB interfaces). Other peripherals perform non-standard functions such as
data acquisition or motor control for specific applications. The following
sections contain advice on how to select a class for various applications.

Standard Peripheral Types

Standard peripheral types are likely to have built-in drivers. For the most
part, users and application programmers don’t have to know or care whether
a device uses USB or another interface type. The hardware-specific commu-
nications are handled at a lower level and present a common interface to
applications. For example, users can access files on a hard drive in exactly the

same ways whether the drive uses USB, ATAPI, SCSI, IEEE-1394, or a par-

allel-port interface.

USB Complete 279

Chapter 12

280

Keyboard, Mouse and Joystick
The keyboard, mouse, and joystick are the big three of the HID class.

“Mouse” includes trackballs and other pointing devices. HIDs also encom-
pass various other game controls. All Windows editions support USB ver-
sions of these peripherals.

Many applications dont need to access these devices directly. For example, a
Visual-Basic application doesn’t have to read mouse clicks to find out if a
user has clicked on an option button because the button’s click event exe-
cutes automatically when this occurs.

Windows provides two ways for applications to communicate directly with
HIDs: Windows API functions and the APIs supported by DirectX, which
enables faster, more direct access to the hardware. However, Windows 2000
doesn’t allow applications to use API calls or DirectX to access the system
keyboard or mouse.

Besides supporting standard peripherals, the HID class is a good, gen-
eral-purpose class for other uses. For this reason, the following chapters have
much more detail about how to use HID:s.

Mass Storage Devices

The mass-storage class encompasses disk drives, including floppies, hard
drives, CDs, and so on. Other devices that transfer files in one or both direc-
tions can use this class as well.

On a PC, all devices that use a mass-storage driver appear as drives in My
Computer. Users can use the same interface to copy, move, and delete files.
For example, for a digital camera that uses a mass-storage driver, the camera’s
memory appears to the operating system like any other drive. There’s no
need for proprietary software to access the images in the camera.

The many types of media supported by the mass-storage class have different
internal structures. Several industry-standard sets of command blocks, or
command descriptor blocks, enable controlling and reading status informa-
tion from different device types. Floppies, CDs, tape drives, and Flash mem-
ory each typically use a different command-block set.

USB Complete

Device Classes

The mass-storage class supports two transport protocols that determine
which transfer types the device and host use to send command, data, and
status information.

Bulk-only transport uses bulk transfers for most communications. It uses
control transfers only to clear a Stall condition on a bulk endpoint and to
send class-specific requests. The two class-specific requests supported are
Bulk Only Mass Storage Reset (reset the device) and Get Max Lun (get the

number of logical units the device supports).

Control/bulk/interrupt (CBI) transport uses bulk transfers for transferring
data and control transfers to clear a Stall condition on a bulk endpoint and
to send class-specific requests. The single class-specific request is Accept
Device-Specific Command, which enables the host to send a command
block. A CBI device may use either interrupt or control transfers to signal
the completion of commands.

In the device’s interface descriptor, the value 08h in the blnterfaceClass field
indicates that the device is mass-storage class. The bInterfaceSubClass field
specifies the supported command-block set. The blnterfaceProtocol field
contains a code indicating the supported transport protocol.

There are separate specifications for each transport protocol, plus a UFI
Command Specification for removable media.

There are several approaches to writing or obtaining a mass-storage driver
for a device. Windows 2000 and Windows Me include a driver that sup-
ports bulk-only and CBI devices. Microsoft hasnt provided much docu-
mentation for the driver, but the class specification can serve as a guide to
firmware design, and applications can access devices in the same way they
access other system drives.

Windows 98 doesn’t have a mass-storage driver, so device vendors will have
to provide one. Microsoft provides source code for a mass-storage driver for
use under Windows 98 (described in knowledge base Article ID Q257751).
Cypress Semiconductor has a mass-storage reference design for its EZ-USB
chip. The design works with Windows 2000’ driver and with a free driver
provided by Cypress for use with Windows 98.

USB Complete 281

Chapter 12

282

For OEMs (original equipment manufacturers) whose existing devices have
standard SCSI, ATA, or ATAPI interfaces, SCM Microsystems has USB
Intelligent Cables and drivers that quickly add USB capability to the
devices. Many hard drives, CD drives, tape drives, and some scanners use
either SCSI, ATA (AT attachment), originally known as IDE, or ATAPI (AT
attachment packet interface), an extension to EIDE. The EUSB-S1 product
contains a microcontroller and an ASIC that convert between the device’s
existing SCSI interface and USB. In a similar way, the EUSB-C product
converts between ATA and ATAPI devices and USB. The cables are available
only to OEMs, not to end users.

Printers

Windows 2000 and Windows Me include a USB printer driver and
Microsoft also permits distributing the driver for use with Windows 98. The
printer vendor must supply a high-level, user-mode driver that is layered
above the print spooler. The interface to the USB printer driver is similar to
the interface for parallel printers, so a single driver often works without
modification with both USB and the parallel port.

Cameras and Scanners

The still-image capture, or imaging, specification was created to support
still-image (not video) digital cameras. Other devices that have similar

requirements, such as scanners, fit into the class as well. Version 1.0 was
released in July 2000.

The Photographic and Imaging Manufacturers Association (PIMA) devel-
oped the PIMA 15740 Standard, which describes requirements for transfer-
ring files and for controlling digital still cameras. USB’s specification is
based on this standard.

The class supports bulk IN and bulk OUT endpoints for sending both
image and non-image data, plus an interrupt IN endpoint for event data.
Three class-specific requests are required and one is optional. The required
requests are Cancel Request (cancel a bulk transfer), Device Reset Request
(the device returns to the Idle state if the bulk pipe has stalled), and Get

Device Status (the host receives information about a transfer cancelled by

USB Complete

Device Classes

the device). Optional is Get Extended Event Data (the device returns infor-
mation about an event or condition.)

The interface descriptor in the device identifies a still-image device, with the
bInterfaceClass field set to 06h to indicate an image interface and blnter-
faceSubClass set to 01h to indicate a still-image capture device.

Windows 98 SE included a preliminary version of a still-image driver that
was enhanced in Windows 2000 and Windows Me. The driver supports
USB, SCSI, and IEEE-1394.

Windows 2000 and Windows Me support the Microsoft Windows Image
Acquisition (WIA) architecture, which is built on the Microsoft Still Image
Architecture (STT) used in previous Windows editions. The device vendor
needs to supply only a user-mode WIA minidriver that provides a
device-specific interface to the generic still-image driver. The Windows
DDK has more details about how to use the driver.

For Windows 98 Gold and probably Windows SE, you'll need to provide a

device driver.

If all that is needed is a way to transfer image files from a camera, another
option is to use a mass-storage driver, as described earlier.

Audio Applications

Audio has been supported beginning with Windows 98 Gold, so there
should be no need to write an audio driver. Windows 2000 and Windows
Me added a MIDI driver. Audio functions are often part of a device that also
supports video, storage, or other functions.

An audio function consists of an Audio Interface Collection containing one
or more device interfaces. The AudioControl interface accesses controls such
as volume, mute, bass, and treble. One or more AudioStreaming interfaces
transport data representing audio to or from the device. One or more MID-
IStreaming interfaces transport MIDI data to or from the device.

The default control endpoint responds to class-specific requests. Isochro-
nous endpoints transfer data for the streaming interfaces. Some isochronous

USB Complete 283

Chapter 12

endpoints may require an additional isochronous synch endpoint. An
optional interrupt IN endpoint transfers status information.

MIDI (musical instrument digital interface) is a standard for controlling
synthesizers, sound cards, and other electronic devices that generate music.
A MIDI representation of a sound includes values for pitch, length, volume,
and other characteristics. A pure MIDI hardware interface carries asynchro-
nous data at 31.25 kilobits per second. USB MIDI carries MIDI data but

doesn’t use MIDT’s hardware interface.

The audio and MIDI specifications have the details needed to implement-
ing an audio interface.

Modems

The modem driver included with Windows 98 SE and later (usbsersys) is
compatible with modems that use the Abstract Control Model defined in
the communications class specification. A modem used by programs that
call the Windows Telephony Application Programming Interface (TAPI) to
make data, fax, or voice calls must have its own INF file; descriptors that
place the device in the communications class aren’t sufficient. The Windows
DDK includes a Modem Development Kit with tools, sample INF files, and
information for creating and testing INF files for AT (data) and AT+V (data

+ voice) command modems.

Non-standard Functions

284

One of the great things about USB is that you're not limited to a few stan-
dard peripheral types. Applications can communicate with any peripheral if
the operating system has a driver for the it. Some peripherals require custom
drivers. But even when a device’s purpose is very different from typical
peripherals, it’s often possible to design the device to fit into a defined class.

Devices that Transfer Data at Moderate Speeds

Motor controllers and data-acquisition units are two examples of specialized
peripherals that aren’t found on most PCs. For a motor controller, the host
may send configuration and control requests to the device, which then pro-

USB Complete

Device Classes

vides the signals required to carry out the requested tasks. A controller may
also send status information to the host. For data acquisition, a device may
collect data from sensors and sends the results periodically to the host, and
the host may send configuration or control requests to the device.

For devices in both of these categories, or any device that transfers darta at
low to moderate speeds, you may be able to design the device to fit the HID
class, eliminating the need to provide a custom driver.

A HID doesn’t have to be a standard peripheral type, and it doesnt even
need a human interface. The only requirement is that the descriptors stored
in the device must conform to the requirements for HID-class descriptors,
and the device must send and receive data using interrupt or control trans-

fers as defined in the HID specification.

The main limitation to HID communications is the available transfer types.
For device-to-host data transfers, HIDs can use interrupt or control trans-
fers. For host-to-device transfers, Windows 98 SE or later, including Win-
dows 2000 and Me, will use interrupt transfers if an OUT interrupt pipe is
available. Otherwise the host will use control transfers to send data to the
device. The original release of Windows 98 complies only with the HID 1.0
specification and uses control transfers for all host-to-device data.

As Chapter 3 explained, interrupt transfers aren’t the fastest transfer type,
and they dont have the guaranteed transfer rate of isochronous transfers
(though they do have guaranteed maximum latency). Control transfers have
no guaranteed rate or latency. But even with these limitations, the simplicity
of using the HID functions makes the class attractive when the limits are
acceptable.

Upgrading RS-232 Devices

The RS-232 serial port is a good, general-purpose interface that has been
with the PC since its beginning. There are probably thousands of different
RS-232 peripherals in use. Microsoft and Intel's PC 2001 System Design
Guide doesn’t forbid RS-232 ports, but it discourages them in favor of
newer, more powerful and flexible interfaces like USB. Just about any device

USB Complete 285

Chapter 12

286

that uses RS-232 can be implemented with USB. There are several
approaches to making the switch.

RS-232 modems of course can be designed for USB’s modem class.

For many other devices, FI'DI's FT8U232AM USB UART provides a quick
way to upgrade a design to USB. The chip converts an existing RS-232
serial device to USB while requiring minimal design changes and no changes
to host software. (Figure 12-1).

A typical device with an RS-232 interface contains a UART that converts
between the serial data used in RS-232 communications and the parallel
data used by the CPU’s internal buses. The signals on the line side of the
UART connect to converters that translate between RS-232 voltages and the
5V logic used by the CPU. The line side of the converter connects to a cable
that connects to the remote device.

The USB UART converts between USB and RS-232, including not just the
data lines but also RTS, CTS, and the other status and control signals used
in RS-232 communications. One set of pins on the USB UART looks like
the line side of a conventional UART, with pins for data and handshaking
signals. Two other pins connect to a USB transceiver.

The chip requires no programming except the optional storing of Vendor,
Product, and Device IDs and strings in a serial EEPROM.

To adapt an RS-232 design for USB, you replace the original UART’s con-
nections to the RS-232 converters with connections to the complimentary
signals on the USB UART. Store the IDs and other optional information in
a serial EEPROM that connects to the USB UART and add a USB connec-
tion to the USB transceiver. The device firmware requires no changes
because the original UART will think it’s talking to an RS-232 device as
usual.

But providing the device hardware is only half of the job. The other half is
the device driver. For the least disruption to existing applications, the driver
should cause application software to treat the device as if it were still

attached to a COM port. FTDI provides drivers that do just that under

USB Complete

RS-232
INTERFACE
TO HOST

i

Device Classes

TXDATA o) ™D — -
RXDATA RXD RXD —
RTS RTS# RTS# —

PARALLEL INTERFACE
cTs CTs# CTs# ———— |10 OTHER DEVICE
DTR DTR# DTR# ——— |CIREUITS
DSR DSR# DSR# -

DCD DCD# DCD* —
RI RI# RI# F—
MAX3245 OR EQUIVALENT
TTL/RS-232 CONVERTER
DEVICE UART

TYPICAL RS-232 DEVICE

3.3V OUT
1.5K XD TXD e —
RXD RXD [
usB RTS# RTS# e
INTERFACE b+ PARALLEL INTERFACE
T0 HOST &% —————dp- CTS# CTS# | TO OTHER DEVICE
DTR# DTR# CIRCUITS
EESK DSR# DSR# ———
EECS DCD# DCD# ——
vee EEDATA R1# RI# e
O
FT8U232AM
UsE UART DEVICE UART
100K 10K
2.2K
DIN
DOUT SERIAL EEPROM
CONTAINING
cs VENDOR &
PRODUCT DS
SK

RS$-232 DEVICE CONVERTED TO USB

Figure 12-1: FTDI's USB UART can convert devices with RS-232 interfaces to
USB. A free device driver provided by FTDI causes the device to appear like a
conventional COM-port device to host applications.

Windows and other operating systems. An RS-232 design converted for

USB with an FTDI UART can use exactly the same application software as
the RS-232 version.

Another approach to upgrading RS-232 devices is to redesign the device to

eliminate the COM-port interface entirely. The device will probably be

cheaper to manufacture because there’s no need for a UART, but the device

USB Complete

287

Chapter 12

288

will need new application software and possibly a custom device driver.
Many RS-232 devices, such as uninterruptible power supplies and the
point-of-sale devices described below, can be designed as HIDs. Others will
use bulk transfers and may require a custom driver.

Point-of-Sale Devices

Point-of-sale (POS) devices include bar-code scanners, displays, receipt
printers, cash drawers, coin dispensers, and other devices used in sales trans-
actions. Traditionally these have used RS-232 interfaces, and they’re ideal
candidates to upgrade to USB.

Most POS devices can be designed to fit into the HID class. The HID Point
of Sale Usage Tables document defines data formats for bar-code scanners,
weighing devices, and magnetic stripe readers. The document is available
from the USB Implementers Forum’s website.

Other approaches for POS devices are designed to make upgrading from
RS-232 as easy as possible. RS-232 POS devices can use the USB UART
described above to enable applications to access the device the same as if it
were still connected to a COM port.

Another option is the EPiC driver and associated USB protocol from
Inside/Out Networks. The driver enables applications to access a device as if
it were a COM-port device. This approach requires the device to contain a
USB controller with device firmware that uses the licensed protocol.

Replacing Non-standard Parallel Port Devices
Besides the RS-232 serial port, another port that all PCs had from the

beginning was the parallel port, originally intended for connecting a printer.
Like the serial port, the parallel port has found many other uses over the
years. The parallel port is faster than the serial port, so it became a favored
connection for scanners and disk drives. This became even more true when
the ports began supporting the new, faster PS/2, enhanced parallel port
(EPP) and extended capabilities port (ECP) modes. In each of its modes, the
parallel port uses a defined protocol for exchanging bytes of data along with
status and control information.

USB Complete

Device Classes

Another category of parallel-port devices uses custom protocols. The origi-
nal port had 8 outputs, 5 inputs, and 4 open-collector, bidirectional lines.
Under Windows 3.x and 9x, applications can read and write directly to the
port addresses, and under Windows N'T and 2000 all that’s needed to access
the ports is a kernel-mode driver available at low cost or free from several
sources. What resulted was an assortment of devices following no standard
use of the ports input and outputs. For example, one popular use involved
connecting combinations of decoders, flip-flops, and data selectors to
expand the number of inputs and outputs applications could access.

But as with RS-232, Microsoft and Intel are discouraging the parallel port’s
use in favor of USB and IEEE-1394. And this brings up the question of
what to do with all of the existing designs.

For drives, scanners, and other standard device types, the logical solution is
to design the device to comply with the appropriate USB class specification.

A quick solution for parallel printers is to use a USB printer adapter. The
adapter’s driver causes the operating system to see the printer as a network
printer. Adapters are available from several vendors. A printer adapter isn't a
solution for parallel-port scanners, drives, and so on, because the firmware
and driver are designed for use only with the PC’s printer drivers.

For devices that use non-standard parallel-port communications, the solu-
tion is to redesign the interface for USB. This requires adding a USB micro-
controller to the device, possibly providing a device driver, and revising the
application software to match the drivers requirements. The parallel port
has 17 signal pins, so to emulate them all requires at least that many 1/O
pins on the microcontroller. But many designs can get by with the 16 1/0
pins available on smaller, cheaper controller chips. If you must have 17 bits
on a chip with a small footprint, Cypress’ CY7C63743 has 16 1/O pins plus
two additional inputs that are available if the chip uses the internal oscillator
or an external source for D-s pull-up.

Applications that access the port at low and moderate speeds can probably
use the HID drivers included with Windows. This means there are no driv-
ers to write, but you'll need to rewrite the application software to use the

API calls for accessing HIDs.

USB Complete 289

Chapter 12

290

If you want to make minimal changes to the application software, provide a
driver that supports custom DeviceloControl functions that emulate the
functions used by the original application. For example, you could define an
IoControlCode for a status-port read function that reads five inputs with bit
values of bit 3 through bit 7 and even inverts bit 7 to match what the paral-
lel-port hardware does. Instead of reading the status-port address with an
Inp function, applications would call DeviceloControl with your ToCon-
trolCode for the status-port read emulation.

PC-to-PC Connections

USB doesnt allow peripherals to exchange data directly. All communications
must go through a host. There’s no way for two hosts to send data to each
other without going through a peripheral. There is, however, a way to enable
two PCs to communicate using their USB ports. Each PC can connect to a
USB peripheral, and the two peripherals can communicate with each other
via a shared buffer.

Cypress Semiconductor’s AN27208C is designed for this purpose. Its a sin-
gle chip containing two USB cores. Each core connects to a USB transceiver
and a shared 2-Kilobyte buffer. Cypress provides a driver that causes each
PC to see the other as a network-connected PC. You add only a single crys-

tal, an EEPROM for storing a VID and PID, and few other components.

But you don’t have to build your own PC-to-PC cable. It’s a popular enough
application that ready-made products are available, including Cypress

EZ-Link.

Wireless Links

Replacing a USB cable with a wireless connection isnt a simple task. The
main reason is that USB transactions involve communicating in both direc-
tions with tight timing requirements. For example, when a host sends a
token and data packet in the daca stage of an interrupt transaction, the
device must respond quickly with ACK or another code in the handshake
packet. Designing a wireless link to do this while also meeting all of USB’s
timing and other requirements would be a challenge.

USB Complete

Device Classes

An easier solution when you need a wireless connection is to use a conven-
tional wired connection to a USB device that also supports a wireless inter-
face. The device at the other end of the wireless link doesn’t have to support

USB at all.
SigmaTel’s STIr4200s takes this approach with its IrDA-ro-USB bridge chip

for wireless applications. IrDA is a standard for communications that use
infrared energy instead of cables. The bridge’s USB inrerface connects to a
USB hub, and the IrDA interface communicates with IrDA-capable devices.
The bridge translates between the two interfaces. SigmaTel provides a driver
for use with the chip.

A similar approach would work for devices that use radio-frequency wireless

communications.

USB Complete 291

Chapter 12

292 USB Complete

Human Interface Devices: Firmware Basics

13

Human Interface
Devices:
Firmware Basics

The human interface device (HID) class was one of the first USB classes to
be supported under Windows. On PCs running Windows 98 or later, appli-
cations can communicate with HIDs using the drivers built into the operat-
ing system. For this reason, USB devices that fit into the HID class are some
of the easiest to get up and running.

This chapter shows how to determine whether a peripheral will fit into the
human-interface class, explains the firmware requirements that define a
device as a HID and enable it to exchange data with its host, and introduces
the six HID-specific control requests. The next three chapters describe the
reports that HIDs use to exchange information and how to access HIDs
from applications.

USB Complete 293

Chapter 13

What is a HID?

Before you can know whether or not you can use Windows HID drivers to
communicate with a device, you need to know whether your device fits in

the HID class.

The designation human interface suggests that the device interacts directly
with people. A device may detect when someone presses a key or moves a
mouse or joystick, or the host may send a message that translates to a joy-
stick effect that the user experiences. The classic examples of HIDs are key-
boards, mice, and joysticks. Other HIDs include front panels with knobs,
switches, buttons, and sliders; remote controls; telephone keypads; and
game controls such as data gloves and steering wheels.

But a HID doesn’t have to have a human interface at all. It just needs to be
able to function within the limits of the classs specification. These are the
major abilities and limitations of HID-class devices:

e The data exchanged resides in structures called reports. The device’s firm-
ware must support the HID report format. The host sends and receives
data by sending and requesting reports in control or interrupt transfers.
The report format is flexible, and can handle just about any type of data.

e Fach transaction can carry a small to moderate amount of data. For a
low-speed device, the maximum is 8 bytes per transaction. For a
full-speed device, the maximum is 64 bytes per transaction. For a
high-speed device, the maximum is 1024 bytes per transaction. A long
report can use multiple transactions.

e A device may send information to the computer at unpredictable times.
For example, there’s no way for the computer to know when the user will
press a key on the keyboard, so the host’s driver polls the device periodi-
cally to obtain new data.

e The maximum speed of transfers is limited, especially at low and full
speeds. As Chapter 4 explained, a host can guarantee a low-speed inter-
rupt endpoint no more than 1 transaction per 10 milliseconds, for a
maximum of 800 bytes per second. A host can guarantee a full-speed
endpoint up to 1 transaction per millisecond, for a maximum of 64,000

USB Complete

Human Interface Devices: Firmware Basics

bytes per second, or a high-speed endpoint up to 3 transactions per 125
microseconds, for a maximum of 24.576 Megabytes per second.

¢ There is no guaranteed rate of transfer. If the device is configured for
10-millisecond intervals, the time between transactions may be any
period equal to or less than this. The exception is devices configured to
transfer data every frame at full speed or every microframe at high speed.
Since these are the fastest possible polling rates, the endpoint is guaran-
teed to have this exact bandwidth available.

» Under Windows 98 Gold (original), interrupt OUT transfers aren't sup-
ported, so all host-to-device data must use control transfers.

Although many HIDs mostly send data from the device to the host, a HID
can also receive data from the host. The classic example of host-to-device
HID communications is the force-feedback joystick, where users experience
effects that match their actions, such as greater resistance when pulling the
stick to cause a simulated airplane to climb or when getting a bite on a sim-

ulated fishing rod.

Any device that can live within the class’s limits is a candidate to be a HID.
The specification mentions bar-code readers, thermometers, and voltmeters
as examples of HIDs that may not have a conventional human interface.
Each of these sends data to the computer and may also receive requests that
configure the device. Examples of devices that mostly receive data are
remote displays, control panels for remote devices, robots, and devices of
any kind that receive occasional or periodic commands from the host.

The HID interface may be just one of multiple USB interfaces supported by
a device. A video display may have a HID interface for software control of
brightness, contrast, and refresh rates, while using the conventional video
interface to send the data to be displayed. A USB speaker that uses isochro-
nous transfers for audio may also have a HID interface for controlling vol-
ume, balance, treble, and bass. A HID interface is often cheaper than
traditional physical controls.

Two essential documents for working with HIDs are Device Class Definition
for Human Interface Devices, which defines the HID class, and HID Usage
Tables, which defines values that help the host understand and use the HID

USB Complete 295

Chapter 13

data. Both documents are products of a USB Device Working Group. The
members are affiliated with the member companies of the USB Implement-
ers Forum. The documents are published by the Implementers Forum and
available on the Forum’s website.

Hardware Requirements

296

A HID interface must conform to the requirements of the HID class as
defined in the specification. The document describes the required descrip-
tors, the frequency of transfers, and the transfer types available.

To comply with the specification, the interface’s endpoints and descriptors
must meet several requirements.

Endpoints

All HID transfers use either the Default Control Pipe or an interrupt pipe.
A HID must have an interrupt IN endpoint for sending data to the host. An
interrupt OUT endpoint is optional.

The specification defines uses for each pipe. Table 13-1 shows the transfer
types and their uses in HIDs.

You can think of the data that the host and device exchange as being of two
types: low-latency darta that must get to its destination as soon as possible,
and configuration data or other data that doesn’t have critical timing
requirements. (By configuration data, I'm referring to data sent in HID
reports, not the host’s requesting and selecting of device configurations on
enumerating.)

The Control Pipe

The control pipe for a HID carries the standard USB requests as well as six
class-specific requests defined in the HID specification. Two of the
HID-specific requests, Set_Report and Get_Report, provide a way for the
host and device to transfer a block of any kind of data to or from the device.
The host uses Set_Report to send reports and Get_Report to receive reports.

The other four requests relate to configuring the device. Set_Idle and
Get_Idle set and read the Idle rate, which determines whether or not a

USB Complete

Human Interface Devices: Firmware Basics

Table 13-1: The transfer type used in a HID transfer depends on the chip’s
abilities and the requirements of the data being sent.

Transfer Source of Data |Type of Data Required |Windows

Type Pipe? Support

Control Device Data that doesn’t have critical timing |yes Windows 98
(IN transfer) requirements. and later
Host Data that doesn’t have critical timing

(OUT transfer) |requirements, or any data if there is
no OUT interrupt pipe.

Interrupt Device Periodic or low-latency data. yes
(IN transfer)
Host Periodic or low-latency data. no Windows 98
(OUT transter) SE and later

device resends data that hasn’t changed since the last poll. Set_Protocol and
Get_Protocol set and read a protocol value, which can enable a device to
function with a simplified protocol when the HID drivers aren’t loaded on

the host.

Interrupt Transfers

The interrupt pipe or pipes provide an alternate way of exchanging device
data, especially when the receiver must get the data quickly or periodically.
An interrupt IN pipe carries data to the host, and an interrupt OUT pipe
carries data to the device. Control transfers can be delayed if the bus is very
busy, but once the device is configured, the bandwidth for interrupt trans-
fers is guaranteed to be available. HIDs arent required to have interrupt
OUT pipes. If there is no interrupt OUT pipe, the host sends all reports on

the control pipe, using Set_Report requests.

The ability to do Interrupt OUT transfers was added in version 1.1 of the
USB specification, and the option to use an interrupt OUT pipe was added
to version 1.1 of the HID specification. A HID driver that complies only
with version 1.0 (including the drivers in Windows 98 Gold) won't support
interrupt OUT transfers.

USB Complete 297

Chapter 13

Firmware Requirements

298

For the host’s drivers to communicate with a HID, the device’s firmware
must meet certain requirements. The device’s descriptors must identify the
device as having a HID interface, and the firmware must support an inter-
rupt IN endpoint in addition to the Default Control Pipe. The firmware
must also contain a report descriptor that defines the format for transmitted
and received device data.

To send data, the specification requires the firmware to support Get_Report
control transfers and interrupt IN transfers, and to receive data, the firm-
ware must support Set_Report control transfers and may also support inter-

rupt OUT transfers.

Al HID data must use a defined report format that defines the size and con-
tents of the data in the report. Devices may support one or more reports. A
report descriptor in the device’s firmware describes the reports, and may also
include information about how the receiver of the data should use it.

A value in each report defines the report as an Input, Output, or Feature
report. The host receives data in Input reports and sends data in Output
reports. Feature reports may travel in either direction.

For Input reports, the HID drivers in all releases of Windows 98 and later
use interrupt transfers. For Output reports, the transfer type depends on
what endpoints the device supports and which edition of Windows is
installed. The original release of Windows 98 (Windows 98 Gold) complies
only with version 1.0 of the HID specification, and the HID driver uses
control transfers for Output reports. Windows 98 SE, Windows 2000, and
Windows Me comply with version 1.1 of the specification, so the HID
driver uses interrupt transfers for Output reports if the interface has an
interrupt OUT endpoint. Otherwise it uses control transfers. If the HID
interface doesn’t have an interrupt OUT endpoint or if the firmware sup-
ports both transfer types for Output reports, the HID will be compatible

with any Windows edition. Feature reports always use control transfers.

A report format can be simple or complex. The rest of this chapter and
Chapter 14 have much more about report formats.

USB Complete

Human Interface Devices: Firmware Basics

Identifying a Device as a HID

As with any USB device, a HID’s descriptors tell the host what it needs to
know to communicate with the device. Listing 13-1 shows example device,
configuration, interface, class, and endpoint descriptors for a HID-class joy-
stick. The host learns about the HID interface when it sends a
Get_Descriptor request for the configuration containing the HID interface.
The configuration’s interface descriptor identifies the interface as HID-class.
The HID class descriptor specifies the number of report descriptors sup-
ported by the interface. During enumeration, the HID driver retrieves the
HID class and report descriptors.

Descriptor Contents

The device and configuration descriptors have no HID-specific informa-
tion. The device descriptor contains a field for a class code, bur this isn’t
where the device is defined as a HID. Instead, the interface descriptor is
where the host learns that a device, or more properly, a device interface,
belongs to the HID class. If the class-code byte in the device’s interface
descriptor is 3, the interface is a HID.

Other fields that contain HID-specific information in the interface descrip-
tor are the subclass and protocol fields, which can specify a boot interface.

Boot Interfaces

The subclass field has just one active setting. A subclass of 1 indicates that
the device supports a boot interface. When a device has a boot interface, the
device will be usable when the host’s HID drivers aren’t loaded. This might
occur when the computer boots directly to DOS, or when viewing the sys-
tem setup screens that you can access on bootup, or when using Windows’
Safe mode for system troubleshooting. A keyboard or mouse with a boot
interface can use a predefined, simplified protocol supported by the BIOS of
many hosts. The BIOS loads from ROM or other non-volatile memory on
bootup and is available in any operating-system mode. The HID specifica-
tion defines boot-interface protocols for keyboards and mice.

USB Complete 299

Chapter 13

device desc table:

db 12h ; Descriptor length (18 bytes)

db 01h ; Descriptor type (Device)

db 00h,01lh ; Complies to USB Spec. Release (1.00)
db 00h ; Class code (0)

db 00h ; Subclass code (0)

db 00h ; Protocol (No specific protocol)

db 08h ; Max. packet size for EPO (8 bytes)

db B4h, 04h ; Vendor ID (Cypress)

db 1Fh, OFh ; Product ID (joystick = OxOF1F)

db 88h, 02h ; Device release number (2.88)

db 00h ; Mfr string descriptor index (None)

db 00h ; Product string descriptor index (None)
db 00h ; Serial No. string descriptor index (None)
db 01h ; Number of possible configurations (1)

end device desc table:

config desc table:

db 0%h ; Descriptor length (9 bytes)

db 02h ; Descriptor type (Configuration)
db 22h,00h ; Total data length (34 bytes)

db 01h ; Interface supported (1)

db 01h ; Configuration value (1)

db 00h ; Index of string descriptor (None)
db 80h ; Configuration (Bus powered)

db 32h ; Maximum power consumption (100mA)

Interface Descriptor:

db 09h ; Descriptor length (9 bytes)
db 04h ; Descriptor type (Interface)
db 00h ; Number of interface (0)

db 00h ; Alternate setting (0)

db 01h ; Number of endpoints supported
db 03h ; Class code (HID)

db 00h ; Subclass code (None)

db 00h ; Protocol code (None)

db 00h ; Index of string(None)

Listing 13-1: Descriptors for a HID-class joystick (Sheet 1 of 2)

300 USB Complete

Human Interface Devices: Firmware Basics

Class_Descriptor:

db 09h ; Descriptor length (9 bytes)

db 21h ; Descriptor type (HID)

db 00h,01h ; HID class release number (1.00)

db 00h ; Localized country code (None)

db 01lh ; # of HID class descriptors to follow (1)
db 22h ; Report descriptor type (HID)

; Total length of report descriptor
db (end_hid report desc_table - hid report desc table), 00h

Endpoint Descriptor:

db 07h ; Descriptor length (7 bytes)

db 05h ; Descriptor type (Endpoint)

db 81h ; Encoded address (Respond to IN, 1 endpnt)
db 03h ; Endpoint attribute (Interrupt transfer)
db 06h,00h ; Maximum packet size (6 bytes)

db 0Ah ; Polling interval (10 mg)

end config desc table:

Listing 13-1: Descriptors for a HID-class joystick (Sheet 2 of 2)

If a device does have a boot interface, the protocol field indicates if the
device supports the keyboard (1) or mouse (2) interface. A value of zero
indicates no device, and values 3—255 are reserved. A subclass of zero means
that the device doesn’t support a boot protocol. Values 2 through 255 are
reserved.

The HID Usage Tables document defines the keyboard and mouse boot
descriptors. The BIOS doesn’t need to read a descriptor from the device
because it knows what the boot protocol is and assumes that the device will
support it. So a boot device doesn’t have to include a boot-interface descrip-
tor in firmware; it just has to support the boot protocol if the host hasn't
requested the protocol defined in the report descriptor. When the operating
system loads, the HID drivers use the HID-specific request Set_Protocol to
cause the device to switch from the boot protocol to the report protocol.

USB Complete 301

Chapter 13

Draft 4 Compliance

During the development of the HID 1.0 specification, a change was made
to the ordering of descriptors in HID firmware. In the early versions, the
descriptors were stored and retrieved in this order:

Configuration
Interface
Endpoint
HID

By Draft 4 of the specification, the order had changed to:

Configuration
Interface
HID
Endpoint
The change means that the HID descriptor is associated with an interface,

rather than an endpoint. If a HID has two endpoints, the device doesn
need a HID descriptor for each.

A device that complies with HID 1.0 or later uses the Draft 4 ordering. A
USB test utility (such as HIDView, described in Chapter 17) that checks for

Draft 4 compliance is examining the order of the descriptors.

HID Class Descriptor

302

The main purpose of the HID class descriptor is to identify additional
descriptors for use in HID communications. The class descriptor has seven

or more fields, depending on the number of additional descriptors. Table
13-2 shows the fields.

The Descriptor
bLength. The length in bytes of the descriptor.
bDescriptorType. The value 21h indicates the HID class.

USB Complete

Human Interface Devices: Firmware Basics

Table 13-2: The HID class descriptor has 7 or more fields in 9 or more bytes.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

I bDescriptorType 1 21h indicates the HID class

2 bcdHID 2 HID specification release number (BCD)

4 bCountryCode 1 Numeric expression identifying the country for
localized hardware (BCD)

5 bNumDescriptors 1 Number of subordinate class descriptors supported

6 bDescriptorType 1 The type of class descriptor

7 wDescriptorLength |2 Total length of report descriptor

9 bDescriptorType 1 Constant identifying the type of descriptor.
Optional, for devices with more than one descrip-
tor.

10 wDescriptorLength |2 Total length of descriptor. Optional, for devices
with more than one descriptor. May be followed by
additional wDescriptorType and
wDescriptorLength fields.

The Class

bedHID. The HID specification number that the device and its descriptors
comply with. In BCD (binary-coded decimal) format. The value is a 4-char-
acter hexadecimal value with a decimal point assumed in the middle. For
example, Version 1.0 is 0100h; Version 1.1 is 0110h.

bCountryCode. If the hardware is localized for a specific country, this field
is a code identifying the country. The HID specification lists the codes. If
the hardware isn’t localized, this field is 00h.

bNumDescriptors. The number of class descriptors that are subordinate to
this descriptor.

bDescriptorType. The type (report or physical) of a descriptor that is sub-
ordinate to the HID class descriptor. Every HID must support at least one
report descriptor. An interface may support multiple report descriptors and
one or more physical descriptors.

wDescriptorLength. The length of the descriptor described in the previous
field.

USB Complete 303

Chapter 13

Additional bDescriptorType, wDescriptorLength (optional). If there are
additional subordinate descriptors, the descriptor type and length for each
follow in sequence.

Report Descriptors

304

A report descriptor defines the format and uses of the data that carries out
the purpose of the device. If the device is a mouse, the data reports mouse
movements and button clicks. If the device is a relay controller, the data
contains codes that specify which relays to open and close.

The report descriptor needs to be flexible enough to handle devices with
very different purposes. The data should be stored in a concise form so it
doesn’t waste storage space in the device or bus time when the data trans-
mits. The HID report descriptor achieves both of these at a price of a format
that’s more complex and less readable than a more verbose format might be.
The format doesn’t limit the type of data in a report, but the report descrip-
tor must describe the size and contents of the report in advance. A report
descriptor’s contents and length vary with the device, and can be short and
simple, long and complex, or anywhere in between.

A report descriptor is a type of class descriptor. The host retrieves the
descriptor by sending a Get_Descriptor request with the Value field contain-
ing 22h in the high byte and the report ID in the low byte. The default
report ID is 00h.

One way to get a feel for what a report descriptor contains and how it’s
structured is to look at one. Listing 13-2 is a bare-bones report descriptor
that describes an Input report that sends two bytes of data to the host and an
Output report that sends two bytes of data to the device. Other report
descriptors build on this basic format, so a short descriptor like this is a good
place to start understanding report descriptors in general.

The items in the example descriptor are required in all descriptors. Some
items apply to the entire descriptor, while others are specified separately for
the input and output data. More complicated report descriptors may use
additional instances of these same items along with other optional items.

USB Complete

Human Interface Devices: Firmware Basics

hid report desc_table:

db 06h,
db 09h,

db Alh,
db 0%h,

AOh, FFh
ASh

01lh

A6h

;The input report

db
db
db
db
db
db

09h,
15h,
25h,
75h,
95h,
81h,

; The output

db
db
db
db
db
db

db

end hid report desc_table:

0%h,
15h,
25h,
75h,
95h,
91h,

Coh

A7h
80h
7Fh
08h
02h
02h

report
ASh
80h
7Fh
08h
02h
02h

1

!

Usage Page (vendor defined)
Usage (vendor defined)

Collection (Application)
Usage (vendor defined)

Usage (vendor defined)

Logical Minimum (-127)

Logical Maximum (128)

Report Size (8) (bits)

Report Count (2) (fields)

Input (Data, Variable, Absolute)

Usage (vendor defined)

Logical Minimum (-128)

Logical Maximum (127)

Report Size (8) (bits)

Report Count (2) (fields)
Output (Data, Variable, Absolute)

End Collection

Listing 13-2: This report descriptor enables sending and receiving of two bytes.

Fach item in the example report consists of a byte that identifies the item

and one or more bytes containing the item’s data. Here is whart each item in

the example descriptor specifies:

The Usage Page item is identified by the value 06h and specifies the general

function of the device, such as generic desktop control, game control, or

alphanumeric display (to name just a few). You can think of the Usage Page

as a subset of the HID class. In the example descriptor, the Usage Page is the
vendor-defined value FFAOhh. The HID specification lists values for differ-
ent Usage Pages and values reserved for vendor-defined Usage Pages.

USB Complete

305

Chapter 13

The Usage item is identified by the value 09h and specifies the function of
the individual report. Just as the Usage Page is a subset of the class, the
Usage is a subset of the Usage Page. For example, Usages available for
generic desktop controls include mouse, joystick, and keyboard. Because the
example’s Usage Page is vendor-defined, all of the Usages in the Usage Page
are vendor-defined also. In the example, the Usage is ASh.

The Collection (Application) item begins a group of items that together
perform a single function, such as keyboard or mouse. Fach report descrip-
tor must have an Application Collection to enable Windows to enumerate
it. The Usage item that follows the Collection item names the function of
the collection. In the example, it’s the vendor-defined value A6.

The Logical Minimum and Maximum have values of 15h and 25h and
specify the range of values that the report can contain. Negative values may
be expressed as two’s complements. In the example, the values 80h and 7Fh
indicates a range of -128 to +127.

The Report Size item has a value of 75h and indicates how many bits are in
each reported data item. In the example, each data item is eight bits.

The Report Count item has a value of 95h and indicates how many data
items the report contains. In the example, each report contains two data
items.

The final item specifies whether the report carries data from the host to the
device (91h) or from the device to the host (81h), along with other informa-
tion about the data.

The End Collection item closes the Application Collection.

HID-specific Requests

306

The HID specification defines six HID-specific control requests. Table 13-3
lists the requests, and the following pages describe each request in more
detail.

All HIDs must support Get_Report, and boot devices must support
Get_Protocal and Set_Protocol. The other requests (Set_Report, Get_Idle,

USB Complete

Human Interface Devices: Firmware Basics

Table 13-3: In addition to the eleven standard control requests, HIDs may
support up to six HID-specific requests.

Request # |Request |Data Value Index Data Data Required
source Length stage ?
(bytes) contents
01h Get_ device report interface |report report yes
Report type, length
report ID
02h Get_ device report ID |interface |1 idle no
Idle duration
03h Get_ device 0 interface |1 protocol |required
Protocol for boot
devices
0% Set_ host report interface |report report no
Report type, length
report ID
OAh Set_ host idle interface |0 none no
Idle duration,
report ID
0Bh Set_ host protocol |interface |0 none required
Protocol for boot
devices

and Set_Idle) are optional. If a device doesn’t have an Interrupt OUT end-
point or if it is communicating with a 1.0 host such as Windows 98 Gold, it
will need to support Set_Report to receive data from the host. Devices that
don’t support Feature reports will send data using interrupt transfers only
and thus have no use for Get_Report, but to comply with the specification,
they should support the request in case a host should decide to use it. A
device will enumerate and transfer data under Windows without supporting
this request, however.

USB Complete 307

Chapter 13

Get_Report
Purpose: Enables the host to receive data from a device in control transfers.
Request Number: 01h
Source of Data: device
Data Length: length of the report

Contents of Value field: The high byte contains the report type (1=Input,
2=Output, 3=Feature), and the low byte contains the report ID. The
default report ID is 0.

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: the report

Comments: The HID specification advises that the host should not use
this request to obtain periodic data. (It should use interrupt transfers
instead.) The request is intended only for obtaining the state of feature
items or other information that the host needs to know when it initializes
the device. However, a host using a boot protocol might use Get_Report to
receive keypress or mouse data.

All HIDs must support this request.

308 USB Complete

Human Interface Devices: Firmware Basics

Set_Report
Purpose: Enables a device to receive data from the host in control transfers.
Request Number: 09h
Source of Data: host
Data Length: length of the report

Contents of Value field: The high byte contains the report type (1=Input,
2=Output, 3=Feature), and the low byte contains the report ID. The
default report ID is 0.

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: the report

Comments: If a device doesnt have an Interrupt OUT endpoint or if the
host complies only with version 1.0 of the HID specification, this request is
the only way the host can send data to the device. For other devices, the
host may use this request to send Feature reports or other information that
that isnt time-sensitive. HIDs aren’t required to support this request.

USB Complete 309

Chapter 13

Get_ldle
Purpose: The host reads the current Idle rate from a device.
Request Number: 02h
Source of Data: device
Data Length: 1

Contents of Value field: The high byte is 0. The low byte indicates the

report ID that the request applies to. If the low byte is 0, the request applies
to all of the device’s Input reports.

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: the Idle rate, expressed in
units of 4 milliseconds.

Comments: See Set_Idle for more details. HIDs aren’t required to support
this request.

310 USB Complete

Human Interface Devices: Firmware Basics

Set _ldle

Purpose: Saves bandwidth by limiting the reporting frequency of an inter-
rupt IN endpoint when the data hasn’t changed since the last report.

Request Number: 0Ah

Source of Data: none
Data Length: 0

Contents of Value field: The high byte sets the duration, or the maximum
amount of time between reports. A value of 0 means that there is no maxi-
mum and the device will report only when the report data has changed.
Otherwise, the device returns a NAK. The low byte indicates the report ID
that the request applies to. If the low byte is 0, the request applies to all of
the device’s Input reports.

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: none

Comments: The duration is in units of 4 milliseconds, which gives a range
of 4 to 1,020 milliseconds. No matter what the duration value is, if the
report data has changed since the last report sent, on receiving a request,
the device sends a report. If the data hasn’t changed and the amount of time
specified in the duration value hasn't elapsed since the last report, the device
returns a NAK. If the data hasn’t changed and the amount of time specified
in the duration value has elapsed since the last report, the device sends a
report. A duration value of 0 indicates an infinite duration; the device sends
a report only if the report data has changed, and responds to all other inter-
rupt IN requests with NAK.

HIDs aren’t required to support this request. On enumerating a HID, the
Windows HID driver attempts to set the idle rate to 0. If the HID supports
the request, it will send a report only if the report data has changed. If the
HID returns a Stall in response to this request, the request isnt supported
and the device can send reports whether or not the data has changed.

USB Complete 311

Chapter 13

Get_ Protocol

Purpose: The host learns whether the boot or report protocol is currently
active on the device.

Request Number: 03h
Source of Data: device
Data Length: 1

Contents of Value field: 0

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: The protocol. O=boot proto-
col, 1=report protocol.

Comments: Boot devices must support this request.

312 USB Complete

Human Interface Devices: Firmware Basics

Set_Protocol
Purpose: The host specifies whether to use the boot or report protocol.
Request Number: 0Bh
Source of Data: host
Data Length: 1
Contents of Value field: 0

Contents of Index field: the number of the interface that supports this
request.

Contents of data packet in the Data stage: 0=Boot Protocol; 1=Report
Protocol

Comments: Boot devices must support this request.

USB Complete 313

Chapter 13

Transferring Data

When enumeration is complete, the host has done all of the following;: it has
identified the device interface as a HID, it has established pipes with the
supported endpoints, and it has learned what report formats to use in send-
ing and receiving dara.

The host uses control transfers to send and receive Feature reports contain-
ing additional configuration data or other data that doesn’t have critical tim-
ing requirements. For example, a control-panel application for a video
monitor may use control transfers to send settings to the monitor. The host
uses interrupt transfers to send and receive periodic, low-latency data in
Input and Output reports. The device’s firmware must have the comple-
mentary code to respond to the host’s requests.

Sending Data to the Host

314

The host receives data after requesting it in an interrupt or control transfer.
To respond to an interrupt transfer, the device’s firmware needs only to have
the requested data in its transmit buffer and to be configured to send the
data in response to an interrupt IN request. For Cypress' enCoRe series,
doing this requires writing a value to Endpoint 1’s transmit configuration
register to enable transmitting and to specify the number of bytes to send
and the data-toggle bit’s value.

Below is example code for the enCoRe that prepares two bytes to transmit
on the next interrupt IN transfer:

On receiving a Set_Configuration request, enable the Endpoint 1 interrupt:

; Set the endpoint mode to NAK Ins and Outg
mov A, NAK IN OUT

iowr epl mode

; Enable Endpoint 0 and 1 interrupts.

mov A, EPO_INT | EP1 INT

iowr endpoint int

mov A, 00h

; Reset the data toggle.

mov [epl data toggle], A

USB Complete

Ps

Human Interface Devices: Firmware Basics

To prepare to send data to the host, copy the data to Endpoint 1’s buffer and
configure the endpoint to return data in an IN transaction:

mov A, [data byte 0]

mov [epl dmabuffo0], A

mov A, [data _byte 1]

mov [epl dmabuffl], A

; Configure Endpoint 1 to send 2 bytes.

mov A, 02h

; Keep the data toggle the same.

or A, [epl data_ toggle]

iowr epl_count

; Configure the endpoint to send data in IN

; transactions.

mov A, ACK IN

iowr epl_mode
After sending the data, in Endpoint 1’s interrupt service routine, toggle the
data toggle so it will be correct for the next transaction:

; Toggle the data toggle.

mov A, 80h

xor [epl data toggle]l, A
The details will vary for other chips. When the device has no data to send,
the endpoint should be configured to return NAK.

Responding to a Get_Report request for a Feature report is much like
responding to any control Read request. Control transfers are more compli-
cated than interrupt transfers because of their multiple stages, but you can
use the code for other control Read requests as a model. The device must be
able to detect the request in the Setup stage, write the requested report data
to the USB output buffer for transmitting in the Data stage, and acknowl-
edge the host’s 0-length data packet in the Status stage.

Receiving Data from the Host

The host receives data after requesting it in an interrupt or control transfer.
As explained earlier, a host may use control or interrupt transfers for Output
reports. The chip’s architecture and descriptors determine whether or not
the HID interface has an interrupt OUT pipe available. The host always

uses Set_Report control requests to send Feature reports.

USB Complete 315

Chapter 13

316

If the interface has an interrupc OUT endpoint and needs to receive
low-latency data, the endpoint should be configured to receive report data.
Typically, when new data arrives, an interrupe informs the device of the
event. An interrupt-service routine in the firmware then does whatever is
necessary with the data, either using the data right away or storing it for later
use. The interrupt-service routine should also do whatever is needed to pre-
pare the endpoint to receive a new report.

If the interface doesn't have an interrupt OUT endpoint, the firmware must
detect Set_Report control requests and handle the report data in the
requests. The chip must do the same to receive Feature reports. A device that
has an interrupt OUT endpoint should also be able to receive reports in
Set_Report control transfers so it can receive Feature reports, or Output
reports if it happens to communicate with a 1.0 host.

A Set_Report request consists of at least three transactions. The host ini-
tiates a Setup transaction that specifies the request and the number of bytes
in the report, followed by one or more data transactions with the report
dara. The device returns a response in the Status stage.

For a Set_Report request, the device must be able to detect the request in
the Setup stage, reccive the report data in the Dara stage, and send a hand-
shake in the Status stage. These are the steps a device typically follows to
handle a Set_Report request:

1. The device detects a Setup packet, stores the data in the transaction’s data
packet, returns ACK, and triggers an interrupt that causes the firmware to
jump to an interrupt-service routine.

2. The interrupt-service routine does the following:

* Detects the code that indicates the arrival of a Set_Report request.

* Reads the report-length, report-type, and report-ID parameters in the
Setup transaction.

* Ensure that Endpoint 0 is configured to accept the data following an
OUT token packet.

3. When the interrupt-service routine ends, the device returns to normal
operation until it receives an OUT token packet indicating that the host is

USB Complete

Human Interface Devices: Firmware Basics

sending data to the control endpoint in the Data stage. After receiving the
data, the endpoint returns a status code in the handshake packet. An inter-
rupt causes the firmware to jump to an interrupt-service routine for the end-
point.

4. The interrupt-service routine does whatever is needed with the received
data.

5. If additional data packets are expected in the Data stage, repeat steps 3
and 4 for any additional OUT transactions, up to the Length value in the
Setup transaction.

6. In response to an IN token packet in the Status stage, the endpoint sends
a 0-length data packet and the host returns ACK.

Below is enCoRe code that executes on detecting a Set_Report request. The
code finds out how many bytes to read and configures Endpoint 0 to receive
data in an OUT transaction. This involves setting two configuration bits.

set report:

; Find out how many bytes to read in the OUT
; transaction(s) that will follow.

; This value is in WLengthlo.

; (WLengthhi is unused for this device).

; Save the length in data count.

mov A, [wLengthlol]

mov [data count], A

mov A, O

mov [wLengthhi], A

; Unlock the counter register so it can be updated
; with the number of bytes in the data stage.
iord epO count

; Enable receiving data in an OUT transaction.
jmp initialize control write

initialize control write:

; The firmware uses the value in ep0 transtype to
; decide how to respond to a token packet.

mov A, TRANS CONTROL WRITE

mov [ep0 transtypel, A

USB Complete 317

Chapter 13

; Set the data toggle.
mov A, DATA TOGGLE
mov [ep0 data togglel, A

; Send ACK in resgponsge to OUT packets,

; which will contain the Control Write data.

; Send NAK in response to IN packets (not expected).
mov A, ACK OUT NAK IN

iowr epO mode

;Return from the Endpoint 0 ISR.

pop A
pop X
reti

The chip then waits for the arrival of the OUT token packer to begin the
Darta stage. When an Endpoint 0 interrupt occurs, the code checks for an
OUT packet, and if one has arrived, it stores the received data and rerurns a

0-byte data packet in the Status stage:

318

control_write data stage:

; Jump here on receiving an Out packet in the
; Data stage of a Control Write transfer.
; If the data-valid bit isn't set,

; we're done with the data stage.

iord ep0_count

and A, DATA VALID

jz control write_data stage done

; Check the data-toggle bit. If it’s incorrect,
; we’'re done with the Data stage.

iord ep0 count '

and A, DATA TOGGLE

xor A, [ep0 data toggle]

jnz control write data stage done

i Copy the report's bytes to data memory.
mov A, [ep0 dmabuffo]

mov [data byte 0], A
mov A, [ep0 dmabuffl]
mov [data byte 1], A

USB Complete

s

Human Interface Devices: Firmware Basics

;Toggle the data-toggle bit.
mov A, DATA TOGGLE
xor [ep0 data toggle]l, A

Configure Endpoint 0 to send a 0O-byte data packet
; in response to an IN packet (the transfer's Status
; stage) and to Stall an Out packet.

1

mov A, STATUS_IN ONLY
iowr ep0_mode

control write data stage_done:

Return from Endpoint 0’'s ISR.
pop A

pop X

reti

After sending the 0-byte data packet, the endpoint is ready for another
transfer.

1

USB Complete 319

Chapter 13

320 USB Complete

Human Interface Devices: Reports

14

Human Interface
Devices: Reports

Chapter 13 introduced the reports that HIDs use to exchange data. A report
can be a buffer of undefined bytes, or it can be a complex assortment of
items, each with assigned functions and units. This chapter shows how to
design a report to fit a specific application.

Report Structure

A report descriptor may contain any of dozens of items arranged in various
combinations. It can be long and complex, short and simple, or anywhere in
between. The advantage of a more complex descriptor is that the device can
provide detailed information about the data it sends and expects to receive.
The descriptor can specify the values’ uses and what units to apply to the
raw data, and it can tell applications whether or not a device supports a par-
ticular feature, such as force feedback on a joystick.

USB Complete 321

Chapter 14

But just because the specification supports an item that applies to a device
doesn’t mean that the report has ro include it. For custom devices that are
intended for use with a single application, the application often knows the
report format in advance, so there’s no need to request the information from
the device. For example, when the vendor of a data-acquisition unit creates
an application for use with the unit, the vendor already knows what data
format the device will use in its reports. At most, the application might
check the product ID and version number from the device descriptor to
learn whether it can request a particular setting or action.

Some of the details about report structures can get tedious, and it’s not nec-
essary to understand every nuance about them in most cases. So feel free to
skim through the details. You can always come back to them later if you
need to.

The report descriptor consists of a series of items that describe the values to
be transferred. Each item has a defined scope, and some items may apply to
multiple values, eliminating the need to repeat.

Using the HID Descriptor Tool

322

The HID Descriptor Tool (Figure 14-1) is a free utility available from the
USB Implementers Forum. It helps in creating report descriptors, and will
also check your descriptor’s structure, reporting any errors it finds. Instead
of having to look up the values that correspond to each item in your report,
you can select the item from a list and enter the value you want to assign to
it, and the software will add the item to the descriptor. You can also add
items manually. The Parse Descriptor function displays the raw and inter-
preted values in your descriptor and comments on any errors found. When
you have a descriptor with no errors, you can convert it to the syntax
required by your firmware. The tool has limited support for vendor-specific
items, and may flag these as errors.

USB Complete

DESIGNATOR_MINIMUM
DESIGNATOR_MAXTIMUM

STRING_INDEX
STRING_MINIMUM
STRING_MAXTIMUM
COLLECTION
END_COLLECTION
INPUT

LOGICAL_MINIMUM
LOGICAL_MAXTIMUM
PHYSICAL _MINIMUM
PHYSICAL _MAXTMUM
UNTIT_EXPONENT

Dhi
2hi @

ah(

Ehi &
8h(&

Ahf

Chii
14d)

Eh{
10h(
12h(

Tdh L
16h
18h{

1Ahr”bﬂ

J
(22d)
)

10d)
2d)
15cf)
18d]
20d)

244

|END_callecTIon

o)
)

Human Interface Devices: Reports

LLECTION kﬂpp11ra+1on\
USAGE (Pointer)
COLLECTION (ths1 cal)
USASE ()
UsSAGE ()
LOGTCAL_MINIMUM (03
LOETCAL_MECCIMUM (33
REPORT_COUNT (2)
REFORT_SIZE (23
IHPUT (Data,var,ibs)
REPORT_ (OUNT (4}
REPORT_S (1\

IHPUT U‘mt Var, Ahs)
USAGE_PAGE lButton)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 6)
LOGICAL_MINIMUM (G)
LOGICAL_MAXIMUM (13
REPORT_COUNT \6)

HPUT at far,
REFORT_ CHUNT (2)
INFUT {(Cnst,War,Abs)
EMD_COLLECTION

20T G0 D G0 TN D Tl e
I3 LR T
s [=F>

o5 01

0905

AT

nam

A1 00

0530

0§ 31 ge

1500 Lc;g cal Minimum
2503 Logical kiawimurm
9502 Feport Count
7hoz Feport Size
8102 Input

3504 Feport Count

7B m Feport Size
8103 Input

0509 Usage Page

Button

Genernc De
Garne Pad
Application
Fointer
Lirked

I}

[=]

[SN

<
=
=1
T
@

I

1

(Constant, Variakla)

Figure 14-1: The HID Descriptor Tool helps in creating and testing HID report

descriptors.

USB Complete

323

Chapter 14

Predefined Values

A report descriptor can contain values that describe specific uses. There are
several documents that define the Usage and other values that reports may
contain. The first place to look is the HID Usage Tables document. This has
tables of values for generic desktop controls, simulation controls, game con-
trols, LEDs, buttons, telephony devices, and more. The document also tells
you where to find values that are defined elsewhere. Some are in the HID
specification, while others are in the class specifications for specific device
types such as monitor, power, and image-class devices.

The HID specification defines two report item types: short items and long
items. As of HID 1.1, there are no defined Long items, and the type is just
reserved for future use.

Short ltems

A Short item’s 1-byte prefix specifies the item type, item tag, and item size.
These are the elements that make up the prefix byte:

Bit Number Contents Description

7 Item Tag Numeric value that indicates the item’s function
6

5

4

3 Item Type Item scope: Main, Global, or Local

2

l Item Size Number of bytes in the item

0

324

The item tag (bits 4-7) indicates the item’s function.

The item type (bits 3 and 2) describes the scope of the item: Main (00),
Global (01), or Local (10). Main items define or group the data fields in the
descriptor. Global items describe the reported data. Local items define char-
acteristics of individual controls in the data. (This chapter has more infor-
mation about these.)

USB Complete

Human Interface Devices: Reports

The item size (bits 1 and 0) indicates how many data bytes the item con-
tains. Note that an item size of 3 (11 in binary) corresponds to 4 data bytes:

Iltem Size Number of
(binary) Data Bytes
00 0
01 1
10 2
11 4

Long ltems

A Long item uses multiple bytes to store the same information as the Short
item’s 1-byte prefix. A Long item’s 1-byte prefix (FEh) identifies the item as
a Long item. In addition, the item has a byte that specifies the number of
data bytes, a byte containing the item tag, and up to 255 bytes of data.

The Main Item Type

A Main item defines or groups data items within a report descriptor. There
are five subtypes with the Main item type. The Input, Output, and Feature
items each define fields in the report. Collection and End Collection items
don’t define fields, but instead group related items within a report. The
default value for all Main items is 0.

Input, Output, and Feature Items

Table 14-1 shows the supported values for the Input, Output, and Feature
items, including the item tag and the meanings of the bits in the value that
follows the tag.

An Input item can apply to any control, sensor reading, or other informa-
tion that the device sends to the host. An Input report contains one or more
Input items. The host uses interrupt IN transfers to request Input reports.

An Output item applies to information that the host sends to the device. An
Output report contains one or more Output items. Output reports contain
data that reports the states of controls, such as whether to open or close a

USB Complete 325

Chapter 14

Table 14-1: The data included with Input, Output, and Feature ltem Tags
describes the report data.

Main ltem Tag Bit Number Meaning if bit = 0 Meaning if bit = 1
Input 0 Data Constant
(10000Cnn, where; 1 Array Variable
nn=the number of data
bytes) 2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Reserved
8 Bit field Buffered bytes
9-31 Reserved
Output 0 Data Constant
bytes) 2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non-volatile Volatile
8 Bit field Buffered bytes
9-31 Reserved
Feature 0 Data Constant
bytes) 2 Absolute Relative
3 No wrap Wrap
4 Linear Non-linear
5 Preferred state No preferred state
6 No null position Null state
7 Non-volatile Volatile
8 Bit field Butffered bytes
9-31 Reserved

326

USB Complete

Human Interface Devices: Reports

switch or the intensity to apply to an effect. As explained earlier, if an inter-
rupt OUT pipe is available, a HID 1.1-compliant host uses interrupt OUT
transfers to send Output reports. Otherwise, the host uses Set_Report con-
trol requests.

A Feature item normally applies to information that the host sends to the
device. However, it’s also possible for the host to read Feature items from a
device. A Feature report contains one or more Feature items. Feature reports
typically contain configuration settings that affect the overall behavior of the
device or one of its components. Feature reports normally control settings
that you might otherwise adjust in a physical control panel. For example,
the host may have a virtual (on-screen) control panel to enable users to select
and control features. The host uses control transfers with Set_Report and
Get_Report requests to send and receive Feature reports.

Following each item tag are 32 bits that describe the data. At most, only 9 of
the bits are used, with the rest reserved. The device firmware and host soft-
ware may use or ignore this information.

The bit functions are the same for Input, Output, and Feature items, except
that Input items don’t support the volatile/non-volatile bit. These are the
uses for each bit:

Data | Constant. Data means that the contents of the item are modifiable
(read/write). Constant means the contents are not modifiable (read-only).

Array | Variable. This bit specifies whether the data reports the state of
every control or just reports the controls that are active. Reporting only the
active controls results in a more compact report for devices such as key-
boards, where there are many controls (keys) but only one or a few are active
at the same time.

For example, if a keypad has ecight keys, setting this bit to Variable would
mean that the keypad’s report would contain a bit for each key. In the report
descriptor, the report size would be one bit, the report count would be eight,
and the total amount of data sent would be eight bits. Setting the bit to
Array would mean that each key has an assigned index, and the keypads
report would contain only the index of the keys that are active. With eight
keys, the report size would be three bits, which can report a key number

USB Complete 327

Chapter 14

328

from O through 7. The report count would equal the maximum number of
simultaneous keypresses that could be reported. If the user can press only
one key at a time, the report count would be 1 and the total amount of data
sent would be just 3 bits. If the user can press all of the keys at once, the
report count would be 8 and the total amount of data sent would be 24 bits.

The specification recommends returning 0 when no controls are active, and
specifying a Logical Minimum of 1 and a Logical Maximum equal to the
number of controls.

Absolute | Relative. Absolute means that the value is based on a fixed ori-
gin; Relative means that the data indicates the change from the last reading,.
A joystick normally reports absolute data (the joystick’s current position),
while a mouse reports relative data (how far the mouse has moved since the
last report).

No Wrap | Wrap. Wrap indicates that the value rolls over if it continues to
increment after reaching its maximum or continues to decrement after
reaching its minimum. A value specified as No Wrap that exceeds the limits
may report a value outside the specified limits. This bit doesn’t apply to
Array data.

Linear | Non-linear. Linear indicates that the measured data and the
reported value have a linear relationship. A graph of the reported data and
the property being measured forms a straight line. In non-linear data, a
graph of the reported data and the property being measured forms a curve.
This bit doesn't apply to Array data.

Preferred State | No Preferred State. Preferred state indicates that the con-
trol will return to a particular state when the user isn’t interacting with it. A
momentary pushbutton has a preferred state (out) when no one is pressing
it. A toggle switch has no preferred state; it remains in the state selected by
the last user. This bit doesnt apply to Array data.

No Null Position | Null State. Null state indicates that the control supports
a state where it isn’t sending meaningful data. A control indicates that it’s in
its null state by sending a value outside the range defined by its Logical Min-
imum and Maximum. No Null Position indicates that the control can
always be assumed to be sending meaningful data. A hat switch on a joystick

USB Complete

Human Interface Devices: Reports

is in a null position when it isn’t being pressed. This bit doesnt apply to
Array data.

Non-volatile | Volatile. The Volatile bit applies only to Output and Feature
reports. Volatile means that the device can change the value on its own,
without host interaction, as well as when the host sends a report requesting
the device to change the value. For example, a control panel may have a con-
trol that users can set in two ways. They may use a mouse to click a setting
in a window on the host to cause the host to send a report to the device, or
they may press a physical button on the device. Non-volatile means that the
device changes the value only when the host requests it in a report.

When the host is sending a report and doesnt want to change a volatile
item, the value to assign depends on whether the data is defined as relative
or absolute. If a volatile item is defined as relative, a report that assigns a
value of 0 should result in no change. If a volatile item is defined as absolute,
a report that assigns an out-of-range value should result in no change.

This bit doesn’t apply to Array data.

Bit Field | Buffered Bytes. Bit Field means that each bit or a group of bits
in a byte can represent a separate piece of data and the field doesn' represent
a single quantity. The application interprets the contents of the field. Buff-
ered Bytes means that the data consists of one or more bytes. The report size
for Buffered Bytes must be eight. This bit doesnt apply to Array data.

Collection and End Collection Tags

All of the report types can use Collection and End Collection items to group
related items.

There are three defined types of collections: application, physical, and logi-
cal. Vendors can also define their own collection types. Collections can be
nested. Table 14-2 shows the values of the Collection and End Collection

tags and the defined values for the different collection types.

An application collection contains items that have a common purpose or
together carry out a single function. For example, the boot descriptor for a

USB Complete 329

Chapter 14

Table 14-2: Data values for the Collection and End Collection Main ltem Tags.

Main ltem Type Value Description
Collection (Alh) 00h Physical

O1h Application

02h Logical

03h-7Fh Reserved

80h-FFh Vendor-defined
End Collection (COh) None Closes a collection

keyboard groups the keypress and LED data in an application collection. All
reports must be in an application collection

A physical collection contains items that represent data at a single geometric
point. A device that collects a variety of sensor readings from multiple loca-
rions might group the data for each location in a collection. The boot
descriptor for a mouse groups the button and position indicators in a physi-
cal collection.

A logical collection forms a data structure consisting of items of different
types that are linked by the collection. An example is the contents of a data
buffer and a count of the number of bytes in the buffer.

Each collection begins with a Collection item and ends with an End Collec-
tion item. All Main items between the Collection and End Collection items
are part of the collection. Each collection must have a Usage tag (described

below).

If a report contains an unknown vendor-defined collection type, the host
should ignore all Main items in the collection. If a known collection type
has an unknown Usage, the host should ignore all items in the collection.

The Global Iltem Type

330

Global items identify reports and describe the data in them, including char-
acteristics such as the data’s function, maximum and minimum allowed val-
ues, and the size and number of report items. A Global item tag applies to
every item that follows until the next Global tag. This saves storage space

USB Complete

Human Interface Devices: Reports

because there’s no need to repeat values that don't change from one item to
the next. There are 12 defined Global items, shown in Table 14-3.

Identifying the Report

Report ID is a prefix that may precede the report data in a data packet. A
device can support multiple reports of the same type, with each containing
different data and having its own ID. This way, a transfer doesn’t have to
include every piece of data every time. However, in many cases the simplic-
ity of having a single report is more important than the need to reduce the
bandwidth used by reports to the absolute minimum.

In a descriptor, a Report ID item applies to all items that follow until a new
Report ID. If there is no Report ID item, the default ID of zero is assumed.
A descriptor should not declare a Report ID of zero. Input, Output, and
Feature reports can share a Report ID.

If one or more report types has multiple Report IDs, every report must have
a declared ID. For example, if an interface supports Report IDs 1 and 2 for
Feature reports, any Input or Output reports must also have a Report 1D
greater than 0. '

In a transfer that uses a Set_Report or Get_Report request, the host specifies
a report ID in the Setup transaction, in the low byte of the Value field. In an
interrupt transfer, if the interface supports more than one report ID, the
report ID should be the first byte sent with a report. If the interface supports
only the default report ID of zero, the report ID should not be sent with the
report in an interrupt transfer.

Under Windows, applications should always precede a report to be sent with
a report ID. If the ID is 0, the HID driver doesn’t send it on the bus with
the report data. In a similar way, reports read into an application always
begin with a report ID. The HID driver inserts an ID of zero before the

report data if necessary.

When a HID supports multiple report IDs for Input reports of different
sizes, Windows HID driver always uses buffers large enough to hold the
longest report. Shorter reports that are not a multiple of the maximum

USB Complete 331

Chapter 14

Table 14-3: There are twelve defined Global items.

Global ltem Type Value (nn indicates |Description
the number of bytes
that follow)
Usage Page 000001nn Defines the data’s usage or function.
Logical Minimum |000101nn Smallest value that an item will report.
Logical Maximum |001001nn Largest value that an item will report.
Physical Minimum |001101an The logical minimum expressed in physical units.
Physical Maximum |010001nn The logical maximum expressed in physical units.
Unit exponent 010101nn Base 10 exponent of units.
Unit 011001nn Unit values
Report Size 011101nn Size of an item’s fields in bits.
Report ID 100001nn Prefix that identifies a report.
Report Count 100101nn The number of data fields for an item
Push 101001nn Places a copy of the global item state table on the
stack.
Pop 101101nn Replaces the item state table with the last structure
pushed onto the stack.
Reserved 110001nn to For future use.
111101nn

packet size must terminate with a 0-length data packet to let the host know
that all of the data has been sent.

Windows” HID driver uses interrupt transfers to retrieve Input reports.
When there are multiple Input Report IDs, the driver has no way to request
a specific report. On receiving the IN token packet, the device returns what-
ever report is in its buffer, so the device firmware must decide which report
to make available. The HID driver stores the received report and its ID in its

buffer.

Describing the Data’s Use

332

The items that describe how the data will be used are Usage Page, Logical
and Physical Maximums and Minimums, Unit, and Unit Exponent. All of
these help the receiver of the report to interpret the report’s data. All but the
Usage Page are involved with converting raw report data to values with units

USB Complete

Human Interface Devices: Reports

attached. These items make it possible for a report to contain data in a com-
pact form, with the receiver of the data having the responsibility of convert-
ing the data to meaningful values. However, the sender of the report data
may instead choose to do some or all of the converting.

Usage Page. An item’s Usage is a 32-bit value that describes its function.
The Usage is made up of two 16-bit parts: the Usage Page, which is a Global
item, and the Usage Index, which is a Local item. Multiple items may share
a Usage Page while having different Usage Indexes. After a Usage Page
appears in a report, all Usage Indexes that follow will use that Usage Page
until a new one is declared. Re-using the Usage Page reduces the amount of
data that the descriptor has to store and send.

The HID Usage Tables document lists the defined Usage Pages and their
values and also names the document section or other document that
describes each page and its indexes. There are Usage Pages for many com-
mon device types, including generic desktop controls (mouse, keyboard,
joystick), digitizer, bar-code scanner, camera control, and various game con-
trols. Specialized devices may not have a defined Usage Page. In this case, a
vendor can define the Usage Page. Values from FFOOh to FFFFh are reserved
for vendor-defined Usage Pages.

Logical Minimum and Logical Maximum. The Logical Minimum and
Maximum define the limits for reported values. The limits are expressed in
“logical units,” which means that they use the same units as the values they
describe. For example, if a device reports readings of up to 500 milliamperes
in units of 2 milliamperes, the Logical Maximum is 250.

Negative values may be expressed as two's complements. Bit 7 is a sign bit
that indicates whether the value is positive (0) or negative (1). The values 0
to 7Fh are the positive decimal values 0 through 127, and FFh to 80h are
the negative decimal values -1 through -128. To find the negative value rep-

USB Complete 333

Chapter 14

334

resented by a two's complement, complement each bit and add 1 to the
fesult. Hefe are some eXﬁHlpleS:

Negative Value Expressed as a Two’s Complement: FFh |FDh|80h
Complement each bit: 00h |02h |7Fh
Add 1: 01h |03h |80h
Value Expressed as a Negative Number (decimal): -1 -3 |-128

The HID specification says that if both the Logical Minimum and Maxi-
mum are considered positive, there’s no need for a sign bit. For example, a
range from 0 to 255 can have a Logical Minimum of 00h and a Logical
Maximum of FFh. A device will enumerate and transfer data without prob-
lems whether the Logical Minimum and Maximum are expressed as signed
or unsigned values. The receiver of the data has to know whether or not the
data can be negative.

The HIDView utility (described in Chapter 17) assumes the use of signed
values. With a Logical Minimum of 00h and a Logical Maximum of FFh, it
reports the error, “Logical Minimum must be less than the Logical Maxi-
mum.” It doesn’t report this error with a minimum of 80h (-128) and maxi-
mum of 7F (+127). On the other hand, the HID Descriptor Tool reports an

error if you use a minimum of 80h and maximum of 7Fh, while it accepts

00h and FFh.

The Physical Minimum, Physical Maximum, Unit Exponent, and Unit
items define how to convert the reported values into more meaningful units.

Physical Minimum and Physical Maximum. The Physical Minimum and
Maximum define the limits for the value when expressed in the units
defined by the Units tag. In the earlier example of values of 0 through 250
in units of 2 milliamperes, the Physical Minimum is 0 and the Physical
Maximum is 500. The receiving device uses the logical and physical limit
values to obtain the value in the desired units. In the example, reporting the
data in units of 2 milliamperes means that the value can transfer in a single
byte, with the receiver of the data using the Physical Minimum and Maxi-
mum values to translate to milliamperes. The price is a loss in resolution,

USB Complete

Human Interface Devices: Reports

compared to reporting 1 bit per milliampere. If the report doesn’t specify the
values, they default to the same as the Logical Minimum and Maximum.

Unit Exponent. The Unit Exponent specifies what power of 10 to apply to
the value obtained after using the logical and physical limits to translate the
value into the desired units. The exponent can range from -8 to +7. A value
of 0 causes the value to be multiplied by 10° or 1, which is the same as
applying no exponent. These are the codes:

Exponenti0 |1 |2 |3 |4 |5 |6 |7 |-& -7 |-6 |-5 |4 |3 |2 |-1
Code 00h |01h |02h [03h |04h |05h |06h |07h [08h |09h |0AKh|[OBh|OCh |0Dh|OEh |OFh

For example, if the value obtained is 1234 and the Unit Exponent is OEh,
the final value is 12.34.

Unit. The Unit tag specifies what units to apply to the report darta after it’s
converted using the Physical and Unit Exponent items. The HID specifica-
tion defines codes for the basic units of length, mass, time, temperature, cur-
rent, and luminous intensity. Most other units can be derived from these.

Specifying a Unit value can be more complicated than you might expect.
Table 14-4 shows values you can work from. The value can be as long as
four bytes, with each nibble having a defined function. Nibble 0 (the least
significant nibble) specifies the measurement system, either English or SI
(International System of Units), and whether the measurement is in linear
or angular units. Each of the nibble positions that follow represents a quality
to be measured, with the value of the nibble representing the exponent to
apply to the value. For example, a nibble with a value of 2 means thar its
corresponding value is in units squared. A nibble with a value of 0Dh, which
represents -3, means that the units are expressed as 1/units’. These expo-
nents are separate from the Unit Exponent value, which is a power of ten
applied to the data, rather than an exponent applied to the units.

Converting Raw Data

To convert raw data to values with units attached, three things must occur.
The firmware’s report descriptor must contain the information needed for

USB Complete 335

Chapter 14

Table 14-4: The units to apply to a reported value are a function of the
measuring system and exponent values specified in the Unit item

Nibble Quality Measuring System (Nibble 0 value)
Number Measured fyone0) [SiLinear (1)[SI Rotation |English |English
(2) Linear (3) |Rotation (4)
1 Length None Centimeters |Radians Inches Degrees
2 Mass None Grams Slugs
3 Time None Seconds
4 Tempera- |None Fahrenheit Celsius
ture
Current None Amperes
6 Luminous |None Candelas
Intensity
7 Reserved |[None

the conversion. The sender of the data must send data that matches the
specification in the descriptor. And the receiver of the data must apply the
conversions specified in the descriptor.

Below are examples of descriptors and raw and converted data. Remember
that just because a tag exists in the HID specification doesn’t mean you have
to use it. If the application knows what format and units to use for the val-
ues it’s going to send or receive, the firmware doesn’t have to specify it.

To measure time in seconds, up to a minute, the report descripror might
include this information:

Logical Minimum: 0

Logical Maximum: 60

Physical Minimum: 0

Physical Maximum: 60

Unit: 1003h. Nibble 0 = 3 to select the English Linear measuring

system (though in this case, any value from 1 to 4 would work).
Nibble 3 = 1 to select time in seconds.

Unit Exponent: 0

With this information, the receiver knows that the value sent equals a num-
ber of seconds.

336 USB Complete

Human Interface Devices: Reports

Now, what if instead you want to measure time in tenths of seconds, again
up to a minute? You would need to increase the Logical and Physical Maxi-
mums and change the Unit Exponent:

Logical Minimum: 0
Logical Maximum: 600
Physical Minimum: 0
Physical Maximum: 600

Unit: 1003h. Nibble 0 = 3 to select the English Linear measuring
system. Nibble 3 = 1 to select time in seconds.

Unit Exponent: 0Fh. This represents an exponent of -1, to indicate

that the value is expressed in tenths of seconds rather than seconds.
Sending values as large as 600 will require 3 bytes, which the firmware spec-
ifies in the Report Size tag.

To send a temperature value using one byte to represent temperatures from
20 to 110 degrees Fahrenheit, the report descriptor might contain the fol-
lowing:
Logical Minimum: -128 (80h expressed as a two's complement)
Logical Maximum: 127 (7Fh)
Physical Minimum: -20 (ECh expressed as a two’s complement)
Physical Maximum: 110 (6Eh)

Unit: 10003h. Nibble 0 is 3 to select the English Linear measuring
system, though in this case, any value from 1 to 4 is OK. Nibble 4 is
1 to select degrees Fahrenheit.

Unit Exponent: 0

These values ensure the highest possible resolution, because the transmitted
values can span the full range from 0 to 255.

In this case the logical and physical limits differ, so converting is required.
To find the resolution, or number of bits per unit, use this equation:
Resolution = _
(Logical Maximum - Logical Minimum) / _
((Physical Maximum - Physical Minimum) * _
(10 * Unit_ Exponent))

USB Complete 337

Chapter 14

With the example values, this works out to 1.96 bits per degree, or 0.51
degree per bit.

To convert a value to the specified units, use this equation:

Value = _
Value In Logical Units *
((Physical Maximum - Physical Minimum) *
(10 * Unit Exponent)) /
(Logical Maximum - Logical Minimum)
[f the value in logical units (the raw data) is 63, the converted value in the
specified units is 32 degrees Fahrenheit.

Specifying velocity in centimeters per second requires a Unit value that con-
tains units of both centimeters and seconds. From Table 14-4, the Unit
value to use is 1011h. Nibble 0 = 1 to select the SI measuring system, nibble

= 1 to select length in centimeters, and nibble 3 = 1 to select time in sec-
onds.

To illustrate how complicated it can get, the Unit value for volts is FOD121h,
which indicates the SI Linear measuring system in units of
(em®)*(gm)/(sec”)*(amp'). However, remember that the Unit value only
specifies the units. All the receiver has to do is identify the Units value and
assign the units to received data; there’s no need to do the calculations
implied in the Units value.

Describing the Data’s Size and Format

338

Two Global items describe the size and format of the report data.

Report Size specifies the size in bits of an Input, Output, or Feature item’s
fields. Each field contains one piece of data.

Report Count specifies how many fields an Input, Outpur, or Feature item
contains. For example, for two 8-bit fields, Report Size is 8 and Report
Count is 2. For ten 4-bit fields, Report Size is 4 and Report Count is 10. For
one 16-bit field, Report Size is 16 and Report Count is 1.

A single Input, Output, or Feature report can have multiple items, each with
its own Report Size and Report Count.

USB Complete

Human Interface Devices: Reports

Saving and Restoring Global Iltems

The final two Global items enable saving and restoring sets of Global items.
These allow flexibility in the report formats while using minimum storage
space in the device.

Push places a copy of the Global-item state table on the CPU’s stack. The
Global-item state table contains the current settings for all previously

defined Global items.

Pop is the complement to Push. It restores the saved states of the previously
pushed Global item states.

The Local Item Type

Local items define qualities of the knobs, switches, buttons, and other con-
trols that a report returns data for. A Local item applies to all controls that
follow within the Main item, until a new value is assigned. Local items dont
carry over to the next Main item. Each Main item begins fresh, with no
Local items defined.

Local items relate to general usages, body-part designators, and strings. A
Delimiter item enables grouping sets of Local items. Table 14-5 shows the
values and meaning of each of the items.

Usage. The Local Usage item is the Usage Index that works together with
the Global Usage Page to describe the function of an item or collection. As
with the Usage Page, the HID Usage Tables document lists many Usage
Indexes. For example, the Buttons Usage Page uses Local Usage Indexes
from 1 to FFFFh to specify individual buttons, with a value of 0 meaning
no button pressed.

A report may assign one Usage to multiple controls, or it may assign a differ-
ent Usage to each control. If a report item is preceded by a single Usage, that
Usage applies to all of the item’s controls. If a report item is preceded by
more than one Usage, and the number of controls equals the number of
Usages, each Usage applies to one control, with the Usages and controls

USB Complete 339

Chapter 14

Table 14-5: There are ten defined Local items.

Local ltem Type

Value (nn indicates the
number of bytes that
follow)

Description

Usage 000010nn An index that describes the use for an
item or collection.

Usage Minimum 000110nn The starting Usage associated with an
array or bitmap.

Usage Maximum 001010nn The ending Usage associated with an
array or bitmap.

Designator Index 001110nn Designates the body part used for a con-
trol.

Designator Minimum 010010nn The starting Designator associated with
an array or bitmap.

Designator Maximum 010110nn The ending Designator associated with an
array or bitmap.

String Index 011110nn Associates a string with an item or con-
trol.

String Minimum 100010nn The first string index when assigning a
group of sequential strings to controls in
an array or bitmap.

String Maximum 100110nn The last string index when assigning a
group of sequential strings to controls in
an array or bitmap.

Delimiter 101010nn The beginning (1) or end (0) of a set of
Local items.

Reserved 101011nn to 111110nn {For future use.

pairing up in sequence. In the following example, the report contains two

bytes. The first byte’s Usage is X, and the second byte’s Usage is Y.

Report Size (8
Report Count (
Usage
Usage
Input

)
2),

(X),
(),
(Data,

Variable,

Absolute) ,

[fa report item is preceded by more than one Usage and the number of con-

trols is greater than the number of Usages, each Usage pairs up with one

control, and the final Usage applies to all of the remaining controls. In the

following example, the report is 16 byrtes. Usage X applies to the first byte,

340

USB Complete

Human Interface Devices: Reports

Usage Y applies to the second byte, and a vendor-defined Usage applies to
the third through 16th bytes.

Usage (X)

Usage (Y)

Usage (vendor defined)

Report Count (16),

Report Size (8),

Input (Data, Variable, Absolute)
Usage Minimum and Maximum. The Usage Minimum and Maximum
can assign a single Usage to multiple controls. The following example
reports the state (0 or 1) of each of three buttons. The Usage Minimum and
Maximum assign the Button Usage Page to all three items. The item uses
one bit per button.

Logical Minimum (0)

Logical Maximum (1)

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage Minimum (1)

Usage Maximum (3)

Input (Data, Variable, Absolute)
The Usage Minimum and Maximum can also assign a single Usage to a
series of array items.

Designator Index. For items with a Physical descriptor, the Designator
Index specifies the body part the control uses.

Designator Minimum and Maximum. When a report contains multiple
controls with the same Designator, the Designator Minimum and Maxi-
mum can specify which controls the Usage applies to.

String Index. An item or control can include a string index to associate a
string with that item or control. The strings are stored in the same format
described in Chapter 5 for product, manufacturer, and serial-number
strings.

String Minimum and Maximum. When a report contains multiple con-
trols with the same String Index, the String Minimum and Maximum can
specify which controls the Usage applies to.

USB Complete 341

Chapter 14

Delimiter. The Delimiter defines the beginning (1) or end (0) of a local
item. A delimited local item may contain alternate usages for a control. This
enables different applications to define a device’s controls in different ways.
For example, a button may have a generic use (Button1) and a specific use

(Send, Qui, etc.).

Physical Descriptors

A physical descriptor describes the part or parts of the body intended ro acti-
vate a control. For example, each finger might have its own assigned control.

A physical descriptor is a type of class descriptor. The host can retrieve a
physical descriptor by sending a Get_Descriptor request with 23h in the
high byte of the Value field and 00h in the low byte of the Value field.

Physical descriptors are optional. For most devices, they either don’t apply at
all or the information they could provide has no practical use. The HID
specification has more information on how to use physical descriptors, for
those devices that need them.

Padding

342

To pad a descriptor so it contains a multiple of eight bits, the descriptor may
include a Main item with no assigned Usage. The following example
describes an Input report that transfers three bits with data and five bits of
padding:

Report Count (3)

Report Size (1)

Usage Page (Button Page)

Usage Minimum (1)

Usage Maximum (3)

Input (Data, Variable, Absolute)
Report Size (5),

Input (Constant)

USB Complete

Human Interface Devices: Host Application Primer

15

Human Interface
Devices:
Host Application Primer

Chapter 13 and Chapter 14 described human-interface-device communica-
tions from the device’s perspective and the report format that HIDs use to
exchange data with the host. This chapter introduces the Windows func-
tions that applications can use to communicate with HIDs. Applications
may use any programming language that can call API functions. Chapter 16
has example code in Visual Basic and Visual C++. Much of the information
in this chapter applies to communicating with any USB device, not just

HIDs.

USB Complete 343

Chapter 15

Host Communications Overview

Windows 98 and Windows 2000 include everything applications need to
communicate with HID-class devices. There’s no need to install drivers
because Windows has them built in.

How the Host Finds a Device

344

Communicating with a HID isn't as simple as opening a port, setting a few
parameters, and then reading and writing data, as you can do with RS-232
and parallel ports. Before an application can exchange data with a HID, it
has to identify the device and get information about its reports. To do this,
the application has to jump through a few hoops by calling a series of API
functions. The application first finds out what HIDs are attached to the sys-
tem. It then examines information about each until it finds one with the
desired attributes. For a custom device, the application can search for spe-
cific Vendor and Product IDs. Or the application can search for a device of a
particular type, such as a mouse or joystick.

After finding a device, the application can exchange information with it by
sending and receiving reports.

Table 15-1 lists API functions used in establishing communications and
exchanging data with a HID. The functions are listed in a typical order that
an application might call them.

USB Complete

Human Interface Devices: Host Application Primer

Table 15-1: Communicating with HIDs uses a variety of API functions. These are
the major functions used in identifying a HID and sending and receiving reports.

API Function DLL Purpose
HidD_GetHidGuid hid.dll Obtain the GUID for the HID class
SetupDiGetClassDevs setupapi.dil Return a device information set contain-
ing all of the devices in a specified class.
SetupDiEnumDevicelnterfaces setupapi.dil Return information about a device in the
device information set.
SetupDiGetDevicelnterfaceDetail |setupapi.dll Return a device pathname.
SetupDiDestroyDevicelnfoL.ist setupapi.dll Free resources used by SetupDiGetClass-
Devs.
CreateFile kernel32.dll Open communications with a device.
HidD_GetAuttributes hid.dll Return a Vendor ID, Product ID, and
Version Number.
HidD_GetPreparsedData hid.dll Return a handle to a buffer with informa-
tion about the device’s capabilities
HidP_GetCaps hid.dll Return a structure describing the device’s
capabilities.
HidD_FreePreparsedData hid.dll Free resources used by
HidD_GetPreparsedData.
WriteFile kernel32.dll Send an Output report to the device.
ReadFile kernel32.dll Read an Input report from the device.
HidD_SetFeature hid.dll Send a Feature report to the device.
HidD_GetFeature hid.dll Read a Feature report from the device.
CloseHandle kernel32.dll Free resources used by CreateFile.
Documentation

The functions are in three DLLs whose documentation is spread among sev-

eral areas in the Windows DDK documentation and the MSDN library.

These are DLLs that contain functions used in HID communications:

Filename

Type of Functions Included

hid.dll

HID communications.

setupapi.dll

Finding and identifying devices

kernel32.dll

Exchanging data, other general functions

USB Complete

345

Chapter 15

The functions that relate only to HID communications are in Aid.dll and
are documented in the DDK, under Kernel-Mode Drivers > Drivers for Inpur
Devices. Functions related to detecting devices are in setupapi.dll and are
documented in the DDK under Setup, Plug & Play, and Power Management
> Device Installation Functions and also in the Platform SDK under Device
Management Functions. These functions apply to all Plug-and-Play devices,
including USB devices. Functions relating to opening communications,
reading Input reports, and writing Output reports are in kernel32.dll and are
documented in the MSDN library, in the Platform SDK under File 1/O.

Many other devices also use these functions.

Windows 98 SE added seven HID functions to those supported by Win-
dows 98 Gold. Windows 2000 and Windows Me support the new functions
as well. The Windows 2000 DDK documentation includes the added func-
tions; the Windows 98 DDK doesn'.

The HID Functions

346

Hid.dll supports many more functions than the essentials listed in Table
15-1. The following three tables together comprise a complete list of the
HID functions grouped by purpose. Functions whose names begin with
HidP are available to both applications and device drivers. Functions
whose names begin with HidD are available only to applications.

Table 15-2 lists functions that applications use to learn about a HID.
Table 15-3 lists functions that applications use in reading and writing
reports. Table 15-4 lists functions that applications use in configuring the
input buffer to receive reports. The documentation also names three func-
tions for future use: HidD_GetConfiguration, HidD_SetConfiguration,
and HidP_TranslateUsagesTol8042ScanCodes.

You can use these functions with just about any HID-class device,
including custom designs. Windows 2000 doesn’t allow applications to
use the functions to access the system keyboard or mouse, but applica-
tions don’t normally need to do so because the operating system provides
other ways to communicate with the keyboard and mouse.

USB Complete

Human Interface Devices: Host Application Primer

Table 15-2: Applications can use these functions in /id.dl/ to learn about a

device.

Function

Purpose

HidD_GetAttributes

Retrieves the HID’s Vendor ID, Product ID, and Version
Number.

HidD_FreePreparsedData

Frees resources used by HidD_GetPreparsedData.

HidD_GetHidGuid

Obtains the GUID for the HID class.

HidD_GetIndexedString™®

Retrieves a string identified by an index.

HidD_GetManufacturerString*

Retrieves the string that identifies the device manufacturer.

HidD_GetPhysicalDescriptor*

Retrieves the string that identifies the physical device.

HidD_GetPreparsedData

Retrieves a handle to a buffer with information about the
device’s capabilities.

HidD_GetProductString™

Retrieves the string that identifies the product.

HidD_GetSerialNumberString*

Retrieves the string containing the device’s serial number.

HidP_GetButtonCaps

Retrieves the capabilities of all buttons in a report.

HidP_GetCaps

Retrieves a pointer to a structure describing the device’s
capabilities.

HidP_GetLinkCollectionNodes

Retrieves an array of structures that describes the relation-
ship of link collections within a top-level collection.

HidP_GetSpecificButtonCaps

Retrieves the capabilities of buttons in a report. The request
can specify a Usage Page, Usage, or Link Collection.

HidP_GetSpecificValueCaps

Retrieves the capabilities of values in a report. The request
can specify a Usage Page, Usage, or Link Collection.

HidP_GetValueCaps

Retrieves the capabilities of all values in a report.

HidP_MaxUsageListLength

Retrieves the maximum number of buttons that a report can
return. Can specify a Usage Page.

HidP_UsageListDifference

Compares two button lists and find the buttons that are set
in one list and not in the other.

*not supported under Windows 98 Gold.

DirectX

An alternative to using API functions for accessing HIDs is to use

Microsoft’s DirectX components. DirectX enables control of system hard-

ware, including HIDs. DirectX originated as a tool for game programmers

with a goal of providing fast access to hardware. Instead of having to poll an

USB Complete

347

Chapter 15

Table 15-3: Applications can use these functions in 4id.dll to read and write

reports.

Function

Purpose

HidD_GetFeature

Retrieves a Feature report.

HidD_SetFeature

Sends a Feature report.

HidP_GetButtons

Returns a pointer to a buffer containing the Usage of each
button that is pressed. Can specify a Usage Page.

HidP_GetButtonsEx

Returns a pointer to a buffer containing the Usage and
Usage Page of each button that is pressed.

HidP_GetScaledUsage Value

Returns the signed result of a value that has been adjusted
for its scaling factor.

HidP_GetUsageValue

Returns a pointer to a value.

HidP_GetUsageValueArray

Returns data for a Usage that contains multiple data items.

HidP_SetButtons

Sets button data.

HidP_SetScaledUsage Value

Takes a signed, physical (scaled) number, converts it to the
logical representation used by the device, and inserts it in a
report.

HidP_SetUsageValue

Sets a value.

HidP_SetUsageValueArray

Sets data for a Usage that contains multiple data items.

input buffer with ReadFile, you can configure the DirectX software compo-
nents to notify an application when data is available to read.

The Directlnput components of DirectX enable communications with
HIDs under C++, Delphi, or Visual Basic. The DirectX SDK has examples
in Visual C++ and Visual Basic. The samples are oriented towards commu-
nicating with standard device types. The documentation suggests that you
can use DirectX to communicate with any HID, but provides few details on
how to do so.

Using API Functions

348

The examples in this chapter use Microsoft’s Visual Basic and Visual C++.

As explained in Chapter 10, an API function is a part of Windows™ Applica-

tion Programmer’s Interface, which contains thousands of functions that
applications can use to communicate with the operating system. The execut-

USB Complete

Human Interface Devices: Host Application Primer

Table 15-4: Applications can use these functions in /id.dl/ to control the driver’s
input buffer for reading reports.

Function Purpose

HidD_FlushQueue* Empty the input buffer.

HidD_GetNumInputBuffers* Retrieves the size of the ring buffer the driver uses to store
input reports. The default is 8.

HidD_SetNumlInputBuffers* Sets the size of the ring buffer the driver uses to store input
reports.

*Not supported under Windows 98 Gold.

able code for the functions resides in dynamic linked library (DLL) files pro-
vided with Windows.

Before getting into the details of the functions themselves, I'll present some
background on how to call API functions from Visual Basic and Visual C++
applications. If youre already familiar with using API calls, or if you want to
get right to the HID-specific functions, you can skip over the these intro-
ductory sections. I'll begin with Visual C++.

Using Visual C++

To use an API function, a Visual C++ application needs three things: the
ability to locate the file containing the function’s compiled code, a function
declaration, and a call that causes the function to execute.

Applications that access HIDs will call functions contained in Aid.dll and
setupapi.dll. Each of the DLLs has two companion files, a library file (hid.lib
and setupapi.lib) and one or more header files (hidpi.h, hidsdi.h, hidusage.h,
and setupapi.h). The header file contains the prototypes, structures, and
symbols for the functions that applications may call, and the library file
eliminates the need for the application to get a pointer to the function in the

DLL.

A DLL contains compiled code for the functions that it exports, or makes
available to applications. For each exported function, the DLLs library file
contains a stub function whose name and arguments match the name and
arguments of one of the DLLs functions. The stub function calls its corre-
sponding function in the DLL. During the compile process, the linker

USB Complete 349

Chapter 15

350

incorporates the code in the library file into the application’s executable file.
When the application calls a function in the library file, the function of the
same name in the DLL executes.

The hid.dll and setupapi.dil files are included with Windows. They're typi-
cally stored in the windows\system or windows\system32\drivers folder. (In
Windows 2000, substitute winnt for windows.) Both are standard locations
that Windows searches when DLL functions are called. The library and
header files are included in the DDK.

The header files for other common Windows functions are included auto-
matically when you create a project. For example, afxwin./ adds headers for
common Windows and MFC functions.

To include a API function in an application, you need to do the following:

1. Add the library files to the project. In Visual C++, click Project > Settings
> Link > Category: Input. In the Object/library modules box enter hid.lib
and setupapi.lib. In the same window, if necessary, you can enter a path for

the library files under Additional library paih.

2. Include the header files in one of the application’s files. Here’s an example:

extern "C" {
#include "hidsdi.h"
#include <getupapi.hs>

The #include directive causes the contents of the named file to be
included in the file, the same as if they were copied and pasted into it.

The extern "C" modifier enables a C++ module to include header files
that use C naming conventions. The difference is that C++ uses name deco-
ration, or name mangling, on external symbols. The punctuation around
the file name determines where the compiler will search for the file, and in
what order. This is relevant if you have different versions of a file in multiple
locations!

Enclosing the file name in brackets (<setupapi.h>) causes the compiler to
search for the file first in the path specified by the compiler’s /7 option, then
in the paths specified by the Include environment variable. Enclosing the

USB Complete

Human Interface Devices: Host Application Primer

file name in quotes ("hidsdi.h") causes the compiler to search for the file
first in the same directory as the file containing the #include directive,
then in the directories of any files that contain #include directives for that
file, then in the path specified by the compiler’s // option, and finally in the
paths specified by the Include environment variable.

3. Call the function. Here is code that declares the variable HidGuid and
passes a pointer to it in the function HidD_GetHidGuid in hid.dll:

GUID HidGuid;
HidD GetHidGuid (&HidGuid) ;

Using Visual Basic

In Visual Basic, the process of calling API functions is different than in
Visual C++. In place of an include file, the application needs a module con-
taining Visual-Basic declarations for the DLLs functions and structures.
Some of these, but not all, are provided with Visual Basic. You don’t need
library files, as Visual Basic requires only the DLLs name and the DLL itself
in a standard or specified location.

You can write a lot of Visual-Basic applications without ever coding an API
call. Visual Basic provides its own syntax and controls for performing com-
mon functions. For example, to print a file, you can use Visual Basic’s
Printer Object instead of API functions. The Printer Object provides an eas-
ier and more fail-safe way to access printers. When you run the application,
the code that executes may call API functions, but Visual-Basic program-
mers are insulated from having to make the calls directly.

But sometimes you may want to do something that Visual Basic doesn’t sup-
port explicitly. In these cases, which can include communicating with
HIDs, Visual-Basic applications can call API functions.

In a Visual-Basic application, the code to call an API function follows the
same syntax rules as the code to call any function. But instead of placing the
function’s executable code in a routine within the application, the API func-
tion requires only a declaration that enables Windows to find the DLL con-
taining the function’s code.

USB Complete 351

Chapter 15

Calling AP functions in Visual Basic requires some extra knowledge. The
documentation included with Visual Basic doesn’t offer much guidance.
Microsoft’s documentation for the API functions uses C syntax to show how
to declare and call the functions. The DDK includes the declarations in
header files that Visual C++ programmers can include in applications. To
use an API function in Visual Basic, you need to translate the declaration
and function call from C to Visual Basic.

The process is more complicated than a simple word-for-word translation,
mainly because Visual Basic doesnt support all of C’s structures, and it
stores string variables in a different format. Before you can translate, you
need to understand exactly what the function is passing and returning. Even
if you have an example to work from, understanding what the function is
doing helps in using it correctly.

For greater detail on API calls in Visual Basic, I recommend Dan Apple-
man’s books, especially Dan Applemans Win32 API Puzzle Book and Tutorial

for Visual Basic Programmers. This is the book I used as a reference in figur-

ing out how to call the API functions in this chapter.

To use an API function in a Visual Basic program, you need three things:
the DLL containing the function, a declaration that enables the application
to find and use the function, and a call that causes the function to execute.

The Declaration

352

This is a Visual-Basic declaration for the API function WriteFile, which you
can use to write data to a HID (as well as to files and other devices):

Public Declare Function WriteFile
Lib "kernel32"
(ByVal hFile As Long,
ByRef lpBuffer As Byte,
ByVal nNumberOfBytesToWrite As Long,
ByRef lpNumberOfBytesWritten As Long,
ByVal lpOverlapped As Long)

As Long

The declaration includes several pieces of information:

® The function’s name (WriteFile).

USB Complete

Human Interface Devices: Host Application Primer

e The values the function will pass to the operating system (hFile, IpBuffer,
nNumberOfBytesToWrite, 1pNumberOfBytesWritten, and IpOver-
lapped). The names use the convention of adding a prefix to indicate the
type of data the variable contains: h=handle, lp=long pointer, and so on.

* The data types of the values passed (Long, Byte).

e Whether the values will be passed by value (ByVal) or by reference
(ByRef).

o The name of the file that contains the executable code for the function

(kernel32.dll).
 The data type of the value returned for the function (Long). A few API

calls have no return value and may be declared as subroutines rather than
functions.

The declaration must be in the Declarations section of a module. You might
want to place the declarations for API functions and the user-defined types
they pass in a separate module (a .4as file) in your project. This will make
them easy to add to multiple projects.

Visual Basic’s documentation includes the file win32api.ixt, which contains

declarations for many API calls. You can add this file as a module in your

project, or you can cut and paste the declarations you need into another

module in the project. However, the file doesn't include every API call, espe-
cially newer ones like those that relate to HID communications.

To declare a function not included in win32api.txz, the starting point is
Microsoft’s documentation, which includes a declaration in C, comments,
and sometimes an example. You can also find C declarations in the header
files included in the DDKs. Sometimes these header files have useful com-
ments as well. The header files are text files that you can view in any word
processor.

USB Complete 353

Chapter 15

354

These are header files that have HID-related declarations:

File Name |Contents

hid.h HID user-mode declarations and functions

hidpi.h Public interface to the HID parsing library

hidsdi.h | Public definitions for the code that implements the HID
DLL

hidusage.h |HID usages

setupapi.h |Setup services

Sometimes the function’s documentation names the header file. If not, a
quick way to find it is to use the Find > Files or Folders utility available from
Windows™ Start menu. In the Named text box, enter * 4, and in the Contain-
ing Text text box, enter the name of the function whose declaration you
want to find. Be sure that /nclude Subfolders is checked, and let Windows go
to work finding the file for you.

In some cases, the translation from C to Visual-Basic syntax is fairly straight-
forward. In others, the C parameters don’t correspond in a simple way to the
alternatives in Visual Basic.

These are some general guidelines for creating Visual-Basic declarations:

Variable Types

C and Visual Basic each use different terms to specify variable types, and C
supports more variable types than Visual Basic. However, to specify a vari-
able type for an API call, all you really have to do is determine the variable’s

USB Complete

Human Interface Devices: Host Application Primer

length, then use a Visual-Basic type that matches. These are some of the C
types and their Visual-Basic equivalents:

C Type Visual-Basic Type
CHAR Byte
USHORT Integer
USAGE

ULONG Long
HWND

BOOLEAN

DWORD

LP_ (long pointer prefix)

P_ (long pointer prefix)
PCTSTR String

To avoid problems that can result from passing the wrong variable type, an
API declaration should declare variables as specific types if possible. In some
cases, an application may use a variable in multiple ways, each requiring a
different type. There are two ways to handle this. You can create multiple
declarations, using the Alias keyword to give each a different name, or you
can declare the variable As Any and specify the variable type in the func-
tion call.

ByRef and ByVal

For each variable, you have a choice of passing it by reference (ByRef) or by
value (ByVal). These parameters have the same meanings as when you use
them in the functions and subroutines you write in Visual-Basic applica-
tions. Often either will work. But the concept is important to understand
when calling API functions, because many of the functions have variables
that must be passed a specific way.

ByRef and ByVal determine what information the call passes to enable the
function to access the variable. Every variable has an address in memory
where its value is stored. When an application passes a variable to a func-
tion, it can pass the variable’s address or the value itself. The information is
passed by placing it on the stack, which is a temporary storage location used
(among other things) to pass values to functions.

USB Complete 355

Chapter 15

356

Passing a variable ByRef means that the function call places the address of
the variable on the stack. If the function changes the value by writing a new
value to the address, the new value will be available to the calling application
because the new value will be stored at the address where the application
expects to find it. The address passed is called a pointer, because it points to,
or indicates, the address where the value is stored.

Passing a variable ByVal means that the function call places the value of the
variable on the stack. The value at the variable’s original address in memory
is unchanged. If the function changes the value, the calling application won't
know about it because the function has no way to pass the new value back to
the application.

Passing ByRef is the default, but you can include the ByRef parameter in
declarations if you wish. This way, you can quickly see if you've forgotten to
assign the parameter to a value. If the declaration doesn’t include ByVal or
ByRef, you can specify either when you call the function.

For all variable types except strings, there are two situations where you must

pass a variable ByRef:

e The called function changes the value and the calling application needs
to use the new value. Passing ByRef enables the calling application to
access the new value.

e The variable is a user-defined type. You cant pass user-defined types
ByVal in Visual Basic.

String variables are a special case. Visual Basic uses a format called BSTR for
storing strings in memory. The BSTR format differs from the format
expected by API calls. In memory, a BSTR string consists of four bytes con-
taining the string’s length in bytes followed by the string’s characters in Uni-
code (2 bytes per character). In contrast, most Windows 98 API functions
expect a string to consist of a series of ANSI character codes (1 byte per
character), followed by a null (0) termination. Windows 2000 supports two
versions of most functions, one that uses Windows 98’s ANSI format and
one that uses Unicode characters followed by a null termination.

USB Complete

Human Interface Devices: Host Application Primer

Fortunately, there is a solution that doesn’t require the application code to
translate between formats. If the string is declared ByVal, Visual Basic cre-
ates a copy of the string in ANSI format and passes a pointer to the string.
In other words, declaring a Visual-Basic string ByVal actually causes the
string to be passed ByRef in the expected format. If the function will change
the contents of the string, the application should initialize the string to be at
least as long as the longest expected returned string.

For various reasons, some structures can't be passed either ByRef or ByVal.
In these cases, there is an alternate way. It requires creating a byte array equal
to the structure’s size, then using Visual Basic’s undocumented VarPtr opera-
tor to pass the byte array’s address ByVal. When the function returns, the
application can copy the data from the byte array into a structure, which is a
user-defined variable type.

Passing Nulls

When an optional parameter is a pointer, a function may accept a null value
(zero) to indicate that the function call isn’t using the pointer.

For example, CreateFile includes a parameter that points to a secu-
rity-attributes structure. The parameter is declared ByRef:

ByRef lpSecurityAttributes As SECURITY ATTRIBUTES

If the call isn’t using security attributes, the application should pass zero. But
if you pass a value of zero ByRef, the function actually passes the address of a
memory location that contains zero. Windows 98 handles the call without
error, but Windows 2000 returns /nvalid access to memory location.

In Visual C++, the solution is to pass 2 NULL constant. In Visual Basic,
declare the parameter ByVal as a Long:

ByVal lpSecurityAttributes As Long

Then pass a value of 0 in the function call.

If a parameter is declared As Any and you want to pass a Long, use a trailing
& (for example, 0&) to ensure that the value is passed as a Long.

USB Complete 357

Chapter 15

358

Functions and Subroutines

Most API routines are functions, which have a return value that the declara-
tion must also specify. A few are subroutines, with no return value. You can
declare these as subroutines, or as functions with the returned value ignored.

Providing the DLL’s Name

Each declaration must also name the file that contains the function’s execut-
able code. The file is a DLL. When the application runs, Windows loads the
named DLLs into memory (unless they’re already loaded).

In most cases, the declaration only has to include the file name and not the
location. The DLLs used for HID communications are included with Win-
dows. When the first HID enumerates on the system, the DLLs are stored
in standard locations (such as \windows\system) that the operating system
searches automatically. The operating system also searches the application’s
working directory for a DLL. In the Visual-Basic environment, the working
directory is Visual Basic’s directory, not your application’s directory. If you
use a DLL that isn’t stored in a standard Windows directory or the applica-
tion’s working directory, the declaration must specify the location.

For some system files, such as kernel32, the .dll extension is optional in the
declaration.

Strings

As mentioned earlier, Windows 98 and Windows 2000 differ in how they
store strings. Windows 98 stores each character as an 8-bit ANSI code, while
Windows 2000 stores each character as a 16-bit Unicode. To handle the dif-
ference, there are two versions of APl calls that pass string variables. The
8-bit version ends in A (ANSI), and the 16-bit version ends in W (wide). For
example, there is a SetupDiGetClassDevsA function and a SetupDiGet-
ClassDevsW function.

Both Windows 98 and Windows 2000 support the ANSI versions. Win-
dows 98 supports very few Unicode functions. Windows 2000 uses Unicode
internally, but can convert to and from ANSI as needed.

USB Complete

Human Interface Devices: Host Application Primer

Structures

Some of the API functions used in HID applications pass and return struc-
tures, which contain multiple items that may be of different types. The doc-
umentation for the API functions includes documentation for the structures
used by the calls. The header files contain declarations for the structures in
C syntax.

Here again, Visual Basic uses different syntax and translating is required. In
Visual Basic, you can declare structures as user-defined types. Some of the
structures translate in a straightforward way. For example, the Visual-Basic
declaration for the HIDD_ATTRIBUTES structure consists of Long and
Integer variables that translate directly from the USHORT and ULONG
types in the C declaration:
Public Type HIDD ATTRIBUTES

Size As Long

VendorID As Integer

ProductID As Integer

VersionNumber As Integer
End Type

You can then declare a variable of the user-defined type:
Dim DeviceAttributes As HIDD ATTRIBUTES

Before passing the structure in an API call, the Size property must be set to
the size of the structure in bytes. The LenB operator will do this:

DeviceAttributes.Size = LenB(DeviceAttributes)
The HidD_GetActributes API function can then pass the structure ByRef:

Public Declare Function HidD GetAttributes _
Lib "hid.dll" _
(ByVal HidDeviceObject As Long, _
ByRef Attributes As HIDD ATTRIBUTES)

As Long

When an application calls the function, the function can change the values
in the structure, and the application will see the new values.

USB Complete 359

Chapter 15

Calling a Function

After the code has declared a function and any user-defined types it passes,
the application may call the function.

Here is a call to the HidD_GetAttributes function declared above:

Dim Result as Long
Result = HidD_ GetAttributes
(HidDevice,
DeviceAttributes)
HidDevice is a Long value returned by a previous API call. Result is
non-zero on success. DeviceAttributes is a structure containing the Vendor
ID, Product ID, and product version number retrieved from the device dur-
ing enumeration.

Two Useful Routines

360

In addition to the basic API functions for USB communications, there are a
couple of other API functions that I've found useful in HID and other
applications. One copies data in memory, and the other returns text describ-
ing the last error detected by the operating system.

Moving Data in Memory

The API function RtlMoveMemory transfers a series of bytes from one loca-
tion in memory to another. This function is useful for copying raw data
between byte arrays and structures. This is the declaration:
Public Declare Function RtlMoveMemory
Lib "kernel32m"
(dest As Any,
src As Any,
ByVal Count As Long)
As Long
Rather than declaring the data address’s (src) and destination (dest) as spe-
cific types, the values are declared As Any to allow flexibility in using the
function. Count is the number of bytes to copy.

USB Complete

Human Interface Devices: Host Application Primer

Here RtlMoveMemory copies four bytes from a structure into a byte array
whose address will be passed in a call to the SetupDiGetDevicelnterfaceDe-
tail function.
Call RtlMoveMemory _
(DetailDataBuffer(0),

MyDeviceInterfaceDetailData,
4)

Viewing Errors

The second useful function is FormatMessage, which returns text describing
the last error that Windows detected.

This is the function’s declaration:

Public Declare Function FormatMessage _
Lib "kernel32"
Alias "FormatMessageA" _
(ByVal dwFlags As Long,
ByRef lpSource As Any,
ByVal dwMessageld As Long,
ByVal dwLanguageId As Long,
ByVal 1lpBuffer As String,
ByVal nSize As Long,
ByVal Arguments As Long)

As Long

The function also uses the following system constant:
Public Const FORMAT MESSAGE FROM SYSTEM = &H1000

I use FormatMessage in a Visual-Basic function that returns the string con-
taining the error message. During debugging, I call the function after mak-
ing an API call and display the error, cither in a list box or using a
debug.print statement in the immediate window. This code is adapted from
an example in Dan Appleman's Win32 API Puzzle Book:

Private Function GetErrorString _

(ByVal LastError As Long)
As String

'Returns the error message for the last error.

Dim Bytes As Long

USB Complete 361

Chapter 15

Dim ErrorString As String
ErrorString = String$(129, 0)
Bytes = FormatMessage

(FORMAT_MESSAGE“FROM_SYSTEM,

0&,

LastError,

O’ —

ErrorStrings,

128,

0)

'Subtract two characters from the message to
'strip the CR and LF.
If Bytes > 2 Then

GetErrorString = Left$ (ErrorString, Bytes - 2)
End If

End Function

Device Attachment and Removal

Other capabilities an application might want are detecting when a device is
attached or removed from the bus and controlling whether or not an
attached device is enabled. Windows provides ways to do this.

USBView

One way to search for a device is to search a list of every attached device.
The Windows DDK includes C source code for the USBView application
(Figure 15-1), which displays in tree form all hosts, hubs, and devices
attached to the hubs. You can also view each device’s descriptors. The code
uses DeviceloControl functions to retrieve the information. For a
Visual-Basic application that does the same thing, I recommend the Displ-
ayUSB example in John Hyde’s book, USB Design by Fxample, which, by the

way, is an excellent companion to this book.

362 USB Complete

Human Interface Devices: Host Application Primer

My Cornputer
Intel 32371ARJEB PClo USB Universal Host Condroller
= RootHub
[Portl] DeviceConnecled : USB Human Intedace Device
Port?] DeviceCannecled : General purpose LISE Huby
= [Portl] DeviceConnected : General purpose USE Hub
| [Porl]NoDeviceConnected
[Ponz) DeviceConnecled : USE Composite Device
- [Pont3] MoDeviceConnacted
[Pond] NoDeviceConnectad
[Pon2) CeviceConnecied : RDC-5000
- [Pont3] NoDevicsConnectad
[Pond] NoDeviceConnected

Figure 15-1: The USBView utility in the Windows DDK displays all hosts, hubs,
and device attached to hubs.

Searching for a Device

To find out if a specific device is attached, an application can search using
the Plug and Play/Device Management functions listed in Table 15-1 and
described in greater detail in the next chapter. Searching can also reveal if a
previously attached device has been removed. An application will also learn
that a device is removed when it attempts to communicate and receives the
error invalid handle.

Device Notification

Another way to learn of newly attached or removed devices uses Windows’
RegisterDeviceNotification function. In calling the function, an application
can pass a pointer to a structure containing the GUID of a device interface
to monitor and a handle to a window to receive the event notifications.

USB Complete 363

Chapter 15

When a device with a matching interface is attached or removed, the win-
dow receives a message such as DBT_DEVICE_ARRIVAL or
DBT_DEVICE_REMOVE_COMPLETE with a pointer to a structure
that identifies the device. Attachment or removal of a device also results in a
DBT_DEVNODES_CHANGED message that indicates that an event of
some type has occurred. Another way to detect a specific device’s arrival or
removal is to investigate furcher on receiving a
DBT_DEVNODES_CHANGED message. To find out whether a device
has been removed, attempt to open a handle to it. To search for newly
attached devices, use the Plug-and-Play functions.

A call to UnRegisterDeviceNotification causes the notifications to cease. A
Windows 2000 application should call this function before closing. Because
of buggy behavior, Windows 98 applications shouldn’t use UnRegisterDevi-
ceNotification.

Enabling and Disabling Devices

364

The Windows 2000 DDK documents Setup functions that can enable or
disable a device in software.

The CM_Request_Device_Eject function prepares a device for safe removal
and physically ejects media that are ejectable. The SetupDiChangeState
function can disable a device or load drivers for and start a device.

USB Complete

Human Interface Devices: Host Application Example

16

Human Interface
Devices:
Host Application
Example

With the previous chapters’ information about reports and how to call API
functions, we're now ready to communicate with a HID. In this chapter, I
present code that applications can use to communicate with HID-class
devices. The examples are in both Visual-Basic and Visual C++. Headings
identify text that is specific to a language. Much of the information applies
to communications with any USB device.

USB Complete 365

Chapter 16

Finding a Device

The first task is to find the device you want to communicate with. This
involves examining properties of the HIDs available on a system and look-
ing for a match, either in Vendor and Product IDs or in device capabilities.
A series of API calls will accomplish this. The process uses many of the same
Setup functions you would use to locate other USB devices.

Obtain the GUID for the HID Class

366

Before an application can communicate with a HID, it must obtain the glo-
bally unique identifier (GUID) for the HID class. Chapter 10 introduced
the GUID, which is a 128-bit value that uniquely identifies an object. In
this case, the object is the HID class. The GUID value is included in the file

hidclass.h, so in theory you could hard-code it into the application. But you
can also obtain the GUID by using an API function that reads the value
from the system. Doing it this way, you'll be sure to have the correct value in
the expected format.

The API call to retrieve the GUID for the HID class is HidD_GetHidGuid.
The application doesn’t have to do anything with the GUID itself. It just
passes the GUID’s address to other API functions.

Visual C++
This is the function’s declaration:

VOID
HidD GetHidGuid(
OUT LPGUID HidGuid
)

This is the code to call the function:

HidD GetHidGuid (&HidGuid) ;

Visual Basic
This is the function’s declaration:

Public Declare Sub HidD_ GetHidGuid
Lib "hid.dll" _

USB Complete

Human Interface Devices: Host Application Example

(ByRef HidGuid As GUID)

This routine has no return value, so it can be declared as a subroutine, as
above. Or you can declare it as a function, with a return value of type Long,
and ignore the returned value:
Public Declare Function HidD GetHidGuid _
Lib "hid.dll" _
(ByRef HidGuid As GUID)
as Long
The GUID is returned in the variable HidGuid, which has the following
user-defined type:
Public Type GUID
Datal As Long
Data2 As Integer
Data3 As Integer
Data4 (7) As Byte
End Type
HidGuid is declared byRef because Visual Basic requires user-defined types
to be passed byRef.

The call to get the GUID is:
Call HidD GetHidGuid (HidGuid)
or

Dim Result as Long
Result = HidD GetHidGuid (HidGuid)

Get an Array of Structures with Information about the HIDs

The GUID enables the application to get information about a system’s
HIDs. The functions to do this are Windows Device Management Func-
tions. There are two sets of essentially identical documentation for these in
the Windows DDK documentation and in the Platform SDK in the
MSDN documentation.

The SetupDiGetClassDevs function returns the address of an array of struc-
tures containing information about all attached and enumerated HIDs.

USB Complete 367

Chapter 16

Visual C++
This is the function’s declaration:

HDEVINFO
SetupDiGetClassgDevs (
IN LPGUID C(ClassGuid, OPTIONAL
IN PCTSTR Enumerator, OPTIONAL
IN HWND hwndParent, OPTIONAL
IN DWORD Flags
) ;

This is the code to call the function:

hDevInfo=SetupDiGetClaggDevs
(&HidGuid,
NULL,
NULL,
DIGCF PRESENT |DIGCF_INTERFACEDEVICE) ;

Visual Basic
This is the function’s declaration:

Public Declare Function SetupDiGetClassDevs
Lib "setupapi.dll"™
Alias "SetupDiGetClassDevsA"
(ByRef ClassGuid As GUID, _
ByVal Enumerator As String,
ByVal hwndParent As Long,
ByVal Flags As Long)
As Long

This is the code to call the function:

Public Const DIGCF PRESENT = &H2
Public Const DIGCF DEVICEINTERFACE = &HI10

hDevInfo = SetupDiGetClassDevs
(HidGuid, _
vbNullString,
O ! —
(DIGCF_PRESENT Or DIGCF DEVICEINTERFACE))

368 USB Complete

Human Interface Devices: Host Application Example

Details

ClassGuid is HidGuid, the value returned in the last call. Enumerator and
hwndParent are unused. The flags are two system constants defined in the

file setupapi.h.

The flags tell the function to look only for device interfaces that are cur-
rently present (actached and enumerated) and that are members of the HID
class, as specified in the ClassGuid parameter.

The value returned, hDevInfo, is the address of an array of structures con-
taining information about all attached and enumerated HIDs. Again, there’s
no need to access the individual elements in the collection. You need the
value only so you can pass it on in the next API call.

When the application is finished using the array pointed to by hDevlnfo, it
should free the resources used by calling the API function SetupDiDestroy-
DevicelnfoList, as described later in this chapter.

Identify Each HID Interface

The next call is to SetupDiEnumDevicelnterfaces, which retrieves a pointer
to a structure that identifies an interface in the previously retrieved Device-
InfoSet array. Fach call must specify one interface by passing an array index.
To retrieve information about all of the interfaces, an application can use a
loop to step through the array, incrementing the array index until the func-
tion returns zero, indicating that there are no more interfaces. The GetLas-
tError API call will then return No more data is available.

How do you know if an interface is the one you're looking for? You dont,
yet. The application needs more information before it can decide if it wants
to use an interface. If the function returns multiple interfaces, the applica-
tion will need to investigate each in turn, until it either finds what it’s look-
ing for or determines that the desired interface isnt present.

Again, the use for any returned pointers is to pass them on to the next func-
tion so we can learn more about the interfaces.

USB Complete 369

Chapter 16

Visual C++
This is the function’s declaration:

BOOLEAN

SetupDiEnumbDeviceInterfaces (
IN HDEVINFO DeviceInfoSet,
IN PSP DEVINFO DATA DeviceInfoData, OPTIONAL
IN LPGUID InterfaceClassGuid,
IN DWORD MemberIndex,
OUT PSP _DEVICE INTERFACE DATA DevicelInterfaceData
)

This is the declaration for DevicelnterfaceData’s type:

typedef struct SP DEVICE INTERFACE DATA {
DWORD cbSize;
GUID InterfaceClassGuid;
DWORD Flags;
ULONG PTR Reserved;
} SP _DEVICE INTERFACE DATA,
*PSP_DEVICE INTERFACE DATA;

And this is the code to call the function:

devInfoData.cbSize = sizeof (devInfoData) ;
Result=SetupDiEnumDevicelInterfaces
(hDevInfo,
0,
&HidGuid,
MemberIndex,
&devInfoData) ;

Visual Basic
This is the function’s declaration:

Public Declare Function SetupDiEnumDevicelInterfaces
Lib "setupapi.dll"
(ByVal DeviceInfoSet As Long,
ByVal DeviceInfoData As Long,
ByRef InterfaceClasgGuid As GUID,
ByVal MemberIndex As Long,
ByRef DevicelnterfaceData
As SP DEVICE INTERFACE DATA)
As Long

370 USB Complete

Human Interface Devices: Host Application Example

DevicelnterfaceData is a user-defined type:

Public Type SP_DEVICE INTERFACE DATA
cbSize As Long
InterfaceClassGuid As GUID
Flags As Long
Reserved As Long
End Type

This is the code to call the function:

Dim Result as Long
Dim MemberIndex as Long
Dim MyDevicelInterfaceData As SP_DEVICE INTERFACE_DATA
'Store the size of the structure
MyDevicelInterfaceData.cbSize = _
LenB (MyDeviceInterfaceData)
Result = SetupDiEnumDeviceInterfaces _
(DeviceInfoSet,
O’_
HidGuid,
MemberIndex,
MyDevicelInterfaceData)

Details
The parameter cbSize is the size of the SP_DEVICE_INTERFACE_DATA

structure in bytes. Before calling SetupDiEnumDevicelnterfaces, the size
must be stored in the structure that the function will pass. Use the sizeof
operator in Visual C++ or the LenB operator in Visual Basic to retrieve the
size, which is 28 bytes: 4 for each Long and 16 for the GUID, which con-
tains one Long (4 bytes), two Integers (4 bytes), and eight Bytes. The other
values in the structure should be zero.

Two of the values passed to this function are values returned previously:
HidGuid and DevicelnfoSet. DevicelnfoData is an optional pointer to an
SP_DEVINFO_DATA structure that limits the search to interfaces of a par-
ticular device. MemberIndex is the index of the DevicelnfoSet array. MyDe-
vicelnterfaceData is the returned structure that identifies an interface of the

requested type, which in this case is a HID.

USB Complete 371

Chapter 16

Get the Device Pathname

The next API call, SetupDiGetDevicelnterfaceDetail, returns yet another
structure. This time the structure relates to a device interface identified in
the previous call. The structure’s DevicePath member is a device pathname
that the application can use to open communications with the device.

Before calling this function for the first time, there’s no way to know the
value of DevicelnterfaceDetailDataSize, which must contain the size in
bytes of the DevicelnterfaceDetailData structure. Yet the call won’t return
the structure unless it has this information. The solution is to call the func-
tion twice. The first time, GetLastError will return the error The data area
passed to a system call is too small, but the RequiredSize parameter will con-
tain the correct value for DevicelnterfaceDetailDataSize. The second time,
you pass the returned value and the function succeeds.

Visual C++
This is the function’s declaration:

BOOLEAN
SetupDiGetDevicelInterfaceDetail (
IN HDEVINFO DeviceInfoSet,
IN PSP _DEVICE INTERFACE DATA DevicelInterfaceData,
OUT PSP DEVICE INTERFACE DETATL DATA
DevicelInterfaceDetailData, OPTIONAL
IN DWORD DevicelInterfaceDetailDataSize,
OUT PDWORD RequiredSize, OPTIONAL
OUT PSP DEVINFO DATA DeviceInfoData OPTIONAL
) ;

This is the declaration for DevicelnterfaceDetailData’s structure:

typedef struct SP DEVICE INTERFACE DETAIL DATA {
DWORD cbSize;
TCHAR DevicePath[ANYSIZE_ARRAY];
} SP_DEVICE INTERFACE DETAIL DATA,
*PSP DEVICE INTERFACE DETAIL DATA;
This is the code to call the function twice, first to get the structure’s size, and

SGCOIld to gﬁt a pOthCf to the structure:

// Get the Length value.

372 USB Complete

Human Interface Devices: Host Application Example

// The call will return with a "buffer too small"
// error which can be ignored.
Result = SetupDiGetDevicelInterfaceDetail
(hDevInfo,
&devInfoData,
NULIL,
0,
&Length,
NULL) ;

// Allocate memory for the hDevInfo structure,

// using the returned Length.

detailData =
(PSPNDEVICE_INTERFACE_DETAIL_DATA)malloc(Length);

// Set cbSize in the detailData structure.
detailData -> cbSize =
Sizeof(SP_DEVICE_INTERFACEMDETAIL_DATA);

// Call the function again, this time passing it the
// returned buffer size.
Result = SetupDiGetDeviceInterfaceDetail

(hDevInfo,

&devInfoData,

detailData,

Length,

&Required,

NULL) ;

Visual Basic
The function’s declaration is:

Public Declare Function _
SetupDiGetDeviceInterfaceDetail _
Lib "setupapi.dll"
Alias "SetupDiGetDeviceInterfaceDetailA"
(ByVal DeviceInfoSet As Long,
ByRef DevicelnterfaceData _

As SP DEVICE_ INTERFACE DATA, _

ByVal DeviceInterfaceDetailData As Long,
ByVal DevicelInterfaceDetailDataSize As Long,
ByRef RequiredSize As Long, _
ByVal DeviceInfoData As Long)

USB Complete 373

Chapter 16

As Long
The structure returned in DevicelnterfaceDetailData is a user-defined type:

Public Type SP_DEVICE INTERFACE DETAIL DATA
cbSize As Long
DevicePath As String
End Type
Because of the different string formats used by Visual Basic and C, you can’t
pass this structure in the usual way, using ByRef to pass the structure’s
address. But there is a way around the problem. The first step is to allocate a
buffer in memory to hold the structure. Then you can use the VarPtr opera-
tor to get the starting address of the buffer, and pass the address ByVal.
‘When the function returns, you can copy the data in the buffer into a Devi-
celnterfaceDetailData structure, or just extract the data of interest, which is
the device pathname.

This is the code for the first call:

Dim Needed as Long
Result = SetupDiGetDevicelnterfaceDetail _
(DeviceInfoSet, _
MyDeviceInterfaceData,
0,
0, —
Needed,
0)
DevicelnfoSet and MyDevicelnterfaceData are structures returned by previ-
ous calls. After calling this function, Needed contains the buffer size to pass

in the next call.
Before calling the function again, we need to take care of a few things.

The DetailData variable to be passed in the next call is set to equal the value
returned in Needed:

Dim DetailData as Long
DetailData = Needed
Dim DetailDataBuffer () as Byte

The size of the structure to be returned is stored in its cbSize parameter:

'Store the structure's size.

374 USB Complete

Human Interface Devices: Host Application Example

MyDeviceInterfaceDetailData.cbSize = _

Len (MyDeviceInterfaceDetailData)
Because we're going to pass only the address of a byte array for the returned
structure, we need to allocate enough memory in the array to hold the struc-
ture:

ReDim DetailDataBuffer (Needed)

The first four bytes of the byte array hold the array’s size, which can be cop-
ied from the cbSize property in the MyDevicelnterfaceDetailData structure:

Call RtlMoveMemory
(DetailDataBuffer(0), _
MyDeviceInterfaceDetailData,
4)

Now we're ready to call SetupDiGetDevicelnterfaceDetail again:

'Call SetupDiGetDeviceInterfaceDetail again.
"This time, pass the address
"of the first element of DetailDataBuffer
'and the returned required buffer size in DetailData.
Result = SetupDiGetDevicelInterfaceDetail _
(DeviceInfoSet,
MyDeviceInterfaceData, _
VarPtr (DetailDataBuffer (0)), _
DetailData,
Needed,
0)

VarPtr(DetailDataBuffer(0)) is the starting address of the byte array that will

contain the MyDevicelnterfaceDetailData structure. DetailData holds the
size returned by the previous call.

The item of interest in the returned structure is the device pathname to be
used in additional AP calls. To extract the pathname from the byte array,
convert the byte array to a string, convert the result to Unicode for compati-
bility with Visual Basic, and strip the cbSize characters from the beginning
of the string.

'Convert the byte array to a string.

DevicePathName = CStr (DetailDataBuffer())

'Convert to Unicode.
DevicePathName = StrConv(DevicePathName, vbUnicode)

USB Complete 375

Chapter 16

'Strip cbSize (4 characters) from the beginning.
DevicePathName = _
Right$ (DevicePathName, Len (DevicePathName) - 4)

Get a Handle for the Device

Now that we have a device pathname, were ready to open communications
with the device itself. The first step is the all-purpose function CreateFile,
which can open a handle to a file or any device whose driver supports Cre-
ateFile. Devices with HID interfaces are among these.

On success, the value returned by CreateFile is a handle that other API func-
tions can use to exchange data with the device.

Visual C++
This is the function’s declaration:

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
)

This is the code to call the function:

DeviceHandle=CreateFile
(detailData->DevicePath,
GENERIC READ|GENERIC WRITE,
FILE SHARE READ|FILE SHARE WRITE,
NULL,
OPEN_EXISTING,
0,
NULL) ;

Visual Basic
This is the function’s declaration:

Public Declare Function CreateFile
Lib "kernel32"

376 USB Complete

Human Interface Devices: Host Application Example

Alias "CreateFileA"
(ByVal 1lpFileName As String,
ByVal dwDesiredAccess As Long,
ByVal dwShareMode As Long,
ByVal lpSecurityAttributes As Long,
ByVal dwCreationDisposition As Long,
ByVal dwFlagsAndAttributes As Long,
ByVal hTemplateFile As Long)

As Long

And this is the code to call the function:

Dim HidDevice As Long
HidDevice = CreateFile
(DevicePathName,
GENERIC READ Or GENERIC WRITE, _
(FILE SHARE READ Or FILE SHARE WRITE),
O’ —_
OPEN EXISTING,
0,
0)

The function passes a pointer to the DevicePathName string returned in the

previous call. The parameter is declared as a String to be passed ByVal,

because of Visual Basic’s different string format, as explained earlier.

The constants passed by the call are defined in several locations, including

winnt.h and wdm.h, and must be declared in a declarations section of a

module in the Visual-Basic application:

Public Const GENERIC READ = &H80000000
Public Const GENERIC WRITE = &H40000000
Public Const FILE SHARE READ = &H1
Public Const FILE SHARE WRITE = &H2
Public Const OPEN EXISTING = 3

Details

When the application no longer needs to access the device, it should free

system resources by calling the CloseHandle AP function, as described later

in this chapter.

USB Complete

377

Chapter 16

Read the Vendor and Product IDs

One way to identify whether or not a device is the one you want is to get its
Vendor and Product IDs and compare them with the IDs for the product
you're looking for. This is the way to find custom devices that don’t fit stan-
dard usages. For other devices, this information may not be important, and
if not, you can skip this step.

The API function HidD_GetAttributes retrieves a pointer to a structure
containing the Vendor and Product IDs and the product’s version number.

Visual C++
This is the function’s declaration:

BOOLEAN
HidD_GetAttributes(
IN HANDLE HidDeviceObject,
OUT PHIDD ATTRIBUTES Attributes
) ;

The HIDD_ATTRIBUTES structure contains the information about the

device:

typedef struct HIDD ATTRIBUTES ({
ULONG Size;
USHORT VendorlD;
USHORT ProductID;
USHORT VersionNumber;
} HIDD ATTRIBUTES, *PHIDD ATTRIBUTES;

This is the code to retrieve the structure:

// Set the Size member to the number of bytes
// in the structure.

Attributesg.Size = sizeof (Attributes) ;
Result = HidD GetAttributes
(DeviceHandle,
&Attributes) ;

Visual Basic
This is the declaration for the function:

Public Declare Function HidD GetAttributes

378 USB Complete

Human Interface Devices: Host Application Example

Lib "hid.d1l" _
(ByVal HidDeviceObject As Long,
ByRef Attributes As HIDD_ATTRIBUTES)
As Long
The HIDD_ATTRIBUTES structure contains the information about the
device:
Public Type HIDD ATTRIBUTES
Size As Long
VendorID As Integer
ProductID As Integer

VersionNumber As Integer
End Type

This is the code to retrieve the structure:

Dim DeviceAttributes As HIDD_ATTRIBUTES
'Set the Size property to the number of bytes
'in the structure.
DeviceAttributes.Size = LenB (DeviceAttributes)
Result = HidD GetAttributes _

(HidDevice,

DeviceAttributes)

Details
The HidDeviceObject parameter is the handle returned by CreateFile. If the

function returns a non-zero value, the DeviceAttributes structure filled
without error.

The application can then compare the retrieved values with the desired Ven-
dor and Product IDs and version number.

If it isn’t a match, the application should use the CloseHandle API call to
close the handle to the interface. The application can then move on to test
the next HID detected by SetupDiEnumDevicelnterfaces. When the appli-
cation is finished examining the HIDs, it should free the resources reserved

by SetupDiGetClassDevs by calling SetupDiDestroyDevicelnfoList.

USB Complete 379

Chapter 16

Get a Pointer to a Buffer with Device Capabilities

380

Another way to find out more about a device is to examine its capabilities.
You can do this for a device whose Vendor and Product IDs matched the
values you were looking for, or you can examine the capabilities for an
unknown device.

The first task is to get a pointer to a buffer with information about the

device’s capabilities. The API call to do this is HidD_GetPreparsedData.

Visual C++
This is the function’s declaration:

BOOLEAN
HidD_GetPreparsedData (
IN HANDLE HidDeviceObject,
OUT PHIDP_ PREPARSED DATA *PreparsedData
)i

This is the code to call the function:

PHIDP_PREPARSED DATA PreparsedData;
HidD GetPreparsedData
(DeviceHandle,
&PreparsedData) ;

Visual Basic
This is the function’s declaration:

Public Declare Function HidD GetPreparsedData _
Lib "hid.dili"
(ByVal HidDeviceObject As Long,
ByRef PreparsedData As Long)

As Long

This is the code to call the function:

Result = HidD GetPreparsedData
(HidDevice,
PreparsedData)

HidDeviceObject is the handle returned by CreateFile. PreparsedData is a
pointer to the buffer containing the data. The application doesn’t need to

USB Complete

Human Interface Devices: Host Application Example

access the data in the buffer; it just needs to pass its starting address to
another API function.

When the application no longer needs to access the PreparsedData, it should
free system resources by calling HidD_FreePreparsedData, as described later
in this chapter.

Get the Device’s Capabilities

The HidP_GetCaps function returns a structure that contains information
about the device’s capabilities. The structure contains the device’s Usage,
Usage Page, report lengths, and the number of button capabilities, value
capabilities, and data indices for Input, Output, and Feature reports, as
stored in the device’s firmware. If you didn’t use the Vendor and Product IDs
to identify the device, the capabilities information can help you decide if
you want to continue communicating with the device. Even if you know
that you have the device you're looking for, the report lengths and other
information are useful in determining what kinds of data you can transfer.
Not every item in the structure applies to all devices.

Visual C++
This is the function’s declaration:

NTSTATUS
HidP GetCaps (
IN PHIDP PREPARSED DATA PreparsedData,
OUT PHIDP CAPS Capabilities
)i

This is the declaration for the HIDP_CAPS structure:

typedef struct HIDP CAPS {
USAGE Usage;
USAGE UsagePage ;
USHORT InputReportByteLength ;
USHORT OutputReportByteLength ;
USHORT FeatureReportBytelLength ;

USHORT NumberLinkCollectionNodes ;
USHORT NumberInputButtonCaps ;

USB Complete 381

