

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

BLUE COAT SYSTEMS, INC.,
Petitioner,

v.

FINJAN, INC.,
Patent Owner.

Patent No. 8,225,408

DECLARATION OF AZER BESTAVROS, PH.D.

FireEye - Exhibit 1002 Page 1

TABLE OF CONTENTS

I.QUALIFICATIONS ... 3

II.SCOPE OF WORK ... 8

III.OVERVIEW OF THE ’408 PATENT ... 9

IV.LEGAL STANDARD .. 11

V.OVERVIEW OF THE PRIOR ART ... 13

A. Chandnani ... 13

B. Kolawa ... 16

C. Knuth .. 17

D. Huang ... 18

E. Walls .. 19

F. Chandnani, Kolawa, Knuth, Huang, and Walls Are All Analogous
Art .. 19

VI.LEVEL OF ORDINARY SKILL AND RELEVANT TIME 25

VII.CLAIM CONSTRUCTION .. 26

VIII.GROUND 1: Claims 2, 11, 24-28, and 30-34 are rendered obvious by
Chandnani in view of Kolawa and Knuth .. 28

IX.GROUND 2: Claim 8 is rendered obvious by Chandnani in view of Kolawa
and Huang ... 89

X.GROUNDS 3 and 4: Claims 2, 8, 11, 24-28, and 30-34 are rendered obvious
by the above-identified grounds further in view of Walls 96

XI.CONCLUDING STATEMENTS..106

XII.Appendix – List of Exhibits ...108

FireEye - Exhibit 1002 Page 2

 -3-

I, Azer Bestavros, declare as follows:

I. QUALIFICATIONS

1. I am a Professor of Computer Science at Boston University, whose

faculty I joined in 1991. I chaired the Computer Science Department from 2000 to

2007, overseeing a period of significant growth, culminating in the Chronicle of

Higher Education’s ranking of the Department as seventh in the U.S. in terms of

scholarly productivity.

2. I am the Founding Director of the BU Hariri Institute for Computing at

Boston University, which was set up in 2010 to “create and sustain a community of

scholars who believe in the transformative potential of computational perspectives in

research and education.” I am also the co-Chair of the Council on Educational

Technology & Learning Innovation, which was set up in 2012 to develop Boston

University’s strategy as it relates to leveraging on-line technology in on-campus,

residential programs.

3. In addition to my academic responsibilities at Boston University, over the

years I have taken significant regional and national research leadership

responsibilities. This includes: serving since 2010 as co-chair for Research, Education,

and Outreach of the Massachusetts Green High-Performance Computing Center – a

consortium of the five major research institutions in the Commonwealth of

FireEye - Exhibit 1002 Page 3

 -4-

Massachusetts (Boston University, Harvard University, MIT, Northeastern University,

and the University of Massachusetts); serving since 2013 as board member of the

Cloud Computing Caucus, a non-profit, non-partisan coalition of industry and key

government stakeholders, focused on raising awareness and educating lawmakers and

the public on issues associated with cloud computing; and serving from 2007 to 2012

as the elected chair of the IEEE Computer Society Technical Committee on the

Internet.

4. I also organized Computer Science leadership workshops at the

Computing Research Association (CRA) Snowbird conferences on models for

university-led technology transfer and incubation in 2000, and on models for

publications in CS in 2006. In addition, I organized a number of meetings to develop

research agendas and recommendations to government agencies, including the PI

meeting of the CRI program at NSF, and the HCCS committee of the National

Coordination Office for Networking and Information Technology. Most recently, I

served as chair of the 2014 Committee of Visitors tasked to review the performance of

the CNS Division of the CISE Directorate of the National Science Foundation.

5. I am a senior member of the Association for Computer Machinery

(ACM) and a senior member of the Computer Society of the Institute of Electrical and

Electronics Engineers (IEEE), among other professional societies and organizations.

FireEye - Exhibit 1002 Page 4

 -5-

Within these organizations, I served as general chair, PC chair or PC member of most

flagship technical conferences in networking, real-time systems, and databases,

including ACM Sigmetrics, IEEE Infocom, ACM PODC, IEEE ICNP, ACM MMSys,

IEEE HotWeb, IEEE RTSS, IEEE RTAS, ICDCS, ACM LCTES, IEEE ICDE, ACM

Sigmod, and VLDB. I co-organized formative workshops that led to ACM SIGPLAN

LCTES and ACM SIGCOMM IMC. I have also served on the editorial board of major

journals and periodicals, currently including IEEE Internet Computing and

Communications of the ACM.

6. Prior to joining the faculty at Boston University, from June 1988 to

September 1991, I was a Research Fellow, Teaching Fellow, and Research Assistant

at Harvard University. From September 1985 to June 1987, I was a Research

Assistant, Teaching Assistant, and Instructor at Alexandria University (Egypt).

7. I obtained my Ph.D. in Computer Science in 1992 from Harvard

University under Thomas E. Cheatham, one of the “roots” of the academic genealogy

of applied computer scientists. I also hold a Master of Science degree in Computer

Science from Harvard University, which I obtained in 1988; a Master of Science

degree in Computer Science and Automatic Control from Alexandria University,

which I obtained in 1987; and a Bachelor of Science degree in Computer Engineering

from Alexandria University, which I obtained in 1984.

FireEye - Exhibit 1002 Page 5

 -6-

8. I have studied, taught, practiced, and conducted research in Computer

Science and Computer Engineering for more than 30 years. My expertise is in the

broad fields of computer networking, distributed systems, and real-time computing,

with significant experience in Web content caching and distribution systems, scalable

Internet services, cloud computing, Internet architecture and networking protocols,

among others.

9. I have extensive consulting and industrial research experience, including

past and current engagements with a number of technology firms, including BBN

Technologies, Sycamore Networks, NetApp, Microsoft, Verizon Labs, Macromedia,

Allaire, Bowne, SUTI Technologies, and AT&T Bell Labs. I have consulted and

served on the technical advisory board of many companies, and I have been retained

by a number of law firms as a consultant on intellectual property issues related to

Internet technologies and applications.

10. My curricular development efforts include my CS-350 course, which I

developed and have taught since 1998. Through a rigorous treatment of the invariant

concepts underlying computing systems design, CS-350 familiarizes students with

canonical problems that reoccur in software systems, including operating systems,

networks, databases, and distributed systems, and provides students with a set of

classical algorithms and basic performance evaluation techniques for tackling such

FireEye - Exhibit 1002 Page 6

 -7-

problems. More recently, I have spearheaded a team effort to develop a set of courses

for non-majors that can be used to introduce elements of mathematical abstraction,

quantitative and methodical thinking, as utilized in mathematics, statistics, and

computer science, with an emphasis on their relevance in our daily lives as reflected in

widely used Internet and Web technologies and applications. In addition to these

courses, I have taught undergraduate courses and graduate seminars on large-scale

Internet systems, sensor networks, computer architecture, and real-time systems, and

have guest-lectured in Sociology on issues related to Technology, Society and Public

Policy.

11. Over the years, my contributions in research, teaching, and service have

been recognized by a number of awards, including multiple best-paper awards from

IEEE and ACM conferences, multiple distinguished ACM and IEEE service awards,

and being selected multiple times as a distinguished speaker of the IEEE Computer

Society (last time in 2010). In 2010, I received the United Methodist Scholar Teacher

Award in recognition of “outstanding dedication and contributions t3o the learning

arts and to the institution” at Boston University, and the ACM Sigmetrics Inaugural

Test of Time Award for research results “whose impact is still felt 10-15 years after its

initial publication.”

FireEye - Exhibit 1002 Page 7

 -8-

12. A copy of my Curriculum Vitae, attached as EX10XX, contains further

details on my education, experience, publications, patents, and other qualifications to

render an expert opinion in this matter.

II. SCOPE OF WORK

13. I understand that a petition is being filed with the United States Patent

and Trademark Office for Inter Partes Review of U.S. Patent No. 8,225,408 to Rubin

et al. (“the ’408 Patent,” attached as EX1001), entitled “Method and System for

Adaptive Rule-Based Content Scanners.”

14. I have been retained by Blue Coat Systems, Inc. (“Blue Coat”) to offer an

expert opinion on the patentability of the claims of the ’408 patent, as well as several

other patents assigned to Finjan. I receive $550 per hour for my services. No part of

my compensation is dependent on my opinions or on the outcome of this proceeding. I

have previously testified for Blue Coat as an expert on the issue of noninfringement in

case 13-cv-03999-BLF, which involved different patents. I do not have any other

current or past affiliation as an expert witness or consultant with Blue Coat.

15. I have been specifically asked to provide my opinions on claims 2, 8, 11,

24-29, and 31-34 of the ’408 patent. In connection with this analysis, I have reviewed

the ’408 patent and its file history. I have also reviewed and considered various other

documents in arriving at my opinions, and may cite to them in this declaration. For

FireEye - Exhibit 1002 Page 8

 -9-

convenience, the information considered in arriving at my opinions is listed in

Appendix A.

III. OVERVIEW OF THE ’408 PATENT

16. The ’408 patent is directed to protecting computers against

potentially malicious programs using programming language-specific sets of rules and

a “parse tree” data structure. EX1001 at Title, Abstract.

17. The ’408 patent describes scanning an incoming stream of computer code

by creating tokens, generating a parse tree using patterns in those tokens, and

identifying patterns of tokens in the parse tree as potential exploits. See id. Patterns are

identified using “parser rules” and “analyzer rules” specific to one of multiple

programming languages. Accordingly, the challenged claims recite “multi-lingual”

methods that determine a specific computer language from a plurality of languages

and use a “scanner” specific to that language to scan the incoming stream of computer

code.

18. The ’408 patent was filed in August 2004 and was subject to a first office

action rejecting and/or objecting to all claims in July 2008. Over the next four years,

the applicant amended the claims in response to eight separate rejections. In 2012, the

applicant substantially re-wrote the claims, adding additional limitations to the

independent claims, including (1) multi-language processing capability and

FireEye - Exhibit 1002 Page 9

 -10-

(2) temporal restrictions regarding when the claimed system receives a data stream,

builds a parse tree, and detects viruses within the parse tree. See EX1004 at 40-53.

The claims were allowed following those additions. See EX1004 at 69-71.

19. I understand that the priority date for a particular claim is based in part on

when in a chain of related patents the written description that supports that claim first

appeared. The ’408 patent was filed on August 30, 2004, as a continuation-in-part of

Application No. 09/539,667 (now U.S. Patent No.6,804,780), filed on March 30,

2000, which is itself a continuation of Application No. 08/964,388 (now U.S. Patent

No. 6,092,194), filed on November 6, 1997.

20. Although filed as a continuation-in-part, the ’408 patent shares almost

nothing with the earlier-filed applications. For example, the ’667 and ’388

applications do not mention “tokens” or “parse trees,” elements that appear throughout

all claims of the ’408 patent. See EX1005, EX1006. The earliest specification that a

person of skill in the art would recognize as providing a description of the subject

matter of those claims was the application filed August 30, 2004, that later issued as

the ’408 patent. See EX1001. As such, the challenged claims are entitled to a priority

date no earlier than August 30, 2004, the ’408 patent’s own filing date.

FireEye - Exhibit 1002 Page 10

 -11-

IV. LEGAL STANDARD

21. I understand that a claimed invention is not patentable under 35 U.S.C.

§ 103, for obviousness if the differences between the invention and the prior art are

such that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art to which the subject

matter pertains.

22. It is further my understanding that a determination of obviousness

requires inquiries into: (1) the scope and contents of the art when the invention was

made; (2) the differences between the art and the claims at issue; (3) the level of

ordinary skill in the pertinent art when the invention was made; and, to the extent they

exist, (4) secondary indicia of obviousness.

23. I understand that a claim can be found to be obvious if all the claimed

elements were known in the prior art and one skilled in the art could have combined

the elements as claimed by known methods with no change in their respective

functions, and the combination would have yielded nothing more than predictable

results to one of ordinary skill in the art.

24. I understand that hindsight must not be used when comparing the prior

art to the invention for obviousness. Thus, a conclusion of obviousness must be firmly

based on knowledge and skill of a person of ordinary skill in the art at the time the

invention was made without the use of post-filing knowledge.

FireEye - Exhibit 1002 Page 11

 -12-

25. I understand that in order for a claimed invention to be considered

obvious, there must be some rational underpinning for combining cited references as

proposed.

26. I understand that obviousness may also be shown by demonstrating that it

would have been obvious to modify what is taught in a single piece of prior art to

create the patented invention. Obviousness may be shown by showing that it would

have been obvious to combine the teachings of more than one item of prior art. In

determining whether a piece of prior art could have been combined with other prior art

or with other information within the knowledge of one of ordinary skill in the art, the

following are examples of approaches and rationales that may be considered:

(a) Combining prior art elements according to known methods to yield

predictable results;

(b) Simple substitution of one known element for another to obtain

predictable results;

(c) Use of a known technique to improve similar devices (methods, or

products) in the same way;

(d) Applying a known technique to a known device (method, or product)

ready for improvement to yield predictable results;

FireEye - Exhibit 1002 Page 12

 -13-

(e) Applying a technique or approach that would have been “obvious to try”

(choosing from a finite number of identified, predictable solutions, with a

reasonable expectation of success);

(f) Known work in one field of endeavor may prompt variations of it for use

in either the same field or a different one based on design incentives or other

market forces if the variations would have been predictable to one of ordinary

skill in the art; or

(g) Some teaching, suggestion, or motivation in the prior art that would have

led one of ordinary skill to modify the prior art reference or to combine prior art

reference teachings to arrive at the claimed invention.

V. OVERVIEW OF THE PRIOR ART

27. In my opinion, and as explained in further detail below, claims 2, 8, 11,

and 24-28, and 30-34 of the ’408 patent fail to identify anything new or significantly

different from what was already known to individuals of skill in the field prior to the

filing of the application that led to the ’408 patent, including prior to August 30, 2004.

28. Below is an overview of certain of the main prior art references that I rely

on for my opinion that claims 2, 8, 11, and 24-28, and 30-34 of the ’408 are

unpatentable: Chandnani, Kolawa, Knuth, Huang, and Walls.

A. Chandnani

29. U.S. Patent Appl. Pub. No. 2002/0073330 (“Chandnani,” EX1007), titled

“Detection of Polymorphic Script Language Viruses by Data Driven Lexical

FireEye - Exhibit 1002 Page 13

 -14-

Analysis,” was filed on July 14, 2001. I understand that Chandnani is prior art under

35 U.S.C. § 102(b) because it was published on June 13, 2002, more than one year

before the filing date of the ’408 patent.

30. Chandnani teaches detecting polymorphic script language viruses using

data-driven lexical analysis. EX1007 at [0002]. Like the ’408 patent, Chandnani scans

for polymorphic viruses—those that have slightly different code but the same

malicious functionality—by converting a data stream into a stream of tokens and then

searching for patterns that indicate the presence of potentially malicious programs. Id.

at [0014]-[0020], [0056]-[0065]. Also like the ’408 patent, Chandnani scans a

continuous stream of data, and continues to receive upstream data while analyzing

downstream data. See, e.g., id. at [0057] (describing the data stream as a series of

characters), [0060] (describing a two-stage detection process), Fig. 2.

31. Although Chandnani may not expressly describe how tokens are parsed

and analyzed, Chandnani’s disclosure of parsing a stream into tokens and then storing

those tokens suggests and implicitly teaches using a parse tree because a person of

ordinary skill in the art understood that the obvious place to store those tokens was in

a parse tree. See EX1007 at [0040]-[0046]; below ¶¶ 102-109.

32. In addition, using a parse tree to store portions of an incoming data

stream was obvious, as illustrated by prior art such as Kolawa. Use of a parse tree data

FireEye - Exhibit 1002 Page 14

 -15-

structure to represent and analyze computer code was well-known by 2004. Numerous

prior art references describe the use of parse trees for these purposes, including the

following:

• EX1008 (Kolawa) at 3:8-12 (“The parse tree is searched for a match

between such a node in the parse tree having a node type that matches

such a node type in the set of node types for the selected quality rule.”),

5:62-64 (“The quality of the source code 10 is checked on an individual

parse tree basis.”)

• EX1012 at 5:19-22 (“[I]nterceptor determines if the data retrieval request

corresponds to at least one of the rules of the security policy, and

identifies, via a parse tree, selectivity operators indicative of the

allowable data items to be retrieved.”)

• EX1013 at 5 (“The parser output is a full parse tree (a collection of

nodes, each representing a piece of the SQL such as an operator,

function, or value), which reflects all the SQL grammar.”) (“[T]he

firewall compares this parse tree with the rules you’ve devised.”)

• EX1014 at 5:3-5 (“[P]arser 20 processes the suspect string 26 and suspect

filed [sic] 27 on a line-by-line basis and generates a hierarchical parse

tree, as is known in the art.”)

FireEye - Exhibit 1002 Page 15

 -16-

• EX1015 at 14:25-28 (“Parser 296 identifies non-terminals and valid

strings and creates a parse tree.”)

• EX1016 at 13:34-36 (“[S]erver 102 converts the source-code instructions

of the submitted query into a parse tree.”)

B. Kolawa

33. U.S. Patent No. 5,860,011 (“Kolawa,” EX1008), titled “Method and

System for Automatically Checking Computer Source Code Quality Based on Rules,”

was filed on February 19, 1996. I understand that Kolawa is prior art under 35 U.S.C.

§ 102(b) because it issued on January 12, 1999, more than one year before the August

30, 2004 filing date of the ’408 patent.

34. Kolawa teaches a method and system for rule-based evaluation of source

code quality. EX1008 at 1:19-22. In particular, Kolawa discloses using a

“conventional” lexical analyzer that scans code, groups it into tokens, and organizes

the tokens using a parse tree:

The source code 10 is read as input to a lexical analyzer/parser 11 which

is conventional in the art. The lexical analyzer scans the source code 10

and groups the instructions into tokens. The parser performs the

hierarchical analysis which groups the tokens into grammatical phrases

that are represented by a parse tree 12.

FireEye - Exhibit 1002 Page 16

 -17-

Id. at 3:66-4:4; see also id. at Fig. 1. Kolawa then searches the parse tree to identify

problematic code based on a set of rules. See id. at 4:48-59. Kolawa reports rule

violations as error messages that describe the corresponding quality concern. Id. at

4:59-60. Kolawa discloses an embodiment that supports two different programming

languages and notes that support for additional languages is also possible. Id. at 3:53-

56.

C. Knuth

35. “On the Translation of Languages from Left to Right” (“Knuth,”

EX1009) was published in Information and Control in 1965. I understand that Knuth

is prior art under 35 U.S.C. § 102(b) because it was published more than one year

before the August 30, 2004 filing date of the ’408 patent.

36. Knuth is a foundational paper describing the parsing of programming

languages from left-to-right. EX1009 at Abstract. Knuth provides examples of

parsing code and building parse trees using a shift-and-reduce process. EX1009 at

618-625, Tables I and II. In one example, detailed in Table I, Knuth describes the

shift and reduce process: “’Shift’ means ‘perform the shift left operation’ mentioned

in step 2; ‘reduce p’ means ‘perform the transformation (21) with production p.’”

EX1009 at 620. Knuth also describes the basic parsing steps of recursively matching

FireEye - Exhibit 1002 Page 17

 -18-

patterns in strings and generating parent nodes attached to those patterns, thereby

generating a parse tree. EX1009 at 609-610.

D. Huang

37. U.S. Patent No. 6,968,539 (“Huang,” EX1010), titled “Methods and

Apparatus for a Web Application Processing System,” was filed on August 4, 2000. I

understand that Huang is prior art under 35 U.S.C. § 102(e) because it was filed before

the August 30, 2004 filing date of the ’408 patent.

38. Huang teaches a method and system for installing and processing web

applications written as web pages that have access to the full range of operating

system resource, including resources not typically accessible through a web browser.

EX1010 at Abstract, 5:7-20. Huang teaches that scripting languages such as

JavaScript are commonly used in web content such as HTML documents, and that

they can be provided as program code embedded in an HTML document. EX1010 at

8:57-64

39. Huang further teaches a method and system for parsing, for example, the

HTML code of the web applications to determine whether it contains references to

Uniform Resource Locators (URLs) of web objects that may not be allowed by the

web application’s security setting. Id. at 10:25-36. Huang teaches that if a violation is

FireEye - Exhibit 1002 Page 18

 -19-

detected, for example, if the HTML code includes a link to an URL that is not allowed

by the security setting, an exception is generated. EX1010 at 10:31-40.:

E. Walls

40. U.S. Patent No. 7,284,274 (“Walls,” EX1011), titled “System and

Method for Identifying and Eliminating Vulnerabilities in Computer Software

Applications,” was filed on January 18, 2002. I understand that Walls is prior art

under 35 U.S.C. § 102(e) because it was filed before the August 30, 2004 filing date

of the ’408 patent.

41. Walls, like Kolawa, teaches a methodology for identifying potential

source code vulnerabilities. EX1011 at Abstract. Walls, like Kolawa, generates a parse

tree of the code being analyzed and then searches the parse tree for matches that

indicate potential vulnerabilities. Id. at 7:25-31, 8:31-36. Walls uses a “pipelined”

approach to analyze code in stages, such that different parts of a single code stream

can be parsed and analyzed at the same time. Id. at 7:3-6. One advantage of this

technique is “the advantage of pipelining the process where multiple components can

be analyzed simultaneously.” Id. at 7:7-11.

F. Chandnani, Kolawa, Knuth, Huang, and Walls Are All Analogous

Art

42. I understand that to combine prior art references when evaluating

validity, those references must generally be “analogous.” To be analogous, the art

FireEye - Exhibit 1002 Page 19

 -20-

must be in the same field of endeavor as the ’408 patent and/or must be pertinent to

the problems to which the ’408 patent is directed.

43. This requirement is met by each of the references that are used in

combination in this declaration. Each reference is in the same field of endeavor as the

’408 patent—a field that includes rule-driven “content scanners” for analyzing

program code. See EX1001 at Title, Abstract.

44. Although the ’408 patent focuses on detecting potentially malicious code,

a POSA would have understood that scanning for malicious code involves the same or

similar techniques as scanning for related code quality and security issues. Most of the

written description in the ’408 patent focuses on the structure and function of the

patent’s rule-based scanner, rather than on what the scanner is trying to detect. See,

e.g., EX1001 at 6:14-16, Figs. 1-4.

45. The rule-based nature of the ’408 patent’s scanner means that the

underlying structure of the purported invention would not change based on what type

of code is being scanned. Instead, because rules can be established to search for

arbitrary patterns, the only change necessary to convert from scanning for exploits to

scanning for code vulnerabilities (or other code quality issues) would be the inclusion

of rules designed specifically to search for tokens and patterns of tokens indicative of

code quality problems. See EX1001 at 6:17-20 (“An ARB scanner system is

FireEye - Exhibit 1002 Page 20

 -21-

preferably designed as a generic architecture that is language independent, and is

customized for a specific language through use of a set of language-specific rules.”);

6:35-37 (“It may thus be appreciated that the present invention provides a flexible

content scanning method and system, which can be adapted to any language syntax.”).

46. Detection of exploits is closely intertwined with detection of code

weaknesses because malware often takes advantage of and attacks vulnerabilities and

other weaknesses in software code:

For an experienced hacker or rogue insider, manipulating software to this

end is made especially easy due to the variety of information and tools

available on-line. An attacker’s biggest challenge is simply finding the

vulnerabilities in the context of a large business application.

EX1017 at 1:43-48.

47. In some respects, the only difference between a code quality problem and

a vulnerability to a malicious virus is the intent of the person who creates or exploits

the problem. A quality problem, such as a pattern of code that creates a security hole,

might be innocently created by one programmer. That same security hole might also

be used by a hacker to propagate a virus.

48. Prior art references confirm the link between code quality and malicious

software attacks. For example, the ARCHER reference shows that coding errors “can

be exploited by malicious attackers to compromise a system.” EX1018 at 1. Similarly,

FireEye - Exhibit 1002 Page 21

 -22-

the Chess patent notes that “security vulnerabilities are subtle, logical errors that can

span thousands of lines of code” and that an “attacker’s biggest challenge is simply

finding the vulnerabilities in the context of a large business application.” EX1017 at

2:25-28, 1:46-48.

49. As discussed in more detail below, each reference combined in this

declaration is directed to scanning and analyzing programming code and to scanning

for potential exploits and/or other security concerns. For example, Chandnani is

directed to analyzing code to detect potential viruses. See id.; EX1007. Kolawa

discloses rule-based systems for detecting potential problems in source code. See

EX1008 at 2:34-36 (“automatically checking source code quality based on rules”).

Knuth is a foundational paper describing the parsing of programming languages from

left-to-right. EX1009 at Abstract. Huang is directed to analyzing the code of web

application to ensure, among other things, that no security rules are violated. See

EX1010. Walls scans for security vulnerabilities in programming code. See EX1011.

50. Chandnani is directed to rule-driven code scanning. Chandnani uses the

term “data driven” in its title and through its specification. See EX1007. A person of

ordinary skill in the art would have understood “data driven” to be synonymous with

“rule-based,” not least because Chandnani equates the two. Id. at [0069] (“a rule-

based approach may be used for script language detection”). Like the ’408 patent,

FireEye - Exhibit 1002 Page 22

 -23-

Chandnani can search for different patterns by modifying the data that defines those

patterns. Id. at [0055]. Also like the ’408 patent, Chandnani parses suspect code into

tokens and can detect token patterns that correspond to potential exploits even if the

byte-for-byte coding of those tokens differs from one iteration to another.

51. Kolawa is also directed to rule-driven code scanning. Kolawa’s

disclosure focuses on rule-based systems for analyzing code to identify potential

problems in the code. EX1008 at 2:34-37 (“automatically checking source code

quality based on rules”), Title (“Method and System for Automatically Checking

Computer Source Code Quality Based on Rules”). Kolawa also describes its systems

as a scanner. Id. at 3:66-4:2. Although Kolawa’s rule-based scanner is intended to

detect “program errors and bugs of all kinds” (as opposed to the “potential exploits”

described in the ’408 patent), both references detect potentially harmful patterns in

code, notwithstanding the intent of the code’s author. Id. at 1:26-29.

52. A person of ordinary skill in the art would understand that Kolawa is

directed to the same general problem as the ’408 patent. For example, the ’408 patent

states that a goal of the purported invention was the ability to perform a “thorough

diagnosis” of code in order to recognize patterns of problematic code, even where that

code might be written in different ways. EX1001 at 1:42-55. Similarly, Kolawa

discloses the use of rules to detect patterns in code that might not be apparent when

FireEye - Exhibit 1002 Page 23

 -24-

examining only the syntax of that code. See EX1008 at 2:35-43, 1:35-37 (noting that

more complex, quality-related concerns are amenable to being expressed as rules).

Kolawa describes how rules that indicate code quality problems operate on patterns of

nodes in a parse tree: “Each rule operates on nodes in the parse tree 12 to identify a

pattern of nodes unique to the particular rule.” Id. at 5:48-49.

53. Knuth is analogous art to the ’408 patent. Knuth is a foundational paper

describing the parsing of programming languages from left-to-right. EX1009 at

Abstract. For example, Knuth provides examples of parsing code and building parse

trees using a shift-and-reduce process. EX1009 at 618-625, Tables I and II. Knuth

also describes the basic parsing steps of recursively matching patterns in strings and

generating parent nodes attached to those patterns, thereby generating a parse tree.

EX1009 at 609-610.

54. Like the ’408 patent, Huang is directed to, among other things, parsing

programming code, such as JavaScript and HTML, to detect potential exploits based

on security settings. EX1010 at 10:25-36. Huang discloses the use of a web manager

that executes a web application by first reading the language code of the web pages

and determining the language type of the code. Id. at 9:39-46.

55. Walls is analogous art to the ’408 patent. Walls is directed to detecting

quality problems in programming code. EX1011 at 5:19-21 (“[A] need exists for

FireEye - Exhibit 1002 Page 24

 -25-

certification processes that certify the actual quality of the software.”). And Walls

expressly describes the close relationship between software quality and malware

attacks. Id. at 1:48-51 (malicious attacks “are often made possibly by flaws in the

software”). Walls also teaches data (rule) driven code analysis through the use of a

“knowledge database [that] stores information regarding the various fault classes to be

scanned for.” Id. at 7:31-33.

VI. LEVEL OF ORDINARY SKILL AND RELEVANT TIME

56. I have been advised that “a person of ordinary skill in the art” is a

hypothetical person to whom one could assign a routine task with reasonable

confidence that the task would be successfully carried out. I have been advised that

the relevant timeframe is prior to the relevant priority date, which I understand is

August 30, 2004.

57. The relevant technology field for the ’408 patent is security programs,

including content scanners for program code. By virtue of my education, experience,

and training, I am familiar with the level of skill in the art of the ’408 patent prior to

August 30, 2004.

58. In my opinion, a person of ordinary skill in the relevant field prior to

August 30, 2004, would include someone who had, through education or practical

FireEye - Exhibit 1002 Page 25

 -26-

experience, the equivalent of a bachelor’s degree in computer science or a related field

and at least an additional three to four years of work in the field of computer security.

59. A person of ordinary skill in the relevant field would have been aware of

and would have been working with trends from the early-to-mid of the 1990s through

the early 2000s, including trends towards scanning and analyzing code as it is received

over a network and the incorporation of different security features within malware and

vulnerability detection platforms.

60. I understand that the person of ordinary skill in the art is presumed to be

aware of the pertinent art.

VII. CLAIM CONSTRUCTION

61. I have been advised that, in the present proceeding, the claims of the ’408

patent are to be given their broadest reasonable interpretation in view of the

specification. I also understand that, at the same time, absent some reason to the

contrary, claim terms are typically given their ordinary and accustomed meaning as

would be understood by one of ordinary skill in the art. I have followed these

principles in my analysis throughout this declaration. I discuss some terms below and

what I understand as constructions of these terms.

“parse tree”

62. I understand that in an earlier instituted inter partes reviews of the ’408

patent, the term “parse tree” has been construed as “a hierarchical structure of

FireEye - Exhibit 1002 Page 26

 -27-

interconnected nodes built from scanned content.” This construction corresponds with

my understanding of the meaning of this claim term, and accordingly I adopt this

interpretation of the term for the purposes of my analysis.

“dynamically building . . . while said receiving receives the incoming

stream”

63. I understand that in an earlier instituted inter partes reviews of the ’408

patent, the term “dynamically building . . . while said receiving receives the incoming

stream” has been construed as “a time period for dynamically building overlaps with a

time period during which the incoming stream is being received.” This construction

corresponds with my understanding of the meaning of this claim term, and

accordingly I adopt this interpretation of the term for the purposes of my analysis.

“dynamically detecting . . . while said dynamically building builds

the parse tree”

64. I understand that in an earlier instituted inter partes reviews of the ’408

patent, the term “dynamically detecting . . . while said dynamically building builds the

parse tree” has been construed as “a time period for dynamically detection overlap

with a time period during which the parse tree is built.” This construction corresponds

with my understanding of the meaning of this claim term, and accordingly I adopt this

interpretation of the term for the purposes of my analysis.

“instantiating . . . a scanner for the specific programming language”

FireEye - Exhibit 1002 Page 27

 -28-

65. I understand that in an earlier instituted inter partes reviews of the ’408

patent, the term “instantiating . . . a scanner for the specific programming language”

has been construed as “substituting specific data, instructions, or both into a generic

program unit to make it usable for scanning the specific programming language.” This

construction corresponds with my understanding of the meaning of this claim term,

and accordingly I adopt this interpretation of the term for the purposes of my analysis.

VIII. GROUND 1: Claims 2, 11, 24-28, and 30-34 are rendered obvious by

Chandnani in view of Kolawa and Knuth

66. As explained in detail below, it is my opinion that each and every

element of claims 2, 11, 24-28, and 30-34 of the ’408 patent can be found in the prior

art, including the references identified below.

67. Each section of claims 2, 11, 24-28, and 30-34 of the ’408 patent is

presented below in bold text followed by my analysis of that part of the claim. The

analysis below identifies exemplary disclosure of the cited references relative to the

corresponding claim elements, and it is not meant to be exclusive.

68. Claim 2 depends from claim 1 and claim 11 depends from claim 9, so I

begin my analyses with claims 1 and 9.

69. Chandnani describes computer based systems and methods for detecting

polymorphic script language viruses using data-driven lexical analysis. EX1007 at

[0002]. For example, in Chandnani the “data detection engine” scans incoming code

FireEye - Exhibit 1002 Page 28

 -29-

for polymorphic viruses by searching for patterns that indicate the presence of

potentially malicious programs. EX1007 at [0014]-[0020], [0057]-[0065], FIGS. 1 and

2.

70. Chandnani further explains that the system receives the code, in the form

of a data stream, over a network, stating that “a subject file may be downloaded to the

computer system or computer through network 78” and “the script language virus

detection methodologies may be performed on a file (or a data stream received by the

computer through a network) before the file is stored/copied/executed/opened on the

computer.” EX1007 at Abstract, [0032]-[0034], [0067]. Annotated Figure 2 is a

graphical representation of the processes described in Chandnani and shows where the

data detection engine 53, receives the data stream.

FireEye - Exhibit 1002 Page 29

 -30-

EX1007 at Figure 2, Annotated

71. Chandnani also discloses that the data detection engine determines the

specific programing language in which the code was written by using language check

data stored in the language description database. EX1007 at [0034], [0062], Figure 2.

Chandnani then uses language definition data to dynamically generate a stream of

tokens from the code in the data stream. EX1007 at [0020], [0061], Figure 2.

72. Chandnani goes on to describe how the detection engine dynamically

analyzes the stream of tokens for patterns that indicate that the code contains virus or

FireEye - Exhibit 1002 Page 30

 -31-

other malicious actions. EX1007 at [0065]. Chandnani dynamically analyzes the

steam of tokens by comparing the patterns of tokens in the data stream to viral code

detection data, which can include samples of viral code converted into token patterns

stored in a Code Detection Database. EX1007 at [0065], Figure 2. If the token

patterns created from the data stream match a token pattern in the viral detection data,

then Chandnani signals that viral code was detected. EX1007 at [0065], Figure 2.

73. Although Chandnani may not expressly describe how tokens are parsed

and analyzed, Chandnani suggests the use of a parse tree for storing tokens, stating

that language description data includes rules “sufficient for the detection engine 53 to

lexically analyze and parse a data stream,” and the parsing process includes “an output

token which indicates that the corresponding pattern has been matched.” EX1007 at

[0039]-[0046].

74. Furthermore, Kolawa describes how tokens are parsed and analyzed to

create a parse tree. Kolawa teaches a method and system for rule-based evaluation of

source code quality. EX1008 at 1:19-22. In particular, Kolawa discloses using a

“conventional” lexical analyzer that scans code, groups it into tokens, and organizes

the tokens using a parse tree:

The source code 10 is read as input to a lexical analyzer/parser 11 which

is conventional in the art. The lexical analyzer scans the source code 10

and groups the instructions into tokens. The parser performs the

FireEye - Exhibit 1002 Page 31

 -32-

hierarchical analysis which groups the tokens into grammatical phrases

that are represented by a parse tree 12.

EX1008 at 3:66-4:4; see also EX1008 at Fig. 1. Kolawa describes how the parse tree

is searched to identify problematic code based on a set of rules. EX1008 at 4:48-59.

Kolawa reports rule violations as error messages that describe the corresponding

quality concern. EX1008 at 4:59-60.

Claim 1, preamble: A computer processor-based multi-lingual

method for scanning incoming program code, comprising:

75. In my opinion, Chandnani discloses a method for scanning incoming

program code. For example, Chandnani states that “[t]he data stream corresponding

to a file to scan is tokenized by lexical analysis. The data stream is fed to a lexical

analyzer (not shown) in the detection engine which generates a stream of tokens.”

EX1007 at [0062]. Chanandnai goes on to state that “[t]he detection engine lexically

analyzes a data stream using the language description data and the detection data to

detect the viral code.” EX1007 at [0016].

76. Chandnani also discloses that the method is multi-lingual. For example,

Chandnani teaches that “language description data corresponding to one or more

script languages is prepared by script language processor 51” and that the “the

definitions of target script languages may include language definition rules and

possibly language check rules.” EX1007 at [0032], [0035]. In my opinion, a person of

FireEye - Exhibit 1002 Page 32

 -33-

skill in the art would understand these statements to clearly describe a system and

method that is multi-lingual.

77. Chandnani also discloses that the method is computer processor-based,

stating that “the computer system 70 comprises a processor 71.” Moreover, even

without such a particular statement, a person of skill in the art would understand that a

system or method for detection of polymorphic script language viruses by data driven

lexical analysis includes a processor for carrying out the task.

Claim 1.1: receiving, by a computer, an incoming stream of program

code

78. In my opinion, Chandnani discloses receiving, by a computer, an

incoming stream of program code. For example, Chandnani describes how a

potentially infected file is received as a data stream via a network. Chandnani states

that it “provides tools (in the form of apparatus, systems and methods) for detecting

script language viruses by performing a lexical analysis of a data stream on a

computing device/system” and that the “subject file may be . . . received via a

network, such as the Internet.” EX1007 at [0029].

Claim 1.2: determining, by the computer, any specific one of a

plurality of programming languages in which the incoming stream is

written

FireEye - Exhibit 1002 Page 33

 -34-

79. In my opinion, Chandnani discloses determining, by the computer, any

specific one of a plurality of programming languages in which the incoming stream is

written. For example, Chandnani describes how the target script language of the data

stream is determined, stating that “[b]efore the analysis is commenced, target script

languages, including their constituent parts, which may be used by the script language

viruses, are identified/defined.” EX1007 at [0034], see also EX1007 at [0062].

Claim 1.3: instantiating, by the computer, a scanner for the

specific programming language, in response to said

determining

80. In my opinion, Chandnani discloses instantiating, by the computer, a

scanner for the specific programming language, in response to said determining. As

discussed above, these claim terms are interpreted to mean “substituting specific data,

instructions, or both, by the computer, into a generic program unit to make it usable

for scanning the specific programming language, in response to said determining.” In

particular, Chandnani describes how the data stream is analyzed to select which

language the data stream is written in, stating that, “[t]he data stream is analyzed using

the language check data to select the language definition data to use for the detection

process.” EX1007 at [0062]. Then the language definition data to use for the

detection process, including language definition rules, are selected and used to

instantiate the detection engine for the specific language. Chandnani describes

FireEye - Exhibit 1002 Page 34

 -35-

language definition rules as “rules for a target script language describe the constructs

of the target script language and any relations between the constructs.” EX1007 at

[0035]. In other words, the language definition data and rules are specific data and

instructions that define how to interpret the target language when it is scanned by the

detection engine.

81. In my opinion, the detection engine is a generic detection engine that

becomes suitable for scanning a particular programming language after the language

definition data is supplied to the lexical analyzer within the detection engine. The

lexical analyzer is contained within the detection engine and is the part of the system

that scans the data stream and generates a stream of tokens. Chandnani [0062]. This

part of the system becomes usable for scanning a specific programming language once

the “the selected language definition data and the data stream are supplied to the

lexical analyzer.” EX1007 at [0062].

Claim 1.4: the scanner comprising parser rules and analyzer

rules for the specific programming language

82. As I explain in more detail below, in my opinion, Chandnani discloses

parser rules and analyzer rules for the specific programming language of the incoming

data stream. Chandnani’s scanner, the detection engine, includes “language definition

rules and the language check rules (if defined) sufficient for the detection engine 53 to

lexically analyze and parse a data stream.” EX1007 at [0046]. Chandnani’s detection

FireEye - Exhibit 1002 Page 35

 -36-

engine also includes “detection data to detect viral code.” Chandnani describes how

the detection data is built using samples of viral code and that the “detection data may

include multiple layers of tests. Each of the tests may be specified as a token pattern

match methodology.” EX1007 at [0015], [0051].

Claim 1.5: wherein the parser rules define certain patterns in

terms of tokens, tokens being lexical constructs for the specific

programming language

83. In my opinion, Chandnani discloses wherein the parser rules define

certain patterns in terms of tokens, tokens being lexical constructs for the specific

programming language. As discussed below, in my opinion, Chandnani’s “language

definition rules” supplied to the detection engine are parser rules that define certain

patterns in terms of tokens, tokens being lexical constructs for the specific

programming language.

84. Chandnani’s language definition rules define tokens that are lexical

constructs that form the vocabulary of the programming language of the incoming

data stream. For example, Chandnani states that “[l]anguage definition rules for a

target script language describe the constructs of the target script language” and that

they are “sufficient for the detection engine 53 to lexically analyze and parse a data

stream.” EX1007 at [0035], [0046].

FireEye - Exhibit 1002 Page 36

 -37-

85. Chandnani explains that the language definition rules define lexical

constructs in terms of tokens: “[t]he data stream may be converted to a stream of

tokens using lexical analysis. The tokens may correspond to respective language

constructs.” EX1007 at [0020]. Chandnani goes on to state that the rules also define

the “relations between the constructs.” EX1007 at [0035]. The language definition

rules’ combination of rules defining both the lexical constructs, and defining the

relationships between the constructs, shows that Chandnani discloses parser rules that

define patterns in the data stream in terms of tokens, the tokens being lexical

constructs for the specific programming language.

Claim 1.6: wherein the analyzer rules identify certain

combinations of tokens and patterns as being indicators of

potential exploits, exploits being portions of program code that

are malicious

86. In my opinion, Chandnani discloses the analyzer rules identify certain

combinations of tokens and patterns as being indicators of potential exploits, exploits

being portions of program code that are malicious. As discussed below, in my

opinion, Chandnani’s “viral code detection data” supplied to the detection engine are

analyzer rules identify certain combinations of tokens and patterns as being indicators

of potential exploits, exploits being portions of program code that are malicious. In

particular, Chandnani’s viral code detection data is created using a detection regimen

FireEye - Exhibit 1002 Page 37

 -38-

that includes “layers of token pattern matching and/or CRC signature checking.”

EX1007 at [0050], [0016]; see also EX1007 at Fig. 3 (“Prepare detection data for viral

code”), [0069] (describing Chandnani’s detection methodology as “a rule-based

approach”). Chandnani describes how the detection data is built using samples of

viral code and that the “detection data may include multiple layers of tests. Each of the

tests may be specified as a token pattern match methodology.” EX1007 at [0015],

[0051]. The “token pattern match methodology” described in Chandnani define rules

for identifying characteristics of potentially malicious program code. See id. at [0051].

87. Chandnani’s detection engine uses these pattern-matching rules to

identify potential exploits, stating that “[t]he detection engine lexically analyzes a data

stream using . . . the detection data to detect the viral code.” EX1007 at [0016].

Chandnani goes on to describe, in detail, how the Code Detection Database and its

stored detection data are used in conjunction with the Detection Engine to detect

malicious or viral code. EX1007 at Fig. 2, [0065].

Claim 1.7: identifying, by the computer, individual tokens

within the incoming stream

88. In my opinion, Chandnani discloses identifying, by the computer,

individual tokens within the incoming stream. For example, Chandnani states that

“[t]he data stream corresponding to a file to scan is tokenized by lexical analysis. The

FireEye - Exhibit 1002 Page 38

 -39-

data stream is fed to a lexical analyzer (not shown) in the detection engine which

generates a stream of tokens.” EX1007 at [0062].

Claim 1.8: dynamically building, by the computer while said

receiving receives the incoming stream, a parse tree whose

nodes represent tokens and patterns in accordance with the

parser rules

89. In my opinion, Chandnani in view of Kolawa discloses dynamically

building, by the computer while said receiving receives the incoming stream, a parse

tree whose nodes represent tokens and patterns in accordance with the parser rules.

90. As discussed above, a “parse tree” is interpreted to mean a “hierarchical

structure of interconnected nodes built from scanned content.” As also discussed

above, “dynamically building . . . while said receiving receives the incoming stream,”

is interpreted to mean “a time period for building overlaps with a time period during

which the incoming stream is being received.” Thus, claim 1, element 8 is

“dynamically building, by the computer, a parse tree whose nodes represent tokens

and patterns in accordance with parser rules, a time period for dynamically building

overlapping with a time period during which the incoming stream is being received.”

91. For clarity and ease of discussion, I have separated my discussion of this

claim element into two parts: discussion related to building the parse tree and

discussion related to the dynamically building.

FireEye - Exhibit 1002 Page 39

 -40-

Parse Trees

92. Chandnani teaches parsing a data stream into tokens. EX1007 at 3:65-67

(“The data stream may be converted to a stream of tokens using lexical analysis.”),

6:10-23 (storing tokens created as a result of parsing an IF-THEN statement). As

discussed above with respect to the state of the art at the time of the filing of the ’408

patent, parsing a data stream in the manner taught by Chandnani included the building

of a parse tree. See above § V.A. Parsing code into a parse tree was common in the art,

not only at the time of filing the ’408 patent, but for decades before that. See, e.g.,

EX1009. This is the standard process by which a person of skill in the art parses

program code. See above § V.A.

93. Chandnani’s disclosure of parsing a stream into tokens and then storing

those tokens suggests and implicitly teaches using a parse tree, because a person of

skill in the art understood that the obvious place to organize those tokens was in a

parse tree, including the type of parse tree taught by Kolawa and other prior art

references. There are many reasons for concluding that Chandnani’s disclosure of

parsing a data stream into tokens includes teaching the use of parse tree.

94. First, Chandnani expressly describes identifying expressions in a

programming language based on grammar rules for that language, and then storing

FireEye - Exhibit 1002 Page 40

 -41-

those expressions. For example, Chandnani describes the use of a grammar rule for

parsing an IF-THEN conditional statement:

(1) search for the keyword “IF”;

(2) search for the first instance of the keyword “THEN” after the instance

of “IF” found in (1);

(3) store the expression between the keyword “IF” found in (1) and the

keyword “THEN” found in (2), as an expression to be parsed;

(4) search for a statement terminator after the keyword “THEN” found in

(2); and

(5) store the expression between the keyword “THEN” found in (2) and

the statement terminator found in (4), as an expression to be parsed.”

EX1007 at [0040] – [0045].

95. A person of skill in the art would have understood that if an expression,

such as the IF-THEN statement described above, were parsed, the resulting tokens

would be organized into a parse tree. As discussed above, parse trees are the data

structure used to describe the relationships between programming expressions that are

parsed using grammar rules as evidenced by numerous references. See EX1008,

EX1012, EX1014, EX1015, EX1016, EX1017, EX1019.

96. Second, based on Chandnani’s disclosure of a lexical analyzer that parses

code into tokens, a person of skill in the art would have known that the tokens had to

be organized somehow. Recognizing that an individual token could form part of a

FireEye - Exhibit 1002 Page 41

 -42-

larger grammatical construct, the person of skill in the art would have known that the

Chandnani system necessarily had to organize the already identified tokens while

awaiting and receiving the next tokens in the data stream. In the example discussed in

the previous section, Chandnani’s system had to place the “IF” expression in a data

structure while waiting for the “THEN” expression that followed. Computer

languages in use at the times Chandnani and the ’408 patent were filed (2001 and

2004, respectively) include constructs that can span hundreds of intermediate

constructs between tokens that signal the beginning and end of a particular expression.

Because of this embedding of constructs in other constructs, whatever data structure

was selected for use in Chandnani’s system had to be able to represent such a

hierarchy of tokens. A parse tree would have been perfect for this type of hierarchy.

97. A parse tree also would have been perfect for accomplishing the types of

operations on tokens and token patterns that Chandnani describes. For example,

Chandnani describes searching tokens to find patterns. EX1007 at [0052] – [0054].

This pattern-match search would have required looking for structural as well as textual

patterns (for example, patterns that not only matched the searched-for pattern

character by character, but also matched in a meaningful way, such as a pattern that

corresponds to the sub-structure of a related pattern). See EX1007 at [0052] – [0054],

[0009] – [0013]. Because parse trees depict both tokens and their structural

FireEye - Exhibit 1002 Page 42

 -43-

relationship to one another, parse trees enable the type of searching described in both

Chandnani and the ’408 patent.

98. Furthermore, the tools a person of skill in the art would have used to

build the Chandnani system would themselves have used parse trees. A person of skill

in the art typically constructs software systems like Chandnani’s system using existing

components and programming patterns as building blocks. One such component

would have been the lexical analyzer/parser taught by Chandnani. A person of skill in

the art likely would have used an off-the-shelf lexical analyzer/parser, particularly

given that they were well known and often free or inexpensive to obtain. As early as

sophomore level computer science classes, students are taught that such parsers

generally organized tokens and token patterns in a parse tree, which also confirms the

obviousness of using a parse tree to organize the tokens generated by Chandnani’s

system. See above § V.A; see also EX1020 at 6 (“Parse tree are particularly easy to

construct.”).

99. A person of skill in the art, in view of Chandnani’s disclosure of parsing

a data stream into tokens that represent programming constructs would have chosen

the parse tree data structure for organizing the tokens. A parse tree would have also

been my first choice and in my opinion, the ideal data structure for this purpose. Many

other content-based security scanners, such as those taught by Deb and Scandura,

FireEye - Exhibit 1002 Page 43

 -44-

referred to the use of LEX/YACC and other parsers to perform grammar-based

parsing that stored tokens in a parse tree. EX1015 at 10:4-29 (discussing LEX/YACC

tools), 3:33-37 (“The method initiates with receiving a message. Then, a grammar

associated with the message is identified. Next, the message is converted into a token

stream. Then, a parse tree defined by tokens of the token stream is created.”), 14:25-

40; EX1021 at 2:9-17; EX1022 at 6.

100. In addition, using a parse tree with the Chandnani system would have

been obvious because doing so would have been nothing more than the use of a

known technique to improve a similar system. To the extent it is argued that

Chandnani’s system did not use a parse tree, use of a parse tree would have improved

the system for the reasons already discussed. There were comparable prior art systems

that explicitly used a parse tree data structure (such as Kolawa), and a person of skill

in the art could have incorporated a parse tree data structure as a storage technique to

improve the Chandnani system in the same way the same technique was used in the

Kolawa system.

101. Kolawa taught that parsing groups “tokens into grammatical phrases that

are represented by a parse tree” was a technique that was “conventional in the art.”

EX1008 at 3:65-4:5, Figs. 2, 3. A person of skill in the art would immediately

understand that grouping grammatical phrases that are represented by a parse tree, is a

FireEye - Exhibit 1002 Page 44

 -45-

description of the process of building a parse tree. The Kolawa and Chandnani

systems were comparable in that both were directed to analyzing code using rule-

based pattern matching. A person of skill in the art could have used known parse tree

techniques in Chandnani in the same way they were used in Kolawa. Parsers like

LEX/YACC were designed to receive code streams as input, and simply using the

code stream that already existed in Chandnani as an input to such parsers would have

predictably resulted in outputting a parse-tree representation of the incoming code.

Most commercially available parsing software available in 2004 stored tokens and

patterns in parse trees by default. EX1015 at 10:4-29 (discussing LEX/YACC tools);

EX1022 at 6. Numerous prior art references describe the use of parse trees for code

analysis. See above § V.A.

102. As explained above, using a parse tree in combination with Chandnani

would have been obvious to a person of skill in the art, at least because Chandnani

suggests such a data structure. Similarly, it would have been obvious to a person of

skill in the art to combine Chandnani with the parse tree teachings of other prior art

references, such as Kolawa.

103. Combining Kolawa’s parse-tree teachings with Chandnani would have

further been obvious as a combination of prior art elements according to known

methods to yield predictable results. Chandnani and Kolawa together include all

FireEye - Exhibit 1002 Page 45

 -46-

elements of claim 1, including a parse tree, and the only difference between the

purported invention of claim 1 in the ’408 patent and the prior art was, at most, the

lack of an express disclosure of the combination in a single reference. As discussed

below, a person of skill in the art would have combined a parse tree with the other

elements in the ’408 patent claims using known methods, and each element would

have performed the same function in the resulting combination as it performed

separately. The resulting combination would have been predictable to a person of skill

in the art because parse trees had been used successfully in numerous similar

applications for decades, as explained in Section V.A.

104. Combining Kolawa’s parse-tree teachings with another system like

Chandnani would have been simple and predictable, because readily available parser

systems were available as standalone components designed to be integrated into other

systems. For example, the YACC parser that I and my undergraduate students often

use had programmatic hooks to allow for easy integration of the YACC tool with

other code. See EX1020 at 1-2. When combining Kolawa with Chandnani, each

element performs the same function as it does separately. The tokenizer and parser of

Chandnani’s detection engine accepts the character stream within the data stream as

input and continues to create tokens and patterns of tokens from that input and the

FireEye - Exhibit 1002 Page 46

 -47-

parse tree of Kolawa is the data structure in which the tokens and patterns of tokens

representing code are organized. EX1007 at [0046]; EX1008 at 3:66-4:13.

105. Because parse trees and tokenizers/parsers were often used together, a

person of skill in the art had known methods for combining the two and would have

immediately recognized and predicted the resulting combination. A person of skill in

the art knew that the most typical data structure for storing such data was a parse tree

(that is, an abstract syntax tree). See EX1016 at 13:34-36 (“[Q]uery server 102

converts the sourcecode instructions of the submitted query into a parse tree (also

known as a syntax tree).”); see also EX1012 at 14:4-10 (“[T]he parse tree 58 is a

typical processing construct for implementing SQL based access, as is known to those

of skill in the art. Accordingly, the exemplary implementation operates on the parse

tree 158 representation, adding nodes”).

106. A person of skill in the art would have predictably and successfully used

Kolawa’s parse tree in combination with Chandnani because Kolawa taught the use of

a parse tree for the same purpose for which Chandnani identified and stored tokens: to

group tokens and search for patterns of tokens that represent problematic software

code. Kolawa explains how it groups tokens in a parse tree:

The source code 10 is read as input to a lexical analyzer/parser 11 which

is conventional in the art. The lexical analyzer scans the source code 10

and groups the instructions into tokens. The parser performs the

FireEye - Exhibit 1002 Page 47

 -48-

hierarchical analysis which groups the tokens into grammatical phrases

that are represented by a parse tree 12.

EX1008 at 3:66-4:4; see also EX1008 at Figs. 1, 3.

107. The Kolawa parse tree enabled the software to easily identify patterns of

nodes, which is also the purpose of Chandnani’s detection engine:

Each rule operates on nodes in the parse tree 12 to identify a pattern of

nodes unique to the particular rule. Examples of source code 10 written

in the C++ programming language and corresponding parse trees 12 (or

parse tree segments) for each rule are respectively set forth in Appendices

A and B.

EX1008 at 5:48-52; see also Fig. 2.

108. A person of skill in the art would have been motivated to combine

Chandnani with the parse-tree teachings of Kolawa (and other prior art references) for

a number of reasons. As a general matter, storing code in tree form makes it easier to

manipulate relevant information in that code than it would be if that code were stored

only in text form. EX1021 at 3:28-30. Code stored in the tree can be easily moved,

combined, and reorganized by manipulation of pointers that connect the tree nodes.

Trees are also useful because other ways of looking at code often fail to adequately

address hierarchical structural characteristics of the code or to enable the detection of

complex structure problems in the code—a key requirement for virus detection.

EX1021 at 1:58-63. Tree-based representations “reduce[] the effort required to create

FireEye - Exhibit 1002 Page 48

 -49-

systems for reverse engineering source code,” and virus scanning involves reverse

engineering the code to understand what it does. EX1021. at Abstract.

109. Using parse trees also would have reduced the costs of building a virus-

detection program because available, open-source parsing utilities already used parse

trees. See, e.g., EX1020 at 5 (“Parse trees are particularly easy to construct.”). These

publicly available software utilities had the additional benefit of already having been

tested by the many users who relied on them. Such utilities were available for a wide

variety of languages, in part because some of the parsers were used to write the

compilers and interpreters for those languages (enabling the general use of the

languages in the first place).

Dynamically building

110. In my opinion, Chandnani discloses a time period for building overlaps

with a time period during which the incoming stream is being received. For example,

Chandnani teaches parsing a data stream in which parsing operations (such as

tokenizing and storing code) occur during a time period that overlaps with the time

period during which the data stream is received. This is consistent with the

interpretation of dynamically building discussed above in Section VII.

111. In particular, Chandnani generates tokens by examining each character in

the data stream, checking for a match against a state transition table and, depending on

FireEye - Exhibit 1002 Page 49

 -50-

the result of that comparison, outputting a token, all before moving on to the next

character in the data stream. For example, Chandnani states that the data stream

includes characters, letters, symbols, etc to be scanned. EX1007 at [0057]. Chandnani

then describes how it processes the characters in the data steam into tokens, character

by character:

The lexical analyzer . . . retrieves the next character from the data stream

and checks if the character matches any of the entries in a current state

transition table retrieved from the language definition data corresponding

to the current state. If there is a match, the lexical analyzer moves to the

next state of the matched transition entry. If there is no match between

the character being processed and the state transition table entries for the

current state, the lexical analyzer returns to static state 0 and retrieves the

next character from the data stream. The next state of the matched

transition entry may be a final state with an output token, as described

above. When a final state, which has an output token rather than a next

state, is encountered, a pattern has been matched and the token is output.

EX1007 at [0063]. The above quote from Chandnani precisely describes a dynamic

process of parsing a data stream into tokens as the data stream is being received

because the characters in the data stream are retrieved from the data stream one at a

time and processed into tokens.

FireEye - Exhibit 1002 Page 50

 -51-

112. In addition, most parsers available in 2004 worked in a similar fashion,

by receiving a character, making a determination of whether or not to create a token,

and then receiving another character. See, e.g., EX1020 at 6.

113. Furthermore, Chandnani and Kolawa teach parsing a data stream into a

parse tree before the entire data stream is received by the computer. For example,

Chandnani’s “virus detection methodologies may be performed on a . . . data stream

received by the computer through a network[] before the file is

stored/copied/executed/opened on the computer.” EX1007 at [0067].

114. Thus, the Chandnani and Kolawa combination teaches the “dynamically

building” limitation. See EX1007 at [0067].

Claim 1.9: dynamically detecting, by the computer while said

dynamically building builds the parse tree, combinations of

nodes in the parse tree which are indicators of potential

exploits, based on the analyzer rules

115. In my opinion, Chandnani discloses dynamically detecting, by the

computer while said dynamically building builds the parse tree, combinations of

nodes in the parse tree which are indicators of potential exploits, based on the analyzer

rules. As discussed above in Section VII, “dynamically detecting . . . while said

dynamically building builds the parse tree,” means “a time period for detecting

overlaps with a time period during which the parse tree is being built.” Thus, claim

FireEye - Exhibit 1002 Page 51

 -52-

element 1.9 is “dynamically detecting, by the computer, combinations of nodes in the

parse tree which are indicators of potential exploits, based on the analyzer rules, a

time period for dynamically detecting overlapping with a time period during which the

parse tree is being built.”

116. For clarity and ease of discussion, I have separated my discussion of this

claim element into two parts: discussion related to detecting and discussion related to

the time period for detecting overlapping with a time period for building.

Detecting combinations of nodes in the parse tree which are

indicators of potential exploits.

117. In my opinion Chandnani discloses identifying combinations of tokens

that indicate potential exploits, based on the analyzer rules. For example, Chandnani

explains that “[t]he detection data processor prepares detection data for viral code

corresponding to a script language virus. The detection engine lexically analyzes a

data stream using the language description data and the detection data to detect the

viral code.” EX1007 at [0016]. As explained above with respect to claim 1, element

6, the detection data for viral code includes tests that may be specified as a token

pattern match for viral code. EX1007 at [0050]-[0051]. As I also explained above, a

person of skill in the art, based on the disclosures of Chandnani and Kolawa, would

parse the data stream into a parse tree. Thus, during the detection process, patterns in

the stream of tokens in the parse tree are compared to the patterns of the detection data

FireEye - Exhibit 1002 Page 52

 -53-

for viral code, if there is a match, then viral code was detected. EX1007 at [0062],

[0065].

118. Kolawa also discloses that its patterns of tokens, organized in the form a

parse tree (EX1008 at 3:66-4:4), are compared with patterns of nodes representing

code that may have quality concerns, such as being easily exploitable. EX1008 at

4:52-56.

119. Moreover, even searches for individual nodes in a system built in view of

Chandnani and Kolawa are pattern-based searches, because some of the nodes

represent recognized patterns of multiple tokens. Therefore, searches for these nodes

are also searches for the patterns these nodes represent. In Chandnani, for example,

tokens are generated “when the pattern represented by the grammar rule is matched,”

and one such token represents a coding pattern called an “IF THEN” pattern. EX1007

at [0039]-[0045]. In Kolawa, rules that detect violations “can be the existence of a

particular type of node, but can also include a particular sequence or ordering of node

types.” EX1008 at 8:11-12.

Dynamically Detecting

120. In my opinion, Chandnani discloses a time period for detecting overlaps

with a time period during which the parse tree is being built. As discussed above with

respect to claim 1, element 8, Chandnani in view of Kolawa teaches building a parse

FireEye - Exhibit 1002 Page 53

 -54-

tree. In particular, the combination works on a data stream of code, parsing it, and

then outputting a stream of tokens as a parse tree. See analysis with respect to claim

1, element 8, and EX1007 at [0062].

121. Chandnani then goes on to describe how the detection engine operates on

the stream of tokens to check from viral code. In particular, the data stream, having

been converted into a stream of tokens, is processed using the detection data to check

for viral code. EX1007 at [0060], [0062], [0063]. After each token is output, the

patterns in the token stream are checked against the patterns in the detection data,

stating that “a pattern match or CRC check on the generated token stream is

attempted.” EX1007 at [0064]; see also EX1007 at [0065], Fig. 6.

122. Thus, Chandnani teaches that the detection stage operates on a stream of

tokens in the same way the tokenizer operates on the incoming stream of computer

code. See EX1007 at [0065] (“If the check is a pattern match, the token stream is

analyzed lexically using the pattern match detection data and language description

data (step 44).”). Thus, the tokenizer, which identifies and organizes tokens, and the

analyzer, which searches for tokens and patterns that indicate potential exploits,

operate on the incoming data stream at the same time, one on the raw data and the

other on the generated stream of tokens.

FireEye - Exhibit 1002 Page 54

 -55-

Claim 1.10: indicating, by the computer, the presence of

potential exploits within the incoming stream, based on said

dynamically detecting.

123. In my opinion, Chandnani discloses indicating, by the computer, the

presence of potential exploits within the incoming stream, based on said dynamically

detecting. For example, Chandnani explains in reference to Figure 7, that pattern and

CRC matches are preformed and “[i]f [a match] is successful, detection of viral code

is signaled (step 46).” EX1007 at [0065]. Chandnani’s signal is indicating the

presence of potential exploits.

Claim 2: The method of claim 1 wherein said dynamically building a

parse tree is based upon a shift-and-reduce algorithm.

124. I explained above how Chandnani and Kolawa disclose every element of

claim 1.

125. In my opinion, Knuth discloses the additional element of claim 2 of

wherein said dynamically building a parse tree is based upon a shift-and-reduce

algorithm.

126. While Chandnani and Kolawa may not expressly disclose building a

parse tree based on a shift-and-reduce algorithm, Kolawa does describe the process of

building its parse tree as one that is “conventional in the art.” EX1008 at 3:66-4:4.

FireEye - Exhibit 1002 Page 55

 -56-

127. Knuth is a foundational paper describing the parsing of programming

languages from left-to-right. EX1009 at Abstract. Knuth provides examples of

parsing code and building parse trees using a shift-and-reduce process. EX1009 at

618-625, Tables I and II. In one example, detailed in Table I, Knuth describes the

shift and reduce process: “’Shift’ means ‘perform the shift left operation’ mentioned

in step 2; ‘reduce p’ means ‘perform the transformation (21) with production p.’”

EX1009 at 620.

128. A person of skill in the art would have been motivated to combine

Chandnani and Kolawa with Knuth at least because Kolawa states that the “source

code 10 is read as input to a lexical analyzer/parser 11 which is conventional in the

art.” EX1008 at 3:66-4:4. Knuth, being a foundational paper that describes the shift

and reduce algorithm, is a prime example of a parsing algorithm that is conventional

in the art. Moreover, as previously discussed, YACC is a conventional program for

parsing and compiling source code and YACC uses a shift and reduce algorithm to

build a parse tree. See, e.g., EX1023 at 3:49-4:3 (describing the LALR parser as using

a shift and reduce algorithm).

Claim 9, preamble: A computer system for multi-lingual content

scanning.

FireEye - Exhibit 1002 Page 56

 -57-

129. With respect to this claim element, the preamble of claim 1 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 9.1: a non-transitory computer-readable storage medium

storing computer-executable program code that is executed by a

computer to scan incoming program code.

130. In my opinion, Chandnani discloses a non-transitory computer-readable

storage medium storing computer-executable program code that is executed by a

computer to scan incoming program code. Chandnani discloses that the “apparatus

and methods described above (including the associated data and rules) may be

embodied in a computer program (or some unit of code) stored on/in computer

readable medium, such as memory, hard drive or removable storage media.” EX1007

at [0066].

Claim 9.2: a receiver, stored on the medium and executed by the

computer, for receiving an incoming stream of program code.

131. In my opinion, Chandnani discloses a receiver, stored on the medium and

executed by the computer, for receiving an incoming stream of program code.

Chandnani’s detection engine satisfies this limitation. Chandnani teaches that its

detection engine receives and analyzes a “data stream received by the computer

through a network.” EX1007 at [0067]; see also EX1007 at Figs. 1-2, [0029], [0031]-

FireEye - Exhibit 1002 Page 57

 -58-

[0032], [0057], [0062]. Chandnani also discloses “using a processor for[] receiving a

data stream.” EX1007 at claim 22. Thus, since Chandnani teaches that its virus

detection apparatus and methods “may be embodied in a computer program (or some

unit of code) stored on/in computer readable medium” EX1007 at [0066], a person of

skill in the art would have understood Chandnani’s detection engine to include a unit

of code (that is, a set of programming instructions) for receiving the data stream.

Thus, Chandnani teaches or renders obvious a “receiver” for receiving an incoming

stream of computer code.

Claim 9.3: a multi-lingual language detector, stored on the medium

and executed by the computer, operatively coupled to said receiver

for detecting any specific one of a plurality of programming

languages in which the incoming stream is written.

132. In my opinion, Chandnani discloses a multi-lingual language detector,

stored on the medium and executed by the computer, operatively coupled with said

receiver for detecting any specific one of the plurality of programming languages in

which the incoming stream is written.

133. In Chandnani the data stream is received by the computer through a

network (EX1007 at [0067]) and this data stream is then processed by a language

detector. Chandnani states that “[t]he detection engine 53 retrieves the language

check data from language description module 55 (step 31) and uses the language

FireEye - Exhibit 1002 Page 58

 -59-

check data to lexically analyze the data stream to determine the appropriate script

language (step 33).” EX1007 at [0061]. Thus, Chandnani discloses a multi-lingual

language detector for detecting any specific one of the plurality of programming

languages in which the incoming stream is written.

134. Chandnani also states that the “apparatus and methods described above

(including the associated data and rules) may be embodied in a computer program (or

some unit of code) stored on/in computer readable medium, such as memory, hard

drive or removable storage media.” EX1007 at [0066]. A person of skill in the art

would understand that the detection engine of Chandnani and the functions it carries

out are embodied, at least in part, by stored program code that is executed by the

computer.

135. Finally, the detection engine is operatively coupled to the receiver

because the data stream passes though the receiver and then to the language detector.

136. Therefore Chandnani discloses a multi-lingual language detector, stored

on the medium and executed by the computer, operatively coupled with said receiver

for detecting any specific one of the plurality of programming languages in which the

incoming stream is written. See also EX1007 at [0019]-[0020], [0035], and [0062]

and Figs. 2 and 6.

FireEye - Exhibit 1002 Page 59

 -60-

Claim 9.4: a scanner instantiator, stored on the medium and

executed by the computer, operatively coupled to said receiver and

said multi-lingual language detector for instantiating a scanner for

the specific programming language, in response to said determining.

137. With respect to the claim language directed to “instantiator . . . for

instantiating a scanner for the specific programming language, in response to said

determining,” claim 1, element 3 includes substantively similar language, so my

analysis with respect to that element similarly applies to this claim element.

138. Moreover, in Chandnani the data stream is received by the language

detector through a network and this data stream is then processed by a language

detector and a scanner (EX1007 at [0032] and [0067]) which is instantiated with

language data. Thus, the instantiator is operatively coupled to the receiver and multi-

lingual language detector because it communicates with the language detector which

communicates with the receiver and multi-lingual language detector.

139. Chandnani also states that the “apparatus and methods described above

(including the associated data and rules) may be embodied in a computer program (or

some unit of code) stored on/in computer readable medium, such as memory, hard

drive or removable storage media.” EX1007 at [0066]. A person of skill in the art

would understand that the detection engine of Chandnani and the functions it carries

FireEye - Exhibit 1002 Page 60

 -61-

out are embodied, at least in part, by stored program code that is executed by the

computer.

140. Therefore, Chandnani discloses a scanner instantiator, stored on the

medium and executed by the computer, operatively coupled to said receiver and said

multi-lingual language detector for instantiating a scanner for the specific

programming language, in response to said determining. See also EX1007 at [0062],

[0061], and [0064] and Figs. 2, 6, and 7.

Claim 9.5: the scanner comprising: a rules accessor for accessing

parser rules and analyzer rules for the specific programming

language

141. With respect to parser rules and analyzer rules for the specific

programming language, claim 1, element 4 includes substantively similar language, so

my analysis with respect to that element similarly applies to this claim element.

142. Regarding a rules accessor, because claim 9 specifies that the scanner

instantiator is stored on the computer-readable storage medium and executed by the

computer, a person of skill in the art would have understood that the claimed “rules

accessor” is simply a software module (that is, set of programming instructions) that

performs the function specified in the claim itself: “accessing parser rules and

analyzer rules for the specific programming language.”

FireEye - Exhibit 1002 Page 61

 -62-

143. The scanner instantiated by Chandnani’s detection engine includes a

“rules accessor” for accessing (or retrieving) the language description data and virus

detection data. Chandnani discloses that “detection engine 53 retrieves the language

check data from language description module 55 (step 31) and uses the language

check data to lexically analyze the data stream to determine the appropriate script

language (step 33).” EX1007 at [0061], Figs. 2, 6. Then, “[t]he language definition

data for the script language determined in step 53 is retrieved from language

description module 55 (step 35).” EX1007 at [0061]. Later, the detection engine

“retrieves the entries of detection data” used to identify potential exploits. EX1007 at

[0064]; see also EX1007 at [0058], Figs. 2, 7.

144. Therefore, Chandnani discloses the scanner comprising: a rules accessor

for accessing parser rules and analyzer rules for the specific programming language.

Claim 9.6: wherein the parser rules define certain patterns in terms

of tokens, tokens being lexical constructs for the specific

programming language

145. With respect to this claim element, claim 1, element 5 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

FireEye - Exhibit 1002 Page 62

 -63-

Claim 9.7: and wherein the analyzer rules identify certain

combinations of tokens and patterns as being indicators of potential

exploits, exploits being portions of program code that are malicious

146. With respect to this claim element, claim 1, element 6 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 9.8: a tokenizer, for identifying individual tokens within the

incoming [data stream]

147. With respect to identifying individual tokens within the incoming data

stream, claim 1, element 7 includes substantively similar language, so my analysis

with respect to that element similarly applies to this claim element.

148. Furthermore, the lexical analyzer of Chandnani is a tokenizer.

Chandnani states that the lexical analyzer generates a stream of tokens from the data

stream. See EX1007 at [0062]. See also EX1007 at [0020], and Figs. 6 and 7.

Claim 9.9: a parser, for dynamically building while said receiver is

receiving the incoming stream, a parse tree whose nodes represent

tokens and patterns in accordance with the parser rules accessed by

said rules accessor

149. With respect to this claim element, claim 1, element 8 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

FireEye - Exhibit 1002 Page 63

 -64-

150. Chandnani also discloses that a lexical analyzer that parses a data stream

using grammar rules. For example, Chandnani states that “[t]he language description

data for a target script language is a representation of the language definition rules and

the language check rules (if defined) sufficient for the detection engine 53 to lexically

analyze and parse a data stream.” EX1007 at [0046]; see also EX1007 at [0038]-

[0045].

Claim 9.10: an analyzer, for dynamically detecting, while said parser

is dynamically building the parse tree, combinations of nodes in the

parse tree which are indicators of potential exploits, based on the

analyzer rules

151. With respect to this claim element, claim 1, element 8 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

152. Chandnani also states that the “apparatus and methods described above

(including the associated data and rules) may be embodied in a computer program (or

some unit of code) stored on/in computer readable medium, such as memory, hard

drive or removable storage media.” EX1007 at [0066]. A person of skill in the art

would understand that the detection engine of Chandnani and the functions it carries

out are embodied, at least in part, by stored program code in the form of an analyzer

FireEye - Exhibit 1002 Page 64

 -65-

that is executed by the computer. See also analysis and opinion regarding claim 29,

element 9.

Claim 9.11: a notifier, stored on the medium and executed by the

computer, operatively coupled to said scanner instantiator for

indicating the presence of potential exploits within the incoming

stream, based on results of said analyzer

153. With respect to this claim element, claim 1, element 10 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

154. In addition, Chandnani teaches that its detection engine includes units of

code that satisfy the “notifier” and “scanner instantiator” limitations. See EX1007 at

[0066]. Since Chandnani’s notifier indicates the presences of potential exploits based

on a successful pattern match recognized by the scanner, it would have been obvious

to a person of skill in the art that the successful pattern match must be communicated

to the notifier by the scanner. Because the scanner instantiator is in communication

with the notifier, Chandnani teaches the “operatively coupled” requirement. See also

EX1007 at [0065] and Fig. 7.

Claim 11: The system of claim 9 wherein said parser dynamically

builds the parse tree using a shift-and-reduce algorithm.

155. With respect to this claim, claim 2 includes substantively similar

language, so my analysis with respect to claim 2 similarly applies to this claim.

FireEye - Exhibit 1002 Page 65

 -66-

156. Claims 24-28 depend from claim 23 and claims 30-34 depend from claim

29, so I begin my analyses with claims 23 and 29.

Claim 23, preamble: A computer processor-based multi-lingual

method for scanning content incoming program code:

157. With respect to this claim element, the preamble of claim 1 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 23.1: for each of a plurality of programming languages,

expressing exploits in terms of patterns of tokens and rules

158. In my opinion, Chandnani discloses for each of a plurality of

programming languages, expressing exploits in terms of patterns of tokens and rules.

Chandnani teaches creating “language description data corresponding to one or more

script languages” and then preparing “viral code detection data . . . for one or more

script language viruses.” EX1007 at [0032]; see also EX1007 at Figs. 3-7. The viral

code detection data includes “layers of token pattern matching and/or CRC signature

checking.” EX1007 at [0050]; see also EX1007 at [0016]. These “token pattern

match methodologies” define rules for identifying characteristics of computer viruses,

or potentially malicious program code. EX1007 at [0052]-[0054]. Chandnani

describes one such exploit as a “token pattern match” identified as pattern “p1.”

EX1007 at [0052]-[0054].

FireEye - Exhibit 1002 Page 66

 -67-

159. Thus, Chandnani discloses expressing exploits in terms of language-

specific patterns of tokens and rules for each of a plurality of programming languages.

See also EX1007 at [0050]-[0051], Figs. 3-7

Claim 23.2: wherein exploits are portions of program code that

are malicious

160. With respect to this claim element, claim 1, element 6 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 23.3: wherein tokens are lexical constructs of a specific

programming language

161. With respect to this claim element, claim 1, element 5 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 23.4: wherein rules designate certain patterns of tokens

as forming programmatical constructs

162. In my opinion, Chandnani discloses wherein rules designate certain

patterns of tokens as forming programmatical constructs. Chandnani teaches

“language definition rules” for a target script language that describe the constructs of

the target script language and any relations between the constructs. Chandnani states

that “[l]anguage definition rules for a target script language describe the constructs of

the target script language and any relations between the constructs.” EX1007 at

FireEye - Exhibit 1002 Page 67

 -68-

[0035]. Thus, “relations” define patterns between constructs, which are tokens. See

EX1007 at [0035]; see also EX1007 at [0039].

163. Chandnani also teaches “grammar rules,” such as “IF-THEN” rules, that

designate token patterns forming programming constructs. See EX1007 at [0040]-

[0045].

Claim 23.5: receiving, by a computer, an incoming stream of

program code

164. With respect to this claim element, claim 1, element 1 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 23.6: determining, by the computer, any specific one of

the plurality of programming languages in which the incoming

stream is written

165. With respect to this claim element, claim 1, element 2 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 23.7: dynamically building, while said receiving receives

the incoming stream, a parse tree whose nodes represent

tokens and rules vis-à-vis the specific programming language

FireEye - Exhibit 1002 Page 68

 -69-

166. In my opinion, Chandnani discloses dynamically building, while said

receiving receives the incoming stream, a parse tree whose nodes represent tokens and

rules vis-à-vis the specific programming language.

167. Claim 1, element 8 includes substantively similar language. While claim

1, element 8 recites “parser rules” rather than “specific programming language,” the

“parser rules” as discussed with respect to claim 1 are language specific because

“parser rules define certain patterns in terms of tokens, tokens being lexical constructs

for the specific programming language.” EX1001 at claim 1, 19:52-61.

168. Therefore, the plain meaning of both limitations is “nodes represent

tokens and token patterns in relation to the specific programming language,” and my

analysis with respect to claim 1, element 8 applies similarly to this claim element.

Claim 23.8: dynamically detecting, while said dynamically building

builds the parse tree, patterns of nodes in the parse tree which are

indicators of potential exploits, based on said expressing vis-à-vis the

specific programming language

169. In my opinion, Chandnani discloses dynamically detecting, while said

dynamically building builds the parse tree, patterns of nodes in the parse tree which

are indicators of potential exploits, based on said expressing vis-à-vis the specific

programming language.

FireEye - Exhibit 1002 Page 69

 -70-

170. Claim 1, element 9 includes substantively similar language. The analyzer

rules in claim 1 are described as rules that “identify certain combinations of tokens

and patterns as being indicators of potential exploits.” EX1001 at claim 1, 19:52-61.

As such, “detecting . . . based on expressing” in this claim element is equivalent to

detecting based on analyzer rules in claim 1 and my opinion with respect to claim 1,

element 9 applies similarly to this claim element.

Claim 23.9: indicating, by the computer, the presence of

potential exploits within the incoming stream, based on said

dynamically detecting

171. With respect to this claim element, claim 1, element 10 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 24: The method of claim 23 wherein said dynamically building

comprises positioning nodes of the parse tree corresponding to rules

as parent nodes, the children of which correspond to the tokens

within the patterns that correspond to the rules.

172. As discussed above, Chandnani and Kolawa disclose all the elements of

claim 23. While Chandnani and Kolawa may not expressly describe the creation and

positioning of parent and child nodes within the parse tree or expressly describe

assigning values to nodes or storing an indicator in a node, this process was well

understood in the art and was fundamental to building a functional parse tree.

FireEye - Exhibit 1002 Page 70

 -71-

173. Claim 24 includes additional details on the process of building a parse

tree. The additional details include “positioning nodes of the parse tree corresponding

to rules as parent nodes” and “children” that “correspond to the tokens within the

patterns that correspond to the rules.” Although recited as additional limitations on

claim 23, claim 24 does not actually add anything. Instead, it just recites parts of the

well-known process of building a parse tree. Such details are explicitly disclosed in

Knuth.

174. Knuth describes methods of translating languages from left to right.

EX1009 at Title. Knuth describes that languages translatable from left to right are

“particularly important in the case of computer programming” because such languages

serve as models for real computer programming languages. EX1009 at 607. Knuth

describes algorithms for generating parse trees from sequences of tokens

(corresponding, for example, to characters in strings) based on a set of rules defining a

grammar. See, e.g., EX1009 at Abstract, 608-10, Tables I and II.

175. Knuth discloses positioning nodes of the parse tree corresponding to rules

as parent nodes, the children of which correspond to tokens within the patterns that

correspond to the rules. For example, Knuth describes a grammar defined by the rules

“S → AD, A→ aC, B→ bcd, C →BE, D →ε, E → e.” EX1009 at 609. Knuth

describes generating a “derivation tree,” corresponding to a parse tree, with parent

FireEye - Exhibit 1002 Page 71

 -72-

nodes corresponding to rules (referred to as “intermediates” and represented with

upper case letters) and children corresponding to tokens (referred to as “terminals”

and represented with lower case letters). EX1009 at 608. The tree has a root S,

referred to as the “principal intermediate character.” Id. The grammar rules

correspond to rules for generating a parse tree: the arrow for each rule connects a

parent node on the left to a pattern of child nodes on the right. See EX1009 at 632-33

(discussing a “parsing process” that represents matched rules with corresponding

nodes in a “derivation tree”). For example, the rule “B→ bcd” indicates that a string

of tokens with the ordered pattern “bcd” can be connected as children of a parent node

“B.” See EX1009 at 609.

176. Knuth describes generating a parse tree for this grammar to parse the

string “abcde.” Id. The parent nodes of the tree, reproduced below, correspond to rules

(as identified by labels corresponding to the left-hand sides of the rules), and the

children of each parent node correspond to the tokens within the patterns that

correspond to the rules (found on the right-hand sides of the rules):

FireEye - Exhibit 1002 Page 72

 -73-

Id. at 609, Fig. 3. The structure of the parse tree shows that parent nodes correspond to

rules, with their children as corresponding patterns. For example, the upper-left parent

node “B” corresponds to the rule “B→ bcd” (i.e., B is on the left side of the rule) and

its children (tokens “b,” “c,” and “d”) match the pattern “bcd” on the right side of the

rule. Similarly, the children of “A” are the token “a” and the subtree with parent “C;”

this corresponds to the rule “A→ aC.” It is simple to confirm that each node of the

tree corresponds to a rule in the grammar. See EX1009 at 609. Knuth further teaches

methods of building parse trees for languages using a general algorithm (the shift-and-

reduce algorithm) that applies to a wide array of languages. See EX1009 at 618-625,

Tables I and II; see also EX1024 at 4:28-41; EX1023 at 3:34-60.

FireEye - Exhibit 1002 Page 73

 -74-

177. Building a parse tree according to the method of Chandnani and Kolawa,

and having the structure taught by Knuth, would involve “positioning nodes of the

parse tree corresponding to rules as parent nodes, the children of which correspond to

the tokens within the patterns that correspond to the rules,” as recited in claim 24,

because Knuth teaches that parse trees are built according to this structure.

178. Therefore, in my opinion, Chandnani in view of Kolawa and Knuth

discloses said dynamically building comprises positioning nodes of the parse tree

corresponding to rules as parent nodes, the children of which correspond to the tokens

within the patterns that correspond to the rules.

Claim 25: The method of claim 24 wherein said dynamically building

comprises adding a new parent node to the parse tree when a rule is

matched.

179. In my opinion, discloses said dynamically building comprises adding a

new parent node to the parse tree when a rule is matched. Similar to my analysis with

respect to claim 24, claim 25 also merely recites part of the standard process for

building a parse tree, which includes adding a new parent nodes to a parse tree when

the parsers matches a corresponding rule.

180. Knuth describes a method of building a parse tree that includes adding a

new parent node to the parse tree when a rule is matched. Knuth discloses searching a

parse tree for a “handle,” which is defined as “the leftmost set of adjacent leaves

FireEye - Exhibit 1002 Page 74

 -75-

forming a complete branch.” EX1009 at 609. In other words, the handle is a pattern

that matches a rule—based on the rules of the grammar, a handle is any sequence on

the right-hand side of a rule. See EX1009 at 609 (describing looking for a handle that

matches a rule, such that a parent node can be attached to the sequence of the handle).

Knuth describes identifying the handle and “pruning off” the handle by replacing it

with the corresponding rule. Id. Knuth points out that in the string “abcde,” “the

handle is bcd,” matching the rule “B →bcd.” EX1009 at 610. Knuth describes that the

first step of parsing the tree is identifying the handle and replacing it in the string with

a parent node “B,” giving “aBe,” where the B is a parent node in the parse tree

connected to the matched pattern “bcd.” EX1009 at 610. Accordingly, Knuth discloses

adding a new parent node to the parse tree when a rule is matched.

Claim 26: The method of claim 25 wherein said dynamically

detecting detects patterns of nodes in the parse tree whenever said

adding adds a new parent node to the parse tree.

181. In my opinion, Knuth discloses said dynamically detecting detects

patterns of nodes in the parse tree whenever said adding adds a new parent node to the

parse tree. Knuth describes generating a parse tree by repeatedly identifying a handle,

replacing the handle with a parent node matching the handle’s pattern, and then

searching for a new handle. EX1009 at 609-610. In one example, involving parsing

the string “abcde,” Knuth states “the process of pruning the handle at each step

FireEye - Exhibit 1002 Page 75

 -76-

corresponds exactly to derivation (5) in reverse.” EX1009 at 610. Derivation (5) is “S

→ AD → A→ aC→ aBE→ aBe→ abcde.” EX1009 at 609. Thus, Knuth teaches that

the parsing sequence for the exemplary string is abcde → aBe→ aBE→ AC → A→

AD→ S. In other words, “abcde” has “bcd” matched and replaced with “B” to give

“aBe,” which then has matched “e” matched and replaced with “E,” giving “aBE,”

and so forth until reaching the root S.

182. The manner in which this builds a parse tree matching the parse tree

illustrated in Fig. 3 of Knuth from the string “abcde” is illustrated in the following

graphic, in which each intermediate tree has a red line drawn through a corresponding

intermediate string, which is the string to be parsed in the subsequent step of parsing:

FireEye - Exhibit 1002 Page 76

 -77-

The parser detects a pattern in each intermediate string, adds a corresponding parent

node to generate a new tree with a new intermediate string. In the first step, the line

passes through “abcde,” indicating that all 5 tokens are to be scanned for patterns. the

pattern “bcd,” corresponding to rule “B→bcd” is matched, and the node B is created

and matched to the pattern. The remaining string still in need of parsing is “aBe,”

indicated by the red line through the token nodes “a” and “e” and the rule node “B.”

The “bcd” pattern is already matched to a rule, so it is not part of the remaining string

to parse. The parser then repeatedly detects patterns in each new intermediate string,

FireEye - Exhibit 1002 Page 77

 -78-

causing the tree to be built and the red line to move up along the remaining unmatched

nodes until reaching the pattern “AD” matching the rule of the root “S,” thereby

producing a complete parse tree.

183. The overall pattern described by Knuth is to detect a pattern, add a parent

node, and then detect a pattern again until the parse tree is complete. Accordingly,

Knuth discloses detecting patterns of nodes in the parse tree whenever said adding

adds a new parent node to the parse tree, as recited in claims 26 and 32.

184. Unsurprisingly, this matches the behavior described in Chandnani, in

which the detection engine operates on the stream of tokens to check for viral code.

In particular, the data stream, having been converted into a stream of tokens, is

processed using the detection data to check for viral code. EX1007 at [0060], [0062],

[0063]. Chandnani teaches that after each token is output, the patterns in the token

stream are checked against the patterns in the detection data, stating that “a pattern

match or CRC check on the generated token stream is attempted.” EX1007 at [0064];

see also EX1007 at [0065], Fig. 6.

185. Therefore, Chandnani in view of Kolawa and Knuth discloses detecting

patterns of nodes in the parse tree whenever said adding adds a new parent node to the

parse tree.

FireEye - Exhibit 1002 Page 78

 -79-

Claim 27: The method of claim 26 wherein tokens and rules have

names associated therewith, and wherein said dynamically building

comprises assigning values to nodes in the parse tree, the value of a

node corresponding to a token being the name of the corresponding

token, and the value of a node corresponding to a rule being the

name of the corresponding rule.

186. In my opinion, Knuth discloses wherein tokens and rules have names

associated therewith, and wherein said dynamically building comprises assigning

values to nodes in the parse tree, the value of a node corresponding to a token being

the name of the corresponding token, and the value of a node corresponding to a rule

being the name of the corresponding rule.

187. In particular, Knuth discloses a parse tree in which rule nodes are given

the names A, B, C, D, E, and S; and tokens are given the names a, b, c, d, and e.

EX1009 at 609, Fig. 3; see also id. at 608 (“we will use upper case letters A, B, C , . . .

to stand for intermediates, and lower case letters a, b, c, . . . to stand for terminals”).

For example, the leftmost token node of the original string “abcde” is given the name

“a,” illustrated by the correspondingly named node in Fig. 3. Likewise, when parsing,

the first parent node generated by matching a pattern to a rule is the rule node named

“B,” corresponding to the rule “B→ bcd.” Id. Knuth also gives further examples of

parse trees with named parent and child nodes corresponding to rule names and token

names. See, e.g., EX1009 at 633 (showing various nodes, including rule nodes and

FireEye - Exhibit 1002 Page 79

 -80-

tokens, with corresponding names assigned). Accordingly, Knuth discloses assigning

values to nodes in the parse tree corresponding to the respective names of tokens and

rule nodes, as recited in claims 27 and 33.

188. Kolawa also discloses assigning values to nodes corresponding to the

name of rules and tokens. For example, Kolawa discloses:

The lexical analyzer scans the source code 10 and groups the instructions

into tokens. . . . Each instruction is represented in the parse tree 12 by at

least one node with interconnecting paths representing dependencies

between each token. A root node indicates the entry point into the parse

tree. Each node also is of a particular type, such as PLUS__EXPR which

is an addition expression node.

EX1008 at 3:66-4:11. The “types” assigned to nodes correspond to names, and those

names indicate the token or rule to which the node corresponds. For example, the

“PLUS__EXPR” node would correspond to a rule for addition expression. Id. In fact,

this matches an example by Knuth of a grammatical rule for algebraic expressions

which could be expressed in the form “S→(S+S).” EX1009 at 619. Indeed, a person

of ordinary skill would find it obvious to name nodes according to their function, in

the manned recited in claim 27, as each node must have its function encoded in the

node in order to carry it out.

189. Accordingly, Chandnani in view of Kolawa and Knuth discloses

“wherein tokens and rules have names associated therewith, and wherein said

FireEye - Exhibit 1002 Page 80

 -81-

dynamically building comprises assigning values to nodes in the parse tree, the value

of a node corresponding to a token being the name of the corresponding token, and the

value of a node corresponding to a rule being the name of the corresponding rule,” as

recited in claim 27.

Claim 28: The method of claim 27 wherein said dynamically building

comprises storing an indicator for a matched rule in the new parent

node of the parse tree when the rule is matched.

190. In my opinion, Knuth discloses wherein said dynamically building

comprises storing an indicator for a matched rule in the new parent node of the parse

tree when the rule is matched. Knuth discloses that when a new parent node matching

a rule is added to a parse tree, a symbol corresponding to the rule is stored in the node.

EX1009 at 609, 610. For example, when the rule “B→bcd” is matched to the string of

tokens “bcd,” a parent node is created with a name “B” and an ordered set of

connections to the tokens “b,” “c,” and “d.” Id. It would have been obvious that this

symbol is stored in the node, along with the stored connections to corresponding child

nodes, thereby identifying the rule that was matched by the parser. For example, the

node could have its name stored as one or more characters, and its matched pattern

indicated by stored pointers to the child nodes. So a node with the name “B” and links

to three child nodes with names “b,” “c,” and “d” would indicate, by that name and

those connections, that it was a rule node matching the rule “B→bcd.”

FireEye - Exhibit 1002 Page 81

 -82-

191. This teaching is also reflected in Kolawa, which discloses that “[e]ach

node also is of a particular type, such as PLUS__EXPR which is an addition

expression node.” EX1008 at 4:9-11. The type encoded by Kolawa in a rule node is an

indicator of the rule being matched; the type of the “PLUS__EXPR” node would

indicate that it matched an addition expression rule.

192. Accordingly, Chandnani in view of Kolawa and Knuth discloses

“wherein said dynamically building comprises storing an indicator for a matched rule

in the new parent node of the parse tree when the rule is matched,” as recited in claim

28.

Claim 29, preamble: A computer system for multi-lingual content

scanning.

193. With respect to this claim element, the preamble of claim 9 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 29.1: a non-transitory computer-readable storage medium

storing computer-executable program code that is executed by a

computer to scan incoming program code.

194. With respect to this claim element, claim 9, element 1 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

FireEye - Exhibit 1002 Page 82

 -83-

Claim 29.2 an accessor, stored on the medium and executed by the

computer, for accessing descriptions of exploits in terms of patterns

of tokens and rules.

195. With respect to this claim element, claim 1, element 6 and claim 23,

element 1 include substantively similar language regarding “pattern match rules that

describe exploits in terms of patterns of tokens and rules,” so my analysis with respect

to those elements similarly applies to this claim element.

196. Chandnani also teaches an accessor for accessing (retrieving) exploit

descriptions. For example, Chandnani’s detection engine “retrieves the entries of

detection data” used to identify potential exploits. EX1007 at [0064]. A person of

skill in the art would have understood that the function of retrieving entries is carried

out, at least in part by, program code. The program code retrieves, or in other words,

accesses the descriptions of exploits.

Claim 29.3: wherein exploits are portions of program code that are

malicious.

197. With respect to this claim element, claim 1, element 6 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 29.4: wherein tokens are lexical constructs of any one of a

plurality of programming languages.

FireEye - Exhibit 1002 Page 83

 -84-

198. With respect to this claim element, claim 1, element 6 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 29.5: wherein rules designate certain patterns of tokens as

forming programmatical constructs.

199. With respect to this claim element, claim 23, element 4 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 29.6: a receiver, stored on the medium and executed by the

computer, for receiving an incoming stream of program code.

200. With respect to this claim element, claim 9, element 2 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

Claim 29.7: a multi-lingual language detector, stored on the medium

and executed by the computer, operatively coupled with said receiver

for detecting any specific one of the plurality of programming

languages in which the incoming stream is written.

201. With respect to this claim element, claim 9, element 3 includes

substantively similar language, so my analysis with respect to that element similarly

applies to this claim element.

FireEye - Exhibit 1002 Page 84

 -85-

Claim 29.8: a parser, stored on the medium and executed by the

computer, operatively coupled with said accessor, with said receiver

and with said language detector for dynamically building, while said

receiver is receiving the incoming stream, a parse tree whose nodes

represent tokens and rules vis-à-vis the specific programming

language.

202. In my opinion, Chandnani discloses a parser, stored on the medium and

executed by the computer, operatively coupled with said accessor, with said receiver

and with said language detector for dynamically building, while said receiver is

receiving the incoming stream, a parse tree whose nodes represent tokens and rules

vis-à-vis the specific programming language. Chandnani discloses a lexical analyzer,

also known as a parser, that parses a data stream using grammar rules. For example,

Chandnani states that “[t]he language description data for a target script language is a

representation of the language definition rules and the language check rules (if

defined) sufficient for the detection engine 53 to lexically analyze and parse a data

stream.” EX1007 at [0046]; see also EX1007 at [0038]-[0045].

203. Claim 23, element 7 includes substantively similar language regarding

parse tree nodes and tokens, so my analysis with respect to that element similarly

applies to this claim element.

FireEye - Exhibit 1002 Page 85

 -86-

204. Claim 1, element 8, includes substantively similar language regarding

dynamically building, so my analysis with respect to that element similarly applies to

this claim element.

205. Finally, the parser is operatively coupled with the accessor, receiver, and

the language detector, all of which are part of Chandnani’s detection engine, because

the parser is in communication with the accessor, receiver, and language detector.

Claim 29.9: an analyzer, stored on the medium and executed by the

computer, operatively coupled with said parser, with said accessor

and with said language detector, for dynamically detecting, while

said parser is dynamically building the parse tree, patterns of nodes

in the parse tree which are indicators of potential exploits, based on

the descriptions of exploits vis-à-vis the specific programming

language.

206. In my opinion, Chandnani discloses an analyzer, stored on the medium

and executed by the computer, operatively coupled with said parser, with said

accessor and with said language detector, for dynamically detecting, while said parser

is dynamically building the parse tree, patterns of nodes in the parse tree which are

indicators of potential exploits, based on the descriptions of exploits vis-à-vis the

specific programming language.

207. As described above with respect to claim 1, element 9, Chandnani’s

detection engine in combination with the parse tree teachings of Kolawa teaches the

FireEye - Exhibit 1002 Page 86

 -87-

dynamic detection of script viruses (exploits) by identifying combinations of tokens

stored as notes in a parse tree based on pattern matching rules.

208. As described above with respect to claim 23, element 8, Chandnani also

teaches detecting potential exploits “based on the descriptions of exploits vis-à-vis the

specific programming language.”

209. Chandnani’s analyzer is operatively coupled with the parser, the

accessor, and the language detector, all of which are part of Chandnani’s detection

engine, because the analyzer is in communication of the parser, accessor, and

language detector.

Claim 29.10: a notifier, stored on the medium and executed by the

computer, operatively coupled with said analyzer, for indicating the

presence of potential exploits within the incoming stream, based on

results of said analyzer.

210. In my opinion, Chandnani discloses a notifier, stored on the medium and

executed by the computer, operatively coupled with said analyzer, for indicating the

presence of potential exploits within the incoming stream, based on results of said

analyzer.

211. As described above with respect to claim 1, element 10, Chandnani’s

detection engine includes a notifier that indicates the presence of potential exploits

within the incoming stream, based on the results of the analyzer.

FireEye - Exhibit 1002 Page 87

 -88-

212. Chandnani also teaches that its detection engine includes units of code

that satisfy the “notifier” and “scanner instantiator” limitations. EX1007 at [0066].

Since Chandnani’s notifier indicates the presences of potential exploits based on a

successful pattern match recognized by the scanner, it would have been obvious to a

person of skill in the art that the successful pattern match must be communicated to

the notifier by the scanner. Because the scanner instantiator is in communication with

the notifier, Chandnani teaches the “operatively coupled” requirement. See also

EX1007 at [0065] and Fig. 7.

Claim 30: The system of claim 29 wherein said parser positions

nodes of the parse tree corresponding to rules as parent nodes, the

children of which correspond to tokens within the patterns that

correspond to the rules.

213. With respect to this claim, claim 24 includes substantively similar

language, so my analysis with respect to that claim similarly applies to this claim.

Claim 31: The system of claim 30 wherein said parser adds a new

parent node to the parse tree when a rule is matched.

214. With respect to this claim, claim 25 includes substantively similar

language, so my analysis with respect to that claim similarly applies to this claim.

Claim 32: The medium [sic] of claim 31 wherein said analyzer

dynamically detects patterns of nodes in the parse tree when said

parser adds a new parent node to the parse tree.

FireEye - Exhibit 1002 Page 88

 -89-

215. With respect to this claim, claim 26 includes substantively similar

language, so my analysis with respect to that claim similarly applies to this claim.

Claim 33: The system of claim 32 wherein tokens and rules have

names associated therewith, and wherein said parser assigns values

to nodes in the parse tree, the value of a node corresponding to a

token being the name of the corresponding token, and the value of a

node corresponding to a rule being the name of the corresponding

rule.

216. With respect to this claim, claim 27 includes substantively similar

language, so my analysis with respect to that claim similarly applies to this claim.

Claim 34: The system of claim 33 wherein said parser stores an

indicator for a matched rule in the new parent node of the parse tree

when the rule is matched.

217. With respect to this claim, claim 28 includes substantively similar

language, so my analysis with respect to that claim similarly applies to this claim.

IX. GROUND 2: Claim 8 is rendered obvious by Chandnani in view of Kolawa

and Huang

218. As explained in detail below, it is my opinion that each and every

element of claim 8 of the ’408 patent can be found in the prior art, including the

references identified below.

FireEye - Exhibit 1002 Page 89

 -90-

219. Each section of claim 8 of the ’408 patent is presented below in bold text

followed by my analysis of that part of the claim. The analysis below identifies

exemplary disclosure of the cited references relative to the corresponding claim

elements, and it is not meant to be exclusive.

220. Claim 8 of the ’408 patent depends from claim 1. My analysis above in

Ground 1 with respect to claim 1explains how Chandnani and Kolawa disclose every

element of claim 1.

Claim 8.1: The method of claim 1 wherein the incoming stream

of program code includes embedded program code

221. Chandnani describes that the analysis methods it discloses are useful for

multiple scripting languages, describing the use of “language description data

corresponding to one or more script languages.” EX1007 at [0032]; see also EX1007

at [0037] (describing language description data for “respective target languages.”

(emphasis added)). Chandnani discloses the detection of specific programming

languages, such as JavaScript and VBScript. Id. at [0012]. Accordingly, Chandnani

discloses methods useful for handling content in multiple languages.

222. To the extent that, Chandnani and Kolawa do not explicitly disclose that

the incoming stream of program code includes embedded program code, Huang

provides such disclosure. Huang teaches a method and system for processing web

applications written in the form of web pages using, for example, the programming

FireEye - Exhibit 1002 Page 90

 -91-

language HTML. EX1010 at Abstract, 5:7-20. Huang further teaches a method and

system for parsing, for example, the HTML code of web applications to determine

whether it contains links to Uniform Resource Locators (URLs) that may not be

allowed by the web application’s security setting. EX1010 at 10:31-36. Huang

teaches that if a violation is detected—for example, the HTML code includes a link to

a URL that is not allowed by the security setting—an exception is generated. EX1010

at 10:37-40.

223. Huang teaches that scripting languages such as JavaScript are commonly

used in web content such as HTML documents, and that they can be provided as

program code embedded in an HTML document:

Those skilled in the art will appreciate that currently the most commonly

used script language in web pages is JavaScript. Script in a web page

provides a way to embed logic that creates dynamic visual displays or

conducts immediate computations when its web page is processed.

Traditional script language used in web pages is limited to the browser

functions and HTML elements.

EX1010 at 8:57-64; see also id. at 1:57-67 (describing browser support for embedded

Javascript).

224. As Huang teaches that web content such as HTML documents commonly

use embedded code, including scripting languages such as JavaScript, and that such

code could include security violations, it would be obvious to use the parsing methods

FireEye - Exhibit 1002 Page 91

 -92-

of Chandnani on such code, as Chandnani describes detection of viral code in files

received via the Internet. See EX1007 at [0057].

Claim 8.2: identifying, by the computer, another one of the

plurality of programming languages in which the embedded

program code is written, the other programming language

being different that the specific programming language in

which the incoming stream is written;

225. Huang discloses the use of a web manager that parses a web page with

embedded code and determines a language type for each part of the web page’s code:

the Web application manager executes a Web application by first reading

the language code in the Web pages of this application (step 401), and

does not terminate (block 403) until all code has been processed (step

402). For each unit of code read, the Web application manager

determines the language type of this code (step 404).

EX1010 at 9:39-46; see also id. at Fig. 4. In the case of an incoming stream of a web

page comprising JavaScript embedded in HTML, the embedded language (JavaScript)

would be different than the specific programming language in which the incoming

stream is written (HTML). Based on the detected language of the embedded script, the

script is then parsed and analyzed for security violations. EX1010 at 11:12-24, Fig. 7.

226. Chandnani also discloses identifying, by the computer, a programming

language in which program code is written. Chandnani discloses language rules that

can detect programming languages, stating that “[t]he script language processor

FireEye - Exhibit 1002 Page 92

 -93-

prepares language description data corresponding to at least one script language” and

that “[d]efinitions of target script languages . . . can be rule-based in form.” EX1007

at [0016], [0035] (emphasis added).

227. Chandnani additionally describes how “the data stream, in one

embodiment in which the target script languages are defined by pattern matching

rules and patterns are associated with output tokens (described above, may be

converted to a stream of tokens.” EX1007 at [0060] (emphasis added). In this way,

Chandnani teaches that the code is processed into tokens by the detection engine

based on the detected language.

228. In light of the teaching of Huang that, when parsing a web page with

embedded code, the parser should determine the language type of each code unit for

corresponding parsing, it would be obvious when parsing such a file including an

embedded code segment to identify the language of the embedded code from among

the target script languages of Chandnani, in order to parse the embedded code.

Claim 8.3: repeating said instantiating, said identifying, said

dynamically building, said dynamically detecting and said

indicating for the embedded program code, based on the

parser rules and the analyzer rules for the other programming

language.

FireEye - Exhibit 1002 Page 93

 -94-

229. As discussed above, Huang teaches that for each unit of code with a

respective detected language, the language is determined and the code is parsed using

that language. EX1010 at 9:39-46, 11:12-24, Figs. 4 and 7. This includes embedded

code such as JavaScript embedded in HTML. EX1010 at 1:57-67, 11:40-55. The

parsing includes code analysis for detection of security violations. EX1010 at 9:39-46.

230. It would be obvious to use the parsing methods disclosed by Chandnani

for the detection of viral code in embedded code, as taught by Huang, because

Chandnani teaches the parsing and analysis of code from the Internet, which would

include HTML pages with embedded JavaScript. See EX1007 at [0057], EX1010 at

8:57-64. For embedded code in a different language from the specific programming

language in which the incoming stream is written (such as JavaScript in HTML), the

analysis of the embedded JavaScript would include repeating said instantiating, said

identifying, said dynamically building, said dynamically detecting and said indicating

for the embedded program code, based on the parser rules and the analyzer rules for

the other programming language (the language of the embedded code).

231. Converting the data stream into a stream of tokens involves instantiating

the detection engine with the language rules for each of the identified target

languages, otherwise the detection engine would not be able to properly convert a data

stream including multiple languages into a stream of tokens in a parse tree data

FireEye - Exhibit 1002 Page 94

 -95-

structure. For embedded code, this would require repeating the instantiating in the

corresponding language of the embedded code. Furthermore, a person of ordinary skill

in the art would understand that the dynamically building step is repeated each time a

token is created and added to the parse tree, as described above with respect to the

dynamically building process with respect to claim 1, element 8, above.

232. As discussed above with respect to claim 1, element 9, Chandnani’s

dynamically detecting process operates and is repeated on a stream of tokens

organized in a parse tree each time a token is generated. Furthermore, Figure 7 and

the accompanying text in Chandnani show and describe how the detecting pattern is

repeated for each detecting data entry. EX1007 at [0065] (stating that “if the pattern

match step 44 . . . is not successful, then the method returns to step 42 to select

another detection data entry”), Figure 7.

233. Accordingly, it would be obvious to use the methods of Chandnani and

Kolawa to parse and analyze embedded code having written in a different language

from the specific programming language in which the incoming stream is written, as

taught by Huang, which would include identifying the programming language in

which the embedded program code is written, and repeating the instantiating,

identifying, dynamically building, dynamically detecting, and indicating steps for the

embedded code’s language.

FireEye - Exhibit 1002 Page 95

 -96-

X. GROUNDS 3 and 4: Claims 2, 8, 11, 24-28, and 30-34 are rendered obvious

by the above-identified grounds further in view of Walls

234. As explained in detail below, it is my opinion that each and every

element of claims 2, 8, 11, 24-28, and 30-34 of the ’408 application can be found in

the prior art, including the references identified below.

235. Grounds 4, 5, and 6 are mirror images of Grounds 1, 2, and 3 with the

only addition being the Walls reference. That is:

Ground 4: Claims 2, 11, 24-28, and 30-34 are rendered obvious by

Chandnani in view of Kolawa, Knuth, and Walls

Ground 5: Claim 8 is rendered obvious by Chandnani in view of Kolawa,

Huang, and Walls

236. While it is my opinion that Chandnani and Kolawa disclose to a person

of skill in the art the dynamically building and dynamically detecting elements of the

claims, Walls provides additional disclosure for these elements because it details a

particular method in which a time period for one process overlaps with a time period

of another process.

237. Walls is directed to concurrently receiving, parsing, and analyzing

pipelined stages. More specifically, Walls “provides a pipelined approach for

certifying software wherein distinct components are assembled into a pipeline such

that the results of one component are used as input for the next component.” EX1011

at 7:3-9.

FireEye - Exhibit 1002 Page 96

 -97-

238. “Pipelining” is a common form of parallel processing that was known

before 2004 as a way of increasing throughput by working on multiple stages of a

process at the same time. Dictionary definitions describe pipelining in a manner akin

to the operation of an assembly line that builds multiple vehicles concurrently, rather

than waiting until one vehicle has passed completely through the line before starting

to build the next one. EX1025 at 4 (defining “pipelining” as a “method of fetching and

decoding instructions (preprocessing) in which, at any given time, several program

instructions are in various stages of being fetched or decoded”); EX1026 at 4

(defining “pipeline processing” as a “category of techniques that provide

simultaneous, or parallel, processing within the computer”).

239. One of the most common uses of pipelining in computer technologies is

in instruction execution:

Pipelining is an implementation technique in which multiple instructions

are overlapped in execution. Today, pipelining is key to making

processors fast. . . . [T]he work to be done in a pipeline for an instruction

is broken into small pieces. . . . Once again, pipelining does not reduce

the time it takes to complete an individual instruction; it increases the

number of simultaneously executing instructions.

EX1027 at 3; see also EX1028 at 1:22-28.

240. Using the pipelining approach described above, Walls builds an “abstract

syntax tree” (that is, a type of expanded parse tree) from an already-received code

FireEye - Exhibit 1002 Page 97

 -98-

stream to feed its first pipeline stage (annotated “B” in the figure below) even as other

upstream portions of code (annotated “A” below) are waiting to be received:

EX1011 at Fig. 2 (annotations added); see also EX1011 at 7:25-31.

241. A person of skill in the art would have understood that there would be

additional code information waiting to be parsed at “A” in order to keep the pipeline

filled. Otherwise, the pipelined architecture would not achieve the goal of both

pipelining and Walls: increased parallelism. See EX1011 at 7:8-10. If there was only

one segment of code to analyze, the code would advance down the pipeline

sequentially, with each stage beginning and ending its processing before sending the

output to the next stage. This sequential processing would result in no parallelism at

FireEye - Exhibit 1002 Page 98

 -99-

all. The point of pipelining is to have a long, continuous stream of input entering the

first pipeline stage such that, on average, all stages have work to perform on different

parts of the stream. See, e.g., EX1025 at 4; EX1026 at 4; EX1027 at 3; EX1028 at

1:22-28.

242. It would have been obvious to combine Walls with other references

(including Chandnani and Kolawa) for a number of reasons, including because of the

practical requirements of building a stream-oriented virus-checking program. Such

systems are limited in the amount of latency (delay) that they can introduce into the

overall communication link of which they are a part. If too much latency is introduced

into the process, then users will start to complain. These programs typically process

multiple data streams when implemented as firewalls (because there are multiple users

behind the firewall, each with its own incoming data). And even when acting on

behalf of a single user, a single web page request typically results in many different

streams for different segments of the web page that are all running in parallel, such as

parallel requests for each image on the page. See, e.g., EX1015 at 19:66-67, Fig. 8A.

Either scenario results in a large number of incoming streams that will arrive at or

near the same time.

243. These practical requirements mean that a virus-detection system must

respond to each incoming transaction in a timely fashion. Using a non-parallel

FireEye - Exhibit 1002 Page 99

 -100-

processing mode of operation would result in slower processing and could produce

delays as each individual stream is separately processed and holds up all other waiting

streams. See EX1029 at 2. For example, for a particular data stream, a parsing process

may take 30 seconds of processing time and a detecting process may take 31 second

of processing time. In a non-parallel processing mode of operation, the total time to

complete the parsing and detecting processes on the data stream is 61 seconds of real

world time. With parallel processing and pipelining, as the parsing process finishes

processing a portion of code and, for example, outputs a token, the detecting process

receives the processed portion of code and begins its analysis. In an ideal parallel

processing system, the overall real world time to complete the parsing and detecting

process would be about 31 seconds. For this reason, parallel processing is highly

preferable, and the pipelining architecture described in Walls would have been a

known, well-established solution to provide such parallel processing. Thus, it would

have been obvious to combine Walls with the other references.

244. Combining Walls with other security scanning references also would

have been obvious as a combination of prior art elements according to known methods

to yield predictable results. Walls in combination with Chandnani and Kolawa

discloses all elements of claim 1, including the “dynamically building” limitation, and

the only difference between the purported invention claimed in the ’408 patent and the

FireEye - Exhibit 1002 Page 100

 -101-

prior art was, at most, the lack of an express disclosure of the combination in a single

reference. A person of skill in the art easily could have combined Walls’ pipelined

architecture with other elements in the ’408 patent claims using known methods, and

each element would have performed the same function in the resulting combination as

it performed separately. The resulting combination would have been predictable to a

person of skill in the art because pipelining techniques had been used successfully in

numerous similar applications. See EX1027 at 3; EX1028 at 1:22-28.

245. At the time the ’408 patent was filed, pipelining techniques were

relatively easy to integrate into most programs because the tools for doing so, such as

multi-threaded programming features and inter-process communications facilities,

were well known, documented, and tested. See, e.g., EX1030 at 1. A person of skill in

the art also would have been able to predict the successful operation of the resulting

combination because pipelining techniques had been used in the industry for many

years in commercial products. See, e.g., EX1031 at 1. The resulting combination

would have been predictably successful in the combination of Ground 2 because both

Walls and Kolawa used the same type of data structure (trees), and thus the temporal

behavior of the references would have supported the same type of parallelization.

246. A person of skill in the art would have been motivated to combine the

pipelining approach of Walls with the Chandnani and Kolawa combination also

FireEye - Exhibit 1002 Page 101

 -102-

because Walls notes the benefit of performing multiple operations in parallel:

“[T]there is the advantage of pipelining the process where multiple components can be

analyzed simultaneously.” EX1011 at 7:7-11. Applying the pipelining approach of

Walls to the combined teachings of Chandnani and Kolawa would increase the overall

processing speed of the scanner and reduce the overall delay experienced by end users

protected by the scanner. The pipelining approach also would make better use of

multi-processor computing platforms that were widely available as of the filing date of

the ’408 patent.

247. My analysis of the disclosure of the “dynamically building” element of

the claims in Chandnani and Kowala can be found above with respect to claim 1,

element 8. My analysis of the disclosure of the “dynamically detecting” element of the

claims in Chandnani and Kowala can be found above with respect to claim 1, element

9. To the extent that it is argued that Chandnani and Kowala do not disclose these

claim elements, I provide the following discussion regarding the disclosure of Walls.

Dynamically building

248. As discussed above with respect to claim 1, element 8, it is my opinion

that Chandnani and Kowala disclose the “dynamically building” element found in the

claims.

FireEye - Exhibit 1002 Page 102

 -103-

249. Walls discloses a particular implementation for dynamically building that

uses concurrent pipelined stages for receiving and parsing a data stream. As discussed

above, Walls is directed to concurrently receiving, parsing, and analyzing pipelined

stages. More specifically, Walls “provides a pipelined approach for certifying

software wherein distinct components are assembled into a pipeline such that the

results of one component are used as input for the next component.” EX1011 at 7:3-9.

250. “Pipelining” is a common form of parallel processing that was known

before 2004 as a way of increasing throughput by working on multiple stages of a

process at the same time. Dictionary definitions describe pipelining in a manner akin

to the operation of an assembly line that builds multiple vehicles concurrently, rather

than waiting until one vehicle has passed completely through the line before starting

to build the next one. EX1025 at 4 (defining “pipelining” as a “method of fetching and

decoding instructions (preprocessing) in which, at any given time, several program

instructions are in various stages of being fetched or decoded”); EX1026 at 4

(defining “pipeline processing” as a “category of techniques that provide

simultaneous, or parallel, processing within the computer”). As Patternson explains

and as understood by a person of skill in the art,

Pipelining is an implementation technique in which multiple instructions

are overlapped in execution. Today, pipelining is key to making

processors fast. . . . [T]he work to be done in a pipeline for an instruction

FireEye - Exhibit 1002 Page 103

 -104-

is broken into small pieces. . . . Once again, pipelining does not reduce

the time it takes to complete an individual instruction; it increases the

number of simultaneously executing instructions.

EX1027 at 3; see also EX1028 at 1:22-28.

251. Using the pipelining approach described above, Walls builds an “abstract

syntax tree” (i.e., a type of expanded parse tree) from an already-received code stream

to feed its first pipeline stage (annotated “B” in the figure below) even as other

upstream portions of code (annotated “A” below) are waiting to be received:

EX1011 at Fig. 2 (annotations added); see also EX1011 at 7:25-31.

FireEye - Exhibit 1002 Page 104

 -105-

252. A person of skill in the art would have understood that when the

pipelined approach is applied to Chandnani and Kowala, the data stream is still being

received while the parser is generating tokens and building a parse tree.

253. Accordingly, Chandnani, Kowala, and Walls disclose the dynamically

building element of the claims.

Dynamically detecting

254. As discussed above with respect to claim 1, element 9, it is my opinion

that Chandnani and Kowala disclose the “dynamically detecting” element found in the

claims.

255. Walls discloses a particular implementation for dynamically detecting

that uses concurrent pipelined stages for receiving and parsing a data stream. As

discussed above, Walls is directed to concurrently receiving, parsing, and analyzing

pipelined stages. More specifically, Walls “provides a pipelined approach for

certifying software wherein distinct components are assembled into a pipeline such

that the results of one component are used as input for the next component.” EX1011

at 7:3-9.

256. In my opinion, also would have been obvious to combine the pipelining

teachings of Walls with the Chandnani and Kowala to implement concurrent pipelined

stages for parse-tree building and exploit detection. These teachings are applicable to

FireEye - Exhibit 1002 Page 105

 -106-

parsing and detecting for the same reasons they are applicable to data stream receiving

and parsing, as described above. In particular, Walls teaches that its “VulCAn” and

“Static Analysis” stages operate on a data stream that is fed by an earlier tree-building

stage. EX1011 at 8:23-37, 9:18-19. And because the various stages in Walls’ pipeline

operate on different parts of the data stream simultaneously (to achieve Walls’ goal of

increased throughput), a person of skill in the art would have understood that Walls

teaches analyzing code during a time period that overlaps with the time period during

which the incoming stream is received.

257. Accordingly, Chandnani, Kowala, and Walls disclose the dynamically

detecting element of the claims.

XI. CONCLUDING STATEMENTS

258. In signing this declaration, I understand that the declaration will be filed

as evidence in a contested case before the Patent Trial and Appeal Board of the United

States Patent and Trademark Office. I acknowledge that I may be subject to cross-

examination in this case and that cross-examination will take place within the United

States. If cross-examination is required of me, I will appear for cross-examination

within the United States during the time allotted for cross-examination.

259. I declare that all statements made herein of my knowledge are true, and

that all statements made on information and belief are believed to be true, and that

FireEye - Exhibit 1002 Page 106

 -107-

these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code.

Dated: July 15, 2016 By: / Azer Bestavros, PH.D. /

 Azer Bestavros, Ph. D.

FireEye - Exhibit 1002 Page 107

 -108-

XII. Appendix – List of Exhibits

Exhibit No. Description

1001 U.S. Patent No. 8,225,408 (“the ʼ408 patent”)

1003 Curriculum Vitae of Dr. Azer Bestavros

1004 Excerpt of the File History of U.S. Patent No. 8,225,408 (“408 File

History”)

1005 U.S. Patent Application No. 09/539,667

1006 U.S. Patent Application No. 08/964,388

1007 U.S. Patent Appl. Pub. No. 2002/0073330 (“Chandnani”)

1008 U.S. Patent No. 5,860,011 (“Kolawa”)

1009 Knuth, D.E., On the translation of languages from left to right,

Information and Control 8, 607-639 (1965) ("Knuth")

1010 U.S. Patent No. 6,968,539 (“Huang”)

1011 U.S. Patent No. 7,284,274 (“Walls”)

1012 U.S. Patent No. 7,437,362 (“Ben-Natan Patent”)

1013 Ron Ben-Natan, “Protecting Your Payload,” SQL Server Magazine,

Vol. 5, No. 8 (August 2003) (“Ben-Natan Article”)

1014 U.S. Patent No. 7,210,041 (“Gryaznov”)

1015 U.S. Patent No. 7,546,234 (“Deb”)

1016 U.S. Patent No. 7,185,003 (“Bayliss”)

1017 U.S. Patent No. 7,207,065 (“Chess”)

1018 Yichen Xie, et al., “ARCHER: Using Symbolic, Path-Sensitive

Analysis to Detect Memory Access Errors,” Proc. of the 10th ACM

SIGSOFT International Symposium on Foundations of Software

FireEye - Exhibit 1002 Page 108

 -109-

Engineering (Sept. 2003) (“ARCHER”)

1019 U.S. Patent No. 6,697,950 (“Ko”)

1020 Stephen C. Johnson, “YACC: Yet Another Compiler Computer,” Bell

Laboratories, Murray Hill, NJ (1978) (“YACC”)

1021 U.S. Patent No. 6,061,513 (“Scandura”)

1022 James F. Power and Brian A. Malloy, “Program Annotation in XML:

A Parse Tree-Based Approach,” 9th IEEE Working Conference on

Reverse Engineering (Nov. 1, 2002) (“Power”)

1023 U.S. Patent No. 5,822,592 ("Zhu")

1024 U.S. Patent No. 5,276,880 ("Platoff")

1025 Microsoft Press, Computer Dictionary, 3rd ed. (1997) (Excerpt)

1026 Computer Desktop Encyclopedia, 2nd ed. (1999)

1027 David Patterson and John Hennessy, “Computer Organization &

Design, The Hardware / Software Interface” (1994)

1028 U.S. Patent No. 5,996,059 (“Porten”)

1029 John Lockwood, “Internet Worm and Virus Protection for Very High-

Speed Networks” (August 1998)

1030 Sebastian Gerlach and Roger D. Hersch, “DPS – Dynamic Parallel

Schedules,” IEEE Press (2003)

1031 B. Ramakrishna Rau and Joseph A. Fisher, “Instruction-Level Parallel

Processing: History, Overview, and Perspective,” The Journal of

Supercomputing (1993)

FireEye - Exhibit 1002 Page 109

