
Apple 1062 (Part 1 of 3)
U.S. Pat. No. 9,189,437

includes 553 2.0

US-
COMPLET

SECOEB Earner:

it With firmware tips & host code
in Visual Basic and Visuai C++

Apple 1062 (Part 1 of 3)

US. Pat. No. 9,189,437

USB Complete

Everything Yea Need

to Develep Custom USB Peripherals

Second Editien

Jan Axelson

Lakeview Research

Madison, WI 53704

copyright 2001 by Jan Axelson. All rights reserved.

Published by Lakeview Research

Cover by Rattray Design. Cover Photo by Bill Bilsley Photography.

Index by Broccoli Information Management

Lakeview Research Phone: 608—241—5824

5310 Chinook Ln. Fax: 608—241—5848

Madison, WI 53704 Email: info@Lvr.com

USA Web: http://www.Lvr.com

141.31le, 10987654321

Products and services named in this book are trademarks or registered trademarks of
their respective companies. In all instances where Lakeview Research is aware of a

trademark claim, the product name appears in initial capital letters, in all capital letters,
or in accordance with the vendor’s capitalization preference. Readers should contact the

appropriate companies for complete information on trademarks and trademark registra—
tions. All trademarks and registered trademarks in this book are the property of their
respective holders.

No part of this book, except the programs and program listings, may be reproduced in
any form, or stored in a database or retrieval system, or transmitted or distributed in any
form, by any means, electronic, mechanical photocopying, recording, or otherwise,
without the prior written permission of Lakeview Research or the author. The programs
and program listings, or any portion of these, may be stored and executed in a computer
system and may be incorporated into computer programs developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other

material in this book are provided “as is,” without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy,
or completeness of the material or the results obtained from using the material. Neither
the publisher nor the author shall be responsible for any claims attributable to errors,

omissions, or other inaccuracies in the material in this book. In no event shall the pub—
lisher or author be liable for direct, indirect, special, incidental, or consequential dam~
ages in connection with, or arising out of, the construction, performance, or other use of
the materials contained herein.

ISBN 0—96508l9~5~8 Printed and bound in the United States of America

Table of Contents

Table of Contents

Introduction xiii

1. A Fresh Start 1

What USB Can Do 3

Benefits for Users

Benefits for Developers
It’s Not Perfect 11

User Challenges

Developer Challenges

History 16
The Motivation for Change

The Specification’s Release
USB 2.0

USB versus IEEE—1394

2. Is USB Right for My Project? 21
Fast Facts 21

Minimum PC Requirements

The Components

USB Complete iii

Table of Contents

Bus Topology
Defining Terms
What is a Port?

The Host's Duties

The Peripheral's Duties

What. about Speed?

The Development Process 35
Elements in the Link

Tools for Developing
Steps in Developing a Project

3. Inside USB Transfers 39

Transfer Basics 40

Configuration Com munications

Application Communications

Managing Data on the Bus

Host Speed and Bus Speed
Elements of a Transfer 44

Device Endpoints

Pipes: Connecting Endpoints to the Host
Types of Transfers

Stream and Message Pipes
Initiating a Transfer

Transactions: the Building Blocks of a Transfer
Transaction Phases

Ensuring that Transfers Are Successful 61

Handshaking
Reporting the Status of Control Transfers

Error Checking

4. A Transter Type for Every Purpose 71
Control Transfers 71

Availability
Structure

Data Size

Speed

Detecting and Handling Errors
Bulk Transfers 78

Availability
Structure

Data Size

Speed

iv USB Complete

Detecting and Handling Errors

Interrupt Transfers 81
Availability
Structure

Data Size

Speed
Detecting and Handling Errors

Isochronous Transfers 85

Availability
Structure

Data Size

Speed

Detecting and Handling Errors
More about Time—critical Transfers 89

Bus Bandwidth

Device Capabilities

Hosr Software Capabilities
Windows Latencies

Table of Contents

5. Enumeration: How the Host Learns about Devices 93

The Process 94

Enumeration Steps

Enumerating a Hub
Device Removal

Descriptor Types and Contents 101

Types

Device Descriptor

Devicerualifier Descriptor

Configuration Descriptor

Other_Speed_Configuration Descriptor

Interface Descriptor

Endpoint Descriptor

String Descriptor

Descriptors in 2.0wcompliant Devices 116

USB Complete

Making 1.x Descriptors 2.0vcompliant
Detecting the Current Speed of‘a Dual—Speed, Device

6. Control Transfers:

Structured Requests for Critical Data 119
Elements of a Control Transfer 119

The Setup Stage

The Data Stage

Table of Contents

The Status Stage

Handling Errors

The Requests 127
Set~Address

GeLDescriptor
Set‘Descriptor

Set_Configuration
Get_Configuration
Set Interface

Cet_InterFaee

Set__Feature

Clear_Feature

Gethtatus

Synch_Frame

Class~Specific Requests
Vendor~Specific Requests

7. Chip Choices 141

vi

Elements of a USB Controller 14.2

The USB Port

Buffers for USB Data

CPU

Program Memory

Data Memory

Registers
Other I/O

Other Features

Simplifying the Development Process 147
Architecture Choices

Chip Documentation

Sample Firmware
Driver Choices

Debugging Tools
Project Needs

A Look at Some Chips 157

Cypress enCoRe

Cypress EZ—USB

Microchip PIC 16C7X5

NetChip NET2888
National Semiconductor USBN9603

Philips Semiconductors PDIUSBD1 1/12

Intel StrongARM

USB Complete

Table of Contents

8. Inside a USB Controller: the Cypress enCoRe 171

Selecting a Chip 172
Requirements
The Choice

The Assembler 173

Assembly Programming Basics
Assembler Codes

Using the Assembler

Programming in C 180

Advantages to C

Using the Compiler

Chip Architecture 181
Features and Limits

Inside the Chip

Memory
USB Communications 187

Device Address

Modes

Endpoint Status and Control
USB Status and Control

Other I/O 192

General—purpose I/O
SPl Port

The PS/2 Interface

Other Chip Capabilities 197
Timer Functions

Interrupt Processing

CPU Status, Control, and Clocking

Power Management

9. Writing Firmware: the Cypress enCoRe 209
Hardware and Firmware Responsibilities 209

What the Hardware Does

What the Firmware Does

Hardware Development Tools 219

The Development Kit

PROM Programming

10. How the Host Communicates 231

Device Driver Basics 231

Insulating Applications from the Details

USB Complete vii

Table of Contents

Options for USB Devices

How Applications Communicate with Devices
The Win32 Driver Model 237

Driver Models for Different Windows Flavors

Layered Drivers
Communication Flow

More Examples

Choosing a Driver Type 248
Drivers Included with Windows

Vendor~supplied Drivers
Custom Drivers

Writing a Custom Driver 249

Requirements

Using a Driver Toolkit

11. How Windows Selects a Driver 255

The Process 255

Searching For INF Files

The Registry’s Role
The Control Panel

What the User Sees

Inside an INF File 262

Sections

The Generic INF File for HIDs

Creating INF Files 271
Tools

Tips

12.. Device Classes 275

Uses of Classes 276

Elements of a Class Specification
Defined Classes

Matching a Device to a Class 279

Standard Peripheral Types
Non—standard Functions

13. Human Interface Devices: Firmware Basics 293

What is a HID? 294

Hardware Requirements

Firmware Requirements

Identifying :1 Device as a HID 299
Descriptor Contents

viii USB Complete

Table of Contents

HID Class Descriptor

Report Descriptors

HID—specific Requests 306
GetHReport

SetfiRepo rt
Get__Idle

Set_Idle

GetflProtocol

SetflProtocol

Transferring Data 314

Sending Data to the Host
Receiving Data from the Host

14. Human Interface Devices: Reports 321

Report Structure 321

Using the HID Descriptor Tool
Predefined Values

Short Items

Long Items

The Main Item Type 325

Input, Output, and Feature Items
Collection and End Collection Tags

The Global Item Type 330

Identifying the Report

Describing the Data’s Use

Converting Raw Data

Describing the Data’s Size and Format
Saving and Restoring Global Items

The Local Item Type 339

Physical Descriptors

Padding

15. Human Interface Devices: Host Application Primer 343
Host Communications Overview 344

How the Host Finds a Device

Documentation

The HID Functions

DirectX

Using API Functions 348
Using Visual C++

Using Visual Basic
The Declaration

USB Complete ix

Table of Contents

Calling a Function
Two Useful Routines

Device Attachment and Removal 362

USBVieW

Searching for a Device
Device Notification

Enabling and Disabling Devices

16. Human Interface Devices:

Hlost ApplicationExample 365

Finding a Device 366
Obtain the GVUID for the HID Class

Get an Array of Structures with Information about the HIDs

Identify Each HID Interface
Get the Device Pathname

Get a Handle for the Device

Read the Vendor and Product IDs

Get a Pointer to a Buffer with Device Capabilities
Get the Device’s Capabilities
Get the Capabilities of the Values

Reading and Writing Data 384

Sending an Output Report to the Device
Reading an Input Report from the Device

Reading Reports without Blocking the Thread
Writing a Feature Report to the Device

Reading a Feature Report from a Device
Closing Communications

17. Device Testing 401
USB Check’s Test Suite 402

Detecting a Device
The Tests

HIDVieW

Test Equipment 409

Protocol Analyzers

Other Test Equipment

Testing and Logos 417

The USB Implementers Forum Compliance Program
Windows Hardware Quality Labs Testing
Driver Signing

18. Hubs: the Link between Devices and the Host 423

x USB Complete

Hub Basics 424

The Hub Repeater
The Transaction Translator

The Hub Controller

Speed
How Many Hubs in Series?

The Hub Class 434

Hub Descriptors

Hub Values for the Standard Descriptors

The Hub Descriptor

Hub—class Requests
Port Indicators

19. Managing Power 443

Powering Options 443
Voltages

Which Peripherals Can Use Bus Power?
Power Needs

Informing the Host
Hub Power 449

Power Sources

Over—current Protection

Power Switching

Saving Power 452
Global and Selective Suspends

Current Limits for Suspended Devices

Resuming Communications

20. Signals and Encoding 457
Bus States 457

Low— and Full-speed Bus States

Highvspeed Bus States

Data Encoding 462

Staying Synchronized

Timing Accuracy
Packet Format 467

SYNC Field

Packet Identifier Field

Address Field

Endpoint Field
Frame Number Field

Data Field

USB Complete

Table of Contents

xi

Table of Contents

CRC Fields

Inter—packet Delay
Test Modes 470

Entering and Exiting Test Modes
The Modes

21. The Electrical Interface 473

Transceivers and Signals 474
Cable Segments

Low~ and Full~speed Transceivers

High—speed Transceivers

Signal Voltages 484

Low and Full Speeds
High Speed

Cables 485

Conductors

Connectors

Detachable and Captive Cables

Cable Length

Ensuring Signal Quality 492
Sources ofNoise

Balanced Lines

'l‘wisted Pairs

Shielding
Edge Rates
Isolation

Index 497

xii USB Complete

introduction

Introduction

The Universal Serial Bus (USB) is a fast and flexible interface for connecting

devices to computers. Every new PC has at least a couple of USB ports. The
interface is versatile enough to use with standard peripherals like keyboards

and disk drives as well as more specialized devices, including one—of~a—kind

designs. USB is designed from the ground up to be easy for end users, with
no user configuring required in hardware or software.

In short, USB is very different from the legacy interfaces it’s replacing. A

USB device may use any of four transfer types and three speeds. On attach—

ing to a PC, a device must respond to a series of requests that enable the PC
to learn about the device and establish communications with it. in the PC,

every device must have a low~level driver to manage communications

between applications and the system’s USB drivers.

Developing a USB device and the software that communicates with it

requires knowing something about how USB works and how the PC’s oper—

ating system implements the interface. In addition, the right choice of conw

USB Complete xiii

Introduction

troller chip, device class, and tools and techniques can go a long way in

avoiding snags and simplifying what needs to be done. This book is a guide
for developers of USB devices. Its purpose is to introduce you to USB and to

help get your project up and running and troublefree as quickly and easily as
possible.

Who should read this book?

xiv

This book is for you if you want to know how to design a USB peripheral,
or if you want to know how to communicate with USB peripherals From the
applications you write. These are some of questions the book answers:

' What is USB and how do peripherals use it to communicate with PCs?

There’s a lot to the USB interface. learning about it can be daunting at
first. This book’s focus is on the practical knowledge you’ll need to com”
plete your project.

How can I decide if my project should use a USB interface? Maybe your

design isn’t suited for USB. I’ll show you how to decide whether it is. If

the answer is yes, I’ll help you decide which of USB’s speeds and transfer
types to use.

How do I choose a USB controller chip for my peripheral design? Every USB
peripheral, must contain an intelligent controller. There are dozens of

controller chips designed for use in USB peripherals. in this book, I corn~

pare popular chip Families and offer tips on how to decide, based on both

your project’s needs and your own background and preferences.

How do applications communicate with USB peripherals? To communicate

with a USB peripheral, a PC needs two things: a device driver that knows

how to communicate with the PC’s US‘B drivers and an application that

knows how to talk to the device driver. Some peripherals can use drivers

that are built into Windows. Others may require a custom driver. This

book will show you when you can use Windows’ built—in drivers and how

to communicate with devices from Visual Basic and Visual C++ applica~

tions. You’ll also find out what’s involved in writing a device driver and

what tools can help to speed up the process.

USB Complete

Introduction

' How do USB peripherals communicate? USB peripherals typically use a
combination of hardware and embedded code to communicate with

PCs. In this book, I show how to write the code that enables Windows to

identify a device and load the appropriate device driver, as well as the

code required for exchanging data with applications.

° How do I decide whet/oer my perzpbeml can use but power, or whet/Jet it

needs its own supply? A big advantage to USB is that many peripherals can

be powered entirely from the bus. Find out whether your device can use

this capability and how to manage power use, especially for devices that

use battery power.

° How sun I be sure that my device will opemzfe us smoollzly us possiolefor its

end users? On the peripheral side, smooth operation requires understand—

ing the specifications requirements and how the device can meet them.

In the PC, proper operation requires a correctly structured information
(INF) file that enables Windows to identify the device and software that

knows how to communicate with the device as efficiently as possible.

This book has information and examples to help with each of these.

What’s new in the Second Edition?

In the months after the publication of the first edition of USB Complete,

much happened in the world of USB, including the release of version 2.0 of

the USB specification. USB 2.0 supports a bus rate of 480 Megabits per sec—

ond, forty times faster than USB 1.1. This and other developments in hard~

ware and software prompted this second edition of the book.

Rather than just tacking on a chapter about USB 2.0, I’ve revised the book
from start to finish to reflect the changes in 2.0. By popular request, another

addition is Visual C++ code to accompany the Visual Basic examples for

application communications with USB devices. I’ve also expanded the mate—
rial about Windows drivers and applications to include Windows 2000, and

have added information on new controller chips and development tools.

Other additions and updates are sprinkled throughout, many prompted by

reader suggestions.

USB Complete xv

introduction

Is this book really complete?

Although the title is USB Complete, please don’t expect this book to contain

every possible fact about USB. That would take a library. The Complete in

the title means that this book will guide you from knowing nothing about

USB to developing all of the code required to get a USB peripheral up and
communicating with a PC.

There are many other worthy topics related to USB, but limitations of time

and space prevent me from including them all.

My focus is on communicating with Windows PCs. Although the basic
principles are the same, I don’t include details about how to communicate

with peripherals on a Macintosh or a PC running Linux or other non»Win~

dows operating systems.

I cover the basics of the device drivers responsibilities and What’s involved in

writing a driver, but the details of driver writing can easily fill a book (and in

fact there are excellent—wand lengthymbooks on this topic), This book will

help you decide when you need to write a custom driver and when and how

to use a class driver included with Windows.

To understand the material in the book, it’s helpful to have basic knowledge

in a few areas. I assume you have some experience with digital logic, applica—
tion programming for PCs and writing embedded code for peripherals. You

don’t have to know anything at all about USB.

Additional Resources, Updates, and Corrections

xvi

For more about using USB, I invite you to visit my USB Central page at

Lakevicw Research’s website, www. meom. This is where you’ll find corn~

plete code examples, updates, links to vendors, information and tools from

other sources, as well as links to anything else I find that’s relevant to devel~

oping USB products. If you have a suggestion, code, or other information

that you’d like me to post or link to, let me know at jan@[vr. mm.

In spite of my very best efforts, I know from experience that errors will slip

through in this book. As they come to light, I’ll document them and make a

USB Complete

Introduction

list available at Lakeview Research’s website. if you find an error in the book,

please let me know and I’ll add it.

Thanks!

USB is way too complicated to write about Without help. I have many peo'

ple to thank.

I owe an enormous thank you to my technical reviewers, who generously

read my rough and rocky drafts and provided feedback that has improved
the book enormously. (With that said, every error in this book is mine and
mine alone.)

I thank Paul E. Berg of PEB Consulting; Brian Buchanan, Mark Hastings,

Lane Hauck, Bijan Kamran, Kosta Koeman, Tim Williams, and Dave

Wright of Cypress Semiconductor; Joshua Buergel of BSQUARE Inc.; Cary
Crowell of Micron Technology; Fred Dart of Future Technology Devices
lnternational (FTDl); Dave Dowler; Mike Fahrion and the engineers at

88613 Electronics; John M. Goodman, author of Hard Dis/e Secrets, Peter

Norton '5 Inside the PC, Memory Mnngementfir All of Us, and other books;

John Hyde, USB enthusiast and author of USB Design by likample; David
James of lZerol Technologies; Christer Johansson of High Tech Horizon;

Jon Lueker of Intel Corporation; Bob Nathan ofNCR Corporation; Robert
Severson of USBMicro; and Craig R. Smith of Ford. Motor Company,

R8CVT department.

Others I want to thank for their help in my researching and writing this

book are Walter Banks of Byte Craft; Jason Bock; Michael DeVault of

DeVaSys Embedded Systems; Pete Fowler, Joseph McCarthy, and Don Park—
man of Cypress Semiconductor; Brad Markisohn of INDesign LLC; Daniel
McClure of Tyco Electronics; Tawnee McMullen of Belkin Components;
Rich Moran of RPM Systems Corporation; Dave Navarro of PowerBasic;

and Amar Rajan of American Concepts Consulting.

I hope you find the book useful. Comments invited!

Jan Axelson, June 2001

jnn @[nncam

USB Complete xvii

Introduction

xviii USB Complete

A Fresh Start

A Fresh Start

Computer hardware doesn’t often get a chance to start fresh. Anything new

usually has to remain compatible with whatever came before it. This is true

of both computers and the peripherals that connect to them. Even the most

revolutionary new peripheral has to use an interface supported by the com—

puters it connects to.

But what ifyou had the chance to design a peripheral interface from scratch?

What qualities and features would you include? It’s likely that your wish list
would include these:

' Easy to use, so there’s no need to fiddle with configuration and setup
details.

° Fast, so the interface doesn’t become a bottleneck of slow communica-

tions.

' Reliable, so that errors are rare, with automatic correction of errors that

do occur.

° Flexible, so many kinds of peripherals can use the interface.

USB Complete 1

Chapter 1

0 Inexpensive, so users (and the manufacturers who will build the inter-

face into their products) don’t balk at the price.

0 Power-conserving, to save battery power on portable computers.

‘J Supported by the operating system, so developers don’t have to strug»
gle with writing low«level drivers for the peripherals that use the inter_
face.

The good news is that you don’t have to create this ideal interface, because

the developers of the Universal Serial Bus (U SB) have done it for you. USB

was designed from the ground up to be a simple and efficient way to com—

municate with many types of peripherals, without the limitations and frus—

trations of existing interfaces.

Every new PC has a couple of USB ports that you can connect to a key—

board, mouse, scanners, external disk drives, printers, and standard and cus~

tom hardware of all kinds. inexpensive hubs enable you to add more ports
and peripherals as needed.

But one result of USB’s ambitious goals has been challenges for the develop—

ers who design and program USB peripherals. A result of USB’s versatility

and ease of use is an interface that’s more complicated than the interfaces it

replaces. Plus, any new interface will have difficulties just because it’s new.

When USB first became available on PCs, Windows did n’t yet include

device drivers for all popular peripheral types. Protocol analyzers and other

development tools couldnt begin to be designed until there was a specifica—
tion to follow, so the selection of these was limited at first. Problems like

these are now disappearing, and the advantages are increasing with the avail»

ability of more controller chips, new development tools, and improved oper—

ating—system support. This book will show you ways to get a USB peripheral

up and running as simply and quickly as possible by making the best possi—
ble use of tools available now.

This chapter introduces USB, including its advantages and drawbacks, a

look at what’s involved in designing and programming a device with a USB

interface, and a bit of the history behind the interface.

2 USB Complete

A Fresh Start

What USB Can Do

USB is a likely solution any time you want to use a computer to communi—

cate with devices outside the computer. The interface is suitable for

onevokaind and small—scale designs as well as mass—produced, standard

peripheral types.

To be successful, an interface has to please two audiences: the users who

want to use the peripherals and the developers who design the hardware and
write the code that communicates with the device. USB has features to

please both.

Benefits for Users

From the user’s perspective, the benefits to USB are ease of use, fast and reli—

able data transfers, flexibility, low cost, and power conservation. Table l—l

compares USB with other popular interfaces.

Ease of Use

Ease of use was a major design goal for USB, and the result is an interface

that’s a pleasure to use for many reasons:

One interface for many devices. USB is versatile enough to be usable with

many kinds of peripherals. Instead of having a different connector type and

supporting hardware for each peripheral, one interface serves many.

Automatic configuration. When a user connects a USB peripheral to a

powered system, Windows automatically detects the peripheral and loads

the appropriate software driver. The first time the peripheral connects, \Win~

dows may prompt the user to insert a disk with driver software, but other

than that, installation is automatic. There’s no need to locate and run a

setup program or restart the system before using the peripheral.

No user settings. USB peripherals don’t have user—selectable settings such as

port addresses and interrupercquest (IRQ) lines. Available IRQ lines are in

short supply on PCS, and not having to allocate one for a new peripheral is

often reason enough to use USB.

USB Complete 3

Chapter 1

Table 1—1: Comparison of popular computer interfaces. Where a standard

Interface Format Number of Length 'éEéEd Typical Use
Devices (maximum, (maximum,

(maximum) feet) bits/sec.)
WWW
USB asynchronous 127 16 (or up to 1.5M, 12M, Mouse,

serial 96 ft. with 5 480M keyboard, disk

hubs) drive, modem,
audio

RS—232 asynchronous 2 50—100 20k (1 15k Modem, mouse,
(ElA/TIA~ serial with some instrumentation

232) L hardware)
RS—485 asynchronous 32 unit loads 4000 1 10M Data acquisition
(TIA/EIA— serial (up to 256 and control

485) devices with systems
some

hardware)

erA asynchronous 2 6 1 15k Printers, hand—

serial infrared held computers

Microwire synchronous 8 10 2M Microcotrollcr
serial communications

SP1 synchronous 8 10 2.1M Microcotroller
serial communications

12C synchronous 40 18 3 .4M Microcotroller
serial communications

lEEE—l 394 serial 64 15 400M Video, mass

(FireWire) (increasing to storage
3.2G with

lEEE— 1 39417

IEEE~488 parallel l 5 60 8M Instrumentation
(GPIB)

Ethernet serial 1024 1600 10M/T00M7" networked PC
1G

MlDl serial current 2 (more with 50 31.51: Music, show

loop flow—through control

mode)

Parallel Printer parallel 2 (8 with 10'30 8M Printers,

Port daisy—chain scanners, disk.

support) drives

4 088 Complete

A Fresh Start

Figure 1-1: The two USB connectors (right) are much more compact than typical

RS-232 serial (left) and Centronics parallel (center) connectors.

Frees hardware resources for other devices. Using USB for as many

peripherals as possible frees up IRQ lines for the peripherals that do require

them. The PC dedicates a series of port addresses and one interrupt—request

(IRQ) line to the USB interface, but beyond this, individual peripherals

don’t require additional resources. In contrast, each non—USE peripheral

requires dedicated port addresses, often an IRQV line, and sometimes an

expansion slot (for a parallel—port card, for example).

Easy to connect. With USB, there’s no need to open the computer’s enclo—

sure to add an expansion card for each peripheral. A typical PC has at least

two USB ports. You can expand, the number of ports by connecting a USB

hub to an existing port. Each hub has additional ports for attaching more

peripherals or hubs.

Simple cables. The USB’s cable connectors are keyed so you can’t plug

them in wrong. Cables can be as long as 5 meters. With hubs, a device can

be as far as 30 meters from its host PC. Figure l—l shows that the USB con—

nectors are small and compact in contrast to typical RS—232 and parallel

USB Complete 5

Chamer1

connectors. To ensure reliable operation, the specification includes detailed

requirements that all cables and connectors must meet.

Hot pluggable. You can connect and disconnect a peripheral whenever you

want, whether or not the system and peripheral are powered, without dame

aging the PC or peripheral. The operating system detects when a device is
attached and readies it for use.

No power supply required (sometimes). The USB interface includes

power-supply and ground lines that provide +5V from the computers or

hub’s supply. A peripheral that requires up to 500 milliamperes can draw all

of its power from the bus instead of having its own supply. in contrast. most

other peripherals have to choose between including a power supply in the

device or using a bulky and inconvenient external supply.

Speed

USB supports three bus speeds: high speed at 480 Megabits per second, full

speed at 12 Megabits per second, and low speed at 1.5 Megabits per second.

Every USE—capable PC supports low and full speeds. High speed was added.

in version 2.0 of the specification, and requires USE 2.0~capable hardware

on the motherboard or an expansion card.

These speeds are signaling speeds, or the bit rates supported by the bus. The

rates of data transfer that individual devices can expect are lower. in addition

to data, the bus must carry status, control, and error-checking signals. Plus,

multiple peripherals may be sharing the bus. The theoretical maximum rate

for a single transfer is over 53 Megabytes per second at high speed. about “L2

Megabytes per second at full speed, and 800 bytes per second at low speed.

\X/hy three speeds? low speed was included for two reasons. Low—speed

peripherals can often be built more cheaply. And for mice and devices that

require flexible cables, low»speed cables can be more flexible because they

don’t require as much shielding.

Full speed is comparable to or better than the speeds attainable with existing

serial and parallel ports and can serve as a replacement for these.

6 USBCompmm

A Fresh Start

After the release of USB 1.0, it became clear that a faster interface would be

useful. Investigation showed that a speed increase of forty times was feasible

while keeping the interface backwards—compatible with low— and full~speed

devices. High speed became an option with the release of version 2.0 of the

USB specification.

Reliability

The reliability of USB results from both the hardware design and the

data«transfer protocols. The hardware specifications for USB drivers, receiv—
ers, and cables eliminate most noise that could otherwise cause data errors.

In addition, the USB protocol enables detecting of data errors and notifying

the sender so it can retransmit. The detecting, notifying, and, retransmitting

are typically done in hardware and don’t require any programming or user
intervention.

Low Cost

Even though USB is more complex than earlier interfaces, its components

and cables are inexpensive. A device with a USB interface is likely to cost the

same or less than its equivalent with an older interface. For very low—cost

peripherals, the lowwspeed option has less stringent hardware requirements

that may reduce the cost further.

Low Power Consumption

Power—saving circuits and code automatically power down USB peripherals

when not in use, yet keep them ready to respond when needed. In addition

to the environmental benefits of reduced power consumption, this feature is

especially useful on battery—powered computers where every milliampere
COUH’CS.

Benefits for Developers

The above advantages for users are also important to hardware designers and

programmers. The advantages make users eager to use USB peripherals, so

there’s no need to fear wasting time developing for an unpopular interface.

And many of the user advantages also make things easier for developers. For

USB Complete 7

Chapter 1

example, 'USB’s defined cable standards and automatic error checking mean

that developers don’t have to worry about specifying cable characteristics or

providing error checking in software.

USB also has advantages that benefit developers specifically. The developers

include the hardware designers who select components and design the cir—

cuits, the programmers who write the software that communicates with

USB peripherals, and the programmers who write the embedded code inside

the peripherals.

The benefits to developers result from the flexibility built into the USB pro

tocol, the support in the controller chips and operating system, and the fact

that the interface isn’t controlled by a single vendor. Although users aren’t

likely to be aware of these benefits, they’ll enjoy the result, which is inexpenw

sive, troublerfree, and feature—rich peripherals.

Flexibility

USB’s four transfer types and three speeds make it feasible for many types of

peripherals. There are transfer types suited for exchanging large and small
blocks of data, with and without time constraints. For data that can’t toler—

ate delays, USB can guarantee a transfer rate or maximum time between

transfers. These abilities are especially welcome under Windows, where

accessing peripherals in real time is often a challenge. The operating system,

device drivers, and application software can still introduce unavoidable

delays, but USB makes it as easy as possible to achieve transfers that are close
to real time.

Unlike other interfaces, USB doesrft assign specific functions to signals or

make other assumptions about how the interface will be used. For example,

the status and control lines on the PC’s parallel port were defined with the

intention of communicating with line printers. There are five input lines

with assigned functions such as indicating a busy or paper—out condition.

When developers began using the port for scanners and other peripherals

that send large amounts of data to the PC, the limitation of having just five

inputs was an obstacle. (Eventually the interface was expanded to allow eight

8 USB Complete

A Fresh Start

bits of input.) USB makes no such assumptions and is suitable for just about

any device type.

For communicating with common device types such as printers and

modems, there are USB classes with defined device requirements and proto—

cols. This saves developers from having to re—invent these.

Operating System Support

Windows 98 was the first Windows operating system to reliably support

USB, and its successors, including Windows 2000 and Windows Me, sup-

port USB as well. This book focuses on Windows programming for PCs,

but other computers and operating systems also have USB support. On

Apple’s iMac, the only peripheral connectors are USB. Other Macintoshes
also support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

However, a claim of operating—system support can mean many things. The

level of support can vary! At the most fundamental level, an operating sys—

tem that supports USB must do three things:

' Detect when a device is attached to or removed from the system.

° Communicate with newly attached devices to find out how to exchange
data with them.

° Provide a mechanism that enables software drivers to communicate with

the host computer’s USB hardware and the applications that want to

access USB peripherals.

At a higher level, operating system support may also mean the inclusion of
software device drivers that enable application programmers to access

devices by calling functions supported by the operating system. if the oper—

ating system doesn’t include a device driver appropriate for a specific periph—

eral, the peripheral vendor has to provide one.

Microsoft has added class drivers with each release of Windows. Device

types with included drivers now include human interface devices (key—
boards, mice, joysticks), audio devices, modems, still—image cameras and

scanners, printers, and mass—storage devices. A filter driver can support

USB Complete 9

Chapter 1

1O

device—specific features and abilities. Applications use Applications Program

interface (API) functions or other operating—system components to commtv
nicate with the device drivers.

ln the future, Windows will likely include support For more device classes.

in the meantime, some chip vendors provide drivers that developers can use

with their chips, either as~is or with minimal modifications.

USB device drivers use the new WinBZ Driver Model (WDM), which

defines an architecture for drivers that run under Windows 98, Windows

2000, Windows Me, and future Windows editions. The aim is to enable

developers to support all of the operating systems with a single driver. The

reality is that some devices still require two, though similar, WDM drivers,
one for Windows 98/Windows Me and one for Windows 2000.

Because Windows includes low~level drivers that handle communications

with the USB hardware, writing a USB device driver is easier than writing a
driver for devices that use other interfaces.

Peripheral Support

On the peripheral side, each USB devices hardware must include a control-

ler chip that handles the details of USB communications. Some controllers

are complete microcomputers that include a CPU and memory to store

device'specific code that runs inside the peripheral. Others handle only
USBaspecific tasks, with a data bus that connects to another microcontroller

that performs non—USB related Functions and communicates with the USB
controller as needed.

The peripheral is responsible for responding to requests to send and receive

configuration data, and for reading and writing other data when requested.
In some chips, seine functions are microcoded in hardware and don’t need

to be programmed.

Many USB controllers are based on popular architectures such as Intel’s

8051, with added circuits and machine codes to support USB. If you’re

already familiar with a chip architecture that has a USB~capable variant,

there’s no need to learn an entirely new architecture in order to use USB.

USB Complete

A Fresh Start

Most peripheral manufacturers provide sample code for their chips. Using

this code as a starting point for your own developing can give you a quick
start.

USB lmplementers Forum

Unlike other interfaces, where you’re pretty much on your own when it

comes to getting a design up and running, USB offers plenty of help Via the

USB lmplementers Forum, Inc. (USB’IF) and its website (www.mborg).

The Forum is the nonprofit corporation Founded by the companies that

developed the USB specification. The Forum’s mission is to support the

advancement and adoption ot‘USB technology.

To that end, the Forum offers information, tools, and testing. The informa—

tion includes the specification documents, White papers that delve into spe~

cific topics in detail, FAQs, and a web board where developers can post and

answer questions on any USE—related topic. The tools include software and

hardware to help in developing and testing products. Testing includes devel'

oping compliance tests to verify proper operation, holding compliance

workshops where developers can have their products tested, and granting

the rights to use the USB Logo on products that pass the tests.

It’s Not Perfect

All of USB’s advanta es mean that it’s a ood candidate for use with mang g Y

peripherals. But one interface can’t do it all.

User Challenges

From the user’s perspective, the downside to USB includes lack of support

in older hardware and operating systems, speed and distance limits that

make USB impractical for some uses, and problems with some products due

to difficulties experienced by the developers of. early USB products.

Lack of Support for Legacy Hardware

Older (“legacy”) computers and peripherals don’t have USB ports. If you

want to connect a non-USE peripheral to a USB port, a solution is a cone

USB Complete 11

Chapter 1

12

verter that translates between USB and the older interface. Several sources

have converters for use with peripherals with R5232, R5485, and Cenv

tronics—type parallel ports. However, the converter solution is useful only for

peripherals that use conventional protocols supported by the converter’s

device driver. For example, a parallel~port converter is likely to support

printers but not other peripheral types.

If you want to use a USB peripheral with a PC that doesn’t support USB,

the solution is to add USB capabilities to the PC. This requires two things:

USE host—controller hardware and an operating system that supports USE.

The hardware is available on expansion cards that plug into a PCI slot (or on

a replacement motherboard). The version of Windows should be Windows

98 or later. A few peripherals have drivers for use with later releases of Win»

dows 95, but it’s best not to count on these being available. if the hardware

doesn’t meet Windows 985 minimum requirements, it will need upgrades.

The upgrades may end up costing more than a new system with USB, so

replacing the system may be the best option.

If upgrading the PC to support USB isn’t feasible, what about using a con-

verter to translate the peripherals USB interface to the PC’s RSQSZ, paral»

lel, or other interface? Interface converters are generally designed for use

between a USB port on a PC and a peripheral with a legacy interface. A con—

verter for the other direction would be much more complicated because the

peripheral would have to contain the host~controller hardware and code that

normally resides in the PC. So a converter isn’t normally an option when the

PC has the legacy interface.

Even on new systems, users may occasionally run applications on older

operating systems such as MS—DOS. But the drivers that Windows 98 appliv

cations use to communicate with USB devices are specific to Windows.

Without a driver, there’s no way to access a USB peripheral. Although it’s

possible to write a USB driver for DOS, the reality is that few peripherals
provide one.

However, for the mouse and keyboard, which are standard, essential periph—
erals, the system’s BIOS is likely to include support to ensure that the

peripheral is usable any time, including from within DOS, from the BIOS

USB Complete

A Fresh Start

screens that you can view on bootup, and from Windows’ Safe mode (used

in system troubleshooting). If there is no BIOS or other support, the system

will need to have an old—style keyboard interface and a spare keyboard for
these uses.

Speed Limits

USB is versatile, but it’s not designed to do everything. USB’s high speed

makes it competitive with the [BEE—1394 (Firewire) interfaces 400 Mega

bits per second, but BEBE-1394b will be faster still, at 3.2 Gigabytes per sec—
ond.

Distance Limits

USB was designed as a desktop bus, with the expectation that peripheralsu

would be relatively close at hand. A cable segment can be as long as 7

meters. Other interfaces, such as R8232, RS—485, and Ethernet, allow

much longer cables. You can increase the length of a USB link to as much as

30 meters by using cables that link five hubs and a device, using 6 cable seg—
ments of 5 meters each.

To extend the range beyond this, an option is to use a USB interface on the

PC, then convert to RS485 or another interface for the long—distance

cabling and peripheral interface.

Peer to Peer Communications

The assumption that USB is a desktop bus also means that every USB sys—

tem has a host computer to manage the bus communications. Peripherals

can’t talk to each other directly. All communications are to or from the host

computer. Other interfaces, such as IEEE—1394, allow direct periph—

eral—to—peripheral communications.

USB provides a partial solution with USB On—The—Go, introduced in 2001

in a supplement to the 2.0 specification. USB On—The—Go defines a host

computer with reduced capabilities, suitable for use in embedded devices

that need to connect to a single USB peripheral.

USB Complete 13

Chapter 1

Products with Problems

When USB works, its great. But the reality is that some USB products don’t.

work as well as they should. When something misbehaves, the result can be

an inability to communicate with a peripheral or an application or system

crash. The source of the problem may be in hardware or software, in the PC

or in the peripheral. Problems like these are a result of USB’s complexity and

newness combined with inadequate testing.

But there are plenty of products that do perform exactly as they should. The

problems are diminishing as the operating-system support has improved and

developers have become more familiar with USB.

Developer Challenges

14

From the developer’s perspective, the main downside to USB is the increased

complexity of the programming. Bugs in the USB hardware in the periph—

eral or PC can also slow project development and cause problems after a

product is released. However, these problems are also diminishing as the

operating—system support increases, more chips and development tools are

available, and everyone gains more experience.

Protocol Complexity

To program a USB peripheral, you need to know a fair amount about the

USB’S protocols (the rules for exchanging data on the bus). The controller

chips handle much of the communications automatically, but they still must

be programmed, and this requires the knowledge to write the programs and

the tools to do the programming. Chips vary in how much support they

require to perform USB communications. On the PC side, the device driver

insulates application programmers from having to know many of the details,

but deviceedriver writers need to be familiar with USB protocols and the

driver’s responsibilities.

In contrast, some older interfaces can connect to very simple circuits with

very basic protocols. For example, the PC’s original parallel printer port is

just a series of digital inputs and outputs. You can connect to basic input

and output circuits such as relays, switches, and analog—to—digital converters,

USB Complete

A Fresh Start

with no computer intelligence required on the peripheral side and no device

driver required on the PC (just direct port reads and writes).

Evolving Support in the Operating System

Windows includes class drivers that enable applications to communicate

with some devices. This is great if you can design your device to use one of

the provided drivers. If not, in many cases you can use or adapt a driver pro-
vided by the controller—chip vendor, so you don’t have write a driver from
scratch. Several vendors offer toolkits that make the job of writing USB

drivers easier.

Hardware Bugs

Some early host—controller hardware wasn’t bugfree, and some peripheral

chips have had problems as well. In most cases, the manufacturers make
fixes available with new drivers or coding workarounds. The way to keep on

top of these problems is to choose your hardware carefully and visit manu—
facturers’ websites for the latest information and fixes.

Fees

The USB Implementers Forum provides the USB specification, related doc—
uments, software for compliance testing, and much more, all for free on its

website. Anyone can develop USB software without paying a licensing fee.

However, anyone who sells a device with a USB interface must obtain legal
access to use a Vendor ID. The administrative fee for obtaining a Vendor ID

from the Forum is $1500. Or ifyou join the Forum at $2500/year, the Ven—

dor ID is free, along with many other benefits such as compliance work—

shops. The Vendor ID and a Product ID assigned by the vendor are
embedded in each device to identify it to the operating system. The fee is no

problem for developers of high«volume products, but it can be an impedi—
ment to developers for the hobbyist market who expect to sell only small

quantities of inexpensive devices. Some chip manufacturers will assign their
Vendor ID and a block of Product IDs to customers for use with the manu—

facturer’s chips.

USB Complete 15

Chapter 1

History

To understand what USB is all about, it helps to know a little history. The
main reason that new interfaces don’t come around very often is that exist—

ing interfaces have the irresistible pull of all of the existing peripherals that
users don’t want to scrap. Also, using an existing interface saves the time and

expense of designing something new. This is why the designers of the origi—
nal IBM PC chose compatibility with the existing Centronics parallel inter—
face and the RS~252 serial—port interface~~to speed up the design process
and enable users to connect to printers and modems already on the market.
These interfaces proved serviceable for close to two decades. But as com«

puter power and the number of peripherals have increased, the older inter“

faces have became a bottleneck of slow communications, with limited

options for expansion.

The Motivation for Change

16

A break with tradition is justified when the desire for enhancements over—

shadows the inconvenience and expense of changing. This is the situation
that prompted the development of USE. The result is a versatile interface

that can replace existing interfaces to standard and custom peripherals on
computers of all types.

in the past, development of a new interface was often the work of a single
company. Hewlett Packard developed the HP Interface Bus (HPIB), which

came to be known as the GPIB (generai—purpose interface bus) for lab

equipment, and the Centronics Data Computer Corporation popularized a
printer interface that is still referred to as the Centronics interface.

But an interface controlled by a single company isn’t ideal. The company
may forbid others from using the interface, or charge licensing fees. Even if
the interface is freely available, a company may be reluctant to commit its

products to an interface controlled by another company who may be a com—
petitor and may change the interface without warning.

For these reasons, more recent interfaces are often the product of a collabo—
ration of manufacturers who share a common interest. In some cases, an

USB Complete

A Fresh Start

organization like the IEEE (Institute of Electrical and Electronics Engineers)

or TIA (Telecommunications Industry Association) sponsors committees to

develop specifications and publishes the results. In fact, many of the older

manufacturers’ standards have been taken over by these organizations. The

IEEEw1284 standard evolved from the Centronics interface, and the GPIB

was the basis for IEEE—488.

In other cases, the developers of a standard form a new organization to

release the standard and handle other development issues. This is the

approach used for USE. The copyright on the USB 2.0 specification is

assigned jointly to seven corporations, all heavily involved with PC hard—

ware or software: Compaq, Hewlett—Packard, Intel, Lucent, Microsoft,

NBC, and Philips. All have agreed to make the specification available with—

out charge (which is a refreshing change from the standards published by

other organizations). The USB Implementers Forum’s website has the latest

versions of all USB specifications and other information for both developers
and end users.

An early specification with many USE—like features was the ACCESS.bus

sponsored by Philips and Digital Equipment Corporation, who made it

available as an open standard. ACCESS.bus was in turn derived from the

12C synchronous serial bus. Although the electrical interface is different,

many of the functions and features are a lot like what ended up in USB.

ACCESS.bus was designed for interfacing keyboards, pointing devices, and

other devices at speeds of 100 kilobits per second. The bus supports up to

125 devices and IO—meter cables. Devices are hot—pluggable. The cable

includes +5V and ground wires. Classes are defined for keyboards, pointing

devices (called locators), monitor/display control and text devices. Unlike

USB, ACCESS.bus uses open—collector drivers, with one data wire and one
clock wire.

ACCESSbus never caught on with PCs, but is still used in other applica—

tions, including smart battery control.

USB Complete 17

Chapter 1

The Specifieation’s Release

18

Release 1.0 of the USB specification in January 1996 followed, several years

of development and preliminary releases. The 1.1 release is dated September

1998. USB 1.1 fixed problems identified in release 1.0 and added one new

transfer type (Interrupt OUT). In this book, [.26 refers to USB 1.0 and 1.1.

April 2000 saw the release of USB 2.0 with the new high—speed option... An

Engineering Change Notice (ECN) in December 2000 provided corrections
and defined a new mini~B connector,

Although companies may begin designing products while a specification is

still under development, by necessity, the availability of products on the

market lags the specifications release.

USB capability first became available on PCs with the release of Windows

953 OEM Service Release 2. There were at least two editions of this release,

OSR 2.1 and 2.5. Neither was available directly to retail customers. They

were sold only to vendors who installed Windows 95 on the PCs they sold.

The USB support in these versions was limited and buggy, and there weren’t

a lot of USB peripherals available, so use of U SB was limited in this era.

Things improved with the release of Windows 98 in June 1998. By this

time, many more vendors had USB peripherals available, and USB began to

take hold as a popular interface. A service pack for Windows 98 and the

release of Windows 98 Second Edition (SE) fixed some bugs and further

enhanced the USB support. The original version of Windows 98 is called

Windows 98 Gold, to distinguish it from Windows 98 SE.

This book concentrates on PCs running Windows 98 and later Windows

editions. Windows NT4 preceded \Windows 98 and doesn’t have USB sup—
port built in, but its successor, Windows 2000, does. Windows 98’s succes—

sor, Windows Me, also supports USB. Generally, Windows 2000 is more

stable and is targeted for business users, while Windows 98 and Windows

Me are more flexible and targeted for home users.

Following these editions is Windows XP, which is based on the Windows

2000 kernel but includes editions for both home and business users, with

the goal of replacing both Windows 98/Windows Me and Windows 2000.

USB Complete

A Fresh Start

In this book, the term PC includes all of the various computers that share

the common ancestor of the original IBM PC. The expression Wndows 98

and later means Windows 98, Windows 98 SE, Windows 2000, Windows

Me, and ‘Windows XP, and is also likely to apply to any Windows editions

that follow. A USE—capable PC is assumed to be using Windows 98 or later.

USB 2.0

A big step in USB’S evolution was version 2.0, whose main added feature is

support for much faster transfers. The original hope when researching the

new high speed was a 20—times increase in speed, but studies and tests

showed that this estimate was low. In the end, a 40—times increase was found

to be feasible, for a bus speed of 480 Megabits per second. This makes USB

much more attractive for peripherals such as printers, scanners, drives, and
even Video.

USB 2.0 is backwards compatible with USB 1.1. Version 2.0 peripherals can

use the same connectors and cables as 1.x peripherals. To use the new, higher

speed, peripherals must connect to 2.0—compliant hosts and hubs. 2.0 hosts

and hubs can also communicate with 1.x peripherals. A 2.0—compliant hub

with a slower peripheral attached will translate as needed between the

peripherals speed and high speed. This increases the hubs complexity but

makes good use of the bus time without requiring different hubs for differ«

ent speeds.

USB versus IEEE-1394

The other major interface choice for new peripherals is lEEE—1394. Apple

Computer’s implementation of the interface is called Firewire. USB and

BEBE—1394 take complimentary approaches, with BEBE—1394 being faster

and more flexible, but more expensive. lEEE—1394 is best suited for video

and other links where speed is essential or a host PC isn’t available. USB is

best suited for typical peripherals such as keyboards, printers, scanners, and

disk drives as well as low— to moderate—speed, cost—sensitive applications. For

many devices, either interface would work.

USB Complete 19

Chapter 1

20

With USB, a single host controls communications with many peripherals.

The host handles most of the complexity, so the peripherals’ electronics can

be relatively simple and inexpensive. IEEE‘1394 uses a peer»to»peer model,

Where peripherals can communicate with each other directly. A single com~

munication can also be directed to multiple receivers. The result is a more

flexible interface, but the peripherals electronics are more complex and

expensive.

113131343943 400 Megabits per second is more than 30 times faster than

USE 1.x’s 12 Megabits per second. As USB is getting faster with version 2.0,

IEEE—1394 is getting faster With the proposed IEEE~1394.b. its 3.2 Giga—

bits per second is over six times faster than USB 2.05 480 Megabits per sec—
ond.

USB Complete

Is USB Right for My Project?

2

Is USB Right for My

Project?

Before you can decide if USB is suitable for a project, you need to know a

little more about how USB works and what it can do. This chapter presents

some fast facts about USB, with the focus on what’s relevant when deciding

whether or not USB is a good choice for a project. There’s also a look at the

steps in developing a USB peripheral.

Fast Facts

Some of the first questions you might have relating to whether or not USB

is suitable for a project are these:

' What are the minimum requirements that a PC must meet in order to

use USB peripherals?

° How do devices connect to the PC?

' In reaLworld terms, how fast can a peripheral exchange data with a PC?

USB Complete 21

Chapter 2

“ How do applications communicate with the peripheral?

*5 What are the responsibilities of the code inside the peripheral?

This section answers these questions.

Minimum PC Requirements

22

Before you decide to design a USB peripheral, it makes sense to be sure that

the PCs that will use the peripheral can use the interface. To use USB, a PC

needs hardware and software support. The hardware consists of a USB host

controller and a root hub with one or more USB ports. The software sup

port is an operating system that supports USE.

The Host Controller

An interface won’t succeed if PC manufacturers don’t support it. Fortu~

nately, both PC and peripheral manufacturers have enthusiastically sup~

ported USE. Just about any new PC will have a USB host controller and at

least two port connectors. PCs as old as 1997 are likely to have hardware

support for USB. Microsoft and Intel’s PC 200] System Design Guide

requires new PCs to have two user—accessible USB ports. The USB imple—

menters Forums website has a usbrerzdy utility that examines a PCS resources

and reports whether or not the PC supports USB.

if a computer doesn’t have USB support built into its motherboard, you can

add one on an expansion card that plugs into a slot on the PCI bus. For por»
tables, USB controllers on PC cards are available.

Early USB controllers complied with the 1.x specification and supported

low and full speeds. 2.0—compliant controllers also support high speed.

The Operating System

The other side of USB support is in the operating system. Your developing

will be much easier if you require users to be running Windows 98 or later.

Windows 95 had some USB support, but the support was greatly improved
and enhanced in Windows 98. Windows 95 and Windows 98 can’t use the

same device drivers. Windows NT 4 doesn’t support USB at all. However, if

you’re developing a peripheral that needs to run under NT, you can use

USB Complete

Is USB Right for My Project?

BSQUARE’S USB Extension to WinDK to write a driver that enables the

peripheral to be used under NT DOS and Windows 3.x have no USB sup—

port built in.

The Components

The physical components of the Universal Serial Bus consist of the circuits,
connectors, and cables between a host and one or more devices.

The host is a PC or other computer that contains two components: a host

controller and a root hub. These work together to enable the operating sys—
tem to communicate with the devices on the bus. The host controller forv

mats data for transmitting on the bus and translates received data to a

format that operatingasystem components can understand. The host con

troller also performs other functions related to managing communications

on the bus. The root hub has one or more connectors for attaching devices.

The root hub, in combination with the host controller, detects the attach—

ment and removal of devices, carries out requests from the host controller,

and passes data between devices and the host controller.

The devices are the peripherals and additional hubs that connect to the bus.

A hub has one or more ports for connecting devices. Each device must con—
tain circuits and code that knows how to communicate with the host. The

specification defines the cables and connectors that connect devices to hubs.

Bus Topology

The topology, or arrangement of connections, on the bus is a tiered star

(Figure 2~1). At the center of each star is a hub. Each point on a star is a

device that connects to one of the hubs ports. The devices may be addi—

tional hubs or other peripherals. The number of points on each star can

vary, with a typical hub having two, four, or seven ports. When there are

multiple hubs in series, you can think of them as connecting in a tier, or

series, one above the next.

The tiered star describes only the physical connections. In programming, all

that matters is the logical connection. In communicating with a USB

USB Complete 23

Chapter 2

ROOT
HUB

PERIPHERAL PERIPHERAL
PERIPHERAL PERIPHERAL

HUB PERIPHERAL

 PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
Figure 2-1: USB uses a tiered star topology, where each hub is the center of a

star that can connect to peripherals or additional hubs.

device, neither the host or the device knows or cares Whether a communica—

tion passes through one hub or five. The hubs manage this automatically.

All of the devices on a bus share one data path to the host computer. Only
one device can communicate with the host at a time. For more bandwidth,

you can add a second data path to the host by installing an expansion card

with another host controller and root hub. Expansion cards with multiple
host controllers are also available.

24 USB Complete

Is USB Right for My Project?

Figure 2-2 shows a few of the possible configurations for a PC with two
USB connectors. If you have just two USB peripherals, you can plug one

into each port on the PC. If you have up to five peripherals, you can plug

one peripheral into one of the PC’s ports and attach a hub with Four down—
stream connectors to the other. You can then connect the remaining four

peripherals to the hub. Some peripherals are compound devices that contain

both a peripheral and a hub. You can cascade up to five external hubs in

series, up to a total of 127 peripherals and hubs (including the root hub). Of

course, it may be impractical to have this many devices sharing a data path.

In some cases, especially with compound devices where the hubs are hidden

inside the peripheral, the peripherals may appear to be using a daisy-chain

type of conneCtion, where each new peripheral hooks to the last one in a
chain. But the USB’s topology is more flexible and complicated than a daisy

chain. Each peripheral connects to a hub that manages communications

with the host, and the peripherals and hubs aren’t limited to connecting in a

single chain.

Defining Terms

In the universe of USB, several everyday words have specific meanings.

Along with host, defined earlier as the computer that controls the interface,
three other such terms are flmm'orz, hub, and device.

The USB specification defines a function as a device that provides a capabil—

ity to the host. Examples of functions are a mouse, a set of speakers, or a

data—acquisition unit.

A hub is a device that contains one or more connectors or internal connec—

tions to USB devices along with the hardware to enable communicating

with each device. Each connector represents a USB port.

A 1.): hub repeats received USB traffic in both directions, and also contains

the intelligence to manage power, send and respond to status and control

messages, and prevent full—speed data from transmitting to low—speed
devices. A 2.0 hub does all of this and more. A 2.0 hub supports high speed.

And instead of just repeating received data, as needed the hub converts

USB Complete 25

Chapter 2

PERIP-iERA_

H [I PERIP ERA-
PERIPHERAL ’/4r_apom HUB {i

 PERIP ERA-

H we a
HOST PC PERIPHERAL HOST PC COMPOUND DEVICE: PERIP ERA-

PERIPHERAL + 1-PORT HUB

HOST PC WITH 2 PERIPHERALS HOST PC WITH 6 PERIPHERALS PERIIHERA

///’tB—_-
[A PERIPi—ERAL iJE—J

E:fl PERIPHERA-
[MPERIP ERA- > II

T I v a PE 1P ERAL

l:\ “"RA.

E \PERIP Eflifl
7*PORT we 3 PERIP ERA-

PERIP—iERA-

’flfl
+4037ch

[I

PERIPHERAL

I?7—PORT HUB

PZRIPHERAL

PERIPI—ERA- 2~PORT HUB

HOST PC WITH 15 PERIPEERALS

Figure 2-2: There are many possible configurations for connecting USB devices
to a host PC. These are a few of the options for a host with two ports.

26 USB Complete

Is USB Right for My Project?

between low» and full—speed and high—speed data and performs other func—
tions that ensure that bus time is used efficiently.

A device, or peripheral, is something you attach to a USB port on a PC or
hub. The official definition of a device is a function or a hub—except for

the special case of the compound device, which contains a hub and one or
more functions. Generally, the host treats a compound device the same as if
the hub and its functions were each a separate physical device. Every device

on the bus has a unique address, except again for a compound device, whose

hub and functions each have unique addresses.

A composite device is a multifunction device with multiple, independent
interfaces. It has one address on the bus but each interface can have a differ—

ent device driver on the host.

If ou’re thinkin that this terminolo is confusin ', ou’re not alone.V g gY g Y

What is a Port?

This is also a good time to clarify the meaning of the word part in relation to
USB. A USB port is different in some ways from the traditional serial and

parallel ports on a PC.

In a general sense, a computer port is an addressable location that is available
for attaching additional circuits. Usually the circuits terminate at a connec—

tor that enables attaching a cable to a peripheral such as a keyboard, display,

or printer. In some cases, the peripheral circuits are hard—wired to the port.
Software monitors and controls the port circuits by reading and writing to

the ports address. Computer memory also consists of addressable locations,
but the CPU accesses memory with different machine instructions. On PCs,

most memory addresses connect only to the systems data bus, not to other

peripheral circuits.

USB ports differ from many other ports because all ports on the bus share a
single path to the host. With the RS—232 serial interface, each port is inde-
pendent from the others. If you have two R3232 ports, each has its own
data path, and each cable carries its own data and no one else’s. The two
ports can send and receive data at the same time.

USB Complete 27

Chapter 2

USB uses a different approach. Each host controller supports a single bus, or
data path. Each connector on the bus represents a USB port, but unlike

R8232, all devices share the available time. So even though there are multi_

ple ports, each with its own connector and cable, there is only one data path.
Only one device, or the host, transmits at a time. A single host may support
multiple USB host controllers, however, each with its own bus. Other inter—

faces that share a data path include THEE—1394 and SCSI.

The Hlost's Duties

28

The host PC is in charge of the bus. The host has to know what devices are

on the bus and the capabilities of each. The host must also do its best to

ensure that all devices on the bus can send and receive data as needed. A bus

may have many devices, each with different requirements, and all wanting to
transfer data at the same time. The host’s job is not trivial!

Fortunately, the host controller’s hardware and the USB support in Win—
dows do much of the work of managing the bus. Each device attach ed to the

host must have a device driver, which is a software component that enables
applications to communicate with the device. Some peripherals can use
device drivers included with Windows, while others require custom drivers.
Other system—level software components manage communications between
the device driver and the host—controller and root~hub hardware.

Applications don’t have to worry about the details of USB communications.

All they have to do is send and receive data using standard operating—system
functions that are accessible from just about all programming languages.

The tasks below are ones that the host performs. The descriptions are in
general terms. Later chapters in this book have more specifics.

Detect Devices

On powerwup, the hubs make the host aware of all attached USB devices. In

a process called enumeration, the host assigns an address and requests addi—
tional information from each device. After power—up, whenever a device is

removed or attached, the host learns of the event and enumerates any newly

USB Complete

Is USB Right for My Project?

attached device and removes any detached device from the devices available

to applications.

Manage Data Flow

The host manages the flow of data on the bus. Multiple peripherals may

want to transfer data at the same time. The host controller handles this by

dividing the available time into segments called frames and microframes,

and by giving each transmission a portion of a frame or microframe.

Transfers that must occur at specific rate are guaranteed to have the amount

of time they need in each frame. During enumeration, a device’s driver

requests the bandwidth it will need for transfers that must have guaranteed

timing. If the bandwidth isn’t available, the host doesn’t allow communica—

tions to begin. The driver must then request a smaller portion of the band—

width, or wait until the requested bandwidth is available. Transfers that have

no guaranteed timing use the remaining portion of the frames, and may
have to wait.

Error Checking

The host also has error—checking duties. It adds error—checking bits to the

data it sends. When a device receives data, it performs calculations on the

data and compares the results with the received error—checking bits. If the

results don’t match, the device doesn’t acknowledge receiving the data and

the host knows that it should retransmit. (USB also supports one transfer

type that doesn’t allow re—transmitting, in the interest of maintaining a con—

stant transfer rate.) In a similar way, the host error'checks the data it receives
from devices.

The host may receive other indications that a device can’t send or receive

data. The host can then inform the device’s driver of the problem, and the

driver can notify the application so it can take appropriate action.

Provide Power

In addition to its two signal wires, a USB cable has +5V and ground wires.

Some peripherals can draw all of their power from these lines. The host pro—

vides power to all devices on power—up or attachment, and works with the

USB Complete 29

Chapter 2

devices to conserve power when possible. Each full~power, buswpowered

device can draw up to 500 milliamperes. The ports on a battery—powered

host or hub may support only low—power devices, which are limited to 100

milliamperes. Windows doesn’t support hosts with low—power ports, how»

ever. A device may also have its own power supply, using bus power only

during the initial communications with the host.

Exchange Data with Peripherals

All of the above tasks support the host’s main job, which is to exchange data

with peripherals. In some cases, a device driver requests the host to attempt

to send or receive data at a requested rate, while in others the host commu~

nicates only when an application or other software component requests it.

The device driver reports any problems to the appropriate application.

The Peripheral's Duties

30

In many ways, the peripherals duties are a mirror image of the host’s. When

the host initiates communications, the peripheral must respond. But periph»

erals also have duties that are unique.

A device can’t begin USE communications on its own. Instead, it must wait

and respond to a communication from the host. (An exception is the remote

wakeup feature, which enables a device to request a communication from

the host.)

The USB controller in the device handles many of the communications

responsibilities automatically. The amount of support required in the

device’s firmware varies with the chip.

The peripheral must perform all of the tasks described below. The descrip

tions are in general terms. Later chapters in this book have more specifics.

Detect Communications Directed to the Chip

Each device monitors the device address in each communication on the bus.

If the address doesn’t match the device’s stored address, the device ignores
the communication. If the address does match, the device stores the data in

its receive buffer and generates an interrupt to signal that data has arrived. In

USB Complete

Is USB Right for My Project?

almost all chips, this is built into the hardware and thus automatic. The

devices program code doesn’t have to take action or make decisions until the
chip has detected a communication containing its address.

Respond to Standard Requests

On power—up, or when the device attaches to a powered, system, the device
must respond to the requests made by the host in the enumeration process.
The host may also send standard requests any time after enumeration com—

pletes.

All USB devices must respond to requests that query the capabilities and sta—

tus of the device or request the device to take other action. On receiving a

request, the device places any data or status information to send in response
in its transmit buffer. in some cases, such as setting an address or configura-

tion, the device takes other action in addition to responding with informa—

tion.

The specification defines eleven requests, and a class or vendor may define
additional requests. The device doesn’t have to carry out every request, how—
ever; it just has to respond to the request in an understandable way. For
example, when the host requests a configuration that the device doesnt sup—
port, the device responds with an indicator that the request isn’t supported.

Error Check

Like the host, the device adds error—checking bits to the data it sends. On

receiving data that includes error—checking hits, the device does the
error—checking calculations. The device’s response or lack of response
informs the host Whether to rertransmit. These functions are built into the

hardware and don’t need to be programmed. When appropriate, the device

also detects the acknowledgement that the host sends in reply to data it has
received.

Manage Power

A device may be bus—powered or it may have its own power supply. For
devices that use bus power, when there is no bus activity, the device must

enter its low—power Suspend state. During Suspend, the device must con—

USB Complete 31

Chapter 2

32

tinue to monitor the bus and exit the Suspend state when bus activity
resumes.

When the host enters a lowwpower state, such as Windows 98’s Standby
state. all communications on the bus cease, including the periodic timing
markers the host normally sends. When the devices that connect to the bus

detect the absence of bus activity for three milliseconds, they must enter the

Suspend state and limit the current they draw from the bus. A host may also
request to suspend communications with a specific device.

Devices that don’t support the remotewwakeup feature can consume no more

than 500 rnicroamperes from the bus in the Suspend state. If the
remote—wakeup feature is available and enabled by the host, the limit is 2.5

rnilliamperes. These are average values over a 1 second; the peak current can
be greater.

Exchange Data with the Host

All of the above tasks support the main job of the device’s USB port, which
is to exchange data with the host. After the device is configured, it must
respond to requests to send and receive data.

The host may poll the device at regular intervals or only when an applica»
tion requests to communicate with it. The devices configuration, the host’s
device driver, and the applications that use the device together determine
what type of requests the host makes and how often it makes them.

For most transfers where the host sends data to the device, the device must

respond to each transfer attempt by sending a code that indicates whether it

accepted the data or was too busy to handle it. For most transfers Where the

device sends data to the host, the device must respond to each attempt by
returning data or a code indicating there was no data to send or the device

was busy. Typically, the hardware responds automatically according to set~
tings made previously in firmware. Some transfers don’t use acknowledge—
ments and the sender just assumes the receiver has received all transmitted
data.

The controller chip’s hardware handles the details of formatting the data for
the bus. This includes adding error—checking bits to data to transmit, check~

USB Complete

Is USB Right for My Project?

ing for errors in received data, and sending and receiving the individual bits
on the bus.

Of course, the device must also do anything else it’s responsible for. For

example, a mouse must always be ready to detect movement and mouse

clicks, a data—acquisition unit has to read the data from its sensors, and a

printer must translate received data into images on paper.

What about Speed?

A device controller may support low speed, full speed, or full and high

speeds. Virtually all hubs support low— and full—speed devices. The exception

is a hub embedded in a compound device that has only lownspeed functions.

This hub would communicate at full speed with the host, but at low speed

with its embedded device(s). A low— or full—speed peripheral can connect to

any USB hub. Users can be completely unaware of whether a device is low

or full speed, because there are no user settings or configurations to worry
about.

High—speed peripherals are likely to be dual—speed devices that are also

usable when connected to any hub. A 1.x host or hub doesn’t support high

speed at all because high speed didn’t exist when the 1.x specifications were

written. To ensure that high-speed devices don’t confuse 1.x hosts and hubs,

all high«speed devices must respond to standard enumeration requests at full

speed. This enables any host to identify any device.

Other than responding to standard requests, a high—speed device doesn’t

have to function at full speed. But because 1.x hosts and hubs are likely to

remain in use for a while, and because supporting full speed is easy to do,

most high~speed devices will also be completely functional at full speed.

The actual rate of data transfer between a peripheral and host is less than the

bus speed and isn’t always predictable. Some of the transmitted bits are used

for identifying, synchronizing, and error~checking rather than data, and the

data rate also depends on the type of transfer and how busy the bus is.

For timewsensitive data, USB supports transfer types that have a guaranteed

rate or guaranteed maximum latency. Isochronous transfers have a guaran—

USB Complete 33

Chapter 2

34

teed rate, where the host can request a specific number of bytes to transfer to

or from a peripheral in a defined time period. A full~speed transfer can move

up to 1023 bytes in each l—millisecond frame. A high~spccd transfer can

move up to 3072 bytes in each 125emicrosecond microframe. Isochronous

transfers have no error correcting, however. Interrupt transfers have error

correcting and guaranteed maximum latency, which means that a precise

rate isn’t guaranteed, but the time between transfer attempts will be no

greater than a specified amount. At low speed, the requested maximum

interval may range from 10 to 255 milliseconds. At full speed, the range is l

to 255 milliseconds. At high speed, the range is 125 microseconds to 4.096
seconds.

Because the bus is shared, thereis no guarantee that a particular rate or maxi~

mum latency will be available to a device. if the bus is too busy to allow a

requested rate or maximum latency, the host will refuse to complete the con—

figuration process that enables the host’s software to attempt the transfers.

Also, although the host controller can guarantee bandwidth will be avail*

able, it’s up to the device driver, application software, and device firmware to

ensure that there is data to transfer when the host controller is ready for it.

At full speed, the fastest transfers on an otherwise idle bus are bulk transfers,

with a theoretical maximum of 1.216 Megabytes/second at full speed and

53.248 Megabytes/second at high speed. The host controller’s driver may

limit a single bulk transfer to a slower rate, however. The transfers with the

most guaranteed bandwidth are highwspeed interrupt and isochronous trans~

fers at 24.576 Megabytes/second.

Although the low—speed bus speed is 1.5 Megabits per second, the fastest

guaranteed delivery for a single transfer is 8 bytes in 10 milliseconds, or just

800 bytes per second. Low speed has uses, however, because the cables can

be cheaper, circuitaboard layout is simpler, and the controller chips may be

cheaper.

USB Complete

Is USB Right for My Project?

The Development Process

After you’ve made the decision to use a USB interface with your peripheral,

what’s next? Designing a USB product involves both getting the peripheral

up and running and developing the PC software to communicate with the

peripheral.

Elements in the Link

A USB peripheral needs all of the following:

° A controller chip with a USB interface.

' Code in the peripheral to carry out the USB communications.

‘ Whatever hardware and code the peripheral needs to carry out its other

functions (processing data, reading inputs, writing to outputs).

' A host that supports USB.

' Device—driver software on the host to enable applications to communi—

cate with the peripheral.

' If the peripheral isn’t a standard type supported by the operating system,

the host must have application software to enable users to access the

peripheral. For standard peripheral types such as a mouse, keyboard, or

disk drive, you don’t need custom application software (though you may

want to write a test application).

Tools for Developing

To develop a USB peripheral, you need the following tools:

0 An assembler or compiler to create the firmware (the code that runs

inside the device’s controller chip). If you use assembly code, you’ll need

a cross assembler that runs on a PC and translates your source code into

the machine code the controller understands. If you use C or another

highwlevel language, you’ll need a compiler that can generate the machine

Code for your COHU‘OllCI‘.

0 A device programmer or development kit that enables you to store the

assembled or compiled code in the controllers program memory.

USB Complete 35

Chapter 2

‘ A programming language and development environment on the host for

writing and debugging the host software. The host software may include

a device driver or filter driver and/or application code. To write a device

driver, you’ll need Visual C++, which is capable of compiling the WDM

(Win32 Driver Model) drivers required for USB devices.

° A monitor program, protocol analyzer, or other debugging tools to help

in developing your firmware.

Steps in Developing a Project

36

For a project of any size, you’ll want to create the project a piece at a time, in

modules, and get each piece working before moving on to the next. In writw

ing the firmware, you can begin by writing just enough code to enable Wine

dows to detect and enumerate the device. When that’s working, you can

move on to exchanging small blocks of data with applications. From there

you can add specific code for your application. The steps in project developw

ment include initial decisions, enumerating, and exchanging data:

Initial Decisions

Before you begin the developing, you need to gather data and make some
decisions:

1. Specify the requirements of your device. For the USB interface, how

much data does it need to transfer, and how fast? Do you need error correct~

ing? How much power will the device draw? What else does the device need
to do?

2. Use the answer to #1 to specify the requirements of the controller chip.

5. Using your requirements, decide Whether the PC will communicate with

the peripheral using Windows’ built~in drivers, a generic device driver from

another source, or a custom driver.

4. Select a controller chip that matches your requirements. If you have a

favorite chip family, start by looking for a controller in that family,

USB Complete

ls USB Right for My Project?

Enumerating

Here’s what you need to do to get Windows to enumerate your device:

1. Write the code the controller chip needs to be enumerated by its host.

The details vary with the chip, but every chip must be able send a series of

descriptors to the host. The descriptors are data structures that describe the

chips USB capabilities and how they’ll be used. The chip must also have

program code or hardware that recognizes and responds to the requests that

the host sends when it enumerates the device. Chip vendors generally pro—

vide example code that you can use with very few modifications.

2. Create or obtain an INF (information) file so that Windows can identify

the device when it enumerates it. The INF file is a text file that you can crew

are with any text editor. The file names the driver that the device will use. At

this point, you can use any generic driver supported by the chips descrip—

tors. Again, chip vendors often provide sample INF files. If your device uses

one of the classes supported by Windows, you may be able to use an INF file
included with Windows.

3. if necessary, design and build a circuit to connect the chip to the host. In

many cases, you’ll initially use a development board available from the chips
vendor.

4. Load the code into the device and plug the device into the host’s bus.

Windows should enumerate the device, adding it to the Control Panel and

identifying it correctly.

5. Debug and repeat as needed!

Exchanging Data

These are the steps related to getting the device to perform its intended
functions:

1. Add abilities to the device by adding code to the controller chip’s firm—

ware and components that connect to the chip.

2. If you’re using a custom driver, write the driver code to communicate
with the device.

USB Complete 37

Chapter 2

38

3, If needed, write application code to communicate with the USB device. if

you’re designing a mouse, keyboard, or other standard device, you can access

the device from any application,

When the code is debugged, you’re ready to program the code into the chip

and test on your final hardware.

But before you begin with any of this, it’s useful to know a more about how

the host enumerates and transfers data with devices, so you can make the

right choices about controller chips and drivers. This is the purpose of the

following chapters.

USB Complete

Inside USB Transfers

3

Inside USB Transfers

To design and program a USB device, you need to know a certain amount

about the inner workings of the interface. This is true even though the hard—

ware and. system software handle many of the details automatically.

This and the next three chapters are a tutorial on how USB transfers data.

This chapter has essentials that apply to all transfers. The following chapters
cover the four transfer types supported by USB, the enumeration process,

and the standard requests used in control transfers.

You don’t need to know every bit of this information to get a project up and

running, but I’ve found that understanding something about how the trans»

fers work helps in deciding which transfer types to use, in writing the firm—

ware for the controller chip, and in tracking down the inevitable bugs that

show up when you try out your circuits and code.

The USB interface is complicated, and much of what you need to know is

interwoven with everything else. This makes it hard to know where to start.

In general, I begin with the big picture and work down to the details.
Unavoidably, some of the things I refer to aren’t explained in detail until

USB Complete 39

Chapter 3

later. And some things are repeated because they’re important and relevant
in more than one place.

The information in these chapters is dense, if you don’t have a background

in USB, you won’t absorb it all in one reading. You should, however, get a

feel for how USB works, and will know where to look later when you need
to check the details.

The ultimate authority on the USB interface is the specification published

by its sponsoring members. The specification document, titled not surpris—
ingly, Universal Serial Bus ,Speczygcazrion, is available on the USE Implementw

ers Forums website (wwwmhorg). However, by design, the specification

omits information and tips that are unique to any operating system or con»

troller chip. This type of information is essential when you’re designing a
product for the real world, so I’ve included it.

Transfer Basics

You can divide USB communications into two categories, depending on

whether they’re used in configuring and setting up the device or in the appliw
cations that carry out the device’s purpose. in configuration communica—

tions, the host learns about the device and prepares it for exchanging data.
Most of these communications take place when the host enumerates the

device on power up or attachment. Application communications occur

when the host exchanges data for use with applications These are the coma

munications that perform the functions the device is designed for. For

example, for a keyboard, the application communications are the sending of
keypress data to the host to tell an application to display a character.

Configuration Communications

40

During enumeration, the device’s firmware responds to a series of standard

requests from the host. The device must identify each request, return

requested information, and take other actions specified by the requests,

On PCs, Windows performs the enumeration, so there’s no user programw
ming involved. However, to complete the enumeration, Windows must

USB Complete

Inside USB Transfers

have two files available: an INF file that identifies the filename and location

of the device’s driver, and the device driver itself. If the files are available and

the firmware is in order, the enumeration process is invisible to users.

Depending on the device and how it will be used, the device driver may be

one that’s included with Windows or one provided by the product vendor.

The INF file is a text file that you can usually adapt if needed from an exam—

ple provided by the driver’s provider. Chapter 11 has more details about
device drivers and INF files.

Application Communications

After the host has exchanged enumeration information with the device and

a device driver has been assigned and loaded, the application communica-

tions can be fairly straightforward. At the host, applications can use standard

Windows API functions to read and write to the device. At the device, trans—

ferring data typically requires placing data to send in the USE controller’s

transmit buffer, reading received data from the receive buffer, and on com—

pleting a transfer, ensuring that the device is ready for the next transfer.

Most devices also require additional firmware support for handling errors
and other events.

Each data transfer on the bus uses one of four transfer types: control, inter-

rupt, bulk, or isochronous. Each has a format and protocol suited for partic—
ular uses.

Managing Data on the Bus

USB’s two signal lines carry data to and from all of the devices on the bus.

The wires form a single transmission path that all of the devices must share.

(As explained later in this chapter, a cable segment between a 1.x device and

a 2.0 hub on a high—speed bus is an exception, but even here, all data shares

the path between the hub and host.) Unlike RS—232, which has a TX line to

carry data in one direction and an RX line for the other direction, USB’s

pair of wires carries a single differential signal, with the directions taking
turns.

USB Complete 41

Chapter 3

N N m I") rd 0! s: m m m is s:
i-< i~ F I“ r» k F I7 i— l— iv 9—z z z z z z z z 2 z z 2
o o o O o o o O O o o 0Lu 3. n. n. a. a. m n. a. an (L m m n_ o_z a a o o a Z a o o a Z o o a< Z z z z z < z z z 2 < Z z 2at LU UJ LU u_r LLl o: LU LU LU LLl a: m UJ Wu. u. LL

LL ,_. N m to m u. <»- m m in IL. N N wo O 0Lu uJ Lu LU LU 0 Lu LU Lo Lu 0 Lu uJ Lu 0l» L) L) 0 L) U Lu l— o u 0 1) Lu 5— u u L.) LLIa: a. _. H M M 4/) m an H ._. H U, K H H as m
< > > > > > 3 < > > > > 3 < > > > :>t- LLI l.|J LL! Lu Lu 2 l— LLI UJ Lu Lu 2 t~ L|.l LLI Lu 2to a a D as a 3 in a a D a 3 w a a m :2

l-MILLISECOND FRAME l—MILLISECOND FRAME l~MlLLlSECOND FRAME

Figure 3-1: At low and full speeds, the host schedules transactions within

i—millisecond frames. Each frame begins with a Start-of—Frame packet, followed

by transactions that transfer data to or from device endpoints, The host may

schedule transactions anywhere it wants within a frame. The process is similar at

high speed, but using 125—microsecond microframes.

42

The host is in charge of seeing that all transfers occur as quickly as possible.

It manages the traffic by dividing time into chunks called frames, or microf-

rames at high speed. The host gives each transfer a portion of each frame or

microframe (Figure 3,1). For low- and full—speed data, the frames are one

millisecond. For high speed data, the host divides each frame into eight

125—microsec0nd microframes. Each frame or microframe begins with a

Start~of—Frame timing reference.

Each transfer consists of one or more transactions. Control transfers always

have multiple transactions because they have multiple stages, each consisting

of one or more transactions. Other transfers use multiple transactions when

they have more data than will fit in a single transaction. Depending on how

the host schedules the transactions and the speed of a device’s response, a

transfer’s transactions may all he in a singie frame or microframe, or they

may be spread over multiple (micro)fran1es.

Because all of the transfers share a data path, each transaction must include a

device address. Every device has a unique address assigned by the host, and

all data travels to or from the host. Each transaction begins when the host

sends a block of information that includes the address of the receiving device

and a specific location, called an endpoint, Within the device. Everything a

device sends is in response to receiving a request from the host to send data
or status information.

USB Complete

Inside USB Transfers

Host Speed and Bus Speed

A 1.): host supports low and full speeds, A 2.0 host with uservaccessible ports

must support low, full, and high speeds.

A 1.x hub doesn‘t convert between speeds; it just passes received traffic on,

changing only the edge rate of the signals to match the dcstination's speed.
In contrast, a 2.0 hub acts as a remote processor. It converts between high

speed and low or full speed as needed and performs other Functions that

help make efficient use of the bus time. The added intelligence of 2.0 hubs

is a major reason why the high~speed bus remains compatible with 1.x hard

ware. It also means that 2.0 hubs are much more complicated internally
than 1.x hubs.

The traffic on a bus segment is high speed only if the host controller and all

upstream (toward the host) hubs are 2.0~compliant. Figure 3—2 illustrates. A

.1
HIGH SPEED \ LOW/FULL SPEEKrIGH SPEED LOW SPEED

FU,L SPEED
L L

HIGHvSPEED FULL—SPEED LOW-SPEED2.D HUB J DEV CE DEV CE DEV CE ,x HUBFLJW “Mm.

LOW SPEED FULL SPEED*

FULL SPEED FULL SPEED LOW“ SPEED

H EH SPEED U

LOW SPEED HIGH—SPEED LifliflifiED
HIGH-SPEED DEVICE DEVICEDEVICE

L JA FULL—SPEEDEULL—SPEED DEVICE

DEVICE

“FULL‘SPEED ENUMERATION IS REQUIREDI
ADDITIONAL FULL-SPEED FUNCTIONALITY
IS OPTIONAL.

Figure 3—2: A USB 2.0 bus uses high speed whenever possible, switching to

low and full speeds when necessary.

USB Complete 43

Chapter 3

high—speed bus may also have 1.x hubs, and if so, any bus segments down—

stream (away from the host) are low or full speed. Traffic to and from low«

and full-speed devices travels at high speed between the host and any 2.0
hubs that connect to the host with no 1.x hubs in between” Traffic between

a 2.0 hub and a 1.): hub or another low— or full~speed device travels at low or

full speed. A bus with only a 1.): host controller supports only low and full

speeds, even if the bus has 2.1) hubs and devices.

Elements of a Transfer

Understanding USB transfers requires looking inside them several levels

deep. Each transfer is made up of transacrions. Each transaction is made up

of packets. And each packet contains information. To understand transacv

tions, packets, and their contents, you also need to know about endpoints

and pipes. So that’s where we’ll begin.

Device Endpoints

44

All transmissions travel to or from a device endpoint. The endpoint is a

buffer that stores multiple bytes. Typically it’s a block of data memory or a

register in the controller chip. The data stored at an endpoint may be

received data, or data waiting to transmit. The host also has buffers for

received data and for data ready to transmit, but the host doesn’t have end

points. Instead, the host serves as the starting point for com municating with
the device endpoints.

The specification defines a device endpoint as “a uniquely addressable pore
tion of a USB device that is the source or sink of information in a communi—

cation ilow between the host and device.” This suggests that an endpoint

carries data in one direction only. However, as I’ll explain, a control end—

point is a special case that is bidirectional.

The unique address required for each endpoint consisrs of an endpoint

number and direction. The number may range from 0 to 15. The direction

is from the host’s perspective: lN is toward the host and OUT is away from

the host. An endpoint configured to do control transfers must transfer data

USB Complete

Inside USB Transfers

in both directions, so a control endpoint actually consists of a pair of IN and

OUT endpoints that share an endpoint number.

Every device must have Endpoint O configured as a control endpoint.

There’s rarely a need for additional control endpoints. They’re allowed, how—

ever, and some controller chips support them.

The other transfer types send data in one direction only (though status and

control information may flow in the opposite direction). A single endpoint

number can support both IN and OUT endpoint addresses. For example,

Endpoint l on a device might support an IN endpoint address for transfers

to the host as well as an OUT endpoint address for transfers from the host.

In addition to Endpoint O, a fullvspeed device can have up to 30 additional

endpoints (1 through 15, with each supporting both IN and OUT). A

low—speed device is limited to two additional endpoints with any combina—

tion of directions (for example Endpoint I IN and Endpoint 1 OUT, or

Endpoint 1 IN and Endpoint 2 IN).

Every transaction on the bus includes an endpoint number and a code that

indicates the direction of data flow and whether or not the transaction is ini—

tiating a control transfer. The codes are IN, OUT, and Setup:

 Transaction

Type
Source of Data Types of Transfers that Contents

Use this Transaction

Type

all

 IN

OUT

Setup

device genetic data

host all genetic data

host control a request

As with the endpoint directions, the naming convention for IN and OUT

transactions is from the perspective of the host. In an IN transaction, data

travels from the peripheral to the host. In an OUT transaction, data travels

from the host to the peripheral.

In a Setup transaction, data also travels from the host to the peripheral, but

a Setup transaction is a special case because it initiates a control transfer.

Devices need to identify Setup transactions so they know how to interpret

the data they contain. Setup transactions are also the only type that devices

USB Compiete 45

Chapter 3

must always accept. Any transfer may use 1N or OUT transactions, but only

control transfers use Setup transactions.

Each transaction contains a device address and an endpoint address. When a

device receives an OUT or Setup transaction. containing the device’s address,

the hardware stores the received data in the appropriate location for the end»

point and typically triggers an interrupt. An interrupt—service routine in the

device then processes the received data and does whatever else the transact

tion requires. When a device receives an IN transaction containing its device

address, if the device has data ready to send to the host, the hardware sends '

the data from the specified endpoint onto the bus and typically triggers an

interrupt. An interrupt—service routine in the device then does whatever is

needed to get ready for the next 1N transaction.

Pipes: Connecting Endpoints to the Host

46

Before a transfer can occur, the host and device must establish a i e. A USBP

pipe isn’t a physical object; it’s just an association between 3 devices end

point and the host controller’s software“

The host establishes pipes shortly after system power—up or device attach—

ment, on requesting configuration information from the device. if the

device is removed from the bus, the host removes the no—longer~needed

pipes. The host may also request new pipes or remove unneeded pipes at

other times by requesting an alternate configuration or interface for a device.

Every device has a Default Control Pipe that uses Endpoint 0.

The configuration information received by the host includes a descriptor for

each endpoint that the device wants to use. Each endpoint descriptor is a
block of information that tells the host what it needs to know about the

endpoint in order to communicate with it. This includes the endpoint

address, the type of transfer to use, the maximum size of data packets, and,

when appropriate, the desired interval for transfers.

in some cases, the host accepts a requested configuration only after ensuring

that the bus has enough idle bandwidth to do the transfers at the requested

rate. This is true when the configuration requires pipes that will carry isoch-

ronous transfers, which have a guaranteed rate (transactions per second),

USE Complete

Inside USB Transfers

and interrupt transfers, which have a guaranteed maximum latency (time

between transactions).

In these cases, the host examines the available bandwidth before establishing

the pipe. If the bandwidth is available, the host accepts the configuration

request and ensures that the transfers will have the time they need. If the

bandwidth isn’t available, the host denies the configuration request and the

requesting software must try again, either waiting until the bandwidth is

available or selecting a new configuration that requests less bandwidth. For

pipes that carry requests without guaranteed timing, the host doesn’t check

available bandwidth; it just promises to fit the transfers into the available
time as best as it can.

Types of Transfers

USB is designed to handle many types of peripherals with varying require

ments for transfer rate, response time, and error correcting. The four types

of data transfers each handle different needs, and a device can support the

transfer types that are best suited for its purpose. Table 3—1 summarizes the

features and uses of each transfer type.

Control transfers are the only type that have functions defined by the USB

specification. Control transfers enable the host to read information about a

device, set a device’s address, and select configurations and other settings.

Control transfers may also send custom requests that send and receive data

for any purpose. All USB devices must support control transfers.

Bulk transfers are intended for situations where the rate of transfer isn’t crit—

ical, such as sending a file to a printer or receiving data from a scanner. In

these applications, quick transfers are nice, but the data can wait if necessary.

If the bus is very busy with other transfers that have guaranteed transfer

rates, bulk transfers must wait, but if the bus is idle, bulk transfers are very

fast. Only full— and high—speed devices can do bulk transfers. Devices aren’t

required to support bulls transfers, but a specific device class might require
11'.

Interrupt transfers are for devices that must receive the host’s or devices

attention periodically. Other than control transfers, interrupt transfers are

USB Complete 47

Chapter 3

Table 3—1: Each of the USB’s tour transfer types is suited for different application

types.

Transfer Type Control Bulk Interrupt lsochronous

Typical Use Configuration Printer, Mouse, Audio

scanner keyboard

Required? yes no no no

Allowed on low-speed Iyes no fiyes no
devices?

Data bytes/millisecond per 15,872 53,248 24,576 24,576

transter, maximum possible (thirty—one (thirteen (three (three
per more (high speedl- “ 64—byte 512—byte 1024—byte 1024—byte
Assumeskdata-ltransfer = maxr- transactions/ transactions/ transactions/ transactions/
mum pac et S'ze‘ mieroframe) microframe) microframe) mieroframe)
Data bytes/millisecond per 832 1216 ' 64 1023

transfer, maximum possible (thirteen (nineteen (one 64—byte (one
per mm (full speed); Assumes 64~byte 64-byte transaction/ 1023—byte
datiltrtanisfer ” maXImum transactions/ transactions/ frame) transaction/
pac e Si'ze' frame) frame) frame)

Data bytes/millisecond per 24 (three not. allowed 0.8 (8 bytes not allowed
transfer, maximum possible 84)th per 10
per pipe “OW speed). Assumes transactions) milliseconds)data/transfer = maxrmum

packet size. L
Direction of data flow IN and OUT IN or OUT IN or OUT IN or OUT

(1.0 supports

IN only)

Reserved bandwidth for all it) at low/full none 90 at low/full speed, 80 at
transfers 07' the type speed, 20 at high speed (isochronous &

high speed interrupt combined)

(minimum) (maximum)

Error correction? yes yes yes inn
Message or Stream data? message stream stream stream

Guaranteed delivery rate? no no no yes

Guaranteed latency (maximum no no yes yes
time between transfers)?

the only way that iow~speed devices can transfer data. Keyboards and mice

use interrupt transfers to send keypress and mouse—movement data. Intern

rupt transfers can 1136 any SpCCd. D€ViC€S aren’t required to support iHECI‘I‘UPC

transfers, but a specific device class might require it.

48 USB Complete

inside USB Transfers

Isochronous transfers have guaranteed delivery time but no error correcting.

Data that might use isochronous transfers incudes audio files to be played in

real time. This is the only transfer type that doesn’t support automatic

re—transmitting of data received with errors, so occasional errors must be

acceptable. Only full— and, high—speed devices can do isochronous transfers.
Devices aren’t required to support isochronous transfers, but a specific

device class might require it.

Chapter 4 has more detailed descriptions of each transfer type, with the

focus on what you need to know in order to use each. But before we get into

that, there are additional things to understand about how the bus transfers
data.

Stream and Message Pipes

In addition to classifying a pipe by the type of transfer it carries, the specifi—

cation defines pipes as either stream or message, according to whether or not
information travels in one or both directions. Control transfers are the only

transfers that use the bidirectional message pipes; all others use unidirec—

tional stream pipes.

Control Transfers Use Message Pipes

In a message pipe, each transfer begins with a Setup transaction containing a

request. To complete the transfer, the hosr and device may exchange data
and status information, or the device may just send status information.

There is always at least one transaction that sends information in each direc—
tron.

If the device supports the request, it takes the requested action. If the device

doesn’t support the request, it responds with a code to indicate this.

All Other Transfers Use Stream Pipes

In a stream pipe, the data has no format defined by the USB specification.

The receiving device just accepts whatever arrives. The device firmware or
host software can then process the data in whatever way is appropriate for

the application.

USB Complete 49

Chapter 3

Of course, even with stream data, the sending and receiving devices will

need to agree on a format of some type. For example, a host application may

define a code that requests a device to send a series of bytes indicating a tem—
perature reading and the time of the reading. Although the host could use

control transfers with a vendor~defmed Gethemperature request, it might
prefer to use interrupt transfers to guarantee that the host will request a new

reading at intervals. In an interrupt transfer, the data is in a stream pipe and
doesn’t have to conform to the format for control transfers.

Initiating a Transfer

When a device driver in the host wants to communicate with a device, it iniw

tiates a transfer. The specification defines a transfer as the process ofmaking
and carrying out a communication request. A transfer may be very short,

sending as little as a byte of data, or very long, sending the contents of a
large file.

Typically, a Windows application opens communications with a device

using a handle retrieved using standard APT functions. To begin a transfer,

an application may use the handle in calling an API function to request the
transfer from the device’s driver. Applications can request data from a device

or provide data to send to the device. A request from an application might
be “send the contents of the file dbll‘tlixi’ on the host” or “get the contents of

Report 0 from the device.” When an application requests a transfer, the oper~
ating system passes the request to the appropriate device driver, which in

turn passes the request to other system—level drivers and on to the host conw

troller. The host controller then initiates the transfer on the bus.

In some cases, the driver is configured to request periodic transfers, and

applications read the retrieved data or provide data to send in these transfers.

Other transfers, such as those done in enumeration, are initiated by the
operating system on detecting the device.

Transactions: the Building Blocks of a Transfer

Figure 3-3 shows the elements of a typical transfer, and Table 3—2 lists the

elements that make up each of the four transfer types. A lot of the terminol—

50 USB Complete

inside USB Transfers

ogy here begins to sound the same. There are transfers and transactions,
stages and phases, data transactions and data packets, Status stages and
handshake phases. Data stages have handshake packets and Status stages

have data packets. It takes a while to absorb it all. I created Table 3—2 to use

as a memory—jogging reference when I found myself getting confused about

the terminology. With that reminder to take it slowly, we can move on to
the details.

Each transfer consists of one or more transactions, and each transaction in

turn consists of one, two, or three packets.

TRANSFER . ‘ TRANSFER TRANSFER

EACH TRANSFER
CONTAINS 1 OR MORE
TRANSACTIONS.

l TRANSACTION l TRANSACTION . 1 TRANSACTION
EACH TRANSACTIO
CONTAINS A TOKE
PACKET AND MAY
CONTAIN A DATA
AND/OR HANDSHAK

III

PACKET.

TOKEN DATA HANDSHAKE
PACKET PACKET PACKET

EACH PACKET CONTAINS
A PID AND MAY CONTAIN
ADDITIONA- INEORMATION
AND CRC (ERROR~CHECKING)
BITS.

ADD'L

PID l INFO . CRC '

Figure 3-3: A USB transfer consists of transactions. The transactions in turn
contain packets, and the packets contain a packet identifier (PID), PiD—check
bits, and sometimes additional information.

USB Complete 51

Chapter 3

Table 3-2: Each of the tour transfer types consists of one or more stages, with
each stage made up of two or three phases. (This table doesn’t show the

additional transactions required for the split transactions and PING protocol
used in some transfers.)

Transfer Type Stages (0 or more transac- Phases (packets). Each

tions) downstream, low-speed
packet is also preceded by a
PRE packet.

Control Setup Token

Data

Handshake M

Data (IN or OUT) Token

(optional) Data "T

Handshake

Status (IN or OUT) Token
Data

Handshake

Bulk " Data (IN or our) Token
Data

Handshake

Interrupt Data (IN or OUT) Token W
Data

Handshake

Isochronous Data (IN or OUT) Token

Data “

The three transaction types are defined by their purpose and direction of
data flow: Setup for sending control~transfer requests to a device, IN for

receiving data from a device, and OUT for sending other data to the device.

The specification defines a transaction as the delivery of service to an end—

point. Service in this case can mean either the host’s sending a chunk of
information to the device, or the host’s requesting and receiving a chunk of
information from the device.

Each transaction includes identifying, err0r~checking, status, and control

information, as well as any data to be exchanged. A complete transfer may

52
USB Complete

Inside USB Transfers

take place over multiple frames, but a transaction is a single communication

that must complete uninterrupted. No other communication on the bus can
break into the middle of a transaction.

Devices must be able to respond quickly with requested data or status infor—

mation in a transaction. Program code in the device may prepare an end—

point to respond to a transaction request, but hardware handles responding

to the request when it arrives.

A transfer with a small amount of data may require just one transaction. If

the amount of data is large, a transfer may use multiple transactions, with a

portion of the data in each.

Transaction Phases

Each transaction has up to three phases, or parts that occur in sequence:

token, data, and handshake. Each phase consists of one or two transmitted

packets. Each packet is a block of information with a defined format. All

packets begin with a Packet ID (PID) that contains identifying information,

as Table 3—3 shows. Depending on the transaction, the PID may be followed

by an endpoint address, data, status information, or a frame number, along

with error—checking bits.

In the token phase of a transaction, the host sends a communications

request in a token packet. The PID indicates the transaction type, such as

Setup, IN, OUT, or Start«of—Frame.

In the data phase, the host or device may transfer any kind of information in

a data packet. The PID indicates the data-toggle value used to indicate the

data’s position when there are multiple data packets.

In the handshake phase, the host or device sends status, or handshaking,

information in a handshake packet. The PID holds the status code (ACK,

NAK, STALL, NYET). The specification sometimes uses the terms status

phase and statuspac/eet to refer to the handshake phase and packet.

The token phase has one additional use. A token packet may carry a

Start—of—Frame (SOP) marker, which is a timing reference that the host

sends at 1—millisec0nd intervals at full speed and 125—microsecond intervals

USB Complete 53

Chapter 3

Table 3—8: The PlD (packet identifier) provides information about a transaction.

(Sheet 1 012)

Packetw PID Value Transfer Source Bus Speed Description
TVpe Name types

used in

Token OUT 000] all host all Endpoint address i‘orOUT

(identifies (host—to—device) transaction.

WWW“ 1N 1001 all host all Endpoint address for 1N
type) (device—to—host) transaction.

SOF 0101, Start—of— host all Start—of—Frame marker and
Frame frame number.

SETUP 1101 control host all Endpoint address for Setup
transaction.

Data DATAU 0011 all host, all Data toggle,

(carries data device data sequencing

(“f “3“” DATA] 1011 all host, all Data toggle,
”(16) device data sequencing

DATA2 01 l l isoch. host, high Data sequencing
device

MDATA 1111 isoch., host, high ‘ Data sequencing

interrupt device

Handshake ACK 0010 all host, all Receiver accepts error-free

(carries device data packet.

status code) NAK 1010 control, device all Receiver can’t accept data
bulk, or sender can’t send data or

interrupt has no data to transmit.

STALL lllO control, device all A control request isn’t sup~

bulk, ported or the endpoint is

interrupt halted.

NYET 01 10 control device high Device accepts error—free

Write, data packet but isn’t yet

bulk ready for another or

OUT, hub doesn’t yet have

split complete—spl it data.
transacu

tions

54 USB Complete

lnside USB Transfers

Table 3—3: The PID (packet identifier) provides information about a transaction.

(Sheet 2 of 2)

Packet

Type Name types

used in

Special PRE 1100 control, host full Preamble issued by host to

reserved 0000 —

PID Value Transfer rSource Bus Speed-[Description

interrupt indicate that the next packet
is low speed.

ERR 1100 all device high “Returned by a hub to report
hub a low— or full~speed error in

a split transaction.

SPLIT 1.000 all host high Precedes a token packet to
indicate a split transaction.

PING 0100 control host high Busy check for bulk OUT

Write, and control Write data
bulk OUT transactions after NYET.

- — For future use.

at high speed. This packet also contains a frame number that increments
and rolls over on reaching the maximum. The number indicates the frame

count, so the eight microframes Within a frame all use the same number. An
endpoint may synchronize to the Start—ovarame packet, or use the frame
count as a timing reference. The Start—of—Frame market also keeps devices

from entering the low—power Suspend state when there is no other USB traf—
fie.

Low—speed devices don’t see the SOF packet. Instead, the device’s hub uses a

simpler End—of—Packet (EOP) signal called the lowespeed keep—alive signal,
sent once per frame. As the SOP does for full‘speed devices, the low—speed
keep-alive keeps low—speed devices from entering the Suspend state.

Of the four special Ple, one is used only with low—speed devices, one is

used only with high-speed devices, and two are used when a low— or

full—speed device’s 2.0 hub communicates at high speed with the host.

The special low—speed PID is PRE, which contains a preamble code that
tells hubs that the next packet is low speed and the hub should enable com—
munications with any attached low—speed devices. On a lovvv and full—speed

bus, the PRE PID precedes all token, data, and handshake packets directed

USB Complete 55

Chapter 3

56

to low—speed devices. High—speed buses encode the PRE in the SPLIT

packet, so they don’t send it separately. Low—speed, packets sent by a device
don’t require a PRE PID.

The PID used only with highespeed devices is PING. The host sends a

PING to find out if a highrspeed device endpoint is busy before sending the
next data packet in a bulk or control transfer with multiple data packets.
The device responds with a status code.

The SPLIT PID identifies a token packet as part of a split transaction. To

make better use of bus time, 2.0 hosts and hubs send low— and fullvspeed
traffic at high speed. When the host begins a transaction destined for a low—

or Full—speed device, the 2.0 hub nearest to the device is responsible for com—
pleting the transaction with the device, scoring any returned data or status
information, and reporting it back in one or more later transactions. This

way, the entire bus doesn’t have to wait for a transaction to complete at a
lower speed. These special transactions between the hub and host are called

split transactions.

The ERR PID is used only in split transactions. A 2.0 hub uses this PID to

report an error to the host in a low— or full—speed transaction. The ERR and
PRE PIDs have the same value, but won’t be confused, because a hub never

sends a PRE to the host or an ERR to a device.

Packet Sequences

Every transaction has a token packet. The host is always the source of the

this packet, which sets up the transaction by identifying the packet type, the
receiving device and endpoint, and the direction of any data that the trans—

action will transfer. If it’s a low—speed transaction on a full—speed bus, a PRE

packet precedes the token packet. If it’s a split transaction, a SPLIT packet
precedes the token packet.

Depending on the transfer type and whether or not a device has information

to send, a data packet may follow the token packet. The direction specified
in the token packet determines whether the host or device sends the data

packet.

USB Complete

Inside USB Transfers

In all transfer types except isoch ronous, the device that receives a data packet

returns a handshake packet containing a code that indicates the success or

failure of the transaction. The absence of an expected handshake packet
indicates a more drastic failure.

Timing Constraints and Guarantees

The allowed delays between the token, data, and handshake packets of a

transaction are very short, intended to allow only for cable delays and

switching times, plus a brief time to allow the hardware to prepare a

response, such as a status code, in response to a received packet.

The maximum packet sizes for the transfer type and endpoint limit the

amount of data a transaction can contain. A transfer with multiple transac—

tions may take place over multiple frames, which don’t have to be contigu—

ous. For example, in a full—speed bulk transfer of 512 bytes, the maximum

number of bytes in a single transaction is 64, so transferring all of the data

would require at least 8 transactions.

Although devices must complete each transaction quickly, the bus can

accommodate transfers with devices that need extra time to respond. The

amount of time allowed varies with the transfer type, but can be as long as

five seconds. If a request will take a long time to carry out, the request

should be defined so that the request and response use separate transfers.

This way, after receiving a request for data, the device can prepare its

response for later retrieval by the host. The host uses this technique when it

requests a hub to reset a port. The host requests the hub to reset 3 port, and

the hub responds that it has received the request and has begun the reset sig—

naling. Later, the host sends a second request to find out if the reset is com-

plete.

Split Transactions

A 2.0 hub communicates with a 2.0 host at high speed unless a 1.): hub lies

between them. When a low— or full—speed device is attached to a 2.0 hub,

the hub converts between speeds as needed. But speed conversion isn’t the

only thing the hub does to manage multiple speeds. High speed is 40 times

faster than full speed and 320 times faster than low speed. It doesn’t make

USB Complete 57

Chapter 3

HIGH SPEED LOW“ OR

2.0 HOST ___________________ 2.@ HUB ____________—____—— FULL-SPEED

E DEVICE

1.

2,

THE HOST INITIATES AND COMPLETES THE START~SPLIT TRANSACTION WITH THE HUB.

LOW— OR

2.9 Host 2.0 HUB _l£HL25_EEEE_EE§§l_ FULL—SPEED

3 DEVICE

THE HUB INITIATES AND COMPLETES THE TRANSACTION WITH THE DEVICE.

LOW- OR

2.0 HOST HIGH SPEEPMM_HM~ 2.0 HUB 4444444444V4,v_ FULL~SPEED

> DEVICE

3, THE HOST iNiTIATES AND COMPLETES THE COMPLETEeSPLIT ‘RANSACTION WITH THE aus,

Figure 3—4: In a transfer that uses spiit transactions, the host communicates at

high speed with a 2.0 hub, and the hub communicates at low or full speed with

the device. isochronous transactions may use muitipie start-split or

complete-split transactions.

58

sense for the entire bus to wait while a hub exchanges low— or full~speed data
with a device.

The solution is split transactions (Figure 3—4). A 2.0 host uses split transace

tions when it communicates with a low— or full—speed device on a high~speed

bus. What would be a single transaction at low or full speed usually requires

two types of split transactions, one or more start—split transactions to send,

information to the device and one or more complete—split transactions to

receive information from the device. The exception is isochronous OUT

transactions, which don’t use complete—split transactions because there is

nothing to return.

Even though there are more transactions, split transactions make better use

of the bus time because they minimize the amount ot‘bus time spent waiting

USB Complete

Inside USB Transfers

for a low— or full—speed device to respond. Table 5—4 compares the structure
and contents of transactions with low— and full—speed devices at different bus

speeds.

I’ll start by explaining how split transactions work in bulk and control trans—
fers, which don’t have the timing constraints of interrupt and isochronous

transfers. In the start—split transaction, the 2.0 host sends the start—split

token packet (SSPLIT), Followed by the usual lowr or full—speed token
packet, and any data packet destined For the device. The devices 2.0 hub
returns ACK or NAK. The host is then free to use the bus for other transac—

tions. The device knows nothing of the transaction yet.

On returning ACK in a start—split transaction, the hub has two responsibili—
ties. It must complete the transaction with the device. And it must continue
to handle any other bus traffic it receives from the host or other attached
devices.

To complete the transaction, the hub converts the packet or packets received
from the host to the appropriate speed, sends them to the device, and stores
the device’s response, if any. Depending on the transaction, the device may
return data, a handshake, or nothing. To the device, the transaction has pro—

ceeded at the expected low or full speed and is now complete. The device
has no knowledge that it’s a split transaction. The host hasn’t yet received the

device’s response.

'While the hub is completing the transaction with the device, the host may
initiate other bus traffic that the device’s hub must handle as well. The two

functions are handled by separate hardware modules within the hub.

For all but isochronous OUT transactions, when the host thinks the hub has

had enough time to complete the transaction with the device, it begins a
complete—split transaction with the hub.

In the complete—split transaction, the hosr sends a complete—split token
packet (CSPLIT), followed by the usual low» or full—speed token packet to
request the data or status information the hub has received from the device.
The hub returns the requested data or a status code. This completes the
transaction. The host doesn’t return ACK. If the hub doesn’t have the packet

ready to send, it returns a NYET status code, and the host retries later. The

USB Complete 59

Chapter 3

Table 3-4: When a low- or full-speed device has a transaction on a high~speed
bus, the host uses start-split (SSPLIT) and complete~split (CSPLIT) transactions
with the device’s 2.0 hub. The hub is responsible for completing the transaction
at low or full speed and reporting back to the host.

Bus Speed Transaction Type Transaction Phase

Token Data Handshake

Low/Fuifspeed Setup, OUT PRE it low speed, PR}: 1t low speed, status (except for
communications LS/FS token data isochronous)

Wlth the devrce IN PRE if low speed, data or status PRE if low speed,
LS/FS token status (except for

isochronous)

High—speed com— Setup, OUT SSPLIT, data status (bulk and
munications (isochronous LS/FS token control only)
between the 2.0 OUT has no CSPLIT. ‘_ status
hub and host in CSPLIT LS/FS token ‘
transactions with transaction) ’

‘f‘ 10W' "t , IN SSPLIT, — status (bulk and
fulfspeed devrce LS/FS token control only)

CSPLIT. data or status —

LS/FS token)

60

device has no knowled e of the com lete-s lit transaction because it com—g P P

pleted the transaction with its hub earlier.

In split transactions in interrupt and isochronous transfers, the process is
similar, but with more strictly defined timing. The goal is to transfer data to
the host as soon as possible after the device has data available to send, and to

transfer data to the device just before the device is ready for new data. To

achieve this, isochronous transactions with large packets use multiple start
or complete splits, transferring a portion of the data in each.

Unlike with bulk and control transfers, the start—split transactions in inter»

rupt and isochronous transfers have no handshake phase, just the start—split
token followed by an lN, OUT, or Setup token and data if it’s an OUT or
Setup transaction.

In an interrupt transaction, the hub schedules the start split in the microf-

tame just before the earliest time that the hub is expected to begin the trans“
action with the device. For example, assume that the microframes in a frame

USB Complete

Inside USB Transfers

are numbered in sequence, Y0 through Y7. If the start split is in Y0, the

transaction with the device may occur as early as Y1. The device may have

data or a handshake response to return to the host as early as Y2. The results

of previous transactions and bit stuffing can affect when the transaction

with the device actually occurs, so the host schedules complete—split transac—

tions in Y2, Y3, and Y4. If the hub doesn’t yet have the information to

return in the complete split, it returns a NYET status code and the host
retries.

Full~speed isochronous transactions can transfer up to 1023 bytes. To ensure

that the data transfers just in time, or as soon as the device has data to send

or is ready to receive data, transactions with large packets use multiple start

splits or complete splits, with up to 188 bytes of data in each. This is the

maximum amount of full—speed data that can transfer in a microframe. A

single transaction’s data can require up to eight start—split or complete~split
transactions.

In an isochronous IN transaction, the host schedules complete—split transac—

tions in every microframe Where its expected that the device will have at

least a portion of the data to return. Requesting the data in smaller chunks

ensures that the host receives the data as quickly as possible. The host
doesn’t have to wait for all of the data to transfer from the device at full

speed before beginning to retrieve it.

In an isochronous OUT transaction, the host sends the data in one or more

start—split transactions. The host schedules the transactions so the hubs

buffer will never be empty, but will contain as few bytes as possible. Each

SPLIT packet contains bits to indicate its data’s position in the low— or

full—speed data packet (beginning, middle, end, or all). There is no com—

plete—split transaction.

Ensuring that Transfers Are Successful

To help ensure that every transfer succeeds, USB uses handshaking and

error—checking.

USB Complete 61

Chapter 3

Handshaking

62

Like other interfaces, USB uses status and control, or handshaking, infor—

mation to help to manage the flow of data. In hardware handshaking, dedi—

cated lines carry the handshaking information. An example is the RTS and

CTS lines in the RS—232 interface. In software handshaking, the same lines

that carry the data also carry handshaking codes. An example is the XON
and XOFF codes transmitted on the data lines in RS232 links.

USB uses software handshaking. A code indicates the success or failure of all

transactions except in isochronous transfers. in addition, in control trans»

fers, the Status stage enables a device to report the success or failure of the
entire transfer.

Most handshaking signals transmit in the handshake packet, though some

use the data packet. The defined status codes are ACK, NAK, STALL,

NYET, and ERR. A sixth status indicator is the absence of an expected

handshake code, indicating a more serious bus error. in all cases, the receiver

of the handshake, or lack of one, uses the information to help it decide what

to do next. Table 35 shows the status indicators and where they transmit in

each transaction type.

ACK

ACK (acknowledge) indicates that a host or device has received data without

error. Devices must return ACK in the handshake packets of Setup transac—

tions. Devices may also return ACK in the handshake packets of OUT

transactions. The host returns ACK in the handshake packets of lN transacw
tions.

NAK

NAK (negative acknowledge) means the device is busy or has no data to

return. if the host sends data at a time when the device is too busy to accept

it, the device sends a NAK in the handshake packet. If the host requests data

from the device when the device has nothing to send, the device sends a

NAK in the data packet. In either case, NAK indicates a temporary condiw
tion, and the host retries later.

USB Complete

lnside USB Transfers

Table 3-5: The location, source, and contents of the handshake signal depend

on the type of transaction.

Transaction type rData packet Data packet THandshake Handshake
or PING query source contents packet source packetcontents

Setup host data device ACK

OUT host data device ACK,
NAK,

STALL,

NYET (high

speed only),
ERR (from hub in

complete split)

IN device data, host. ACK
NAK,

STALL,

ERR (from hub in

complete split)

PING rnone 1 none device ACK,

(high speed only) NAK,
STALL

Hosts never send NAK. lsochronous endpoints don’t support NAK because

they have no handshake packet for returning the NAK. If a device or the
host misses isochronous data, it’s gone.

STALL

The STALL handshake can have any of three meanings: unsupported con~

trol request, control request failed, or endpoint failed.

When a device receives a control—transfer request that the endpoint doesn’t

support, the device returns a STALL to the host. The device also sends a
STALL if it supports the request but for some reason can’t take the requested
action. For example, if the host sends a Set_Configuration request that
requests the device to set its configuration to 2, and the device supports only
configuration 1, the device returns a STALL. To clear this type of STALL,
the host just needs to send another Setup packet to begin a new control
transfer. The specification calls this type of stall a protocol stall.

USB Complete 63

Chapter 3

64

Another use of STALL is to respond to transfer requests when the end—
point's Halt feature is set, indicating that the endpoint is unable to send or
receive data at all. The specification calls this type of stall a functional stall.

Bulk and interrupt endpoints must support the functional stall. Although
control endpoints may also support this use of STALL, it’s not recomw

mended. A control endpoint in a functional stall must continue to respond
normally to other requests related to controlling and monitoring the STALL
condition. And if the endpoint is capable of doing this, it’s clearly capable of
sending and receiving data and shouldn’t be stalled! lsochronous endpoints
don’t support STALL because they have no handshake packet for returning
the STALL.

On receiving a functional STALL, the hosr drops all pending requests to the
device and doesn’t resume communications until it has sent a successful

request to clear the Halt feature on the device. Hosts never send STALL.

NYET

Only high—speed devices use NYET, which stands for not yet. High-speed
bulk and control transfers have an improved protocol that enables the host
to find out before sending data if a device is ready to receive it. At full and

low speeds, when the host wants to send data in a control, bulk, or interrupt
transfer, it sends the token and data packets and receives a reply from the
device in the handshake packet of the transaction. If the device isn't ready
for the data, it returns a NAK and the host tries again later. This can waste a

lot of bus time if the data packets are large and the device is often not ready.

High—speed bulk and control transactions with multiple data packets have a
better way to do it. After receiving a data packet, a device endpoint can
return a NYET handshake, which says that the data was accepted but the
endpoint isn’t yet ready to receive another data packet. When the host
thinks the device might be ready, it sends a PING token packet, and the
endpoint returns an ACK to indicate it's OK to send the next data packet or
NAK or STALL ifit’s not OK. Sending a PING is more efficient than sendw

ing the entire data packet only to find out the device wasn’t ready and hav—
ing to resend later.

USB Complete

Inside USB Transfers

Even after responding to a PING or OUT with ACK, the endpoint is

allowed to return NAK on receiving the data packet that follows, though

this should be rare. The host then tries again with another PING.

A 2.0 hub may also use NYET in complete—split transactions, as described

earlier. Hosts and low~ and full—speed devices never send NYET.

ERR

The ERR handshake is used only by highwspeed hubs in complete—split

transactions. ERR indicates the device didn’t return an expected handshake

in the transaction the hub is completing with the host.

No Response

The final type of status indication occurs when the host or a device expects

to receive a handshake, but receives nothing. This usually indicates that the

receiver’s error—checking calculation detected an error and informs the

sender that it should try again or if multiple tries have failed, take other
action.

Reporting the Status of Control Transfers

In addition to reporting the status of transactions, the same ACK, NAK,

and STALL codes report the success or failure of complete control transfers.

An additional status code is a zero—length data packet, which reports success—

ful completion of a control transfer with a hosteto—device Data stage. Table

3—6 shows the locations of the different status indicators for control trans—

fers.

For control Write transfers. where the device receives data in the Data stage,

the transfers status is returned in the data packet of the Status stage. A

zerorlength data packet means the transfer was successful. Or the device may
return a NAK or STALL. The host then returns an ACK in the handshake

packet of the Status stage to indicate that it received the response.

For control Read transfers, where the host receives data in the Data stage,

the device returns the status of the transfer in the handshake packet of the

Status stage. The host normally waits to receive all of the packets in the Data

USB Complete 65

Chapter 3

Table 3-6: Depending on the direction of the Data stage, the status information

for a control transfer may be in the data or handshake packet of the Status

stage.

Transfer Type and Status Stage Status stage’s hand—

(Deviee sends data to

Direction Direction packet shake packet

Control Write IN Device sends status: Host returns ACK

(Host sends data to ()—length data packet

device) (success),

NAK (busy), or

STALL (failed)

Control Read OUT Host sends ()vlength Device sends status:

data packet ACK (success),

host)

NAK (busy), or

STALL (failed)

stage, then sends a zero—length data packet in the Status stage. The device

responds with ACK, NAK, or STALL. However, if the host begins the Sta—

tus stage before all of the data packets have been sent, the device must aban—

don the Data stage and return a status code.

Error Checking

66

The specification for USB hardware, including the drivers, receivers, and

cables, spells out design and performance requirements that ensure that

errors due to line noise will be rare. Still, especially because the interface uses

external cabling, there is a chance that a noise glitch or an unexpectedly dis”

connected cable could corrupt a transmission. For this reason, USE packets

include errorwchecking bits that enable a receiver to identify virtually any

received data that doesn’t match what was sent. In addition, for transfers

that require multiple transactions, a data—toggle value keeps the transmitter

and receiver synchronized to ensure that no transactions are missed entirely;

Error—checking Bits

All token, data, and Start—of—Frame packets include bits For use in

errorechecking. The bit values are calculated using a mathematical algov

rithrn, or procedure, called the cyclic redundancy check (CRC). ’l‘he specifi»

USB Complete

Inside USB Transfers

cation has details on how the CRC is calculated. it’s not something you’ll

ever have to do in code, however, because the hardware handles it.

The CRC is applied to the data to be checked. The transmitting device per—

forms the calculation and sends the result along with the data. The receiving

device performs the identical calculation on the received data. If the results

match, the data has arrived Without error and the receiving device returns an

ACK. If the results don’t match, the receiving device sends no handshake.

This tells the sender to retry.

Typically, the host tries a total of three times, though the specification gives

the host some flexibility in determining the number of retries. If there’s still

no handshake, the host gives up and informs the driver of the problem.

The PID field in token packets uses a simpler form or error checking. The

lower four hits in the field are the PID, and the upper four hits are its com-

plement. The receiver can check the integrity of the 1’11) by complementing

the upper Four bits and ensuring that they match the PID. if not, the packet

is corrupted and is ignored.

The Data Toggle Bit

1n transfers that require multiple transactions, the data—toggle bit can ensure

that no transactions are missed by keeping the transmitting and receiving

devices synchronized. The data—toggle bit is included in the P11) field of the

token packets For 1N and OUT transactions. DATAO is a code of0011, and

DATAl is 1011, so hit 3 indicates the data—toggle state. In controller chips,

a register bit often indicates the datawtoggle State. Another name for this bit
is DATAO/l, sometimes also called DATAl/O (1)

Both the sender and receiver keep track of the data toggle. On configuring

the device, the bits on both are set to DATAO.

When the receiver detects an incoming data transaction, it compares the

received data—toggle bit to the state of its own data toggle. If the bits match,

the receiver toggles its bit and returns an ACK handshake packet to the

sender. The ACK causes the sender to toggle its bit.

USB Complete 67

Chapter 3

The next received packet in the transfer should contain a data-toggle of

DATAl, and again the receiver toggles its hit and returns an ACK. The data

toggle continues to alternate until the transfer completes.

If the receiver is busy, it returns a NAK. if it detects corrupted data, it

returns no response. If the sender doesn’t receive an ACK, it doesn’t toggle its

bit and instead tries again with the same data and data toggle.

If a receiver returns an ACK but for some reason the sender doesn’t see it,

the sender will think that the receiver didn’t get the data and will try again,

with the same data and data—toggle hit. in this case, the receiver of the

repeated data doesnt toggle its bit and ignores the data, but does return an

ACK. This re—synchronizes the data toggles. The same thing happens if the

sender mistakenly sends the same data toggle twice in a row.

A Windows host handles the data toggles without requiring any user prow

gramming. Some peripheral controller chips also handle the data—toggles

completely automatically, while others require some firmware control.

In some cases, if the device is interested only in receiving the newest data

and doesn’t care about the sequence, it won’t bother to compare the data tog~

gles. instead, it can just return ACKS without comparing or toggling the bit.

In full~speed isochronous transfers, the host always uses a data toggle of

DATAO. Full—speed isochronous transfers can’t use the data toggle because

they have no handshake packet for returning an ACK or NAK and no time
to resend missed data.

Some high~speed isochronous transfers use DATAO, DATAl, and additional

Ple of DATAZ and MDATA. High—speed isochronous IN transfers that

have two or three transactions per microframe use DAT/W, DATAl, and

DATAZ encoding to indicate the transactions position in the microframe:

Number of IN Transactions Data PiD

in the Microframe First Transaction Second Transaction Third Transaction
1 DATAO — -

2 [DATAi DATAO — """""T

3 lDATAZ DATA] W TDATAO

68 USB Complete

Inside USB Transfers

High—speed isochronous OUT transfers that have two or three transactions

per microframe use DATAO, DATAl, and MDATA encoding to indicate
Whether more data will follow in the microftame:

Number of OUT Data PiD:

Transactions m the first Transaction Second Transaction Third Transaction
Microframe

1 DATAO — —

2 MDATA DATA] -

3 MDATA MDATA I DATA2 _i

USB Complete 69

Chapter 3

7O USES Complete

A Transfer Type for Every Purpose

4

A Transfer Type for

Every Purpose

Now that you know a little more about how transfers work, it’s time to look
in more detail at the four transfer types: control, bulk, interrupt, and isoch-
ronous.

Control Transfers

Control transfers have two uses. They carry the requests that are defined by

the USB specification and used by the host to learn about and configure
devices. And they can also carry requests defined by a class or vendor for any

other purpose.

Availability

Every device must support control transfers over the default pipe at End—
point 0. A device may also have additional pipes configured for control

USB Complete 71

Chapter 4

transfers, but in reality there’s no need for more than one. Even if a device

needs to send a lot of control requests, the host may allocate bandwidth
according to the number and size of requests, rather than by the number of

control pipes, so additional control endpoints would offer no advantage.

Structure

72

As Chapter 3 explained, control transfers use a defined structure with two or

three stages: Setup, Data (optional), and Status. A stage consists of one or
more transactions.

Every control transfer must have Setup and Status stages. The Data stage is
optional, though a particular request may require it. Because every control
transfer requires transferring information in both directions, the control

transfer’s message pipe uses both the IN and OUT addresses of the end

point.

in a control Write transfer, the data in the Data stage travels from the host to

the device. In a control Read transfer, data in the Data stage travels from the
device to the host. Figure 4—1 and Figure 42 show the stages of control
Read and Write low— and full—speed transfers on a low/full—speed bus. There
are differences, described later in this chapter, for some high~speed transfers
and for low; and full~speed transfers with 2.0 hubs.

In the Setup stage, the host begins a Setup transaction by sending informa~
tion about the request. The token packet contains a PID that identifies the

transfer as a control transfer. The data packet contains information about
the request, including the request number, whether or not the transfer has a

Data stage, and if so, in which direction the data will travel.

The USB specification defines l 1 standard requests. Successful enumeration
requires specific responses to some requests, such as the one that sets the
device’s address. For other requests, a device can return a code that indicates

that the request isn’t supported. A specific class may require a device to sup—
port Class—specifrc requests, and any device may support vendor—specific or
device~specific requests.

USB Complete

A Transfer Type for Every Purpose

CONTROL WRITE TRANSFER, SETUP TRANSAC'ION
TOKEN PACKET DATA PACKET HANDSHAKE PACKET

HOST > DEVICE HOST > DEVICE DEVICE) HOST

IDLE-——- SETUP DATA ACK IDLE
L__________ ___________

DATAO
TEE HOST SENDS TJE HOST SENDS THE DEVICE
A SETUP PACKETI T4E REQUEST. MUST RETURN

T4IS PACKET IS AN ACK.
A_WAYS 8 BYTESI

CONTROL WRITE TRANSFER, DATA TRANSACTIONiS)
A CONTROL WRITE TRANSFER MAY HAVE 0 OR MORE DATA TRANSACTIONS.

TOKEN PACKET DATA PACKET HANDSHAKE PACKET

HOST > DEVICE HOST > DEVICE DEVICE > HOST

IDLE———— OUT ACK IDLE

THE FIRST DATA
PACKET IS DATAII
ANY DATA PACKETS NAK IDLE
THAT POLLOW
ALTERNATE DATAO/II

STALL I———IDLE

DATA ERROR IDLE
THE HOST SENDS THE HOST SENDS THE DEVICE
AN "OUT" PACKET. DATA. RETURNSSTATUS.

CONTROL WRITE TRANSFER, STATUS TRANSACTION

TOKEN PACKET DATA PACKE‘ HANDSHAKE PACKET

HOST > DEVICE DEVICE > HOST HOST > DEVICE

____ O~LENOTH
IDLE IN DATA IDLE

DATA ERROR IDLE

————IDLE

DATA ERROR IDLE

THE_HO§T SENDS THE DEVICE lF THE HOSTAN 1N PACKET. RETURNS RECEIVED THE
STATUS, DATA WITHOUT

ERROR, IT
RETURNS AN ACK.

Figure 4-1: A control Write transfer contains a Setup transaction, zero or more

Data transactions, and a Status transaction. Not shown are the PING protocol

used in high—speed transfers with multiple data packets and the split transactions

used with low— and full—speed devices on a high-speed bus.

USB Complete 73

Chapter 4

CONTROL READ TRANSFER, SETUJ TRANSACT ON
TOKEN PACKET DATA PACKE~ HANDSHAKE PACKET

HOST > DEVICE HOST > DEVICE DEVICE) HOST
,

IDLE-——‘ SETUP DATA —-——-—‘-*j ACK -‘—~IDLE
ETTNTWHMWT DATAO

THE HOST SENDS THE HOST SENDS THE DEVICE
A SETUP PACKETI TFE DATA. MUST RETURN

Tris PACKET IS AN ACK‘
ALWAYS 8 BYTiSV

CONTROL READ TRANSFER, DATA TRANSACTIONIS)
A CONTROL READ TRANSFER MAY HAVE I OR MORE DATA TRANSACTIONS.

TOKEN PACKET ATA PACKET HA SHAKE PACKET

HOST) DEVICE DEVICE > HOST HOST) DEVICE

iDLE—-— IN DATA —--------- ACK >~WVIDLE

TIEKEIRR BART
C ,

A Y DATA PACKETS DATA ERROR IDIETAAT FOLLOW V
A,TERNATE DATAO/I.

NAK ————IDLE

STALL v-~IDLE

DATA ERROR IDLE
THE HOST SENDS THE DEVICE 1F THE HOST
AN "[N” PACKET, SENDS DATA RECEIVED THE

OR ANOTHER DATA WITHOUT
RESPONSE‘ ERROR, ITRETURNS AN ACK.

CONTROL READ TRANSFER,

TOKEN PACKET

HOST > DEVICE

STATUS TRANSAC'ION
DATA PACKET

HOST > DEVICE

@‘LENGTH

HA)SHAKE PACKET

DEVICE) HOST

IDLE »»»»»»»» OUT

THE HOST SENDS
AN "OUT" PACKET.

 DATA

DATAl

THE HOST SENDS
A ®~LENGTH DATA
PACKET.

ACK I———IDLE

DATA ERROR

THE DEVICE
RETURNS
STATUS.

IDLE

Figure 4~2z A control Read transfer contains a Setup transaction, one or more

data transactions, and a status transaction“ Not shown are the split

transactions used with Iow- and tuil~speed devices on a high—speed bust

74 USB Complete

A Transfer Type for Every Purpose

When a Data stage is present, it consists of one or more IN or OUT transac—

tions, also called Data transactions. Depending on the request, the host or

peripheral may he the source of these transactions, but all data packets in

this (or any) stage must be in the same direction.

As described in Chapter 3, if a high~speed control Write transfer has more

than one data packet in the Data stage, and if the device returns NYET after

receiving a data packet, the host uses the PING protocol before sending the

next packet.

The Status stage consists of one IN or OUT transaction, also called the sta-
tus transaction. In the Status stage, the device reports the success or failure

of the previous stages. The source of the Status stage’s data packet is the

receiver of the data in the previous Data transaction. When there is no Data

stage, the device sends the Status stage’s data packet. The data or handshake

packet sent by the device in the Status stage contains a code that indicates
the success or failure of the transfers Setup and Data stages.

If a host is doing a control transfer with a low— or full—speed device on a

high—speed bus, the host uses the split transactions described in Chapter 3
for all of the transfers transactions. To the device, the transaction is no dif—

ferent. The devices hub carries out the transaction with the device and

reports back to the host when requested.

Data Size

The maximum size of the data packet in the Data stage varies with the

device’s speed. For low-speed devices, the maximum is 8 bytes. For full

speed, the maximum may be 8, 16, 32, or 64, bytes. For high speed, the
maximum must be 64 bytes. These bytes include only the information

transferred in the data packet, excluding the PID and CRC bits.

All data packets except the last must be the maximum packet size. The host

reads the maximum packet size from the descriptors retrieved during enu—

meration. For the Default Control Pipe, the size is in the device descriptor.

For other control endpoints, the size is in the endpoint descriptor. If a trans~
fer has more data than will fit in one data transaction, the host sends or

requests the data in multiple transactions.

USB Complete 75

Chapter 4

In some control Read transfers, the amount of data returned by the device

can vary. If the amount is less than the requested number of bytes and an
even multiple of the maximum packet size, the device should indicate that

there is no more data to send by returning a O‘byte data packet in response
to the next IN token packet.

Speed

The host must make its best effort to ensure that all control transfers get
through as quickly as possible. The host controller reserves a portion of the

bus bandwidth for control transfers: 10 percent for low and full speed and
20 percent for high speed. If the control transfers don’t need this much time,

bulk transfers may use what remains. If the bus has unused bandwidth, con—

trol transfers may use more than the reserved amount.

The host attempts to parcel out the available time as fairly as possible to all

requests. Within a transfer, one frame or microframe may carry multiple
transactions, or the transactions may be in different (micro)frames.

There are two opinions on whether control transfers are appropriate for
transferring data other than configuration data. Some say that control transv

fers should be reserved for servicing the standard USE requests as much as

possible. This helps to ensure that the transfers complete quickly by keeping
the bandwidth reserved for them as open as possible. But the specification
doesn’t forbid other uses for control transfers, and others believe that devices

should be free to use control transfers for any purpose. lowaspeed devices
have no other choice except periodic interrupt transfers, which can waste

bandwidth if data transfers are infrequent.

Table 4—1 compares the amount of data that each transfer type can move at

each of the three speeds. Control transfers aren’t the most efficient way to
transfer data. In addition to the data being transferred, each transfer with

one data packet has an overhead of 63 bytes (low speed), 45 bytes (full

speed), or 173 bytes (high speed). Each Data stage requires token and hand—

shake packets, so stages with larger data packets are more efficient.

A single low—speed control transfer with 8 data bytes uses 29% of a frame’s

bandwidth, though the transfers individual transactions may be spread

76 USB Complete

A Transfer Type for Every Purpose

Table 4—1: The maximum possible rate of data transfer varies greatly with the
transfer type and bus speed.

Transfer Type Maximum data-transfer rate per endpoint (kilobytes/second with

data payload/transfer = maximum packet size for the speed)

Low Speed Full Speed High Speed

Control 832

Interrupt 0.8 ()4 24,576

Bulk not allowed I216 53,248

EMA 1023 24,576

among multiple frames. In a control transfer with multiple data packets in

the data stage, the data may transfer in the same or different (micro)frames.

If the bus is very busy, all control transfers may have to share the reserved

portion of the bandwidth. At low speed, the reserved bandwidth requires

three frames to complete one 8—byte transfer. At full speed, the reserved

bandwidth can carry one 64—byte transfer per frame (though again, any one

transfer may be spread over multiple frames). And at high speed, the

reserved bandwidth can carry six 64«byte transfers per microframe, or 512

per frame.

Devices don’t have to respond immediately to control—transfer requests. The

specification has timing limits that apply to most requests. However, a

device class may require faster response to standard and class—specific

requests. Where stricter timing isn’t specified, in a transfer where the host

requests data from the device, the device may delay as long as 500 millisec-

onds before it has the data ready for the host. To find out if data is available,

the host sends a token packet requesting the data. If the data is ready, the

device sends it immediately in that transactions data packet. If not, the

device returns a NAK to advise the host to retry later. The host keeps trying
at intervals, for up to 500 milliseconds.

In a transfer where the host sends data to the device, the device can delay as

long as 5 seconds before accepting all of the data and completing the Status

stage. The 5 seconds doesn’t include any delays the host adds between pack—

ets. In a transfer with no Data stage, the device must complete the request

and the Status stage within 50 milliseconds.

USB Complete 77

Chapwr4

Detecting and Handling Errors

If a device doesn’t return an expected handshake packet during a control

transfer, the host tries twice more. if the host receives no response after a

total of three tries, it notifies the software that requested the transfer and

stops communicating with the endpoint until the problem is corrected. The

two retries include only those sent in response to no handshake at all. A
NAK isn’t an error.

Control transfers use data-toggle bits to ensure that no data is lost. in the

data stage of a Control Read transfer, on receiving a data packet from the

device, the host normally returns an ACK, then sends an OUT token packet

to begin the Status stage. If the device for any reason doesn’t see the ACK
returned after the transfers final data packet, it must interpret a received

OUT token packet as evidence that the handshake was returned and the

Status stage can begin.

Devices must accept all Setup packets. if a new Setup packet arrives before a

previous transfer completes, the device must abandon the previous transfer
and start the new one.

Bulk Transfers

Bulk transfers are useful for transferring data when time isn’t critical. A bull:

transfer can send large amounts of data without clogging the bus, because

the transfers defer to the other transfer types and wait until time is available.

Uses for bulk transfers include sending data from the host to a printer, send—

ing data from a scanner to the host, and reading and writing to a disk. On

an otherwise idle bus, bulk transfers are the fastest transfer type.

Availability

Only full~ and, high—speed devices can do bulk transfers. Devices aren’t

required to support bulk transfers, though a specific device class may require
it.

78 USBCompmm

A Transfer Type for Every Purpose

Structure

A bulk transfer consists of one or more IN or OUT transactions (Figure

4—3). A bulk transfer is one—way. A transfer’s transactions must all be IN

transactions, or all OUT transactions. Transferring data in both directions

requires a separate pipe and transfer for each direction.

A bulk transfer ends in one of two ways: when the requested amount of data

has transferred, or when a data packet contains less than the maximum data,

including a zero—length packet.

To conserve bus time, the host uses the PING protocol in some high—speed

control transfers. If a highrspeed bulk OUT transfer has more than one data

packet and if the device returns NYET after receiving one of these packets,
the host uses PING to find out when it’s OK to begin the next data transac~

tion. In a bulk transfer on a high—speed bus with a low— or full—speed device,

the host uses split transactions for all of the transfers transactions.

Data Size

A full—speed bulk transfer can have a maximum packet size of 8, 16, 32, or

64 bytes. For high speed, the maximum must be 512 bytes. During enumer»
ation, the host reads the maximum packet size for each bulk pipe from the

device’s descriptors. The amount of data in a transfer may be less than, equal
to, or greater than the maximum size. If the amount of data won’t fit in a
single packet, the host completes the transfer using multiple transactions.

Speed

The host controller guarantees that bulk transfers will complete eventually,
but doesn’t reserve any bandwidth for the transfers. Control transfers are

guaranteed to have 10 percent of the bandwidth at low and full speeds, and
20 percent at high speed. Interrupt and isochronous transfers may use the
rest. So if a bus is very busy, a bulk transfer may take very long.

However, when the bus is otherwise idle, bulk transfers can use the most

bandwidth of any type, and they have a low overhead, so they’re the fastest
of all. When an endpoint’s maximum packet size is less than the maximum,

USB Complete 79

Chapter 4

BULK OR INTERRUPT IN TRANSACTION

TOKEN PACKET DATA PACKET HANDSHAKE PACKET

HOST > DEVICE DTVIC“ > HOST HOST) DEVIC:

IDLE IN DATA ACK -——~IDLE

NAK r——‘IDLE IDLE

STALL IDL—

THE HOST SENDS THE DEVICE RESPONDS IF THE HOST_
AN "IN" PACKET‘ WITH DATA OR STATUS. RECEIVED TH:

DATA WITHOUT
ERROR, IT
R: URNS AN ACK.

BULK OR INTERRUPT OUT TRANSACTION

TOKEN PACKET DATA PACKET HA DSHAKE PACKET

HOST > DEVIC HOS" > DEVIC EVICE > HOST

IDLE4-—- OUT AH“ DATA

 III C

ACK ~—~‘IDLE

 NAK L-1DLE

STALL ———‘IDLE

_ DATA ERROR IDLE
TH: HOST SENDS THE HOST SENDS THE DEVICE
AN "OUT" PACKET. DATA. RETURNS

STATUS.

Figure 4-3; Bulk and Interrupt transfers use IN and OUT transactions. Their

structure is identical, but the host schedules them differently. Not shown are the
PING protocol used in high-speed bulk OUT transfers with multiple data packets
or the split transactions used with low- and full—speed devices on a high-speed
bus.

80 USB Complete

A Transfer Type for Every Purpose

some hosts schedule no more than one packet per Frame, even if more band,
width is available.

At full speed on an otherwise idle bus, up to nineteen 64—byte bulk transfers

can transfer up to 1216 data bytes per frame, for a data rate of 1.216 Mega—

bytes per second. This leaves 18% of the bus bandwidth free for other uses.
The protocol overhead For a bulk transfer with one data packet is 13 bytes at

full speed and 55 bytes at high speed.

At high speed on an otherwise idle bus, up to thirteen 512—byte bulk trans—

fers can transfer up to 6656 data bytes per microframe, for an impressive

data rate of 53.248 Megabytes per second, using all but 2% of the bus band—

width. The protocol overhead for a bulk transfer with one data packet is 55

bytes.

Detecting and Handling Errors

Bulk transfers use error detecting. If a device doesn’t return an expected

handshake packet, the host tries up to twice more. The host will also retry

without limit on receiving NAK handshakes. Bulk transfers use data—toggle
bits to ensure that no data is lost.

Interrupt Transfers

Interrupt transfers are useful when data has to transfer within a specific

amount of time. Typical applications include keyboards, mice and other

pointing devices, joysticks, and hub status reports. Users don’t want a

noticeable delay between pressing a key or moving a mouse and seeing the

result on screen. And a hub needs to report the attachment or removal of

devices promptly. Low~speed devices, which support only control and inter—

rupt transfers, are likely to use interrupt transfers for generic data. Interrupt
transfers are also popular because Windows includes drivers that enable

applications to do interrupt transfers with devices that conform to the HID

specification.

USB Complete 81

Chapter 4

At low and full speeds, the bandwidth available for an interrupt endpoint is

limited, but high speed loosens the limits and enables an interrupt endpoint
to transfer almost 400 times as much data as full speed.

The name interrupt transfer suggests that a device can cause a hardware

interrupt that results in a fast response from the PC. But the truth is that

interrupt transfers, like all other USB transfers, occur only when the host

polls a device. The transfers are interrupt—like, however, because they guarw
antee that the host will request or send data with minimal, delay.

Availability

All three speeds support interrupt transfers. Devices aren’t required to sup—

port interrupt transfers, but a device class may require it. For example, a

HID—class device must support interrupt IN transfers for sending data to
the host.

Structure

82

An interrupt transfer consists of one or more lN transactions or one or more

OUT transactions. The structure of an interrupt transfer is identical to that

of a bulk transfer (Figure 43), The only difference is in the scheduling. An
interrupt transfer is one~way; the transactions must be all IN transactions, or

all OUT transactions. Transferring data in both directions requires a sepa—
rate transfer and pipe for each direction.

An interrupt transfer ends in one of two ways: when the requested amount

of data has transferred, or when the data packet contains less than the maxiv

mum data, including a zero—length packet.

In an interrupt transfer on a high—speed bus with a low— or full—speed device,

the host uses the split transactions described in Chapter 3 for all of the

transfers transactions. Unlike high—speed bull: OUT transfers, high-speed
interrupt OUT transfers don’t use the PING protocol when a transfer has

multiple transactions.

USB Complete

A Transfer Type for Every Purpose

Data Size

For low—speed devices, the maximum packet size can be any value from 1 to
8 bytes. For full speed, the maximum can range from 1 to 64 bytes. For high

speed, the range is 1 to 1024 bytes. 1f the amount of data in a transfer won’t
fit in a single transaction, the host uses multiple transactions to complete the
transfer.

Speed

An interrupt transfer guarantees a maximum latency, or time between trans—

action attempts. In other words, there is no guaranteed transfer rate, just the

guarantee that there will be no more than the request maximum latency
between transaction attempts.

High—speed interrupt transfers can be very fast. A. high—speed transfer can
request up to three 1024—byte packets in each 125rmicrosecond microframe,
which works out to 24.576 Megabytes per second. An endpoint that

requires more than 1024 bytes per microframe is a high~bandwidth end—
point. A full'speed transfer can request up to 64 bytes in each 1—millisecond
frame, or 64 kilobytes per second. And a low—speed transfer can request up

to 8 bytes every 10 milliseconds, or 800 bytes per second.

The endpoint descriptor stored .in the device specifies the maximum latency.
For low—speed devices, the maximum latency can be any value between 10
and 255 milliseconds. For full speed, it can be anywhere between 1 and 255

milliseconds. For high speed, the range is from 125 microseconds to 4 sec,
onds, in increments of 125 microseconds (the width of a microframe). In

addition, a high—speed interrupt endpoint with a maximum latency of 125
microseconds can request 1, 2, or 3 transactions per interval. The host con—
troller ensures that transaction attempts occur within the specified time.

The host may begin each transaction at any time up to the specified. maxi—
mum, compared to when the previous transaction began. So, for example,
with a 10—millisecond maximum at full speed, 5 transfers could. take as long

as 50 milliseconds or as little as 5 milliseconds. However, OHCI host con-

trollers use values that correspond to powers of 2, with a maximum of 32

milliseconds. So for a full—speed device that requests a maximum anywhere

USB Complete 83

Chapter 4

from 8 to 15 milliseconds, the OHCI host begins a transaction every 8 mil—
liseconds. A maximum latency anywhere from 32 to 255 will cause a trans—

action attempt every 32 milliseconds. However, a device should assume only
that the host will comply with the specification. The device should n’t rely on
behavior that is specific to a type of host controller,

Because the host is free to transfer data more quickly than the requested rate,

interrupt transfers don’t guarantee a precise rate of delivery. The only excep—
tions are when the maximum latency equals the fastest possible rate. For
example, with a 1.x host, a full~speed interrupt pipe configured for 1 trans»
action per millisecond will use this exact rate.

An otherwise idle bus can carry up to six low—speed, 8—byte transactions per
frame. At full speed, the limit is nineteen 64~byte transactions. Since the
minimum time between transfers is one frame or more, each transaction in

the frame would have to be for a different endpoint address. In reality, a host
may not be able to schedule as many as nineteen full—speed interrupt trans~
actions in a single frame, so the practical maximum number of interrupt
transactions is likely to be less.

At high speed, the limit is two transfers per microframe, each consisting of
three 1024~byte transactions.

The protocol overhead per transfer with one data packet is 19 bytes at low
speed, 13 bytes at full speed, and 55 bytes at high speed. High—speed inter—
rupt and isochronous transfers combined can use no more than 80 percent
of a microframe. Full—speed isochronous transfers and low— and full—speed
interrupt transfers combined can use no more than 90 percent of a frame.

The section More about Time~critical Wamférs later in this chapter has more
about the capabilities and limits of interrupt transfers.

Detecting and Handling Errors

84

If a device doesn’t return an expected handshake packet, host controllers in

PCs will retry up to twice more. The host will also retry without limit on

receiving NAKs. interrupt transfers can use data~toggle values to ensure that
all data is received without errors. As explained earlier, if the receiver cares

only about the most recent data, it may ignore the data toggle.

USB Complete

A Transfer Type for Every Purpose

Isochronous Transfers

Isochronous transfers are streaming, real—time transfers that are useful when
data must arrive at a constant rate, or by a specific time. and occasional

errors can be tolerated. At full speed, isochronous transfers can transfer more

data per frame than interrupt transfers. But there is no provision for retrans—
mitting data received with errors.

Examples of uses for isochronous transfers include encoded voice and music
to be played in real time. But data that will eventually be used at a constant
rate doesn’t necessarily require an isochronous transfer. For example, a host

may use a bulk transfer to send a music file to a device. After the device has
received the entire file, it can play it at the appropriate rate.

Nor does the data in an isochronous transfer have to be used at a constant

rate. An isochronous transfer is a way to ensure that a large block of data gets

through quickly on a busy bus, even if the data doesn’t need to transfer in
real time. Unlike with bulk transfers, once an isochronous transfer begins,

the host guarantees that the time will be available to send the data at a con~
stant rate, so the completion time is predictable.

Availability

Only full— and high—speed devices can do isochronous transfers. Devices
aren’t required to support isochronous transfers but a device class may

require it.

Structure

[socbmnous means that the data has a fixed transfer rate, with a defined num—

ber of bytes transferring in every frame or microframe. None of the other
transfer types guarantee to send a specific number of bytes in each frame
(with the exception of interrupt transfers with the shortest possible maxi“

mum latency).

A full—speed isochronous transfer consists of one IN or OUT transaction per
frame in one or more frames at equal intervals. Highvspeed isochronous

transfers are more flexible. They can request as many as three transactions

USB Complete 85

Chapter 4

per microframe or as little as one transaction every 32,768 microframes. Fig“
ure 44 shows the packets in full-speed isochronous IN and OUT transac»

tions. An isochronous transfer is one—way; the transactions in a transfer must

all be IN transactions, or all OUT transactions. Transferring data in both
directions requires a separate transfer and pipe for each direction.

Before configuring a pipe for isochronous transfers, the host controller com—

pares the requested buffer size with the available remaining, unreserved
bandwidth on the bus to determine whether the requested bandwidth is
available. A fullvspeed transfer with the maximum 1023 bytes per frame uses
69 percent of the USB’s bandwidth. If two full—speed devices want to estab~
lish pipes for transferring 1023 bytes per frame, the host will refuse to con»

figure the second pipe because the data won’t fit in the remaining
bandwidth. If the device supports an alternate interface with smaller data

packets or fewer packets per microframe, the device driver can request this.
ISOCHRONOUS IN TRA SACTION

TOKEN PACKET DATA PACKS"

HOST > D-v1c~ DEVICE > HOST

DATAO

THE HO§T SENQS THE DEVIC: RESPONDS
AN IN PACK2T. WI"H DATA.

ISOCHRONOUS OUT TRANSACTION

TOKEN PACKET DATA PACKET

HOST > DEVICE HOST > DEVICE

IDLE OUT DATA IDLE

DATAO

THE HOST SENDS THE HOST SENDS
AN “OUT" PACKET. DATA.

Figure 4—4: lsochronous transfers don’t have handshake packets, so occasional
errors must be acceptable. Not shown are the split transactions used with

full-speed devices on a high-speed bus or the data sequencing in high~speed
transfers with multiple data packets per microframe.

86
USB Complete

A Transfer Type for Every Purpose

Or the driver can try again later in the hope that the bandwidth will be

available. When the device is configured, the transfers are guaranteed to

have the time they need.

Although isochronous transfers may send a fixed number of bytes per frame,

the data doesn’t transfer at a constant number of bits per second. Each trans—
action has overhead and must share the bus with other devices. 80 the data is

actually a burst at 12 or 480 Megabits per second that may occur any time

Within the frame or microframe. If the receiving end wants to use the data at

a constant rate, such as sending it to a speaker, the receiver must convert the

received bits to signals that span the frame time.

Isochronous transfers may also synchronize to another data source or recipi-

ent, or to USB’s Start—of—Frame signals. For example, a microphone’s input

may synchronize to the output of speakers. The specification describes sev—

eral methods of synchronizing to internal and external clocks. The descrip»

tor for a 2.0 isochronous endpoint can specify a synchronization type and a

usage value that indicates whether the endpoint is contains data or feedback

information used to maintain synchronization.

If a host is doing an isochronous transfer on a high~speed bus with a

fullvspeed device, the host uses the split transactions described in Chapter 3
for all of the transfers transactions. Isochronous OUT transactions use

start—split transactions, but not complete—splits, because there is no status

information to report back to the host. lsochronous transfers don’t use the

PING protocol.

Data Size

For full—speed endpoints, the maximum packet size can range from 0 to

1023 data bytes. High—speed endpoints can have a maximum packet size up

to 1024 bytes. If the amount of data won’t fit in a single packet, the host

completes the transfer in multiple transactions.

The amount of data in each frame doesn’t have to be the same. For example,

data at 44,100 samples per second could use a sequence of 9 frames contain—

ing 44 samples each, followed by 1 frame containing 45 samples.

USB Complete 87

Chapter 4

Speed

A full-speed isochronous transaction can transfer up to 1023 bytes per

frame, or up to 1.023 Megabytes per second. This leaves 31% of the bus

bandwidth free for other uses. The protocol overhead is 9 bytes per transfer

for a transfer with one data packet, or less than 1% for a single 1023—byte

transaction. The minimum requested bandwidth for a full—speed transfer is

one byte per frame, or 1 kilobyte per second.

A high~speed isochronous transaction can transfer up to 1024 bytes. An iso~

chronous endpoint that requires more than 1024L bytes per microframe can

request 2 or 3 transactions per microframe, for a maximum rate of 24.576

Megabytes per second. An endpoint that requires multiple transactions per

microframe is a high—bandwidth endpoint. The protocol overhead is 38

bytes per transfer for a transfer with one data packet.

Because high—speed isochronous transfers don’t have to do a transaction in

every frame or microframe, they can also request less bandwidth than

full—speed transfers. The minimum requested bandwidth is one byte every

32,678 microframes, which works out to one byte every 4.096 seconds.

However, any endpoint can transfer less data than the maximum reserved

bandwidth by skipping available transactions or transferring less than the

maximum data per transfer.

High—speed interrupt and isochronous transfers can use no more than 80

percent of a microframe. Full—speed isochronous transfers and low« and

full—speed interrupt transfers combined can use no more than 90 percent of

of a frame. An otherwise idle high—speed bus can carry two isochronous
transfers at the maximum rate.

The section More 450W Timec‘rz'tical Transfers later in this chapter has more

about the capabilities of isochronous transfers.

Detecting and Handling Errors

The price to pay for guaranteed on-time delivery of large blocks of data is no

error correcting. Isochronous transfers are intended for uses where occa—

sional, small errors are acceptable. For example, listeners may tolerate or not

88 USB Complete

A Transfer Type for Every Purpose

notice a short dropout in voice or music. And in reality, under normal cir—

cumstances, a USB transfer should experience no more than a very occa—

sional error due to line noise. Because isochronous transfers must keep to a

schedule, the receiver can’t request a retransmit of data if it’s busy or detects

an error. if the receiver suspects errors, it can ask the sender to resend the

entire transfer, but this isn’t very efficient.

More about Time-critical Transfers

Just because an endpoint is capable of a rate of data transfer doesn’t mean

that a particular device and host will be able to achieve it. Several things can

limit an applications ability to send or receive data at the maximum rate

that an endpoint and host controller are capable of. The limiting factors

include bus bandwidth, the device’s capabilities, the capabilities of the

device driver and application software, and the latencies due to how Win-

dows manages multi—tasking.

Bus Bandwidth

When a device requests more interrupt or isochronous bandwidth than is

available, the host will refuse to configure the device. Low— and full—speed

interrupt transfers use little bandwidth, so the host isn’t likely to deny a con—

figuration due to the requirements of these. High—speed interrupt transfers

are a different story. A high—speed endpoint can request up to three

1024—byte data packets in each microframe, using as much as 40 percent of

the bus bandwidth. To help ensure that devices will enumerate without

problems, the initial, default data payload of an interrupt endpoint must be

64 bytes or less. The device driver is then free to try to increase the end—

point’s reserved bandwidth by requesting alternate interface settings or con—

figurations.

lsochronous endpoints can also cause bandwidth problems. A frequent

problem with isochronous endpoints on 1.x devices was devices requesting
more bandwidth than was available. The host would properly refuse to con—

figure the device and the user was left with a device that didn’t work without

knowing why.

USB Complete 89

Chapter 4

To help ensure that devices will enumerate without problems, the default

interface setting of a 2.0—eompliant device must use no isochronous band
width, in other words, the default interface can transfer no isochronous data

at all. An obvious way to ensure this is to include no isochronous endpoints
in the default interface. After enumeration, the device driver is free to

attempt to request isoch ronous bandwidth by requesting an alternate inter“

face or configuration with an isochronous endpoint. Note that even

full—speed endpoints must meet this requirement to be 2.0»compliant.

Microsoft and lntel’s PC2001 System Design Guide also requires the default

interface setting to use zero isochronous bandwidth,

Device Capabilities

if the host has promised that the requested USB bandwidth will be avail»

able, there’s still no guarantee that the device will be ready to send or receive
data when needed.

To use interrupt and isochronous transfers effectively, both the sender and

receiver have to be capable of sending and receiving at the desired rate. If the

device is sending data, it must write the data to send into the transmit buffer

in time to enable the hardware to place it on the bus when the host requests

it. If the device is receiving data, it must read the previous data from its
buffer before the new data arrives, or either the old data will be overwritten

or the device will refuse the new data.

One way to help ensure that the device is always ready for a transfer is to use

double buffering, as described in Chapter 7. This gives the firmware extra

time to load the next data to transfer or to retrieve the just-received data.

Host Software Capabilities

90

Another thing that can affect whether or not all available transfers take place
is the capabilities of the device driver and application software on the host.

A device driver requests a transfer by submitting an l/O request packet

HR?) to a lower—level driver. For interrupt and isochronous transfers, if there

is no outstanding IRP for an endpoint when its scheduled time comes up,

the transaction is skipped. To ensure that no transfer opportunities are

USB Complete

A Transfer Type for Every Purpose

missed, drivers typically submit a new lRP immediately on completing the

previous one.

For some devices, including keyboards and mice, the driver begins to

request interrupt transfers as soon as the driver is loaded into memory. For
other devices, the host’s driver may begin requesting transfers only after an

application requests to send or receive data.

The application software that uses the data also has to be able to keep up
with the transfers. For example, the driver for HID—class devices places

report data received in interrupt transfers in a buffer, and applications use
ReadFile to retrieve reports from the buffer. If the buffer is full when a new

report arrives, the driver discards the oldest report and replaces it with the
newest one. If the application can’t keep up, some reports are lost. In some

cases, applications can increase the size of the buffer the driver uses to store
received data. This can help if the application is sometimes busy, but at
other times is free to retrieve the data.

As a general rule, Visual~Basic applications are slower than applications

compiled with Visual C++ or Delphi.

One way to help ensure that an application sends or receives data with min—

imal delays is to place the code that communicates with the device driver in

its own program thread. The thread should have few responsibilities other

than managing these communications. In Visual Basic, an ActiveX Exe
server can run in its own thread and communicate with an application.

Doing fewer, larger transfers rather than multiple, small transfers can also

help. When there are multiple transactions per transfer, the lower—level driv—
ers take care of the scheduling. An application can typically send or request a

few large chunks of data more quickly than it can send or request many
smaller chunks.

Windows Latencies

Another factor in the performance of time—critical USB transfers is the lately

cies, or delays, due to how Windows handles multi’tasking. Windows was

USB Complete 91

Chamer4

92

never designed as a realvtime operating system that could guarantee a rate of
data transfer with a peripheral.

Multi—tasking means that multiple program threads can run at the same

time. The operating system grants a portion of the available time to each

thread. Different threads can have different priorities, but under Windows

98, Windows 2000, and Windows Me, no thread can be guaranteed CPU

time at a defined, precise rate, such as once per millisecond.

latencies under Windows are often well under 1 millisecond, but in some

cases a thread can keep other code from executing for over 100 milliseconds

‘Windows 98’s performance tends to be worse than that ofWindows 2000 or

Windows Me in this respect.

A USB device and its software have no control over what other tasks the

host CPU is performing, so dealing with these latencies can be one of the

biggest challenges when timing is critical.

In general, it’s best to let the device handle any real~time processing required

and make the timing of the host communications as non—critical as possible.
For example, imagine a device that reads a sensor once per millisecond. The

device could attempt to send each reading to the host in a separate interrupt
transfer, but this would require the driver and application to be able to read

a transfer every millisecond. If the device instead collects a series of readings
and, transfers them using less frequent, but larger transfers, the timing in the
host software is less critical. Data compression can also help by reducing the
amount of data that transfers.

USBCompmm

Enumeration: How the Host Learns about Devices

Enumeration:

How the Host Learns

about Devices

Before applications can communicate with a device, the host needs to learn
about the device and assign a device driver. Enumeration is the initial

exchange of information that accomplishes this. The process includes
assigning an address to the device, reading data structures from the device,
assigning and loading a device driver, and selecting a configuration from the
options presented in the retrieved data. The device is then configured and
ready to transfer data using any of the endpoints in its configuration.

This chapter describes the enumeration process, including the structure of

the descriptors that the host reads from the device during enumeration. You

don’t need to know every detail about enumeration in order to design a USB

peripheral, but understanding a certain amount is essential in creating the

USB Complete 93

ChaMerS

descriptors that will reside in the device and writing the firmware that
responds to enumeration requests.

The Process

94

One of the duties of a hub is to detect the attachment and removal of

devices. Each hub has an interrupt IN pipe for reporting these events to the

host. On system boot~up, the host polls its root hub to learn if any devices
are attached, including additional hubs and devices attached to the first tier

of devices. After boot~up, the host continues to poll periodically to learn or
any newly attached or removed devices.

On learning of a new device, the host sends a series of requests to the
device’s hub, causing the hub to establish a communications path between

the host and the device. The host then attempts to enumerate the device by
sending control transfers containing standard USB requests to Endpoint 0.

All USB devices must support control transfers, the standard requests, and

Endpoint 0. For a successful enumeration, the device must respond to each

request by returning the requested information and taking other requested
actions.

From the user’s perspective, enumeration should be invisible and automatic,

except for possibly a window that announces the detection of a new device

and whether or not the attempt to configure it succeeded. Sometimes on

first use, the user needs to provide a disk containing the INF file and device
driver.

When enumeration is complete, Windows adds the new device to the

Device Manager display in the Control Panel. Figure 5—], shows an example.
To view the Device Manager, in Windows 98, click the Start menu > Set—

tings > Control Panel >System > Device Manager. in Windows 2000, it’s the

same except that after clicking System, you click Hardware, then Device

Manager. When a user disconnects a peripheral, Windows automatically
removes the device from the display.

USBCompmm

Enumeration: How the Host Learns about Devices

~51 title in
' iii-innit" 5

2+3 Parts: (:32 fl 2 LPT}
£3! SEES-l tzvjntrcllers

Sound. 'w‘lCiBU and game controllers
”System devices

% Tape ain't-“e ccmirnllers
Tape dl es

Q Universal Serial Bus enntrcllers
ifib General purpose USE Huh

7 5% lnlel 82371AB/EE‘ F‘Cl to USE Universal Host Controller
' e5? RDC—EUUU
- if? use Fleet Hui:

Refresh ; J , Reine, '

Figure 5-1: The Device Manager in Windows’ Control Panel lists all detected
USB devices. Some devices are listed under Universal Serial Bus controllers,

and others are listed by type, such as keyboard or modern.

In a typical peripheral, the device’s program code contains the information
the host will request, and a combination of hardware and firmware decodes
and responds to requests for the information. Some application—specific
chips (ASle) manage the enumeration entirely in hardware and require no
firmware support. On the host side, under Windows there’s no need to write
code For enumerating, because Windows handles it automatically. Windows
will look for a special text file called an lNF file that identifies the driver to
use for the device.

Enumeration Steps

During the enumeration process, a device moves through four of the six
device states defined by the specification: Powered, Default, Address, and

USB Complete 95

Chapter 5

96

Configured. (The other states are Attached and Suspend.) In each state. the
device has defined capabilities and behavior.

The steps below are a typical sequence of events that occurs during enumer~
ation under Windows. The device firmware shouldn’t assume that the enu—

meration requests and events will occur in a particular order, however. The

device should be ready to detect and respond to any control request at any
{11116.

1. The user plugs a device into a USB port. Or the system powers up with
a device already plugged into a port. The port may be on the root hub at the
host or attached to a hub that connects downstream of the host. The hub

provides power to the port, and the device is in the Powered state.

2. The hub detects the device. The hub monitors the voltages on the signal
lines of each of its ports. The hub has a IS’kilohm pull—down resistor on
each of the port’s two signal lines 03+ and ll), While a device has a

1.5—kilohm pull~up resistor on either D+ for a full—speed device or D— for a
lowrspeed device. High~speed devices attach at full speed. When a device

plugs into a port, the device’s pullwup brings that line high, enabling the hub
to detect that a device is attached. Chapter 18 has more on how hubs detect
devices.

On detecting a device, the hub continues to provide power but doesn’t yet
transmit USB traffic to the device, because the device isn’t ready to receive it.

3. The host learns of the new device. Each hub uses its interrupt pipe to
report events at the hub. The report indicates only whether the hub or a
port (and if so, which port) has experienced an event. When the host learns

of an event, it sends the hub a Get_PortflStatus request to find out more.
Get_Porthtatus and the other requests described here are standard

hub~class requests that all hubs understand. The information returned tells

the host when a device is newly attached.

4. The hub detects Whether a device is low or full speed. Just before the
hub resets the device, the hub determines whether the device is low or hill

speed by examining the voltages on the two signal lines. The hub detecrs the

speed of a device by determining which line has the higher voltage when
idle. The hub sends the information to the host in response to the next

USB Complete

Enumeration: How the Host Learns about Devices

GetfiPort“Status request. USB 1.); allowed the hub the option to detect

device speed just after reset. USB 2.0 requires speed detection to occur

before reset so it knows whether to Check for a highwspeed—capable device

during reset, as described below.

5. The hub resets the device. When a host learns of a new device, the host

controller sends the hub a Set_P0rt_Feature request that asks the hub to

reset the port. The hub places the device’s USB data lines in the Reset condi—

tion for at least 10 milliseconds. Reset is a special condition where both D+

and D— are a logic low. (Normally, the lines have opposite logic states.) The

hub sends the reset only to the new device. Other hubs and devices on the
bus don’t see it.

6. The host learns if a full—speed device supports high speed. Detecting

whether a device supports high speed uses two special signal states. In the

Chirp] state, the 13+ line only is driven and in the Chirp K state, the D— line

only is driven.

During the reset, a device that supports high speed sends a Chirp K. A

high—speed hub detects the chirp and responds with a series of alternating

Chirp Ks and, J5. When the device detects the pattern KJKJK], it removes its

full—speed pull up and performs all further communications at high speed. If

the hub doesn’t respond to the device’s Chirp K, the device knows it must

continue to communicate at full speed. All high-speed devices must be capa—

ble of responding to enumeration requests at full speed.

7. The hub establishes a signal path between the device and the bus.

The host verifies that the device has exited the reset state by sending a

Get_Port_Status request. A bit in the data returned indicates whether the

device is still in the reset state. If necessary, the host repeats the request until

the device has exited the reset state.

When the hub removes the reset, the device is in the Default state. The

devices USB registers are in their reset states and the device is ready to

respond to control transfers over the default pipe at Endpoint O. The device

can now communicate with the host, using the default address of 00b. The

device can draw up to 100 milliamperes from the bus.

USB Complete 97

Chapter 5

98

8. The host sends a Get_Descriptor request to iearn the maximum

packet size of the default pipe. The host sends the request to device

address 0, Endpoint 0. Because the host enumerates only one device at a

time, only one device will respond to communications addressed to device

address 0, even if several devices attach at once.

The eighth byte of the device descriptor contains the maximum packet size

supported by Endpoint 0. A Windows host requests 64 bytes, but after

receiving just one packet (whether or not it has 64 bytes), it begins the status

stage of the transfer. On completion of the status stage, a Windows host

requests the hub to reset the device (step 5). The specification doesn’t

require a reset here, because devices should be able to handle the host’s abanfl

doning a control transfer at any time by responding to the next Setup

packet. But resetting is a precaution that ensures that the device will be in a
known state when the reset ends.

9c The host assigns an address. The host controller assigns a unique

address to the device by sending a Set_Address request, The device reads the

request, returns an acknowledge, and stores the new address. The device is

now in the Address state. All communications from this point on use the
new address. The address is valid until the device is detached or reset or the

system powers down. On the next enumeration, the device may be assigned
a different address.

10. The host learns about the device’s abilities. The host sends a

GetmDescriptor request to the new address to read the device descriptor, this

time reading the whole thing. The descriptor is a data structure containing

the maximum packet size for Endpoint 0, the number oi: configurations the
device supports, and other basic information about the device. The host uses

this information in the communications that follow.

The host continues to learn about the device by requesting the one or more

configuration descriptors specified in the device descriptor. A device nor—

mally responds to a request for a configuration descriptor by sending the

descriptor followed by all of that descriptor’s subordinate descriptors, But a

Windows host begins by requesting just the configuration descriptors nine

USB Complete

Enumeration: How the Host Learns about Devices

bytes. Included in these bytes is the total length of the configuration descrip—

tor and its subordinate descriptors.

Windows then requests the configuration descriptor again, this time using

the retrieved total length, up to FFh bytes. This causes the device to send the

configuration descriptor followed by the interface descriptor(s) for each con—

figuration, followed by endpoint descriptor(s) for each interface. If the

descriptors total more than FFh bytes, Windows obtains the full set of

descriptors on a third request. Each descriptor begins with its length and

type, to enable the hosr to parse (pick out the individual elements in) the

data that follows. The Descriptors section in this chapter has more on what

each descriptor contains.

11. The host assigns and loads a device driver (except for composite

devices). After the host learns as much as it can about the device from its

descriptors, it looks for the best match in a device driver to manage commu—

nications with the device. in selecting a driver, Windows tries to match the

information stored in the system’s INF files with the Vendor and Product

lDS and (optional) Release Number retrieved from the device. If there is no

match, Windows looks for a match with any class, subclass, and protocol

values retrieved from the device. After the operating system assigns and

loads the driver, the driver often requests the device to resend descriptors or

send other class—specific descriptors.

An exception to this sequence is composite devices, which have multiple

interfaces, with each interface requiring a driver. The host can assign these

drivers only after the interfaces are enabled, which requires the device to be

configured (as described in the next step).

12. The host’s device driver selects a configuration. After learning about

the device from the descriptors, the device driver requests a configuration by

sending a Set_Configuration request with the desired configuration num—

ber. Many devices support only one configuration. Ifa device supports mul—

tiple configurations, the driver can decide which to use based on whatever

information it has about how the device will be used, or it may ask the user

what to do, or it may just select the first configuration. The device reads the

USB Complete 99

Chapter 5

request and sets its configuration to match. The device is now in the Config~

ured state and the device’s interface(s) are enabled.

The host now assigns drivers for the interfaces in composite devices. As with

other devices, the host uses the information retrieved from the device to find

a matching driver.

The device is now ready for use.

The other two device states, Attached and Suspended, may exist at any time.

Attached state. If the hub isn’t providing power (VBUS) to the port, the

device is in the Attached state. This may occur if the hub has detected an

over—current condition, or if the host requests the hub to remove power,

From the port. With no power on VBUS, the host and device can’t communiw

care, so from their perspective, the situation is the same as when the device
isn’t attached at all.

Suspend State. The Suspend state means the device has seen no activity,

including Start’of—Frame markers, on the bus for at leasr 3 milliseconds. in

the Suspend state, the device must consume minimal bus power. Both con»

figured and unconfigured devices must support this state. Chapter 19 has
more details.

Enumerating a Hub

Hubs are also USB devices, and the host enumerates a newly attached hub

in exactly the same way as it enumerates a device. if the hub has devices

attached, the host also enumerates each of these after the hub informs the

host of their presence.

Device Removal

100

When a user removes a device from the bus, the hub disables the device’s

port. The host learns that the removal occurred after polling the hub, learn—

ing that an event has occurred, and sending a Get_Po:rt_Status request to
find out what the event was. Windows then removes the device from the

Device Manager’s display and the device’s address becomes available to

another newly attached device.

USB Complete

Enumeration: How the Host Learns about Devices

Descriptor Types and Contents

Descriptors are data structures, or formatted blocks of information, that

enable the host to learn about a device. Each descriptor contains informa—
tion about either the device as a whole or an element in the device.

All USB peripherals must respond to requests for the standard USB descrip—

tors. This means that the peripheral must do two things: store the informa—

tion in the descriptors, and respond to requests for the descriptors in the

expected format.

Types

As described above, during enumeration the host uses control transfers to

request descriptors from the device. As enumeration progresses, the

requested descriptors concern increasingly small elements of the device: first

the entire device, then each configuration, each configurations interface(s),

and finally each interfaces endpoint(s). Table 5—1 lists the descriptor types.

The higher—level descriptors inform the host of any additional, lower~level

descriptors. Each device has one and only one device descriptor that con—

tains information about the device as a whole and specifies the number of

configurations the device supports. Each device also has one or more config-

uration descriptors that contain information about the devices use of power

and the number of interfaces supported by the configuration. Each interface

descriptor has zero or more endpoint descriptors that contain the informa—

tion needed to communicate with an endpoint. An interface with no end'

point descriptors can still use the control endpoint for communications.

On receiving a request for a configuration descriptor, the device should

return the configuration descriptor and all of the configurations interface,

endpoint, and other subordinate descriptors, up to the requested number of

bytes. There is no request to retrieve, for example, only an endpoint descrip—

tor. Devices that support both full and high speeds support two additional

descriptor types: device_qualifier and other_speed_configuration. These

and their subordinate descriptors contain information about the device’s

behavior when using the speed not currently selected.

USB Complete 101

Chapter 5

Table 5-1: The specification defines standard descriptor types. A device class

may require additional descriptor types.

Descriptor Type

device

Required?

device_quaiifier

Yes

Yes, for devices that support both full and high speeds Not
allowed for other devices

Yes

other_speed_configuration
allowed for other devices

 interface Yes

endpoint No, if the device uses only Endpoint 0.

string No. Optional descriptive text.

interface_power

lNo. Supports interfacedevel power management.

102

A string descriptor can store text such as the vendors or devices name. The

other descriptors can store indexes that point to these string descriptors, and

the host can read the string descriptors using GetflDescriptor requests.

The 2.0 specification added an interrace_power descriptor that enables

power management at the interface level in addition to the device level. The

document describing this descriptors structure and use is USE Feature Spec»

z'ficarion: Interfizre Power ,Mmmgemem.

In addition to the standard descriptors, a device may contain class— or venw

dor—specific descriptors“ These offer a structured. way for a device to provide

more detailed information about itself. For example, an interface descriptor

may specify that the interface belongs to the HID class and supports a PM)

class descripton

Each descriptor contains a value that identifies the descriptor type. Table

5-2 lists values defined by the USB and HID specifications, Bit 7 is always

zero. Bits 6 and ’5 identity the descriptor type: 00h=standard, Olhzclass,

02h=vendor, 03h2reservedi Bits 4. through 0 identify the descriptor,

Each descriptor consists of a series of fields. Most of the field names use pre»

fixes to indicate something about the Format or contents of the data in that

USB Complete

Enumeration: How the Host Learns about Devices

Table 5—2: Each descriptor has a value that defines the information the

descriptor contains.

Type Value Descriptor
(hexadecimal)

W—()1 device
()2 configuration

()3 string

()4 interface

()5 endpoint

06 device_qualifier

O7 other;speed_contiguration

08 interl‘ace_power

Class 21 ”HID

29 hub

Specific to the HID 22 report

Class 23 physical

field: & 2 byte (8 bits), to : word (16 bits), 17m = bit map, (5061: binary~coded

decimal, 2' = index, id = identifier.

Device Descriptor

The device descriptor has basic information about the device. It’s the first

descriptor the host reads on device attachment and. includes the information
the host needs so it can retrieve additional information from the device.

The descriptor has 14 fields. Table 5—3 lists the fields in the order they occur

in the descriptor. The descriptor includes information about the descriptor

itself, the device, its configurations, and its classes. The following descrip—

tions group the information by function.

The Descriptor

bLength. The length in bytes of the descriptor.

bDescriptorType. The constant DEVICE (01h).

USB Complete 103

Chapter 5

Table 5—3: The device descriptor has 14 fields in ‘18 bytes.

Offset Field Size Description
(decimal) (bytes)

WW1 Descriptor size in bytes

1 bDescriptorType l D The constant DEVICE (0111)

2 MM bchSB 2 USB specification release number (13131))
4 bDeviceClass l W glass code

5 bDeviceSubclass l Subclass code

r6 hDeviceProtocol 1 Protocol Code T M

7 bMuxPacketSize(0) T Maximum packet size for Endpoint 0
8 idVendor 2 Vendor ID """""""

10 idl’roduci 2 Product ID WWWWWWWW

l2, lbcdDevice E" A Device release number (BCD)

l4 iManufacturer 1 index of string descriptdrToi‘ the manufacturer

15 iProduct .1 Index of sti‘iiiéMthgcriptor for the product

16 iSerialhiumber l index of string descriptor containing the seriaTwiiiiiA
number

17 bNumConl‘igurutions l T W Number of possible configurations

The Device

bchSB. The USB specification number that the device and its descriptors

comply with. In BCD (binaryvcoded decimal) format. If you think of the

version as a decimal number, the upper byte represents the integer, the next
four hits are tenths, and the final four hits are hundredths. 80 version 1.0 is

010011; version 1.1 is 0110b, and version 2.0 is 0200h.

idVendor. Members of the USB lmplcmenters Forum and others who pay

an administrative fee receive the rights to use a unique Vendor ID. The

device descriptor for every commercial product must have a Vendor ID. The

host may have an lNF file that contains this value, and if so, Windows uses

the value to help decide what driver to load for the device.

idProduct. The manufacturer assigns a Product ID to identify the device“

Both the device descriptor and the device’s 1NF file on the host may contain

this value, and if so, Windows uses the value to help decide what driver to

104 USB Complete

Enumeration: How the Host Learns about Devices

load for the device. Each Product ID is specific to a Vendor ID, so multiple
vendors can use the same Product ID without conflict.

bcdDevice. The device’s release number in BCD format. Assigned by the

manufacturer. Optional. This value can also be used in deciding which
driver to load.

iManufacturer. An index that points to a string describing the manufac—

turer. Optional. Zero if unused.

iProduct. An index that points to a string describing the product. Optional.
Zero if unused.

iSerialNumber. An index that points to a string containing the device’s

serial number. Optional. Zero if unused. Serial numbers are useful if users

may have more than one identical device on the bus and the host needs to

keep track of which is which, even after rebooting. They also enable the host

to determine whether a peripheral is the same one used previously or a new

installation of a peripheral with the same Vendor and Product ID. If a device

has a serial number and a user plugs the device into a different port on a PC,
Windows won’t need to reload the device driver.

The Configuration

bNumConfigurations. The number of configurations the device supports.

bMaxPaeketSizeO. The maximum packet size for Endpoint 0. The host

uses this information in the requests that follow. Low«speed devices must

use 8. Full—speed devices may use 8, 16, 32, or 64. High—speed devices must
use 64.

Classes

bDeviceClass. For devices that belong to a class, this field, may name the
class. Values from 1 to FEh are reserved for the USB’s defined classes. Exam—

ples of ciasses are hubs, printers, and communications devices. The value

FFh means that the class is specific to the vendor and defined by the vendor.

Some devices (such as Hle) specify a class in the interface descriptor, and

for these devices, the bDeviceClass field in the device descriptor is 0. Not all

devices belong to a class.

USB Complete 105

Chapter 5

hDeviceSubclass. For devices that belong to a class, this field may specify a
subclass within the class. if DeviceClass is O, the Subclass must be 0. If

DeviceClass is between 1 and FEh, the Subclass must be a code defined in a

USB class specification. A value of FFh means that the subclass is specific to

the vendor. A. subclass may add support for additional features and abilities

shared by a group of functions within a class.

bDeviceProtocol. This field may specify a protocol defined by the selected

class or subclass. For example, a 2.0 hub uses this field to indicate whether

the hub is currently supporting high speed and it‘so, ifthe hub supports one

or multiple transaction translators. lfDeViceClass is between 1 and hEh, the

protocol must be a code defined by a USB class specification.

Device_Qualifier Descriptor

106

Devices that support both full and high speeds must have a device_qualifier

descriptor. if the device switches speeds, some fields in the device descriptor

may change. The devicemqualilier descriptor holds the values to use for these

fields at the speed not currently in use. The contents ofl'ields in the device

and device_qualifier descriptors swap, depending on which speed is selected.

The descriptor has 9 fields. Table 5—4 lists the fields in the order they occur

in the descriptor. The descriptor includes information about the descriptor

itself, the device, its configurations, and its classes. The fields are the same as

the ones in a device descriptor. The only difference is that they describe the

device at the speed that isn’t currently active.

The Vendor and Product IDs, device release number, and manufacturer,

product, and serial—number strings don’t change when the speed changes, so

the device_qualifier descriptor doesn’t include these.

The host can use a GetWDescriptor request to retrieve the device_qualifier

descriptor. The following descriptions group the information by function.

The Descriptor

bLength. The length in bytes of the descriptor.

bDeseriptorType. The constant DEVICE;QUALIFIER (06h).

USB Complete

Enumeration: How the Host Learns about Devices

Table 5-4: The deviee_qualifier descriptor has 9 fields in 10 bytes.

Offset Field Size Description
(decimal) (bytes)

0 bLength l Descriptor size in bytes

1 bDescriptorType l The constant DEVICE_QUALIFIER (06h)

2 bchSB 2 4ieUSB specification release number (BCD)4 bDeviceClass 1 Class code

5 bDeviceSubclass l SLibclassTBde l!
6 bDeviceProtocol 1 Protocol Code

”7 bMaxPacketSize(0) 1 Maximum packet size for Endpoint 0

8 bNumCont‘igurations l Number of possible configurations

9 Reserved Tl For future use

The Device

bchSB. The USB specification number that the device and its descriptors

comply with. Must be at least 0200b

The Configuration

bNumConfigurations. The number of configurations the device supports.

bMaXPacketSizeO. The maximum packet size for Endpoint 0.

Classes

bDeviceClass. For devices that belong to a class, this field may name the
class.

bDeviceSubclass. For devices that belong to a class, this field may specify a
subclass within the class.

bDeviceP’rotocol. This field may specify a protocol defined by the selected

class or subclass. For example, a 2.0 hub must support both a lovv— and

full—speed protocol and a high—speed protocol. The device descriptor con—

tains the code for the currently active protocol, and the devicewqualifier

descriptor contains the code for the not—active protocol.

Reserved. For future use.

USB Complete 107

Chapter 5

Configuration Descriptor

108

After retrieving the device descriptor, the host can retrieve the device’s con—

figuration, interface, and endpoint descriptors.

Each device has at least one configuration descriptor that describes the

device’s features and abilities. Often a single configuration is enough, but a

device with multiple uses or modes can support multiple configurations.

Only one configuration is active at a time. Each configuration requires a

descriptor. The configuration descriptor contains information about the

devices use of power and the number of interfaces supported. Each c0nfigu~

ration descriptor has subordinate descriptors, including one or more inter

face descriptors and optional endpoint descriptors.

The host selects a configuration with the Sethonfiguration request, and

reads the current configuration number with a GeLConfiguration request.

The descriptor has eight fields. Table 5—5 lists the fields in the order they

occur in the descriptor. The fields contain information about the descriptor

itself, the configuration, and the devices use of power in that configuration.

For many configurations, some fields don’t apply. The following descrip»

tions group the information by function.

The Descriptor

bLength. The length (in bytes) of the descriptor.

bDescriptorType. The constant CONFIGURATION (02h).

wTotalLength. The number of data bytes that the device returns, including

the bytes for all of the configurations interfaces and endpoints.

The Configuration

bConfigurationValue. Identifies the configuration for Get_Configuration

and Set_Configuration requests. A Set_Configuration request with a value

of zero causes the device to enter the Not Configured state.

iConfiguration. Index to a string that describes the configuration.

Optional.

USB Complete

Table 5-5: The configuration descriptor has 8 fields.

Enumeration: How the Host Learns about Devices

Offset Field Size Description"
(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType l The constant Configuration (02b)

2 wTotalLength 2 Slze of all data returned for thls conhguration in

bytes

4 bNumInterfaces I Number of interfaces the configuration supports

5 bConfigurationValue 1 Identifier for Set_Configuration and

Get_Configuration requests

iConl‘iguration 1 Index of string descriptor for the configuration

7 bmAttributes 1 Self power/bus power and remote wakeup settings

8 MaxPower 1 Bus power required, expressed as (maximum mil—
liampcres/2)

bNumInterfaces. The number of interfaces the configuration supports. The
minimum is 1.

Power Use

bmAttributes. Bit 6:1 if the device is self—powered. Bit 5:1 if the device

supports the remote wakeup feature. This enables a suspended USB device
to tell its host that it wants to communicate. A USB device must enter the

Suspend State if there has been no bus activity for 3 milliseconds. If an event

at a suspended device requires action from the host, a device that supports

remote wakeup and with this feature enabled can request the host to resume
communications.

The other bits are unused. Bits 0 through 4 must be 0. Bit 7 must be 1 . (in

USB 1.0, bit 7 was set to 1 to indicate that the configuration was bus pow—

ered. In USB 1.1 and higher, setting bit 6 to 0 is enough to indicate that the

configuration is bus powered.)

MaXPower. Specifies how much bus current a device requires. MaxPower in

milliamperes equals one half the number of milliamperes required. if the

device requires 200 milliamperes, MaXPowerleO. The maximum allowed

current is 500 milliamperes. Storing half the number of milliamperes

enables one byte to store values up to the maximum. if the host determines

USB Complete 109

Chapter 5

that the requested current isn’t available, it will refuse to configure the
device.

Other_Speed_Configuration Descriptor

The other descriptor unique to devices that support both full and high

speeds is the other_speed_configuration descriptor, The structure of the

descriptor is identical to that of the configuration descriptor. The only dif~

ference is that it describes the configuration when the device is operating at

the speed not currently active. The 0ther__speed_configuration descriptor

has subordinate descriptors the same as the configuration descriptor does.

The descriptor has eight fields. Table 5—6 lists the fields in the order they

occur in the descriptor.

Interface Descriptor

110

The term interface may of course describe USB as a whole, but in terms ofa

device and its descriptors, interface means a set of endpoints used by a

device feature or function. A configurations interface descriptor contains

information about the endpoints the interface supports.

Each configuration must support one interface, and for many devices, one is

enough. But a configuration can have muitiple interfaces that are active at

the same time, as well as multiple, mutually exclusive interfaces. Each inter—

face has its own interface descriptor and a subordinate endpoint descriptor

for each endpoint supported by the interface.

A device with a configuration that has multiple interfaces that are active at

the same time is a composite device. The host loads a driver for each inter—
face.

When. there are multiple ways to use a device, instead of using multiple con~

figurations, a configuration may support alternate, mutually exclusive inter—r

faces. Changing interfaces is simpler than changing configurations, which

affects the entire device. The host requests an alternate interface with a

Set_lnterface request, and reads the current interface number with a

U83 Complete

Enumeration: How the Host Learns about Devices

Table 5-6: The other_speed_configuration descriptor has the same 8 fields as

the configuration descriptor.

Offset

(decimal)

Description

 bLength

bDescriptorType

Descriptor size in bytes

The constant

OTHER_SPEED_CONFIGURATION (07h)

wTotalLength 2 Size of all data returned for this configuration in

 bytes

bNumInterfaces 1 Number of interfaces the configuration supports

5 bConfigurationValue 1 Identifier for Set_Configuration and

GetvConfiguration requests

 iConfiguration Index of string descriptor for the configuration

bmAttributes 1 Self power/bus power and remote wakeup settings

MaxPower 1 Bus power required, expressed as (maximum

milliamperes/2)

Get_Interface request. Each interface has its own interface descriptor and

subordinate descriptors.

An interface descriptor has nine fields. Table 5-7 lists the fields in the order

they occur in the descriptor. Many devices don’t need all of the fields, such

as those that enable alternate settings and protocols. The following descrip—

tions group the information by function.

The Descriptor

bLength. The number of bytes in the descriptor.

bDescriptorType. The constant INTERFACE (04h).

The Interface

iInterface. Index to a string that describes the interface.

bInterfaceNumber. Identifies the interface. In a composite device, a config-

uration has multiple interfaces that are active at the same time. Each inter—

face must have a descriptor with a unique value in this field. The default is
0.

USB Complete 111

Chapter 5

Table 5—7: The interface descriptor has 9 fields.

Offset

Av

(decimal)

Field

 Description

-—-—--—-——-—---—-l

 bLength Descriptor size in bytes

bDescriptorType The constant Interface (04h)

bliiterfaceNumber Number identifying this interface
bAlternateSetting Value used to select an alternate setting »

Number of endpoints supported, except Endpoint 0 bNumEndpoints l
blntert'aceClass l
blnterfaceSubclass Subclass code

blnterfaceProtocol Protocol code
 OC\IO\UI-l>b-)I\J—

 l

l

l

1 Class code

1

1

l
iInterface Index of string descriptor for the interface

112

bAlternateSetting. When a configuration supports multiple, mutually

exclusive interfaces, each interface must have a descriptor With the same

value in blnterfaceNumber but a unique value in bAlternateSetting. The

Get__Interfacc request retrieves the currently active setting. The

Setmlnterface request selects the setting to use. The default is O.

bNumEndpoints. The number of endpoints the interface supports in addi»

tion to Endpoint 0. For a device that supports only Endpoint O, NumEnd»

points is 0.

bInterfaceClass. Similar to DeviceClass in the device descriptor, but for

devices with a class specified by the interface. Values from 01h to FEh are

reserved for USBedefmed classes. HID is class 03h. FFh indicates a vein

dorwdefined class. Zero is reserved.

bInterfaceSubClass. Similar to bDeviceSubClass in the device descriptor,

but for devices With a class defined by the interface. For interfaces that

belong to a class, this field may specify a subclass Within the class. If blntcr»

faceClass is 0, blnterfaceSubclass must be 0. If blnterfaceClass is between 1

and FEh, lnterfaceSubclass must be a code defined by a USB specification.

A value of FFh means that the subclass is specific to the vendor.

blinterfacel’rotocol. Similar to bDeviceProtocol in the device descriptor,

but for devices whose class is defined by the interface. May specify a proton

USB Complete

Enumeration: How the Host Learns about Devices

col defined by the selected blnterfaceClass or blntcrfaceSubClass. If blnter—
faceClass is between 1 and FEh, bInterfaceProtocol must be a code defined

by a USB specification.

Endpoint Descriptor

Each endpoint specified in an interface descriptor has an endpoint descrip—

tor. Endpoint 0 never has a descriptor because every device must support

Endpoint 0, the device descriptor contains the maximum packet size, and

the specification defines everything else about the endpoint. Table 5—8 lists

the endpoint descriptor’s six fields in the order they occur in the descriptor.

The following descriptions group the information by function.

The Descriptor

bLength. The number of bytes in the descriptor.

bDescriptorType. The constant ENDPOINT (05h).

The Endpoint

bEndpointAddress. Includes the endpoint number and direction. Bits 0

through 3 are the endpoint number. Low—speed devices can have a maxi—

mum of 3 endpoints (usually numbered 0 through 2), while full— and

high-speed devices can have 16 (0 through 15). Bit 7 is the direction:
Out=0, ln=1, Bidirectional (for control transfers)=ignored. Bits 4, 5, and 6
are unused and must be zero.

bmAttributes. Bits 1 and 0 specify the type of transfer the endpoint sup

ports. OOzControl, 01=Isochronous, 10=Bulk, llzlnterrupt. For Endpoint
0, Control is assumed.

In USB 1.1, bits 2 through 7 were reserved. USB 2.0 uses bits 2 through 5

for full- and high—speed isochronous endpoints. Bits 3 and 2 indicate a syn—

chronization type: 00=no synchronization, 01=asynchronous, 10=adaptive,

11=synchr0nous. Bits 5 and 4 indicate a usage type: 00=data endpoint,

01=Feedbacl< endpoint, 10=implicit feedback data endpoint, 11=reserved.

For non—isochronous endpoints, bits 2 through 5 must be 0. For all end—

points, bits 6 and 7 must be 0.

USB Complete 113

Chapter 5

114

Table 5-8: The endpoint descriptor has 6 fields.
Offset

(decimal)

Description

 Decriptor si7e in bytes" i

The constant Endpoint (05h)

bLength

bDescriptorType

bEndpointAddress

bmAttributes

Endpoint number and direction

Transfer type supported

WMaxPacketSize Maximum packet size supported H—Nl—Ha_a
bInterval

Maximum latency/polling interval/NAK rate

wMaxPacketSize. The maximum number of data bytes the endpoint can

transfer in a transaction. The allowed values vary with the device speed and
type of transfer.

Bits 10 through 0 are the maximum packet size, from 0 to 1024 (0 to 1023

in USB 1.x). 1n USB 2.0, bits 12 and 11 indicate how many additional

transactions per microframe a high—speed endpoint supports: 00=no addi~

tional transactions (1 transaction per microframe), 01:1 additional (2 trans—

actions per microframe), 10:2 additional (3 transactions per microframe),
11=reserved. In USB 1.x, these hits were reserved and set to zero, Bits 13

through 15 are reserved and must be zero.

bInterval. The maximum latency for polling interrupt endpoints, or the

interval for polling isochronous endpoints, or the maximum NAK rate for

high—speed bulk OUT or control endpoints, The allowed range and how the

value is used varies with the device speed, the transfer type, and whether or

not the device supports USB 2.0.

For low—speed interrupt endpoints, the maximum latency equals blnterval

in milliseconds. The value may range from 10 to 255.

For all full—speed interrupt endpoints and for Full—speed isochronous end—

points on 1.x devices, the interval also equals hinterval in milliseconds. For

interrupt endpoints, the value may range from 1 to 255. For isochronous

endpoints in 1.x devices, the value must be 1. For isochronous endpoints in
full—speed 2.0 devices, values from 1 to 16 are allowed, and the interval is

USB Complete

Enumeration: How the Host Learns about Devices

calculated as 2131mm”. This allows a range from 1 millisecond to 32.768 sec-
onds.

For full—speed bulk and control transfers, the value is ignored.

For high—speed endpoints, the value is in units of 125 microseconds, which

is the width of a microframe. The value for interrupt and isochronous end-

points may range from 1 to 16, and the interval is calculated as 2bl"‘°““’"'.

This allows a range from 125 microseconds to 4.096 seconds.

For high-speed bulk OUT and control endpoints, the value indicates the

endpoints maximum NAK rate. This value is relevant when the device has
received data and returned ACK, and the host has more data to send in the

transfer. By returning ACK, the device is saying that it expects to be able to

accept the next transaction’s data. (Otherwise the device would return

NYET.) If the next data packet arrives and for some reason the device can’t

accept it, the endpoint returns NAK. The bInterval value says that the end—

point will return NAK no more than once in each period specified by

blnterval. The value can range from 0 to 255 microframes. A value of zero

means the endpoint will never NAK. The host isn’t required to use the max—
imum—NAK—rate information.

String Descriptor

A string descriptor contains descriptive text. The specification defines string

descriptors for the manufacturer, product, serial number, configuration, and

interface. A device may support additional string descriptors as well. String

descriptors are optional. Table 5-9 Shows the descriptors fields and their

purposes.

The Descriptor

bLength. The number of bytes in the descriptor.

bDescriptorType. The constant STRING (03h).

USB Complete 115

Chapter 5

Table 5—9: A string descriptor has 3 or more fields.

Offset

(decimal)

Field

Size Description
(bytes)

1 bLength Descriptor size in bytes

 1 bDeseriptorType 1 The constant String (03h)

2 bSTRING or varies For string descriptor 0, an array of l or more Lark

WLANGID guage Identifier codes. For other string descriptors,

a Unicode string.

The String

Each string has an index. String 0 has the special function of providing lan—

guage IDs, while the other strings may contain any teXt.

WLANGID[0...n]. Used in string descriptor 0 only. String descriptor 0 con—

tains one or more 16—bit language ID codes that indicate the languages that

the strings are available in. The code for English is 0009h, and the subcode

for U.S. English is 0004h. These seem to he the only codes that are valid in

U.S. versions of Windows 98. This value must be valid for any of the other

strings to be valid. Devices that return no string descriptors must not return

an array of language le. The USB lmplernenters Forum’s website has a list

of defined USB language IDs.

bString. For Strings 1 and up, the String field contains a Unicode string.

Unicode uses 16 bits to represent each character. With a few exceptions,

ANSI character codes 00h through 7Fh correspond to Unicodes 0000h

through 007Fh. For example, a product string for a product called “Gizmo”

would contain five 16—bit Unicodes representing the characters in the prod«

uct name: 0047 0069 007A 006D 006E The strings are not null~tern1i—
nated.

Descriptors in 2.0-compliant Devices

116

If you’re upgrading a lat—complaint device to 2.0, what changes are required

in the descriptors? In a dual—speed device. can you detect a device’s current

speed by reading its descriptors? This section answers these questions.

USB Complete

Enumeration: How the Host Learns about Devices

Making 1.x Descriptors 2.0-compliant

Table 5—10 lists the descriptor fields whose contents may require changes to

enable a 1.x device to comply with the 2.0 specification. For all except some

devices that have isochronous endpoints, the one and only required change

is this: in the device descriptor, the bchSB field must be OZOOh.

A device’s default interface settings must request no isochronous bandwidth,

as Chapter 4 explained. And because these interfaces are of no use for trans—

ferring isochronous data, a device that wants to do isochronous transfers

must support at least one alternate interface setting, which will require at

least one endpoint descriptor. Some 1.x devices meet this requirement

already.

The 2.0 spec also adds two new descriptors and functions for bits in existing

fields, but the new descriptors are used only in dual—speed devices and the

existing descriptors are backwards compatible with 1.x.

Full—speed isochronous endpoints have a few new, optional abilities. The

endpoint descriptor can specify synchronization and usage types (bmAe

tributes field), and the interval can be greater than 1 millisecond (blnterval

field). In 1.x descriptors, these bits are zero and default to no synchroniza—
tion and l millisecond.

Detecting the Current Speed of a Dual-Speed Device

A high—speed device must respond to enumeration requests at full speed,

and may also be completely functional at full speed. As Chapter 2 explained,

a high—speed capable device must use full speed if it has a 1.x host or if there

is a 1.x hub between the host and device. Applications and device drivers

normally have no need to know which speed a dual—speed device is using

because all of the speed—related details are handled at a lower level. And

Windows in fact provides no straightforward way to learn a device’s speed.

But if the host wants to know, there are a few techniques that can provide

this information for many devices.

If a device has a bulk endpoint, you can learn the current speed by examin—

ing the endpoint descriptor in the active configuration. The MaxPacketSize

USB Complete 117

Chapter 5

Table 5-10: The descriptors in a 1.x-compliant device require very few changes
to comply with 2.0.

Descriptor Field Change

 Device

 deDeVice Set to 0200b.

Endpoint bmAttributes Isochronous only: bits 3.2 are a synchronization type, bits .

118

5.4 are a usage type.

. . . b1 t ‘/ l-l . .
blnterval Isochronous only: the interval is 2 n ma mlllISCCOHdS

instead of milliseconds.

wMaxPacketSize Llsochronous only: must be 0 in the default configuration.

field must be 512 in a high—speed device, and it can’t be 512 in a full~speed

device. If there is no bulk endpoint, the MaxPacketSize of an interrupt or

isochronous endpoint provides speed information if the endpoint uses a

maximum packet size available only at high speed. For an interrupt end«

point, a MaxPackctSize greater than 64 indicates high speed, but a

high—speed interrupt endpoint can have a MaxPacketSize of 6-4 or less. For

isochronous endpoints, a MaxPacketSize of 1024 indicates high speed, but a

high—speed isochronous endpoint can have a MaxPacketSize of 1023 or less.

If you’re writing the device firmware, you can provide speed information in

the optional configuration strings indexed by the configuration and

other_speedflconfiguration descriptors. For example, the string indexed by

the configuration descriptor might contain the text “high speed,” and the

string indexed by the otherwspeed_configuration descriptor might contain

the text “full speed.” Applications can then read the configuration string to

learn the current speed.

The USBView application in the Windows DDK shows how applications

can read endpoint and string descriptors.

USB Complete

Control Transfers: Structured Requests for Critical Data

6

Control Transfers:

Structured Requests for

Critical Data

Of the four transfer types, control transfers have the most complex struc—

ture. They’re also the only transfer type with functions defined by the speci—

fication. This chapter takes a more detailed look at control transfers. The

focus is on what you need to know to implement standard and custom

requests in device firmware, along with some background about the struc~

ture of the requests.

Elements of a Control Transfer

As Chapter 3 explained, control transfers enable the host and a device to

exchange information about the device’s configuration. They also offer a

way that any device can use to transfer any type of information. Each con—

USB Complete 119

Chapter 6

trol transfer has a defined format consisting of a Setup stage, an optional

Data stage, and a Status stage. Each stage consists of one or more transac—

tions that contain a token phase, a data phase, and a handshake phase. Each

phase transfers a token, data, or handshake packet. Chapter 4 has diagrams

that show the packets that transfer in each stage.

As described in Chapter 3, low~speed transfers also use PRE packets,

high~speed transfers use the PING protocol, and some low~ and full-speed

transfers use split transactions. Each packet also contains error—checking

bits. Application programmers, devicevdriver writers, and firmware develop—

ers don’t have to worry about PRES, PlNGs error—checking, or split transacw
tions because the hardware and low—level drivers handle them.

The Setup Stage

120

The Setup stage consists of a Setup transaction, which has two purposes: to

identify the transfer as a control transfer and to transmit the request and

other information that the device will need to complete the request.

Devices must accept and acknowledge every Setup transaction. if a device is

in the middle of another control transfer, it must abandon that transfer and

respond to the new Setup transaction. Here are more details about each of

the packets in the Setup stage’s transaction:

Token Packet

Purpose: identifies the receiver and identifies the transaction as a Setup
transaction.

Sent by: the host.

PID: SETUP

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: transmits the request and related information.

Sent by: the host.

PID: DATAO

USB Complete

Control Transfers: Structured Requests for Critical Data

Additional Contents: eight bytes in five fields: meequestType, bRequest,

wValue, windex, and wLength.

meequestType is a byte that specifies the direction of data flow, the type

of request, and the recipient.

Bit 7 is a Direction bit that names the direction of data flow for data in the

Data stage. Host to device (OUT) or no Data stage is 0; device to host (IN)

is 1. Just remember that 0 looks like 0 for OUT and 1 looks like I for IN.

Bits 6 and 5 are Request Type bits that specify whether the request is one of

the USB’s eleven standard requests (00), a request defined for a specific USB

class (01), or a request defined by a vendor for use with a particular product

or products (10).

Bits 4 through 0 are Recipient bits that define whether the request is

directed to the device (00000) or to a specific interface (0001), endpoint

(00010), or other element (00011) in the device.

bRequest is a byte that specifies the request. When the Request Type bits in

meequestType are 00, bRequest contains the number of one of the USB’S

standard requests. When the Request Type bits are 01, bRequest names a

request defined for the device’s class. When the Request Type bits are 10,

bRequest names a request defined by the device’s vendor.

wValue is two bytes that the host may use to pass information to the device.

Each request may define the meaning of these bytes in its own way. For

example, in a Set_Address request, wValue contains the device address.

WIndex is two bytes that the host may use to pass information to the device.

A typical use is to pass an index or offset such as an interface or endpoint

number, but each request may define the meaning of these bytes in, any way.

When passing an endpoint index, bits 0—3 indicate the endpoint number,

and bit 7 is 0 for a Control or OUT endpoint or 1 for an 1N endpoint.

When passing an interface index, bits ()7 are the interface number. All
unused bits are 0.

WLength is two bytes containing the number of data bytes in the Data stage

that follows. For a host—to-device transfer, wLength is the exact number of

bytes the host will transfer. For a device—to-host transfer, wLength is a maxi«

USB Complete 121

Chapter 6

mum, and the device may return this number of bytes or fewer. If the

WLength field is 0, there is no Data stage.

Handshake Packet

Purpose: transmits the device’s acknowledgement.

Sent by: the device.

PID: ACK.

Additional Contents: none. The handshake packet consists of the PID
alone.

Comments: If the device detected an error in the received Setup or Data

packet, it returns n0 handshake. The devices hardware typically handles the

error checking and sending of the ACK, with no programming required.

The Data Stage

122

When a control transfer contains a Data stage, the stage consists of one or

more IN or OUT transactions. The endpoint’s descriptor specifies the num~

ber of data bytes that each transaction can carry. (For Endpoint 0, the device

descriptor specifies this.)

When the Data stage uses IN transactions, the device sends data to the host.

An example is Get_Descriptor, Where the device sends a requested descrip»

tor to the host. When the Data stage uses OUT transactions, the host sends

data to the device. An example is Set_Report, Where the host sends a report

to a HID—class device. If the wLength field in the Setup transaction, is 0,

there is no Data stage at all. For example, in the Sethonfiguration request,

the host passes a configuration value to the peripheral in the WValue field of

the Setup stage’s data packet, so there’s no need for the Data stage.

If all of the data can’t fit in one packet, the stage uses multiple transactions.

The number of transactions required to send all of the data for the transfer

equals the value in the Setup transaction’s wLength field divided by vaaX—

PacketSize value in the endpoints descriptor, rounded up. For example, in a

Get_Descriptor request, if WLength is 18 and vaaxPacketSize is 8, the

USB Complete

Control Transfers: Structured Requests for Critical Data

transfer requires 3 Data transactions. The transactions in the Data stage
must all be in the same direction.

The host uses split transactions in the Data stage when the device is low or

full speed and the device’s hub connects to a high—speed bus. The host uses

the PING protocol when the device is high speed, the Data stage uses OUT

transactions, and there is more than one data transaction.

Each IN or OUT transaction in the Data stage contains token, data, and

handshake packets. Here are more details about each of the packets in the

Data stage’s transaction(s):

Token Packet

Purpose: identifies the receiver and identifies the transaction as an IN or
OUT transaction.

Sent by: the host.

PID: if the request requires the device to send data to the host, the PID is

IN. If the request requires the host to send data to the device, the PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: transfers all or a portion of the data specified in the wLength field

of the Setup transaction’s data packet.

Sent by: if the token packet’s PID is IN, the device sends the data packet; if

the token packet’s PID is OUT, the host sends the data packet.

PID: The first packet is DATAl. Any additional packets in the Data stage
alternate DATAO/DATAI .

Additional Contents: the data.

Handshake Packet

Purpose: the data packets receiver returns status information.

USB Complete 123

Chapter 6

Sent by: the receiver of the Data stage’s data packet. If the token packet’s

PID is IN, the host sends the handshake packet. If the token packet’s PID is

OUT, the device sends the handshake packet.

PID: Any device may return ACK (valid data was received), NAK (the end”

point is busy), or STALL (the request isn’t supported or the endpoint is

halted). A high—speed device that is receiving multiple data packets may

return NYET (the current transactions data was accepted but the endpoint

isn’t yet ready for another data packet). The host can return only ACK.

Additional Contents: None. The handshake packet consists of the PID
alone.

Comments: If the receiver detected an error in the token or data packet, it

returns no handshake packet.

The Status Stage

124

The Status stage is where the device reports the success or failure of the

entire transfer. Its purpose is similar to that of a transactions handshake

packet, and in fact the information sometimes travels in the handshake

packet of the Status stage. But the Status stage reports the success or failure

of the entire transfer, rather than of a single transaction.

In some cases (such as after receiving the first packet of. a device descriptor

during enumeration), the host may begin the Status stage before the Data

stage has completed, and the device must detect this, abandon the Data

stage, and complete the Status stage.

Here are more details about each of the packets in the Status stage’s transac-
tion:

Token Packet

Purpose: identifies the receiver and indicates the direction of the Status

stage’s data packet.

Sent by: the host.

PID: the opposite of the direction of the previous transaction’s data packet.

If the Data stage’s PID was OUT or if there was no Data stage, the Status

USB Complete

Control Transfers: Structured Requests for Critical Data

stage’s PID is IN. If the Data stage’s PID was TN, the Status stage’s PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: enables the receiver of the Data stagc’s data to indicate the status
of the transfer.

Sent by: if the Status stage’s token packet’s PID is IN, the device sends the

data packet; if the Status stage’s token packet’s PID is OUT, the host sends

the data packet.

PID type: DATAl

Additional Contents: The host sends a zerovlength data packet consisting

only of the PID and error«checking bits, with no data bits. A device may

send a zero-length data packet (success), NAK (busy), or STALL (endpoint

halted).

Comments: For most requests, the zero—length data packet indicates that

the request has been carried out. An exception is Set_Address, which isn’t

carried out until the Status stage has completed.

Handshake Packet

Purpose: the sender of the Data stage’s data indicates the status of the trans—
fer.

Sent by: the receiver of the Status stage’s data packet. If the Status stage’s

token packet’s PID is IN, the host sends the handshake packet; if the token

packet’s PID is OUT, the device sends the data packet.

PID type: the device’s response may be ACK (success), NAK (busy), or

STALL (the request isn’t supported or the endpoint is halted). The hosts

response to the received data packet must be ACK.

Additional Contents: none. The handshake packet consists of the PID
alone.

USB Complete 125

Chapter 6

Comments: The Status stage’s handshake packet is the final transmission in

the transfer. If the receiver detected an error in the token or data packet, it

returns no handshake packet.

For any request that’s expected to take many milliseconds to carry out, the

protocol should define an alternate way to determine when the request has

completed. This ensures that the host doesn’t waste a lot of time looking for

an acknowledgement that will take a long time to appear. An example is the

Set_Port__Feature(PORT_RESET) request sent to a hub. The reset signal

lasts at least 10 milliseconds. Rather than forcing the host to wait this long

for the device to complete the reset, the hub acknowledges receiving the

request when it first places the port in the reset state. When the reset is com»

plete, the hub sets a bit that the host can retrieve at its leisure, using a

GetfiPorLStatus request.

Handling Errors

126

Not every control~transfer request is carried out by the device. The devices

firmware may not support a request. Or the device may be unable to

respond because its firmware has crashed, or the endpoint is in the Halt con_

dition, or the device is no longer attached to the bus. The host may also

decide for any reason to end a transfer early, before all of the data has been
sent.

An example of an unsupported request is one that uses a request code that

the device’s firmware doesn’t know how to respond to. Or the device may

support the request but other information in the Setup stage doesn’t match

what the device expects or supports. When this occurs, a Request Error con—

dition exists and the device notifies the host by sending a STALL code in a

handshake packet. Devices must respond to the Setup transaction with an

ACK, so the STALL must transmit in the handshake packet of the next

Data stage or the Status stage.

If the host fails to get an expected response, or if it detects an error in

received data or a Halt condition at the endpoint, it abandons the transfer.

The host then tries to re—establish communications by sending the token

packet for a new Setup transaction. If a device receives a token packet for a

USB Complete

Control Transfers: Structured Requests for Critical Data

Setup transaction before it has completed, a previous control transfer, it must

abandon the previous transfer and begin the new one. If the transfer is using

the Default Control Pipe and a new token packet doesn’t cause the device to

recover, the host takes more drastic action, requesting the device’s hub to

reset the device’s port.

The host may also end a transfer early by initiating the Status stage before

completing all of. the Data stage’s transactions. In this case, the device must

abandon the resr of the data and respond to the Status stage as if all of the
data had transferred.

The Requests

Table 61 summarizes the USB’s 11 standard requests, followed by a descrip—

tion of each request. All devices must respond to these requests (though the

response may be just a STALL). The values range from 00 to OCh, with
some values unused.

Most of the requests are in pairs, with each Set request having a correspond—

ing Get or Clear request. The exceptions are SetMAddress, Synch_Frame,
and Get_Status.

USB Complete 127

Chapter 6

Table 6—1: The USB specification defines eleven standard requests for Control

transfers.

Request Request Data Recipient Value Index Data Data
source Length (in Data

(Data (bytes) stage)
stage) (in Data

stage)

00h Get_Status device device, 0 device, 12 Status
interface, interface,

endpoint endpoint

01 h Clearwli‘eature none device, feature device, 0 none

interface, interface,

endpoint endpoint

03h Set_Feature none device, feature device, 0 none

interface, interface,

endpoint endpoint

05h Set_Address none device device 0 0 none
address

06h Get_ device device descriptor device or descriptor descriptor
Descriptor type & language length

index ID

07h Sctfi host device descriptor device or descriptor descriptor

Descriptor type & language length
index ID

08h Getm device device 0 device l configura—
Configuration tion

09h Set_ none device configura- device 0 none

Configuration tion

()Ah TGethnterface device interface 0 interface 1 alternate
settingL __. _,

()Bh Set_lnterface none interface i nterface interface 0 none

OCh Synch‘Frame device endpoint 0 endpoint 2 frame
number

128 USB Complete

Control Transfers: Structured Requests for Critical Data

Set_Address

Purpose: The host specifies an address to use in future communications
with the device.

Request Number: 05h

Source of Data: none

Data Length: 0

Contents ofValue field: new device address. Allowed values are 1 through

127. Each device on the bus, including the root hub, has a unique address.

Contents of Index field: 0

Contents of data packet in the Data stage: none

Supported States: Default, Address.

Behavior on error: not specified.

Comments: When a hub enables a port after power—up or attachment, the

port uses the default address of 0 until it completes a SetwAddress request
from the host.

This request is unlike most Other requests because the device doesn’t carry

out the request until it has completed the Status stage of the request by

sending a O—length data packet. The host sends the Status stage’s token

packet to the default address, so the device must detect and respond to this

packet before changing its address.

After completion of this request, all communications use the new address.

A device using the default address of 0 is in the Default state. After com—

pleting Set_ Address request to set an address other than 0, the device
enters the Address state.

A device must send the handshake packet within 50 milliseconds after

receiving the request, and it must complete the request within 2 millisec—

onds after completing the Status stage.

USB Complete 129

Chapter 6

Get_Descriptor

Purpose: The host requests a specific descriptor,

Request Number: 06h

Source of Data: device

Data Length: the number of bytes to return. it. the descriptor is longer

than Data Length, the device returns bytes up to Data Length. If the

descriptor is shorter than Data Length, the device returns the descriptor. If

the descriptor is shorter than Data Length and an even multiple of the end»

point’s maximum packet size, the device follows the descriptor with a

0—length data packet. The host detects the end of the data when it has

received the requested amount of data or a packet containing less than the

maximum packet size (including 0 bytes).

Contents of Value field: High byte: descriptor type. Low byte: descriptor
value.

Contents of Index field: for String descriptors, Language ID. Otherwise 0.

Contents of data packet in the Data stage: the requested descriptor.

Supported states: Default, Address, Configured.

Behavior on error: If a device receives a request that it doesn’t support, it
should return a STALL.

Comments: There are seven types of descriptors. All devices may have

device, configuration, interface, endpoint, and string descriptors. Two

other descriptors, device_qualilier and other_speedmconfiguration, are only

for devices that support both full and high speeds, Chapter 5 described the

purpose and contents of the descriptor types. Every USB device must have

a device descriptor and at least one configuration and one interface descrip~
tor.

A request for a configuration descriptor causes the device to return the con”

figuration descriptor, plus all interface descriptors for that configuration

and all endpoint descriptors for the interfaces,

130 USB Complete

Control Transfers: Structured Requests for Critical Data

Set_Descriptor

Purpose: The host adds a descriptor or updates an existing descriptor.

Request Number: OBh

Source of Data: host

Data Length: The number of bytes the host will transfer to the device.

Contents of Value field: high byte: descriptor type. (See Get_Descriptor)

Low byte: descriptor index.

Contents of Index field: For string descriptors, Language ID. Otherwise
0.

Contents of data packet in the Data stage: descriptor length.

Supported states: Address and Configured.

Behavior on error: If a device receives a request that it doesn’t support, it
should return a STALL.

Comments: This request makes it possible for the host to add descriptors

other than those stored in the device’s firmware, or to change an existing

descriptor. Many devices don’t support this request because it allows errant

software to place incorrect information in a descriptor.

USB Complete 131

Chapter 6

SeLConfiguration

132

Purpose: Instructs the device to use the selected configuration.

Request Number: 09h

Source of Data: none

Data Length: 0

Contents of Value field: The lower byte specifies a configuration. If the

value matches a configuration supported by the device, the device selects

the requested configuration. A value of 0 indicates not configured. if the

value is 0, the device enters the Address state and requires a new

SetfiConfiguration request to be configured.

Contents of Index field: 0

Contents of data packet in the Data stage: none

Supported states: Address, Configured.

Behavior on error: IfValue isn’t equal to O or a configuration supported by

the device, the device returns a STALL.

Comments: After completing a Set_Configuration request specifying a

supported configuration, the device enters the Configured state. Many of

the standard requests require the device to he in the Configured state.

USB Complete

Control Transfers: Structured Requests for Critical Data

GeLConfiguration

Purpose: The host requests the value of the current device configuration.

Request Number: 0811

Source of Data: device

Data Length: 1

Contents of Value field: 0

Contents of Index field: 0

Contents of data packet in the Data stage: Configuration value

Supported states: Address (returns 0), Configured

Behavior on error: not specified.

Comments: If the device isn’t configured, it returns 0.

USB Complete 133

Chapter 6

Set Interface

Purpose: For devices with configurations that support multiple, mutually

exclusive settings for an interface the host requests the device to use a spe~

cific setting.

Request Number: OBh

Source of Data: host

Data Length: 0

Contents ofValue field: alternate setting to select

Contents of Index field: interface number

Contents of data packet in the Data stage: none

Supported states: Configured

Behavior on error: If the device supports only a default interface, it may

return a STALL. If the requested interface or setting doesn’t exist, the
device returns a STALL.

Comments: See Get_1nterface

134 USB Complete

Control Transfers: Structured Requests for Critical Data

Get_lnterface

Purpose: For devices With configurations that support multiple, mutually

exclusive settings for an interface, the host requests the current setting.

Request Number: OAh

Source of Data: device

Data Length: 1

Contents ofValue field: 0

Contents of Index field: interface number

Contents of data packet in the Data stage: the current setting

Supported states: Configured

Behavior on error: If the interface doesn’t exist, the device returns a

STALL.

Comments: The interface number in the Index field of this request refers

to the hinterface field in an interface descriptor. This value distinguishes an

interface from other interfaces that may exist at the same time. The setting

in the Data field in this request refers to the bAlternateInterface field in the

interface descriptor. This value identifies which of two or more mutually

exclusive settings an interface is currently using. For each setting supported

by an interface, there is an interface descriptor and optional endpoint

descriptors. Many devices support only one interface setting.

USB Complete 135

Chapter 6

Set_Feature

136

Purpose: The host requests to enable a feature on a device, interface, or

endpoint.

Request Number: 03h

Source of Data: none

Data Length: 0

Contents of Value field: the Feature to enable

Contents of Index field: For a device, 0, For an interface, the interface

number. For an endpoint, the endpoint number.

Contents of data packet in the Data stage: none

Supported states: Default: undefined. Address: OK for address 0, End

point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the endpoint or interface specified doesn’t exist, the

device responds with a STALL.

Comments: The USB specification defines two features.

DEVICE_REMOTE_WAKEUR with a value of 1, applies to devices.

When the host sets the DEVICE_REMOTE_WAKEUP feature, a sus—

pended device can signal the host to resume communications.

ENDPOINT__HALT, with a value of 0, applies to endpoints. Bulk and

interrupt endpoints must support the Halt condition. Two types of events

may cause a Halt condition: a communications problem such as the

devices not receiving a handshake packet or receiving more data than

expected, or the device’s receiving a Setheature request to halt the end

point. A Clearwlieature request to halt the endpoint removes a Halt condi»

tion caused by a Set_Feature request.

The Get_Status request tells the host What features, it any, are enabled.

USB Complete

Control Transfers: Structured Requests for Critical Data

CIear_Feature

Purpose: The host requests to disable a feature on a device, interface, or

endpoint.

Request Number: 01h.

Source of Data: none

Data Length: 0

Contents ofValue field: the feature to disable

Contents of Index field: For a device feature, 0. For an interface feature,

the interface number. For an endpoint feature, the endpoint number.

Contents of data packet in the Data stage: none

Supported states: Default: undefined. Address: OK for address 0, End—

point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the feature, device, or endpoint specified doesn’t

exist, or if the feature can’t be cleared, the device responds with a STALL.

Behavior is undefined when Data Length is greater than 0.

Comments: The USB specification defines only two features.

DEVICE_REMOTE,WAKEUP, with a value of 1, applies to devices.

ENDPOINT_HALT, with a value of 0, applies to endpoints. See

Setheature for more details.

USB Complete 137

ChamerB

GeLStatus

138

Purpose: The host requests the status of the features of a device, interface,

or endpoint.

Request Number: 00h

Source of Data: device

Data Length: 2

Contents ofValue field: 0

Contents of Index field: For a device, 0. For an interface, the interface

number. For an endpoint, the endpoint number,

Contents of data packet in the Data stage: the device, interface, or end,-

point status

Supported states: Default: undefined. Address: OK for address 0, end

point 0. Otherwise the device returns a STALL. Configured: OK,

Behavior on error: The device returns a STALL if the interface or end—

point doesn’t exist.

Comments: For device requests, only two bits are defined. Bit 0 is the

Seltll’owered field: Ozbus—povvered, l=self~povvered The host can’t change

this value. Bit 1 is the Remote Wakeup field. The default on reset is 0 (dis—

abled). All other bits are reserved. For interface requests, all bits are

reserved. For endpoint requests, only hit 0 is defined. Bit [)2] indicates a

Halt condition. See Set_lieature for more details on Remote Walteup and
Halt.

USBCompmm

Control Transfers: Structured Requests for Critical Data

Synch_Frame

Purpose: The device sets and reports an endpoint’s synchronization frame.

Request Number: OCh

Source of Data: host

Data Length: 2

Contents of Value field: 0

Contents of Index field: endpoint number

Contents of data packet in the Data stage: frame number

Supported states: Default: undefined. Address: The device returns a

STALL. Configured: OK.

Behavior on error: If the endpoint doesn’t support the request, it should
return a STALL.

Comments: in isochronous transfers, a device endpoint may request data

packets that vary in size, following a sequence. For example, an endpoint

may send a repeating sequence of 8, 8, 8, 64 bytes. The Synch_Frame

request enables the host and endpoint to agree on which frame will begin

the sequence.

When an endpoint receives a Synch_Frame request, it returns the number

of the frame that will precede the beginning of a new sequence

This request is rarely used because there is rarely a need for the information

it provides.

USB Complete 139

Chapter 6

Class-Specific Requests

A class may define requests for devices in its class. A class—specific request

may be required or optional. Some requests are unrelated to the standard

requests, while others build on the standard requests by defining class—spe—

cific fields in a request.

An example of a request that’s unrelated to the standard requests is the Get

Max LUN request supported by some massestorage devices. The host uses

this request to find out the number of logical units the interface supports.

An example of a request that builds on an existing request is the

Get_Port_Status request that hubs must support. This request is structured

like the standard Get_Status request. But Get_Port_Status has different val—

ues in two fields. In meequestType, bits 6 and 5 are 01 to indicate that the

request is defined by a standard USB class, and bits 4 through 0 are 00011

to indicate that the request applies to a unit other than the device or an

interface or endpoint. (It applies to a port on the hub.) The index field holds

the port number.

Vendor-Specific Requests

A vendor may define custom requests for control transfers with specific

devices. In order to use a custom request in a control transfer, you need all of

the following:

0 Vendor—defined fields as needed in the Setup and optional Data stages.

Bits 6 and 5 in the Setup stage’s data packet are set to 10 to indicate a

vendor—defined request.

' Code in the device that detects the request number and knows how to

respond. if you have code for the standard requests, you can use it as a

model for custom requests.

' A custom device driver in the host that initiates the request. Windows

has no built—in driver that enables applications to send custom control

requests, so the only option is a custom driver with this ability.

140 USB Complete

Chip Choices

Chip Choices

When it’s time to select a USB controller for a project, the good news is that

there are plenty of chips to choose from. The downside is that there are so

many that deciding which chip to use in a project can be overwhelming at
first.

As with any project involving embedded controllers, the decision depends

on what functions the chip has to perform, cost, availability, and ease of

development. Ease of development depends on the availability and quality

of development tools, device—driver software for the host, and sample code,

plus your experience with the device’s architecture and instruction set or Ian

guage compiler.

This chapter is a guide to selecting a USB controller. It includes a tutorial

about what you need, to consider and descriptions of a sampling of chips

with a range of abilities. The chips covered include inexpensive ones with

simple architectures and basic USB support as well as more full—featured,

high—end chips.

USB Complete 141

Chapter 7

Elements of a USB Controller

The complexity of the USB protocol means that USE peripherals must have

intelligence. The peripheral controller has to know how to detect and

respond to events at a USB port, and it has to provide a way for the device to
store data to be sent and retrieve and use data that’s been received.

Controller chips vary in how much firmware support they require for USB

communications. Some require little more than. accessing a series of registers

to store and retrieve USB data. Others require the device’s program code to

do more, including managing the sending of descriptors to the host, setting

data~toggle values, and ensuring that the appropriate handshake packets are
sent.

Some controllers have a general—purpose CPU on~chip, while others take a

more minimalist approach and interface to an external CPU that handles

the non—USB tasks while communicating with the USB controller as

needed. All USB controllers have one or more USB ports as well as buffers,

registers, and other 1/O. A controller chip with a generalupurpose CPU also

has program and data memory on—chip or an interface to these in external

memory.

For highvvolume applications that require last performance, another option

is to design and manufacture an applicationrspecilic integrated circuit

(ASIC). VAutomation is one source for USB controllers and other compo—

nents that are available as synthesizable VHDL (very high speed integrated

circuit hardware description language) or Verilog Source code.

Not all controllers support all four transfer types, and different controllers

support different bus speeds. Most chips support fewer than the maximum,

number of endpoints (1 control endpoint and 30 other endpoints).

The USB Port

A USB peripheral controller must of course have a USB port and supporting

circuits for communicating with the host. A USB transceiver provides the
hardware interface to the bus. The circuits that communicate with the trans

ceiver form a unit with the generic name of serial interface engine (SIB).

142 USB Complete

Chip Choices

The SIE typically handles the sending and receiving of data in transactions.

It doesn’t interpret or use the data, but just sends the data that has been

made available to it and stores any data received. A typical SIE does all of the

Following:

' Detect incoming packets.

' Send packets.

' Detect and generate Start-of—Packet, End—of—Packet, Reset, and Resume

signaling.

‘ Encode and decode data in the format required on the bus (NRZI with

bit stuffing).

' Check and generate CRC values.

' Decode and generate Packet IDs.

‘ Convert between USB’s serial data and parallel data in registers or mem—

ory.

Implementing these functions requires about 2500 gates.

Buffers for USB Data

A USB controller must also have buffers for storing data that was recently

received, and data that’s ready to be sent on the bus. Some chips, such as

Netchip’s NET2888, use registers, while others, such as Cypress’ EZ—USB,

reserve a portion of data memory for the buffers.

Registers that hold transmitted or received data are often structured as

FIFOs (first in, first out buffers). Each read of a receive FIFO returns the

byte that has been in the FIFO the longest. Each write to a transmit FIFO

stores a byte that will transmit after all of the bytes already in the FIFO have

transmitted. An internal pointer to the next location to be read or written to

increments automatically as the firmware reads 0r writes to the FIFO.

In some chips, like Cypress’ enCoRe series, the USB buffers are in ordinary

data memory and the firmware explicitly selects each location to read and

write to. There is no pointer that increments automatically when the firm—

ware reads or writes to the buffers. The bytes in the USB transmit buffer go

out in order from the lowest address to the highest, and the bytes in a USB

USB Complete 143

Chapter 7

CPU

receive buffer are stored in the order they arrive, from lowest address to

highest. These buffers technically aren’t FIFOs, but are sometimes called

that anyway.

To enable faster transfers, some chips have double buffers that can store two

full sets of data in each direction. ‘While one block is transmitting, the firm»

ware can write the next block of data into the other buffer so it will be ready

to go as soon as the first block finishes transmitting. In the receive direction,
the extra buffer enables a new transaction’s data to arrive before the firmware

has finished processing data from the previous transaction. The hardware

automatically switches, or ping—pangs, between the two buffers.

A USB controller’s centralyprocessing unit (CPU) controls the chip’s actions

by executing instructions in the firmware stored in the chip. Each CPU sup—

ports an instruction set that includes machine—language instructions for

moving data, performing math and logic operations, and program branch~

ing. The instruction set also enables the CPU to communicate with the STE.

The CPU may be based on a general—purpose microcontroller such as the

8051, or it may be a design developed specifically for use in USB applica—
trons.

Chips that don’t have a general-purpose CPU may support a command set

for USE—related, communications, or they may just use a series of registers

for storing USB data and configuration information. These chips provide a

way to add USB capabilities to any microcontroller with an external data
bus.

Program Memory

144

The program memory holds the code that the CPU executes. The program
code assists in USB communications and carries out whatever other tasks

the chip is responsible for. This memory may be in the CPU chip or a sepa—

rate chip.

The program storage may use any of a number of memory types: ROM,

EPROM, EEPROM, Flash EPROM, or RAM. All except RAM (unless it’s

USB Complete

Chip Choices

battery—backed) are nonvolatile; they retain the data stored in them after

powering down. The amount of program memory may range from a couple

of kilobytes on up. Chips that can access memory offlchip may support a

Megabyte or more of program, memory.

Another name for the code stored in program memory is firmware, which

indicates that the memory is non—volatile and not as easily changed as pro—

gram code that can be loaded into RAM, edited, and re—saved on disk. In

this book, I use the term firmware to refer to a controller’s program code,

with the understanding that the code may be stored in a variety of memory

types, some more volatile than others.

ROM (read—only memory) must be maslcprogrammed at the factory and

can’t be erased. It’s practical only for product runs in the thousands.

EPROM (erasable programmable ROM) is userwprogrammable. Many chips

have inexpensive programming hardware and software available. To erase an

EPROM, you insert the chip into an EPROM eraser, which exposes the cir—

cuits beneath the chips quartz window to ultraviolet light. Erasing typically

takes 10 to 30 minutes. The chip is then ready to be reprogrammed. Data

sheets rarely specify the number of erase/reprogram cycles that the chip can

withstand, but it’s typically at least 100.

OTP (one'time programmable) PROMs are a cheaper, non—erasable alterna'

tive to erasable EPROMs. Internally, they’re identical to EPROMs, and you

program them exactly like EPROMS. The difference is that the chips lack

the quartz window for erasing. The erasable varieties are useful for product

development. Then to save cost, you can switch to OTP PROMS for the

final product run. Many CPUs have both EPROM and OTP PROM variv
ants.

Flash EPROM is a more recent electrically—erasable memory technology that

doesn’t need a quartz window and often doesn’t need the special program—

ming voltage required by other EPROMS. Current Flash EPROM technol~

ogy enables around 100,000 erase/reprogram cycles.

EEPROM (electrically erasable PROM) also doesn’t need a window, nor

does it need the special programming voltage required by other EPROMS.

EEPROMS tend to have longer access times than Flash EPROMS.

USB Complete 145

Chapter 7

EEPROMs are available both with the parallel interface used by EPROMs

and Flash EPROMS, and with a variety of synchronous serial interfaces,

including Microwire, 12C, and SP1. Serial EEPROMS are useful for storing

small amounts of data that changes only occasionally, such as configuration

data, including Vendor and Product IDS. Current EEPROM technology

enables around 10 million erase/reprogram cycles.

RAM (random—access memory) can be erased and rewritten endlessly, but

the stored data disappears when the chip powers down. It’s possible to use

RAM for program storage by loading the code from a PC on each powerwup

or by using battery backup. Cypress Semiconductor’s EZ—USB uses RAM

for program storage, along with special hardware and driver code that loads

code into the chip on power up or attachment. Any CPU with external pro—

gram memory could use batteryvbacked RAM for program storage.

Host—loadable RAM has no practical limit on the number of erase/rewrite

cycles. For battery—backed RAM, the limit is the battery life. Access times For
RAM are fast.

Data Memory

Data memory provides temporary storage during program execution. The

contents of data memory may include data received from the USB port,

data to be sent to the USB port, values to be used in calculations, or any-

thing else the chip needs to remember or keep track of. Data memory is usu—

ally RAM. Typical amounts of internal data memory are 128 to 1024 bytes.

Registers

146

Registers are another option for temporary storage. Registers are memory

locations the CPU accesses using different instructions than it uses to access

other data memory. Most registers have defined functions. Most CPUs can

access registers more quickly than other data memory.

USB controller chips typically have status and control registers that hold

information about what endpoints are enabled, the number of bytes

received, the number of bytes ready to transmit, Suspend-state status,

error—checking information, and other information about how the chip will

USB Complete

Chip Choices

be used and the current status of transmitted or received data. For example,

setting a bit in a configuration register may enable an endpoint. The num—

ber of registers and the specifics of their contents vary with the chip family.

Other IIO

Just about every controller will also have an interface to the world outside of

itself, other than the USB port. This often includes a series of general~pur—

pose input and output (I/O) pins that can connect to other circuits. A chip

may also have built—in support for other serial interfaces, such as an asyn»

chronous interface for RS—232, or synchronous interfaces such as 12C,

Microwire, and SP1.

Some chips have special~purpose interfaces. For example, Philips” USA1321

contains a digitalwto—analog converter (DAC) for use in USB speakers and

other audio devices. The chip converts received USE data to analog signals

at sampling frequencies of up to 55 kilohertz. FTDI’S FT8U232AM is a

USB UART that makes it as easy as possible to upgrade RS—232 designs to
USB.

Other Features

A chip may also have any number of other features such as hardware timers

or counters. Just about any feature that you might find in a general—purpose

microcontroller is likely to be available in a USB controller.

Simplifying the Development Process

Besides the abilities and features of the chip itself, ease of development can

make a huge difference in how long it takes to get a project up and running.

The simplest and quickest USB project is one that uses a controller chip

with all of the following:

0 A chip architecture and programming language that you’re familiar with.

° Detailed, well—organized hardware documentation.

USB Complete 147

Chapter 7

' Well—documented, bug—free sample firmware code for an application

similar to yours.

' A development system that enables easy downloading and debugging of
firmware.

‘ Device—driver availability, either using drivers included with Windows or

a well-documented driver provided by the chip vendor or another source
and usable as—is or with minimal modifications.

These are not trivial considerations. The right choice will save you many

hours and much aggravation.

Architecture Choices

148

in selecting a controller chip, you can use a chip designed from the ground

up as a standalone USB controller, a chip that’s compatible with an existing

chip family, or a chip that requires an interface to a generic microcontroller.

Which to use depends on your own background and experience as well as

the project specifics. Manufacturers frequently release new chips and

improved versions of existing chips, so it’s always a good idea to check the

manufacturers websites for the latest offeringsi

Chips Designed for USB from the Ground Up

Some controllers are designed specifically for USB applications. Instead of

adding USB capability to an existing architecture, these designs are opti—

mized for USB from the start. Two sources for this type of chip are Cypress

Semiconductor and ScanLogic. Table 7—1 compares the features of a selec—

tion of their chips.

Cypress’ M8 Family has a variety of inexpensive chips that share an instruc»

tion set optimized for USE. The enCoRe series has low‘speed chips, each

with a USB port and 8 to 16 lines of generalapurpose l/O. Other M8—series

chips have more I/O and support full~speed transfers.

ScanLogic’s SL1 1R contains a BIOS ROM that supports USB’S four transfer

types. The ROM also has boot—up code that enables executing user firmware

either from external parallel memory or by loading code From serial

EEPROM to RAM. The chip has 32 general—purpose I/O lines.

USB Complete

Chip Choices

Table 7—1: Cypress and ScanLogiC have microcontrollers that are designed for

USB from the ground up.

 Manufacturer

CY70637XX

(enCoRe)

Cypress

CY7CG4113

 Cypress ScanLogic

Speed Low Full 'Full

Number of Endpoints

RAM (bytes)

3 5 ‘4
96 256 i31<

Type

Pins

Program Memory

Program Memory 6K—8K 8K 2K internal or
Size (bytes)

General Purpose l/O

OTP PROM OTP PROM BIOS ROM + serial

EEPROM or external

parallel memory

 26K external

10— l 6 32 32

Other |/O capability

SP1, 12C, parallel data bus,
USB or PS/2 option hardware—assisted UART,

parallel interface, DAC serial EEPROM

power Supply Voltage 4.0—5.5 4.0—5.25 l3.3 :100/0

Number of Pins

is, 24 48 l 100

Chips Based on Popular Families

Some USB controllers are compatible with existing chip families. These

have two advantages. One is that many developers are already familiar with

the architecture and instruction set, and familiarity gives a big head start to

any project. Certainly if you’re designing a USBrcapable version of an exist—

ing product that uses an 8051 variant, sticking with the 8051 makes sense.

But even if you’re not already familiar with the architecture, selecting a pop—

ular family means that programming and debugging tools are available, and

sample code and other advice is likely to be available from other users on the
Internet.

If your microcontroller of choice is the 8051, you’re in luck. Cypress, Infin—

eon, and Standard Microsystems have 8051—compatible, USB—capable chips.

(But not lntel. Although lntel originated the 8051 family and was the first

to release 8051«compatible USB controllers with the 8x930 and 8x931,

USB Complete 149

Chapter 7

Table 72: Many manufacturers produce USB controllers that are compatible

with existing microeontroller families.

Company

AMD

Compatibility

Intel 80Cl86

Example Chip

AM186

Atmel Atmel AVR AT76C71 1

Cypress w Intel 8051, AN2121 (EZ—USB series)
Dallas Semi DS80C320

Infineon Intel 8051 C54lU

Microchip Technology Microchip PIC 16C7x5

Mitsubishi Mitsubishi 740 "m“ 7640, 7532/36 1

Motorola Motorola 68HC05 68HC05JB3/4

Motorola 68HC08 68HC08JBS

Motorola Power PC M MPC850 (host or device)

Standard Microsystems (SMSC) Intel 8051 USB97C100

STMicroelectronics iSTMicroelectronics ST7 J ST7261

Intel discontinued these in 2000.) Cypress’ FX2 series in its 805 l-compati—

ble EZ—USB family supports high speed.

Chips compatible with other families are available as well, including Atmel’s

AVR, Microchip’s PIC, and Motorola’s 68HC05/8. Table 7—2 lists these and
others.

Chips that Interface to an External Microcontroller

Some USB controllers handle only the USB communications and must be

controlled by an external microcontroller. These enable you to add a USB

port to just about any microcontroller circuit. The downside is that you

need two chips, while other USB controllers have both the CPU and the

USB controller on a single chip. Also, you may or may not be able to find

example circuits and code for the CPU you want to use. Table 7~3 compares

a selection of these chips.

The chips have external. local data buses that typically use a synchronous

serial or parallel interface to connect to the CPU. An interrupt pin can sig—
nal the CPU when the controller has received USB data or needs new data

150 USB Complete

Chip Choices

Table 7-3: A Selection of USB Controllers that interface to 3 Generic

Microcontroller.

 Manufacturer

USS8ZOC

Lucent

USBN9603

National

Semiconduc—
tor

 NET2888

PDIUSBD11

Philips

PDIUSBD12

Philips

Bus Speed Full Full Full Full Full

Number of 1 control + 14 1 control + 6 1 control + 5 1 control + 6 I control + 4
Endpomt others others others others others
addresses

Double Buff— yes no no no yes
ered?

Microproces- Non— Multiplexed or Non— 12C Multiplexed or

50" Interface multiplexed non— multiplexed non-
parallel multiplexed parallel multiplexed

parallel, parallel
Microwire

Power Sup- 3.3 3.3 or 5 3.3 3.3 3.3
ply Voltage

Number of 44/48 28 48 16 28
Pins

Comments Programma— Programma- Occupies 32 Programma— Programma—

ble FIFO size ble clock out— bytes of ble clock out— ble-clock out—

put address space put put,
status-LED

outputs

to send. With some chips, the local—bus interface is slower than USB’s maxi—

mum transfer rate, so the chip is suitable only for intermittent data.

Netchip’s NET2888 uses a parallel data bus with 8 data lines and 5 address

lines. It can read and write data at 10 Megabytes per second, or faster in

DMA mode. National Semiconductor’s USBN9603 has more options. It

has a data bus that can transfer multiplexed parallel data, non~rnultiplexed

parallel data, or Microwire synchronous serial data. Microwire requires just

four lines and can interface to just about any microcontrollcr with Four spare

I/O pins.

USB Complete 151

Chapter 7

Philips Semiconductors offers both the PDIUSBDll with an 12C interface

and the PCIUSBD12 with a parallel interface. Lucent’s USS820C has a par

allel interface and, supports the maximum number of endpoint addresses.

Chip Documentation

The ultimate authority on a chip’s abilities is its data sheet, and, for chips
with CPUs, the documentation for the instruction set. The data sheet docu~

ments the hardware, including the functions of the registers and voltages

and timing for all pins.

The documentation for the chips instruction set defines the assemblymode

syntax for each of the instructions that the CPU understands. If you’re pro»

gramming in assembly code, these are the instructions you use in writing the

firmware. if you’re using a highervlevel language such as C, you may not

need to use the assembly—code instructions at all, though compilers typically

allow in~line assembly code.

To supplement the basic documentation, many vendors provide a user man—

ual with more detailed information about how to use the chip“

Sample Firmware

The best way to get a head start on writing firmware is to begin with sample

code that’s similar to what you want to achieve. Having an example to refer

to is much, much easier than trying to put something together from scratch.

Chip and tool vendors vary widely in the amount and quality of sample

code provided, so it’s worth looking into what’s available before you commit

to a chip.

In some cases you can find code samples from other sources, especially via

the Internet, from other users who are willing to share what they’ve done.

Driver Choices

The other side of programming a USB device is the driver and application

software at the host. Here again, samples are useful.

152 USB Complete

Chip Choices

If your device fits into one of the classes supported by Windows, you don’t

have to worry about writing or finding a device driver. For example, applica-

tions can access a HID—class device using standard API functions that com—

municate with Windows HID drivers. A chip vendor may offer a sample

application, as National Semiconductor does in its sample HID application
for the ’9603.

Some vendors provide a generic driver that you can use to exchange data

with the device. Cypress’ EZ»USB is an example. The chip has a unique

architecture that enables the PC to load the chip’s firmware on attachment.

To use this feature, the chip requires a special driver. Cypress’ generic driver

can load firmware into the chip and can also exchange data using each of the

four transfer types.

Chapter 10 has more about device drivers.

Debugging Tools

Ease of debugging also makes a big difference in how easy it is to get a

project up and running. Products that can help include development boards

and software offered by the chip vendors and other sources.

A protocol analyzer is also very useful during debugging. Protocol analyzers

aren’t specific to a particular chip. Chapter 17 has more about these and
related tools.

Development Boards from Chip Vendors

Chip manufacturers offer development boards and basic debugging software

to make it easier for developers to use their chips. A development board

enables you to load a program from a PC to the chips program memory, or

to circuits that emulate the chips hardware.

The debugging software provided with the board is typically a monitor pro—

gram that enables you to control program execution and watch the results.

Standard features include the ability to step through a program line by line,

set breakpoints, and view the contents of the chips regisrers and memory.

You can run the monitor program and, a test application at the same time.

USB Complete 153

Chapter 7

Figure 7—1: The IZC/IO board from DeVaSys contains an EZ—USB and a variety
of options for l/O.

154

You can look inside the emulated chip and. see exactly what happens when

your application communicates with it.

If you have a generalvpurpose development system for your favorite micro—

controller, you can use it for USB developing as well. For example, develop

ment tools for Microchip’s 16C5X series are also usable with the

USE—capable 167CX5 chips.

Boards from Other Sources

In general, the evaluation kits offered by the manufacturers are well worth

the cost. But if you’re on a strict budget, there are inexpensive printed~cir—
cuit boards that can serve as an alternative. You can also use these boards as

the base for one—of—a—kind or small—scale projects, saving you the trouble of

designing and making a board to hold the controller chip.

The EZ—USB is a natural choice for this type of board because its firmware

is downloadable from the host so you don’t have to worry about progratm

ming hardware. The IZC/IO board from DeVaSys Embedded Systems (Figw

USB Complete

Chip Choices

ure 7—1) contains an AN2131 EZ—USB chip, a connector with 20 bits of

1/0, an 12C interface for synchronous serial communications, and an asyn—

chronous serial interface. The on—board 24LC128 is an 12C EEPROM that

can store 16 kilobytes of data, including Vendor and Product IDs and firm—
ware. The board can load its firmware from EEPROM or from the host on

attachment or power~up.

DeVaSys provides the board’s schematic and a free custom device driver that

enables applications to open communications and read and write to ports,

including the 12C port. If you prefer, you can load your own firmware into

the device and use your own driver or a driver provided by Windows. An

early version of the IZCIO won an award in Circuit Cellar magazine’s annual

design contest.

Another option for developing is to interface a basic controller like the

PDIUSBDH to a PCS parallel port for debugging code that will eventually

reside in a microcontroller. DeVaSys also has a board that takes this

approach.

The parallel port has 8 lines that are bidirectional on all but the oldest PCs,

plus four outputs and five inputs. PC applications can access the ports bits

using port reads and writes. PC software can communicate with the

PDIUSBDI 1’s 12C interface by using parallel—port lines as clock and data

lines for sending and receiving data.

With this approach, you can write PC applications that perform the func—

tions of the firmware that will eventually control the chip, including sending

descriptors during enumeration and whatever other functions the device is

responsible for. This approach is most useful if the device firmware will be
written in C, because the PC software can also use C and will be somewhat

portable. Every controller has chip'specific operations, however) and will

require some modifying for the final product.

With all of the available controller chips and the many options for accessing

them from PCs, it’s likely that many more inexpensive boards will become
available in time.

USB Complete 155

Chapter 7

Project Needs

156

Along with looking for a chip that will be easy to work with, you can further

narrow the choice of controllers by specifying your project’s needs and look—

ing for chips that meet the needs. These are some of the areas to consider:

How fast does the data need to transfer? A device’s rate of data transfer

depends on several things: whether the device supports low, full, or high

speed, the transfer type being used, and how busy the bus is. As a peripheral

designer, you don’t control how busy users’ buses will be, but you can design

your product to work in the worst case expected.

If a product requires no more than low—speed interrupt and control trans~

fers, a low—speed chip may save money not only in chip cost, but also in the

circuit—board design and cables. l-llDeclass devices can use low-speed chips.

But remember that low—speed devices can transfer only eight data bytes per

transaction, and the specification limits the transfer rate of an endpoint to

much less than the bus rate of 1.5 Megabits/second. Even if low speed is fea—

sible, don’t rule out full speed automatically. You may find a full—speed chip

that can do the job at the same or even a lower price.

Devices that support high speed should also support full speed, at least until
2.0 hosts become common.

How many and What type of endpoints do you need? Each endpoint

address is configured to support a transfer type and direction. A device that

does only control transfers needs just the default endpoint. Interrupt, bulk,

or isochronous transfers require additional endpoint addresses. Not all chips

support all transfer types.

Do you want the device to be software upgradable? For program mem—

ory, many USB devices use windowed EPROM, OTP PROM, or other

memory that isn’t easily erased and rewritten. To change the program, you

need to insert a new chip or remove, erase, ire—program, and replace the chip.

Cypress’ EszSB has an easier way, with the ability to load firmware from

the host into RAM on each power up or attachment. Another option is to

store the program code in a microcontroller with electrically reprogramma—

ble memory. Scanlogic’s SL1]N has the ability to store code received from

USB Complete

Chip Choices

the host in serial EEPROM. The contents of the EEPROM then load into

RAM on power up. The Device Class Specification for Device Firmware

Upgrade, available from the USB Implementers Forums website, describes a

mechanism for loading firmware from a host to a device.

Do you need a flexible cable? One reason why mice are almost certain to

be low—speed devices is that the less stringent requirements for a low—speed
cable mean that the cable can be thinner and more flexible. However,

2.0—compliant low—speed cables have the same requirements as full and high

speed except that the braided outer shield and twisted pair are recom—

mended, but not required.

Do you need a long cable? Low—speed cables are limited to three meters,

while fullvspeed cables can be five meters.

What other hardware features and abilities do you need? These include

everything from general—purpose or specialized 1/0, the size of program and

data memory, on-chip timers, and so on. As with any embedded computer

project, the requirements depend on the application.

A Look at Some Chips

The following descriptions of popular USB controller chips will give an idea

of what’s available. They include only a sampling, and new chips are being

released all the time, so any new project warrants checking the latest offer—

ings.

Cypress enCoRe

The chips in Cypress Semiconductor’s enCoRe series (yes, that annoying

capitalization is how Cypress has trademarked it) are inexpensive and simple

in design. They’re intended for applications that transfer small blocks of

information at low speed. Examples of uses include standard peripherals

such as mice and joysticks, as well as specialized devices such as data—acquisi—

tion units and controllers.

USB Complete 157

Chapter 7

158

CPU Architecture

Unlike most other USE chips, the enCoRe series isn’t based on an existing

chip family. Using these chips means having to learn a new instruction set.

However, the instruction set is small and the instructions are similar to those

used by other microcontrollers, Learning the syntax is fairly painless if you

have experience with assembly—code programming. A C compiler is also
available.

The chips support 37 instructions that cover the basics of moving data, per~

forming mathematical operations, and program branching. Because the

instruction set is short, learning it isn’t difficult. However, it also means that

you won’t find fancy instructions that do a lot of the work for you, For

example, there are no instructions for multiplying or dividing; all calcula

tions must be done by adding, subtracting, and bit—shifting. (The C com—

piler has math and other functions.)

The chips in the series share a common architecture, but they vary in the

amount of program memory, number of I/O pins, and packaging. The

’63743 has 256 bytes of RAM, 8 kilobytes of OTP EPROM for program

memory, 16 1/0 pins, and is available in both surface—mount and

through—hole packaging. The through—hole packages are useful tor prototypv

ing on hand—assembled boards because they don’t require soldering a tiny

surfacemount chip.

The chips contain internal oscillators that eliminate the need to add external

crystals or resonators. The USB port can be configured for PS/Z (synchrm

nous serial) communications, which enables a pointing device to support
both, interfaces.

USB Controller

The simplicity of the enCoRe’s design is a benefit but also a limitation.

Although the chips comply fully with the USB specification, they don’t sup“

port the full range of USB capabilities. They’re limited to low-speed trans-

fers, which means that they can’t use bulk or isochronous transfers. The

’63743 has three endpoints, the required Endpoint 0 for control transfers,

plus endpoints 1 and 2 for interrupt transfers. The chip can support one

USB Complete

Chip Choices

interrupt IN endpoint and one interrupt OUT endpoint, or two in the

same direction. Some other low—speed chips, especially earlier releases, don’t

support interrupt OUT endpoints, which were added in USB 1.1. Each

endpoint has an 8—byte buffer in RAM.

For project development, Cypress offers a development kit that includes a

printed—circuit board with an emulated chip and. a monitor program for

loading and testing code.

The only memory available for the chips is OTP PROM. This isn’t too

much of a drawback because the development kit works well for testing. You

can test the chips in the product itself when the programming is nearly com—

plete. To program the PROMS, you’ll need a device programmer. Cypress

offers an inexpensive programmer from HivLo.

The USB communications require a fair amount of firmware support, but

Cypress provides example code for common applications.

If you like the chips but need more l/O or full speed, Cypress’ CY7C64013
and CY7C641 13 are alternatives.

Cypress EZ-USB

Cypress’ ElvUSB family is notable for two reasons: it’s 8051—c0mpatible,

and the chips support a different and flexible approach to storing firmware.

Rather than storing the firmware on—chip, an EszSB can store its firmware

on the host, which loads it into the chip on each power—up or attachment.

Having the firmware stored on the host has pluses and minuses. The obvi—

ous advantage—and it’s a big one-is easy updates to firmware. To update

the firmware, you store the new version on the host and the driver sends it

to the device on the next power up or attachment. There’s no need to

replace the chip or use a special programmer.

The downsides are increased driver complexity, the need to have the firm—

ware available on the host, and longer enumeration time. Cypress helps with

the driver by providing the complete source and executable code for a driver

that handles the downloading of firmware. You can use the supplied driver

as—is, or use the source code as the base for a custom driver.

USB Complete 159

Chapter 7

160

The EZ~USB also supports storing its firmware in an external serial

EEPROM or in parallel EPROM or other non—volatile memory.

The EZAUSB family originated with Anchor Chips, which Cypress acquired

in 1999. You may see the name Ans/707’ in older documentation.

CPU Architecture

The EZrUSB’s architecture is similar to Dallas Semiconductor’s D880CB20,

which is an 8051 whose core has been redesigned for enhanced perfor—

mance. The chip uses four clock cycles per instruction cycle, compared to
the 8051’s twelve. Each instruction takes between one and live instruction

cycles. The CPU is clocked at 24 Megahertz. On average, an EZ'USB is 2.5

times as fast as an 8051 with the same clock speed.

The instruction set is compatible with the 8051’s. All of the 8~kilobytes of

combined code and data memory is RAM; there is no non—volatile memory

on’chip. However, the chips do support non—volatile storage in the 12C serial

interface that can read and write to serial EEPROM, or in external parallel
memory.

The EZAUSB family includes three series: the basic EZ~USB (ANZIXX)

and the FX (CY7CG46XX) and FXZ (CY7C68013) series. Within each

series are chips that vary in features such as the number of I/O pins or avail—
ability of an external data bus. Table 74 summarizes the features of each

series. The EX series adds faster 1/0 and a general programmable interface

that supports configurable, automated handshaking. The FXZ series also

supports high speed.

Keil has a C compiler For the EZWUSB, or you can use assembly code. The

compiler has a limited but free evaluation version. If you have the full ver—

sion of the compiler, you can base your code on Cypress’ Frameworks firm—
ware, which handles much of the work of USB communications.

USB Controller

Most EzeUSBs support the maximum number of endpoints: one control

endpoint, plus 30 additional endpoint addresses and all four transfer types.
For simpler designs, chips with fewer capabilities are available. The

USB Complete

Chip Choices

Table 74: Cypress Semiconductor’s EZ-USB family is compatible with the 8051
microcontroller.

AN21xx CY70646xx CY7C68013

(EZ-USB) (EZ-USB-FX) (EZ-USB-FX2)

Speed Full Full Full/High

Number of endpoints 13, 16, 31 ’31 ll
Compatibility 80C320, 8051 ‘80C320, 8051 80C320, 8051
RAM (bytes) 256 + 4—8K combined 256 + 4—8K combined 256 + 8K combined

data and program data and program data and program
memory memory memory

Program memory RAM, serial RAM, serial RAM, serial

type EEP‘ROM, external EEPROM, external EEPROM, external

parallel parallel parallel

internal program 4-8K combined data 4~8K combined data 8K combined data and

memory (bytes) and program memory and program memory program memory

External memory bus 64K 64K one or two 64K
(bytes)

General-purpose IIO 16-24 16-40 16—40
pins

Other "0 2 UARTs,12C 2 UARTs,12C 2 UARTS, 12c _

Ilirower Supply Voltage 3—3.6 3-3.6 3-3.6

Number of Pins 24—,48, 80 52, 80, 128 56, 100, 128

EZ~USB’S many options for storing firmware make its architecture more

complicated compared to other Chips. The options are useful because they

make the chip very flexible, so I’ll describe them in some detail.

When an EZ—USB wants to use firmware stored in the host, it enumerates

twice. When an EZ—USB attaches to the bus, the host attempts to enumer~

ate it, as it would for any device. But how can it enumerate a device with no

stored firmware? The answer is that the chip contains an EZ—USB core that

knows how to respond to enumeration requests. This core controls commu—
nications when the device first attaches to the bus. The EZ~USB core is

independent from the 805] core that normally takes control when the chip

has completed the enumeration process. The EZ—USB core communicates

with the host while holding the normal 8051 circuits in the reset state.

USB Complete 161

Chapter 7

162

The EZ—USB core also responds to vendor—specific requests that enable the

chip to receive, store, and run firmware received from the host. For basic

testing, the core circuits can also enable the device to transfer data using all

four transfer types, Without any firmware programming.

The ReNum register bit determines whether the EZnUSB or 8051 core

responds to requests at Endpoint 0. On power—up, ReNurn is zero and the

EZ~USB core controls Endpoint 0. When ReNum is set to one, the 8051

core controls Endpoint 0.

The source of an EZ~USB’s firmware depends on two things: the contents of

the initial bytes in an external EEPROM and the state of the chip’s EA

input. On powerwup and before enumeration, the EZ«USB core attempts to

read bytes from a serial EEPROM on the chips 12C interface. The result,

along with the state of the chips EA input, tell the core what to do next: use

the default mode, load firmware from the host, load firmware from

EEPROM, or boot from, code memory on the external parallel data bus.

Default Mode. The default mode is the most basic mode of operation. It

doesn’t use the serial EEPROM or other external memory. The EZ«USB

core uses this mode if EA is a logic low and the core detects no EEPROM,

or if the first byte read from EEPROM is not BOh or B2h.

When the host enumerates the device, the EZ—USB core responds to

requests. During this time, the 8051 core is held in the reset state. This reset

state is controlled by a register bit in the chip. The host can write directly to

this bit to place the chip in and out of reset. This reset affects the 8051 cir—

cuits and is unrelated to USB’s Reset signaling.

The descriptors retrieved by the host identify the device as a Default USB
Device. The host matches the retrieved Vendor and Product le with values

in a Cypress—provided IN E file that instructs the host to load Cypress” Gem

eral Purpose Driver to communicate with the chip. The ReNum bit remains
at zero.

This default mode is intended for use in debugging. You can use it to get the

USB interface up and transferring data. In addition to supporting transfers

over Endpoint 0, the Default USB Device can also use the other three trans_

USB Complete

Chip Choices

fer types on other endpoints. All of this is possible without having to write

any firmware or device drivers.

Identify the Device from EEPROM Bytes. The core can also read identi—

fying bytes from the EEPROM on power—up, and then provide this infor—

mation to the host during enumeration. If the first value read from the

EEPROM is BOh, the core reads EEPROM bytes containing the chips Ven—
dot and Product IDs and Version Number. When the host enumerates the

device the first time, it uses these bytes to find a matching INF file that
identifies a driver for the device. The driver contains the firmware to down—

load before re—enumerating. Cypress provides instructions for building a

driver with this ability.

The driver uses the vendor—specific Firmware Load request to download the

firmware to the device. The firmware contains a new set of descriptors and

the code the device needs to carry out its purpose. For example, a HID-class

device will have report descriptors and code for transferring HID report
data.

On completing the download, the driver causes the chip to exit the reset

state and run the firmware. The firmware electrically simulates removal

from, then reattachment to the bus by writing to a register that controls the

chips DISCON# pin. The pin either pulls up or floats (provides no connec»

tion to) one end of a resistor whose opposite end connects to D+. The pin

indicates device attachment when pulled up and simulated device removal

when floating. The firmware also sets ReNum, to 1 to cause the 8051 core,

instead of the EZrUSB core, to respond to Endpoint 0 requests.

When the host detects the simulated re—attachment, it enumerates the

device again, this time retrieving the newly stored descriptors and using the

information in them to select a device driver to load. Cypress has trade-

marked the term ReNumeration to describe this process.

Load Firmware from EEPROM. A third mode of operation provides a way

for the chip to store its own firmware. If the first byte read from the

EEPROM is BZH, the core loads the EEPROM’S entire contents into RAM

on powervup. The EEPROM must contain the Vendor ID, Product ID, and

Version Number bytes as well as all descriptors required for enumeration

USB Complete 163

Chapter 7

and whatever other code and data the device requires to carry out its purL

pose. When the chip exits the reset state, it has everything it needs for USB

communications. The core sets the ReNum bit to 1 on completing the load—

ing of the code. When, the host enumerates the device, it reads the stored

descriptors and loads the appropriate driver. There is no re—enumeration.

Run Code from External Parallel Memory. If no EEPROM is detected, or

if the first byte isn’t BOh or B6h, and if EA is a logic high, the chip boots

From code memory on the external parallel data bus. This memory can be

EPROM, EEPROM, FLASH EPROM, or battery—backed RAM. The

memory contains the descriptors and other firmware. ReNum is set to l.

The host enumerates the device and loads a driver, and there is no menu—

meration.

Microchip PIC 16C7x5

164

Microchip’s PIC microcontrollers have many devotees because of their low

cost, wide availability, many variants, speed, low power consumption, and

simple instruction set. The 16C745 and 16C765 are PICS with low—speed

USB ports.

Architecture

The chips are enhanced members of Microchip’s 16C5X series. Code written

for the 16C5X is portable to the 16C7X5. The chips support 35 instructions.

in addition to the USB interface, there are 19 1/0 pins, plus the ’65 has an

8«bit parallel slave port for connecting to a microcontroller with an external

data bus. Up to 8 of the 1/0 pins can function as analognto-digital converter

inputs. A USART supports asynchronous and synchronous serial communi—

cations. The chips have three timers.

A crystal or ceramic resonator can clock the chip. Program memory is

EPROM or OTP PROM. The chips are available in through—hole and surm

face—m ount packages.

USB Complete

Chip Choices

USB Controller

The chips support Endpoint 0 plus Endpoints l and 2 in any combination

of IN and OUT. To manage communications, there are 7 status and control

registers, plus each endpoint has a control register and a 4~byte buffer

descriptor. The microcontroller and the bus share access to the buffer

descriptors, which contain information such as the data»toggle state and the

number of bytes received or to be transferred. The chip supports firmware

simulation of attaching to and removal from the bus.

Like the enCoRes, these chips require a fair amount of firmware support.

Microchip provides assembly and C code for enumeration and other stan—

dard USB tasks. For HIDs, there is example mouse code that you can adapt

for other HID applications.

NetChip NET2888

NetChipis NET2888 doesn’t contain a general—purpose CPU or memory. It

has only a USP) controller and an interface to a generic data bus, which. you

can connect to any CPU that has a complimentary bus.

Architecture

The NET2888 has no program or data memory other than its USB bulitrrs.

The local bus has five address bits (A0 ~ A4) and eight data bits (DOVD7) to

enable reading and writing bytes to 32 addresses.

Transferring data over the local bus uses a ChipSelect line to select the chip

and separate IOR and IOW signals to control reads and writes. Most micro—

controllers that support external data buses can use this interface with little

or no added logic.

The chip also supports direct memory access (DMA) transfers, for the fast-

est possible transfer ofbloclts of data. The CPU that the NET2888 connects

to must also support DMA. In a DMA transfer, the chip takes control of the

local bus. Once the DMA transfer is requested, the transfer of a block of

data to or from memory occurs without requiring the external CPU to ini—

tiate individual read and write operations.

USB Complete , 165

Chapter 7

166

The chip reserves a block of memory to hold the data that will transfer. A

DMA address counter holds the address of the blocle and a DMA byte

counter holds the number of bytes left to transfer. In a hostato~device trans—

fer, on receiving USB data, the device copies the data into the reserved

memory. in a device—to—host transfer, the device copies data into the trans

mit buffer Whenever space is available.

The chip responds to the standard control requests Without requiring any

firmware support other than storing the appropriate information (such as

Vendor and Product IDs) in registers.

USB Controller

The NET2888 supports five endpoints and all four transfer types:

Endpoint Number Transfer Type(s) Supported

0 A control

1 bulk OUT

2 interrupt lN

3 bulk or isochronous OUT

4 bulk or isoehronous [N

The 32 bytes that the CPU can access using the address and data buses cor—

respond to registers in the chip: For Endpoints l and 2, the peripherals

CPU can send and receive USE data using two 8»byte mailbox regisrersa

Each mailbox’s data uses a single address on the local bus, with a second

address containing an index that indicates the byte in the mailbox to be read

or written to. For Endpoints 3 and 4, the peripherals CPU can send and

receive USB data using two 64~byte buffers. Each buffer uses a single

address, with a count register that indicates the number of data bytes in the
buffer.

The NET2888 automatically stores data received from the host. To detect

data received from the host at Endpoint l, the peripherals CPU can poll the

chips receive—mailbox—valid bit or respond to an interrupt that occurs when
the bit is set.

USB Complete

Chip Choices

To send data from Endpoint 2 to the host, the peripherals CPU writes the

data to the transmit mailbox and sets the chips transmit~mailbox—valid bit.

The NET2888 then handles the details of sending the USB data.

Other registers hold various status and handshaking values and configura—
tion information.

The peripherals CPU is responsible for writing some configuration infor—

mation to the NET2888’S registers. But because the endpoints are config«

ured in hardware, there’s less to do than for other chips.

National Semiconductor USBN9603

National Semiconductor’s USBN9603 is another chip that requires an inter—

face to a microcontroller. It can interface to any microcontroller with a par—

allel data bus, a Microwire interface, or even just four spare I/O pins

controlled entirely in firmware

Architecture

The ’9603 has a serial interface engine for handling USB transmissions, a set

of USB endpoint buffers, and a series of status and control registers. A CPU

can access the endpoint buffers and status and control registers at addresses

0011 through 3Fh via an external, local bus.

The chip offers three options for accessing the local data bus: non—multi—

plexed parallel, multiplexed parallel, and Microwire synchronous serial.

Multiplexed parallel transfers read or write a byte of data in one bus cycle.

The address is latched. with ALE, and the data with RD or WR. Most

microcontrollers with external data buses can use these signals with little or

no additional logic.

For non~multiplexed parallel transfers, the ’9603 transfers both data and

addresses on D0437, but in separate bus cycles. One bus cycle sends the

address to the ’9603, and another transfers data to or from the chip. To save

on bus accesses, the chip supports a burst mode where the CPU writes a

starting address to the controller chip, and then transmits or receives multi—

USB Complete 167

Chapter 7

pie bytes that go to consecutive addresses. The external CPU must also sup—

port this mode. The parallel interface also supports DMA transfers.

Not all microcontrollers have an external parallel data bus, and for those

that don’t, the 39603 offers a solution in its Microwire interface. Microwire

is a synchronous serial interface that uses tour lines: the two data lines SIN

(serial in) and SOUT (serial out), CS (chip select), and SYNC (the clock

line). Command/address and data bytes shift in and out, bit by bit, using

transitions on the SYNC line as a timing reference. The external CPU con—

trols SYNC. There is no minimum SYNC frequency, and the signal doesn’t

have to have a constant frequency; the CPU can toggle line as needed. The

interface just has to be fast enough to keep up with the USB traffic. If the

USB port transfers only small, occasional blocks of data, you can program a

Microwire interface in firmware without having to worry about critical tim—

ing. Some microcontrollers, such as National Semiconductor’s (3013888,
have Microwire interfaces built in.

USB Controller

The ’9603 supports seven endpoint addresses: Endpoint O for control trans,

ters, three lN endpoints, and three OUT endpoints. Endpoint 0’s buffer is 8

bytes; the others are 64 bytes. An endpoint may also send or receive packets

larger than the buffer size, if the firmware reads data from the buffer as it

arrives to prevent the buffer from overflowing, or writes data to the buffer as

it transmits to prevent the buffer from emptying before all of the data has
transmitted.

Philips Semiconductors PDIUSBD11/12

168

Philips Semiconductors offers additional choices for minimal USB control—

lers in its PDIUSBDII and PDIUSBDIZ.

Architecture

The chips are similar except for their external data buses. The ’12 has a par—

allel data bus, while the ’l 1 has an 13C bus. Like Microwire, PC is a synchrow

nous serial bus. It requires just two signal wires: serial clock (SCK) and a

bidirectional serial~data line (SBA). in a typical transfer, the CPU sends a

USB Complete

Chip Choices

command that specifies the function of the data to follow, followed by trans—

mitted or received data. The bus can transfer data at up to 1 Megabit per

second, and some of the bits are commands. So although the USB interface

is full speed, the local bus limits the amount of USB data that the chip can

send and receive in a period of time. There is no minimum speed for SCK.

Some microcontrollers have built—in 12C interfaces.

Like National Semiconductor’s USBN9603, Philips) PDIUSBD12 supports

multiplexed, non—multiplexed, and, DMA parallel transfers. The interface

can transfer data at up to 2 Megabytes per second.

Instead of using status and control registers, the chips respond to commands

for performing functions such as selecting an endpoint or reading or writing
to a buffer.

USB Controller

Both chips are full speed. The ’12 supports a control endpoint and four

additional endpoint addresses. One endpoint’s buffer holds up to 128 bytes,

with double buffering for a total of 256 bytes. The ’11 supports a control

endpoint and six additional endpoint addresses with 8—byte buffers.

On both chips, the USB connection is under firmware control. The chip

appears detached from the host until the peripherals CPU sends a com—

mand to simulate attachment to the bus. This ensures that the chip has time

to initialize on power-up before being enumerated by the host. A status out

put on the ’12 can connect to an LED that lights when a USB connection
has been established and blinks on data transfers.

Intel StrongARM

An example of a high—end controller with USB capability is Intel’s Stron'

gARM series. The StrongARM is a 32—bit CPU designed for use in portable,

wireless, multimedia devices. USB communications isn’t the primary purv

pose of the StrongARM, but it has a full—speed peripheral interface with

three endpoints that support control, bulk OUT, and bulk IN transfers.

USB Complete 169

Chapter 7

170 USB Complete

Inside a USB Controller: the Cypress enCoRe

8

Inside a USB Controller:

the Cypress enCoRe

Now that you know something about the USB protocols and the controller

chips available for USB peripherals, it’s time to take a closer look at a con—

troller chip and how to use it. The chip I’ve chosen For the examples in the

book is the CY7C65743 in Cypress Semiconductor’s enCoRe series.

This chapter explains how I chose the chip to use for my examples, then

describes the chip and its abilities in detail. Because describing the hardware

often involves showing code that accessing the hardware, I’ve also included

information about the chips assembler and C compiler. The focus as always

is on what you’ll need to know to put the chip to use. No matter which chip

your project uses, this chapter will give you an idea of how USB controllers

carry out their responsibilities.

USB Complete 171

Chapter 8

Selecting a Chip

If you’re going to design a USB peripheral, you eventually need to decide

which controller chip the peripheral will contain. The same principle holds

true for the examples in this book. In order to show application examples, I

need to choose a chip to base the examples on. So the first order of business

is selecting the chip.

Requirements

172

A major purpose of this book is to show how to design and program a USB

peripheral. I wanted to use a chip that would be suitable for simple monitor—

ing and control projects. The focus is on getting a basic design up and run—

ning quickly, rather than on supporting a complex design and every

capability of USB. With this in mind, I decided to look for these features in

a chip:

Easy to learn. A simple design is good.

Contains a mierocontroller, rather than requiring an interface to an

external microcontroller. This keeps the design simpler and avoids the
issue of which microcontroller to interface to.

Supports interrupt transfers. One of the easiest ways to communicate

with, a USB device is using Windows’ I-IID drivers. The drivers use inter—

rupt and control transfers for transferring data in both directions,

Inexpensive.

Available.

Has an easy—tovuse development system. The development system should

enable transferring of code from a PC to the controller, viewing the code

and chip registers, and debugging using Functions such as single~srepping

and breakpoints.

Reprogrammable. A chip whose program memory is easily repro—

grammed makes development simpler and cheaper.

Available sample code. This provides a quick start in developing firmware

and application software.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The Choice

There are many excellent products available, and the truth is that no chip

meets every requirement perfectly. Every controller I’ve seen supports inter-

rupt transfers, so that part is easy. Cypress’ products rose to the top of the list

because Cypress has done a very good job of supporting developers with

example code and documentation. Cypress’ TEX—USB is a powerful chip and

requires no PROM programming, but its complexity means that it’s likely to

be programmed in C, requiring an expensive C compiler.

In the end, I decided on Cypress’ enCoRe series. The chips aren’t repro—

grammable, except by swapping the PROM, but the development system

enables testing code before storing it in PROM. The development system

costs a little more than I’d like, but the chips themselves are inexpensive.

The chips are low speed, which. limits their performance, but makes

printed—circuit—board. design less critical. The USB communications require

a fair amount of firmware support, but you can begin with example code

that includes the essentials and change only the portions that are specific to

your application. The instruction set is simple enough that you can use the
free assembler.

The specific chip I’ll use is the CY7C63743. It can do USB communica-

tions and generic I/O. There are no external buses; the chip stands alone as a

complete controller for managing USB communications and other process—

ing.

If you’re using a different chip, following my examples will give you a head

start on figuring out what you’ll need to do. Even if you need a full~speed

interface or a custom driver, the examples will introduce many topics that
are relevant to all USB devices.

The Assembler

Before getting into the details about the chip, it’s helpful to know a little

about how to program it. The enCoRe’s CPU supports 37 instructions.

Everything that the firmware does must use these instructions. Cypress prov

vides a free assembler for converting the assembly code you write into object

USB Complete 173

Chapter 8

files for programming into the chips EPROM. if you prefer to program in

C, Cypress also offers a C compiler.

If you have experience with microcontroller assembly—language programs

ming, programming for the enCoRe will be familiar. if you’re used to pro—

gramming in Basic, C, or another high~level language, the limited

operations available in assembly code may come as a shock. There are no

for or while loops, no fancy variable types, and no object—oriented any»

thing. But for a chip like the enCoRe, which is intended for fairly uncom—

plicated control and monitoring tasks, using assembly code is feasible. For

short programs, the code is manageable and executes quickly. And there are

no compilers to buy.

This book isn’t a tutorial on assemblymlanguage programming, but l’ll

present some basic information for beginners, as well as specific details

about the enCoRe for those who have programming experience and want to

see how the Cypress chip compares.

Assembly Programming Basics

174

An assembly~language program contains a series of instructions, each corre—

sponding to a machine code that the chip supports. For example, the

instruction iord, which reads an 1/0 location, corresponds to the code

29h. lnstead of having to remember 29h, you can write iord, and the

assembler will translate for you. The iord instruction also requires an oper—

and that specifies the location to read. For example, iord Olh reads the

port at address 01h.

An assembly~language program may also contain directives and comments.
A directive is an instruction for the assembler, rather than for the CPU.

Directives enable you to assign locations in program memory, define vari—

ables, and in general instruct the assembler to perform operations besides

specifying what machinercode instructions to execute. A semicolon (;) or

double slash (/ /) introduces a comment, which the assembler ignores.

The assembler provided by Cypress, C)/5£5WZ.€X€, is a command—line program

that you can run in a DOS window. Cypress provides a User’s Guide that
documents the instructions, directives, and how to use the assembler.

USB Complete

lnside a USB Controller: the Cypress enCoRe

The assembler supports two similar instruction sets, for the A— and B—series

CPUs. The enCore chips are B—series. Cypress’ older chips, such as the

’63001, are A—series and support all but a few of the same instructions.

Assembler Codes

The User’s Guide has complete documentation for the assembly codes and

directives, and i won’t repeat the details here. Table 8~1 is a summary of the

codes, and Table 82 is a summary of the directives. The chips machine

codes translate to 37 instructions, with some supporting multiple sources or

destinations.

The instructions do basic arithmetic and logic functions, program brancl —

ing and control, and copying of data to and from registers, ports, and RAM.

Two flag bits, the carry flag and zero flag, provide additional information,
such as Whether an add instruction resulted in an overflow or Whether the

result of an instruction is zero.

The chip supports three addressing modes that determine how an instruc—

tion uses its operand. Not all instructions support all three addressing
modes.

In immediate addressing, the instruction uses the operand’s value directly.

This insrruction uses immediate addressing to add 60b to the value in the
accumulator.

Add A, 60h

In direct addressing, the instruction treats the operand as an address and

uses the value stored at that address. This instruction uses direct addressing

to add the value stored at address 60b in RAM to the contents of the accuw

mulator:

Add A, [6 Oh]

In indexed addressing, the instruction uses the data stored at an address

obtained by adding a value to the contents of the X register. Indexed

addressing is useful for copying blocks of data. The X register holds the

starting address of data to be copied. The code adds an index value to the

contents of the X register to obtain the address of a byte to copy. By incre~

USB Complete 175

Chapter 8

Table 8-1: The Cyasm assembler supports 37 assembly-language

instructions for the enCoRe. (Sheet 1 of 2)

Instruction Type Instruction Description

Arithmetic and logic functions W

Add with carry

Bitwise AND

Arithmetic shift left

Arithmetic shift right

Non—destructive compare

Complement accumulator

Decrement

Increment

Bitwise OR

Rotate left through carry

Rotate right through carry

subtract without borrow

 Subtract with borrow J
Bitwise XOR '''''''

Program branching and control CALL Call function

HALT Halt execution

RETI Return from interrupt M

JACC Jump accumulator ‘

JC W Jump if carry

JMP Jump

[JNC ”Jump if no carry
JNZ Jump if not zero

JZ Jump if zero _,..

RET ' Return

[XPAGE Memory page

176 USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8-1: The Cyasm assembler supports 37' assembly—language

instructions for the enCoRe. (Sheet 2 of 2)

Instruction Type Instruction Description

Moving data lNDEX Table read

[0RD lRead I/O
IOWR Write l/O

IOWX Indexed l/O write

MOV Move

POP POP data stack into accumulator

PUSH accumulator into data stack

SWAP Swap

Other DI Disable interrupts

EI Enable interrupts

NOP No operation

menting the index value after each copy, the code can step through a block
of data.

Using the Assembler

The assembler uses a command—line interface that you can run from a DOS
window. This command:

cyasm test.asm

assembles the file restusm.

The assembler creates three files:

testram is the assembled code in a format for use with the Development Kit.

You can use this file to load the code From a PC to the development board’s
RAM.

Here is a portion ofa .mm file as it appears when loaded into a text editor:

80 99 8O 10 80 15 81 24

80 8C 80 99 80 85 80 10

2D 1A 20 1E 20 2D 2A 21

1A 37 16 00 A0 20 27 37

USB Complete 177

Chapter 8

178

Table 8-2: The Cyasm assembler supports 13 directives.

Directive Description

CPU Product specification

DB IPefine byte
DS Define ASCII string

DSU mDefine UNICODE string

DW Define word (2 bytes)

DWL Define word with little endian ordering

EQU Equate label to variable value

FILLROM Define value for unused program
memory

INCLUDE Include source file

MACRO Macro definition

ORG Origin

XPAGEON XPAGE enable

XPAGEOFF XPAGE disable —1

The file contains lines consisting of eight ASCII hex bytes with a space

between each and a carriage return/line feed at the end.

In ASCII hex format, each byte is represented by two ASCII codes, with

each code representing a hexadecimal character. For example, the byte 80b is

represented by the ASCII codes 38h for 8, and 30h for 0. Using ASCII hex

format enables you to easily View the byte values (80 in the example) in a

text editor. When the code is stored in the development board’s RAM, the

RAM contains the binary bytes represented by the ASCII Hex bytes. For

example, 80h translates to l0000000 in binary.

regime is the assembled code in Intel I-Iex format. Many EPROM program~

mers, including the HiwLo programmer available from Cypress, support this

format. The Development Kit can use this format as well, instead of the

.mm format. Intel Hex format uses ASCII hex characters and adds check~

sums for error—checking and addressing information to enable the file to

specify where each line of bytes should be stored.

Here is the same data in one line of a *fiex file (the line wraps on the page):

USB Complete

Inside a USB Controller: the Cypress enCoRe

:200000008099801080158124808C8099808580102D1A20lE2023

2A2llA37l6OOA0202737Al

test/5t is the listing file generated by the assembler. It shows each line of the

assembly code and comments, along with the program code generated from

it and the address where each byte will be stored. The listing file is useful

when you’re using the monitor program. For example, if you want to stop

program execution at a breakpoint, you can use the listing file to find the

address that corresponds to the line of code where you. want to break.

Here is an excerpt from a *.[5L‘ file, showing an interrupt—service routine for

Endpoint 1:

OBBC endpointl:

O3BC 2D [05] push A
OBBD

OBBD ; Change data toggle

OBBD 19 80 [O4] mov A, 80h

OBBF 37 21 [O7] xor [eplmdata_toggle], A
03Cl

03Cl 19 OO [04] mov A,NO_EVENT_PENDING

03C3 31 2D [05] mov [eventwmachine], A
03C5

03C5 ; set response

03C5 LA 29 [O6] mov A, [epl_stall]

03C7 L6 FF [O4] cmp A, FFh

03C9 B3 CF [05] jnz endpointl_done

OBCB :_9 03 [O4] mov A, STALL_IN_OUT

OBCD 2A 14 [05] iowr epl_mode
O3CF

OBCF endpointlwdone:

OBCF 2B [04] pop A

O3D0 73 [08] reti

The leftmost column is the address in program memory. The address doesn’t

change when a line contains only a comment or label. The next two col—

umns are the bytes stored at each address. For example, at location 03CD,

2Ah is the code for iowr, and 14h identifies the register to write to. The

next column is the number of clock cycles the instruction uses (5). The

rightmost columns contain the assembly code and comments.

USB Complete 179

Chapter 8

Programming in C

Another option for developing code for these Cypress chips is the C com-

piler and development environment. These tools were developed by Byte“

Craft, a provider of C compilers for many embedded—controller families.

Advantages to C

Compared to assembly—language programming, C has several advantages:

9 Standardization. ll: you’re an experienced C programmer, you know the

syntax and can get a quick start. You may be able to use C code written

for another chip with minimal changes.

° More structures. Instead of being confined to simple jumps, your code
can use structures like if . . .else and case statements and f or and

do. . .while loops.

° More operators. The compiler supports many more math and relational

operators than the assembler. You can add, subtract, multiply, divide, and

do a variety of comparisons.

° Libraries and examples. The included libraries will save you much time

in performing common Functions. There are libraries for a firmware

UART, 12C and Microwire interfaces, delay timing, LCD and keypad

interfacing, and more math functions. The examples include complete

code for a keyboard and mouse/ trackball.

' Optimization. The compiler optimizes the code for compactness and

Sp€€d.

The downside is that you have to buy the compiler, While the assembler is

free. But it’s likely that the time saved with even a single project will justify

the expense.

Using the Compiler

You can run the compiler from D03 or use the included Windows—based

BCLIDE development environment (Figure 8—1). BCUDE enables you to

180 USB Complete

inside a USB Controller: the Cypress enCoRe

unalgned int get_haud(v01d
‘Sl

 int menu_item=6;
while(l)
{

clrscrl):

§_ fer(unsigned int i=0; i<1l ;i++), l
-. puts l"\n\r\t[");

if(menu_item :: iiI|

i r (ANS I__TEPJ\‘I)
putsibluep

l

putstbaud_menu_string5[il
ifl menuwitem :: i}
l

if(ANSI_TERM)
putstwhiv

else
puts ("\,b\l

}
PUtChl'J');l!

UAIri‘_RD}0R‘1‘ . UAl‘a'l‘__RD_PIN : t;
switchigetchil)
{

case 'J':

case j :
if(menu item < l

a 5N3 w

Figure 8—1: Byte Craft’s C compiler includes a development environment that

enables you to set project options and edit and compile code.

create a project, add files, define file paths, and set compiler and editor

options. You can edit source—code files and compile and link the file or files

to create executable code. The compiler can create a file in Intel hex or .rom
Format.

Chip Architecture

Chapter 7 introduced the enCoRe series. The chips are inexpensive and sim—

ple in design. They’re intended for use in applications that transfer small

blocks of information at moderate speeds. Uses include standard peripherals

USB Complete 181

