Includes USB 2.0

With firmware tips & host code
in Visual Basic and Visual C++

JAN AXELSON

author of Parallel Port Complete and Serial Port Complete

Apple 1062 (Part 1 of 3)
U.S. Pat. No. 9,189,437

USB Complete
Everything You Need
to Develop Custom USB Peripherals
Second Edition

Jan Axelson

Lakeview Research
Madison, W1 53704

copyright 2001 by Jan Axelson. All rights reserved.

Published by Lakeview Research

Cover by Rattray Design. Cover Photo by Bill Bilsley Photography.
Index by Broccoli Information Management

Lakeview Research Phone: 608-241-5824
5310 Chinook Ln. Fax: 608-241-5848
Madison, W1 53704 Email: info@Lvr.com
USA Web: http://www.Lvr.com

1413121110987 654321

Products and services named in this book are trademarks or registered trademarks of
their respective companies. In all instances where Lakeview Research is aware of a
trademark claim, the product name appears in initial capital letters, in all capital letters,
or in accordance with the vendor’s capitalization preference. Readers should contact the
appropriate companies for complete information on trademarks and trademark registra-
tions. All trademarks and registered trademarks in this book are the property of their
respective holders.

No part of this book, except the programs and program listings, may be reproduced in
any form, or stored in a database or retrieval system, or transmitted or distributed in any
form, by any means, electronic, mechanical photocopying, recording, or otherwise,
without the prior written permission of Lakeview Research or the author. The programs
and program listings, or any portion of these, may be stored and executed in a computer
system and may be incorporated into computer programs developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other
material in this book are provided “as is,” without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy,
or completeness of the material or the results obtained from using the material. Neither
the publisher nor the author shall be responsible for any claims attributable to errors,
omissions, or other inaccuracies in the material in this book. In no event shall the pub-
lisher or author be liable for direct, indirect, special, incidental, or consequential dam-
ages in connection with, or arising out of, the construction, performance, or other use of
the materials contained herein.

ISBN 0-9650819-5-8 Printed and bound in the United States of America

Table of Contents

Introduction Xxiii

1. A Fresh Start 1
What USB Can Do 3

Benefits for Users
Benefits for Developers
It’s Not Perfect 11
User Challenges
Developer Challenges
History 16
The Motivation for Change
The Specification’s Release
USB 2.0
USB versus IEEE-1394

2. Is USB Right for My Project? 21
Fast Facts 21

Minimum PC Requirements
The Components

USB Complete

Table of Contents

Table of Contents

Bus Topology
Defining Terms
What is a Port?
The Host's Duties
The Peripheral's Duties
What about Speed?
The Development Process 35
Elements in the Link
Tools for Developing
Steps in Developing a Project

3. Inside USB Transfers 39
Transfer Basics 40

Configuration Communications
Application Communications
Managing Data on the Bus
Host Speed and Bus Speed

Elements of a Transfer 44
Device Endpoints
Pipes: Connecting Endpoints o the Host
Types of Transfers
Stream and Message Pipes
Initiating a Transfer
Transactions: the Building Blocks of a Transfer
Transaction Phases

Ensuring that Transfers Are Successful 61
Handshaking
Reporting the Status of Control Transfers
Error Checking

4. A Transfer Type for Every Purpose 71

Control Transfers 71

Availability

Structure

Data Size

Speed

Detecting and Handling Errors
Bulk Transfers 78

Availability

Structure

Data Size

Speed

USB Complete

Table of Contents

Detecting and Handling Errors
Interrupt Transfers 81

Availability

Structure

Data Size

Speed

Detecting and Handling Errors
Isochronous Transfers 85

Availability

Structure

Data Size

Speed

Detecting and Handling Errors
More about Time-critical Transfers 89

Bus Bandwidth

Device Capabilities

Host Software Capabilities

Windows Latencies

5. Enumeration: How the Host Learns about Devices 93
The Process 94

Enumeration Steps
Enumerating a Hub
Device Removal

Descriptor Types and Contents 101
Types
Device Descriptor
Device_Qualifier Descriptor
Configuration Descriptor
Other_Speed_Configuration Descriptor
Interface Descriptor
Endpoint Descriptor
String Descriptor

Descriptors in 2.0-compliant Devices 116
Making 1.x Descriptors 2.0-compliant
Detecting the Current Speed of a Dual-Speed Device

6. Control Transfers:

Structured Requests for Critical Data 119

Elements of a Control Transfer 119

The Setup Stage
The Data Stage

USB Complete Vv

Table of Contents

The Status Stage
Handling Errors

The Requests 127

Set_Address
Get_Descriptor
Set_Descriptor
Set_Configuration
Get_Configuration
Set Interface
Get_Interface
Set_Feature

Clear Feature
Get_Status
Synch_Frame
Class-Specific Requests
Vendor-Specific Requests

7. Chip Choices 141
Elements of a USB Controller 142

The USB Port
Buffers for USB Data
CPU

Program Memory
Data Memory
Registers

Other I/O

Other Features

Simplifying the Development Process 147

Architecture Choices
Chip Documentation
Sample Firmware
Driver Choices
Debugging Tools
Project Needs

A Look at Some Chips 157

Vi

Cypress enCoRe

Cypress EZ-USB

Microchip PIC 16C7x5

NetChip NET2888

National Semiconductor USBN9603
Philips Semiconductors PDIUSBD11/12
Intel StrongARM

USB Complete

Table of Contents

8. Inside a USB Controller: the Cypress enCoRe 171
Selecting a Chip 172

Requirements
The Choice
The Assembler 173
Assembly Programming Basics
Assembler Codes
Using the Assembler
Programming in C 180
Advantages to C
Using the Compiler
Chip Architecture 181

Features and Limits

Inside the Chip
Memory
USB Communications 187
Device Address
Modes
Endpoint Status and Control
USB Status and Control
Other I/0 192
General-purpose I/O
SPI Port
The PS/2 Interface

Other Chip Capabilities 197

Timer Functions

Interrupt Processing
CPU Status, Control, and Clocking
Power Management

9. Writing Firmware: the Cypress enCoRe 209

Hardware and Firmware Responsibilities 209
What the Hardware Does
What the Firmware Does

Hardware Development Tools 219

The Development Kit
PROM Programming

10. How the Host Communicates 231

Device Driver Basics 231
Insulating Applications from the Details

USB Complete vii

Table of Contents

Options for USB Devices
How Applications Communicate with Devices
The Win32 Driver Model 237
Driver Models for Different Windows Flavors
Layered Drivers
Communication Flow
More Examples
Choosing a Driver Type 248
Drivers Included with Windows
Vendor-supplied Drivers
Custom Drivers
Writing a Custom Driver 249
Requirements
Using a Driver Toolkit

11. How Windows Selects a Driver 255

The Process 255
Searching for INF Files
The Registry’s Role
The Control Panel
What the User Sees

Inside an INF File 262
Sections
The Generic INF File for HIDs

Creating INF Files 271
Tools
Tips

12. Device Classes 275
Uses of Classes 276

Elements of a Class Specification
Defined Classes

Matching a Device to a Class 279
Standard Peripheral Types

Non-standard Functions
13. Human Interface Devices: Firmware Basics 293
What is a HID? 294

Hardware Requirements
Firmware Requirements

Identifying a Device as a HID 299

Descriptor Contents

viii USB Complete

Table of Contents

HID Class Descriptor

Report Descriptors
HID-specific Requests 306

Get_Report

Set_Report

Get_Idle

Set_Idle

Get_Protocol

Set_Protocol
Transferring Data 314

Sending Data to the Host

Receiving Data from the Host

14. Human Interface Devices: Reports 321

Report Structure 321
Using the HID Descriptor Tool
Predefined Values
Short Items
Long Items
The Main Item Type 325
Input, Output, and Feature Items
Collection and End Collection Tags
The Global Item Type 330
Identifying the Report
Describing the Data’s Use
Converting Raw Data
Describing the Data’s Size and Format
Saving and Restoring Global Items
The Local Item Type 339

Physical Descriptors
Padding

15. Human Interface Devices: Host Application Primer 343

Host Communications Overview 344
How the Host Finds a Device
Documentation
The HID Functions
DirectX

Using API Functions 348
Using Visual C++
Using Visual Basic
The Declaration

USB Complete iX

Table of Contents

Calling a Function
Two Useful Routines
Device Attachment and Removal 362
USBView
Searching for a Device
Device Notification
Enabling and Disabling Devices

16. Human Interface Devices:
Host ApplicationExample 365

Finding a Device 366
Obtain the GUID for the HID Class
Get an Array of Structures with Information about the HIDs
Identify Each HID Interface
Get the Device Pathname
Get a Handle for the Device
Read the Vendor and Product [Ds
Get a Pointer to a Buffer with Device Capabilities
Get the Device’s Capabilities
Get the Capabilities of the Values

Reading and Writing Data 384
Sending an Output Report to the Device
Reading an Input Report from the Device
Reading Reports without Blocking the Thread
Writing a Feature Report to the Device
Reading a Feature Report from a Device
Closing Communications

17. Device Testing 401
USB Check’s Test Suite 402

Detecting a Device
The Tests
HIDView
Test Equipment 409
Protocol Analyzers
Other Test Equipment
Testing and Logos 417
The USB Implementers Forum Compliance Program
Windows Hardware Quality Labs Testing
Driver Signing

18. Hubs: the Link between Devices and the Host 423

X USB Complete

Hub Basics 424
The Hub Repeater
The Transaction Translator
The Hub Controller
Speed
How Many Hubs in Series?
The Hub Class 434

Hub Descriptors

Hub Values for the Standard Descriptors
The Hub Descriptor

Hub-class Requests

Port Indicators

19. Managing Power 443

Powering Options 443
Voltages
Which Peripherals Can Use Bus Power?
Power Needs
Informing the Host

Hub Power 449

Power Sources
Over-current Protection
Power Switching

Saving Power 452
Global and Selective Suspends
Current Limits for Suspended Devices
Resuming Communications

20. Signals and Encoding 457

Bus States 457
Low- and Full-speed Bus States
High-speed Bus States
Data Encoding 462
Staying Synchronized
Timing Accuracy
Packet Format 467
SYNC Field
Packet Identifier Field
Address Field
Endpoint Field
Frame Number Field
Data Field

USB Complete

Table of Contents

Xi

Table of Contents

CRC Fields
Inter-packet Delay
Test Modes 470

Entering and Exiting Test Modes
The Modes

21. The Electrical Interface 473

Transceivers and Signals 474
Cable Segments
Low- and Full-speed Transceivers
High-speed Transceivers

Signal Voltages 484
Low and Full Speeds
High Speed
Cables 485
Conductors
Connectors
Detachable and Captive Cables
Cable Length
Ensuring Signal Quality 492
Sources of Noise
Balanced Lines
Twisted Pairs
Shielding
Edge Rates

Isolation

Index 497

Xii

USB Complete

Introduction

Introduction

The Universal Serial Bus (USB) is a fast and flexible interface for connecting
devices to computers. Every new PC has at least a couple of USB ports. The
interface is versatile enough to use with standard peripherals like keyboards
and disk drives as well as more specialized devices, including one-of-a-kind
designs. USB is designed from the ground up to be easy for end users, with
no user configuring required in hardware or software.

In short, USB is very different from the legacy interfaces it’s replacing. A
USB device may use any of four transfer types and three speeds. On attach-
ing to a PC, a device must respond to a series of requests that enable the PC
to learn about the device and establish communications with it. In the PC,
every device must have a low-level driver to manage communications
between applications and the system’s USB drivers.

Developing a USB device and the software that communicates with it
requires knowing something about how USB works and how the PC’s oper-
ating system implements the interface. In addition, the right choice of con-

USB Complete Xiii

Introduction

troller chip, device class, and tools and techniques can go a long way in

avoiding snags and simplifying what needs to be done. This book is a guide

for developers of USB devices. Its purpose is to introduce you to USB and to

help get your project up and running and troublefree as quickly and easily as

possible.

Who should read this book?

This book is for you if you want to know how to design a USB peripheral,

or if you want to know how to communicate with USB peripherals from the

applications you write. These are some of questions the book answers:

Xiv

Whar is USB and how do peripherals use it to communicate with PCs?
There’s a lot to the USB interface. Learning about it can be daunting at
first. This book’s focus is on the practical knowledge you'll need to com-
plete your project.

How can I decide if my project should use a USB interface? Maybe your
design isn't suited for USB. T'll show you how to decide whether it is. If
the answer is yes, I'll help you decide which of USB’s speeds and transfer
types to use.

How do I choose a USB controller chip for my peripheral design? Every USB
peripheral must contain an intelligent controller. There are dozens of
controller chips designed for use in USB peripherals. In this book, I com-
pare popular chip families and offer tips on how to decide, based on both
your projects needs and your own background and preferences.

How do applications communicate with USB peripherals? To communicate
with a USB peripheral, a PC needs two things: a device driver that knows
how to communicate with the PC’s USB drivers and an application that
knows how to talk to the device driver. Some peripherals can use drivers
that are built into Windows. Others may require a custom driver. This
book will show you when you can use Windows’ built-in drivers and how
to communicate with devices from Visual Basic and Visual C++ applica-
tions. You'll also find out whats involved in writing a device driver and
what tools can help to speed up the process.

USB Complete

Introduction

o How do USB peripherals communicate? USB peripherals typically use a
combination of hardware and embedded code to communicate with
PCs. In this book, I show how to write the code that enables Windows to
identify a device and load the appropriate device driver, as well as the
code required for exchanging data with applications.

o How do I decide whether my peripheral can use bus power, or whether it
needs irs own supply? A big advantage to USB is that many peripherals can
be powered entirely from the bus. Find out whether your device can use
this capability and how to manage power use, especially for devices that
use battery power.

o How can I be sure that my device will operate as smoothly as possible for its
end users? On the peripheral side, smooth operation requires understand-
ing the specification’s requirements and how the device can meet them.
In the PC, proper operation requires a correctly structured information
(INF) file that enables Windows to identify the device and software that
knows how to communicate with the device as efficiently as possible.
This book has information and examples to help with each of these.

What’s new in the Second Edition?

In the months after the publication of the first edition of USB Complete,
much happened in the world of USB, including the release of version 2.0 of
the USB specification. USB 2.0 supports a bus rate of 480 Megabits per sec-
ond, forty times faster than USB 1.1. This and other developments in hard-
ware and software prompted this second edition of the book.

Rather than just tacking on a chapter about USB 2.0, I've revised the book
from start to finish to reflect the changes in 2.0. By popular request, another
addition is Visual C++ code to accompany the Visual Basic examples for
application communications with USB devices. I've also expanded the mate-
rial about Windows drivers and applications to include Windows 2000, and
have added information on new controller chips and development tools.
Other additions and updates are sprinkled throughout, many prompted by
reader suggestions.

USB Complete XV

Introduction

Is this book really complete?

Although the title is USB Complete, please don’t expect this book to contain
every possible fact about USB. That would take a library. The Complete in
the title means that this book will guide you from knowing nothing about
USB to developing all of the code required to get a USB peripheral up and

communicating with a PC.

There are many other worthy topics related to USB, but limitations of time
and space prevent me from including them all.

My focus is on communicating with Windows PCs. Although the basic
principles are the same, I don’t include details about how to communicate
with peripherals on a Macintosh or a PC running Linux or other non-Win-
dows operating systems.

[cover the basics of the device driver’s responsibilities and what’s involved in
writing a driver, but the details of driver writing can easily fill a book (and in
fact there are excellent—and lengthy—books on this topic). This book will
help you decide when you need to write a custom driver and when and how
to use a class driver included with Windows.

To understand the material in the book, it’s helpful to have basic knowledge
in a few areas. [assume you have some experience with digital logic, applica-
tion programming for PCs and writing embedded code for peripherals. You
dont have to know anything at all about USB.

Additional Resources, Updates, and Corrections

XVi

For more about using USB, I invite you to visit my USB Central page at
Lakeview Research’s website, www.Lvr.com. This is where you'll find com-
plete code examples, updates, links to vendors, information and tools from
other sources, as well as links to anything else I find that’s relevant to devel-
oping USB products. If you have a suggestion, code, or other information
that youd like me to post or link to, let me know at Jan@lyr.com.

In spite of my very best efforts, I know from experience that errors will slip
through in this book. As they come to light, I'll document them and make a

USB Complete

Introduction

list available at Lakeview Research’s website. If you find an error in the book,
please let me know and I'll add it.

Thanks!

USB is way too complicated to write about without help. T have many peo-

ple to thank.

[owe an enormous thank you to my technical reviewers, who generously
read my rough and rocky drafts and provided feedback that has improved
the book enormously. (With that said, every error in this book is mine and
mine alone.)

I thank Paul E. Berg of PEB Consulting; Brian Buchanan, Mark Hastings,
Lane Hauck, Bijan Kamran, Kosta Koeman, Tim Williams, and Dave
Wright of Cypress Semiconductor; Joshua Buergel of BSQUARE Inc.; Gary
Crowell of Micron Technology; Fred Dart of Future Technology Devices
International (FTDI); Dave Dowler; Mike Fahrion and the engineers at
B&B Electronics; John M. Goodman, author of Hard Disk Secrets, Peter
Norton's Inside the PC, Memory Management for All of Us, and other books;
John Hyde, USB enthusiast and author of USB Design by Example; David
James of 1Zerol Technologies; Christer Johansson of High Tech Horizon;
Jon Lueker of Intel Corporation; Bob Nathan of NCR Corporation; Robert
Severson of USBMicro; and Craig R. Smith of Ford Motor Company,
R&VT department.

Others I want to thank for their help in my researching and writing this
book are Walter Banks of Byte Craft; Jason Bock; Michael DeVault of
DeVaSys Embedded Systems; Pete Fowler, Joseph McCarthy, and Don Park-
man of Cypress Semiconductor; Brad Markisohn of INDesign LLC; Daniel
McClure of Tyco Electronics; Tawnee McMullen of Belkin Components;
Rich Moran of RPM Systems Corporation; Dave Navarro of PowerBasic;
and Amar Rajan of American Concepts Consulting.

I hope you find the book useful. Comments invited!

Jan Axelson, June 2001
Jjan@lyr.com

USB Complete XVii

Introduction

XVili USB Complete

A Fresh Start

A Fresh Start

Computer hardware doesn’t often get a chance to start fresh. Anything new
usually has to remain compatible with whatever came before it. This is true
of both computers and the peripherals that connect to them. Even the most
revolutionary new peripheral has to use an interface supported by the com-
puters it connects to.

But what if you had the chance to design a peripheral interface from scratch?
What qualities and features would you include? It’s likely that your wish list
would include these:

» Easy to use, so there’s no need to fiddle with configuration and setup
details.

e Fast, so the interface doesn’t become a bottleneck of slow communica-
tions.

o Reliable, so that errors are rare, with automatic correction of errors that
do occur.

e Flexible, so many kinds of peripherals can use the interface.

USB Complete 1

Chapter 1

* Inexpensive, so users (and the manufacturers who will build the inter-
face into their products) don't balk at the price.

* Power-conserving, to save battery power on portable computers.

* Supported by the operating system, so developers don't have to strug-
gle with writing low-level drivers for the peripherals that use the inter-
face.

The good news is that you don’t have to create this ideal interface, because
the developers of the Universal Serial Bus (USB) have done it for you. USB
was designed from the ground up to be a simple and efficient way to com-
municate with many types of peripherals, without the limitations and frus-
trations of existing interfaces.

Every new PC has a couple of USB ports that you can connect to a key-
board, mouse, scanners, external disk drives, printers, and standard and cus-
tom hardware of all kinds. Inexpensive hubs enable you to add more ports
and peripherals as needed.

But one result of USB’s ambitious goals has been challenges for the develop-
ers who design and program USB peripherals. A result of USB’s versatility
and ease of use is an interface that’s more complicated than the interfaces it
replaces. Plus, any new interface will have difficulties just because it’s new.
When USB first became available on PCs, Windows didnt yet include
device drivers for all popular peripheral types. Protocol analyzers and other
development tools couldnt begin to be designed until there was a specifica-
tion to follow, so the selection of these was limited at first. Problems like
these are now disappearing, and the advantages are increasing with the avail-
ability of more controller chips, new development tools, and improved oper-
ating-system support. This book will show you ways to get a USB peripheral
up and running as simply and quickly as possible by making the best possi-
ble use of tools available now.

This chapter introduces USB, including its advantages and drawbacks, a
look at what’s involved in designing and programming a device with a USB
interface, and a bit of the history behind the interface.

2 USB Complete

A Fresh Start

What USB Can Do

USB is a likely solution any time you want to use a computer to communi-
cate with devices outside the computer. The interface is suitable for
one-of-kind and small-scale designs as well as mass-produced, standard

peripheral types.

To be successtul, an interface has to please two audiences: the users who
want to use the peripherals and the developers who design the hardware and
write the code that communicates with the device. USB has features to
please both.

Benefits for Users

From the user’s perspective, the benefits to USB are ease of use, fast and reli-
able data transfers, flexibility, low cost, and power conservation. Table 1-1
compares USB with other popular interfaces.

Ease of Use

Ease of use was a major design goal for USB, and the result is an interface
that’s a pleasure to use for many reasons:

One interface for many devices. USB is versatile enough to be usable with
many kinds of peripherals. Instead of having a different connector type and
supporting hardware for each peripheral, one interface serves many.

Automatic configuration. When a user connects a USB peripheral to a
powered system, Windows automatically detects the peripheral and loads
the appropriate software driver. The first time the peripheral connects, Win-
dows may prompt the user to insert a disk with driver software, but other
than that, installation is automatic. There’s no need to locate and run a
setup program or restart the system before using the peripheral.

No user settings. USB peripherals dont have user-selectable settings such as
port addresses and interrupt-request (IRQ) lines. Available IRQ) lines are in
short supply on PCs, and not having to allocate one for a new peripheral is
often reason enough to use USB.

USB Complete 3

Chapter 1

Table 1-1: Comparison of popular computer interfaces. Where a standard
doesn’t specify a maximum, the table shows the typical maximum.

Interface Format Number of |Length Speed Typical Use
Devices (maximum, |(maximum,
(maximum) |feet) bits/sec.)
USB asynchronous |127 16 (orupto |1.5M, 12M, |Mouse,
serial 96 ft. with 5 [480M keyboard, disk
hubs) drive, modem,
audio
RS-232 asynchronous |2 50-100 20k (115k Modem, mouse,
(EIA/TIA- serial with some instrumentation
232) hardware)
RS-485 asynchronous |32 unit loads 4000 10M Data acquisition
(TIA/EIA- serial (up to 256 and control
485) devices with systems
some
hardware)
IrDA asynchronous |2 6 115k Printers, hand-
serial infrared held computers
Microwire synchronous |8 10 2M Microcotroller
serial communications
SPI synchronous |8 10 2.1M Microcotroller
serial communications
r’cC synchronous |40 18 3.4M Microcotroller
serial communications
IEEE-1394 serial 64 15 400M Video, mass
(FireWire) (increasing to |storage
3.2G with
IEEE-1394b
IEEE-488 parallel 15 60 8M Instrumentation
(GPIB)
Ethernet serial 1024 1600 10M/100M/ |Networked PC
1G
MIDI serial current |2 (more with |50 31.5k Music, show
loop flow-through conirol
mode)
Parallel Printer |parallel 2 (8 with 10-30 8M Printers,
Port daisy-chain scanners, disk
support) drives
4 USB Complete

A Fresh Start

Figure 1-1: The two USB connectors (right) are much more compact than typical
RS-232 serial (left) and Centronics parallel (center) connectors.

Frees hardware resources for other devices. Using USB for as many
peripherals as possible frees up IRQ lines for the peripherals that do require
them. The PC dedicates a series of port addresses and one interrupt-request
(IRQ) line to the USB interface, but beyond this, individual peripherals
don’t require additional resources. In contrast, each non-USB peripheral
requires dedicated port addresses, often an IRQ line, and sometimes an
expansion slot (for a parallel-port card, for example).

Easy to connect. With USB, there’s no need to open the computer’s enclo-
sure to add an expansion card for each peripheral. A typical PC has at least
two USB ports. You can expand the number of ports by connecting a USB
hub to an existing port. Each hub has additional ports for atraching more
peripherals or hubs.

Simple cables. The USB’s cable connectors are keyed so you can’t plug
them in wrong. Cables can be as long as 5 meters. With hubs, a device can
be as far as 30 meters from its host PC. Figure 1-1 shows that the USB con-
nectors are small and compact in contrast to typical RS-232 and parallel

USB Complete 5

Chapter 1

connectors. To ensure reliable operation, the specification includes detailed
requirements that all cables and connectors must meet.

Hot pluggable. You can connect and disconnect a peripheral whenever you
want, whether or not the system and peripheral are powered, without dam-
aging the PC or peripheral. The operating system detects when a device is
attached and readies it for use.

No power supply required (sometimes). The USB interface includes
power-supply and ground lines that provide +5V from the computer’s or
hub’s supply. A peripheral that requires up to 500 milliamperes can draw all
of its power from the bus instead of having its own supply. In contrast, most
other peripherals have to choose between including a power supply in the
device or using a bulky and inconvenient external supply.

Speed

USB supports three bus speeds: high speed at 480 Megabits per second, full
speed at 12 Megabits per second, and low speed at 1.5 Megabits per second.
Every USB-capable PC supports low and full speeds. High speed was added
in version 2.0 of the specification, and requires USB 2.0-capable hardware
on the motherboard or an expansion card.

These speeds are signaling speeds, or the bit rates supported by the bus. The
rates of data transfer that individual devices can expect are lower. In addition
to data, the bus must carry status, control, and error-checking signals. Plus,
multiple peripherals may be sharing the bus. The theoretical maximum rare
for a single transfer is over 53 Megabytes per second art high speed, abour 1.2
Megabytes per second at full speed, and 800 bytes per second at low speed.

Why three speeds? Low speed was included for two reasons. Low-speed
peripherals can often be built more cheaply. And for mice and devices that
require flexible cables, low-speed cables can be more flexible because they
don’t require as much shielding.

Full speed is comparable to or better than the speeds attainable with existing
serial and parallel ports and can serve as a replacement for these.

6 USB Complete

A Fresh Start

After the release of USB 1.0, it became clear that a faster interface would be
useful. Investigation showed that a speed increase of forty times was feasible
while keeping the interface backwards-compatible with low- and full-speed
devices. High speed became an option with the release of version 2.0 of the

USB specification.

Reliability

The reliability of USB results from both the hardware design and the
data-transfer protocols. The hardware specifications for USB drivers, receiv-
ers, and cables eliminate most noise that could otherwise cause data errors.
In addition, the USB protocol enables detecting of data errors and notifying
the sender so it can retransmit. The detecting, notifying, and retransmitting
are typically done in hardware and don’t require any programming or user
intervention.

Low Cost

Even though USB is more complex than earlier interfaces, its components
and cables are inexpensive. A device with a USB interface is likely to cost the
same or less than its equivalent with an older interface. For very low-cost
peripherals, the low-speed option has less stringent hardware requirements
that may reduce the cost further.

Low Power Consumption

Power-saving circuits and code automatically power down USB peripherals
when not in use, yet keep them ready to respond when needed. In addition
to the environmental benefits of reduced power consumption, this feature is
especially useful on battery-powered computers where every milliampere
counts.

Benefits for Developers

The above advantages for users are also important to hardware designers and
programmers. The advantages make users eager to use USB peripherals, so
there’s no need to fear wasting time developing for an unpopular interface.
And many of the user advantages also make things easier for developers. For

USB Complete 7

Chapter 1

example, USB’s defined cable standards and automatic error checking mean
that developers don’t have to worry about specifying cable characteristics or
providing error checking in software.

USB also has advantages that benefit developers specifically. The developers
include the hardware designers who select components and design the cir-
cuits, the programmers who write the software that communicates with
USB peripherals, and the programmers who write the embedded code inside
the peripherals.

The benefits to developers result from the flexibility built into the USB pro-
tocol, the support in the controller chips and operating system, and the fact
that the interface isnt controlled by a single vendor. Although users aren’t
likely to be aware of these benefits, they’ll enjoy the result, which is inexpen-
sive, trouble-free, and feature-rich peripherals.

Flexibility

USB’s four transfer types and three speeds make it feasible for many types of
peripherals. There are transfer types suited for exchanging large and small
blocks of data, with and without time constraints. For data that can’t toler-
ate delays, USB can guarantee a transfer rate or maximum time between
transfers. These abilities are especially welcome under Windows, where
accessing peripherals in real time is often a challenge. The operating system,
device drivers, and application software can still introduce unavoidable
delays, but USB makes it as easy as possible to achieve transfers that are close
to real time.

Unlike other interfaces, USB doesn't assign specific functions to signals or
make other assumptions about how the interface will be used. For example,
the status and control lines on the PC’s parallel port were defined with the
intention of communicating with line printers. There are five inpur lines
with assigned functions such as indicating a busy or paper-out condition.
When developers began using the port for scanners and other peripherals
that send large amounts of data to the PC, the limitation of having just five
inputs was an obstacle. (Eventually the interface was expanded to allow eight

8 USB Complete

A Fresh Start

bits of input.) USB makes no such assumptions and is suitable for just about
any device type.

For communicating with common device types such as printers and
modems, there are USB classes with defined device requirements and proto-
cols. This saves developers from having to re-invent these.

Operating System Support

Windows 98 was the first Windows operating system to reliably support
USB, and its successors, including Windows 2000 and Windows Me, sup-
port USB as well. This book focuses on Windows programming for PCs,
but other computers and operating systems also have USB support. On
Apple’s iMac, the only peripheral connectors are USB. Other Macintoshes
also support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

However, a claim of operating-system support can mean many things. The
level of support can vary! At the most fundamental level, an operating sys-
tem that supports USB must do three things:

 Detect when a device is attached to or removed from the system.

» Communicate with newly attached devices to find out how to exchange
data with them.

o Provide a mechanism that enables software drivers to communicate with
the host computer’s USB hardware and the applications that want to
access USB peripherals.

At a higher level, operating system support may also mean the inclusion of
software device drivers that enable application programmers to access
devices by calling functions supported by the operating system. If the oper-
ating system doesn’t include a device driver appropriate for a specific periph-
eral, the peripheral vendor has to provide one.

Microsoft has added class drivers with each release of Windows. Device
types with included drivers now include human interface devices (key-
boards, mice, joysticks), audio devices, modems, still-image cameras and
scanners, printers, and mass-storage devices. A filter driver can support

USB Complete 9

Chapter 1

10

device-specific features and abilities. Applications use Applications Program
Interface (API) functions or other operating-system components to commu-
nicate with the device drivers.

In the future, Windows will likely include support for more device classes.
In the meantime, some chip vendors provide drivers that developers can use
with their chips, either as-is or with minimal modifications.

USB device drivers use the new Win32 Driver Model (WDM), which
defines an architecture for drivers that run under Windows 98, Windows
2000, Windows Me, and future Windows editions. The aim is to enable
developers to support all of the operating systems with a single driver. The
reality is that some devices still require two, though similar, WDM drivers,

one for Windows 98/Windows Me and one for Windows 2000.

Because Windows includes low-level drivers that handle communications
with the USB hardware, writing a USB device driver is easier than writing a
driver for devices that use other interfaces.

Peripheral Support

On the peripheral side, each USB device’s hardware must include a control-
ler chip that handles the details of USB communications. Some controllers
are complete microcomputers that include a CPU and memory to store
device-specific code that runs inside the peripheral. Others handle only
USB-specific tasks, with a data bus that connects to another microcontroller
that performs non-USB related functions and communicates with the USB
controller as needed.

The peripheral is responsible for responding to requests to send and receive
configuration data, and for reading and writing other data when requested.
In some chips, some functions are microcoded in hardware and don’t need
to be programmed.

Many USB controllers are based on popular architectures such as Intel’s
8051, with added circuits and machine codes to support USB. If you're
already familiar with a chip architecture that has a USB-capable variant,
there’s no need to learn an entirely new architecture in order to use USB.

USB Complete

A Fresh Start

Most peripheral manufacturers provide sample code for their chips. Using
this code as a starting point for your own developing can give you a quick
start.

USB Implementers Forum

Unlike other interfaces, where youre pretty much on your own when it
comes to getting a design up and running, USB offers plenty of help via the
USB Implementers Forum, Inc. (USB-IF) and its website (wwuw.usb.org).
The Forum is the non-profit corporation founded by the companies that
developed the USB specification. The Forum’s mission is to support the
advancement and adoption of USB technology.

To that end, the Forum offers information, tools, and testing. The informa-
tion includes the specification documents, white papers that delve into spe-
cific topics in detail, FAQs, and a web board where developers can post and
answer questions on any USB-related topic. The tools include software and
hardware to help in developing and testing products. Testing includes devel-
oping compliance tests to verify proper operation, holding compliance
workshops where developers can have their products tested, and granting
the rights to use the USB Logo on products that pass the tests.

It’s Not Perfect

All of USB’s advantages mean that it’s a good candidate for use with many
peripherals. But one interface can’t do it all.

User Challenges

From the user’s perspective, the downside to USB includes lack of support
in older hardware and operating systems, speed and distance limits that
make USB impractical for some uses, and problems with some products due
to difficulties experienced by the developers of early USB products.

Lack of Support for Legacy Hardware

Older (“legacy”) computers and peripherals dont have USB ports. If you
want to connect a non-USB peripheral to a USB port, a solution is a con-

USB Complete 11

Chapter 1

12

verter that translates between USB and the older interface. Several sources
have converters for use with peripherals with RS-232, RS-485, and Cen-
tronics-type parallel ports. However, the converter solution is useful only for
peripherals that use conventional protocols supported by the converter’s
device driver. For example, a parallel-port converter is likely to support
printers but not other peripheral types.

If you want to use a USB peripheral with a PC that doesn’t support USB,
the solution is to add USB capabilities to the PC. This requires two things:
USB host-controller hardware and an operating system that supports USB.
The hardware is available on expansion cards thart plug into a PCI slot (or on
a replacement motherboard). The version of Windows should be Windows
98 or later. A few peripherals have drivers for use with later releases of Win-
dows 95, but it’s best not to count on these being available. If the hardware
doesn't meet Windows 98’ minimum requirements, it will need upgrades.
The upgrades may end up costing more than a new system with USB, so
replacing the system may be the best option.

If upgrading the PC to support USB isnt feasible, what about using a con-
verter to translate the peripheral’s USB interface to the PC’s RS-232, paral-
lel, or other interface? Interface converters are generally designed for use
between a USB port on a PC and a peripheral with a legacy interface. A con-
verter for the other direction would be much more complicated because the
peripheral would have to contain the host-controller hardware and code that
normally resides in the PC. So a converter isn’t normally an option when the

PC has the legacy interface.

Even on new systems, users may occasionally run applications on older
operating systems such as MS-DOS. But the drivers that Windows 98 appli-
cations use to communicate with USB devices are specific to Windows.
Without a driver, there’s no way to access a USB peripheral. Although its
possible to write a USB driver for DOS, the reality is that few peripherals
provide one.

However, for the mouse and keyboard, which are standard, essential periph-
erals, the systems BIOS is likely ro include support to ensure that the
peripheral is usable any time, including from within DOS, from the BIOS

USB Complete

A Fresh Start

screens that you can view on bootup, and from Windows™ Safe mode (used
in system troubleshooting). If there is no BIOS or other support, the system
will need to have an old-style keyboard interface and a spare keyboard for
these uses.

Speed Limits

USB is versatile, but it’s not designed to do everything. USB’s high speed
makes it competitive with the IEEE-1394 (Firewire) interface’s 400 Mega-
bits per second, but IEEE-1394b will be faster still, at 3.2 Gigabytes per sec-

ond.

Distance Limits

USB was designed as a desktop bus, with the expectation that peripherals
would be relatively close at hand. A cable segment can be as long as 5
meters. Other interfaces, such as RS-232, RS-485, and Ethernet, allow
much longer cables. You can increase the length of a USB link to as much as
30 meters by using cables that link five hubs and a device, using 6 cable seg-
ments of 5 meters each.

To extend the range beyond this, an option is to use a USB interface on the
PC, then convert to RS-485 or another interface for the long-distance
cabling and peripheral interface.

Peer to Peer Communications

The assumption that USB is a desktop bus also means that every USB sys-
tem has a host computer to manage the bus communications. Peripherals
cant talk to each other directly. All communications are to or from the host
computer. Other interfaces, such as IEEE-1394, allow direct periph-

eral-to-peripheral communications.

USB provides a partial solution with USB On-The-Go, introduced in 2001
in a supplement to the 2.0 specification. USB On-The-Go defines a host
computer with reduced capabilities, suitable for use in embedded devices
that need to connect to a single USB peripheral.

USB Complete 13

Chapter 1

Products with Problems

When USB works, it’s great. But the reality is that some USB products don't
work as well as they should. When something misbehaves, the result can be
an inability to communicate with a peripheral or an application or system
crash. The source of the problem may be in hardware or software, in the PC
or in the peripheral. Problems like these are a result of USB’s complexity and
newness combined with inadequate testing.

But there are plenty of products that do perform exactly as they should. The
problems are diminishing as the operating-system support has improved and
developers have become more familiar with USB.

Developer Challenges

14

From the developer’s perspective, the main downside to USB is the increased
complexity of the programming. Bugs in the USB hardware in the periph-
eral or PC can also slow project development and cause problems after a
product is released. However, these problems are also diminishing as the
operating-system support increases, more chips and development tools are
available, and everyone gains more experience.

Protocol Complexity

To program a USB peripheral, you need to know a fair amount about the
USB’s protocols (the rules for exchanging data on the bus). The controller
chips handle much of the communications automatically, but they still must
be programmed, and this requires the knowledge to write the programs and
the tools to do the programming. Chips vary in how much support they
require to perform USB communications. On the PC side, the device driver
insulates application programmers from having to know many of the details,
but device-driver writers need to be familiar with USB protocols and the
driver’s responsibilities.

In contrast, some older interfaces can connect to very simple circuits with
very basic protocols. For example, the PC’s original parallel printer port is
just a series of digital inputs and outputs. You can connect to basic input
and output circuits such as relays, switches, and analog-to-digital converters,

USB Complete

A Fresh Start

with no computer intelligence required on the peripheral side and no device
driver required on the PC (just direct port reads and writes).

Evolving Support in the Operating System

Windows includes class drivers that enable applications to communicate
with some devices. This is great if you can design your device to use one of
the provided drivers. If not, in many cases you can use or adapt a driver pro-
vided by the controller-chip vendor, so you don't have write a driver from
scratch. Several vendors offer toolkits that make the job of writing USB
drivers easier.

Hardware Bugs

Some early host-controller hardware wasnt bugfree, and some peripheral
chips have had problems as well. In most cases, the manufacturers make
fixes available with new drivers or coding workarounds. The way to keep on
top of these problems is to choose your hardware carefully and visit manu-
facturers websites for the latest information and fixes.

Fees

The USB Implementers Forum provides the USB specification, related doc-
uments, software for compliance testing, and much more, all for free on its
website. Anyone can develop USB software without paying a licensing fee.

However, anyone who sells a device with a USB interface must obtain legal
access to use a Vendor ID. The administrative fee for obtaining a Vendor ID
from the Forum is $1500. Or if you join the Forum at $2500/year, the Ven-
dor ID is free, along with many other benefits such as compliance work-
shops. The Vendor ID and a Product ID assigned by the vendor are
embedded in each device to identify it to the operating system. The fee is no
problem for developers of high-volume products, but it can be an impedi-
ment to developers for the hobbyist market who expect to sell only small
quantities of inexpensive devices. Some chip manufacturers will assign their
Vendor ID and a block of Product IDs to customers for use with the manu-
facturer’s chips.

USB Complete 15

Chapter 1

History

To understand what USB is all about, it helps to know a little history. The
main reason that new interfaces dont come around very often is that exist-
ing interfaces have the irresistible pull of all of the existing peripherals that
users dont want to scrap. Also, using an existing interface saves the time and
expense of designing something new. This is why the designers of the origi-
nal IBM PC chose compatibility with the existing Centronics parallel inter-
face and the RS-232 serial-port interface—to speed up the design process
and enable users to connect to printers and modems already on the market.
These interfaces proved serviceable for close to two decades. But as com-
puter power and the number of peripherals have increased, the older inter-
faces have became a bottleneck of slow communications, with limited
options for expansion.

The Motivation for Change

16

A break with tradition is justified when the desire for enhancements over-
shadows the inconvenience and expense of changing. This is the situation
that prompted the development of USB. The result is a versatile interface
that can replace existing interfaces to standard and custom peripherals on
computers of all types.

In the past, development of a new interface was often the work of a single
company. Hewlett Packard developed the HP Interface Bus (HPIB), which
came to be known as the GPIB (general-purpose interface bus) for lab
equipment, and the Centronics Data Computer Corporation popularized a
printer interface that is still referred to as the Centronics interface.

Burt an interface controlled by a single company isnt ideal. The company
may forbid others from using the interface, or charge licensing fees. Even if
the interface is freely available, a company may be reluctant to commir its
products to an interface controlled by another company who may be a com-
petitor and may change the interface without warning.

For these reasons, more recent interfaces are often the product of a collabo-
ration of manufacturers who share a common interest. In some cases, an

USB Complete

A Fresh Start

organization like the IEEE (Institute of Electrical and Electronics Engineers)
or TIA (Telecommunications Industry Association) sponsors committees to
develop specifications and publishes the results. In fact, many of the older
manufacturers standards have been taken over by these organizations. The
IEEE-1284 standard evolved from the Centronics interface, and the GPIB
was the basis for [IEEE-488.

In other cases, the developers of a standard form a new organization to
release the standard and handle other development issues. This is the
approach used for USB. The copyright on the USB 2.0 specification is
assigned jointly to seven corporations, all heavily involved with PC hard-
ware or software: Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC, and Philips. All have agreed to make the specification available with-
out charge (which is a refreshing change from the standards published by
other organizations). The USB Implementers Forum’s website has the latest
versions of all USB specifications and other information for both developers
and end users.

An early specification with many USB-like features was the ACCESS.bus
sponsored by Philips and Digital Equipment Corporation, who made it
available as an open standard. ACCESS.bus was in turn derived from the
I°’C synchronous serial bus. Although the electrical interface is different,
many of the functions and features are a lot like what ended up in USB.

ACCESS.bus was designed for interfacing keyboards, pointing devices, and
other devices at speeds of 100 kilobits per second. The bus supports up to
125 devices and 10-meter cables. Devices are hot-pluggable. The cable
includes +5V and ground wires. Classes are defined for keyboards, pointing
devices (called locators), monitor/display control and text devices. Unlike
USB, ACCESS.bus uses open-collector drivers, with one data wire and one
clock wire.

ACCESS.bus never caught on with PCs, but is still used in other applica-
tions, including smart battery control.

USB Complete 17

Chapter 1

The Specification’s Release

18

Release 1.0 of the USB specification in January 1996 followed several years
of development and preliminary releases. The 1.1 release is dated September
1998. USB 1.1 fixed problems identified in release 1.0 and added one new
transfer type (Interrupt OUT). In this book, 7.x refers to USB 1.0 and 1.1.
April 2000 saw the release of USB 2.0 with the new high-speed option. An
Engineering Change Notice (ECN) in December 2000 provided corrections
and defined a new mini-B connector.

Although companies may begin designing products while a specification is
still under development, by necessity, the availability of products on the
market lags the specification’s release.

USB capability first became available on PCs with the release of Windows
95’s OEM Service Release 2. There were at least two editions of this release,
OSR 2.1 and 2.5. Neither was available directly to retail customers. They
were sold only to vendors who installed Windows 95 on the PCs they sold.
The USB support in these versions was limited and buggy, and there weren’t
a lot of USB peripherals available, so use of USB was limited in this era.

Things improved with the release of Windows 98 in June 1998. By this
time, many more vendors had USB peripherals available, and USB began to
take hold as a popular interface. A service pack for Windows 98 and the
release of Windows 98 Second Edition (SE) fixed some bugs and further
enhanced the USB support. The original version of Windows 98 is called
Windows 98 Gold, to distinguish it from Windows 98 SE.

This book concentrates on PCs running Windows 98 and later Windows
editions. Windows NT4 preceded Windows 98 and doesn’t have USB sup-
port built in, but its successor, Windows 2000, does. Windows 98’s succes-
sor, Windows Me, also supports USB. Generally, Windows 2000 is more
stable and is targeted for business users, while Windows 98 and Windows
Me are more flexible and targeted for home users.

Following these editions is Windows XB which is based on the Windows
2000 kernel but includes editions for both home and business users, with

the goal of replacing both Windows 98/Windows Me and Windows 2000.

USB Complete

A Fresh Start

In this book, the term PC includes all of the various computers that share
the common ancestor of the original IBM PC. The expression Windows 98
and later means Windows 98, Windows 98 SE, Windows 2000, Windows
Me, and Windows XP, and is also likely to apply to any Windows editions
that follow. A USB-capable PC is assumed to be using Windows 98 or later.

USB 2.0

A big step in USB’s evolution was version 2.0, whose main added feature is
support for much faster transfers. The original hope when researching the
new high speed was a 20-times increase in speed, but studies and tests
showed that this estimate was low. In the end, a 40-times increase was found
to be feasible, for a bus speed of 480 Megabits per second. This makes USB
much more attractive for peripherals such as printers, scanners, drives, and
even video.

USB 2.0 is backwards compatible with USB 1.1. Version 2.0 peripherals can
use the same connectors and cables as 1.x peripherals. To use the new, higher
speed, peripherals must connect to 2.0-compliant hosts and hubs. 2.0 hosts
and hubs can also communicate with 1.x peripherals. A 2.0-compliant hub
with a slower peripheral attached will translate as needed between the
peripheral’s speed and high speed. This increases the hubs complexity but
makes good use of the bus time without requiring different hubs for differ-
ent speeds.

USB versus IEEE-1394

The other major interface choice for new peripherals is IEEE-1394. Apple
Computer’s implementation of the interface is called Firewire. USB and
IEEE-1394 take complimentary approaches, with IEEE-1394 being faster
and more flexible, but more expensive. IEEE-1394 is best suited for video
and other links where speed is essential or a host PC isn’t available. USB is
best suited for typical peripherals such as keyboards, printers, scanners, and
disk drives as well as low- to moderate-speed, cost-sensitive applications. For
many devices, either interface would work.

USB Complete 19

Chapter 1

20

With USB, a single host controls communications with many peripherals.
The host handles most of the complexity, so the peripherals’ electronics can
be relatively simple and inexpensive. IEEE-1394 uses a peer-to-peer model,
where peripherals can communicate with each other directly. A single com-
munication can also be directed to multiple receivers. The result is a more
flexible interface, but the peripherals’ electronics are more complex and
expensive.

IEEE-1394’s 400 Megabits per second is more than 30 times faster than
USB 1.xs 12 Megabits per second. As USB is getting faster with version 2.0,
IEEE-1394 is getting faster with the proposed IEEE-1394.b. Its 3.2 Giga-
bits per second is over six times faster than USB 2.0’s 480 Megabits per sec-
ond.

USB Complete

Is USB Right for My Project?

2

Is USB Right for My
Project?

Before you can decide if USB is suitable for a project, you need to know a
little more about how USB works and what it can do. This chapter presents
some fast facts about USB, with the focus on what's relevant when deciding
whether or not USB is a good choice for a project. There’s also a look at the
steps in developing a USB peripheral.

Fast Facts

Some of the first questions you might have relating to whether or not USB
is suitable for a project are these:

e What are the minimum requirements that a PC must meet in order to

use USB peripherals?
e How do devices connect to the PC?

* In real-world terms, how fast can a peripheral exchange data with a PC?

USB Complete 21

Chapter 2

* How do applications communicate with the peripheral?

* What are the responsibilities of the code inside the peripheral?

This section answers these questions.

Minimum PC Requirements

22

Before you decide to design a USB peripheral, it makes sense to be sure that
the PCs that will use the peripheral can use the interface. To use USB, a PC
needs hardware and software support. The hardware consists of a USB host
controller and a root hub with one or more USB ports. The software sup-
port is an operating system that supports USB.

The Host Controller

An interface won't succeed if PC manufacturers don’t support it. Fortu-
nately, both PC and peripheral manufacturers have enthusiastically sup-
ported USB. Just about any new PC will have a USB host controller and at
least two port connectors. PCs as old as 1997 are likely to have hardware
support for USB. Microsoft and Intels PC 2001 System Design Guide
requires new PCs to have two user-accessible USB ports. The USB Imple-
menters Forum’s website has a usbready utility that examines a PC’s resources
and reports whether or not the PC supports USB.

If a computer doesn’t have USB support built into its motherboard, you can
add one on an expansion card that plugs into a slot on the PCI bus. For por-
rables, USB controllers on PC cards are available.

Early USB controllers complied with the 1.x specification and supported
low and full speeds. 2.0-compliant controllers also support high speed.

The Operating System

The other side of USB support is in the operating system. Your developing
will be much easier if you require users to be running Windows 98 or later.
Windows 95 had some USB support, but the support was greatly improved
and enhanced in Windows 98. Windows 95 and Windows 98 can’t use the
same device drivers. Windows N'T 4 doesn't support USB at all. However, if
youre developing a peripheral that needs to run under N'T, you can use

USB Complete

Is USB Right for My Project?

BSQUARE’s USB Extension to WinDK to write a driver that enables the
peripheral to be used under NT. DOS and Windows 3.x have no USB sup-
port built in.

The Components

The physical components of the Universal Serial Bus consist of the circuits,
connectors, and cables between a host and one or more devices.

The host is a PC or other computer that contains two components: a host
controller and a root hub. These work together to enable the operating sys-
tem to communicate with the devices on the bus. The host controller for-
mats data for transmitting on the bus and translates received data to a
format that operating-system components can understand. The host con-
troller also performs other functions related to managing communications
on the bus. The root hub has one or more connectors for attaching devices.
The root hub, in combination with the host controller, detects the attach-
ment and removal of devices, carries out requests from the host controller,
and passes data between devices and the host controller.

The devices are the peripherals and additional hubs that connect to the bus.
A hub has one or more ports for connecting devices. Each device must con-
tain circuits and code that knows how to communicate with the host. The
specification defines the cables and connectors that connect devices to hubs.

Bus Topology

The topology, or arrangement of connections, on the bus is a tiered star
(Figure 2-1). At the center of each star is a hub. Fach point on a star is a
device that connects to one of the hub’s ports. The devices may be addi-
tional hubs or other peripherals. The number of points on each star can
vary, with a typical hub having two, four, or seven ports. When there are
multiple hubs in series, you can think of them as connecting in a tier, or
series, one above the next.

The tiered star describes only the physical connections. In programming, all
that matters is the logical connection. In communicating with a USB

USB Complete 23

Chapter 2

PERIPHERAL PERIPHERAL

PERIPHERAL T PERIPHERAL

PERIPHERAL

PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL

Figure 2-1: USB uses a tiered star topology, where each hub is the center of a
star that can connect to peripherals or additional hubs.

24

device, neither the host or the device knows or cares whether a communica-
tion passes through one hub or five. The hubs manage this automarically.

All of the devices on a bus share one data path to the host computer. Only
one device can communicate with the host at a time. For more bandwidth,
you can add a second data path to the host by installing an expansion card
with another host controller and root hub. Expansion cards with multiple
host controllers are also available.

USB Complete

Is USB Right for My Project?

Figure 2-2 shows a few of the possible configurations for a PC with two
USB connectors. If you have just two USB peripherals, you can plug one
into each port on the PC. If you have up to five peripherals, you can plug
one peripheral into one of the PC’s ports and attach a hub with four down-
stream connectors to the other. You can then connect the remaining four
peripherals to the hub. Some peripherals are compound devices that contain
both a peripheral and a hub. You can cascade up to five external hubs in
series, up to a total of 127 peripherals and hubs (including the root hub). Of
course, it may be impractical to have this many devices sharing a data path.

In some cases, especially with compound devices where the hubs are hidden
inside the peripheral, the peripherals may appear to be using a daisy-chain
type of connection, where each new peripheral hooks to the last one in a
chain. But the USB’s topology is more flexible and complicated than a daisy
chain. Fach peripheral connects to a hub that manages communications
with the host, and the peripherals and hubs aren’t limited to connecting in a
single chain.

Defining Terms

In the universe of USB, several everyday words have specific meanings.
Along with host, defined earlier as the computer that controls the interface,
three other such terms are function, hub, and device.

The USB specification defines a function as a device that provides a capabil-
ity to the host. Examples of functions are a mouse, a set of speakers, or a
data-acquisition unit.

A hub is a device that contains one or more connectors or internal connec-
tions to USB devices along with the hardware to enable communicating
with each device. Each connector represents a USB port.

A 1.x hub repeats received USB traffic in both directions, and also contains
the intelligence to manage power, send and respond to status and control
messages, and prevent full-speed data from transmitting to low-speed
devices. A 2.0 hub does all of this and more. A 2.0 hub supports high speed.
And instead of just repeating reccived data, as needed the hub converts

USB Complete 25

Chapter 2

_/El

if PERIPHERAL

b

[
e A i 7 M PERIPHERAL

R
PERIPHERAL 4 PORT TIUB

¥4 PERIPHERAL

i ¥ﬂ th
HOST PC PERIPHERAL HOST PC COMPOUND DEVICE: PERIPHERAL

PERIPHERAL + 1-PORT HUB

HOST PC WITH 2 PERIPHERALS HOST PC WITH 6 PERIPHERALS PERIPHERAL

[]L/ PERIPHERAL T]
]

i PERIPHERAL

i PERIPHERAL

H\E PERIPHERAL

h PERIPHERAL
e H
7-PORT HUB\E PERIPHERAL

PERIPHERAL

HOST PC 7
E/———E PERIPHERAL
i PERIPHERAL
11] PERIPHERAL
B T PERPHERAL | PERIPHERAL
ERIPHERAL
B i
7-PORT HUB \E} i
PERIPHERAL 2-PORT HUB PERIPHERAL

HOST PC WITH 15 PERIPHERALS

Figure 2-2: There are many possible configurations for connecting USB devices
to a host PC. These are a few of the options for a host with two ports.

26 USB Complete

Is USB Right for My Project?

between low- and full-speed and high-speed data and performs other func-
tions that ensure that bus time is used efficiently.

A device, or peripheral, is something you attach to a USB port on a PC or
hub. The official definition of a device is a function or a hub—except for
the special case of the compound device, which contains a hub and one or
more functions. Generally, the host treats a compound device the same as if
the hub and its functions were each a separate physical device. Every device
on the bus has a unique address, except again for a compound device, whose
hub and functions each have unique addresses.

A composite device is a multi-function device with multiple, independent
interfaces. It has one address on the bus but each interface can have a differ-
ent device driver on the host.

If voure thinking that this terminology is confusing, you're not alone.
b g gy gy

What is a Port?

This is also a good time to clarify the meaning of the word port in relation to
USB. A USB port is different in some ways from the traditional serial and
parallel ports on a PC.

In a general sense, a computer port is an addressable location that is available
for attaching additional circuits. Usually the circuits terminate at a connec-
tor that enables attaching a cable to a peripheral such as a keyboard, display,
or printer. In some cases, the peripheral circuits are hard-wired to the port.
Software monitors and controls the port circuits by reading and writing to
the port’s address. Computer memory also consists of addressable locations,
but the CPU accesses memory with different machine instructions. On PCs,
most memory addresses connect only to the system’s data bus, not to other
peripheral circuits.

USB ports differ from many other ports because all ports on the bus share a
single path to the host. With the RS-232 serial interface, each port is inde-
pendent from the others. If you have two RS-232 ports, each has its own
data path, and each cable carries its own data and no one else’s. The two

ports can send and receive data at the same time.

USB Complete 27

Chapter 2

USB uses a different approach. Each host controller supports a single bus, or
data pach. Each connector on the bus represents a USB port, but unlike
RS-232, all devices share the available time. So even though there are multi-
ple ports, each with its own connector and cable, there is only one data path.
Only one device, or the host, transmits at a time. A single host may support

multiple USB host controllers, however, each with its own bus. Other inter-
faces that share a data path include IEEE-1394 and SCSI.

The Host's Duties

28

The host PC is in charge of the bus. The host has to know what devices are
on the bus and the capabilities of each. The host must also do its best to
ensure that all devices on the bus can send and receive darta as needed. A bus
may have many devices, each with different requirements, and all wanting to
transfer data at the same time. The host’s job is not trivial!

Fortunately, the host controller’s hardware and the USB support in Win-
dows do much of the work of managing the bus. Each device attached to the
host must have a device driver, which is a software component that enables
applications to communicate with the device. Some peripherals can use
device drivers included with Windows, while others require custom drivers.
Other system-level software components manage communications between
the device driver and the host-controller and root-hub hardware.

Applications don't have to worry about the details of USB communications.
All they have to do is send and receive data using standard operating-system
functions that are accessible from just about all programming languages.

The tasks below are ones that the host performs. The descriptions are in
general terms. Later chapters in this book have more specifics.

Detect Devices

On power-up, the hubs make the host aware of all attached USB devices. In
a process called enumeration, the host assigns an address and requests addi-
tional information from each device. After power-up, whenever a device is
removed or attached, the host learns of the event and enumerates any newly

USB Complete

Is USB Right for My Project?

attached device and removes any detached device from the devices available
to applications.

Manage Data Flow

The host manages the flow of data on the bus. Multiple peripherals may
want to transfer data at the same time. The host controller handles this by
dividing the available time into segments called frames and microframes,
and by giving each transmission a portion of a frame or microframe.

Transfers that must occur at specific rate are guaranteed to have the amount
of time they need in each frame. During enumeration, a device’s driver
requests the bandwidth it will need for transfers that must have guaranteed
timing. If the bandwidth isnt available, the host doesn’t allow communica-
tions to begin. The driver must then request a smaller portion of the band-
width, or wait until the requested bandwidth is available. Transfers that have
no guaranteed timing use the remaining portion of the frames, and may
have to wait.

Error Checking

The host also has error-checking duties. It adds error-checking bits to the
data it sends. When a device receives data, it performs calculations on the
data and compares the results with the received error-checking bits. If the
results don’t match, the device doesnt acknowledge receiving the data and
the host knows that it should retransmit. (USB also supports one transfer
type that doesn’t allow re-transmitting, in the interest of maintaining a con-
stant transfer rate.) In a similar way, the host error-checks the data it receives
from devices.

The host may receive other indications that a device can’t send or receive
data. The host can then inform the device’s driver of the problem, and the
driver can notify the application so it can take appropriate action.

Provide Power

In addition to its two signal wires, a USB cable has +5V and ground wires.
Some peripherals can draw all of their power from these lines. The host pro-
vides power to all devices on power-up or attachment, and works with the

USB Complete 29

Chapter 2

devices to conserve power when possible. Each full-power, bus-powered
device can draw up to 500 milliamperes. The ports on a battery-powered
host or hub may support only low-power devices, which are limited to 100
milliamperes. Windows doesn’t support hosts with low-power ports, how-
ever. A device may also have its own power supply, using bus power only
during the initial communications with the host.

Exchange Data with Peripherals

All of the above tasks support the host’s main job, which is to exchange data
with peripherals. In some cases, a device driver requests the host to attempt
to send or receive data at a requested rate, while in others the host commu-
nicates only when an application or other software component requests it.
The device driver reports any problems to the appropriate application.

The Peripheral's Duties

30

In many ways, the peripheral’s duties are a mirror image of the host’s. When
the host initiates communications, the peripheral must respond. But periph-
erals also have duties that are unique.

A device can’t begin USB communications on its own. Instead, it must wait

and respond to a communication from the host. (An exception is the remote
wakeup feature, which enables a device to request a communication from

the host.)

The USB controller in the device handles many of the communication’s
responsibilities automatically. The amount of support required in the
device’s firmware varies with the chip.

The peripheral must perform all of the tasks described below. The descrip-

tions are in general terms. Later chapters in this book have more specifics.

Detect Communications Directed to the Chip

Each device monitors the device address in each communication on the bus.
If the address doesnt match the device’s stored address, the device ignores
the communication. If the address does match, the device stores the data in
its receive buffer and generates an interrupt to signal that data has arrived. In

USB Complete

Is USB Right for My Project?

almost all chips, this is built into the hardware and thus automatic. The
device’s program code doesn't have to take action or make decisions until the
chip has detected a communication containing its address.

Respond to Standard Requests

On power-up, or when the device attaches to a powered system, the device
must respond to the requests made by the host in the enumeration process.
The host may also send standard requests any time after enumeration com-
pletes.

All USB devices must respond to requests that query the capabilities and sta-
tus of the device or request the device to take other action. On receiving a
request, the device places any data or status information to send in response
in its transmit buffer. In some cases, such as setting an address or configura-
tion, the device takes other action in addition to responding with informa-
tion.

The specification defines eleven requests, and a class or vendor may define
additional requests. The device doesn’t have to carry out every request, how-
ever; it just has to respond to the request in an understandable way. For
example, when the host requests a configuration that the device doesn't sup-
port, the device responds with an indicator that the request isnt supported.

Error Check

Like the host, the device adds error-checking bits to the data it sends. On
receiving data that includes error-checking bits, the device does the
error-checking calculations. The device’s response or lack of response
informs the host whether to re-transmit. These functions are built into the
hardware and don’t need to be programmed. When appropriate, the device
also detects the acknowledgement that the host sends in reply to data it has

received.

Manage Power

A device may be bus-powered or it may have its own power supply. For
devices that use bus power, when there is no bus activity, the device must
enter its low-power Suspend state. During Suspend, the device must con-

USB Complete 31

Chapter 2

32

tinue to monitor the bus and exit the Suspend state when bus activity
resumes.

When the host enters a low-power state, such as Windows 98’s Standby
state, all communications on the bus cease, including the periodic timing
markers the host normally sends. When the devices that connect to the bus
detect the absence of bus activity for three milliseconds, they must enter the
Suspend state and limic the current they draw from the bus. A host may also
request to suspend communications with a specific device.

Devices that don't support the remote-wakeup feature can consume no more
than 500 microamperes from the bus in the Suspend state. If the
remote-wakeup feature is available and enabled by the host, the limir is 2.5
milliamperes. These are average values over a 1 second; the peak current can
be greater.

Exchange Data with the Host
All of the above tasks support the main job of the device’s USB port, which

is to exchange data with the host. After the device is configured, it must
respond to requests to send and receive data.

The host may poll the device at regular intervals or only when an applica-
tion requests to communicate with it. The device’s configuration, the host’s
device driver, and the applications that use the device together determine
what type of requests the host makes and how often it makes them.

For most transfers where the host sends data to the device, the device must
respond to each transfer attempt by sending a code that indicates whether it
accepted the data or was too busy to handle it. For most transfers where the
device sends data to the host, the device must respond to each attempt by
recurning data or a code indicating there was no data to send or the device
was busy. Typically, the hardware responds automatically according to set-
tings made previously in firmware. Some transfers dont use acknowledge-
ments and the sender just assumes the receiver has received all transmitted
data.

The controller chip’s hardware handles the details of formatting the data for
the bus. This includes adding error-checking bits to data to transmit, check-

USB Complete

Is USB Right for My Project?

ing for errors in received data, and sending and receiving the individual bits
on the bus.

Of course, the device must also do anything else it’s responsible for. For
example, a mouse must always be ready to detect movement and mouse
clicks, a data-acquisition unit has to read the data from its sensors, and a
printer must translate received data into images on paper.

What about Speed?

A device controller may support low speed, full speed, or full and high
speeds. Virtually all hubs support low- and full-speed devices. The exception
is a hub embedded in a compound device that has only low-speed functions.
This hub would communicate at full speed with the host, but at low speed
with its embedded device(s). A low- or full-speed peripheral can connect to
any USB hub. Users can be completely unaware of whether a device is low
or full speed, because there are no user settings or configurations to worry
about.

High-speed peripherals are likely to be dual-speed devices that are also
usable when connected to any hub. A 1.x host or hub doesn’t support high
speed at all because high speed didn't exist when the 1.x specifications were
written. To ensure that high-speed devices don’t confuse 1.x hosts and hubs,
all high-speed devices must respond to standard enumeration requests at full
speed. This enables any host to identify any device.

Other than responding to standard requests, a high-speed device doesn't
have to function at full speed. But because 1.x hosts and hubs are likely to
remain in use for a while, and because supporting full speed is easy to do,
most high-speed devices will also be completely functional at full speed.

The actual rate of data transfer between a peripheral and host is less than the
bus speed and isn't always predictable. Some of the transmitted bits are used
for identifying, synchronizing, and error-checking rather than data, and the
data rate also depends on the type of transfer and how busy the bus is.

For time-sensitive data, USB supports transfer types that have a guaranteed
rate or guaranteed maximum latency. Isochronous transfers have a guaran-

USB Complete 33

Chapter 2

34

teed rate, where the host can request a specific number of bytes to transfer to
or from a peripheral in a defined time period. A full-speed transfer can move
up to 1023 bytes in each 1-millisecond frame. A high-speed transfer can
move up to 3072 bytes in each 125-microsecond microframe. Isochronous
transfers have no error correcting, however. Interrupt transfers have error
correcting and guaranteed maximum latency, which means that a precise
rate isn't guaranteed, but the time between transfer attempts will be no
greater than a specified amount. At low speed, the requested maximum
interval may range from 10 to 255 milliseconds. At full speed, the range is 1
to 255 milliseconds. At high speed, the range is 125 microseconds to 4.096
seconds.

Because the bus is shared, there’s no guarantee that a particular rate or maxi-
mum latency will be available to a device. If the bus is too busy to allow a
requested rate or maximum latency, the host will refuse to complete the con-
figuration process that enables the host’s software to attempt the transfers.
Also, although the host controller can guarantee bandwidth will be avail-
able, it’s up to the device driver, application software, and device firmware to
ensure that there is data to transfer when the host controller is ready for it.

At full speed, the fastest transfers on an otherwise idle bus are bulk transfers,
with a theoretical maximum of 1.216 Megabytes/second at full speed and
53.248 Megabytes/second at high speed. The host controller’s driver may
limit a single bulk transfer to a slower rate, however. The transfers with the
most guaranteed bandwidth are high-speed interrupt and isochronous trans-

fers at 24.576 Megabytes/second.
Although the low-speed bus speed is 1.5 Megabits per second, the fastest

guaranteed delivery for a single transfer is 8 bytes in 10 milliseconds, or just
800 bytes per second. Low speed has uses, however, because the cables can
be cheaper, circuit-board layout is simpler, and the controller chips may be
cheaper.

USB Complete

Is USB Right for My Project?

The Development Process

After you've made the decision to use a USB interface with your peripheral,

what’s next? Designing a USB product involves both getting the peripheral

up and running and developing the PC software to communicate with the

peripheral.

Elements in the Link
A USB peripheral needs all of the following:

A controller chip with a USB interface.
Code in the peripheral to carry out the USB communications.

Whatever hardware and code the peripheral needs to carry out its other
functions (processing data, reading inputs, writing to outputs).

A host that supports USB.

Device-driver software on the host to enable applications to communi-
cate with the peripheral.

If the peripheral isn't a standard type supported by the operating system,
the host must have application software to enable users to access the
peripheral. For standard peripheral types such as a mouse, keyboard, or
disk drive, you don’t need custom application software (though you may
want to write a test application).

Tools for Developing

To develop a USB peripheral, you need the following tools:

An assembler or compiler to create the firmware (the code that runs
inside the device’s controller chip). If you use assembly code, you'll need
a cross assembler that runs on a PC and translates your source code into
the machine code the controller understands. If you use C or another
high-level language, you'll need a compiler that can generate the machine
code for your controller.

* A device programmer or development kit that enables you to store the

assembled or compiled code in the controller’s program memory.

USB Complete 35

Chapter 2

e A programming language and development environment on the host for
writing and debugging the host software. The host software may include
a device driver or filter driver and/or application code. To write a device
driver, you'll need Visual C++, which is capable of compiling the WDM
(Win32 Driver Model) drivers required for USB devices.

* A monitor program, protocol analyzer, or other debugging tools to help
in developing your firmware.

Steps in Developing a Project

36

For a project of any size, you'll want to create the project a piece at a time, in
modules, and get each piece working before moving on to the next. In writ-
ing the firmware, you can begin by writing just enough code to enable Win-
dows to detect and enumerate the device. When that’s working, you can
move on to exchanging small blocks of data with applications. From there
you can add specific code for your application. The steps in project develop-
ment include initial decisions, enumerating, and exchanging data:

Initial Decisions

Before you begin the developing, you need to gather data and make some
decisions:

1. Specify the requirements of your device. For the USB interface, how
much data does it need to transfer, and how fast? Do you need error correct-
ing? How much power will the device draw? What else does the device need
to do?

2. Use the answer to #1 to specify the requirements of the controller chip.

3. Using your requirements, decide whether the PC will communicate with
the peripheral using Windows™ built-in drivers, a generic device driver from
another source, or a custom driver.

4. Select a controller chip that matches your requirements. If you have a
favorite chip family, start by looking for a controller in that family.

USB Complete

Is USB Right for My Project?

Enumerating

Here’s what you need to do to get Windows to enumerate your device:

1. Write the code the controller chip needs to be enumerated by its host.
The details vary with the chip, but every chip must be able send a series of
descriptors to the host. The descriptors are data structures that describe the
chip’s USB capabilities and how they’ll be used. The chip must also have
program code or hardware that recognizes and responds to the requests that
the host sends when it enumerates the device. Chip vendors generally pro-
vide example code that you can use with very few modifications.

2. Create or obtain an INF (information) file so that Windows can identify
the device when it enumerates it. The INF file is a text file that you can cre-
ate with any text editor. The file names the driver that the device will use. At
this point, you can use any generic driver supported by the chip’s descrip-
tors. Again, chip vendors often provide sample INF files. If your device uses
one of the classes supported by Windows, you may be able to use an INF file
included with Windows.

3. If necessary, design and build a circuit to connect the chip to the host. In
many cases, you'll initially use a development board available from the chip’s
vendor.

4. Load the code into the device and plug the device into the host’s bus.
Windows should enumerate the device, adding it to the Control Panel and
identifying it correctly.

5. Debug and repeat as needed!

Exchanging Data

These are the steps related to getting the device to perform its intended
functions:

1. Add abilities to the device by adding code to the controller chip’s firm-
ware and components that connect to the chip.

2. If you're using a custom driver, write the driver code to communicate
with the device.

USB Complete 37

Chapter 2

3. If needed, write application code to communicate with the USB device. If
you're designing a mouse, keyboard, or other standard device, you can access
the device from any application.

When the code is debugged, you're ready to program the code into the chip
and test on your final hardware.

But before you begin with any of this, it’s useful to know a more about how
the host enumerates and transfers data with devices, so you can make the
right choices about controller chips and drivers. This is the purpose of the
following chapters.

38 USB Complete

Inside USB Transfers

3

Inside USB Transfers

To design and program a USB device, you need to know a certain amount
about the inner workings of the interface. This is true even though the hard-
ware and system software handle many of the details automatically.

This and the next three chapters are a tutorial on how USB transfers data.
This chapter has essentials that apply to all transfers. The following chapters
cover the four transfer types supported by USB, the enumeration process,
and the standard requests used in control transfers.

You don’t need to know every bit of this information to get a project up and
running, but I've found that understanding something about how the trans-
fers work helps in deciding which transfer types to use, in writing the firm-
ware for the controller chip, and in tracking down the inevitable bugs that
show up when you try out your circuits and code.

The USB interface is complicated, and much of what you need to know is
interwoven with everything else. This makes it hard to know where to start.
In general, I begin with the big picture and work down to the details.
Unavoidably, some of the things I refer to aren’t explained in detail until

USB Complete 39

Chapter 3

later. And some things are repeated because theyre important and relevant
in more than one place.

The information in these chapters is dense. If you dont have a background
in USB, you won't absorb it all in one reading. You should, however, get a
feel for how USB works, and will know where to look later when you need
to check the details.

The ultimate authority on the USB interface is the specification published
by its sponsoring members. The specification document, titled not surpris-
ingly, Universal Serial Bus Specification, is available on the USB Implement-
ers Forum’s website (wwuw.usb.org). However, by design, the specification
omits informartion and tips that are unique to any operating system or con-
troller chip. This type of information is essential when you're designing a
product for the real world, so I've included it.

Transfer Basics

You can divide USB communications into two categories, depending on
whether theyre used in configuring and setting up the device or in the appli-
cations that carry out the device’s purpose. In configuration communica-
tions, the host learns abourt the device and prepares it for exchanging data.
Most of these communications take place when the host enumerates the
device on power up or attachment. Application communications occur
when the host exchanges data for use with applications. These are the com-
munications that perform the functions the device is designed for. For
example, for a keyboard, the application communications are the sending of
keypress data to the host to tell an application to display a character.

Configuration Communications

40

During enumeration, the device’s firmware responds to a series of standard
requests from the host. The device must identify cach request, return
requested information, and take other actions specified by the requests.

On PCs, Windows performs the enumeration, so there’s no user program-
ming involved. However, to complete the enumeration, Windows must

USB Complete

Inside USB Transfers

have two files available: an INF file that identifies the filename and location
of the device’s driver, and the device driver itself. If the files are available and
the firmware is in order, the enumeration process is invisible to users.

Depending on the device and how it will be used, the device driver may be
one that’s included with Windows or one provided by the product vendor.
The INF file is a text file that you can usually adapt if needed from an exam-
ple provided by the drivers provider. Chapter 11 has more details about
device drivers and INF files.

Application Communications

After the host has exchanged enumeration information with the device and
a device driver has been assigned and loaded, the application communica-
tions can be fairly straightforward. At the host, applications can use standard
Windows API functions to read and write to the device. At the device, trans-
ferring data typically requires placing data to send in the USB controller’s
transmit buffer, reading received data from the receive buffer, and on com-
pleting a transfer, ensuring that the device is ready for the next transfer.
Most devices also require additional firmware support for handling errors
and other events.

Each data transfer on the bus uses one of four transfer types: control, inter-
rupt, bulk, or isochronous. Each has a format and protocol suited for partic-
ular uses.

Managing Data on the Bus

USB’s two signal lines carry data to and from all of the devices on the bus.
The wires form a single transmission path that all of the devices must share.
(As explained later in this chapter, a cable segment between a 1.x device and
a 2.0 hub on a high-speed bus is an exception, but even here, all data shares
the path between the hub and host.) Unlike RS-232, which has a TX line to
carry data in one direction and an RX line for the other direction, USB’s
pair of wires carries a single differential signal, with the directions taking
turns.

USB Complete 41

Chapter 3

START OF FRAME

ENDPOINT 2

DEVICE 1,

DEVICE 2, ENDPOINT 2
DEVICE 5, ENDPOINT 3

ENDPOINT 2

ENDPOINT 2
DEVICE 2, ENDPOINT @

DEVICE 2, ENDPOINT ©

DEVICE 5, ENDPOINT 3

DEVICE 5, ENDPOINT 3

DEVICE 5, ENDPOINT 3

DEVICE 5, ENDPOINT 3

DEVICE 2, ENDPOINT @

START OF FRAME

UNUSED

DEVICE 1,
UNUSED

START OF FRAME
DEVICE 1,
UNUSED

{-MILLISECOND FRAME 1-MILLISECOND FRAME 1 -MILLISECOND FRAME

Figure 3-1: At low and full speeds, the host schedules transactions within
1-millisecond frames. Each frame begins with a Start-of-Frame packet, followed
by transactions that transfer data to or from device endpoints. The host may
schedule transactions anywhere it wants within a frame. The process is similar at
high speed, but using 125-microsecond microframes.

42

The host is in charge of seeing that all transfers occur as quickly as possible.
[t manages the traffic by dividing time into chunks called frames, or microf-
rames at high speed. The host gives each transfer a portion of each frame or
microframe (Figure 3-1). For low- and full-speed darta, the frames are one
millisecond. For high speed data, the host divides each frame into eight
125-microsecond microframes. Each frame or microframe begins with a
Start-of-Frame timing reference.

Each transfer consists of one or more transactions. Control transfers always
have multiple transactions because they have multiple stages, each consisting
of one or more transactions. Other transfers use multiple transactions when
they have more data than will fit in a single transaction. Depending on how
the host schedules the transactions and the speed of a device’s response, a
transfer’s transactions may all be in a single frame or microframe, or they
may be spread over multiple (micro)frames.

Because all of the transfers share a data path, each transaction must include a
device address. Every device has a unique address assigned by the host, and
all data travels to or from the host. Each transaction begins when the host
sends a block of information that includes the address of the receiving device
and a specific location, called an endpoint, within the device. Everything a
device sends is in response to receiving a request from the host to send data
or status information.

USB Complete

Inside USB Transfers

Host Speed and Bus Speed

A 1.x host supports low and full speeds. A 2.0 host with user-accessible ports
must support low, full, and high speeds.

A 1.x hub doesn't convert between speeds; it just passes received traftic on,
changing only the edge rate of the signals to match the destination's speed.
In contrast, a 2.0 hub acts as a remote processor. It converts between high
speed and low or full speed as needed and performs other functions that
help make efficient use of the bus time. The added intelligence of 2.0 hubs
is a major reason why the high-speed bus remains compatible with 1.x hard-

ware. It also means that 2.0 hubs are much more complicated internally
than 1.x hubs.

The traffic on a bus segment is high speed only if the host controller and all
upstream (toward the host) hubs are 2.0-compliant. Figure 3-2 illustrates. A

2.0 HOST
AND
ROOT HUB
I O O

HIGH SPEED fﬁD

ﬁ;> HICH SPEED
]]
HIGH-SPEED

||

O
Q§ LOW/FULL SPEED

LOW SPEED <T
U

1.X HUB

FULL SPEED
J

LOW-SPEED
DEVICE

I
FULL SPEED” 450

FULL-SPEED

2.0 HUB DEVICE

ﬂﬂ&

FULL SPEED

DEVICE

LOW SPEED

HIGH SPEED

FULL SPEED Low
SPEED
LJ LJ

]
HIGH-SPEED

LOW-SPEED
DEVICE

HIGH-SPEED
DEVICE

LOW=SPEED
DEVICE

DEVICE

L

FULL-SPEED
DEVICE

FULL -SPEED
DEVICE

*FULL-SPEED ENUMERATION 1S REQUIRED.
ADDITIONAL FULL-SPEED FUNCTIONALITY
IS OPTIONAL.

Figure 3-2: A USB 2.0 bus uses high speed whenever possible, switching to
low and full speeds when necessary.

USB Complete 43

Chapter 3

high-speed bus may also have 1.x hubs, and if so, any bus segments down-
stream (away from the host) are low or full speed. Traffic to and from low-
and full-speed devices travels at high speed between the host and any 2.0
hubs that connect to the host with no 1.x hubs in between. Traffic berween
a 2.0 hub and a 1.x hub or another low- or full-speed device travels at low or
full speed. A bus with only a 1.x host controller supports only low and full
speeds, even if the bus has 2.0 hubs and devices.

Elements of a Transfer

Understanding USB transfers requires looking inside them several levels
deep. Each transfer is made up of transactions. Each transaction is made up
of packets. And each packet contains information. To understand transac-
tions, packets, and their contents, you also need to know about endpoints
and pipes. So that’s where we'll begin.

Device Endpoints

44

All transmissions travel to or from a device endpoint. The endpoint is a
buffer that stores multiple bytes. Typically it’s a block of data memory or a
register in the controller chip. The data stored at an endpoint may be
received data, or data waiting to transmit. The host also has buffers for
received data and for data ready to transmit, but the host doesn’t have end-
points. Instead, the host serves as the starting point for communicating with
the device endpoints.

The specification defines a device endpoint as “a uniquely addressable por-
tion of a USB device that is the source or sink of information in a communi-
cation flow between the host and device.” This suggests that an endpoint
carries data in one direction only. However, as I'll explain, a control end-
point is a special case that is bidirectional.

The unique address required for each endpoint consists of an endpoint
number and direction. The number may range from 0 to 15. The direction
is from the host’s perspective: IN is toward the host and OUT is away from
the host. An endpoint configured to do control transfers must transfer data

USB Complete

Inside USB Transfers

in both directions, so a control endpoint actually consists of a pair of IN and
OUT endpoints that share an endpoint number.

Every device must have Endpoint 0 configured as a control endpoint.
There’s rarely a need for additional control endpoints. They’re allowed, how-
ever, and some controller chips support them.

The other transfer types send data in one direction only (though status and
control information may flow in the opposite direction). A single endpoint
number can support both IN and OUT endpoint addresses. For example,
Endpoint 1 on a device might support an IN endpoint address for transfers
to the host as well as an OUT endpoint address for transfers from the host.

In addition to Endpoint 0, a full-speed device can have up to 30 additional
endpoints (1 through 15, with each supporting both IN and OUT). A
low-speed device is limited to two additional endpoints with any combina-
tion of directions (for example Endpoint 1 IN and Endpoint 1 OUT, or
Endpoint 1 IN and Endpoint 2 IN).

Every transaction on the bus includes an endpoint number and a code that
indicates the direction of data flow and whether or not the transaction is ini-
tiating a control transfer. The codes are IN, OUT;, and Setup:

Transaction Source of Data |Types of Transfers that |Contents
Type Use this Transaction

Type
IN device all generic data
ouT host all generic data
Setup host control a request

As with the endpoint directions, the naming convention for IN and OUT
transactions is from the perspective of the host. In an IN transaction, data
travels from the peripheral to the host. In an OUT transaction, data travels
from the host to the peripheral.

In a Setup transaction, data also travels from the host to the peripheral, but
a Setup transaction is a special case because it initiates a control transfer.
Devices need to identify Setup transactions so they know how to interpret
the data they contain. Setup transactions are also the only type that devices

USB Complete 45

Chapter 3

must always accept. Any transfer may use IN or OUT transactions, but only
control transfers use Setup transactions.

Each transaction contains a device address and an endpoint address. When a
device receives an OUT or Setup transaction containing the device’s address,
the hardware stores the received data in the appropriate location for the end-
point and typically triggers an interrupt. An interrupt-service routine in the
device then processes the received data and does whatever else the transac-
tion requires. When a device receives an IN transaction containing its device
address, if the device has darta ready to send to the host, the hardware sends -
the data from the specified endpoint onto the bus and typically triggers an
interrupt. An interrupt-service routine in the device then does whatever is
needed to get ready for the next IN transaction.

Pipes: Connecting Endpoints to the Host

46

Before a transfer can occur, the host and device must establish a pipe. A USB
pip

pipe isn’t a physical object; it’s just an association between a device’s end-

point and the host controller’s software.

The host establishes pipes shortly after system power-up or device attach-
ment, on requesting configuration information from the device. If the
device is removed from the bus, the host removes the no-longer-needed
pipes. The host may also request new pipes or remove unneeded pipes at
other times by requesting an alternate configuration or interface for a device.
Every device has a Default Control Pipe that uses Endpoint 0.

The configuration information received by the host includes a descriptor for
each endpoint that the device wants to use. Each endpoint descriptor is a
block of information that tells the host what it needs to know about the
endpoint in order to communicate with it. This includes the endpoint
address, the type of transfer to use, the maximum size of data packets, and,
when appropriate, the desired interval for transfers.

In some cases, the host accepts a requested configuration only after ensuring
that the bus has enough idle bandwidth to do the transfers at the requested
rate. This is true when the configuration requires pipes that will carry isoch-
ronous transfers, which have a guaranteed rate (transactions per second),

USB Complete

Inside USB Transfers

and interrupt transfers, which have a guaranteed maximum latency (time
between transactions).

In these cases, the host examines the available bandwidth before establishing
the pipe. If the bandwidth is available, the host accepts the configuration
request and ensures that the transfers will have the time they need. If the
bandwidth isn’t available, the host denies the configuration request and the
requesting software must try again, either waiting until the bandwidth is
available or selecting a new configuration that requests less bandwidth. For
pipes that carry requests without guaranteed timing, the host doesn’t check
available bandwidth; it just promises to fit the transfers into the available
time as best as it can.

Types of Transfers
USB is designed to handle many types of peripherals with varying require-

ments for transfer rate, response time, and error correcting. The four types
of data transfers each handle different needs, and a device can support the
transfer types that are best suited for its purpose. Table 3-1 summarizes the
features and uses of each transfer type.

Control transfers are the only type that have functions defined by the USB
specification. Control transfers enable the host to read information about a
device, set a device’s address, and select configurations and other settings.
Control transfers may also send custom requests that send and receive data
for any purpose. All USB devices must support control transfers.

Bulk transfers are intended for situations where the rate of transfer isn’t crit-
ical, such as sending a file to a printer or receiving data from a scanner. In
these applications, quick transfers are nice, but the data can wait if necessary.
If the bus is very busy with other transfers that have guaranteed transfer
rates, bulk transfers must wait, but if the bus is idle, bulk transfers are very
fast. Only full- and high-speed devices can do bulk transfers. Devices aren’t
required to support bulk transfers, but a specific device class might require
1t.

Interrupt transfers are for devices that must receive the host’s or device’s
attention periodically. Other than control transfers, interrupt transfers are

USB Complete 47

Chapter 3

Table 3-1: Each of the USB’s four transfer types is suited for different application

types.
Transfer Type Control Bulk Interrupt Isochronous
Typical Use Configuration |Printer, Mouse, Audio
scanner keyboard
Required? yes no no no
Allowed on low-speed yes no yes no
devices?
Data bytes/millisecond per 15,872 53,248 24,576 24,576
transfer, maximum possible | (thirty-one (thirteen (three (three
per pipe (high speed). . |64-byte 512-byte 1024-byte 1024-byte
Assumeﬁkdata_ltransfer = MaX | ransactions/ |transactions/ |transactions/ |transactions/
mum packet size. microframe) |microframe) |microframe) |microframe)
Data bytes/millisecond per 832 1216 64 1023
transfer, maximum possible | (thirteen (nineteen (one 64-byte |(one
per pipe (full speed). Assumes | g4 pye 64-byte transaction/ | 1023-byte
data;(/trtaqsfer = maximum transactions/ |transactions/ |frame) transaction/
packet size. frame) frame) frame)
Data bytes/millisecond per 24 (three not allowed |0.8 (8 bytes |not allowed
transfer, maximum possible 8-byte per 10
per pipe (low speed). Assumes | (ransactions) milliseconds)
data/transfer = maximum
packet size.
Direction of data flow IN and OUT |IN or OUT IN or OUT IN or OUT
(1.0 supports
IN only)

Reserved bandwidth for all 10 at low/full |none 90 at low/full speed, 80 at
transfers of the type speed, 20 at high speed (isochronous &

high speed interrupt combined)

(minimum) (maximum)
Error correction? yes yes yes no
Message or Stream data? message stream stream stream
Guaranteed delivery rate? no no no yes
Guaranteed latency (maximum |no no yes yes
time between transfers)?

the only way that low-speed devices can transfer data. Keyboards and mice
use interrupt transfers to send keypress and mouse-movement data. Inter-
rupt transfers can use any speed. Devices aren’t required to support interrupt
transfers, but a specific device class might require it.

48 USB Complete

Inside USB Transfers

Isochronous transfers have guaranteed delivery time but no error correcting.
Data that might use isochronous transfers incudes audio files to be played in
real time. This is the only transfer type that doesnt support automatic
re-transmitting of data received with errors, so occasional errors must be
acceptable. Only full- and high-speed devices can do isochronous transfers.
Devices arent required to support isochronous transfers, but a specific
device class might require it.

Chapter 4 has more detailed descriptions of each transfer type, with the
focus on what you need to know in order to use each. But before we get into
that, there are additional things to understand about how the bus transfers
data.

Stream and Message Pipes

In addition to classifying a pipe by the type of transfer it carries, the specifi-
cation defines pipes as either stream or message, according to whether or not
information travels in one or both directions. Control transfers are the only
transfers that use the bidirectional message pipes; all others use unidirec-
tional stream pipes.

Control Transfers Use Message Pipes

In a message pipe, each transfer begins with a Setup transaction containing a
request. To complete the transfer, the host and device may exchange data
and status information, or the device may just send status information.
There is always at least one transaction that sends information in each direc-
tion.

If the device supports the request, it takes the requested action. If the device
doesn’t support the request, it responds with a code to indicate this.

All Other Transfers Use Stream Pipes

In a stream pipe, the data has no format defined by the USB specification.
The receiving device just accepts whatever arrives. The device firmware or
host software can then process the data in whatever way is appropriate for
the application.

USB Complete 49

Chapter 3

Of course, even with stream data, the sending and receiving devices will
need to agree on a format of some type. For example, a host application may
define a code that requests a device to send a series of bytes indicating a tem-
perature reading and the time of the reading. Although the host could use
control transfers with a vendor-defined Get_Temperature request, it might
prefer to use interrupt transfers to guarantee that the host will request a new
reading at intervals. In an interrupt transfer, the data is in a stream pipe and
doesn’t have to conform to the format for control transfers.

Initiating a Transfer

When a device driver in the host wants to communicate with a device, it ini-
tiates a transfer. The specification defines a transfer as the process of making
and carrying out a communication request. A transfer may be very shorrt,
sending as little as a byte of dara, or very long, sending the contents of a
large file.

Typically, a Windows application opens communications with a device
using a handle retrieved using standard API functions. To begin a transfer,
an application may use the handle in calling an API function to request the
transfer from the device’s driver. Applications can request data from a device
or provide data to send to the device. A request from an application might
be “send the contents of the file data.zxt on the host” or “get the contents of
Report 0 from the device.” When an application requests a transfer, the oper-
ating system passes the request to the appropriate device driver, which in
turn passes the request to other system-level drivers and on to the host con-
troller. The host controller then initiates the transfer on the bus.

In some cases, the driver is configured to request periodic transfers, and
applications read the retrieved data or provide data to send in these transfers.
Other transfers, such as those done in enumeration, are initiated by the
operating system on detecting the device.

Transactions: the Building Blocks of a Transfer

50

Figure 3-3 shows the elements of a typical transfer, and Table 3-2 lists the
elements that make up each of the four transfer types. A lot of the terminol-

USB Complete

Inside USB Transfers

ogy here begins to sound the same. There are transfers and transactions,
stages and phases, data transactions and data packets, Status stages and
handshake phases. Data stages have handshake packets and Status stages
have data packets. It takes a while to absorb it all. I created Table 3-2 to use
as a memory-jogging reference when I found myself getting confused about
the terminology. With that reminder to take it slowly, we can move on to
the details.

Fach transfer consists of one or more transactions, and each transaction in
turn consists of one, two, or three packets.

TRANSFER TRANSFER TRANSFER

EACH TRANSFER
CONTAINS 1 OR MORE
TRANSACTIONS.

TRANSACTION TRANSACTION TRANSACTION

EACH TRANSACTION
CONTAINS A TOKEN
PACKET AND MAY
CONTAIN A DATA
AND/OR HANDSHAKE

PACKET.
TOKEN DATA HAND SHAKE
PACKET PACKET PACKET

EACH PACKET CONTAINS

A PID AND MAY CONTAIN
ADDITIONAL INFORMATION
AND CRC (ERROR-CHECKING)
BITS.

ADD "L
PID INFO CRC

Figure 3-3: A USB transfer consists of transactions. The transactions in turn
contain packets, and the packets contain a packet identifier (PID), PID-check
bits, and sometimes additional information.

USB Complete 51

Chapter 3

Table 3-2: Each of the four transfer types consists of one or more stages, with
each stage made up of two or three phases. (This table doesn’t show the
additional transactions required for the split transactions and PING protocol
used in some transfers.)

Transfer Type Stages (0 or more transac- | Phases (packets). Each
tions) downstream, low-speed
packet is also preceded by a
PRE packet.

Control Setup Token
Data
Handshake
Data (IN or OUT) Token
(optional) Data
Handshake
Status (IN or OUT) Token
Data
Handshake
Bulk Data (IN or OUT) Token
Data
Handshake
Interrupt Data (IN or OUT) Token
Data
Handshake
Isochronous Data (IN or OUT) Token
Data

The three transaction types are defined by their purpose and direction of
data flow: Setup for sending control-transfer requests to a device, IN for
receiving data from a device, and OUT for sending other data to the device.
The specification defines a transaction as the delivery of service to an end-
point. Service in this case can mean either the host’s sending a chunk of
information to the device, or the host’s requesting and receiving a chunk of
information from the device.

Each transaction includes identifying, error-checking, status, and control
information, as well as any data to be exchanged. A complete transfer may

52 USB Complete

Inside USB Transfers

take place over multiple frames, but a transaction is a single communication
that must complete uninterrupted. No other communication on the bus can
break into the middle of a transaction.

Devices must be able to respond quickly with requested data or status infor-
mation in a transaction. Program code in the device may prepare an end-
point to respond to a transaction request, but hardware handles responding
to the request when it arrives.

A transfer with a small amount of data may require just one transaction. If
the amount of data is large, a transfer may use multiple transactions, with a
portion of the data in each.

Transaction Phases

Each transaction has up to three phases, or parts that occur in sequence:
token, data, and handshake. Each phase consists of one or two transmitted
packets. Each packet is a block of information with a defined format. All
packets begin with a Packet ID (PID) that contains identifying information,
as Table 3-3 shows. Depending on the transaction, the PID may be followed
by an endpoint address, data, status information, or a frame number, along
with error-checking bits.

In the token phase of a transaction, the host sends a communications
request in a token packet. The PID indicates the transaction type, such as

Setup, IN, OUT, or Start-of-Frame.

In the data phase, the host or device may transfer any kind of information in
a data packet. The PID indicates the data-toggle value used to indicate the
data’s position when there are multiple data packets.

In the handshake phase, the host or device sends status, or handshaking,
information in a handshake packet. The PID holds the status code (ACK,
NAK, STALL, NYET). The specification sometimes uses the terms status
phase and status packet to refer to the handshake phase and packet.

The token phase has one additional use. A token packet may carry a
Start-of-Frame (SOF) marker, which is a timing reference that the host
sends at 1-millisecond intervals at full speed and 125-microsecond intervals

USB Complete 53

Chapter 3

Table 3-3: The PID (packet identifier) provides information about a transaction.
(Sheet 1 of 2)

Packet PID Value |Transfer |Source |Bus Speed |Description
Type Name types
used in
Token ouT 0001 jall host all Endpoint address for OUT
(identifies (host-to-device) transaction.
transaction [y 1001 Jall host |all Endpoint address for IN
type) (device-to-host) transaction.
SOF 0101 |Start-of- |host all Start-of-Frame marker and
Frame frame number.
SETUP [1101 |control |host all Endpoint address for Setup
transaction.
Data DATAO |0011 fall host, |all Data toggle,
(carries data device data sequencing
orstatus — InATAT [1011 |all host, |all Data toggle,
code) device data sequencing
DATA2 |0111 |isoch. host, |high Data sequencing
device
MDATA |[1111 [isoch., host, |high Data sequencing
interrupt |device
Handshake [ACK 0010 |all host, |all Receiver accepts error-free
(carries device data packet.
status code) NAK 1010 control, |device |all Receiver can’t accept data
bulk, or sender can’t send data or
interrupt has no data to transmit.
STALL {1110 |control, [|device [all A control request isn’t sup-
bulk, ported or the endpoint is
interrupt halted.
NYET 0110 |control |device |high Device accepts error-free
Write, data packet but isn’t yet
bulk ready for another or
OUT, hub doesn’t yet have
split complete-split data.
transac-
tions

54

USB Complete

Inside USB Transfers

Table 3-3: The PID (packet identifier) provides information about a transaction.

(Sheet 2 of 2)
Packet PID Value |Transfer |Source |Bus Speed |Description
Type Name types
used in
Special PRE 1100 |control, |host full Preamble issued by host to
interrupt indicate that the next packet
is low speed.
ERR 1100 |all device |high Returned by a hub to report
hub a low- or full-speed error in
a split transaction.
SPLIT 1000 |all host high Precedes a token packet to
indicate a split transaction.
PING 0100 |control |host high Busy check for bulk OUT
Write, and control Write data
bulk OUT transactions after NYET.
reserved |0000 |- - - For future use.

at high speed. This packet also contains a frame number that increments
and rolls over on reaching the maximum. The number indicates the frame
count, so the eight microframes within a frame all use the same number. An
endpoint may synchronize to the Start-of-Frame packet, or use the frame
count as a timing reference. The Start-of-Frame marker also keeps devices
from entering the low-power Suspend state when there is no other USB traf-

fic.

Low-speed devices don't see the SOF packet. Instead, the device’s hub uses a
simpler End-of-Packet (EOP) signal called the low-speed keep-alive signal,
sent once per frame. As the SOF does for full-speed devices, the low-speed
keep-alive keeps low-speed devices from entering the Suspend state.

Of the four special PIDs, one is used only with low-speed devices, one is
used only with high-speed devices, and two are used when a low- or
full-speed device’s 2.0 hub communicates at high speed with the host.

The special low-speed PID is PRE, which contains a preamble code that
tells hubs that the next packet is low speed and the hub should enable com-
munications with any attached low-speed devices. On a low- and full-speed

bus, the PRE PID precedes all token, data, and handshake packets directed

USB Complete 55

Chapter 3

56

to low-speed devices. High-speed buses encode the PRE in the SPLIT
packet, so they don't send it separately. Low-speed packets sent by a device
don’t require a PRE PID.

The PID used only with high-speed devices is PING. The host sends a
PING to find out if a high-speed device endpoint is busy before sending the
next data packet in a bulk or control transfer with multiple data packets.
The device responds with a status code.

The SPLIT PID identifies a token packet as part of a split transaction. To
make better use of bus time, 2.0 hosts and hubs send low- and full-speed
traffic at high speed. When the host begins a transaction destined for a low-
or full-speed device, the 2.0 hub nearest to the device is responsible for com-
pleting the transaction with the device, storing any returned data or status
information, and reporting it back in one or more later transactions. This
way, the entire bus doesn't have to wait for a transaction to complete at a
lower speed. These special transactions between the hub and host are called
split transactions.

The ERR PID is used only in split transactions. A 2.0 hub uses this PID to
report an error to the host in a low- or full-speed transaction. The ERR and

PRE PIDs have the same value, but won’t be confused because a hub never
sends a PRE to the host or an ERR to a device.

Packet Sequences

Every transaction has a token packet. The host is always the source of the
this packet, which sets up the transaction by identifying the packet type, the
receiving device and endpoint, and the direction of any data that the trans-
action will transfer. If it’s a low-speed transaction on a full-speed bus, a PRE
packet precedes the token packet. If it’s a split transaction, a SPLIT packet
precedes the token packer.

Depending on the transfer type and whether or not a device has information
to send, a data packet may follow the token packet. The direction specified
in the token packet determines whether the host or device sends the data
packet.

USB Complete

Inside USB Transfers

In all transfer types except isochronous, the device that receives a data packet
returns a handshake packet containing a code that indicates the success or
failure of the transaction. The absence of an expected handshake packet
indicates a more drastic failure.

Timing Constraints and Guarantees

The allowed delays between the token, data, and handshake packets of a
transaction are very short, intended to allow only for cable delays and
switching times, plus a brief time to allow the hardware to prepare a
response, such as a status code, in response to a received packet.

The maximum packet sizes for the transfer type and endpoint limit the
amount of data a transaction can contain. A transfer with multiple transac-
tions may take place over multiple frames, which don’t have to be contigu-
ous. For example, in a full-speed bulk transfer of 512 bytes, the maximum
number of bytes in a single transaction is 64, so transferring all of the data
would require at least 8 transactions.

Although devices must complete each transaction quickly, the bus can
accommodate transfers with devices that need extra time to respond. The
amount of time allowed varies with the transfer type, but can be as long as
five seconds. If a request will take a long time to carry out, the request
should be defined so that the request and response use separate transfers.
This way, after receiving a request for data, the device can prepare its
response for later retrieval by the host. The host uses this technique when it
requests a hub to reset a port. The host requests the hub to reset a port, and
the hub responds that it has received the request and has begun the reset sig-
naling. Later, the host sends a second request to find out if the reset is com-

plete.

Split Transactions

A 2.0 hub communicates with a 2.0 host at high speed unless a 1.x hub lies
between them. When a low- or full-speed device is attached to a 2.0 hub,
the hub converts between speeds as needed. But speed conversion isn’t the
only thing the hub does to manage multiple speeds. High speed is 40 times
faster than full speed and 320 times faster than low speed. It doesn’t make

USB Complete 57

Chapter 3

HIGH SPEED LOW~- OR
2.0 HOST 2.0 HUB FULL-SPEED

; DEVICE

1.

THE HOST INITIATES AND COMPLETES THE START-SPLIT TRANSACTION WITH THE HUB.

LOW- OR
2.0 HOST 2.0 HUB LOW OR FULL SPEED FULL -SPEED

; DEVICE

2,

THE HUB INITIATES AND COMPLETES THE TRANSACTION WITH THE DEVICE.

LOW- OR
2.0 HOST HIGH SPEED 2.0 HUB FULL - SPEED

; DEVICE

3.

THE HOST INITIATES AND COMPLETES THE COMPLETE-SPLIT TRANSACTION WITH THE HUB.

Figure 3-4: In a transfer that uses split transactions, the host communicates at
high speed with a 2.0 hub, and the hub communicates at low or full speed with
the device. Isochronous transactions may use multiple start-split or
complete-split transactions.

58

sense for the entire bus to wait while a hub exchanges low- or full-speed data
with a device.

The solution is split transactions (Figure 3-4). A 2.0 host uses split transac-
tions when it communicates with a low- or full-speed device on a high-speed
bus. What would be a single transaction at low or full speed usually requires
two types of split transactions, one or more start-split transactions to send
information to the device and one or more complete-split transactions to
receive information from the device. The exception is isochronous OUT
transactions, which don’t use complete-split transactions because there is
nothing to return.

Even though there are more transactions, split transactions make better use
of the bus time because they minimize the amount of bus time spent waiting

USB Complete

Inside USB Transfers

for a low- or full-speed device to respond. Table 3-4 compares the structure
and contents of transactions with low- and full-speed devices at different bus
speeds.

P'll start by explaining how split transactions work in bulk and control trans-
fers, which don’t have the timing constraints of interrupt and isochronous
transfers. In the start-split transaction, the 2.0 host sends the start-split
token packet (SSPLIT), followed by the usual low- or full-speed token
packet, and any data packet destined for the device. The device’s 2.0 hub
returns ACK or NAK. The host is then free to use the bus for other transac-
tions. The device knows nothing of the transaction yet.

On returning ACK in a start-split transaction, the hub has two responsibili-
ties. It must complete the transaction with the device. And it must continue
to handle any other bus traffic it receives from the host or other attached

devices.

To complete the transaction, the hub converts the packet or packets received
from the host to the appropriate speed, sends them to the device, and stores
the device’s response, if any. Depending on the transaction, the device may
return data, a handshake, or nothing. To the device, the transaction has pro-
ceeded at the expected low or full speed and is now complete. The device
has no knowledge that it’s a split transaction. The host hasn't yet received the
device’s response.

While the hub is completing the transaction with the device, the host may
initiate other bus traffic that the device’s hub must handle as well. The two
functions are handled by separate hardware modules within the hub.

For all but isochronous QUT transactions, when the host thinks the hub has
had enough time to complete the transaction with the device, it begins a
complete-split transaction with the hub.

In the complete-split transaction, the host sends a complete-split token
packet (CSPLIT), followed by the usual low- or full-speed token packet to
request the data or status information the hub has received from the device.
The hub returns the requested data or a status code. This completes the
transaction. The host doesn’t return ACK. If the hub doesn’t have the packet
ready to send, it returns a NYET status code, and the host retries later. The

USB Complete 59

Chapter 3

Table 3-4: When a low- or full-speed device has a transaction on a high-speed
bus, the host uses start-split (SSPLIT) and complete-split (CSPLIT) transactions
with the device’s 2.0 hub. The hub is responsible for completing the transaction
at low or full speed and reporting back to the host.

Bus Speed Transaction Type | Transaction Phase
Token Data Handshake
Low/Full-speed |Setup, OUT PRE if low speed, |PRE if low speed, |status (except for
communications LS/ES token data isochronous)
with the device 7y PRE if low speed, |data or status PRE if low speed,
LS/FS token status (except for
isochronous)
High-speed com- |Setup, OUT SSPLIT, data status (bulk and
munications (isochronous LS/ES token control only)
between the 2.0 |OUT has no CSPLIT) status
hub and host in CSPLIT LS/FS t(;ken
transactions with |transaction))
alow-or g SSPLIT, - status (bulk and
full-speed device LS/FS token control only)
CSPLIT, data or status -
LS/FS token)

60

device has no knowledge of the complete-split transaction because it com-
pleted the transaction with its hub earlier.

In split transactions in interrupt and isochronous transfers, the process is
similar, but with more strictly defined timing. The goal is to transfer data to
the host as soon as possible after the device has data available to send, and to
transfer data to the device just before the device is ready for new data. To
achieve this, isochronous transactions with large packets use multiple start
or complete splits, transferring a portion of the data in each.

Unlike with bulk and control transfers, the start-split transactions in inter-
rupt and isochronous transfers have no handshake phase, just the start-split
token followed by an IN, OUT, or Setup token and dara if it’s an OUT or

Setup transaction.

In an interrupt transaction, the hub schedules the start split in the microf-
rame just before the earliest time thar the hub is expected to begin the trans-
action with the device. For example, assume that the microframes in a frame

USB Complete

Inside USB Transfers

are numbered in sequence, YO through Y7. If the start split is in YO, the
transaction with the device may occur as early as Y1. The device may have
data or a handshake response to return to the host as early as Y2. The results
of previous transactions and bit stuffing can affect when the transaction
with the device actually occurs, so the host schedules complete-split transac-
tions in Y2, Y3, and Y4. If the hub doesn yet have the information to
return in the complete split, it returns a NYET status code and the host
retries.

Full-speed isochronous transactions can transfer up to 1023 bytes. To ensure
that the data transfers just in time, or as soon as the device has data to send
or is ready to receive data, transactions with large packets use multiple start
splits or complete splits, with up to 188 bytes of data in each. This is the
maximum amount of full-speed data that can transfer in a microframe. A
single transaction’s data can require up to eight start-split or complete-split
transactions.

In an isochronous IN transaction, the host schedules complete-split transac-
tions in every microframe where it’s expected that the device will have at
least a portion of the data to return. Requesting the data in smaller chunks
ensures that the host receives the data as quickly as possible. The host
doesnt have to wait for all of the data to transfer from the device at full
speed before beginning to retrieve it.

In an isochronous OUT transaction, the host sends the data in one or more
start-split transactions. The host schedules the transactions so the hub’s
buffer will never be empty, but will contain as few bytes as possible. Each
SPLIT packet contains bits to indicate its data’s position in the low- or
full-speed data packet (beginning, middle, end, or all). There is no com-

plete-split transaction.

Ensuring that Transfers Are Successful

To help ensure that every transfer succeeds, USB uses handshaking and
error-checking.

USB Complete 61

Chapter 3

Handshaking

62

Like other interfaces, USB uses status and control, or handshaking, infor-
mation to help to manage the flow of data. In hardware handshaking, dedi-
cated lines carry the handshaking information. An example is the RTS and
CTS lines in the RS-232 interface. In software handshaking, the same lines
that carry the data also carry handshaking codes. An example is the XON
and XOFF codes transmitted on the data lines in RS-232 links.

USB uses software handshaking. A code indicates the success or failure of all
transactions except in isochronous transfers. In addition, in control trans-
fers, the Status stage enables a device to report the success or failure of the
entire transfer.

Most handshaking signals transmit in the handshake packet, though some
use the data packet. The defined status codes are ACK, NAK, STALL,
NYET, and ERR. A sixth status indicator is the absence of an expected
handshake code, indicating a more serious bus error. In all cases, the receiver
of the handshake, or lack of one, uses the information to help it decide what
to do next. Table 3-5 shows the status indicators and where they transmit in
each transaction type.

ACK

ACK (acknowledge) indicates that a host or device has received data without
error. Devices must return ACK in the handshake packets of Setup transac-
tions. Devices may also return ACK in the handshake packets of OUT
transactions. The host returns ACK in the handshake packets of IN transac-
tions.

NAK

INAK' (negative acknowledge) means the device is busy or has no darta to
return. If the host sends data at a time when the device is too busy to accept
it, the device sends a NAK in the handshake packet. If the host requests dara
from the device when the device has nothing to send, the device sends a
NAK in the data packet. In either case, NAK indicates a temporary condi-
tion, and the host retries later.

USB Complete

Inside USB Transfers

Table 3-5: The location, source, and contents of the handshake signal depend
on the type of transaction.

Transaction type |Data packet Data packet Handshake Handshake
or PING query source contents packet source packet
contents
Setup host data device ACK
OUT host data device ACK,
NAK,
STALL,
NYET (high
speed only),
ERR (from hub in
complete split)
device data, host ACK
NAK,
STALL,
ERR (from hub in
complete split)
none none device ACK,
(high speed only) NAK,
STALL

USB Complete

Hosts never send NAK. Isochronous endpoints don't support NAK because
they have no handshake packet for returning the NAK. If a device or the
host misses isochronous data, it’s gone.

STALL
The STALL handshake can have any of three meanings: unsupported con-

trol request, control request failed, or endpoint failed.

When a device receives a control-transfer request that the endpoint doesn't
support, the device returns a STALL to the host. The device also sends a
STALL if it supports the request but for some reason can’t take the requested
action. For example, if the host sends a Set_Configuration request that
requests the device to set its configuration to 2, and the device supports only
configuration 1, the device returns a STALL. To clear this type of STALL,
the host just needs to send another Setup packet to begin a new control
transfer. The specification calls this type of stall a protocol stall.

63

Chapter 3

64

Another use of STALL is to respond to transfer requests when the end-
point's Halt feature is set, indicating that the endpoint is unable to send or
receive data at all. The specification calls this type of stall a functional stall.

Bulk and interrupt endpoints must support the functional stall. Alchough
control endpoints may also support this use of STALL, if’s not recom-
mended. A control endpoint in a functional stall must continue to respond
normally to other requests related to controlling and monitoring the STALL
condition. And if the endpoint is capable of doing this, it’s clearly capable of
sending and receiving data and shouldn’ be stalled! Isochronous endpoints
don’t support STALL because they have no handshake packet for returning
the STALL.

On receiving a functional STALL, the host drops all pending requests to the
device and doesn’t resume communications until it has sent a successful
request to clear the Halt feature on the device. Hosts never send STALL.

NYET
Only high-speed devices use NYET, which stands for 7oz yet. High-speed

bulk and control transfers have an improved protocol that enables the host
to find out before sending data if a device is ready to receive it. At full and
low speeds, when the host wants to send data in a control, bulk, or interrupt
transfer, it sends the token and data packets and receives a reply from the
device in the handshake packet of the transaction. If the device isn't ready
for the data, it returns a NAK and the host tries again later. This can waste a
lot of bus time if the data packets are large and the device is often not ready.

High-speed bulk and control transactions with multiple data packets have a
better way to do it. After receiving a data packet, a device endpoint can
recurn a NYET handshake, which says that the data was accepted but the
endpoint isn't yet ready to receive another data packet. When the host
thinks the device might be ready, it sends a PING token packet, and the
endpoint returns an ACK to indicate it's OK to send the next data packet or
NAK or STALL if it’s not OK. Sending a PING is more efficient than send-
ing the entire data packet only to find out the device wasn't ready and hav-
ing to resend later.

USB Complete

Inside USB Transfers

Even after responding to a PING or OUT with ACK, the endpoint is

allowed to return NAK on receiving the data packet that follows, though
this should be rare. The host then tries again with another PING.

A 2.0 hub may also use NYET in complete-split transactions, as described
carlier. Hosts and low- and full-speed devices never send NYET.

ERR
The ERR handshake is used only by high-speed hubs in complete-split

transactions. ERR indicates the device didn’t return an expected handshake
in the transaction the hub is completing with the host.

No Response

The final type of status indication occurs when the host or a device expects
to receive a handshake, but receives nothing. This usually indicates that the
receiver’s error-checking calculation detected an error and informs the
sender that it should try again or if multiple tries have failed, take other
action.

Reporting the Status of Control Transfers

In addition to reporting the status of transactions, the same ACK, NAK,
and STALL codes report the success or failure of complete control transfers.
An additional status code is a zero-length data packet, which reports success-
ful completion of a control transfer with a host-to-device Data stage. Table
3-6 shows the locations of the different status indicators for control trans-
fers.

For control Write transfers. where the device receives data in the Data stage,
the transfer’s status is returned in the data packet of the Status stage. A
zero-length data packet means the transfer was successful. Or the device may

return a2 NAK or STALL. The host then returns an ACK in the handshake
packet of the Status stage to indicate that it received the response.

For control Read transfers, where the host receives data in the Data stage,
the device returns the status of the transfer in the handshake packet of the
Status stage. The host normally waits to receive all of the packets in the Data

USB Complete 65

Chapter 3

Table 3-6: Depending on the direction of the Data stage, the status information
for a control transfer may be in the data or handshake packet of the Status

stage.
Transfer Type and Status Stage Status stage’s data | Status stage’s hand-
Direction Direction packet shake packet
Control Write IN Device sends status: |Host returns ACK
(Host sends data to O-length data packet
device) (success),

NAK (busy), or

STALL (failed)
Control Read ouT Host sends O-length | Device sends status:
(Device sends data to data packet ACK (success),
host) NAK (busy), or

STALL (tailed)

stage, then sends a zero-length data packet in the Status stage. The device
responds with ACK, NAK, or STALL. However, if the host begins the Sta-
tus stage before all of the data packets have been sent, the device must aban-
don the Data stage and return a status code.

Error Checking

The specification for USB hardware, including the drivers, receivers, and
cables, spells out design and performance requirements that ensure that
errors due to line noise will be rare. Still, especially because the interface uses
external cabling, there is a chance that a noise glitch or an unexpectedly dis-
connected cable could corrupt a transmission. For this reason, USB packets
include error-checking bits that enable a receiver to identify virtually any
received data that doesn’t match what was sent. In addition, for transfers
that require multiple transactions, a data-toggle value keeps the transmitter
and receiver synchronized to ensure that no transactions are missed entirely.

Error-checking Bits

All token, data, and Start-of-Frame packets include bits for use in
error-checking. The bit values are calculated using a mathemartical algo-
rithm, or procedure, called the cyclic redundancy check (CRC). The specifi-

66 USB Complete

Inside USB Transfers

cation has details on how the CRC is calculated. It’s not something you'll
ever have to do in code, however, because the hardware handles it.

The CRC is applied to the data to be checked. The transmitting device per-
forms the calculation and sends the result along with the data. The receiving
device performs the identical calculation on the received data. If the results
match, the data has arrived without error and the receiving device returns an
ACK. If the resules dont match, the receiving device sends no handshake.
This tells the sender to retry.

Typically, the host tries a total of three times, though the specification gives
the host some flexibility in determining the number of retries. If there’s still
no handshake, the host gives up and informs the driver of the problem.

The PID field in token packets uses a simpler form of error checking. The
lower four bits in the field are the PID, and the upper four bits are its com-
plement. The receiver can check the integrity of the PID by complementing
the upper four bits and ensuring that they match the PID. If not, the packet
is corrupted and is ignored.

The Data Toggle Bit

In transfers that require multiple transactions, the data-toggle bit can ensure
that no transactions are missed by keeping the transmitting and receiving
devices synchronized. The data-toggle bit is included in the PID field of the
token packets for IN and OUT transactions. DATAO is a code of 0011, and
DATA1 is 1011, so bit 3 indicates the data-toggle state. In controller chips,
a register bit often indicates the data-toggle state. Another name for this bit
is DATAO0/1, sometimes also called DATA1/0 (!).

Both the sender and receiver keep track of the data toggle. On configuring
the device, the bits on both are set to DATAO.

When the receiver detects an incoming data transaction, it compares the
received data-toggle bit to the state of its own data toggle. If the bits match,
the receiver toggles its bit and returns an ACK handshake packet to the
sender. The ACK causes the sender to toggle its bit.

USB Complete 67

Chapter 3

The next received packet in the transfer should contain a data-toggle of
DATA1, and again the receiver toggles its bit and returns an ACK. The data

toggle continues to alternate until the transfer completes.

If the receiver is busy, it returns a NAK. If it detects corrupted data, it
returns no response. If the sender doesn’t receive an ACK, it doesn’t toggle its
bit and instead tries again with the same data and dara toggle.

If a receiver returns an ACK but for some reason the sender doesn’t see it,
the sender will think that the receiver didn’t get the data and will try again,
with the same data and data-toggle bit. In this case, the receiver of the
repeated data doesn't toggle its bit and ignores the dara, but does return an
ACK. This re-synchronizes the data toggles. The same thing happens if the

sender mistakenly sends the same data toggle twice in a row.

A Windows host handles the data toggles withour requiring any user pro-
gramming. Some peripheral controller chips also handle the data-toggles
completely automatically, while others require some firmware control.

In some cases, if the device is interested only in receiving the newest darta
and doesnt care about the sequence, it won't bother to compare the data tog-
gles. Instead, it can just return ACKSs without comparing or toggling the bit.

In full-speed isochronous transfers, the host always uses a data toggle of
DATAO. Full-speed isochronous transfers can’t use the data roggle because
they have no handshake packet for returning an ACK or NAK and no time
to resend missed data.

Some high-speed isochronous transfers use DATAOQ, DATAT1, and additional
PIDs of DATA2 and MDATA. High-speed isochronous IN transfers that
have two or three transactions per microframe use DATAO, DATAI, and
DATA2 encoding to indicate the transaction’s position in the microframe:

Number of IN Transactions |Data PID

in the Microframe First Transaction | Second Transaction | Third Transaction
1 DATAO - -
2 DATA1 DATAOQ -
3 DATA?2 DATAI1 DATAO
68 USB Complete

Inside USB Transfers

High-speed isochronous OUT transfers that have two or three transactions
per microframe use DATAO, DATAI, and MDATA encoding to indicate

whether more data will follow in the microframe:

Number of OUT Data PID:
Transactions in the First Transaction |Second Transaction | Third Transaction
Microframe
DATAO - -
MDATA DATAI -
3 MDATA MDATA DATA?2

USB Complete 69

Chapter 3

70 USB Complete

A Transfer Type for Every Purpose

4

A Transfer Type for
Every Purpose

Now that you know a little more about how transfers work, it’s time to look
in more detail at the four transfer types: control, bulk, interrupt, and isoch-

ronous.

Control Transfers

Control transfers have two uses. They carry the requests that are defined by
the USB specification and used by the host to learn about and configure
devices. And they can also carry requests defined by a class or vendor for any

other purpose.

Availability

Every device must support control transfers over the default pipe at End-
point 0. A device may also have additional pipes configured for control

USB Complete 71

Chapter 4

transfers, but in reality there’s no need for more than one. Even if a device
needs to send a lot of control requests, the host may allocate bandwidth
according to the number and size of requests, rather than by the number of
control pipes, so additional control endpoints would offer no advantage.

Structure

72

As Chapter 3 explained, control transfers use a defined structure with two or
three stages: Setup, Data (optional), and Status. A stage consists of one or
more transactions.

Every control transfer must have Setup and Status stages. The Data stage is
optional, though a particular request may require it. Because every control
transfer requires transferring information in both directions, the control
transfer’s message pipe uses both the IN and OUT addresses of the end-
point.

In a control Write transfer, the data in the Data stage travels from the host to
the device. In a control Read transfer, data in the Data stage travels from the
device to the host. Figure 4-1 and Figure 4-2 show the stages of control
Read and Write low- and full-speed transfers on a low/ full-speed bus. There
are differences, described later in this chapter, for some high-speed transfers
and for low- and full-speed transfers with 2.0 hubs.

In the Setup stage, the host begins a Setup transaction by sending informa-
tion about the request. The token packet contains a PID that identifies the
transfer as a control transfer. The data packet contains information about
the request, including the request number, whether or not the transfer has a
Data stage, and if so, in which direction the data will travel.

The USB specification defines 11 standard requests. Successful enumeration
requires specific responses to some requests, such as the one that sets the
device’s address. For other requests, a device can return a code that indicates
that the request isn't supported. A specific class may require a device to sup-
port class-specific requests, and any device may support vendor-specific or
device-specific requests.

USB Complete

CONTROL WRITE TRANSFER,
TOKEN PACKET
HOST » DEVICE

A Transfer Type for Every Purpose

SETUP TRANSACTION
DATA PACKET
HOST > DEVICE

HANDSHAKE PACKET
DEVICE > HOST

IDLE — SETUP DATA ACK —— IDLE
DATAQ
THE HOST SENDS THE HOST SENDS THE DEVICE
A SETUP PACKET. THE REQUEST. MUST RETURN
THIS PACKET 1§ AN ACK.
ALWAYS 8 BYTES.
CONTROL WRITE TRANSFER, DATA TRANSACTION(S)
A CONTROL WRITE TRANSFER MAY HAVE @ OR MORE DATA TRANSACTIONS.
TOKEN PACKET DATA PACKET HANDSHAKE PACKET
HOST > DEVICE HOST » DEVICE DEVICE) HOST
IDLE—— ouUT DATA ACK —— IDLE
THE FIRST DATA
PACKET 1S DATAL.
ANY DATA PACKETS NAK —— IDLE
THAT FOLLOW
ALTERNATE DATA®/1.
STALL | IDLE
DATA ERROR IOLE
THE HOST SENDS THE HOST SENDS THE DEVICE
AN “QUT" PACKET. DATA. RETURNS
STATUS.
CONTROL WRITE TRANSFER, STATUS TRANSACTION
TOKEN PACKET DATA PACKET HANDSHAKE PACKET
HOST » DEVICE DEVICE » HOST HOST > DEVICE
] @-LENGTH
IDLE IN BATA ACK IDLE
DATAI
NAK | 1DLE M.QL IDLE
STALL [IDLE
DATA ERROR IDLE
THE HOST SENDS THE DEVICE IF THE HOST
AN "IN PACKET. RETURNS RECEIVED THE
STATUS. DATA WITHOUT

ERROR, 1T
RETURNS AN ACK.

Figure 4-1: A control Write transfer contains a Setup transaction, zero or more
Data transactions, and a Status transaction. Not shown are the PING protocol
used in high-speed transfers with multiple data packets and the split transactions
used with low- and full-speed devices on a high-speed bus.

USB Complete

73

Chapter 4

CONTROL READ TRANSFER,
TOKEN PACKET

HOST > DEVICE

[DLE —— SETUP

SETUP TRANSACTION
DATA PACKET

HOST > DEVICE

HANDSHAKE PACKET
DEVICE > HOST

THE HOST SENDS
A SETUP PACKET.

DATA ACK | IDLE
DATA®
THE HOST SENDS THE DEVICE
THE DATA. MUST RETURN
AN ACK .

THIS PACKET 1S
ALWAYS 8 BYTES.

CONTROL READ TRANSFER,
A CONTROL READ TRANSFER MAY HAVE 1

TOKEN PACKET
HOST > DEVICE

[DLE ——

IN

DATA TRANSACTION(S)

DATA PACKET
DEVICE > HOST

OR MORE DATA TRANSACTIONS.

HANDSHAKE PACKET
HOST > DEVICE

ACK —— IDLE

DATA

THE HOST SENDS
N

AN

THE FIRST DATA
PACKET 1S DATAIL.
ANY DATA PACKETS
THAT FOLLOW
ALTERNATE DATA®/1.

STALL [~ 1D

DATA ERROR

THE DEVICE
SENDS DATA
OR ANOTHER
RESPONSE .

]

DATA ERROR IDLE

NAK — IDLE

LE

LE
I+ THE HOST
RECEIVED THE
DATA WITHOUT
ERROR, IT
RETURNS AN ACK.

CONTROL READ TRANSFER,
TOKEN PACKET

HOST > DEVICE

IDLE —

ouT

STATUS TRANSACTION
DATA PACKET

HOST > DEVICE

HANDSHAKE PACKET
DEVICE > HOST

THE HOST SENDS
AN "OUT"

0-LENGTH
DATA

DATAL

THE HOST SENDS
A @-LENGTH DATA
PACKET.

ACK — IDLE
NAK — IDLE
STALL — IDLE

DATA ERROR |

THE DEVICE
RETURNS
STATUS.

DLE

Figure 4-2: A control Read transfer contains a Setup transaction, one or more
data transactions, and a status transaction. Not shown are the split
transactions used with low- and full-speed devices on a high-speed bus.

74

USB Complete

A Transfer Type for Every Purpose

When a Dara stage is present, it consists of one or more IN or OUT transac-
tions, also called Data transactions. Depending on the request, the host or
peripheral may be the source of these transactions, but all data packets in
this (or any) stage must be in the same direction.

As described in Chapter 3, if a high-speed control Write transfer has more
than one data packet in the Data stage, and if the device returns NYET after
receiving a data packet, the host uses the PING protocol before sending the
next packet.

The Status stage consists of one IN or OUT transaction, also called the sta-
tus transaction. In the Status stage, the device reports the success or failure
of the previous stages. The source of the Status stage’s dara packet is the
receiver of the data in the previous Data transaction. When there is no Data
stage, the device sends the Status stage’s data packet. The data or handshake
packet sent by the device in the Status stage contains a code that indicates
the success or failure of the transfer’s Setup and Data stages.

If a host is doing a control transfer with a low- or full-speed device on a
high-speed bus, the host uses the split transactions described in Chapter 3
for all of the transfer’s transactions. To the device, the transaction is no dif-
ferent. The device’s hub carries out the transaction with the device and
reports back to the host when requested.

Data Size

The maximum size of the data packet in the Data stage varies with the
device’s speed. For low-speed devices, the maximum is 8 bytes. For full
speed, the maximum may be 8, 16, 32, or 64 bytes. For high speed, the
maximum must be 64 bytes. These bytes include only the information

transferred in the data packet, excluding the PID and CRC bits.

All data packets except the last must be the maximum packet size. T he host
reads the maximum packet size from the descriptors retrieved during enu-
meration. For the Default Control Pipe, the size is in the device descriptor.
For other control endpoints, the size is in the endpoint descriptor. If a trans-
fer has more data than will fit in one data transaction, the host sends or
requests the data in multiple transactions.

USB Complete 75

Chapter 4

In some control Read transfers, the amount of data returned by the device
can vary. If the amount is less than the requested number of bytes and an
even multiple of the maximum packet size, the device should indicate that
there is no more data to send by returning a 0-byte data packet in response
to the next IN token packet.

Speed

76

The host must make its best effort to ensure that all control transfers get
through as quickly as possible. The host controller reserves a portion of the
bus bandwidth for control transfers: 10 percent for low and full speed and
20 percent for high speed. If the control transfers don’t need this much time,
bulk transfers may use what remains. If the bus has unused bandwidth, con-
trol transfers may use more than the reserved amount.

The host attempts to parcel out the available time as fairly as possible to all
requests. Within a transfer, one frame or microframe may carry multiple
transactions, or the transactions may be in different (micro)frames.

There are two opinions on whether control transfers are appropriate for
transferring data other than configuration data. Some say that control trans-
fers should be reserved for servicing the standard USB requests as much as
possible. This helps to ensure that the transfers complete quickly by keeping
the bandwidth reserved for them as open as possible. But the specification
doesn’t forbid other uses for control transfers, and others believe that devices
should be free to use control transfers for any purpose. Low-speed devices
have no other choice except periodic interrupt transfers, which can waste
bandwidth if data transfers are infrequent.

Table 4-1 compares the amount of data that each transfer type can move at
cach of the three speeds. Control transfers aren’t the most efficient way to
transfer data. In addition to the data being transferred, each transfer with
one data packet has an overhead of 63 bytes (low speed), 45 bytes (full
speed), or 173 bytes (high speed). Each Data stage requires token and hand-
shake packets, so stages with larger data packets are more efficient.

A single low-speed control transfer with 8 data bytes uses 29% of a frame’s
bandwidth, though the transfers individual transactions may be spread

USB Complete

A Transfer Type for Every Purpose

Table 4-1: The maximum possible rate of data transfer varies greatly with the
transfer type and bus speed.

Transfer Type Maximum data-transfer rate per endpoint (kilobytes/second with
data payload/transfer = maximum packet size for the speed)
Low Speed Full Speed High Speed

Control 24 832 15,872

Interrupt 0.8 64 24,576

Bulk not allowed 1216 53,248

Isochronous 1023 24,576

among multiple frames. In a control transfer with multiple data packets in
the data stage, the data may transfer in the same or different (micro)frames.

If the bus is very busy, all control transfers may have to share the reserved
portion of the bandwidth. At low speed, the reserved bandwidth requires
three frames to complete one 8-byte transfer. At full speed, the reserved
bandwidth can carry one 64-byte transfer per frame (though again, any one
transfer may be spread over multiple frames). And at high speed, the
reserved bandwidth can carry six 64-byte transfers per microframe, or 512
per frame.

Devices don't have to respond immediately to control-transfer requests. The
specification has timing limits that apply to most requests. However, a
device class may require faster response to standard and class-specific
requests. Where stricter timing isnt specified, in a transfer where the host
requests data from the device, the device may delay as long as 500 millisec-
onds before it has the data ready for the host. To find out if data is available,
the host sends a token packet requesting the darta. If the data is ready, the
device sends it immediately in that transaction’s data packet. If not, the
device returns a NAK to advise the host to retry later. The host keeps trying
at intervals, for up to 500 milliseconds.

In a transfer where the host sends data to the device, the device can delay as
long as 5 seconds before accepting all of the data and completing the Status
stage. The 5 seconds doesnt include any delays the host adds berween pack-
ets. In a transfer with no Data stage, the device must complete the request
and the Status stage within 50 milliseconds.

USB Complete 77

Chapter 4

Detecting and Handling Errors

If a device doesnt return an expected handshake packet during a control
transfer, the host tries twice more. If the host receives no response after a
total of three tries, it notifies the software that requested the transfer and
stops communicating with the endpoint until the problem is corrected. The
two retries include only those sent in response to no handshake ar all. A
NAK isn’t an error.

Control transfers use data-toggle bits to ensure that no data is lost. In the
data stage of a Control Read transfer, on receiving a data packet from the
device, the host normally returns an ACK, then sends an OUT token packet
to begin the Status stage. If the device for any reason doesn’t see the ACK
returned after the transfer’s final data packet, it must interpret a received
OUT token packet as evidence that the handshake was returned and the
Status stage can begin.

Devices must accept all Setup packets. If a new Setup packer arrives before a
previous transfer completes, the device must abandon the previous transfer
and start the new one.

Bulk Transfers

Bulk transfers are useful for transferring data when time isnt critical. A bulk
transfer can send large amounts of data without clogging the bus, because
the transfers defer to the other transfer types and wait until time is available.
Uses for bulk transfers include sending data from the host to a printer, send-
ing data from a scanner to the host, and reading and writing to a disk. On
an otherwise idle bus, bulk transfers are the fastest transfer type.

Availability

Only full- and high-speed devices can do bulk transfers. Devices aren’t
required to support bulk transfers, though a specific device class may require
it.

78 USB Complete

A Transfer Type for Every Purpose

Structure

A bulk transfer consists of one or more IN or OUT transactions (Figure
4-3). A bulk transfer is one-way. A transfer’s transactions must all be TN
transactions, or all OUT transactions. Transferring data in both directions
requires a separate pipe and transfer for each direction.

A bulk transfer ends in one of two ways: when the requested amount of data
has transferred, or when a data packet contains less than the maximum data,
including a zero-length packet.

To conserve bus time, the host uses the PING protocol in some high-speed
control transfers. If a high-speed bulk OUT transfer has more than one data
packet and if the device returns NYET after receiving one of these packets,
the host uses PING to find out when it'’s OK to begin the next data transac-
tion. In a bulk transfer on a high-speed bus with a low- or full-speed device,
the host uses split transactions for all of the transfer’s transactions.

Data Size

A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or
64 bytes. For high speed, the maximum must be 512 bytes. During enumer-
ation, the host reads the maximum packet size for each bulk pipe from the
device’s descriptors. The amount of data in a transfer may be less than, equal
to, or greater than the maximum size. If the amount of data won't fit in a
single packet, the host completes the transfer using multiple transactions.

Speed

The host controller guarantees that bulk transfers will complete eventually,
but doesn’t reserve any bandwidth for the transfers. Control transfers are
guaranteed to have 10 percent of the bandwidth at low and full speeds, and
20 percent at high speed. Interrupt and isochronous transfers may use the
rest. So if a bus is very busy, a bulk transfer may take very long.

However, when the bus is otherwise idle, bulk transfers can use the most
bandwidth of any type, and they have a low overhead, so they're the fastest
of all. When an endpoint’s maximum packet size is less than the maximum,

USB Complete 79

Chapter 4

BULK OR INTERRUPT IN TRANSACTION

TOKEN PACKET
HOST > DEVICE

DATA PACKET
DEVICE > HOST

HANDSHAKE PACKET
HOST > DEVICE

IDLE — IN

THE HOST SENDS
AN "IN" PACKET.

WITH DATA OR STATUS.

BULK OR INTERRUPT OUT TRANSACTION

TOKEN PACKET
HOST > DEVICE

DATA PACKET
HOST » DEVICE

DATA ACK — IDLE
NAK — IDLE DATA ERROR IDLE
STALL —— IDLE

THE DEVICE RESPONDS [F THE HOST

RECEIVED THE
DATA WITHOUT
ERROR, 1IT
RETURNS AN ACK.

HANDSHAKE PACKET
DEVICE > HOST

IDLE —— ouT

THE HOST SENDS

AN "OUT" PACKET.

DATA

THE HOST SENDS
DATA.

ACK —— IDLE
NAK — IDLE
STALL — IDLE
DATA ERROR IDLE
THE DEVICE
RETURNS
STATUS.

Figure 4-3: Bulk and interrupt transfers use IN and OUT transactions. Their
structure is identical, but the host schedules them differently. Not shown are the
PING protocol used in high-speed bulk OUT transfers with multiple data packets
or the split transactions used with low- and full-speed devices on a high-speed

bus.

80

USB Complete

A Transfer Type for Every Purpose

some hosts schedule no more than one packet per frame, even if more band-
width is available.

At full speed on an otherwise idle bus, up to nineteen 64-byte bulk transfers
can transfer up to 1216 data bytes per frame, for a data rate of 1.216 Mega-
bytes per second. This leaves 18% of the bus bandwidth free for other uses.
The protocol overhead for a bulk transfer with one data packet is 13 bytes at
full speed and 55 bytes at high speed.

At high speed on an otherwise idle bus, up to thirteen 512-byte bulk trans-
fers can transfer up to 6656 data bytes per microframe, for an impressive
data rate of 53.248 Megabytes per second, using all but 2% of the bus band-
width. The protocol overhead for a bulk transfer with one data packet is 55
bytes.

Detecting and Handling Errors

Bulk transfers use error detecting. If a device doesnt return an expected
handshake packet, the host tries up to twice more. The host will also retry
without limit on receiving NAK handshakes. Bulk transfers use data-toggle
bits to ensure that no data is lost.

Interrupt Transfers

Interrupt transfers are useful when data has to transfer within a specific
amount of time. Typical applications include keyboards, mice and other
pointing devices, joysticks, and hub status reports. Users dont want a
noticeable delay between pressing a key or moving a mouse and seeing the
result on screen. And a hub needs to report the attachment or removal of
devices promptly. Low-speed devices, which support only control and inter-
rupt transfers, are likely to use interrupt transfers for generic data. Interrupt
transfers are also popular because Windows includes drivers that enable
applications to do interrupt transfers with devices that conform to the HID
specification.

USB Complete 81

Chapter 4

At low and full speeds, the bandwidth available for an interrupt endpoint is
limited, but high speed loosens the limits and enables an interrupt endpoint
to transfer almost 400 times as much dara as full speed.

The name interrupt transfer suggests that a device can cause a hardware
interrupt that results in a fast response from the PC. But the truth is that
interrupt transfers, like all other USB transfers, occur only when the host
polls a device. The transfers are interrupt-like, however, because they guar-
antee that the host will request or send data with minimal delay.

Availability

All three speeds support interrupt transfers. Devices aren’t required to sup-
port interrupt transfers, but a device class may require it. For example, a
HID-class device must support interrupt IN transfers for sending data to

the host.

Structure

82

An interrupt transfer consists of one or more IN transactions or one or more
OUT transactions. The structure of an interrupt transfer is identical to that
of a bulk transfer (Figure 4-3). The only difference is in the scheduling. An
interrupt transfer is one-way; the transactions must be all IN transactions, or
all OUT transactions. Transferring data in both directions requires a sepa-
rate transfer and pipe for each direction.

An interrupt transfer ends in one of two ways: when the requested amount
of data has transferred, or when the data packet contains less than the maxi-
mum data, including a zero-length packer.

In an interrupt transfer on a high-speed bus with a low- or full-speed device,
the host uses the split transactions described in Chapter 3 for all of the
transfer’s transactions. Unlike high-speed bulk OUT transfers, high-speed
interrupt OUT cransfers don’ use the PING protocol when a transfer has
multiple transactions.

USB Complete

A Transfer Type for Every Purpose

Data Size

For low-speed devices, the maximum packet size can be any value from 1 to
8 bytes. For full speed, the maximum can range from 1 to 64 bytes. For high
speed, the range is 1 to 1024 bytes. If the amount of data in a transfer won't
fit in a single transaction, the host uses multiple transactions to complete the
transfer.

Speed

An interrupt transfer guarantees a maximum latency, or time between trans-
action attempts. In other words, there is no guaranteed transfer rate, just the
guarantee that there will be no more than the request maximum latency
between transaction attempts.

High-speed interrupt transfers can be very fast. A high-speed transfer can
request up to three 1024-byte packets in each 125-microsecond microframe,
which works out to 24.576 Megabytes per second. An endpoint that
requires more than 1024 bytes per microframe is a high-bandwidth end-
point. A full-speed transfer can request up to 64 bytes in each 1-millisecond
frame, or 64 kilobytes per second. And a low-speed transfer can request up
to 8 bytes every 10 milliseconds, or 800 bytes per second.

The endpoint descriptor stored in the device specifies the maximum latency.
For low-speed devices, the maximum latency can be any value between 10
and 255 milliseconds. For full speed, it can be anywhere between 1 and 255
milliseconds. For high speed, the range is from 125 microseconds to 4 sec-
onds, in increments of 125 microseconds (the width of a microframe). In
addition, a high-speed interrupt endpoint with a maximum latency of 125
microseconds can request 1, 2, or 3 transactions per interval. The host con-
troller ensures that transaction attempts occur within the specified time.

The host may begin each transaction at any time up to the specified maxi-
mum, compared to when the previous transaction began. So, for example,
with a 10-millisecond maximum at full speed, 5 transfers could take as long
as 50 milliseconds or as little as 5 milliseconds. However, OHCI host con-
trollers use values that correspond to powers of 2, with a maximum of 32
milliseconds. So for a full-speed device that requests a maximum anywhere

USB Complete 83

Chapter 4

from 8 to 15 milliseconds, the OHCI host begins a transaction every 8 mil-
liseconds. A maximum latency anywhere from 32 to 255 will cause a trans-
action attempt every 32 milliseconds. However, a device should assume only
that the host will comply with the specification. The device shouldn’t rely on
behavior that is specific to a type of host controller.

Because the host is free to transfer data more quickly than the requested rate,
interrupt transfers don't guarantee a precise rate of delivery. The only excep-
tions are when the maximum latency equals the fastest possible rate. For
example, with a 1.x host, a full-speed interrupt pipe configured for 1 trans-
action per millisecond will use this exact rate.

An otherwise idle bus can carry up to six low-speed, 8-byte transactions per
frame. At full speed, the limit is nineteen 64-byte transactions. Since the
minimum time between transfers is one frame or more, each transaction in
the frame would have to be for a different endpoint address. In reality, a host
may not be able to schedule as many as nineteen full-speed interrupt trans-
actions in a single frame, so the practical maximum number of interrupt
transactions is likely to be less.

At high speed, the limit is two transfers per microframe, each consisting of
three 1024-byte transactions.

The protocol overhead per transfer with one data packet is 19 bytes at low
speed, 13 bytes at full speed, and 55 bytes at high speed. High-speed inter-
rupt and isochronous transfers combined can use no more than 80 percent
of a microframe. Full-speed isochronous transfers and low- and full-speed
interrupt transfers combined can use no more than 90 percent of a frame.
The section More abous Time-critical Transfers later in this chapter has more
about the capabilities and limits of interrupt transfers.

Detecting and Handling Errors

84

If a device doesn’t return an expected handshake packet, host controllers in
PCs will retry up to twice more. The host will also retry without limit on
receiving NAKs. Interrupt transfers can use data-toggle values to ensure that
all data is received without errors. As explained eatlier, if the receiver cares
only about the most recent data, it may ignore the data toggle.

USB Complete

A Transfer Type for Every Purpose

Isochronous Transfers

Isochronous transfers are streaming, real-time transfers that are useful when
data must arrive at a constant rate, or by a specific time, and occasional
errors can be tolerated. At full speed, isochronous transfers can transfer more
data per frame than interrupt transfers. But there is no provision for retrans-
mitting data received with errors.

Examples of uses for isochronous transfers include encoded voice and music
to be played in real time. But data that will eventually be used at a constant
rate doesn’t necessarily require an isochronous transfer. For example, a host
may use a bulk transfer to send a music file to a device. After the device has
received the entire file, it can play it at the appropriate rate.

Nor does the data in an isochronous transfer have to be used at a constant
rate. An isochronous transfer is a way to ensure that a large block of dara gets
through quickly on a busy bus, even if the data doesn’t need to transfer in
real time. Unlike with bulk transfers, once an isochronous transfer begins,
the host guarantees that the time will be available to send the data at a con-
stant rate, so the completion time is predictable.

Availability

Only full- and high-speed devices can do isochronous transfers. Devices
aren’t required to support isochronous transfers but a device class may
require it.

Structure

Tsochronous means that the data has a fixed transfer rate, with a defined num-
ber of bytes transferring in every frame or microframe. None of the other
transfer types guarantee to send a specific number of bytes in each frame
(with the exception of interrupt transfers with the shortest possible maxi-
mum latency).

A full-speed isochronous transfer consists of one IN or OUT transaction per
frame in one or more frames at equal intervals. High-speed isochronous
transfers are more flexible. They can request as many as three transactions

USB Complete 85

Chapter 4

per microframe or as little as one transaction every 32,768 microframes. Fig-
ure 4-4 shows the packets in full-speed isochronous IN and OUT transac-
tions. An isochronous transfer is one-way; the transactions in a transfer must
all be IN transactions, or all OUT transactions. Transferring data in both
directions requires a separate transfer and pipe for each direction.

Before configuring a pipe for isochronous transfers, the host controller com-
pares the requested buffer size with the available remaining, unreserved
bandwidth on the bus to determine whether the requested bandwidth is
available. A full-speed transfer with the maximum 1023 bytes per frame uses
69 percent of the USB’s bandwidth. If two full-speed devices want to estab-
lish pipes for transferring 1023 bytes per frame, the host will refuse to con-
figure the second pipe because the data won't fit in the remaining
bandwidth. If the device supports an alternate interface with smaller data
packets or fewer packets per microframe, the device driver can request this.

[SOCHRONOUS IN TRANSACTION

TOKEN PACKET DATA PACKET
HOST > DEVICE DEVICE > HOST
IDLE —o IN DATA —— IDLE
DATAO
THE HOST SENDS THE DEVICE RESPONDS
AN "IN" PACKET. WITH DATA.

[SOCHRONOUS OUT TRANSACTION

TOKEN PACKET DATA PACKET
HOST > DEVICE HOST > DEVICE
IDLE —— ouT DATA —— IDLE
DATAOQ
THE HOST SENDS THE HOST SENDS
AN "OUT" PACKET. DATA.

Figure 4-4: Isochronous transfers don’t have handshake packets, so occasional
errors must be acceptable. Not shown are the split transactions used with
full-speed devices on a high-speed bus or the data sequencing in high-speed
transfers with multiple data packets per microframe.

86 USB Complete

A Transfer Type for Every Purpose

Or the driver can try again later in the hope that the bandwidth will be
available. When the device is configured, the transfers are guaranteed to
have the time they need.

Although isochronous transfers may send a fixed number of bytes per frame,
the data doesn' transfer at a constant number of bits per second. Each trans-
action has overhead and must share the bus with other devices. So the data is
actually a burst at 12 or 480 Megabits per second that may occur any time
within the frame or microframe. If the receiving end wants to use the data at
a constant rate, such as sending it to a speaker, the receiver must convert the
received bits to signals that span the frame time.

Isochronous transfers may also synchronize to another data source or recipi-
ent, or to USB’s Start-of-Frame signals. For example, a microphone’s input
may synchronize to the output of speakers. The specification describes sev-
eral methods of synchronizing to internal and external clocks. The descrip-
tor for a 2.0 isochronous endpoint can specify a synchronization type and a
usage value that indicates whether the endpoint is contains data or feedback
information used to maintain synchronization.

If a host is doing an isochronous transfer on a high-speed bus with a
full-speed device, the host uses the split transactions described in Chapter 3
for all of the transfers transactions. Isochronous OUT transactions use
start-split transactions, but not complete-splits, because there is no status
information to report back to the host. Isochronous transfers don't use the

PING protocol.

Data Size

For full-speed endpoints, the maximum packet size can range from 0 to
1023 data bytes. High-speed endpoints can have a maximum packet size up
to 1024 bytes. If the amount of data won' fit in a single packet, the host
completes the transfer in multiple transactions.

The amount of data in each frame doesn’t have to be the same. For example,
data at 44,100 samples per second could use a sequence of 9 frames contain-
ing 44 samples each, followed by 1 frame containing 45 samples.

USB Complete 87

Chapter 4

Speed

A full-speed isochronous transaction can transfer up to 1023 bytes per
frame, or up to 1.023 Megabytes per second. This leaves 31% of the bus
bandwidth free for other uses. The protocol overhead is 9 bytes per transfer
for a transfer with one data packet, or less than 1% for a single 1023-byte
transaction. The minimum requested bandwidth for a full-speed transfer is
one byte per frame, or 1 kilobyte per second.

A high-speed isochronous transaction can transfer up to 1024 bytes. An iso-
chronous endpoint that requires more than 1024 bytes per microframe can
request 2 or 3 transactions per microframe, for a maximum rate of 24.576
Megabytes per second. An endpoint that requires multiple transactions per
microframe is a high-bandwidth endpoint. The protocol overhead is 38
bytes per transfer for a transfer with one data packet.

Because high-speed isochronous transfers dont have to do a transaction in
every frame or microframe, they can also request less bandwidth than
full-speed transfers. The minimum requested bandwidth is one byte every
32,678 microframes, which works out to one byte every 4.096 seconds.
However, any endpoint can transfer less data than the maximum reserved
bandwidth by skipping available transactions or transferring less than the
maximum data per transfer.

High-speed interrupt and isochronous transfers can use no more than 80
percent of a microframe. Full-speed isochronous transfers and low- and
full-speed interrupt transfers combined can use no more than 90 percent of
of a frame. An otherwise idle high-speed bus can carry two isochronous
transfers at the maximum rate.

The section More about Time-critical Transfers later in this chapter has more
about the capabilities of isochronous transfers.

Detecting and Handling Errors

The price to pay for guaranteed on-time delivery of large blocks of data is no
error correcting. Isochronous transfers are intended for uses where occa-
sional, small errors are acceptable. For example, listeners may tolerate or not

88 USB Complete

A Transfer Type for Every Purpose

notice a short dropout in voice or music. And in reality, under normal cir-
cumstances, a USB transfer should experience no more than a very occa-
sional error due to line noise. Because isochronous transfers must keep to a
schedule, the receiver cant request a retransmit of data if it’s busy or detects
an error. If the receiver suspects errors, it can ask the sender to resend the
entire transfer, but this isn’t very efficient.

More about Time-critical Transfers

Just because an endpoint is capable of a rate of data transfer doesn't mean
that a particular device and host will be able to achieve it. Several things can
limit an application’s ability to send or receive data at the maximum rate
that an endpoint and host controller are capable of. The limiting factors
include bus bandwidth, the device’s capabilities, the capabilities of the
device driver and application software, and the latencies due to how Win-
dows manages multi-tasking.

Bus Bandwidth

When a device requests more interrupt or isochronous bandwidth than is
available, the host will refuse to configure the device. Low- and full-speed
interrupt transfers use little bandwidth, so the host isnt likely to deny a con-
figuration due to the requirements of these. High-speed interrupt transfers
are a different story. A high-speed endpoint can request up to three
1024-byte data packets in each microframe, using as much as 40 percent of
the bus bandwidth. To help ensure that devices will enumerate without
problems, the initial, default data payload of an interrupt endpoint must be
64 bytes or less. The device driver is then free to try to increase the end-
point’s reserved bandwidth by requesting alternate interface settings or con-
figurations.

Isochronous endpoints can also cause bandwidth problems. A frequent
problem with isochronous endpoints on 1.x devices was devices requesting
more bandwidth than was available. The host would properly refuse to con-
figure the device and the user was left with a device that didn't work without
knowing why.

USB Complete 89

Chapter 4

To help ensure that devices will enumerate without problems, the default
interface setting of a 2.0-compliant device must use no isochronous band-
width. In other words, the default interface can transfer no isochronous data
at all. An obvious way to ensure this is to include no isochronous endpoints
in the default interface. After enumeration, the device driver is free to
attempt to request isochronous bandwidth by requesting an alternate inter-
face or configuration with an isochronous endpoint. Note that even
full-speed endpoints must meer this requirement to be 2.0-compliant.
Microsoft and Intel’s PC 2001 System Design Guide also requires the default
interface setting to use zero isochronous bandwidth.

Device Capabilities

If the host has promised that the requested USB bandwidth will be avail-
able, there’s still no guarantee that the device will be ready to send or receive
data when needed.

To use interrupt and isochronous transfers effectively, both the sender and
receiver have to be capable of sending and receiving at the desired rate. If the
device is sending data, it must write the data to send into the transmit buffer
in time to enable the hardware to place it on the bus when the host requests
it. If the device is receiving data, it must read the previous data from its
buffer before the new dara arrives, or either the old data will be overwritten
or the device will refuse the new data.

One way o help ensure that the device is always ready for a transfer is to use
double buffering, as described in Chapter 7. This gives the firmware extra
time to load the next data to transfer or to retrieve the just-received data.

Host Software Capabilities

90

Another thing that can affect whether or not all available transfers take place
is the capabilities of the device driver and application software on the host.

A device driver requests a transfer by submitting an /O request packet

(IRP) to a lower-level driver. For interrupt and isochronous transfers, if there
is no outstanding IRP for an endpoint when its scheduled time comes up,
the transaction is skipped. To ensure that no transfer opportunities are

USB Complete

A Transfer Type for Every Purpose

missed, drivers typically submit a new IRP immediately on completing the
previous one.

For some devices, including keyboards and mice, the driver begins to
request interrupt transfers as soon as the driver is loaded into memory. For
other devices, the host’s driver may begin requesting transfers only after an
application requests to send or receive data.

The application software that uses the data also has to be able to keep up
with the transfers. For example, the driver for HID-class devices places
report data received in interrupt transfers in a buffer, and applications use
ReadFile to retrieve reports from the buffer. If the buffer is full when a new
report arrives, the driver discards the oldest report and replaces it with the
newest one. If the application can’t keep up, some reports are lost. In some
cases, applications can increase the size of the buffer the driver uses to store
received data. This can help if the application is sometimes busy, buc at
other times is free to retrieve the darta.

As a general rule, Visual-Basic applications are slower than applications

compiled with Visual C++ or Delphi.

One way to help ensure that an application sends or receives data with min-
imal delays is to place the code that communicates with the device driver in
its own program thread. The thread should have few responsibilities other
than managing these communications. In Visual Basic, an ActiveX Exe
server can run in its own thread and communicate with an application.

Doing fewer, larger transfers rather than multiple, small transfers can also
help. When there are multiple transactions per transfer, the lower-level driv-
ers take care of the scheduling. An application can typically send or request a
few large chunks of data more quickly than it can send or request many
smaller chunks.

Windows Latencies

Another factor in the performance of time-critical USB transfers is the laten-
cies, or delays, due to how Windows handles multi-tasking. Windows was

USB Complete 91

Chapter 4

92

never designed as a real-time operating system that could guarantee a rate of
data transfer with a peripheral.

Multi-tasking means that multiple program threads can run at the same
time. The operating system grants a portion of the available time to each
thread. Different threads can have different priorities, but under Windows
98, Windows 2000, and Windows Me, no thread can be guaranteed CPU

time at a defined, precise rate, such as once per millisecond.

Latencies under Windows are often well under 1 millisecond, but in some
cases a thread can keep other code from executing for over 100 milliseconds.
Windows 98’s performance tends to be worse than that of Windows 2000 or
Windows Me in this respect.

A USB device and its software have no control over what other tasks the
host CPU is performing, so dealing with these latencies can be one of the
biggest challenges when timing is critical.

In general, ic’s best to let the device handle any real-time processing required
and make the timing of the host communications as non-critical as possible.
For example, imagine a device that reads a sensor once per millisecond. The
device could attempt to send each reading to the host in a separate interrupt
transfer, but this would require the driver and application to be able to read
a transfer every millisecond. If the device instead collects a series of readings
and transfers them using less frequent, but larger transfers, the timing in the
host software is less critical. Data compression can also help by reducing the
amount of data that transfers.

USB Complete

Enumeration: How the Host Learns about Devices

Enumeration:
How the Host Learns
about Devices

Before applications can communicate with a device, the host needs to learn
about the device and assign a device driver. Enumeration is the initial
exchange of information that accomplishes this. The process includes
assigning an address to the device, reading data structures from the device,
assigning and loading a device driver, and selecting a configuration from the
options presented in the retrieved data. The device is then configured and
ready to transfer data using any of the endpoints in its configuration.

This chapter describes the enumeration process, including the structure of
the descriptors that the host reads from the device during enumeration. You
don’t need to know every detail about enumeration in order to design a USB
peripheral, but understanding a certain amount is essential in creating the

USB Complete 93

Chapter 5

descriptors that will reside in the device and writing the firmware that
responds to enumeration requests.

The Process

94

One of the duties of a hub is to detect the attachment and removal of
devices. Each hub has an interrupt IN pipe for reporting these events to the
host. On system boot-up, the host polls its root hub to learn if any devices
are attached, including additional hubs and devices attached to the first tier
of devices. After boot-up, the host continues to poll periodically to learn of
any newly attached or removed devices.

On learning of a new device, the host sends a series of requests to the
device’s hub, causing the hub to establish a communications path between
the host and the device. The host then attempts to enumerate the device by
sending control transfers containing standard USB requests to Endpoint 0.
All USB devices must support control transfers, the standard requests, and
Endpoint 0. For a successful enumeration, the device must respond to cach
request by returning the requested information and taking other requested
actions.

From the user’s perspective, enumeration should be invisible and automatic,
except for possibly a window that announces the detection of a new device
and whether or not the attempr to configure it succeeded. Sometimes on
first use, the user needs to provide a disk containing the INF file and device
driver.

When enumeration is complete, Windows adds the new device to the
Device Manager display in the Control Panel. Figure 5-1 shows an example.
To view the Device Manager, in Windows 98, click the Start menu > Set-
tings > Control Panel >System > Device Manager. In Windows 2000, it’s the
same except that after clicking System, you click Hardware, then Device
Manager. When a user disconnects a peripheral, Windows automatically
removes the device from the display.

USB Complete

Enumeration: How the Host Learns about Devices

ﬁj kdonitars

) Mouse

8 Network adapters
Y Ports (COM & LPT)

oy
S controllers

o

-y Sound, video and game controllers
Systern devices
@ Tape drive controllers
O Tape dives
ﬁ#’ Universal Serial Bus controllers
K Ez%b General purpose USE Hub
B ﬁ%‘ Intel B2371AB/EB PClHo USE Universal Host Controller
g RDC-G000
: ﬁb USE Root Huh

Figure 5-1: The Device Manager in Windows’ Control Panel lists all detected
USB devices. Some devices are listed under Universal Serial Bus controllers,
and others are listed by type, such as keyboard or modem.

In a typical peripheral, the device’s program code contains the information
the host will request, and a combination of hardware and firmware decodes
and responds to requests for the information. Some application-specific
chips (ASICs) manage the enumeration entirely in hardware and require no
firmware support. On the host side, under Windows there’s no need to write
code for enumerating, because Windows handles it automatically. Windows
will look for a special text file called an INF file that identifies the driver to
use for the device.

Enumeration Steps

During the enumeration process, a device moves through four of the six
device states defined by the specification: Powered, Default, Address, and

USB Complete 95

Chapter 5

96

Configured. (The other states are Attached and Suspend.) In each state, the

device has defined capabilities and behavior.

The steps below are a typical sequence of events that occurs during enumer-
ation under Windows. The device firmware shouldn’t assume that the enu-
meration requests and events will occur in a particular order, however. The
device should be ready to detect and respond to any control request at any
fime.

1. The user plugs a device into a USB port. Or the system powers up with
a device already plugged into a port. The port may be on the root hub at the
host or attached to a hub that connects downstream of the host. The hub
provides power to the port, and the device is in the Powered stare.

2. The hub detects the device. The hub monitors the voltages on the signal
lines of each of its ports. The hub has a 15-kilohm pull-down resistor on
each of the ports two signal lines (D+ and D-), while a device has a
1.5-kilohm pull-up resistor on either D+ for a full-speed device or D- for a
low-speed device. High-speed devices attach at full speed. When a device
plugs into a port, the device’s pull-up brings that line high, enabling the hub
to detect that a device is attached. Chapter 18 has more on how hubs detect
devices.

On detecting a device, the hub continues to provide power but doesn’t yet
transmit USB traffic to the device, because the device isn't ready to receive it.

3. The host learns of the new device. Each hub uses its interrupt pipe to
report events at the hub. The report indicates only whether the hub or a
port (and if so, which port) has experienced an event. When the host learns
of an event, it sends the hub a Get Port_Status request to find out more.
Get_Port_Status and the other requests described here are standard
hub-class requests that all hubs understand. The information returned tells
the host when a device is newly attached.

4. The hub detects whether a device is low or full speed. Just before the
hub resets the device, the hub determines whether the device is low or full
speed by examining the voltages on the two signal lines. The hub detects the
speed of a device by determining which line has the higher voltage when
idle. The hub sends the information to the host in response to the next

USB Complete

Enumeration: How the Host Learns about Devices

Get_Port_Status request. USB 1.x allowed the hub the option to detect
device speed just after reset. USB 2.0 requires speed detection to occur
before reset so it knows whether to check for a high-speed-capable device
during reset, as described below.

5. The hub resets the device. When a host learns of a new device, the host
controller sends the hub a Set_Port_Feature request that asks the hub to
reset the port. The hub places the device’s USB data lines in the Reset condi-
tion for at least 10 milliseconds. Reset is a special condition where both D+
and D- are a logic low. (Normally, the lines have opposite logic states.) The
hub sends the reset only to the new device. Other hubs and devices on the
bus don’ see it.

6. The host learns if a full-speed device supports high speed. Detecting
whether a device supports high speed uses two special signal states. In the
Chirp] state, the D+ line only is driven and in the Chirp K state, the D- line

only is driven.

During the reset, a device that supports high speed sends a Chirp K. A
high-speed hub detects the chirp and responds with a series of alternating
Chirp Ks and Js. When the device detects the pattern KJKJK], it removes its
full-speed pull up and performs all further communications at high speed. If
the hub doesnt respond to the device’s Chirp K, the device knows it must
continue to communicate at full speed. All high-speed devices must be capa-
ble of responding to enumeration requests at full speed.

7. The hub establishes a signal path between the device and the bus.
The host verifies that the device has exited the reset state by sending a
Get_Port_Status request. A bit in the data returned indicates whether the
device is still in the reset state. If necessary, the host repeats the request until
the device has exited the reset state.

When the hub removes the reset, the device is in the Default state. The
device’s USB registers are in their reset states and the device is ready to
respond to control transfers over the default pipe at Endpoint 0. The device
can now communicate with the host, using the default address of 00h. The
device can draw up to 100 milliamperes from the bus.

USB Complete 97

Chapter 5

98

8. The host sends a Get_Descriptor request to learn the maximum
packet size of the default pipe. The host sends the request to device
address 0, Endpoint 0. Because the host enumerates only one device at a
time, only one device will respond to communications addressed to device
address 0, even if several devices attach at once.

The eighth byte of the device descriptor contains the maximum packet size
supported by Endpoint 0. A Windows host requests 64 bytes, but after
receiving just one packet (whether or not it has 64 bytes), it begins the status
stage of the transfer. On completion of the status stage, a Windows host
requests the hub to reset the device (step 5). The specification doesn't
require a reset here, because devices should be able to handle the host’s aban-
doning a control transfer at any time by responding to the next Setup
packet. But resetting is a precaution that ensures that the device will be in a
known state when the reset ends.

9. The host assigns an address. The host controller assigns a unique
address to the device by sending a Set_Address request. The device reads the
request, returns an acknowledge, and stores the new address. The device is
now in the Address state. All communications from this point on use the
new address. The address is valid until the device is detached or reset or the
system powers down. On the next enumeration, the device may be assigned
a different address.

10. The host learns about the device’s abilities. The host sends a
Get_Descriptor request to the new address to read the device descriptor, this
time reading the whole thing. The descriptor is a data structure containing
the maximum packet size for Endpoint 0, the number of configurations the
device supports, and other basic information about the device. The host uses
this information in the communications that follow.

The host continues to learn about the device by requesting the one or more
configuration descriptors specified in the device descriptor. A device nor-
mally responds to a request for a configuration descriptor by sending the
descriptor followed by all of that descriptor’s subordinate descriptors. But a
Windows host begins by requesting just the configuration descripror’s nine

USB Complete

Enumeration: How the Host Learns about Devices

bytes. Included in these bytes is the total length of the configuration descrip-
tor and its subordinate descriptors.

Windows then requests the configuration descriptor again, this time using
the retrieved total length, up to FFh bytes. This causes the device ro send the
configuration descriptor followed by the interface descriptor(s) for each con-
figuration, followed by endpoint descriptor(s) for each interface. If the
descriptors total more than FFh bytes, Windows obtains the full set of
descriptors on a third request. Each descriptor begins with its length and
type, to enable the host to parse (pick out the individual elements in) the
data that follows. The Descriptors section in this chapter has more on what
each descriptor contains.

11. The host assigns and loads a device driver (except for composite
devices). After the host learns as much as it can about the device from its
descriptors, it looks for the best match in a device driver to manage commu-
nications with the device. In selecting a driver, Windows tries to match the
information stored in the system’s INF files with the Vendor and Product
IDs and (optional) Release Number retrieved from the device. If there is no
match, Windows looks for a match with any class, subclass, and protocol
values retrieved from the device. After the operating system assigns and
loads the driver, the driver often requests the device to resend descriptors or
send other class-specific descriptors.

An exception to this sequence is composite devices, which have multiple
interfaces, with each interface requiring a driver. The host can assign these
drivers only after the interfaces are enabled, which requires the device to be
configured (as described in the next step).

12. The host’s device driver selects a configuration. After learning about
the device from the descriptors, the device driver requests a configuration by
sending a Set_Configuration request with the desired configuration num-
ber. Many devices support only one configuration. If a device supports mul-
tiple configurations, the driver can decide which to use based on whatever
information it has about how the device will be used, or it may ask the user
what to do, or it may just select the first configuration. The device reads the

USB Complete 99

Chapter 5

request and sets its configuration to match. The device is now in the Config-
ured state and the device’s interface(s) are enabled.

The host now assigns drivers for the interfaces in composite devices. As with
other devices, the host uses the information retrieved from the device to find
a matching driver.

The device is now ready for use.
The other two device states, Attached and Suspended, may exist at any time.

Attached state. If the hub isnt providing power (VBUS) to the port, the
device is in the Attached state. This may occur if the hub has detected an
over-current condition, or if the host requests the hub to remove power
from the port. With no power on VBUS, the host and device cant communi-
cate, so from their perspective, the situation is the same as when the device
isn’t attached at all.

Suspend State. The Suspend state means the device has seen no activity,
including Start-of-Frame markers, on the bus for at least 3 milliseconds. In
the Suspend state, the device must consume minimal bus power. Both con-
figured and unconfigured devices must support this state. Chapter 19 has
more details.

Enumerating a Hub

Hubs are also USB devices, and the host enumerates a newly attached hub
in exactly the same way as it enumerates a device. If the hub has devices
attached, the host also enumerates each of these after the hub informs the
host of their presence.

Device Removal

100

When a user removes a device from the bus, the hub disables the device’s
port. The host learns that the removal occurred after polling the hub, learn-
ing that an event has occurred, and sending a Get_Port_Status request to
find out what the event was. Windows then removes the device from the
Device Manager’s display and the device’s address becomes available to
another newly attached device.

USB Complete

Enumeration: How the Host Learns about Devices

Descriptor Types and Contents

Descriptors are data structures, or formatted blocks of information, that
enable the host to learn about a device. Fach descriptor contains informa-
tion about either the device as a whole or an element in the device.

All USB peripherals must respond to requests for the standard USB descrip-
tors. This means that the peripheral must do two things: store the informa-
tion in the descriptors, and respond to requests for the descriptors in the
expected format.

Types

As described above, during enumeration the host uses control transfers to
request descriptors from the device. As enumeration progresses, the
requested descriptors concern increasingly small elements of the device: first
the entire device, then each configuration, cach configuration’s interface(s),
and finally each interface’s endpoint(s). Table 5-1 lists the descriptor types.

The higher-level descriptors inform the host of any additional, lower-level
descriptors. Fach device has one and only one device descriptor that con-
tains information about the device as a whole and specifies the number of
configurations the device supports. Each device also has one or more config-
uration descriptors that contain information about the device’s use of power
and the number of interfaces supported by the configuration. Each interface
descriptor has zero or more endpoint descriptors that contain the informa-
tion needed to communicate with an endpoint. An interface with no end-
point descriptors can still use the control endpoint for communications.

On receiving a request for a configuration descriptor, the device should
return the configuration descriptor and all of the configuration’s interface,
endpoint, and other subordinate descriptors, up to the requested number of
bytes. There is no request to retrieve, for example, only an endpoint descrip-
tor. Devices that support both full and high speeds support two additional
descriptor types: device_qualifier and other_speed_configuration. These
and their subordinate descriptors contain information about the device’s
behavior when using the speed not currently selected.

USB Complete 101

Chapter 5

Table 5-1: The specification defines standard descriptor types. A device class
may require additional descriptor types.

Descriptor Type Required?
device Yes
device_qualifier Yes, for devices that support both full and high speeds. Not

allowed for other devices.

configuration Yes

other_speed_configuration Yes, for devices that support both full and high speeds. Not

allowed for other devices.

interface Yes
endpoint No, if the device uses only Endpoint 0.
string No. Optional descriptive text.

interface_power No. Supports interface-level power management.

102

A string descriptor can store text such as the vendor’s or device’s name. The
other descriptors can store indexes that point to these string descriptors, and
the host can read the string descriptors using Get_Descriptor requests.

The 2.0 specification added an interface_power descriptor that enables
power management at the interface level in addition to the device level. The
document describing this descriptor’s structure and use is USB Feature Spec-
ification: Interface Power Management.

In addition to the standard descriptors, a device may contain class- or ven-
dor-specific descriptors. These offer a structured way for a device to provide
more detailed information about itself. For example, an interface descriptor
may specify that the interface belongs to the HID class and supports a HID
class descriptor.

Each descriptor contains a value that identifies the descriptor type. Table
5-2 lists values defined by the USB and HID specifications. Bit 7 is always
zero. Bits 6 and 5 identify the descriptor type: 00h=standard, 0lh=class,
02h=vendor, 03h=reserved. Bits 4 through 0 identify the descriptor.

Fach descriptor consists of a series of fields. Most of the field names use pre-
fixes to indicate something about the format or contents of the data in that

USB Complete

Enumeration: How the Host Learns about Devices

Table 5-2: Each descriptor has a value that defines the information the

descriptor contains.

Type Value Descriptor
(hexadecimal)
Standard 01 device
02 configuration
03 string
04 interface
05 endpoint
06 device_qualifier
07 other_speed_configuration
08 interface_power
Class 21 HID
29 hub
Specific to the HID |22 report
class 23 physical

field: & = byte (8 bits), w = word (16 bits), m = bit map, bed = binary-coded

decimal, 7 = index, id = identifier.

Device Descriptor

The device descriptor has basic information about the device. It’s the first

descriptor the host reads on device attachment and includes the information

the host needs so it can retrieve additional information from the device.

The descriptor has 14 fields. Table 5-3 lists the fields in the order they occur

in the descriptor. The descriptor includes information about the descriptor

itself, the device, its configurations, and its classes. The following descrip-

tions group the information by function.

The Descriptor

bLength. The length in bytes of the descriptor.
bDescriptorType. The constant DEVICE (01h).

USB Complete

103

Chapter 5

Table 5-3: The device descriptor has 14 fields in 18 bytes.

Offset Field Size Description

(decimal) (bytes)

0 blLength 1 Descriptor size in bytes

1 bDescriptorType | The constant DEVICE (01h)

2 bcdUSB 2 USB specification release number (BCD)

4 bDeviceClass 1 Class code

5 bDeviceSubclass 1 Subclass code

6 bDeviceProtocol l Protocol Code

7 bMaxPacketSize(0) |1 Maximum packet size for Endpoint 0

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bcdDevice 2 Device release number (BCD)

14 iManufacturer 1 Index of string descriptor for the manufacturer

15 iProduct 1 Index of string descriptor for the product

16 iSerialNumber | Index of string descriptor containing the serial
number

17 bNumConfigurations | 1 Number of possible configurations

104

The Device

bcdUSB. The USB specification number that the device and its descriptors
comply with. In BCD (binary-coded decimal) format. If you think of the
version as a decimal number, the upper byte represents the integer, the next
four bits are tenths, and the final four bits are hundredths. So version 1.0 is
0100h; version 1.1 is 0110h, and version 2.0 is 0200h.

idVendor. Members of the USB Implementers Forum and others who pay
an administrative fee receive the rights to use a unique Vendor ID. The
device descriptor for every commercial product must have a Vendor ID. The
host may have an INF file that contains this value, and if so, Windows uses
the value to help decide what driver to load for the device.

idProduct. The manufacturer assigns a Product ID to identify the device.
Both the device descriptor and the device’s INF file on the host may contain
this value, and if so, Windows uses the value to help decide what driver to

USB Complete

Enumeration: How the Host Learns about Devices

load for the device. Each Product ID is specific to a Vendor 1D, so multiple
vendors can use the same Product ID without conflict.

becdDevice. The device’s release number in BCD format. Assigned by the
manufacturer. Optional. This value can also be used in deciding which
driver to load.

iManufacturer. An index that points to a string describing the manufac-
turer. Optional. Zero if unused.

iProduct. An index that points to a string describing the product. Optional.
Zero if unused.

iSerialNumber. An index that points to a string containing the devices
serial number. Optional. Zero if unused. Serial numbers are useful if users
may have more than one identical device on the bus and the host needs to
keep track of which is which, even after rebooting. They also enable the host
to determine whether a peripheral is the same one used previously or a new
installation of a peripheral with the same Vendor and Product ID. If a device
has a serial number and a user plugs the device into a different port on a PC,
Windows won't need to reload the device driver.

The Configuration
bNumConfigurations. The number of configurations the device supports.

bMaxPacketSize0. The maximum packet size for Endpoint 0. The host
uses this information in the requests that follow. Low-speed devices must

use 8. Full-speed devices may use 8, 16, 32, or 64. High-speed devices must
use 64.

Classes

bDeviceClass. For devices that belong to a class, this field may name the
class. Values from 1 to FEh are reserved for the USB’s defined classes. Exam-
ples of classes are hubs, printers, and communications devices. The value
FFh means that the class is specific to the vendor and defined by the vendor.
Some devices (such as HIDs) specify a class in the interface descriptor, and
for these devices, the bDeviceClass field in the device descriptor is 0. Not all
devices belong to a class.

USB Complete 105

Chapter 5

bDeviceSubclass. For devices that belong to a class, this field may specify a
subclass within the class. If DeviceClass is 0, the Subclass must be 0. If
DeviceClass is between 1 and FEh, the Subclass must be a code defined in a
USB class specification. A value of FFh means that the subclass is specific to
the vendor. A subclass may add support for additional features and abilities
shared by a group of functions within a class.

bDeviceProtocol. This field may specify a protocol defined by the selected
class or subclass. For example, a 2.0 hub uses this field to indicate whether
the hub is currently supporting high speed and if so, if the hub supports one
or multiple transaction translators. If DeviceClass is between 1 and FEh, the
protocol must be a code defined by a USB class specification.

Device_Qualifier Descriptor

106

Devices that support both full and high speeds must have a device qualifier
descripror. If the device switches speeds, some fields in the device descriptor
may change. The device_qualifier descriptor holds the values to use for these
fields at the speed not currently in use. The contents of fields in the device
and device_qualifier descriptors swap, depending on which speed is selected.

The descriptor has 9 fields. Table 5-4 lists the fields in the order they occur
in the descriptor. The descriptor includes information about the descriptor
itself, the device, its configurations, and its classes. The fields are the same as
the ones in a device descriptor. The only difference is that they describe the
device at the speed that isn't currently active.

The Vendor and Product IDs, device release number, and manufacturer,
product, and serial-number strings don't change when the speed changes, so
the device_qualifier descriptor doesn’t include these.

The host can use a Get_Descriptor request to retrieve the device_qualifier
descriptor. The following descriptions group the information by function.
The Descriptor

bLength. The length in bytes of the descriptor.

bDescriptorType. The constant DEVICE_QUALIFIER (06h).

USB Complete

Enumeration: How the Host Learns about Devices

Table 5-4: The device_qualifier descriptor has 9 fields in 10 bytes.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant DEVICE_QUALIFIER (06h)
2 bcdUSB 2 USB specification release number (BCD)
4 bDeviceClass | Class code
5 bDeviceSubclass 1 Subclass code
6 bDeviceProtocol | Protocol Code
7 bMaxPacketSize(0) |1 Maximum packet size for Endpoint O
8 bNumConfigurations | | Number of possible configurations
9 Reserved I For future use
The Device

bcdUSB. The USB specification number that the device and its descriptors
comply with. Must be at least 0200h.

The Configuration
bNumConfigurations. The number of configurations the device supports.

bMaxPacketSize0. The maximum packet size for Endpoint 0.

Classes

bDeviceClass. For devices that belong to a class, this field may name the
class.

bDeviceSubclass. For devices that belong to a class, this field may specify a
subclass within the class.

bDeviceProtocol. This field may specify a protocol defined by the selected
class or subclass. For example, a 2.0 hub must support both a low- and
full-speed protocol and a high-speed protocol. The device descriptor con-
tains the code for the currently active protocol, and the device_qualifier
descriptor contains the code for the not-active protocol.

Reserved. For future use.

USB Complete 107

Chapter 5

Configuration Descriptor

108

After retrieving the device descriptor, the host can retrieve the device’s con-
figuration, interface, and endpoint descriptors.

Each device has at least one configuration descriptor that describes the
device’s features and abilities. Often a single configuration is enough, but a
device with multiple uses or modes can support multiple configurations.
Only one configuration is active at a time. Fach configuration requires a
descriptor. The configuration descriptor contains information about the
device’s use of power and the number of interfaces supported. Each configu-
ration descriptor has subordinate descriptors, including one or more inter-
face descriptors and optional endpoint descriptors.

The host selects a configuration with the Set_Configuration request, and
reads the current configuration number with a Get_Configuration request.

The descriptor has eight fields. Table 5-5 lists the fields in the order they
occur in the descriptor. The fields contain information about the descriptor
itself, the configuration, and the device’s use of power in that configuration.
For many configurations, some fields dont apply. The following descrip-
tions group the information by function.

The Descriptor
bLength. The length (in bytes) of the descriptor.
bDescriptorType. The constant CONFIGURATION (02h).

wlotalLength. The number of data bytes that the device returns, including
the bytes for all of the configuration’s interfaces and endpoints.

The Configuration

bConfigurationValue. Identifies the configuration for Get_Configuration
and Set_Configuration requests. A Set_Configuration request with a value
of zero causes the device to enter the Not Configured state.

iConfiguration. Index to a string that describes the configuration.

Optional.

USB Complete

Enumeration: How the Host Learns about Devices

Table 5-5: The configuration descriptor has 8 fields.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant Configuration (02h)
2 wTotalLength 2 Size of all data returned for this configuration in
bytes
4 bNumlnterfaces 1 Number of interfaces the configuration supports
5 bConfigurationValue |1 Identifier for Set_Configuration and
Get_Configuration requests
iConfiguration 1 Index of string descriptor for the configuration
bmAttributes 1 Self power/bus power and remote wakeup settings
MaxPower 1 Bus power required, expressed as (maximum mil-
liamperes/2)

bNumInterfaces. The number of interfaces the configuration supports. The
minimum is 1.

Power Use

bmAttributes. Bit 6=1 if the device is self-powered. Bit 5=1 if the device
supports the remote wakeup feature. This enables a suspended USB device
to tell its host that it wants to communicate. A USB device must enter the
Suspend state if there has been no bus activity for 3 milliseconds. If an event
at a suspended device requires action from the host, a device that supports
remote wakeup and with this feature enabled can request the host to resume
communications.

The other bits are unused. Bits 0 through 4 must be 0. Bit 7 must be 1. (In
USB 1.0, bit 7 was set to 1 to indicate that the configuration was bus pow-
ered. In USB 1.1 and higher, setting bit 6 to 0 is enough to indicate that the
configuration is bus powered.)

MaxPower. Specifies how much bus current a device requires. MaxPower in
milliamperes equals one half the number of milliamperes required. If the
device requires 200 milliamperes, MaxPower=100. The maximum allowed
current is 500 milliamperes. Storing half the number of milliamperes
enables one byte to store values up to the maximum. If the host determines

USB Complete 109

Chapter 5

that the requested current isnt available, it will refuse to configure the
device.

Other_Speed_Configuration Descriptor

The other descriptor unique to devices that support both full and high
speeds is the other_speed_configuration descriptor. The structure of the
descriptor is identical to that of the configuration descriptor. The only dif-
ference is that it describes the configuration when the device is operating at
the speed not currently active. The other_speed_configuration descriptor
has subordinate descriptors the same as the configuration descriptor does.

The descriptor has eight fields. Table 5-6 lists the fields in the order they

occur in the descriptor.

interface Descriptor

110

The term interface may of course describe USB as a whole, but in terms of a
device and its descriptors, interface means a set of endpoints used by a
device feature or function. A configuration’s interface descriptor contains
information about the endpoints the interface supports.

Each configuration must support one interface, and for many devices, one is
enough. But a configuration can have multiple interfaces that are active at
the same time, as well as multiple, mutually exclusive interfaces. Each inter-
face has its own interface descriptor and a subordinate endpoint descripror
for each endpoint supported by the interface.

A device with a configuration that has multiple interfaces that are active at
the same time is a composite device. The host loads a driver for each inter-
face.

When there are multiple ways to use a device, instead of using multiple con-
figurations, a configuration may support alternate, mutually exclusive inter-
faces. Changing interfaces is simpler than changing configurations, which
affects the entire device. The host requests an alternate interface with a
Set_Interface request, and reads the current interface number with a

USB Complete

Enumeration: How the Host Learns about Devices

Table 5-6: The other_speed_configuration descriptor has the same 8 fields as
the configuration descriptor.

Offset Field Size Description

(decimal) (bytes)

0 bLength 1 Descriptor size in bytes

1 bDescripiorType 1 The constant
OTHER_SPEED_CONFIGURATION (07h)

2 wTotall.ength 2 Size of all data returned for this configuration in
bytes

bNumlinterfaces 1 Number of interfaces the configuration supports

bConfigurationValue |1 Identifier for Set_Configuration and
Get_Configuration requests

iConfiguration 1 Index of string descriptor for the configuration

bmAttributes 1 Self power/bus power and remote wakeup settings

MaxPower 1 Bus power required, expressed as (maximum

milliamperes/2)

Get_Interface request. Each interface has its own interface descriptor and
subordinate descriptors.

An interface descriptor has nine fields. Table 5-7 lists the fields in the order
they occur in the descriptor. Many devices don't need all of the fields, such
as those that enable alternate settings and protocols. The following descrip-
tions group the information by function.

The Descriptor

bLength. The number of bytes in the descriptor.
bDescriptorType. The constant INTERFACE (04h).

The Interface
iInterface. Index to a string that describes the interface.

bInterfaceNumber. Identifies the interface. In a composite device, a config-
uration has multiple interfaces that are active at the same time. Each inter-

face must have a descriptor with a unique value in this field. The default is
0.

USB Complete 111

Chapter 5

Table 5-7: The interface descriptor has 9 fields.

Offset Field Size Description

(decimal) (bytes)

0 bLength | Descriptor size in bytes

1 bDescriptorType 1 The constant Interface (04h)

2 blnterfaceNumber |1 Number identifying this interface

3 bAlternateSetting 1 Value used to select an alternate seiting

4 bNumEndpoints | Number of endpoints supported, except Endpoint O
5 binterfaceClass] Class code

6 blnterfaceSubclass |1 Subclass code

7 blnterfaceProtocol |1 Protocol code

8 iInterface 1 Index of string descriptor for the interface

112

bAlternateSetting. When a configuration supports multiple, mutually
exclusive interfaces, each interface must have a descriptor with the same
value in blnterfaceNumber but a unique value in bAlternateSetting. The
Get_Interface request retrieves the currently active setting. The
Set_Interface request selects the setting to use. The default is 0.

bNumEndpoints. The number of endpoints the interface supports in addi-
tion to Endpoint 0. For a device that supports only Endpoint 0, NumEnd-
points is 0.

blnterfaceClass. Similar to DeviceClass in the device descriptor, but for
devices with a class specified by the interface. Values from 01h to FEh are
reserved for USB-defined classes. HID is class 03h. FFh indicates a ven-

dor-defined class. Zero is reserved.

bInterfaceSubClass. Similar to bDeviceSubClass in the device descriptor,
but for devices with a class defined by the interface. For interfaces that
belong to a class, this field may specify a subclass within the class. If bInter-
faceClass is 0, blnterfaceSubclass must be 0. If bInterfaceClass is between 1
and FEh, InterfaceSubclass must be a code defined by a USB specification.
A value of FFh means that the subclass is specific to the vendor.

bInterfaceProtocol. Similar to bDeviceProtocol in the device descriptor,
but for devices whose class is defined by the interface. May specify a proto-

USB Complete

Enumeration: How the Host Learns about Devices

col defined by the selected bInterfaceClass or bInterfaceSubClass. If blnter-
faceClass is between 1 and FEh, blnterfaceProtocol must be a code defined
by a USB specification.

Endpoint Descriptor

Fach endpoint specified in an interface descriptor has an endpoint descrip-
tor. Endpoint 0 never has a descriptor because every device must support
Endpoint 0, the device descriptor contains the maximum packet size, and
the specification defines everything else about the endpoint. Table 5-8 lists
the endpoint descriptor’s six fields in the order they occur in the descriptor.
The following descriptions group the information by function.

The Descriptor
bLength. The number of bytes in the descriptor.
bDescriptorType. The constant ENDPOINT (05h).

The Endpoint

bEndpointAddress. Includes the endpoint number and direction. Bits 0
through 3 are the endpoint number. Low-speed devices can have a maxi-
mum of 3 endpoints (usually numbered 0 through 2), while full- and
high-speed devices can have 16 (0 through 15). Bit 7 is the direction:
Out=0, In=1, Bidirectional (for control transfers)=ignored. Bits 4, 5, and 6
are unused and must be zero.

bmAttributes. Bits 1 and 0 specify the type of transfer the endpoint sup-
ports. 00=Control, 01=Isochronous, 10=Bulk, 11=Interrupt. For Endpoint
0, Control is assumed.

In USB 1.1, bits 2 through 7 were reserved. USB 2.0 uses bits 2 through 5
for full- and high-speed isochronous endpoints. Bits 3 and 2 indicate a syn-
chronization type: 00=no synchronization, 01=asynchronous, 10=adaptive,
11=synchronous. Bits 5 and 4 indicate a usage type: 00=data endpoint,
01=feedback endpoint, 10=implicit feedback data endpoint, 11=reserved.
For non-isochronous endpoints, bits 2 through 5 must be 0. For all end-
points, bits 6 and 7 must be 0.

USB Complete 113

Chapter 5

Table 5-8: The endpoint descriptor has 6 fields.

Offset

(decimal) (bytes)

Field Size Description

0

bLength 1 Descriptor size in bytes

bDescriptorType The constant Endpoint (05h)

bEndpointAddress Endpoint number and direction

wMaxPacketSize Maximum packet size supported

1
2
3
4
5

1
1
bmAdttributes 1 Transfer type supported
2
1

bInterval Maximum latency/polling interval/NAK rate

114

wMaxPacketSize. The maximum number of data bytes the endpoint can
transfer in a transaction. The allowed values vary with the device speed and

type of transfer.

Bits 10 through 0 are the maximum packet size, from 0 to 1024 (0 to 1023
in USB 1.x). In USB 2.0, bits 12 and 11 indicate how many additional
transactions per microframe a high-speed endpoint supports: 00=no addi-
tional transactions (1 transaction per microframe), 01=1 additional (2 trans-
actions per microframe), 10=2 additional (3 transactions per microframe),
11=reserved. In USB 1., these bits were reserved and set to zero. Bits 13
through 15 are reserved and must be zero.

bInterval. The maximum latency for polling interrupt endpoints, or the
interval for polling isochronous endpoints, or the maximum NAK rate for
high-speed bulk OUT or control endpoints. The allowed range and how the
value is used varies with the device speed, the transfer type, and whether or
not the device supports USB 2.0.

For low-speed interrupt endpoints, the maximum latency equals blnterval
in milliseconds. The value may range from 10 to 255.

For all full-speed interrupt endpoints and for full-speed isochronous end-
points on 1.x devices, the interval also equals bInterval in milliseconds. For
interrupt endpoints, the value may range from 1 to 255. For isochronous
endpoints in 1.x devices, the value must be 1. For isochronous endpoints in
full-speed 2.0 devices, values from 1 to 16 are allowed, and the interval is

USB Complete

Enumeration: How the Host Learns about Devices

calculated as 2", This allows a range from 1 millisecond to 32.768 sec-
onds.

For full-speed bulk and control transfers, the value is ignored.

For high-speed endpoints, the value is in units of 125 microseconds, which
is the width of a microframe. The value for interrupt and isochronous end-
points may range from 1 to 16, and the interval is calculated as 2",
This allows a range from 125 microseconds to 4.096 seconds.

For high-speed bulk OUT and control endpoints, the value indicates the
endpoint’s maximum NAK rate. This value is relevant when the device has
received data and returned ACK, and the host has more data to send in the
transfer. By returning ACK, the device is saying that it expects to be able to
accept the next transaction’s data. (Otherwise the device would return
NYET.) If the next data packet arrives and for some reason the device can't
accept it, the endpoint returns NAK. The blnterval value says that the end-
point will return NAK no more than once in each period specified by
blnterval. The value can range from 0 to 255 microframes. A value of zero
means the endpoint will never NAK. The host isnt required to use the max-
imum-NAK-rate information.

String Descriptor

A string descriptor contains descriptive text. The specification defines string
descriptors for the manufacturer, product, serial number, configuration, and
interface. A device may support additional string descriptors as well. String
descriptors are optional. Table 5-9 shows the descriptor’s fields and their
purposes.

The Descriptor
bLength. The number of bytes in the descriptor.

bDescriptorType. The constant STRING (03h).

USB Complete 115

Chapter 5

Table 5-9: A string descriptor has 3 or more fields.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes
1 bDescriptorType 1 The constant String (03h)
2 bSTRING or varies |For string descriptor 0, an array of | or more Lan-
wLANGID guage Identifier codes. For other string descriptors,
a Unicode string.

The String

Each string has an index. String 0 has the special function of providing lan-
guage IDs, while the other strings may contain any text.

wLANGIDI0...n]. Used in string descriptor 0 only. String descriptor 0 con-
tains one or more 16-bit language ID codes that indicate the languages that
the strings are available in. The code for English is 0009h, and the subcode
for U.S. English is 0004h. These seem to be the only codes that are valid in
U.S. versions of Windows 98. This value must be valid for any of the other
strings to be valid. Devices that return no string descriptors must not return

an array of language IDs. The USB Implementers Forum’s website has a list
of defined USB language IDs.

bString. For Strings 1 and up, the String field contains a Unicode string.
Unicode uses 16 bits to represent each character. With a few exceptions,
ANSI character codes 00h through 7Fh correspond to Unicodes 0000h
through 007Fh. For example, a product string for a product called “Gizmo”
would contain five 16-bit Unicodes representing the characters in the prod-
uct name: 0047 0069 007A 006D 00GE The strings are not null-termi-
nated.

Descriptors in 2.0-compliant Devices

116

If you're upgrading a 1.x-complaint device to 2.0, what changes are required
in the descriptors? In a dual-speed device, can you detect a device’s current
speed by reading its descriptors? This section answers these questions.

USB Complete

Enumeration: How the Host Learns about Devices

Making 1.x Descriptors 2.0-compliant

Table 5-10 lists the descriptor fields whose contents may require changes to
enable a 1.x device to comply with the 2.0 specification. For all except some

devices that have isochronous endpoints, the one and only required change
is this: in the device descriptor, the bedUSB field must be 0200h.

A device’s default interface settings must request no isochronous bandwidth,
as Chapter 4 explained. And because these interfaces are of no use for trans-
ferring isochronous data, a device that wants to do isochronous transfers
must support at least one alternate interface setting, which will require at
least one endpoint descriptor. Some 1.x devices meet this requirement
already.

The 2.0 spec also adds two new descriptors and functions for bits in existing
fields, but the new descriptors are used only in dual-speed devices and the
existing descriptors are backwards compatible with 1.x.

Full-speed isochronous endpoints have a few new, optional abilities. The
endpoint descriptor can specify synchronization and usage types (bmAt-
tributes field), and the interval can be greater than 1 millisecond (bInterval
field). In 1.x descriptors, these bits are zero and default to no synchroniza-
tion and 1 millisecond.

Detecting the Current Speed of a Dual-Speed Device

A high-speed device must respond to enumeration requests at full speed,
and may also be completely functional at full speed. As Chapter 2 explained,
a high-speed capable device must use full speed if it has a 1.x host or if there
is a 1.x hub between the host and device. Applications and device drivers
normally have no need to know which speed a dual-speed device is using
because all of the speed-related details are handled at a lower level. And
Windows in fact provides no straightforward way to learn a device’s speed.
But if the host wants to know, there are a few techniques that can provide
this information for many devices.

If a device has a bulk endpoint, you can learn the current speed by examin-
ing the endpoint descriptor in the active configuration. The MaxPacketSize

USB Complete 117

Chapter 5

Table 5-10: The descriptors in a 1.x-compliant device require very few changes
to comply with 2.0.

Descriptor Fieid Change
Device becdDevice Set to 0200h.
Endpoint bmAttributes Isochronous only: bits 3..2 are a synchronization type, bits

5.4 are a usage type.

] . . Abinterval-1 . ..
blnterval Isochronous only: the interval is 2 milliseconds

instead of milliseconds.

wMaxPacketSize |Isochronous only: must be O in the default configuration.

118

field must be 512 in a high-speed device, and it can't be 512 in a full-speed
device. If there is no bulk endpoint, the MaxPacketSize of an interrupt or
isochronous endpoint provides speed information if the endpoint uses a
maximum packet size available only at high speed. For an interrupt end-
point, a MaxPacketSize greater than 64 indicates high speed, but a
high-speed interrupt endpoint can have a MaxPacketSize of 64 or less. For
isochronous endpoints, a MaxPacketSize of 1024 indicates high speed, but a
high-speed isochronous endpoint can have a MaxPacketSize of 1023 or less.

If you're writing the device firmware, you can provide speed information in
the optional configuration strings indexed by the configuration and
other_speed_configuration descriptors. For example, the string indexed by
the configuration descriptor might contain the text “high speed,” and the
string indexed by the other_speed_configuration descriptor might contain
the text “full speed.” Applications can then read the configuration string to
learn the current speed.

The USBView application in the Windows DDK shows how applications

can read endpoint and string descriptors.

USB Complete

Control Transfers: Structured Requests for Critical Data

6

Control Transfers:
Structured Requests for
Critical Data

Of the four transfer types, control transfers have the most complex struc-
ture. They're also the only transfer type with functions defined by the speci-
fication. This chapter takes a more detailed look at control transfers. The
focus is on what you need to know to implement standard and custom
requests in device firmware, along with some background about the struc-
ture of the requests.

Elements of a Control Transfer

As Chapter 3 explained, control transfers enable the host and a device to
exchange information about the device’s configuration. They also offer a
way that any device can use to transfer any type of information. Fach con-

USB Complete 119

Chapter 6

trol transfer has a defined format consisting of a Setup stage, an optional
Data stage, and a Status stage. Each stage consists of one or more transac-
tions that contain a token phase, a data phase, and a handshake phase. Fach
phase transfers a token, data, or handshake packet. Chapter 4 has diagrams
that show the packets that transfer in each stage.

As described in Chapter 3, low-speed transfers also use PRE packets,
high-speed transfers use the PING protocol, and some low- and full-speed
transfers use split transactions. Fach packet also contains error-checking
bits. Application programmers, device-driver writers, and firmware develop-
ers don’t have to worry about PREs, PINGs error-checking, or split transac-
tions because the hardware and low-level drivers handle them.

The Setup Stage

120

The Setup stage consists of a Setup transaction, which has two purposes: to
identify the transfer as a control transfer and to transmit the request and
other information that the device will need to complete the request.

Devices must accept and acknowledge every Setup transaction. If a device is
in the middle of another control transfer, it must abandon that transfer and
respond to the new Setup transaction. Here are more details about each of
the packets in the Setup stage’s transaction:

Token Packet

Purpose: identifies the receiver and identifies the transaction as a Setup
transaction.

Sent by: the host.
PID: SETUP

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: transmits the request and related information.
Sent by: the host.

PID: DATAO

USB Complete

Control Transfers: Structured Requests for Critical Data

Additional Contents: eight bytes in five fields: bmRequestType, bRequest,
wValue, windex, and wLength.

bmRequestType is a byte that specifies the direction of data flow, the type
of request, and the recipient.

Bit 7 is a Direction bit that names the direction of data flow for data in the
Data stage. Host to device (OUT) or no Data stage is 0; device to host (IN)
is 1. Just remember that 0 looks like O for OUT and 1 looks like / for IN.

Bits 6 and 5 are Request Type bits that specify whether the request is one of
the USB’s eleven standard requests (00), a request defined for a specific USB
class (01), or a request defined by a vendor for use with a particular product
or products (10).

Bits 4 through O are Recipient bits that define whether the request is
directed to the device (00000) or to a specific interface (0001), endpoint
(00010), or other element (00011) in the device.

bRequest is a byte that specifies the request. When the Request Type bits in
bmRequestType are 00, bRequest contains the number of one of the USB’s
standard requests. When the Request Type bits are 01, bRequest names a
request defined for the device’s class. When the Request Type bits are 10,
bRequest names a request defined by the device’s vendor.

wValue is two bytes that the host may use to pass information to the device.
Each request may define the meaning of these bytes in its own way. For
example, in a Set_Address request, wValue contains the device address.

windex is two bytes that the host may use to pass information to the device.
A typical use is to pass an index or offset such as an interface or endpoint
number, but each request may define the meaning of these bytes in any way.
When passing an endpoint index, bits 0-3 indicate the endpoint number,
and bit 7 is 0 for a Control or OUT endpoint or 1 for an IN endpoint.
When passing an interface index, bits 0-7 are the interface number. All
unused bits are 0.

wLength is two bytes containing the number of data bytes in the Data stage
that follows. For a host-to-device transfer, wlLength is the exact number of
bytes the host will transfer. For a device-to-host transfer, wLength is a maxi-

USB Complete 121

Chapter 6

mum, and the device may return this number of bytes or fewer. If the
wLength field is 0, there is no Data stage.

Handshake Packet

Purpose: transmits the device’s acknowledgement.
Sent by: the device.

PID: ACK.

Additional Contents: none. The handshake packet consists of the PID
alone.

Comments: If the device detected an error in the received Setup or Data
packet, it returns no handshake. The device’s hardware typically handles the
error checking and sending of the ACK, with no programming required.

The Data Stage

122

When a control transfer contains a Data stage, the stage consists of one or
more IN or OUT transactions. The endpoint’s descriptor specifies the num-
ber of data bytes that each transaction can carry. (For Endpoint 0, the device
descriptor specifies this.)

When the Data stage uses IN transactions, the device sends data to the host.
An example is Get_Descriptor, where the device sends a requested descrip-
tor to the host. When the Data stage uses OUT transactions, the host sends
data to the device. An example is Set_Report, where the host sends a report
to a HID-class device. If the wLength field in the Setup transaction is 0,
there is no Data stage at all. For example, in the Set_Configuration request,
the host passes a configuration value to the peripheral in the wValue field of
the Setup stage’s data packet, so there’s no need for the Dara stage.

If all of the data cant fit in one packet, the stage uses multiple transactions.
The number of transactions required to send all of the data for the transfer
equals the value in the Setup transaction’s wLength field divided by wMax-
PacketSize value in the endpoints descriptor, rounded up. For example, in a
Get_Descriptor request, if wLength is 18 and wMaxPacketSize is 8, the

USB Complete

Control Transfers: Structured Requests for Critical Data

transfer requires 3 Data transactions. The transactions in the Data stage
must all be in the same direction.

The host uses split transactions in the Data stage when the device is low or
full speed and the device’s hub connects to a high-speed bus. The host uses
the PING protocol when the device is high speed, the Data stage uses OUT

transactions, and there is more than one data transaction.

Each IN or OUT transaction in the Data stage contains token, data, and
handshake packets. Here are more details about each of the packets in the
Data stage’s transaction(s):

Token Packet

Purpose: identifies the receiver and identifies the transaction as an IN or
OUT transaction.

Sent by: the host.

PID: if the request requires the device to send data to the host, the PID is
IN. If the request requires the host to send data to the device, the PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: transfers all or a portion of the data specified in the wLength field
of the Setup transaction’s data packet.

Sent by: if the token packet’s PID is IN, the device sends the data packet; if
the token packet’s PID is OUT, the host sends the data packet.

PID: The first packet is DATAL. Any additional packets in the Data stage
alternate DATAO/DATAL.

Additional Contents: the data.

Handshake Packet

Purpose: the data packet’s receiver returns status information.

USB Complete 123

Chapter 6

Sent by: the receiver of the Dara stage’s data packet. If the token packet’s
PID is IN, the host sends the handshake packet. If the token packet’s PID is
OUT, the device sends the handshake packet.

PID: Any device may return ACK (valid data was received), NAK (the end-
point is busy), or STALL (the request isnt supported or the endpoint is
halted). A high-speed device that is receiving multiple data packets may
return NYET (the current transaction’s data was accepted but the endpoint
isn't yet ready for another data packet). The host can return only ACK.

Additional Contents: None. The handshake packet consists of the PID

alone.

Comments: If the receiver detected an error in the token or data packet, it
returns no handshake packet.

The Status Stage

124

The Status stage is where the device reports the success or failure of the
entire transfer. Its purpose is similar to that of a transaction’s handshake
packet, and in fact the information sometimes travels in the handshake
packet of the Status stage. But the Status stage reports the success or failure
of the entire transfer, rather than of a single transaction.

In some cases (such as after recciving the first packet of a device descriptor
during enumeration), the host may begin the Status stage before the Data
stage has completed, and the device must detect this, abandon the Data
stage, and complete the Status stage.

Here are more details about each of the packets in the Status stage’s transac-
tion:
Token Packet

Purpose: identifies the receiver and indicates the direction of the Status
stage’s data packet.

Sent by: the host.

PID: the opposite of the direction of the previous transaction’s data packet.
If the Data stage’s PID was OUT or if there was no Data stage, the Status

USB Complete

Control Transfers: Structured Requests for Critical Data

stage’s PID is IN. If the Data stage’s PID was IN, the Status stage’s PID is
OUT.

Additional Contents: the device and endpoint addresses.

Data Packet

Purpose: enables the receiver of the Data stage’s data to indicate the status
of the transfer.

Sent by: if the Status stage’s token packet’s PID is IN, the device sends the
data packet; if the Status stage’s token packet’s PID is OUT, the host sends
the data packet.

PID type: DATAI

Additional Contents: The host sends a zero-length data packet consisting
only of the PID and error-checking bits, with no data bits. A device may
send a zero-length data packet (success), NAK (busy), or STALL (endpoint
halted).

Comments: For most requests, the zero-length data packet indicates that
the request has been carried out. An exception is Set_Address, which isn’t
carried out until the Status stage has completed.

Handshake Packet

Purpose: the sender of the Data stage’s data indicates the status of the trans-

fer.

Sent by: the receiver of the Status stage’s data packet. If the Status stage’s
token packet’s PID is IN, the host sends the handshake packet; if the token
packet’s PID is OUT, the device sends the data packet.

PID type: the devices response may be ACK (success), NAK (busy), or
STALL (the request isnt supported or the endpoint is halted). The host’s
response to the received data packet must be ACK.

Additional Contents: none. The handshake packet consists of the PID

alone.

USB Complete 125

Chapter 6

Comments: The Status stage’s handshake packet is the final transmission in
the transfer. If the receiver detected an error in the token or data packet, it
returns no handshake packet.

For any request that’s expected to take many milliseconds to carry out, the
protocol should define an alternate way to determine when the request has
completed. This ensures that the host doesn’t waste a lot of time looking for
an acknowledgement that will take a long time to appear. An example is the
Set_Port_Feature(PORT_RESET) request sent to a hub. The reset signal
lasts at least 10 milliseconds. Rather than forcing the host to wait this long
for the device to complete the reset, the hub acknowledges receiving the
request when it first places the port in the reset state. When the reset is com-
plete, the hub sets a bit that the host can retrieve at its leisure, using a
Get_Port_Status request.

Handling Errors

126

Not every control-transfer request is carried out by the device. The device’s
firmware may not support a request. Or the device may be unable to
respond because its firmware has crashed, or the endpoint is in the Halt con-
dition, or the device is no longer attached to the bus. The host may also
decide for any reason to end a transfer early, before all of the data has been
sent.

An example of an unsupported request is one that uses a request code that
the device’s firmware doesn’t know how to respond to. Or the device may
support the request but other information in the Setup stage doesnt match
what the device expects or supports. When this occurs, a Request Error con-
dition exists and the device notifies the host by sending a STALL code in a
handshake packet. Devices must respond to the Setup transaction with an
ACK, so the STALL must transmit in the handshake packet of the next
Data stage or the Status stage.

If the host fails to get an expected response, or if it detects an error in
received data or a Halt condition at the endpoint, it abandons the transfer.
The host then tries to re-establish communications by sending the token
packet for a new Setup transaction. If a device receives a token packet for a

USB Complete

Control Transfers: Structured Requests for Critical Data

Setup transaction before it has completed a previous control transfer, it must
abandon the previous transfer and begin the new one. If the transfer is using
the Default Control Pipe and a new token packet doesnt cause the device to
recover, the host takes more drastic action, requesting the device’s hub to
reset the device’s port.

The host may also end a transfer early by initiating the Status stage before
completing all of the Data stage’s transactions. In this case, the device must
abandon the rest of the data and respond to the Status stage as if all of the
data had transferred.

The Requests

Table 6-1 summarizes the USB’s 11 standard requests, followed by a descrip-
tion of each request. All devices must respond to these requests (though the
response may be just a STALL). The values range from 00 to 0Ch, with
some values unused.

Most of the requests are in pairs, with each Set request having a correspond-
ing Get or Clear request. The exceptions are Set_Address, Synch_Frame,
and Get_Status.

USB Complete 127

Chapter 6

Table 6-1: The USB specification defines eleven standard requests for Control

transfers.
Request |Request Data Recipient |Value Index Data Data
source Length (in Data
(Data (bytes) stage)
stage) (in Data
stage)
00h Get_Status device |device, 0 device, 2 status
interface, interface,
endpoint endpoint
01h Clear_Feature |none |device, feature device, 0 none
interface, interface,
endpoint endpoint
03h Set_Feature none device, feature device, 0 none
interface, interface,
endpoint endpoint
05h Set_Address |none device device 0 0 none
address
06h Get_ device |device descriptor |device or |descriptor |descriptor
Descriptor type & language |length
index 1D
07h Set_ host device descriptor |device or |descriptor |descriptor
Descriptor type & language |length
index ID
08h Get_ device |device 0 device I configura-
Configuration tion
09h Set_ none device configura- |device 0 none
Configuration tion
0Ah Get_Interface |device |interface |0 interface |1 alternate
setting
0OBh Set_Interface |none interface |interface |interface |0 none
0Ch Synch_Frame |device |endpoint [0 endpoint |2 frame
number
128 USB Complete

Control Transfers: Structured Requests for Critical Data

Set Address

Purpose: The host specifies an address to use in future communications
with the device.

Request Number: 05h
Source of Data: none
Data Length: 0

Contents of Value field: new device address. Allowed values are 1 through
127. Each device on the bus, including the root hub, has a unique address.

Contents of Index field: 0

Contents of data packet in the Data stage: none
Supported States: Default, Address.

Behavior on error: not specified.

Comments: When a hub enables a port after power-up or attachment, the
port uses the default address of 0 until it completes a Set_Address request
from the host.

This request is unlike most other requests because the device doesn't carry
out the request until it has completed the Status stage of the request by
sending a O-length data packet. The host sends the Status stage’s token
packet to the default address, so the device must detect and respond to this
packet before changing its address.

After completion of this request, all communications use the new address.

A device using the default address of 0 is in the Default state. After com-
pleting Set_ Address request to set an address other than 0, the device
enters the Address state.

A device must send the handshake packet within 50 milliseconds after
receiving the request, and it must complete the request within 2 millisec-
onds after completing the Status stage.

USB Complete 129

Chapter 6

Get_Descriptor

130

Purpose: The host requests a specific descriptor.
Request Number: 06h
Source of Data: device

Data Length: the number of bytes to return. If the descriptor is longer
than Data Length, the device returns bytes up to Data Length. If the
descriptor is shorter than Data Length, the device returns the descriptor. If
the descriptor is shorter than Data Length and an even multiple of the end-
points maximum packet size, the device follows the descriptor with a
O-length data packet. The host detects the end of the data when it has
received the requested amount of data or a packet containing less than the
maximum packet size (including 0 bytes).

Contents of Value field: High byte: descriptor type. Low byte: descriptor
value.

Contents of Index field: for String descriptors, Language ID. Otherwise 0.
Contents of data packet in the Data stage: the requested descriptor.
Supported states: Default, Address, Configured.

Behavior on error: If a device receives a request that it doesn’t support, it

should return a STALL.

Comments: There are seven types of descriptors. All devices may have
device, configuration, interface, endpoint, and string descriptors. Two
other descriptors, device_qualifier and other_speed_configuration, are only
for devices that support both full and high speeds. Chapter 5 described the
purpose and contents of the descriptor types. Every USB device must have
a device descriptor and at least one configuration and one interface descrip-
tor.

A request for a configuration descriptor causes the device to return the con-
figuration descriptor, plus all interface descriptors for that configuration
and all endpoint descriptors for the interfaces.

USB Complete

Control Transfers: Structured Requests for Critical Data

Set_Descriptor
Purpose: The host adds a descriptor or updates an existing descriptor.
Request Number: 0Bh
Source of Data: host
Data Length: The number of bytes the host will transfer to the device.

Contents of Value field: high byte: descriptor type. (See Get_Descriptor)
Low byte: descriptor index.

Contents of Index field: For string descriptors, Language ID. Otherwise
0.

Contents of data packet in the Data stage: descriptor length.
Supported states: Address and Configured.

Behavior on error: If a device receives a request that it doesnt support, it
should return a STALL.

Comments: This request makes it possible for the host to add descriptors
other than those stored in the device’s firmware, or to change an existing
descriptor. Many devices don’t support this request because it allows errant
software to place incorrect information in a descriptor.

USB Complete 131

Chapter 6

Set_Configuration

132

Purpose: Instructs the device to use the selected configuration.
Request Number: 09h

Source of Data: none

Data Length: 0

Contents of Value field: The lower byte specifies a configuration. If the
value matches a configuration supported by the device, the device selects
the requested configuration. A value of 0 indicates not configured. If the
value is 0, the device enters the Address state and requires a new
Set_Configuration request to be configured.

Contents of Index field: 0
Contents of data packet in the Data stage: none
Supported states: Address, Configured.

Behavior on error: If Value isnt equal to 0 or a configuration supported by
the device, the device returns a STALL.

Comments: After completing a Set_Configuration request specifying a
supported configuration, the device enters the Configured state. Many of
the standard requests require the device to be in the Configured state.

USB Complete

Control Transfers: Structured Requests for Critical Data

Get_Configuration
Purpose: The host requests the value of the current device configuration.
Request Number: 08h
Source of Data: device
Data Length: 1
Contents of Value field: 0
Contents of Index field: 0
Contents of data packet in the Data stage: Configuration value
Supported states: Address (returns 0), Configured
Behavior on error: not specified.

Comments: If the device isn't configured, it returns 0.

USB Complete 133

Chapter 6

Set Interface

134

Purpose: For devices with configurations that support multiple, mutually
exclusive settings for an interface, the host requests the device to use a spe-
cific setting.

Request Number: 0Bh

Source of Data: host

Data Length: 0

Contents of Value field: alternate setting to select
Contents of Index field: interface number
Contents of data packet in the Data stage: none
Supported states: Configured

Behavior on error: If the device supports only a default interface, it may
recurn a STALL. If the requested interface or setting doesn’t exist, the
device returns a STALL.

Comments: See Get_Interface

USB Complete

Control Transfers: Structured Requests for Critical Data

Get_Interface

Purpose: For devices with configurations that support multiple, mutually
exclusive settings for an interface, the host requests the current setting.

Request Number: 0Ah

Source of Data: device

Data Length: 1

Contents of Value field: 0

Contents of Index field: interface number

Contents of data packet in the Data stage: the current setting
Supported states: Configured

Behavior on error: If the interface doesnt exist, the device returns a

STALL.

Comments: The interface number in the Index field of this request refers
to the blInterface field in an interface descriptor. This value distinguishes an
interface from other interfaces that may exist at the same time. The setting
in the Data field in this request refers to the bAlternatelnterface field in the
interface descriptor. This value identifies which of two or more mutually
exclusive settings an interface is currently using. For each setting supported
by an interface, there is an interface descriptor and optional endpoint
descriptors. Many devices support only one interface setting.

USB Complete 135

Chapter 6

Set Feature

136

Purpose: The host requests to enable a feature on a device, interface, or
endpoint.

Request Number: 03h

Source of Data: none

Data Length: 0

Contents of Value field: the fearure to enable

Contents of Index field: For a device, 0. For an interface, the interface
number. For an endpoint, the endpoint number.

Contents of data packet in the Data stage: none

Supported states: Default: undefined. Address: OK for address 0, End-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the endpoint or interface specified doesn’t exist, the

device responds with a STALL.
Comments: The USB specification defines two features.

DEVICE_REMOTE_WAKEUP, with a value of 1, applies to devices.
When the host sets the DEVICE._ REMOTE_WAKEUP feature, a sus-

pended device can signal the host to resume communications.

ENDPOINT_HALT, with a value of 0, applies to endpoints. Bulk and
interrupt endpoints must support the Halt condition. Two types of events
may cause a Halt condition: a communications problem such as the
device’s not receiving a handshake packet or receiving more data than
expected, or the device’s receiving a Set_Feature request to halt the end-
point. A Clear_Feature request to halt the endpoint removes a Halt condi-
tion caused by a Set_Feature request.

The Get_Status request tells the host what features, if any, are enabled.

USB Complete

Control Transfers: Structured Requests for Critical Data

Clear Feature

Purpose: The host requests to disable a feature on a device, interface, or
endpoint.

Request Number: 01h.

Source of Data: none

Data Length: 0

Contents of Value field: the feature to disable

Contents of Index field: For a device feature, 0. For an interface feature,
the interface number. For an endpoint feature, the endpoint number.

Contents of data packet in the Data stage: none

Supported states: Default: undefined. Address: OK for address 0, End-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: If the feature, device, or endpoint specified doesn
exist, or if the feature can’t be cleared, the device responds with a STALL.
Behavior is undefined when Data Length is greater than 0.

Comments: The USB specification defines only two features.
DEVICE_REMOTE_WAKEUP, with a value of 1, applies to devices.
ENDPOINT_HALT, with a value of 0, applies to endpoints. See

Set_Feature for more details.

USB Complete 137

Chapter 6

Get_Status

138

Purpose: The host requests the status of the features of a device, interface,
or endpoint.

Request Number: 00h
Source of Data: device
Data Length: 2

Contents of Value field: 0

Contents of Index field: For a device, 0. For an interface, the interface
number. For an endpoint, the endpoint number.

Contents of data packet in the Data stage: the device, interface, or end-
point status

Supported states: Default: undefined. Address: OK for address 0, end-
point 0. Otherwise the device returns a STALL. Configured: OK.

Behavior on error: The device returns a STALL if the interface or end-
point doesn’t exist.

Comments: For device requests, only two bits are defined. Bit 0 is the
Selt-Powered field: O=bus-powered, 1=self-powered. The host can't change
this value. Bit 1 is the Remote Wakeup field. The default on reset is 0 (dis-
abled). All other bits are reserved. For interface requests, all bits are
reserved. For endpoint requests, only bit 0 is defined. Bir 0=1 indicates a

Halt condition. See Set_Feature for more details on Remote Wakeup and
Halt.

USB Complete

Control Transfers: Structured Requests for Critical Data

Synch_Frame
Purpose: The device sets and reports an endpoint’s synchronization frame.
Request Number: 0Ch
Source of Data: host
Data Length: 2
Contents of Value field: 0
Contents of Index field: endpoint number
Contents of data packet in the Data stage: frame number

Supported states: Default: undefined. Address: The device returns a
STALL. Configured: OK.

Behavior on error: If the endpoint doesnt support the request, it should
return a STALL.

Comments: In isochronous transfers, a device endpoint may request data
packets that vary in size, following a sequence. For example, an endpoint
may send a repeating sequence of 8, 8, 8, 64 bytes. The Synch_Frame
request enables the host and endpoint to agree on which frame will begin
the sequence.

When an endpoint receives a Synch_Frame request, it recurns the number
of the frame that will precede the beginning of a new sequence

This request is rarely used because there is rarely a need for the information
it provides.

USB Complete 139

Chapter 6

Class-Specific Requests

A class may define requests for devices in its class. A class-specific request
may be required or optional. Some requests are unrelated to the standard
requests, while others build on the standard requests by defining class-spe-
cific fields in a request.

An example of a request that’s unrelated to the standard requests is the Get
Max LUN request supported by some mass-storage devices. The host uses
this request to find out the number of logical units the interface supports.

An example of a request that builds on an existing request is the
Get_Port_Status request that hubs must support. This request is structured
like the standard Get_Status request. But Get_Port_Status has different val-
ues in two fields. In bmRequestType, bits 6 and 5 are 01 to indicate that the
request is defined by a standard USB class, and bits 4 through 0 are 00011
to indicate that the request applies to a unit other than the device or an
interface or endpoint. (It applies to a port on the hub.) The index field holds
the port number.

Vendor-Specific Requests

140

A vendor may define custom requests for control transfers with specific
devices. In order to use a custom request in a control transfer, you need all of
the following:

e Vendor-defined fields as needed in the Setup and optional Data stages.
Bits 6 and 5 in the Setup stage’s data packet are set to 10 to indicate a
vendor-defined request.

* Code in the device that detects the request number and knows how to
respond. If you have code for the standard requests, you can use it as a
model for custom requests.

* A custom device driver in the host that initiates the request. Windows
has no built-in driver that enables applications to send custom control
requests, so the only option is a custom driver with this ability.

USB Complete

Chip Choices

/

Chip Choices

When it’s time to select a USB controller for a project, the good news is that
there are plenty of chips to choose from. The downside is that there are so
many that deciding which chip to use in a project can be overwhelming at
first.

As with any project involving embedded controllers, the decision depends
on what functions the chip has to perform, cost, availability, and ease of
development. Ease of development depends on the availability and quality
of development tools, device-driver software for the host, and sample code,
plus your experience with the device’s architecture and instruction set or lan-
guage compiler.

This chapter is a guide to selecting a USB controller. It includes a tutorial
about what you need to consider and descriptions of a sampling of chips
with a range of abilities. The chips covered include inexpensive ones with
simple architectures and basic USB support as well as more full-featured,

high-end chips.

USB Complete 141

Chapter 7

Elements of a USB Controller

The complexity of the USB protocol means that USB peripherals must have
intelligence. The peripheral controller has to know how to detect and
respond to events at 2 USB port, and it has to provide a way for the device to
store data to be sent and retrieve and use data that’s been received.

Controller chips vary in how much firmware support they require for USB
communications. Some require little more than accessing a series of registers
to store and retrieve USB data. Others require the device’s program code to
do more, including managing the sending of descriptors to the host, setting
data-roggle values, and ensuring that the appropriate handshake packets are
sent.

Some controllers have a general-purpose CPU on-chip, while others take a
more minimalist approach and interface to an external CPU that handles
the non-USB tasks while communicating with the USB controller as
needed. All USB controllers have one or more USB ports as well as buffers,
registers, and other I/O. A controller chip with a general-purpose CPU also
has program and data memory on-chip or an interface to these in external
memory.

For high-volume applications that require fast performance, another option
is to design and manufacture an application-specific integrated circuir
(ASIC). VAutomation is one source for USB controllers and other compo-
nents that are available as synthesizable VHDL (very high speed integrated
circuit hardware description language) or Verilog Source code.

Not all controllers support all four transfer types, and different controllers
support different bus speeds. Most chips support fewer than the maximum
number of endpoints (1 control endpoint and 30 other endpoints).

The USB Port

142

A USB peripheral controller must of course have a USB port and supporting
circuits for communicating with the host. A USB transceiver provides the
hardware interface to the bus. The circuits that communicate with the trans-
ceiver form a unit with the generic name of serial interface engine (SIE).

USB Complete

Chip Choices

The SIE typically handles the sending and receiving of data in transactions.
[t doesn’t interpret or use the data, but just sends the data that has been
made available to it and stores any data received. A typical SIE does all of the
following:

* Detect incoming packets.

 Send packets.

* Detect and generate Start-of-Packet, End-of-Packet, Reset, and Resume
signaling.

* FEncode and decode data in the format required on the bus (NRZI with
bit stuffing).

* Check and generate CRC values.

* Decode and generate Packet IDs.

* Convert between USB’s serial data and parallel data in registers or mem-
ory.

Implementing these functions requires about 2500 gates.

Buffers for USB Data

A USB controller must also have buffers for storing data that was recently
received and data thats ready to be sent on the bus. Some chips, such as
Netchips NET2888, use registers, while others, such as Cypress’ EZ-USB,

reserve a portion of data memory for the buffers.

Registers that hold transmitted or received data are often structured as
FIFOs (first in, first out buffers). Fach read of a receive FIFO returns the
byte that has been in the FIFO the longest. Each write to a transmit FIFO
stores a byte that will transmir after all of the bytes already in the FIFO have
transmitted. An internal pointer to the next location to be read or written to
increments automatically as the firmware reads or writes to the FIFO.

In some chips, like Cypress’ enCoRe series, the USB buffers are in ordinary
data memory and the firmware explicitly selects each location to read and
write to. There is no pointer that increments automatically when the firm-
ware reads or writes to the buffers. The bytes in the USB transmit buffer go
out in order from the lowest address to the highest, and the bytes in a USB

USB Complete 143

Chapter 7

CPU

receive buffer are stored in the order they arrive, from lowest address to
highest. These buffers technically arent FIFOs, but are sometimes called
that anyway.

To enable faster transfers, some chips have double buffers that can store two
full sets of data in each direction. While one block is transmitting, the firm-
ware can write the next block of data into the other buffer so it will be ready
to go as soon as the first block finishes transmitting. In the receive direction,
the extra buffer enables a new transaction’s data to arrive before the firmware
has finished processing data from the previous transaction. The hardware
automatically switches, or ping-pongs, between the two buffers.

A USB controller’s central-processing unit (CPU) controls the chip’s actions
by executing instructions in the firmware stored in the chip. Each CPU sup-
ports an instruction set that includes machine-language instructions for
moving data, performing math and logic operations, and program branch-
ing. The instruction set also enables the CPU to communicate with the SIE.
The CPU may be based on a general-purpose microcontroller such as the
8051, or it may be a design developed specifically for use in USB applica-
tions.

Chips that don’t have a general-purpose CPU may support a command set
for USB-related communications, or they may just use a series of registers
for storing USB data and configuration information. These chips provide a
way to add USB capabilities to any microcontroller with an external data
bus.

Program Memory

144

The program memory holds the code that the CPU executes. The program
code assists in USB communications and carries out whatever other tasks
the chip is responsible for. This memory may be in the CPU chip or a sepa-
rate chip.

The program storage may use any of a number of memory types: ROM,
EPROM, EEPROM, Flash EPROM, or RAM. All except RAM (unless it’s

USB Complete

Chip Choices

battery-backed) are nonvolatile; they retain the data stored in them after
powering down. The amount of program memory may range from a couple
of kilobytes on up. Chips that can access memory off-chip may support a
Megabyte or more of program memory.

Another name for the code stored in program memory is firmware, which
indicates that the memory is non-volatile and not as easily changed as pro-
gram code that can be loaded into RAM, edited, and re-saved on disk. In
this book, I use the term firmware to refer to a controller’s program code,
with the understanding that the code may be stored in a variety of memory
types, some more volatile than others.

ROM (read-only memory) must be mask-programmed at the factory and
can’t be erased. It’s practical only for product runs in the thousands.

EPROM (erasable programmable ROM) is user-programmable. Many chips
have inexpensive programming hardware and software available. To erase an
EPROM, you insert the chip into an EPROM eraser, which exposes the cir-
cuits beneath the chip’s quartz window to ultraviolet light. Erasing typically
takes 10 to 30 minutes. The chip is then ready to be reprogrammed. Data
sheets rarely specify the number of erase/reprogram cycles that the chip can
withstand, but it’s typically at least 100.

OTP (one-time programmable) PROM:s are a cheaper, non-erasable alterna-
tive to erasable EPROMs. Internally, they’re identical to EPROMs, and you
program them exactly like EPROMs. The difference is that the chips lack
the quartz window for erasing. The erasable varieties are useful for product
development. Then to save cost, you can switch to OTP PROMs for the
final product run. Many CPUs have both EPROM and OTP PROM vari-

ants.

Flash EPROM is a more recent electrically-erasable memory technology that
doesn’t need a quartz window and often doesnt need the special program-

ming voltage required by other EPROMs. Current Flash EPROM technol-

ogy enables around 100,000 erase/reprogram cycles.

EEPROM (electrically erasable PROM) also doesn’t need a window, nor
does it need the special programming voltage required by other EPROMs.
EEPROMSs tend to have longer access times than Flash EPROM:s.

USB Complete 145

Chapter 7

EEPROM:s are available both with the parallel interface used by EPROMs
and Flash EPROMs, and with a variety of synchronous serial interfaces,
including Microwire, I*C, and SPI. Serial EEPROMs are useful for storing
small amounts of data that changes only occasionally, such as configuration
data, including Vendor and Product IDS. Current EEPROM technology

enables around 10 million erase/reprogram cycles.

RAM (random-access memory) can be erased and rewritten endlessly, but
the stored data disappears when the chip powers down. It’s possible to use
RAM for program storage by loading the code from a PC on each power-up
or by using battery backup. Cypress Semiconductor’s EZ-USB uses RAM
for program storage, along with special hardware and driver code that loads
code into the chip on power up or attachment. Any CPU with external pro-
gram memory could use battery-backed RAM for program storage.
Host-loadable RAM has no practical limit on the number of erase/rewrite
cycles. For battery-backed RAM, the limit is the battery life. Access times for
RAM are fast.

Data Memory

Data memory provides temporary storage during program execution. The
contents of data memory may include data received from the USB porrt,
data to be sent to the USB port, values to be used in calculations, or any-
thing else the chip needs to remember or keep track of. Data memory is usu-
ally RAM. Typical amounts of internal data memory are 128 to 1024 bytes.

Registers

146

Registers are another option for temporary storage. Registers are memory
locations the CPU accesses using different instructions than it uses to access
other data memory. Most registers have defined functions. Most CPUs can
access registers more quickly than other data memory.

USB controller chips typically have status and control registers that hold
information about what endpoints are enabled, the number of bytes
received, the number of bytes ready to transmit, Suspend-state status,
error-checking information, and other information about how the chip will

USB Complete

Chip Choices

be used and the current status of transmitted or received data. For example,
setting a bit in a configuration register may enable an endpoint. The num-
ber of registers and the specifics of their contents vary with the chip family.

Other 1/0

Just about every controller will also have an interface to the world outside of
itself, other than the USB port. This often includes a series of general-pur-
pose input and output (I/O) pins that can connect to other circuits. A chip
may also have built-in support for other serial interfaces, such as an asyn-

chronous interface for RS-232, or synchronous interfaces such as I’C,
Microwire, and SPI.

Some chips have special-purpose interfaces. For example, Philips’ USA1321
contains a digital-to-analog converter (DAC) for use in USB speakers and
other audio devices. The chip converts received USB data to analog signals
at sampling frequencies of up to 55 kilohertz. FTDI's FT8U232AM is a
USB UART that makes it as easy as possible to upgrade RS-232 designs to
USB.

Other Features

A chip may also have any number of other features such as hardware timers
or counters. Just about any feature that you might find in a general-purpose
microcontroller is likely to be available in a USB controller.

Simplifying the Development Process

Besides the abilities and features of the chip itself, ease of development can
make a huge difference in how long it takes to get a project up and running.
The simplest and quickest USB project is one that uses a controller chip
with all of the following:

e A chip architecture and programming language that you're familiar with.

* Detailed, well-organized hardware documentation.

USB Complete 147

Chapter 7

* Well-documented, bug-free sample firmware code for an application
similar to yours.
* A development system that enables easy downloading and debugging of

firmware.

* Device-driver availability, either using drivers included with Windows or
a well-documented driver provided by the chip vendor or another source
and usable as-is or with minimal modifications.

These are not trivial considerations. The right choice will save you many
hours and much aggravation.

Architecture Choices

148

In selecting a controller chip, you can use a chip designed from the ground
up as a standalone USB controller, a chip that’s compatible with an existing
chip family, or a chip that requires an interface to a generic microcontroller.
Which to use depends on your own background and experience as well as
the project specifics. Manufacturers frequently release new chips and
improved versions of existing chips, so it’s always a good idea to check the
manufacturers” websites for the latest offerings.

Chips Designed for USB from the Ground Up

Some controllers are designed specifically for USB applications. Instead of
adding USB capability to an existing architecture, these designs are opti-
mized for USB from the start. Two sources for this type of chip are Cypress
Semiconductor and ScanLogic. Table 7-1 compares the features of a selec-
tion of their chips.

Cypress' M8 family has a variety of inexpensive chips that share an instruc-
tion set optimized for USB. The enCoRe series has low-speed chips, each
with a USB port and 8 to 16 lines of general-purpose I/O. Other M8-series
chips have more I/O and support full-speed transfers.

ScanLogic’s SL11R contains a BIOS ROM that supports USB’s four transfer
types. The ROM also has boot-up code that enables executing user firmware
either from external parallel memory or by loading code from serial

EEPROM to RAM. The chip has 32 general-purpose 1/O lines.

USB Complete

Chip Choices

Table 7-1: Cypress and ScanlLogic have microcontrollers that are designed for
USB from the ground up.

Feature CY7C637XX CY7C64113 SL11R
(enCoRe)
Manufacturer Cypress Cypress ScanLogic
Speed Low Full Full
Number of Endpoints |3 5 4
RAM (bytes) 96 256 3K
Program Memory OTP PROM OTP PROM BIOS ROM + serial
Type EEPROM or external
parallel memory
Program Memory 6K-8K 8K 2K internal or
Size (bytes) 26K external
General Purpose /10 [10-16 32 32
Pins
Other 1/O capability |SPI, I°C, parallel data bus,
USB or PS/2 option | hardware-assisted UART,
parallel interface, DAC|S€r ial EEPROM
Power Supply Voltage |4.0-5.5 4.0-5.25 3.3 +10%
Number of Pins 18, 24 48 100

Chips Based on Popular Families

Some USB controllers are compatible with existing chip families. These
have two advantages. One is that many developers are already familiar with
the architecture and instruction set, and familiarity gives a big head start to
any project. Certainly if you're designing a USB-capable version of an exist-
ing product that uses an 8051 variant, sticking with the 8051 makes sense.
But even if you're not already familiar with the architecture, selecting a pop-
ular family means that programming and debugging tools are available, and
sample code and other advice is likely to be available from other users on the
Internet.

If your microcontroller of choice is the 8051, you're in luck. Cypress, Infin-
eon, and Standard Microsystems have 8051-compatible, USB-capable chips.
(But not Intel. Although Intel originated the 8051 family and was the first
to release 8051-compatible USB controllers with the 8x930 and 8x931,

USB Complete 149

Chapter 7

Table 7-2: Many manufacturers produce USB controllers that are compatible
with existing microcontroller families.

Company Compatibility Example Chip
AMD Intel 80C186 AM186
Atmel Atmel AVR AT76CT711
Cypress Intel 8051, AN2121 (EZ-USB series)
Dallas Semi DS80C320
Infineon Intel 8051 C541U0
Microchip Technology Microchip PIC 16C7x5
Mitsubishi Mitsubishi 740 7640, 7532/36
Motorola Motorola 68HCO05 68HCO05IB3/4
Motorola 68HC08 68HCO8JBS
Motorola Power PC MPCS850 (host or device)
Standard Microsystems (SMSC) | Intel 8051 USB97C100
STMicroelectronics STMicroelectronics ST7 ST7261

150

Intel discontinued these in 2000.) Cypress’ FX2 series in its 8051-compati-
ble EZ-USB family supports high speed.

Chips compatible with other families are available as well, including Atmel’s
AVR, Microchip’s PIC, and Motorola’s 68HC05/8. Table 7-2 lists these and

others.

Chips that Interface to an External Microcontroller

Some USB controllers handle only the USB communications and must be
controlled by an external microcontroller. These enable you to add a USB
port to just about any microcontroller circuit. The downside is that you
need two chips, while other USB controllers have both the CPU and the
USB controller on a single chip. Also, you may or may not be able to find
example circuits and code for the CPU you want to use. Table 7-3 compares
a selection of these chips.

The chips have external, local data buses that typically use a synchronous
serial or parallel interface to connect to the CPU. An interrupt pin can sig-
nal the CPU when the controller has received USB data or needs new data

USB Complete

Chip Choices

Table 7-3: A Selection of USB Controllers that Interface to a Generic
Microcontroller.

Chip UsSs820C USBN9603 NET2888 PDIUSBD11 |PDIUSBD12

Manufacturer |Lucent National NetChip Philips Philips
Semiconduc-
tor

Bus Speed |Full Full Full Full Full

Number of 1 control + 14 |1 control + 6 |1 control +5 |1 control +6 |1 control + 4

Endpoint others others others others others

addresses

Double Buff- |yes no no no yes

ered?

Microproces- |Non- Multiplexed or |Non- I’C Multiplexed or

sor Interface |multiplexed |non- multiplexed non-

parallel multiplexed |parallel multiplexed

parallel, parallel
Microwire

Power Sup- (3.3 330r5 33 3.3 33

ply Voltage

Number of 44/48 28 48 16 28

Pins

Comments Programma- |Programma- |Occupies 32 |Programma- |Programma-

ble FIFO size |ble clock out- |bytes of ble clock out- |ble-clock out-
put address space |put put,
status-LED
outputs

to send. With some chips, the local-bus interface is slower than USB’s maxi-

mum transfer rate, so the chip is suitable only for intermittent data.

Netchip’s NET2888 uses a parallel data bus with 8 data lines and 5 address
lines. It can read and write data at 10 Megabytes per second, or faster in
DMA mode. National Semiconductor's USBN9603 has more options. It

has a data bus thar can transfer multiplexed parallel data, non-multiplexed

parallel data, or Microwire synchronous serial data. Microwire requires just

four lines and can interface to just about any microcontroller with four spare

I/O pins.

USB Complete

151

Chapter 7

Philips Semiconductors offers both the PDIUSBD11 with an I*C interface
and the PCIUSBD12 with a parallel interface. Lucent’s USS820C has a par-

allel interface and supports the maximum number of endpoint addresses.

Chip Documentation

The ultimate authority on a chip’s abilities is its data sheet, and for chips
with CPUgs, the documentation for the instruction set. The data sheet docu-
ments the hardware, including the functions of the registers and voltages
and timing for all pins.

The documentation for the chip’s instruction set defines the assembly-code
syntax for each of the instructions that the CPU understands. If you're pro-
gramming in assembly code, these are the instructions you use in writing the
firmware. If you're using a higher-level language such as C, you may not
need to use the assembly-code instructions at all, though compilers typically
allow in-line assembly code.

To supplement the basic documentation, many vendors provide a user man-
ual with more detailed information about how to use the chip.

Sample Firmware

The best way to get a head start on writing firmware is to begin with sample
code that’s similar to what you want to achieve. Having an example to refer
to is much, much easier than trying to put something together from scratch.
Chip and tool vendors vary widely in the amount and quality of sample
code provided, so it’s worth looking into what’s available before you commit
to a chip.

In some cases you can find code samples from other sources, especially via
the Internet, from other users who are willing to share what they’ve done.

Driver Choices

The other side of programming a USB device is the driver and application
software at the host. Here again, samples are useful.

152 USB Complete

Chip Choices

If your device fits into one of the classes supported by Windows, you don't
have to worry about writing or finding a device driver. For example, applica-
tions can access a HID-class device using standard API functions that com-
municate with Windows' HID drivers. A chip vendor may offer a sample
application, as National Semiconductor does in its sample HID application

for the ’9603.

Some vendors provide a generic driver that you can use to exchange data
with the device. Cypress’ EZ-USB is an example. The chip has a unique
architecture that enables the PC to load the chip’s firmware on attachment.
To use this feature, the chip requires a special driver. Cypress’ generic driver
can load firmware into the chip and can also exchange data using each of the
four transfer types.

Chapter 10 has more about device drivers.

Debugging Tools

Ease of debugging also makes a big difference in how easy it is to get a
project up and running. Products that can help include development boards
and software offered by the chip vendors and other sources.

A protocol analyzer is also very useful during debugging. Protocol analyzers
aren’t specific to a particular chip. Chapter 17 has more about these and
related tools.

Development Boards from Chip Vendors

Chip manufacturers offer development boards and basic debugging software
to make it easier for developers to use their chips. A development board
enables you to load a program from a PC to the chip’s program memory, or
to circuits that emulate the chip’s hardware.

The debugging software provided with the board is typically a monitor pro-
gram that enables you to control program execution and watch the results.
Standard features include the ability to step through a program line by line,
set breakpoints, and view the contents of the chip’s registers and memory.
You can run the monitor program and a test application at the same time.

USB Complete 153

Chapter 7

Figure 7-1: The 12C/IO board from DeVaSys contains an EZ-USB and a variety
of options for I/0.

154

You can look inside the emulated chip and see exactly what happens when
your application communicates with it.

If you have a general-purpose development system for your favorite micro-
controller, you can use it for USB developing as well. For example, develop-
ment tools for Microchips 16C5x series are also usable with the

USB-capable 167Cx5 chips.

Boards from Other Sources

In general, the evaluation kits offered by the manufacturers are well worth
the cost. But if you're on a strict budget, there are inexpensive printed-cir-
cuit boards that can serve as an alternative. You can also use these boards as
the base for one-of-a-kind or small-scale projects, saving you the trouble of
designing and making a board to hold the controller chip.

The EZ-USB is a natural choice for this type of board because its firmware
is downloadable from the host so you don’t have to worry about program-

ming hardware. The I12C/IO board from DeVaSys Embedded Systems (Fig-

USB Complete

Chip Choices

ure 7-1) contains an AN2131 EZ-USB chip, a connector with 20 bits of
I/O, an I’C interface for synchronous serial communications, and an asyn-
chronous serial interface. The on-board 241L.C128 is an I’°C EEPROM that
can store 16 kilobytes of data, including Vendor and Product IDs and firm-
ware. The board can load its firmware from EEPROM or from the host on
attachment or power-up.

DeVaSys provides the board’s schematic and a free custom device driver that
enables applications to open communications and read and write to ports,
including the I’C port. If you prefer, you can load your own firmware into
the device and use your own driver or a driver provided by Windows. An
early version of the I2CIO won an award in Circuit Cellar magazine’s annual
design contest.

Another option for developing is to interface a basic controller like the
PDIUSBD11 to a PC’s parallel port for debugging code that will eventually
reside in a microcontroller. DeVaSys also has a board that takes this
approach.

The parallel port has 8 lines that are bidirectional on all but the oldest PCs,
plus four outputs and five inputs. PC applications can access the port’s bits
using port reads and writes. PC software can communicate with the
PDIUSBD11’s I*C interface by using parallel-port lines as clock and data
lines for sending and receiving data.

With this approach, you can write PC applications that perform the func-
tions of the firmware that will eventually control the chip, including sending
descriptors during enumeration and whatever other functions the device is
responsible for. This approach is most useful if the device firmware will be
written in C, because the PC software can also use C and will be somewhat
portable. Every controller has chip-specific operations, however, and will
require some modifying for the final product.

With all of the available controller chips and the many options for accessing
them from PCs, it’s likely that many more inexpensive boards will become
available in time.

USB Complete 155

Chapter 7

Project Needs

156

Along with looking for a chip that will be easy to work with, you can further
narrow the choice of controllers by specifying your project’s needs and look-
ing for chips that meet the needs. These are some of the areas to consider:

How fast does the data need to transfer? A device’s rate of data transfer
depends on several things: whether the device supports low, full, or high
speed, the transfer type being used, and how busy the bus is. As a peripheral
designer, you don’t control how busy users’ buses will be, but you can design
your product to work in the worst case expected.

If a product requires no more than low-speed interrupt and control trans-
fers, a low-speed chip may save money not only in chip cost, but also in the
circuit-board design and cables. HID-class devices can use low-speed chips.
But remember that low-speed devices can transfer only eight data bytes per
transaction, and the specification limits the transfer rate of an endpoint to
much less than the bus rate of 1.5 Megabits/second. Even if low speed is fea-
sible, don’t rule out full speed automatically. You may find a full-speed chip
that can do the job at the same or even a lower price.

Devices that support high speed should also support full speed, at least until
2.0 hosts become common.

How many and what type of endpoints do you need? Fach endpoint
address is configured to support a transfer type and direction. A device that
does only control transfers needs just the default endpoint. Interrupt, bulk,
or isochronous transfers require additional endpoint addresses. Not all chips
support all transfer types.

Do you want the device to be software upgradable? For program mem-
ory, many USB devices use windowed EPROM, OTP PROM, or other
memory that isn't easily erased and re-written. To change the program, you
need to insert a new chip or remove, erase, re-program, and replace the chip.
Cypress’ EZ-USB has an easier way, with the ability to load firmware from
the host into RAM on each power up or attachment. Another option is to
store the program code in a microcontroller with electrically reprogramma-
ble memory. ScanLogic’s SLI1IN has the ability to store code received from

USB Complete

Chip Choices

the host in serial EEPROM. The contents of the EEPROM then load into
RAM on power up. The Device Class Specification for Device Firmware
Upgrade, available from the USB Implementers Forum’s website, describes a
mechanism for loading firmware from a host to a device.

Do you need a flexible cable? One reason why mice are almost certain to
be low-speed devices is that the less stringent requirements for a low-speed
cable mean that the cable can be thinner and more flexible. However,
2.0-compliant low-speed cables have the same requirements as full and high
speed except that the braided outer shield and twisted pair are recom-
mended, but not required.

Do you need a long cable? Low-speed cables are limited to three meters,
while full-speed cables can be five meters.

What other hardware features and abilities do you need? These include
everything from general-purpose or specialized 1/0, the size of program and
data memory, on-chip timers, and so on. As with any embedded computer
project, the requirements depend on the application.

A Look at Some Chips

The following descriptions of popular USB controller chips will give an idea
of what’s available. They include only a sampling, and new chips are being
released all the time, so any new project warrants checking the latest offer-
ings.

Cypress enCoRe

The chips in Cypress Semiconductor’s enCoRe series (yes, that annoying
capitalization is how Cypress has trademarked it) are inexpensive and simple
in design. Theyre intended for applications that transfer small blocks of
information at low speed. Examples of uses include standard peripherals
such as mice and joysticks, as well as specialized devices such as data-acquisi-

tion units and controllers.

USB Complete 157

Chapter 7

158

CPU Architecture

Unlike most other USB chips, the enCoRe series isn’t based on an existing
chip family. Using these chips means having to learn a new instruction set.
However, the instruction set is small and the instructions are similar to those
used by other microcontrollers, Learning the syntax is fairly painless if you
have experience with assembly-code programming. A C compiler is also
available.

The chips support 37 instructions that cover the basics of moving data, per-
forming mathematical operations, and program branching. Because the
instruction set is short, learning it isn't difficult. However, it also means that
you won' find fancy instructions that do a lot of the work for you. For
example, there are no instructions for multiplying or dividing; all calcula-
tions must be done by adding, subtracting, and bit-shifting. (The C com-
piler has math and other functions.)

The chips in the series share a common architecture, but they vary in the
amount of program memory, number of I/O pins, and packaging. The
'63743 has 256 bytes of RAM, 8 kilobytes of OTP EPROM for program
memory, 16 I/O pins, and is available in both surface-mount and
through-hole packaging. The through-hole packages are useful for prototyp-
ing on hand-assembled boards because they dont require soldering a tiny
surface-mount chip.

The chips contain internal oscillators that eliminate the need to add external
crystals or resonators. The USB port can be configured for PS/2 (synchro-
nous serial) communications, which enables a pointing device to support
both interfaces.

USB Controlier

The simplicity of the enCoRe’s design is a benefit but also a limitation.
Although the chips comply fully with the USB specification, they don’t sup-
port the full range of USB capabilities. They're limited to low-speed trans-
fers, which means that they cant use bulk or isochronous transfers. The
'63743 has three endpoints, the required Endpoint 0 for control transfers,
plus endpoints 1 and 2 for interrupt transfers. The chip can support one

USB Complete

Chip Choices

interrupt IN endpoint and one interrupt OUT endpoint, or two in the
same direction. Some other low-speed chips, especially earlier releases, don't
support interrupt OUT endpoints, which were added in USB 1.1. Each
endpoint has an 8-byte buffer in RAM.

For project development, Cypress offers a development kit that includes a
printed-circuit board with an emulated chip and a monitor program for
loading and testing code.

The only memory available for the chips is OTP PROM. This isnt too
much of a drawback because the development kit works well for testing. You
can test the chips in the product itself when the programming is nearly com-
plete. To program the PROMs, you'll need a device programmer. Cypress
offers an inexpensive programmer from Hi-Lo.

The USB communications require a fair amount of firmware support, but
Cypress provides example code for common applications.

If you like the chips but need more I/O or full speed, Cypress’ CY7C64013
and CY7C64113 are alternatives.

Cypress EZ-USB

Cypress EZ-USB family is notable for two reasons: its 8051-compatible,
and the chips support a different and flexible approach to storing firmware.

on the host, which loads it into the chip on each power-up or attachment.

Having the firmware stored on the host has pluses and minuses. The obvi-
ous advantage—and it’s a big one—is easy updates to firmware. To update
the firmware, you store the new version on the host and the driver sends it
to the device on the next power up or attachment. There’s no need to
replace the chip or use a special programmer.

The downsides are increased driver complexity, the need to have the firm-
ware available on the host, and longer enumeration time. Cypress helps with
the driver by providing the complete source and executable code for a driver
that handles the downloading of firmware. You can use the supplied driver
as-is, or use the source code as the base for a custom driver.

USB Complete 159

Chapter 7

160

The EZ-USB also supports storing its firmware in an external serial
EEPROM or in parallel EPROM or other non-volatile memory.

The EZ-USB family originated with Anchor Chips, which Cypress acquired

in 1999. You may see the name Anchor in older documentation.

CPU Architecture

The EZ-USB’s architecture is similar to Dallas Semiconductor’s DS80C320,
which is an 8051 whose core has been redesigned for enhanced perfor-
mance. The chip uses four clock cycles per instruction cycle, compared to
the 8051’s twelve. Fach instruction takes between one and five instruction
cycles. The CPU is clocked at 24 Megahertz. On average, an EZ-USB is 2.5

times as fast as an 8051 with the same clock speed.

The instruction set is compatible with the 8051%. All of the 8-kilobytes of
combined code and data memory is RAM; there is no non-volatile memory
on-chip. However, the chips do support non-volatile storage in the I’C serial
interface that can read and write to serial EEPROM, or in external parallel
memory.

The EZ-USB family includes three series: the basic EZ-USB (AN21XX)
and the FX (CY7C646XX) and FX2 (CY7C68013) series. Within each
series are chips that vary in features such as the number of I/O pins or avail-
ability of an external data bus. Table 7-4 summarizes the features of each
series. The FX series adds faster I/O and a general programmable interface
that supports configurable, automated handshaking. The FX2 series also
supports high speed.

Keil has a C compiler for the EZ-USB, or you can use assembly code. The
compiler has a limited but free evaluation version. If you have the full ver-
sion of the compiler, you can base your code on Cypress’ Frameworks firm-
ware, which handles much of the work of USB communications.

USB Controller

Most EZ-USBs support the maximum number of endpoints: one control
endpoint, plus 30 additional endpoint addresses and all four transfer types.
For simpler designs, chips with fewer capabilities are available. The

USB Complete

Chip Choices

Table 7-4: Cypress Semiconductor's EZ-USB family is compatible with the 8051

microcontroller.

Feature AN21xx CY7C646xx CY7C68013

(EZ-USB) (EZ-USB-FX) (EZ-USB-FX2)
Speed Full Full Full/High
Number of endpoints |13, 16, 31 31 11

type

EEPROM, external
parallel

Compatibility 80C320, 8051 80C320, 8051 80C320, 8051

RAM (bytes) 256 + 4-8K combined |256 + 4-8K combined |256 + 8K combined
data and program data and program data and program
memory memory memory

Program memory RAM, serial RAM, serial RAM, serial

EEPROM, external
parallel

EEPROM, external
parallel

Internal program
memory (bytes)

4-8K combined data
and program memory

4-8K combined data
and program memory

8K combined data and
program memory

External memory bus
(bytes)

64K

64K

one or two 64K

G_eneral-purpose /0 |16-24 16-40 16-40

pins

Other /O 2 UARTs, I'C 2 UARTs, I'C 2 UARTs, I'C
Power Supply Voltage |3-3.6 3-3.6 3-3.6

Number of Pins 44, 48, 80 52, 80, 128 56, 100, 128

EZ-USB’s many options for storing firmware make its architecture more

complicated compared to other chips. The options are useful because they

make the chip very flexible, so I'll describe them in some detail.

When an EZ-USB wants to use firmware stored in the host, it enumerates

twice. When an EZ-USB attaches to the bus, the host attempts to enumer-

ate it, as it would for any device. But how can it enumerate a device with no

stored firmware? The answer is that the chip contains an EZ-USB core that

knows how to respond to enumeration requests. This core controls commu-
nications when the device first attaches to the bus. The EZ-USB core is
independent from the 8051 core that normally takes control when the chip

has completed the enumeration process. The EZ-USB core communicates

with the host while holding the normal 8051 circuits in the reset state.

USB Complete

161

Chapter 7

162

The EZ-USB core also responds to vendor-specific requests that enable the
chip to receive, store, and run firmware received from the host. For basic
testing, the core circuits can also enable the device to transfer data using all
four transfer types, without any firmware programming.

The ReNum register bit determines whether the EZ-USB or 8051 core
responds to requests at Endpoint 0. On power-up, ReNum is zero and the
EZ-USB core controls Endpoint 0. When ReNum is set to one, the 8051
core controls Endpoint 0.

The source of an EZ-USB’s firmware depends on two things: the contents of
the initial bytes in an external EEPROM and the state of the chips EA
input. On power-up and before enumeration, the EZ-USB core attempts to
read bytes from a serial EEPROM on the chip’s I’C interface. The result,
along with the state of the chips EA input, tell the core what to do next: use
the default mode, load firmware from the host, load firmware from
EEPROM, or boot from code memory on the external parallel data bus.

Default Mode. The default mode is the most basic mode of operation. It
doesn’t use the serial EEPROM or other external memory. The EZ-USB
core uses this mode if EA is a logic low and the core detects no EEPROM,
or if the first byte read from EEPROM is not BOh or B2h.

When the host enumerates the device, the EZ-USB core responds to
requests. During this time, the 8051 core is held in the reset state. This reset
state is controlled by a register bit in the chip. The host can write directly to
this bit to place the chip in and out of reset. This reset affects the 8051 cir-
cuits and is unrelated to USB’s Reset signaling.

The descriptors retrieved by the host identify the device as a Default USB
Device. The host matches the retrieved Vendor and Product IDs with values
in a Cypress-provided INF file that instructs the host to load Cypress’ Gen-
eral Purpose Driver to communicate with the chip. The ReNum bit remains
at zero.

This default mode is intended for use in debugging. You can use it to get the
USB interface up and transferring data. In addition to supporting transfers
over Endpoint 0, the Default USB Device can also use the other three trans-

USB Complete

Chip Choices

fer types on other endpoints. All of this is possible without having to write
any firmware or device drivers.

Identify the Device from EEPROM Bytes. The core can also read identi-
fying bytes from the EEPROM on power-up, and then provide this infor-
mation to the host during enumeration. If the first value read from the
EEPROM is BOh, the core reads EEPROM bytes containing the chips Ven-
dor and Product IDs and Version Number. When the host enumerates the
device the first time, it uses these bytes to find a matching INF file that
identifies a driver for the device. The driver contains the firmware to down-
load before re-enumerating. Cypress provides instructions for building a
driver with this ability.

The driver uses the vendor-specific Firmware Load request to download the
firmware to the device. The firmware contains a new set of descriprors and
the code the device needs to carry out its purpose. For example, a HID-class
device will have report descriptors and code for transferring HID report
data.

On completing the download, the driver causes the chip to exit the reset
state and run the firmware. The firmware electrically simulates removal
from, then reattachment to the bus by writing to a register that controls the
chip’s DISCON# pin. The pin either pulls up or floats (provides no connec-
tion to) one end of a resistor whose opposite end connects to D+. The pin
indicates device attachment when pulled up and simulated device removal
when floating. The firmware also sets ReNum to 1 to cause the 8051 core,
instead of the EZ-USB core, to respond to Endpoint 0 requests.

When the host detects the simulated re-attachment, it enumerates the
device again, this time retrieving the newly stored descriptors and using the
information in them to select a device driver to load. Cypress has trade-
marked the term ReNumeration to describe this process.

Load Firmware from EEPROM. A third mode of operation provides a way
for the chip to store its own firmware. If the first byte read from the
EEPROM is B2H, the core loads the EEPROM’s entire contents into RAM
on power-up. The EEPROM must contain the Vendor 1D, Product ID, and

Version Number bytes as well as all descriptors required for enumeration

USB Complete 163

Chapter 7

and whatever other code and data the device requires to carry out its pur-
pose. When the chip exits the reset state, it has everything it needs for USB
communications. The core sets the ReNum bit to 1 on completing the load-
ing of the code. When the host enumerates the device, it reads the stored
descriptors and loads the appropriate driver. There is no re-enumeration.

Run Code from External Parallel Memory. If no EEPROM is detected, or

. if the first byte isn't BOh or B6h, and if EA is a logic high, the chip boots

from code memory on the external parallel data bus. This memory can be
EPROM, EEPROM, FLASH EPROM, or battery-backed RAM. The
memory contains the descriptors and other firmware. ReNum is set to 1.
The host enumerates the device and loads a driver, and there is no re-enu-
meration.

Microchip PIC 16C7x5

164

Microchip’s PIC microcontrollers have many devotees because of their low
cost, wide availability, many variants, speed, low power consumption, and
simple instruction set. The 16C745 and 16C765 are PICs with low-speed
USB ports.

Architecture

The chips are enhanced members of Microchip’s 16C5x series. Code written

for the 16C5x is portable to the 16C7x5. The chips support 35 instructions.
In addition to the USB interface, there are 19 I/O pins, plus the 65 has an

8-bit parallel slave port for connecting to a microcontroller with an external
data bus. Up to 8 of the I/O pins can function as analog-to-digital converter
inputs. A USART supports asynchronous and synchronous serial communi-
cations. The chips have three timers.

A crystal or ceramic resonator can clock the chip. Program memory is
EPROM or OTP PROM. The chips are available in through-hole and sur-

face-mount packages.

USB Complete

Chip Choices

USB Controller

The chips support Endpoint 0 plus Endpoints 1 and 2 in any combination
of IN and OUT. To manage communications, there are 7 status and control
registers, plus each endpoint has a control register and a 4-byte buffer
descriptor. The microcontroller and the bus share access to the buffer
descriptors, which contain information such as the data-toggle state and the
number of bytes received or to be transferred. The chip supports firmware
simulation of attaching to and removal from the bus.

Like the enCoRes, these chips require a fair amount of firmware supporr.
Microchip provides assembly and C code for enumeration and other stan-
dard USB tasks. For HIDs, there is example mouse code that you can adapr
for other HID applications.

NetChip NET2888

NetChips NET2888 doesn’t contain a general-purpose CPU or memory. It
has only a USB controller and an interface to a generic data bus, which you
can connect to any CPU that has a complimentary bus.

Architecture

The NET2888 has no program or data memory other than its USB buffers.
The local bus has five address bits (A0 - A4) and eight data bits (D0-D7) to
enable reading and writing bytes to 32 addresses.

Transferring data over the local bus uses a ChipSelect line to select the chip
and separate IOR and IOW signals to control reads and writes. Most micro-
controllers that support external data buses can use this interface with little

or no added logic.

The chip also supports direct memory access (DMA) transfers, for the fast-
est possible transfer of blocks of data. The CPU that the NET2888 connects
to must also support DMA. In a DMA transfer, the chip takes control of the
local bus. Once the DMA transfer is requested, the transfer of a block of
data to or from memory occurs without requiring the external CPU to ini-
tiate individual read and write operations.

USB Complete ‘ 165

Chapter 7

166

The chip reserves a block of memory to hold the data that will transfer. A
DMA address counter holds the address of the block, and a DMA byte
counter holds the number of bytes left to transfer. In a host-to-device trans-
fer, on receiving USB data, the device copies the data into the reserved
memory. In a device-to-host transfer, the device copies data into the trans-
mit buffer whenever space is available.

The chip responds to the standard control requests without requiring any
firmware support other than storing the appropriate information (such as
Vendor and Product IDs) in registers.

USB Controller
The NET2888 supports five endpoints and all four transfer types:

Endpoint Number Transfer Type(s) Supported
0 control

I bulk OUT

2 interrupt IN

3 bulk or isochronous OUT

4 bulk or isochronous IN

The 32 bytes that the CPU can access using the address and data buses cor-
respond to registers in the chip. For Endpoints 1 and 2, the peripheral’s
CPU can send and receive USB data using two 8-byte mailbox registers.
Each mailbox’s data uses a single address on the local bus, with a second
address containing an index that indicates the byte in the mailbox to be read
or written to. For Endpoints 3 and 4, the peripheral’s CPU can send and
receive USB data using two 64-byte buffers. Each buffer uses a single
address, with a count register that indicates the number of data bytes in the

buffer.

The NET2888 automatically stores data received from the host. To detect
data received from the host at Endpoint 1, the peripheral’s CPU can poll the
chip’s receive-mailbox-valid bit or respond to an interrupt that occurs when
the bit is set.

USB Complete

Chip Choices

To send data from Endpoint 2 to the host, the peripheral’s CPU writes the
data to the transmit mailbox and sets the chip’s transmit-mailbox-valid bit.

The NET2888 then handles the details of sending the USB data.

Other registers hold various status and handshaking values and configura-
tion information.

The peripheral’s CPU is responsible for writing some configuration infor-
mation to the NET2888’s registers. But because the endpoints are config-
ured in hardware, there’s less to do than for other chips.

National Semiconductor USBN9603

National Semiconductor’s USBN9603 is another chip that requires an inter-
face to a microcontroller. It can interface to any microcontroller with a par-
allel data bus, a Microwire interface, or even just four spare I/O pins
controlled entirely in firmware

Architecture

The ’9603 has a serial interface engine for handling USB transmissions, a set
of USB endpoint buffers, and a series of status and control registers. A CPU
can access the endpoint buffers and status and control registers at addresses
00h through 3Fh via an external, local bus.

The chip offers three options for accessing the local data bus: non-multi-
plexed parallel, multiplexed parallel, and Microwire synchronous serial.

Multiplexed parallel transfers read or write a byte of data in one bus cycle.
The address is latched with ALE, and the data with RD or WR. Most
microcontrollers with external data buses can use these signals with litdle or
no additional logic.

For non-multiplexed parallel transfers, the 9603 transfers both data and
addresses on D0-D7, but in separate bus cycles. One bus cycle sends the
address to the ’9603, and another transfers data to or from the chip. To save
on bus accesses, the chip supports a burst mode where the CPU writes a
starting address to the controller chip, and then transmits or receives multi-

USB Complete 167

Chapter 7

ple bytes that go to consecutive addresses. The external CPU must also sup-
port this mode. The parallel interface also supports DMA transfers.

Not all microcontrollers have an external parallel data bus, and for those
that don’t, the 9603 offers a solution in its Microwire interface. Microwire
is a synchronous serial interface that uses four lines: the two data lines SIN
(serial in) and SOUT (serial out), CS (chip select), and SYNC (the clock
line). Command/address and data bytes shift in and out, bit by bit, using
transitions on the SYNC line as a timing reference. The external CPU con-
trols SYNC. There is no minimum SYNC frequency, and the signal doesn’t
have to have a constant frequency; the CPU can toggle line as needed. The
interface just has to be fast enough to keep up with the USB traffic. If the
USB port transfers only small, occasional blocks of data, you can program a
Microwire interface in firmware without having to worry about critical tim-
ing. Some microcontrollers, such as National Semiconductor’s COP88S8,
have Microwire interfaces built in.

USB Controller

The "9603 supports seven endpoint addresses: Endpoint 0 for control trans-
fers, three IN endpoints, and three OUT endpoints. Endpoint 0’s buffer is 8
bytes; the others are 64 bytes. An endpoint may also send or receive packets
larger than the buffer size, if the firmware reads data from the buffer as it
arrives to prevent the buffer from overflowing, or writes data to the buffer as
it transmits to prevent the buffer from emptying before all of the data has
transmitted.

Philips Semiconductors PDIUSBD11/12

168

Philips Semiconductors offers additional choices for minimal USB control-

lers in its PDIUSBD11 and PDIUSBD12.

Architecture

The chips are similar except for their external data buses. The *12 has a par-
allel data bus, while the *11 has an I°C bus. Like Microwire, I’C is a synchro-
nous serial bus. It requires just two signal wires: serial clock (SCK) and a
bidirectional serial-data line (SDA). In a typical transfer, the CPU sends a

USB Complete

Chip Choices

command that specifies the function of the data to follow, followed by trans-
mitted or received data. The bus can transfer data at up to 1 Megabit per
second, and some of the bits are commands. So although the USB interface
is full speed, the local bus limits the amount of USB data that the chip can
send and receive in a period of time. There is no minimum speed for SCK.

Some microcontrollers have built-in I*C interfaces.

Like National Semiconductor’s USBN9603, Philips’ PDIUSBD12 supports
multiplexed, non-multiplexed, and DMA parallel transfers. The interface
can transfer data at up to 2 Megabytes per second.

Instead of using status and control registers, the chips respond to commands
for performing functions such as selecting an endpoint or reading or writing
to a buffer.

USB Controller

Both chips are full speed. The ’12 supports a control endpoint and four
additional endpoint addresses. One endpoints buffer holds up to 128 bytes,
with double buffering for a total of 256 bytes. The "11 supports a control
endpoint and six additional endpoint addresses with 8-byte buffers.

On both chips, the USB connection is under firmware control. The chip
appears detached from the host until the peripheral’s CPU sends a com-
mand to simulate attachment to the bus. This ensures that the chip has time
to initialize on power-up before being enumerated by the host. A status out-
put on the "12 can connect to an LED that lights when a USB connection
has been established and blinks on data transfers.

Intel StrongARM

An example of a high-end controller with USB capability is Intel’s Stron-
gARM series. The StrongARM is a 32-bit CPU designed for use in portable,
wireless, multimedia devices. USB communications isnt the primary pur-
pose of the StrongARM, but it has a full-speed peripheral interface with
three endpoints that support control, bulk OUT, and bulk IN transfers.

USB Complete 169

Chapter 7

170 USB Complete

Inside a USB Controller: the Cypress enCoRe

8

Inside a USB Controller:
the Cypress enCoRe

Now that you know something about the USB protocols and the controller
chips available for USB peripherals, it’s time to take a closer look at a con-
troller chip and how to use it. The chip I've chosen for the examples in the

book is the CY7C63743 in Cypress Semiconductor’s enCoRe series.

This chapter explains how I chose the chip to use for my examples, then
describes the chip and its abilities in detail. Because describing the hardware
often involves showing code that accessing the hardware, I've also included
information about the chip’s assembler and C compiler. The focus as always
is on what you'll need to know to put the chip to use. No matter which chip
your project uses, this chapter will give you an idea of how USB controllers
carry out their responsibilities.

USB Complete 171

Chapter 8

Selecting a Chip

If you're going to design a USB peripheral, you eventually need to decide
which controller chip the peripheral will contain. The same principle holds
true for the examples in this book. In order to show application examples, |
need to choose a chip to base the examples on. So the first order of business
is selecting the chip.

Requirements

172

A major purpose of this book is to show how to design and program a USB
peripheral. I wanted to use a chip that would be suitable for simple monitor-
ing and control projects. The focus is on getting a basic design up and run-
ning quickly, rather than on supporting a complex design and every
capability of USB. With this in mind, I decided to look for these features in
a chip:

* FEasy to learn. A simple design is good.

¢ Contains a microcontroller, rather than requiring an interface to an

external microcontroller. This keeps the design simpler and avoids the
issue of which microcontroller to interface to.

* Supports interrupt transfers. One of the easiest ways to communicate
with a USB device is using Windows” HID drivers. The drivers use inter-
rupt and control transfers for transferring data in both directions.

e Inexpensive.

e Available.

¢ Has an easy-to-use development system. The development system should
enable transferring of code from a PC to the controller, viewing the code
and chip registers, and debugging using functions such as single-stepping
and breakpoints.

e Reprogrammable. A chip whose program memory is easily repro-
grammed makes development simpler and cheaper.

 Available sample code. This provides a quick start in developing firmware
and application software.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The Choice

There are many excellent products available, and the truth is that no chip
meets every requirement perfectly. Every controller I've seen supports inter-
rupt transfers, so that part is easy. Cypress’ products rose to the top of the list
because Cypress has done a very good job of supporting developers with
example code and documentation. Cypress’ EZ-USB is a powerful chip and
requires no PROM programming, but its complexity means that it’s likely to
be programmed in C, requiring an expensive C compiler.

In the end, T decided on Cypress’ enCoRe series. The chips aren’t repro-
grammable, except by swapping the PROM, but the development system
enables testing code before storing it in PROM. The development system
costs a little more than I'd like, but the chips themselves are inexpensive.
The chips are low speed, which limits their performance, but makes
printed-circuit-board design less critical. The USB communications require
a fair amount of firmware support, but you can begin with example code
that includes the essentials and change only the portions that are specific to
your application. The instruction set is simple enough that you can use the
free assembler.

The specific chip T'll use is the CY7C63743. It can do USB communica-
tions and generic I/O. There are no external buses; the chip stands alone as a
complete controller for managing USB communications and other process-
ing.

If youre using a different chip, following my examples will give you a head
start on figuring out what you'll need to do. Even if you need a full-speed
interface or a custom driver, the examples will introduce many topics that
are relevant to all USB devices.

The Assembler

Before getting into the details about the chip, it’s helpful to know a little
about how to program it. The enCoRe’s CPU supports 37 instructions.
Everything that the firmware does must use these instructions. Cypress pro-
vides a free assembler for converting the assembly code you write into object

USB Complete 173

Chapter 8

files for programming into the chip’s EPROM. If you prefer to program in
C, Cypress also offers a C compiler.

If you have experience with microcontroller assembly-language program-
ming, programming for the enCoRe will be familiar. If you're used to pro-
gramming in Basic, C, or another high-level language, the limited
operations available in assembly code may come as a shock. There are no
for or while loops, no fancy variable types, and no object-oriented any-
thing. But for a chip like the enCoRe, which is intended for fairly uncom-
plicated control and monitoring tasks, using assembly code is feasible. For
short programs, the code is manageable and executes quickly. And there are
no compilers to buy.

This book isnt a tutorial on assembly-language programming, but I'll
present some basic information for beginners, as well as specific details
about the enCoRe for those who have programming experience and want to
see how the Cypress chip compares.

Assembly Programming Basics

174

An assembly-language program contains a series of instructions, each corre-
sponding to a machine code that the chip supports. For example, the
instruction iord, which reads an 1/O location, corresponds to the code
29h. Instead of having to remember 29h, you can write iord, and the
assembler will translate for you. The iord instruction also requires an oper-
and that specifies the location to read. For example, iord 01h reads the
port at address 01h.

An assembly-language program may also contain directives and comments.
A directive is an instruction for the assembler, rather than for the CPU.
Directives enable you to assign locations in program memory, define vari-
ables, and in general instruct the assembler to perform operations besides
specifying what machine-code instructions to execute. A semicolon (;) or
double slash (//) introduces a comment, which the assembler ignores.

The assembler provided by Cypress, cyasm.exe, is a command-line program
that you can run in a DOS window. Cypress provides a User’s Guide that
documents the instructions, directives, and how to use the assembler.

USB Complete

Inside a USB Controller: the Cypress enCoRe

The assembler supports two similar instruction sets, for the A- and B-series
CPUs. The enCore chips are B-series. Cypress older chips, such as the
’63001, are A-series and support all but a few of the same instructions.

Assembler Codes

The User’s Guide has complete documentation for the assembly codes and
directives, and I won’t repeat the details here. Table 8-1 is a summary of the
codes, and Table 8-2 is a summary of the directives. The chips machine
codes translate to 37 instructions, with some supporting multiple sources or
destinations.

The instructions do basic arithmetic and logic functions, program branch-
ing and control, and copying of data to and from registers, ports, and RAM.
Two flag bits, the carry flag and zero flag, provide additional information,
such as whether an add instruction resulted in an overflow or whether the
result of an instruction is zero.

The chip supports three addressing modes that determine how an instruc-
tion uses its operand. Not all instructions support all three addressing
modes.

In immediate addressing, the instruction uses the operand’s value directly.
This instruction uses immediate addressing to add 60h to the value in the
accumulator.

Add A, 60h

In direct addressing, the instruction treats the operand as an address and
uses the value stored at that address. This instruction uses direct addressing
to add the value stored at address 60h in RAM to the contents of the accu-
mulator:

Add A, [60h]

In indexed addressing, the instruction uses the data stored at an address
obtained by adding a value to the contents of the X register. Indexed
addressing is useful for copying blocks of data. The X register holds the
starting address of data to be copied. The code adds an index value to the
contents of the X register to obtain the address of a byte to copy. By incre-

USB Complete 175

Chapter 8

Table 8-1: The Cyasm assembler supports 37 assembly-language
instructions for the enCoRe. (Sheet 1 of 2)

Instruction Type Instruction Description

Arithmetic and logic functions ADD Add without carry
ADC Add with carry
AND Bitwise AND
ASL Arithmetic shift left
ASR Arithmetic shift right
CMP Non-destructive compare
CPL Complement accumulator
DEC Decrement
INC Increment
OR Bitwise OR
RLC Rotate left through carry
RRC Rotate right through carry
SUB subtract without borrow
SBB Subtract with borrow
XOR Bitwise XOR

Program branching and control CALL Call function
HALT Halt execution
RETI Return from interrupt
JACC Jump accumulator
JC Jump if carry
IMP Jump
JNC Jump if no carry
INZ Jump if not zero
JZ Jump if zero
RET Return
XPAGE Memory page

176 USB Complete

Inside a USB Controller: the Cypress enCoRe

Table 8-1: The Cyasm assembler supports 37 assembly-language
instructions for the enCoRe. (Sheet 2 of 2)

Instruction Type Instruction Description
Moving data INDEX Table read
IORD Read 1/0
IOWR Write I/0
IOWX Indexed 1/O write
MOV Move
POP POP data stack into accumulator
PUSH PUSH accumulator into data stack
SWAP Swap
Other DI Disable interrupts
EI Enable interrupts
NOP No operation

menting the index value after each copy, the code can step through a block
of data.

Using the Assembler

The assembler uses a command-line interface that you can run from a DOS
window. This command:

cyasm test.asm

assembles the file zest.asm.
The assembler creates three files:

test.rom is the assembled code in a format for use with the Development Kit.
You can use this file to load the code from a PC to the development board’s

RAM.

Here is a portion of a .7om file as it appears when loaded into a text editor:

80 99 80 10 80 15 81 24
80 8C 80 99 80 85 80 10
2D 1A 20 1E 20 2D 2A 21
1A 37 16 00 A0 20 27 37

USB Complete 177

Chapter 8

178

Table 8-2: The Cyasm assembler supports 13 directives.

Directive Description

CPU Product specification

DB Define byte

DS Define ASCII string

DSU Define UNICODE string

DW Define word (2 bytes)

DWL Define word with little endian ordering

EQU Equate label to variable value

FILLROM Define value for unused program
memory

INCLUDE Include source file

MACRO Macro definition

ORG Origin

XPAGEON XPAGE enable
XPAGEOFF | XPAGE disable

The file contains lines consisting of eight ASCII hex bytes with a space
between each and a carriage return/line feed at the end.

In ASCII hex format, each byte is represented by two ASCII codes, with
each code representing a hexadecimal character. For example, the byte 80h is
represented by the ASCII codes 38h for 8, and 30h for 0. Using ASCII hex
format enables you to easily view the byte values (80 in the example) in a
text editor. When the code is stored in the development board’s RAM, the
RAM contains the binary bytes represented by the ASCII Hex bytes. For
example, 80h translates to 10000000 in binary.

test.hex is the assembled code in Intel Hex format. Many EPROM program-
mers, including the Hi-Lo programmer available from Cypress, support this
format. The Development Kit can use this format as well, instead of the
.rom format. Intel Hex format uses ASCII hex characters and adds check-
sums for error-checking and addressing information to enable the file to
specify where each line of bytes should be stored.

Here is the same data in one line of a */ex file (the line wraps on the page):

USB Complete

Inside a USB Controller: the Cypress enCoRe

:200000008099801080158124808C8099808580102D1A201E202D

2A211A371600A0202737A1
test.Ist is the listing file generated by the assembler. It shows each line of the
assembly code and comments, along with the program code generated from
it and the address where each byte will be stored. The listing file is useful
when you're using the monitor program. For example, if you want to stop
program execution at a breakpoint, you can use the listing file to find the
address that corresponds to the line of code where you want to break.

Here is an excerpt from a * /5t file, showing an interrupt-service routine for

Endpoint 1:
03BC endpointl:
03BC 2D [05] push A
03BD
03BD ; change data toggle
03BD 19 80 [04] mov A, 80h
03BF 37 21 [07] XOor [epl data toggle], A
03C1
03C1 19 00 [04] mov A,NO_EVENT PENDING
03C3 31 2D [05] mov [event machine], A
03C5
03C5 ; set response
03C5 1A 29 [06] mov A, [epl stalll
03C7 16 FF [04] cmp A, FFh
03C9 B3 CF [05] jnz endpointl done
03CB 19 03 [04] mov A, STALL IN OUT
03CD 2A 14 [05] iowr epl_mode
03CF
03CF endpointl done:
03CF 2B [04] pop A
03D0 73 [osl reti

The leftmost column is the address in program memory. The address doesn
change when a line contains only a comment or label. The next two col-
umns are the bytes stored at each address. For example, at location 03CD,
2Ah is the code for iowr, and 14h identifies the register to write to. The
next column is the number of clock cycles the instruction uses (5). The
rightmost columns contain the assembly code and comments.

USB Complete 179

Chapter 8

Programming in C

Another option for developing code for these Cypress chips is the C com-

piler and development environment. These tools were developed by Byte-

Craft, a provider of C compilers for many embedded-controller families.

Advantages to C

Compared to assembly-language programming, C has several advantages:

Standardization. If you’re an experienced C programmer, you know the
syntax and can get a quick start. You may be able to use C code written
for another chip with minimal changes.

More structures. Instead of being confined to simple jumps, your code
can use structures like 1£...else and case statements and for and
do...while loops.

More operators. The compiler supports many more math and relational
operators than the assembler. You can add, subtract, multiply, divide, and
do a variety of comparisons.

Libraries and examples. The included libraries will save you much time
in performing common functions. There are libraries for a firmware
UART, I’C and Microwire interfaces, delay timing, LCD and keypad
interfacing, and more math functions. The examples include complete
code for a keyboard and mouse/trackball.

Optimization. The compiler optimizes the code for compactness and

speed.

The downside is that you have to buy the compiler, while the assembler is

free. But it’s likely that the time saved with even a single project will justify

the expense.

Using the Compiler

You can run the compiler from DOS or use the included Windows-based
BCLIDE development environment (Figure 8-1). BCLIDE enables you to

180

USB Complete

Inside a USB Controller: the Cypress enCoRe

unsigned int get baud(void)
{
int menu_item=6;
while (1)
{
clracr();
for(unsigned int i=0; i<1l ;i++)
{
puts ("\n\rh\t[");
if (menu_item == i)

I
U

if(ANSI_TERM)
puts {blue
)
puts (baud menu_strings [i]

if (menu_item == i }
{
if(ANSI_TERM)
puts (white
else
puts {"\b\]
}
putch(']7);

}
URRT_RD_PORT.UBRT RD_PIN = 1;
switch {getch())
{
case "J':
case "j':
if{ menu item < 1

Figure 8-1: Byte Craft’'s C compiler includes a development environment that
enables you to set project options and edit and compile code.

create a project, add files, define file paths, and set compiler and editor
options. You can edit source-code files and compile and link the file or files
to create executable code. The compiler can create a file in Intel hex or .rom
format.

Chip Architecture

Chapter 7 introduced the enCoRe series. The chips are inexpensive and sim-
ple in design. Theyre intended for use in applications that transfer small
blocks of information at moderate speeds. Uses include standard peripherals

USB Complete 181

