
Page 1 of 69 FORD 1218

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Memo No. 880 Sept. I976

Forward Reasoning and Dependency-Directed B‘acktrack.ing-
In a System for Computer-Aided Circuit Analysis

by Richard M. Stallman and Gerald jay Sussman

Abstract:

We present a rule-based system for computer-aided circuit analysis. The set of rules,

called BL, is written in a rule language called ARS. Rules are implemented by ARS as pattern-

directed invocation demons monitoring an associative data base. Deductions are performed in an

_ antecedent manner, giving EL's analysis a catch-as-catch-can flavor suggestive of the behavior of

' expert circuit analyzers. We call this style of circuit analysis propagation. of constraints. The

' system threads deduced facts with justifications which mention the antecedent facts and the rule

used. These justifications may be examined by the user to gain insight into the operation of the

set of rules as they apply to a problem. The same justifications are used by the system to

determine the currently active data-base context for reasoning in hypothetical situations. They are.

also used by the system in the analysis failures to reduce the search space. This leads to effective

control of combinatorial search_ which we call dependency-directed backtracking.

Work reported herein was conducted at the Artificial intelligence Laboratory, a Massachusetts

Institute of Technology research program supported in part by the Advanced Research Projects

Agency of the Department of Defense and monitored by the Office of Naval Research under
contract number NOOOI4-75-C-0643. '

Page 1 of 69 ' FORD 1218

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Page 2 of 69 FORD 1218

Many people contributed to this work: Allen Brown, Drew

' HcDermott. Johan de Kleer. Kurt Vanlehn. Louis Braida. Richard

Fikes. and Earl Sacerdoti gave us some excellent ideas. Bug '
Steele. Charles Rich and Ben Kuipers gave us some important
editorial help. John Allen. David Harr. Pat Uinston and Paul

Penfield also provided good advice.

Contents:

Introduction 2

Analgsis by Propagation of Constraints 5
Facts and Laws 11

The Hethod of Assumed States 14

Making Choices 15

Dependencies and Contexts 18

_ Contradictions 22
Compound Devices and Identified Terminals 24
The Queue-based Control Structure 27

The Data Base of Facts and Demons 30

Conclusions ' 33

Appendix: An Annotated Example 36
Notes _ 82
Bibliography 85

Page 2 of 69 FORD 1218

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Page 3 of 69 FORD 1218

Stal lrnan & Suseman 2 Analysis

Introduction

A major problem confronting builders of automatic problem-solving systems is that of
the combinatorial explosion of search-spaces. One way to attack this problem is to build systems
that effectively use the results of failures to reduce the search space -- that learn from their
exploration of blind alleys.B""" ’"°V‘ Another way is to represent the problems and their solutions in
such a way that combinatorial searches are self limiting.“""'°"’

A second major problem is the difficulty of debugging programs containing large
amounts of knowledge. The complexity of the interactions between the "chunks" of knowledge
makes it difficult to ascertain what is to blame when a bug manifests itself.c°"“""‘"V One approach
to this problem is to build systems which remember and explain their reasoning.E""°‘""‘ Such
programs are more convincing when right, and easier to debug when wrong.

We have designed and implementedusp a problem-solving language called ARSAR5 in
which problem-solving rules are represented as demons with multiple patterns of
invocationP°"""""'°°"° ""'°‘°"°" monitoring an associative data base.°°'° "°’°° It performs all
deductions in an antecedent manner, threading the deduced facts with justifications which mention
the antecedent facts used and the rule of inference applied. These justifications may be examined
by the user to gain insight into the operation of the system of rules as they apply to'a problem.
The same justifications are employed by the system to determine the currently active data-base
context for reasoning in hypothetical situations.c°"'°*' justifications are also used in the analysis of
blind alleys to extract information which will limit future search.

_ We have used ARS to implement a set of rules for electronic circuit analysis. This set of
rules, a version of BL.“ encodes familiar approximations to physical laws such as Kirchoff 's laws
and Ohm's law as well as models for more complex devices such as transistors. Facts, which may.
be given or deduced, represent data such as the circuit topology, device parameters, and voltages
and currents. The antecedent reasoning of ARS gives analysis by EL a"'catch-as-catch-can" flavor
suggestive of the behavior of a circuit expert. The justifications prepared by ARS allow an EL
user to examine the basis of its conclusions. This is useful in understanding the operation of the
circuit as well as in debugging the EL rules. For example, a device parameter not mentioned in
the derivation of a voltage value has no part in determining that value. If a user changes some
part of the circuit specification (a device parameter or an imposed voltage or current), only those
facts depending on the changed fact need be "forgotten" and re-deduced, so small changes in the
circuit may need only a small amount of new analysis. Finally, the search-limiting combinatorial
methods supp.lied by ARS lead to efficient analysis of circuits with piecewise-linear models.

The application of -a rule in ARS implements a one-step deduction. A few examples of
one-step deductions, resulting from the application of some EL rules_ in the domain of resistive
network analysis, are:

I: If the voltage on one terminal of a voltage source is given, one can assign the voltage on the
other terminal.

2: If the voltage on both terminals of a resistor are given, and the resistance is known, then the
current through it can be assigned.

3: If the current through a resistor, and the voltage on one of its terminals, is known, along

Page 3 of 69 I ' FORD 1213

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Page 4 of 69 FORD 1218

Stal Iman 8- Sussman 3 Analysis

with the resistance of the resistor. then the voltage on the other terminal can be assigned.

4: If all but one of the currents into a node are given, the remaining current can be assigned.

The style of analysis performed by EL, which we call the method of propagation of

constraints,p'°”°'°"°" requires the introduction and manipulation of some symbolic quantities.
Though the system has routines for symbolic algebra,sV"“’°"° '"°"“’”""°" they can handle only linear

relationships. Nonlinear devices such as transistors are represented by piecewise-linear models that

cannot be used symbolically; they can be applied only after one has guessedA""‘°° a particular

operating region for each nonlinear device in the circuit. Trial and error can find.the right

regions but this method of assumed states is potentially combinatorially explosive. ARS supplies

dependency-directed backtracking, a scheme which limits the search as follows: The system notes a

contradiction when it attempts to solve an impossible algebraic relationship, or when discovers that

a transistor’s operating point is not within the possible range for its assumed region. The

antecedents of the contradictory facts are scanned to find which nonlinear device state guesses

(more generally, the backtrackable choicepoints) are relevant; ARS never tries that combination of

guesses again.’ A short list of relevant choicepoints eliminates from consideration a large number

of combinations of answers to all the other (irrelevant) choices. This is how the justifications (or

dependency records) are used" to extract and retain more information from each contradiction than

a chronological backtracking system.B““'°°'“"" A chronological backtracking system would often
have to try many more combinations, each time wasting much labor rediscovering the original
contradiction.

H How it works:
' In EL all circuit-specific knowledge is represented as assertions in a relational database.

Qeneral knowledge about circuits is represented by kiwi, which are demons subject to pattern-
' directed’ invocation. Some laws represent knowledge as equalities. For example, there is one demon

for Ohm's- law‘for resistors, one demon that knows that the current going into one terminal of a

resistor must come out of the other, one demon that knows that the currents on the wires coming

into a node must sum to zero, etc. Other laws, called Monitors handle knowledge in’ the form of

inequalities: For example, I-l‘llJNi TOR—DIODE knows that a diode can have a forward current if
and only if it is ON, and can never have a backward current. _

When an assertion (for example, (= (VOLTAGE (C 01)) 3.14) . which says that the

voltage on Ql’s collector has the value 8.1 volts) is added to the data base. several demons will in

general match it and be triggered. (in this example, they will include DC-KVL. which makes sure

that all other elements’ terminals connected to Ql’s collector are also known to have that voltage.

and VCE—l‘lONlTOR-BJT. which checks that Q1 is correctly biased for its assumed oper-ating region.).

The names of the triggered laws are put on a queue, together with arguments such as the place in

the circuit that the law is to operate. Eventually they will be taken off the queue and processed,

perhaps making new deductions and starting the cycle over again.

When a law is finally processed, it can do two useful things: make a new assertion (or

several), or detect a contradiction. A new assertion is entered in the data base and has its

antecedents recorded; they are the asserting demon itself, and all the assertions which invoked it or_

were used‘ by it. This complete memory of how every datum was deduced becomes useful_ when a

Page 4 of 69 I , FORD 1218

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Page 5 of 69 FORD 1218

Stal lman & Sussman 4 _ Analysis

contradiction is to be handled. A contradiction indicates that somepreviously made arbitrary

choice (e.g. an assumption of the linear operating region of some nonlinear component) was

incorrect. ARS scans backward along the chains of deduction from the scene of the contradiction,

to find those choices which contributed to the contradiction, and records them all in a NDGDUD

assertion to make sure that the same combination is never tried again. (NOGUUD ((NUDE O1)

CUTUFFI l (MODE US) ON)) is a NOGODD assertion that says that it cannot be simultaneously true

that transistor Ql is cut off and diode D5 is conducting. Such a NDGUOD might be deduced if Q]

and D5 were connected in series. Next, one of the conspiring choices is arbitrarily called the

"culprit" ("scape-goat" might be a better term) and re-chosen differently. This is not mere

'undirected'trial and error search as occurs when chronological backtracking with a sequential

control structure is used, since it is guaranteed not to waste time trying alternative answers to an

irrelevant question. The NOGODD assertion is a further innovation that saves even more

computation by reducing the size of the search space, since it contains not all the choices in effect,

but only those that were specifically used in deducing the contradiction. Frequently some of the

circuit’s transistors will not be mentioned at all. Then, the NOGOOD applies regardless of the states
assumed for those irrelevant transistors. If there are ten transistors in the circuit not mentioned in

the NDGUUD, then since every transistor has three states _(in the EL model) the single NOGUOD has
ruled ‘out 3‘0-=59O19 different states of the whole circuit. .

Page 5'of 69 l=ORD 1218

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

