
CBR-Works
A State-of-the-Art Shell for

 Case-Based Application Building

Stefan Schulz
TECINNO GmbH, Sauerwiesen 2,
D-67661 Kaiserslautern, Germany

schulz@tecinno.com

Abstract. Nowadays, a proper tool for Case-Based Reasoning has to fulfill a
wide range of tasks beyond simple retrieval. This paper gives a brief overview of
the abilities and features of the tool CBR-Works which provides support for the
design process of a Case-Based application as well as for maintenance and
retrieval. CBR-Works also provides the ability to reuse existing data from com-
mon database systems and may act as server for distributed access to a case base,
including retrieval and case base management.

1 Introduction

Case-Based Reasoning (CBR) becomes more and more popular for companies,
improving and enhancing their customer and sales support by introducing “intelligent
applications” [5]. Using a Case-Based application not only provides stored product
catalogs or experience knowledge (the cases) to customers of a company. But also, by
capturing problems and solutions a corporate memory is built, so the knowledge is no
longer distributed in the workers minds but accessible to everyone in a company.

Besides collecting cases, applying Case-Based Reasoning necessitates a CBR-Tool
supporting retrieval of matching cases as well as modeling and maintaining of the case
base. Companies store information about their products in common database systems.
Hence, as the amount of stored data is rather large, the CBR-Tool’s ability of easy
(re)using those information is important.

Another fundamental characteristic of a CBR-Tool is to cover the complete cycle of
Case-Based Reasoning ([1], [4]), i.e., retrieving cases similar to a user’s specification,
reusing a retrieved case as proposed solution, testing a solved case for success during
the revisioning process, and retaining a new solution given in form of the revised case
by including the experiences (the case) into the existing case base.

CBR-Works is a shell for Case-Based application building. Besides the retrieval of
cases, it supports modeling the cases’ structure and maintaining the case base. Its con-
sultation mechanism also covers the whole CBR-Cycle from retrieving to revising.

Page 1 of 10 FORD 1217f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Though CBR-Works is designed as a complete environment, it may also act as a CBR-
Server for several clients by the use of CQL (Case Query Language [9]). Last but not
least, CBR-Works offers an open interface to build a Case-Based application from
existing data stored in common database systems.

This paper gives a brief overview of the abilities and features of CBR-Works. It will
introduce the tool’s elements that are used for building an application. To illustrate the
building process, a simplified PC-Domain is used as depicted in fig. 1. This example
will be used in the following chapters.

Fig. 1. Structure of a simplified PC-Domain’s case

The following two sections describe the common elements used for building a case
base in CBR-Works. Section 3 gives a concise description on maintenance in CBR-
Works. In chapter 4 the interface for reusing data is tersely discussed. This is followed
by an overview on how to consult a case base in section 5. Finally, perspectives are
given in chapter 6 on further enhancements of CBR-Works.

2 Structure Modeling

CBR-Works is suited for intelligent solutions in a variety of domains and environ-
ments. Its graphical editors support the user to design complex knowledge models. An
object-oriented approach (see [6], [7]) is used in CBR-Works to design the underlying
structure of cases. This structure can be edited and maintained in an easy and intuitive
way.

2.1 Concepts

In CBR-Works, concepts define the structure of the cases. They are defined in hierar-
chy similar to a class-model hierarchy including inheritance. Each concept consists of
attributes which can be either atomic (defined by a type) or complex (has-part relation-
ship to another concept).

For retrieval purposes, attributes have three additional, functional properties: one
for defining its weight, i.e., its importance in respect to the other attributes of the con-
cept, a property for defining whether an attribute is discriminant for retrieval or will be

Usage

Mainboard

Multimedia

Storage

PC-System

Games
Internet
Office
Processor
Memory

Graphics Card
Sound Card

Controller

Medium

Bus-Type

Capacity
Bus-Type

has-part
has-attribute

Page 2 of 10 FORD 1217f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ignored, and another property defining if an attribute is mandatory for a case to be
valid. Moreover, for every attribute a question and an annotation may be given that can
be used by clients when asking for the value and to refer to further information about
an attribute.

In fig. 1 each rectangle may be seen as a concept. For example, Storage consists of
the two complex attributes Controller and Medium, and again the latter consists of the
two atomic attributes Capacity and Bus-Type.

Concept Similarity. Beside attributes, the type of similarity can be specified for every
concept. The concept’s similarity consists of two parts: the similarity of a concept’s
contents (contents-based similarity) and the similarity between concepts (structure-
based similarity) (see [2] for detailed information on similarities).

The contents-based similarity of a concept is computed based on the attributes
defined in the concept. It may be one of the following:

- Average: All attribute similarities contribute to the contents-based similarity by
computing their average.

- Euclidean: Geometric interpretation of the contents-based similarity (distance
between two concepts, based on its contents).

- Minimum: The lowest attribute similarity defines the contents-based similarity.
- Maximum: The highest attribute similarity defines the contents-based similarity.

An example for a contents-based similarity is given in fig. 2. Here, the similarity
between the usage parts of two PC-Domain cases is computed using Average. The
numbers are the computed similarities between two objects which are connected by a
corresponding arc. The upper similarity computes as average of the lower ones.

Fig. 2. Example of contents-based similarity using Average

The structure-based similarity defines similarities between concepts independent of
their contents. Inside a concept-hierarchy, the similarity of concepts to each other may
be explicitly or implicitly defined by using a taxonomic view of the hierarchy.

In the PC-Domain a concept-hierarchy could be defined like in fig. 3a. Assuming
the initial taxonomic view of the hierarchy as base for the structure-based similarity, it

computes to . An example for a two-level taxonomy is shown in

fig. 3b.

Usage-1 Usage-2

0.6 0.4 0.2

0.4

 level of common father
number of levels

--

Page 3 of 10 FORD 1217f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Fig. 3. Example for structure-based similarity: a) concept-hierarchy for Medium b) structure-
based similarity between two PC-Domain cases where Medium is the common father

The concept’s similarity computes as a weighted sum of structure-based and con-
tents-based similarities.

Rules. Additionally, rules may be specified for each concept, either being completion
or adaptation rules. Completion rules apply to cases of a case base as well as to a
query whenever a new value is given for an attribute. If some attribute values depend
on each other, completion rules ease handling by automatically setting appropriate val-
ues. Adaptation rules get activated only after retrieval and they are used to combine
attribute values of the query and retrieved cases and to apply the result to a target case.
That way, slightly modified cases are created which may fit the customers need better
than the retrieved case.

Each rule, for adaptation as well as completion, consists of two parts: a condition

part and a conclusion part. The condition part defines a conjunction of conditions. A
condition may either be a predicate or a simple calculation over attributes (of the
according concept), constants (defined using concepts or types), or local variables
(computed by previous conditions). The conclusion part consists of actions being exe-
cuted if all conditions of the condition part are fulfilled. An action may be an assign-
ment of values to attributes (atomic as well as complex), a command to open a notifier
(e.g., to report inconsistencies due to a given value), or changes to retrieval-influenc-
ing values (e.g., filters and weights) (see [3], [8]).

For example, to keep consistency for the Storage component of a PC-System, a
completion rule may be defined to ensure that a Medium will fit to a specified Control-

ler. If a Medium gets defined having a Bus-Type different to an already specified Con-

troller, a notifier will open to inform the customer about this inconsistency. More
complex, an adaptation rule may be defined choosing a, e.g, different, fitting Controller

replacing the previously specified one.

2.2 Types

Similar to concepts, types are defined hierarchically. New types are defined by build-
ing subtypes of the existing elementary types shown in table 1. They differ in their
usability: a type may be used immediate or derived. While immediate types cover the

CD-ROM Hard Disk

PC-1 PC-2

0.5

(b)

Medium

Hard Disk CD-ROM TAPE

(a)

Page 4 of 10 FORD 1217f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

whole range of possible values of a type, derived types get restricted in their range by
defining an enumeration of elements of its elementary type or, in case of numeric
types, by specifying an interval.

Additional to the type Symbol, Ordered Symbol provides a total and Taxonomy a
partial order over a given enumeration of values. For example, Hard Disk being
defined using Taxonomy introduces a partial order of the values compatibility regard-
ing Bus-Types as shown in fig. 4.

Fig. 4. Taxonomy over selected Processors

Furthermore, constructional types are available for defining intervals and sets using
defined, elementary types. Here, intervals are restricted to ordered types where sets
may be defined over any elementary type or one of its derivatives (see table 2 for
restrictions).

Type Similarity. For each type derived from elementary types, similarities may be
defined describing major parts of the experts knowledge which is necessary for intelli-
gent retrieval. The definition ranges from value-to-value specifications in form of a
table over special, type-depending similarities (e.g., for string types) to functional
specification by graphs [2]. Furthermore, an interface is given to define a program-
matic similarity for any derived type. An example of functional similarity is given in

Table 1. Elementary Types in CBR-Works

Type Usability Type Usability
Integer immediate and derived String immediate and derived
Real immediate and derived Symbol immediate and derived
Date immediate and derived Ordered Symbol derived only
Time immediate and derived Taxonomy derived only
Boolean immediate only Reference derived only

Table 2. Constructional Types in CBR-Works

Type Value-Type Restrictions
Set All but Boolean
Interval Ordered Types (e.g., Ordered Symbol, Integer, Real)

Page 5 of 10 FORD 1217f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

