
RI Revisited:
Four Years in the Trenches

Judith Bachant John McDermott

Intelligent Systems Technology Group Department of Computer Science
Digital Equipment Corporation Carnegze-Mellon University
Hudson, Massachusetts 01’749 Pittsburgh, Pennsylvania 15213

Abstract

In 1980, Digital Equipment Corporation began to use a rule-based
system called Rl by some and XCON by others to configure VAX-
11 computer systems In the intervening years, Rl’s knowledge has
increased substantially and its usefulness to Digital continues to grow.
This article describes what is involved in extending Rl’s knowledge base
and evaluates Rl’s performance during the four year period.

IN THE SUMMER 198 1 ISSUE of the AI Magazine, an
article entitled “Rl: the formative years” described how a
rule-based configurer of computer systems had been devel-
oped and put to work (McDermott, 1981). At the time that
article was written, RI had been used for only a little over
a year and no one had much perspective on its use or use-
fulness. RI has now been configuring computer systems for
over four years. This experience has provided some insight
into the ease and difficulty of continuing to grow an expert
system in a production environment and into the kind of per-
formance expectations it might be reasonable to have about
a current generation rule-based system.

The approach Rl takes to the configuration task and the

A large number of people have played critical roles in Rl’s development.
Among those who deserve special mention are John Barnwell, Dick
Caruso, Ken Gilbert, Keith Jensen, Allan Kent, Dave Kiernan, Arnold
K&t, Dennis O’Connor, and Ed Orciuch. We want to thank Allen
Newell, Dennis O’Connor, and Ed Orciuch for their helpful comments
on earlier drafts of this article

way its knowledge is represented have been described else-
where (McDermott, 1980) and (McDermott, 1982). Briefly,
given a customer’s purchase order, Rl determines what, if
any, substitutions and additions have to be made to the or-
der to make it consistent, complete, and produce a num-
ber of diagrams showing the spatial and logical relationships
among the 50 to 150 components that typically constitute a
system. The program has been used on a regular basis by
Digital Equipment Corporation’s manufacturing organiza-
tion since January, 1980. Rl has sufficient knowledge of the
configuration domain and of the peculiarities of the various
configuration constraints that at each step in a configuration
task it is usually able to recognize just what to do; thus it
ordinarily does not need to backtrack when configuring a
computer system.

At the beginning of Rl’s development, no clear expecta-
tions existed about how long it would take to collect enough
knowledge to make Rl an expert. We did expect that at some
point the rate at which Rl would acquire new knowledge
would at least slow, if not stop. We even thought that
Rl would be done eventually (that is, Rl would enter a
maintenance mode of well-defined and minor additions, in-
terspersed with occasional bug fixes.) It is difficult now
to believe Rl will ever be done; we expect it to continue
to grow and evolve for as long as there is a configuration
task. It may be that if Rl’s domain were less volatile,
Rl would not require perpetual development. But it is

THE AI MAGAZINE Fall 1984 21

AI Magazine Volume 5 Number 3 (1984) (© AAAI)

Page 1 of 12 FORD 1210f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

NU MBER OF RULES
3250 -

3000 -

2750 -
2500 -

2250 -

2000 -

1750 -

1500 -

1250 -
VAX-11/780 (10/79)

VAX-11/725 (11/83

PDP-11/44 (11/83:

PDP-11/24 (11/83:

MICROVAX-1 (10/83:

MICRO-PDPl V/83:

VAX-11/730 (3/82)

I
l/1/80

I

l/1/81

Rl’s Growth

Figure 1.

I
l/1/82

I
l/1/83

I
./l/84 1

probably also true that if the domain were less volatile, the
task would not require a knowledge-based system.

The early expectations about Rl’s performance were
likewise vague, except just as Rl was beginning to be used,
a Digital employee responsible for the configuration process
predicted that for Rl to be useful, 90% to 95% of its
configurations would have to be perfectly correct. This per-
formance goal is interesting, not so much because RI took
three years to reach it, but because it turned out to be com-
pletely wrong. Rl’s task is just one small part of a process
designed to ensure that high quality computer systems are
built. Significant redundancy exists in the process precisely
because historically no individual has both known enough
about configuration and been able to pay close enough at-
tention to each order to be entrusted with the total respon-
sibility. Rl was able to provide significant assistance even
when it knew relatively little because the people who used Rl
did not demand more of it than of its human predecessors.
The one definite performance expectation almost everyone
had about Rl in its early days was that it would always
configure the same set of components in the same way. It
is obvious now and should have been obvious then that this
expectation could have been satisfied only if Rl had been
discouraged from becoming more expert.

These expectations about Rl’s developmental and per-

formance histories introduce the two parts of the article. In
the next section, the focus will be on the kind of involvement
required to extend Rl’s knowledge base. The final section’s
focus will be on the kinds of erroneous behavior Rl has ex-
hibited.

Rl’s Developmental History

This section provides a somewhat anecdotal trip through
Rl’s past. Although it mentions the first year, when most of
the activity was at Carnegie-Mellon University [CMU], the
primary focus is on the four following years, after Rl began
to be used at Digital. When CMU handed over the initial
version of Rl to Digital in January 1980, Digital scrambled
to put an organization in place that could continue its de-
velopment. This organization, currently known as the Intel-
ligent Systems Technologies group, began with only five in-
dividuals, none of whom had any background in AI. Over the
past four years, the group has grown to 77 people responsible
for eight different knowledge-based systems, one of which is
Rl. As Rl was developed, an attempt was made to effect
a division of labor between those people responsible for rep-
resenting Rl’s knowledge and those responsible for collect-
ing and validating that knowledge. Of the initial technical
people, one was an engineer who played the roles of both

22 THE AI MAGAZINE Fall 1984

Page 2 of 12 FORD 1210f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

a domain expert and of an interface to other domain ex-
perts outside the group; the other three people took the
knowledge collected by the engineer and formulated it so it
was compatible with Rl’s other knowledge. When the or-
ganization was a little over two years old the technical group
had grown to eight people, five of whom were responsible for
encoding the knowledge collected and validated by the other
three. The size of the Rl technical group is still about eight.
Now, however, less of a distinction exists between the people
responsible for knowledge encoding and those responsible for
knowledge collection.

The Knowledge Rl Acquired

Over the past four years, the amount of effort devoted
to adding knowledge to RI has remained relatively constant
at about four worker-years per year. And Rl’s knowledge
has grown at a relatively constant rate, though the focus has
shifted around. At times the task of eliminating inadequacies
in Rl’s configuration knowledge has received the most atten-
tion; at other times, the group’s energies have been directed
primarily at broadening Rl’s abilities in various ways. Figure
1 shows the rate at which Rl’s knowledge has grown; the
points in time at which Rl became able to configure new sys-
tem types are marked. Figure 1 does not show the amount
of product information to which Rl has access. This infor-
mation, which is stored in a data base, is a critical part
of the body of information needed to configure a computer
system correctly. Rl retrieves the description of each com-
ponent ordered before it begins configuring a system; while
configuring the system, if it determines some piece of re-
quired functionality is missing, it searches the data base for
components that will provide that functionality. Rl currently
has access to almost 5500 component descriptions. We do
not have good data on the rate at which the data base has
grown, but what data we have suggest the growth rate is
quite irregular.

In this article, Rl’s growth is measured in number of
rules. The following values hint at the amount of knowledge
an Rl rule contains. The average conditional part of one
of Rl’s rules has 6.1 elements (the minimum number is 1
and the maximum 17). Each element is a pattern that can
be instantiated by an object defined by as many as 150 at-
tributes. On the average, a pattern will mention 4.7 of those
attributes (the minimum is 1 and the maximum 11) and
restrict the values which will satisfy the pattern in various
ways. The tests are mostly simple binary functions that
determine whether some value in the object has the specified
relationship to some constant or to some other value in that
or another object. The action part of an average rule has 2.9
elements (the minimum is 1 and the maximum 10). Each
element either creates a new object or modifies or deletes
an existing object. A rule can be applied when all of its
condition elements are instantiated.’

‘For additional information about the nature of Rl’s rules as well as
those of other systems written in 0ps5, see (Gupta, 1983)

Work on RI began in December 1978. During the first
four months, most of the effort was on developing an ini-
tial set of central capabilities. The initial version of Rl was
implemented in OP%, a general-purpose rule-based language
(Forgy, 1979). By April, Rl had 250 rules. During the same
period, a small amount of effort was devoted to generating
descriptions of the most common components supported on
the VAX-111780. After this demonstration version of Rl had
been developed, most of the effort during the next six months
was divided between refining those initial capabilities and
adding component descriptions to the data base; in October
1979, Rl had 750 rules and a data base consisting of 450 com-
ponent descriptions. During the following six months, little
development work was done on Rl either at Digital or CMU
because the main focus was on defining a career path for Rl
within Digital. But beginning in April 1980, three months
were spent at CMU in rewriting the OPS4 version of RI in
OPS5 (Forgy, 1981). Given that the knowledge was already
laid out in the OPS4 version, a variety of generalizations
emerged and the resulting system, though more capable, had
only 500 rules.

By the end of 1980, Rl had 850 rules, most of which
were added by people at CMU to provide Rl with additional
functionality; the primary focus at Digital during the second
half of 1980 was on adding component descriptions to the
data base and providing a group of people with the skills
to take over the continued development of Rl. Most of the
work on Rl since early in 1981 has been done by people at
Digital. By March 1981, the group at Digital had extended
RI so it could configure VAX-11/750 systems. During the
remainder of 1981, most of the group’s effort was focused
on refining Rl’s knowledge of how to configure VAX-111780

and VAX-11/750 systems. In 1982, the focus changed to ex-
tending Rl to cover more systems. While some effort was
spent in improving Rl’s performance, substantial effort was
spent in extending its scope. By March, a few months be-
fore the VAX-111730 was announced, Rl was able to configure
VAX-11/730 systems, and by July, Rl was able to configure
PDP-11/23+ systems. At that point, Rl’s knowledge base
consisted of about 2000 rules. The remainder of 1982 and the
first few months of 1983 were devoted primarily to refining
that knowledge. At that point, a concerted effort was made
to extend Rl’s capabilities so it could configure all the sys-
tems sold by Digital in significant volume. When that task
was finished in November 1983, Rl had about 3300 rules
and its data base contained about 5500 component descrip-
tions. While a significant amount of time will continue to be
devoted to extending Rl’s capabilities to cover new systems
as they are announced, effort will also be spent in continuing
to deepen Rl’s expertise in the configuration domain.

As Digital has become more dependent on Rl, it has be-
come increasingly important that Rl be highly reliable. Thus
substantial attention has been paid to the question of how to
combine the demands of reliability with those of continuous
development. Early on, little attention was paid to formaliz-
ing the developmental process; as problems were reported,

THE AI MAGAZINE Fall 1984 23 Page 3 of 12 FORD 1210f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

NUMBER
OF RULES

THE INITIAL Rl 777

THE CURRENT Rl 3303
VAX-111785 2883
VAX-11/780 2883
VAX-111750 2801
VAX-111730 2810
VAX-11/725 2788
MICROVAX-1 1516
MICRO-PDPll 1516
PDP-11/23+ 1516
PDP-11/24 2786
PDP-11/44 2786

AVERAGE AVERAGE AVERAGE PERCENT OF NUMBER
RULES PER NUMBER RULE KNOWLEDGE OF PARTS

SUBTASK OF PARTS FIRINGS FREQUENTLY IN THE
ORDERED USED DATABASE

76 88 1056 44% 420

10 3 78 1064 47% 5481
9.8 163 2654 24% 3398
98 171 1925 31% 3398
97 111 1300 29% 2915
97 85 1141 29% 2489
97 34 622 8% 1981
73 34 546 18% 1490
73 44 546 18% 1828
73 49 608 20% 1894
9.7 43 567 13% 1763
97 43 733 15% 1764

A comparison of the initial and current versions of Rl.

Figure 2.

individuals would collect the needed knowledge, add it to the
system, and depending on the press of other problems, do
more or less testing to determine that the overall capability
of the system had not worsened. As time passed, the de-
velopmental process acquired substantially more structure.
Planned release dates are now preceded by extensive testing
of the system.

The article describing the initial version of Rl (McDer-
mott, 1982) provides some insight into the nature of Rl’s
knowledge by presenting a variety of measurements. Figure
2 compares the measurements from the initial version of Rl
with corresponding measurements from the current version.
Since a significant amount of the knowledge in the current
version is specific to just a subset of the system types it can
configure, Figure 2 provides the measurements for system-
specific configurers as well as for the union of those config-
urers. Until recently, instead of a single version of Rl that
could configure all system types, there was a version of Rl for
each system type. Each of these versions consisted of a set of
from 50 to 100 rules specific to a system type and two much
larger sets of rules; it shared one of these rule sets with all of
the other system types and the other with the system types
having the same primary bus. About 300 of the shared rules
were themselves specific to just one of the system types; each
of these rules was included with the shared rules because it
was relevant to a shared subtask.

Rl’s rules are grouped together on the basis of the
subtask to which they are relevant; the “number of rules”
column displays the total number of rules available to Rl
in performing the configuration task, and the “average num-
ber of rules per subtask” column displays the mean number
of rules in a group. The 3303 rules the current Rl has is
the union of the rules of each system-specific configurer; the
10.3 rules per subtask is the union of the groups of rules the
system-specific configurers bring to bear on a particular task.
The “average number of parts ordered” column displays the
number of components Rl has to configure. This number

is significantly larger than the number of components listed
on a purchase order since those line items actually refer to
bundles of configurable components.

The numbers in the “average rule firings” and “percent
of knowledge frequently used” columns are based on small
sets of runs. For the initial Rl, the numbers came from run-
ning Rl on 20 typical orders. For the current Rl, the num-
bers came from running each system-specific version of Rl
on about 20 orders of comparable complexity. The “average
rule firings” column shows that substantially more is done
in configuring a VAX-111780 order now than was done ini-
tially; almost twice as many rules are applied. Two factors
contribute to this increase. The configuration task has been
enlarged by definition (i.e. there is now more to do), and
second, there has been an increase in the average number of
components per order.2

The “percent of knowledge frequently used” column
shows what percentage of the rules are used at least once
in at least one of the sample runs. Thus for the initial Rl,
44% of the 777 rules were applied at least once over the 20
sample runs, and for the current Rl, 47% of the 3303 rules
were applied at least once over the approximately 200 sample
runs. The fact that a substantial fraction of Rl’s knowledge
is used only rarely is, of course, just what we would expect
of a knowledge-based system. But the percentages for the
system-specific versions are somewhat misleading. We would
expect the percentage for each version to be lower than the
overall percentage because each was run on only about 20
orders. However, because each version has knowledge that
is not relevant to its tasks, the percentages for the versions
are lower than they otherwise would be. The percentages for
the VAX-111780, the VAX-111750, and the VAX-111730 are
the most accurate, but even they are too low by several per-
centage points. Since the nature of the knowledge used by

20n the average, 1.67 VAX-11/780 cpu minutes are required to
configure an order.

24 THE AI MAGAZINE Fall 1984
Page 4 of 12 FORD 1210f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

each version is quite similar, it is likely that the percentage
of the knowledge frequently used by each is pretty much the
same-somewhere between 35% and 40% .

About 65% of the 2526 rules added to Rl since 1980
extend Rl’s general configuration capabilities; only about
35% of the rules are specific to a single system type. Of the
65% at least 15% were added to correct or refine knowledge of
how to perform some subtask. This lower bound is suggested
by the fact that the “average number of rules per subtask”
increased by 30% during the past four years (i.e., about 230
rules were added to the groups of rules applicable to the
subtasks the initial Rl knew how to perform); adding a rule
to the group applicable to some subtask is almost invariably
done to correct or refine the knowledge of how to perform
that subtask. The 15% is a lower bound because as the
knowledge required to perform some subtask grows, it may
become evident that what was viewed as a single subtask
can be viewed as two or more simpler subtasks; what we
do not know is how much the average number of rules per
subtask would have grown if this subtask splitting had never
occurred.

The Kinds of Changes Rl Has Undergone

As it turned out, the task of developing Rl had just
begun when it was first put into use. In this section, we
attempt to give a flavor of the kinds of changes that have
been made to Rl over the past four years by examining a few
examples in some detail. Our primary purpose in examining
the growth of Rl’s knowledge is to better understand what
is involved in adding knowledge to such a system. We can
identify four reasons why knowledge was added to Rl:

l To make minor refinements (adding knowledge to
improve Rl’s performance on an existing subtask);

l To make major refinements (adding the knowledge
required for Rl to perform a new subtask);

l To extend the definition of the configuration task in
significant ways.

Ordinarily when people talk about why knowledge is
added to an expert system, they seem to have the first reason
in mind. As we have seen, of the more than 2500 rules
added to Rl during the past four years, the data in Figure
2 suggest that more than 10% have been added to make
minor refinements, fewer than 40% have been added to make
major refinements, at least 35% have been added to provide
functionality needed to deal with new system types, and
perhaps as many as 15% have been added to extend the
definition of the task in significant ways.

Minor Refinements. A knowledge addition of the first
type is required when Rl cannot perform some subtask that
it was thought to be able to perform. For example, over the
years RI has made several errors involving the placement
of backplanes in boxes. One instance of such an error has
to do with a backplane’s location. In one variety of a 24
slot box, because of power considerations, a backplane is

not permitted to cover slot 10. Rl knew that if it covered
slot 10 when placing a backplane, it needed to move that
backplane toward the back of the box so the backplane’s front
edge would be in slot 11. Rl’s knowledge was incomplete
because it did not know it had to move any previously placed
backplane from the front of the box toward the middle so
that its back edge would be in slot 9. This backplane has to
be moved toward the middle because leaving a larger space
between the two backplanes would mean the standard cable
used to connect backplanes could not be used (since it is not
long enough). Fixing Rl was a straightforward task, but it
required a certain amount of creativity (i.e., it was not just
a matter of “adding some more domain knowledge.“) What
Rl lacked was any notion of “deliberately vacant space.”
In order to provide rules that could recognize situations in
which blank space was inappropriately positioned, Rl had
to have the concept of blank space and an understanding of
how to make a note that a particular space had been left
blank on purpose. Given this, it was straightforward to add
a few rules that recognized when some piece of blank space
was inappropriately located and swap it with a backplane.

Major Refinements. A knowledge addition that results
in a major refinement to Rl can be made in two kinds of
situations: when Rl does not have any knowledge about how
to perform some subtask, and when its knowledge of how to
perform some subtask becomes so tangled that ways need
to be found of representing the knowledge more generally.
Brief examples of both situations are presented below; in the
following section we provide a more lengthy analysis of one
attempt to rewrite a set of rules, initiated almost purely to
increase generality and understandability.

Most of the modules Rl configures on a UNIBUS consist
of one or more boards that plug into backplanes which go
in boxes. If multiple boards are required, they are usually
placed next to each other in the same backplane. A situation
unfamiliar to Rl arose when a module was designed with
boards on two buses. Its first board was to be configured
in an SPC backplane while the three remaining boards were
to be configured in a special backplane that had to be lo-
cated in the same box as the first board, but not in the same
backplane. One way of extending Rl to handle this new
component would have been to use a look-ahead strategy;
Rl would have checked for space, power, and cabling con-
straints on the special backplane before configuring the first
board. An alternative would have been a simple backtrack-
ing strategy. The approach Rl actually took involved a com-
bination of both look-ahead and backtracking. RI applies
the same rules it uses for other modules to configure the
first board; a few special rules then try to foresee abstract
constraint violations involving the rest of the boards. If a
problem is found, the first board is unconfigured. If no con-
straints are violated, power and space are reserved for the
remaining boards.

Early in Rl’s history, only two types of panels needed to
be considered. A few rules were sufficient to guard against
the possibility of trying to configure two panels in the same

THE AI MAGAZINE Fall 1984 25
Page 5 of 12 FORD 1210f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

