[54] PUSH BUTTON SWITCH

Assignee: Olympia Werke AG, Wilhelmshaven, Germany
[22] Filed:
Dec. 10, 1975
[21] Appl. No.: 639,607

Foreign Application Priority Data

Dec. 20, 1974 Germany 2460485
U.S. CI. 200/5 A; 200/67 DB;

200/159 A; 200/159 B; 200/275
Int. Cl. ${ }^{2}$ \qquad H01H 13/70; H01H 1/06; H01H 21/02
[58] Field of Search \qquad 200/5 R, 5 A, 67 DA, $200 / 67 \mathrm{DB}, 159 \mathrm{R}, 159 \mathrm{~A}, 159 \mathrm{~B}, 275,302$, 329, 340, DIG. 1, 283, 292

References Cited

 UNITED STATES PATENTS| 3,710,209 | 1/1973 | Webb et al. 200/DIG. 1 |
| :---: | :---: | :---: |
| 3,786,205 | 1/1974 | Lien 200/275 X |
| 3,796,843 | 3/1974 | Durkee et al. 200/159 B X |
| 3,800,104 | 3/1974 | Lien et al. 200/67 DA |
| 3,819,882 | 6/1974 | Anderson et al. 200/159 A X |
| 3,826,882 | 7/1974 | Giolitti et al. 200/67 DA X |
| 3,849,611 | 11/1974 | Walker, Jr. 200/275 X |
| 3,858,020 | 12/1974 | Brannon 200/159 A |
| 3,870,840 | 3/1975 | Rivetta et al. 200/159 A X |
| 3,899,648 | 8/1975 | Murata 200/159 B X |
| 3,911,233 | 10/1975 | Nakamura et al. 200/159 B X |
| 3,916,135 | 10/1975 | Holden et al. 200/159 B |

3,917,917	11/1975	Murata 200/159 B X
3,928,736	12/1975	Drage 200/275 X
3,941,964	3/1976	Yoder 200/159 A
3,967,084	6/1976	Pounds 200/159 B X
3,969,600	7/1976	Sims, Jr. 200/5 A

Primary Examiner-James R. Scott Attorney, Agent, or Firm-Spencer \& Kaye

[57]

ABSTRACT

A push button switch mounted on a conductor-carrying insulator plate includes a push button to which an external operating force can be applied; an electrically conducting, resilient switch element carrying a movable contact and arranged on the plate within the operating range of the push button for effecting at least an indirect transmission of the operating force to the switch element; and at least one fixed contact carried by the plate. In the operating position the movable contact is in engagement with the fixed contact. The switch element is constituted by a planar sheet member having a central zone bounded by two parallel edges and carrying the movable contact, and strip-like legs integral with the central zone and extending from the edges towards the insulator plate at an inclination with respect to the central zone that is greater than 90°. The legs are supported at least indirectly on the insulator plate at conductor-free portions thereof. Alternative embodiments include the use of a common sheet member having stamped flexible contact areas integral therewith incorporating the design features of the singular switch element.

25 Claims, 8 Drawing Figures

FIG. 3

FIG. 2

PUSH BUTTON SWITCH

BACKGROUND OF THE INVENTION

The present invention relates to a push button switch for electrical and electronic devices comprising a push button and an electrically conducting elastic switch element which is caused by the push button to move rapidly, in a snap action, from a normal position into an operating position in which it contacts at least one fixed contact attached to a conductor-carrying insulator plate, such as a printed circuit board. When the force exerted on the push button is removed, the elastic switching element returns to its normal position.

Known push button switches of the above-outlined type are utilized as individual electrical switches or as a group in a planar arrangement, for example for data input in keyboards of electronic computers or electrical typewriters. The elastic, snap action switch elements are designed either as cup-shaped contact springs as disclosed, for example, in U.S. Pat. No. $2,262,777$, or as two contact frames each having a bent central strip and two contact pieces and are thickened at two opposite lateral edges as disclosed, for example, in German Laid-Open Application (Offenlegungsschrift) No. 2,411,426. Cup-shaped contact springs, however, form a surface which cannot be developed and thus require increased manufacturing costs. The same applies for a contact frame which is shortened at opposite lateral edges, and the central strip of which thus assumes a curved shape. Moreover, such contact frame can be used merely as a single switch and not as a one-piece switch element for a plurality of push button switches arranged along a line or a plane.

SUMMARY OF THE INVENTION

It is an object of the present invention to improve a push button switch of the above-outlined type so that its snap action switch element has planar and thus developable surfaces for simplifying its manufacture.
This object and others to become more apparent as the specification progresses, are accomplished by the invention according to which, briefly stated, the push button switch mounted on a conductor-carrying insulator plate includes a push button to which an external operating force can be applied; an electrically conducting, resilient switch element carrying a movable contact and arranged on the plate within the operating range of the push button for effecting at least an indirect transmission of the operating force to the switch element; and at least one fixed contact carried by the plate. The switch element has a normal position which it assumes and maintains when no operating force is exerted thereon by the push button. In the normal position the movable contact is out of engagement with the fixed contact. The switch element further has an operating position which it assumes in snap action motion and maintains when the operating force exerted thereon by the push button reaches a certain magnitude. In the operating position, the movable contact is in engagement with the fixed contact. The switch element is constituted by a planar sheet member having a central zone bounded by two parallel edges and carrying the movable contact, and strip-like legs integral with the central zone and extending from the edges towards the insulator plate at an inclination with resnect to the central zone that is greater than 90°. The

As further seen in FIG. 1, there is provided a switch housing 11 which is permanently connected to the two printed circuit boards 1 and 3. The housing 11 positions the switch element 6 on the boards 1 and 3 so that the humps 9 are situated adjacent the fixed contacts 4 of the board 3 and the contact tongue 10 is positioned adjacent the fixed contact 2 of the board 1 . The contact tongue 10 thus bridges the opening 5 in the board 3. An accumulator spring 12 of a rubber-elastic material and having a rod (preferably tube) shape, is arranged above the switch element 6 and is positioned by a push button 13 so that the longitudinal axis of the accumulator spring 12 extends at a right angle to the longitudinal dimension of the contact tongue 10 . A reset spring 14 disposed between the switch housing 11 and the push button 13 assures that the push button 13 will return to its normal position when the force exerted thereon is removed.
The above-described push button switch according to FIGS. 1 and 2 operates as follows:
By applying an external force to the push button 13, the accumulator spring 12 as well as the reset spring 14 are compressed. During this occurrence the accumulator spring 12 is supported, by the switch element 6 or, more precisely, the strips 8, on the board 3. Moreover, the supporting hump-like deformations 9 which constitute movable contacts, arrive in electrically conducting engagement with the fixed contacts 4 of the board 3. A further increase in the force introduced and stored in the accumulator spring 12 effects a sudden snap action movement of the switch element 6 into a lower operating position in which the contact tongue 10 which constitutes a movable contact, extends downwardly and engages, through the opening 5 in the upper board 3, the fixed contact 2 of the lower board 1. In this operating position the switch element 6 acts in conjunction with the snapped-over contact tongue 10 as a contact bridge between fixed contacts 2 and 4 . When the force acting on the push button 13 is removed, the elastic switch element 6 returns to its normal position in which the accumulator spring 12 and the push button 13 return to their respective positions of rest.
To simplify the switch structure, the reset spring 14 may be omitted. Its function is then performed by the accumulator spring 12 . Instead of the two printed circuit boards 1 and 3 permanently attached to one another and each carrying conductors only on one face, it is feasible to use only one board provided with conductors either on one side or on both sides. Also, the tubular accumulator spring 12 which is made of a rubberelastic material, may be replaced by a helical metal spring. It is to be understood that instead of printed conductors, the boards 1 or $\mathbf{3}$ may carry sheet metal conductor strips attached thereto.
Turning now to the embodiment illustrated in FIG. 3, a printed circuit board 15 has fixed contacts 16 and 17 on its surface and there is further provided a switch element 18 which, similarly to component 6 of the earlier-described embodiment, has the shape of a flat roof. In the center zone of the switch element 18 two longitudinally extending, aligned contact tongues 19 are arranged, with their free end facing one another. When the switch element 18 is actuated as described earlier, the contact tongues 19 engage the respective fixed contacts 16 and 17 to thus establish electric contact therewith.
According to the embodiment of FIG. 4, a rectangular switch element 24 is arranged on a printed circuit

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

