
MICROSOFT PROFESSIONAL EDITIONS
•••••1
4400

TM
MICROSOFT®
WINDOWST.

01)I3L 2.0
Programmer's Reference
and SDK Guide
The Microsoft Open
Database Standard for
Microsoft Windows TM
and Windows NT m

Microsoft
PR F S S

Page 1 of 434 RA v. AMS
Ex. 1020

556 1 565 88 1 9 78

90000

I

ISBN -55615-658-8

The Microsoft Open Database Connectivity (ODBC)
interface is an emerging industry standard and a
component of Microsoft's Windows Open Services
Architecture (WOSA). A C language programming
interface, the ODBC interface enables applications to
access data from a variety of database management
systems using Structured Query Language (SQL) as
a standard. This capability allows for maximum
interoperability, making it possible for a developer to
develop, compile, and ship an application without
tying it to a specific database management system.
Users can then add modules called database drivers,
which link the application to their choice of database
management systems.

The Microsoft ODBC Software Development Kit
(SDK), version 2.0, is a set of software components
and tools designed to help you develop ODBC
drivers and ODBC-enabled applications for the
Windows 3.1 and Windows NT operating systems.
This volume contains both the ODBC Programmer's
Reference and the SDK Guide—the most complete,
accurate, and up-to-date information on Microsoft
ODBC available anywhere.

In addition to providing the complete ODBC API
reference, the Programmer's Reference provides an
introduction to ODBC and detailed information
about developing applications, developing drivers,
and installing and configuring ODBC software. The
ODBC SDK Guide offers the technical information
you need to install the SDK; manage data sources
and drivers; and use ODBC tools such as the ODBC
Test Interface, ODBC Spy, and the Driver Setup
Toolkit.

Microsoft
P R I S 1/4,

Microsoft Professional
Editions are distributed
by Microsoft Press.

IODBC 2.0
Programmer's Reference
and SDK Guide

For Microsoft Windows-
and Windows NTTM

You'll find detailed coverage of these
features, new with version 2.0:

• 32-bit application development
support on Windows 3.1 and
Windows NT

• Support for scrollable cursors
through a driver-independent
Cursor Library

• An improved set of ODBC 1.0
single-tier drivers for several
popular data formats

• Sample C++ classes to help
developers write C++ classes or
applications

• Templates that provide a
ready-to-use base for writing
drivers and auto-test DLLs

• Numerous code samples and
working tools to help developers
write ODBC-enabled applications

• Improved and integrated
installation procedure for the SDK
and drivers

U.S.A. 	$24.95
U.K. 	£21.95
Canada 	$32.95

[Recommended] Page 2 of 434 RA v. AMS
Ex. 1020

Programmer's Reference

Microsoft® Open
Database Connectivity"
Software Development Kit
Version 2.0

For the Microsoft WindowsTM and Windows NTni Operating Systems

Page 3 of 434 RA v. AMS
Ex. 1020

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright 1992, 1993, 1994 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft ODBC 2.0 programmer's reference and SDK guide : for

Microsoft Windows and Windows NT / Microsoft Corporation.
p. 	cm.

Includes index.
ISBN 1-55615-658-8
1. Microsoft Windows (Computer file) 2. Windows NT. 3. ODBC.

I. Microsoft Corporation.
QA76.76.W56M56323 1994

	

005.75' 8--dc20 	 94-5039
C I P

Lucida Typeface Software. © 1985-1988 and 1990 by Bigelow & Holmes.
U.S. Patent Nos. D289420, D289421, D289422, D289773

U. S. Patent No. 4955066

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 MLML 9 8 7 6 5 4

For Programmer's Reference: Paradox is a registered trademark of Ansa Software, a Borland Company.
Apple is a registered trademark of Apple Computer, Inc. dBASE is a registered trademark of Borland Interna-
tional, Inc. CompuServe is a registered trademark of CompuServe, Inc. DEC is a registered trademark of Digital
Equipment Corporation. SQLBase is a registered trademark of Gupta Technologies, Inc. Informix is a registered
trademark of Informix Software, Inc. Ingres is a trademark of Ingres Corporation. DB2, IBM, and OS/2 are
registered trademarks of International Business Machines Corporation. Microsoft, Microsoft Access, and MS are
registered trademarks and Win32, Windows, and Windows NT are trademarks of Microsoft Corporation in the
U.S. and other countries. Novell is a registered trademark of Novell, Inc. Oracle is a registered trademark of
Oracle Corporation. SYBASE is a registered trademark of Sybase, Inc. NonStop is a trademark of Tandem
Computers Inc. UNIX is a registered trademark of UNIX Systems Laboratories. X/Open is a trademark of
X/Open Company Limited in the U.K. and other countries.
Document No. DB33920-0494

For SDK Guide: Paradox is a registered trademark of Ansa Software, a Borland Company. dBASE is a
registered trademark of Borland International, Inc. CompuServe is a registered trademark of CompuServe,
Inc. Intel is a registered trademark of Intel Corporation. CodeView, FoxPro, Microsoft, Microsoft Access,
MS, MS-DOS, Visual Basic, and Win32 are registered trademarks and Win32s, Windows, and Windows NT
are trademarks of Microsoft Corporation in the U.S. and other countries. Btrieve is a registered tradmark
of Novell, Inc.

Document No. DB33919-0494

Page 4 of 434 RA v. AMS
Ex. 1020

iii

Contents

About This Manual xv
Organization of this Manual xv
Audience xvi
Document Conventions xvi
Where to Find Additional Information xvii

Part 1 Introduction to ODBC

Chapter 1 ODBC Theory of Operation 3
ODBC History 3
ODBC Interface 4
ODBC Components 5

Application 5
Driver Manager 6
Driver 6
Data Source 7

Types of Drivers 7
Single-Tier Configuration 7
Multiple-Tier Configuration 8
Network Example 10

Matching an Application to a Driver 11
ODBC Conformance Levels 11

API Conformance Levels 11
SQL Conformance Levels 13

How to Select a Set of Functionality 14
Connections and Transactions 15

Chapter 2 A Short History of SQL 17
SQL Background Information 17
ANSI 1989 Standard 17

Embedded SQL 18
Current ANSI Specification 19
Dynamic SQL 19
Call Level Interface 19
Interoperability 20

Page 5 of 434 RA v. AMS
Ex. 1020

iv 	Contents

Part 2 Developing Applications

Chapter 3 Guidelines for Calling ODBC Functions 23
General Information 23
Determining Driver Conformance Levels 23

Determining API Conformance Levels 24
Determining SQL Conformance Levels 24

Using the Driver Manager 24
Calling ODBC Functions 25

Buffers 25
Input Buffers 26
Output Buffers 26

Environment, Connection, and Statement Handles 27
Using Data Types 28
ODBC Function Return Codes 28

Chapter 4 Basic Application Steps 29

Chapter 5 Connecting to a Data Source 31
About Data Sources 31
Initializing the ODBC Environment 32
Allocating a Connection Handle 32
Connecting to a Data Source 33
ODBC Extensions for Connections 33

Connecting to a Data Source With SQLDriverConnect 33
Connection Browsing With SQLBrowseConnect 35

Connection Browsing Example for SQL Server 36
Connection Browsing Example for DAL 37

Translating Data 38
Additional Extension Functions 39

Chapter 6 Executing SQL Statements 41
Allocating a Statement Handle 42
Executing an SQL Statement 43

Prepared Execution 43
Direct Execution 44

Setting Parameter Values 44
Performing Transactions 45

Page 6 of 434 RA v. AMS
Ex. 1020

Contents

ODBC Extensions for SQL Statements 46
Retrieving Information About the Data Source's Catalog 46
Sending Parameter Data at Execution Time 47
Specifying Arrays of Parameter Values 48
Executing Functions Asynchronously 48
Using ODBC Extensions to SQL 49

Date, Time, and Timestamp Data 50
Scalar Functions 52
LIKE Predicate Escape Characters 53
Outer Joins 54
Procedures 55

Additional Extension Functions 56

Chapter 7 Retrieving Results 57
Assigning Storage for Results (Binding) 57
Determining the Characteristics of a Result Set 58
Fetching Result Data 58
Using Cursors 59
ODBC Extensions for Results 60

Retrieving Data from Unbound Columns 60
Assigning Storage for Row sets (Binding) 60

Column-Wise Binding 61
Row-Wise Binding 61

Retrieving Rowset Data 61
Using Block and Scrollable Cursors 62

Block Cursors 62
Scrollable Cursors 62
Specifying the Cursor Type 64
Specifying Cursor Concurrency 64

Using Bookmarks 65
Modifying Result Set Data 67

Executing Positioned Update and Delete Statements 67
Modifying Data with SQLSetPos 68

Processing Multiple Results 70

Page 7 of 434 RA v. AMS
Ex. 1020

vi 	Contents

Chapter 8 Retrieving Status and Error Information 71
Function Return Codes 71
Retrieving Error Messages 72
ODBC Error Messages 72

Error Text Format 73
Sample Error Messages 74

Single-Tier Driver 74
Multiple-Tier Driver 74
Gateways 75
Driver Manager 76

Processing Error Messages 76

Chapter 9 Terminating Transactions and Connections 77
Terminating Statement Processing 77
Terminating Transactions 78
Terminating Connections 78

Chapter 10 Constructing an ODBC Application 79
Sample Application Code 79

Static SQL Example 79
Interactive Ad Hoc Query Example 83

Testing and Debugging an Application 87
Installing and Configuring ODBC Software 87

Part 3 Developing Drivers

Chapter 11 Guidelines for Implementing ODBC Functions 91
Role of the Driver Manager 91

Validating Arguments 92
Checking State Transitions 93
Checking for General Errors 93

Elements of ODBC Functions 94
General Information 94
Supporting ODBC Conformance Levels 94

Supporting API Conformance Levels 95
Supporting SQL Conformance Levels 95

Buffers 95
Input Buffers 96
Output Buffers 96

Environment, Connection, and Statement Handles 97

Page 8 of 434 RA v. AMS
Ex. 1020

Contents 	vii

Data Type Support 98
ODBC Function Return Codes 98
Driver-Specific Data Types, Descriptor Types, Information Types, and
Options 99
Yielding Control to Windows 100

Chapter 12 Application Use of the ODBC Interface 101

Chapter 13 Establishing Connections 103
About Data Sources 103
Establishing a Connection to a Data Source 104
ODBC Extensions for Connections 105

Connecting to a Data Source With SQLDriverConnect 106
Connection Browsing With SQLBrowseConnect 108

Connection Browsing Example for SQL Server 108
Connection Browsing Example for DAL 110

Translating Data 111
Additional Extension Functions 112

Chapter 14 Processing an SQL Statement 113
Allocating a Statement Handle 114
Executing an SQL Statement 115

Prepared Execution 115
Direct Execution 116

Supporting Parameters 117
Supporting Transactions 118
ODBC Extensions for SQL Statements 118

Returning Information About the Data Source's Catalog 118
Accepting Parameter Data at Execution Time 119
Accepting Arrays of Parameter Values 120
Supporting Asynchronous Execution 120
Supporting ODBC Extensions to SQL 121

Date, Time, and Timestamp Data 122
Scalar Functions 124
LIKE Predicate Escape Characters 125
Outer Joins 126
Procedures 127

Additional Extension Functions 128

Page 9 of 434 RA v. AMS
Ex. 1020

viii 	Contents

Chapter 15 Returning Results 129
Assigning Storage for Results (Binding) 129
Returning Information About a Result Set 130
Returning Result Data 130
Supporting Cursors 131
ODBC Extensions for Results 131

Returning Data from Unbound Columns 131
Assigning Storage for Rowsets (Binding) 132

Column-Wise Binding 132
Row-Wise Binding 132

Returning Rowset Data 133
Supporting Block and Scrollable Cursors 134

Block Cursors 134
Scrollable Cursors 134
Supporting the Cursor Types 136
Supporting Cursor Concurrency 137

Using Bookmarks 138
Modifying Result Set Data 138

Processing Positioned Update and Delete Statements 138
Modifying Data with SQLSetPos 140

Returning Multiple Results 141

Chapter 16 Returning Status and Error Information 143
Returning. Return Codes 143
Returning Error Messages 144
Constructing ODBC Error Messages 144

Error Text Format 145
Error Handling Rules 146
Documenting Error Mappings 146
Sample Error Messages 147

Single-Tier Driver 147
Multiple-Tier Driver 148
Gateways 149
Driver Manager 150

Chapter 17 Terminating Transactions and Connections 151
Terminating Statement Processing 151
Terminating Transactions 152
Terminating Connections 152

Page 10 of 434 RA v. AMS
Ex. 1020

Contents 	ix

Chapter 18 Constructing an ODBC Driver 153
Testing and Debugging a Driver 153
Installing and Configuring ODBC Software 154

Part 4 Installing and Configuring ODBC Software

Chapter 19 Installing ODBC Software 157
Redistributing ODBC Files 157
Creating Your Own Setup Program 159

Installing the Software Interactively 159
Installing the Software Silently 159
Installing Individual ODBC Components 159

Constructing the ODBC.INF File 160
Structure of the ODBC.INF File 160

[Source Media Descriptions] Section 161
[ODBC Drivers] Section 161
Driver Specification Sections 162
Driver Keyword Sections 163
[ODBC Translators] Section 165
Translator Specification Sections 166
Installation Properties 166

Structure of the ODBCINST.INI File 167
[ODBC Drivers] Section 168
Driver Specification Sections 169
Default Driver Specification Section 170
[ODBC Translators] Section 170
Translator Specification Sections 170

Chapter 20 Configuring Data Sources 173
Creating Your Own Data Source — Management Program 173

Adding, Modifying, and Deleting Data Sources 173
Specifying a Default Data Source 174
Specifying a Default Translator 174

Structure of the ODBC.INI File 175
[ODBC Data Sources] Section 176
Data Source Specification Sections 176
Default Data Source Specification Section 177
ODBC Options Section 178

Page 11 of 434 RA v. AMS
Ex. 1020

Contents

Part 5 API Reference

Chapter 21 Function Summary 181
ODBC Function Summary 181
Setup DLL Function Summary 186
Installer DLL Function Summary 186
Translation DLL Function Summary 187

Chapter 22 ODBC Function Reference 189
Arguments 189
ODBC Include Files 192
Diagnostics 192
Tables and Views 192
Catalog Functions 192
Search Pattern Arguments 193
SQLAllocConnect 195
SQLAllocEnv 197
SQLAllocStmt 199
SQLBindCol 201
SQLBindParameter 209
SQLBrowseConnect 223
SQLCancel. 232
SQLColAttributes 235
SQLColumnPrivileges 242
SQLColumns 247
SQLConnect 254
SQLDataSources 260
SQLDescribeCol 263
SQLDescribeParam 268
SQLDisconnect 272
SQLDriverConnect 274
SQLDrivers 283
SQLError 287
SQLExecDirect 290
SQLExecute 298
SQLExtendedFetch 304
SQLFetch 319
SQLForeignKeys 324
SQLFreeConnect 333
SQLFreeEnv 335

Page 12 of 434 RA v. AMS
Ex. 1020

Contents 	xi

SQLFreeStmt 337
SQLGetConnectOption 340
SQLGetCursorName 342
SQLGetData 344
SQLGetFunctions 354
SQLGetInfo 359
SQLGetStmtOption 387
SQLGetTypeInfo 390
SQLMoreResults 398
SQLNativeSql 401
SQLNumParams 404
SQLNumResultCols 406
SQLParamData 409
SQLParamOptions 412
SQLPrepare 416
SQLPrimaryKeys 422
SQLProcedureColumns 426
SQLProcedures 433
SQLPutData 440
SQLRowCount 448
SQLSetConnectOption 450
SQLSetCursorName 459
SQLSetParam 462
SQLSetPos 463
SQLSetScrollOptions 478
SQLSetStmtOption 482
SQLSpecialColumns 491
SQLStatistics 498
SQLTablePrivileges 505
SQLTables 511
SQLTransact 516

Chapter 23 Setup DLL Function Reference 521
ConfigDSN 522
ConfigTranslator 525

Chapter 24 Installer DLL Function Reference 527
SQLConfigDataSource 528
SQLCreateDataS ource 530
SQLGetAvailableDrivers 531

Page 13 of 434 RA v. AMS
Ex. 1020

xii 	Contents

SQLGetlnstalledDrivers 532
SQLGetPrivateProfileString 533
SQLGetTranslator 534
SQLlnstallDriver 536
SQLInstallDriverManager 538
SQLInstallODBC 539
SQLManageDataSources 543
SQLRemoveDefaultDataSource 546
SQLRemoveDSNFromlni 547
SQLWriteDSNTolni 548
SQLWritePrivateProfileString 549

Chapter 25 Translation DLL Function Reference 551
SQLDataSourceToDriver 552
SQLDriverToDataSource 555

Appendixes

Appendix A ODBC Error Codes 561

Appendix B ODBC State Transition Tables 575
Environment Transitions 577
Connection Transitions 579
Statement Transitions 584

Appendix C SQL Grammar 597
Parameter Data Types 598
Parameter Markers 598

SQL Statements 599
Elements Used in SQL Statements 604

List of Reserved Keywords 612

Appendix D Data Types 615
SQL Data Types 616

Minimum SQL Data Types 616
Core SQL Data Types 617
Extended SQL Data Types 618

C Data Types 619
Core C Data Types 619
Extended C Data Types 620
Bookmark C Data Type 621

Page 14 of 434 RA v. AMS
Ex. 1020

Contents 	xiii

ODBC 1.0 C Data Types 621
Default C Data Types 622
Transferring Data in its Binary Form 623
Precision, Scale, Length, and Display Size 624

Precision 624
Scale 626
Length 627
Display Size 628

Converting Data from SQL to C Data Types 629
SQL to C: Character 631
SQL to C: Numeric 633
SQL to C: Binary 636
SQL to C: Date 637
SQL to C: Time 638
SQL to C: Timestamp 639
SQL to C Data Conversion Examples 640

Converting Data from C to SQL Data Types 641
C to SQL: Character 644
C to SQL: Numeric 646
C to SQL: Bit 647
C to SQL: Binary 648
C to SQL: Date 649
C to SQL: Time 650
C to SQL: Timestamp 651
C to SQL Data Conversion Examples 652

Appendix E Comparison Between Embedded SQL and ODBC 653
ODBC to Embedded SQL 653
Embedded SQL to ODBC 656

Declarative Statements 656
Data Definition Statements 656
Data Manipulation Statements 657
Dynamic SQL Statements 658
Transaction Control Statements 659
Association Management Statements 659
Diagnostic Statement 660

Appendix F Scalar Functions 661
String Functions 662
Numeric Functions 664

Page 15 of 434 RA v. AMS
Ex. 1020

xiv 	Contents

Time and Date Functions 666
System Functions 669
Explicit Data Type Conversion 670

Appendix G ODBC Cursor Library 673
Using the ODBC Cursor Library 673
Executing Positioned Update and Delete Statements 674
Code Example 675
Implementation Notes 678

Cursor Library Cache 678
Column Data 678
Length of Column Data 679
Row Status 679
Location of Cache 679

SQL Statements 679
Positioned Update and Delete Statements 680
SELECT FOR UPDATE Statements 680
Batched SQL Statements 681
Constructing Searched Statements 681

ODBC Functions 682
SQLBindCol 682
SQLExtendedFetch 683
SQLFreeStmt 684
SQLGetData 684
SQLGetFunctions 685
SQLGetInfo 685
SQLGetStmtOption 686
SQLNativeSql 686
SQLRowCount 686
SQLSetConnectOption 687
SQLSetPos 687
SQLSetScrollOptions 687
SQLSetStmtOption 687
SQLTransact 688

ODBC Cursor Library Error Codes 689

Index 691

Page 16 of 434 RA v. AMS
Ex. 1020

XV

About This Manual

The Microsoft® Open Database Connectivity` (ODBC) interface is a C
programming language interface for database connectivity. This manual addresses
the following questions:

■ What is the PDBC interface?

■ What features does ODBC offer?

■ How do applications use the interface?

The following topics provide information about the organization of this manual,
describe the knowledge necessary to use the ODBC interface effectively, set out
the typographic conventions used, and give a listing of references that provide
information about Structured Query Language (SQL) standards and SQL in
conjunction with relational databases.

Organization of this Manual
This manual is organized into the following parts:

■ Part 1 Introduction to ODBC, providing conceptual information about the
ODBC interface and a brief history of Structured Query Language;

■ Part 2 Developing Applications, containing information for developing
applications using the ODBC interface;

■ Part 3 Developing Drivers, containing information for developing drivers that
support ODBC function calls;

■ Part 4 Installing and Configuring ODBC Software, providing information
about installation and a setup DLL function reference;

■ Part 5 API Reference, containing syntax and semantic information for all
ODBC functions.

Page 17 of 434 RA v. AMS
Ex. 1020

xvi 	ODBC Programmer's Reference

Audience
The ODBC software development kit is available for use with the C programming
language run with the Microsoft WindowsTM operating system and the Microsoft
Windows NTTM operating system. Use of the ODBC interface spans four areas:
SQL statements, ODBC function calls, C programming, and Windows
programming. For information about Windows programming, see the Microsoft
Windows and Microsoft Windows NT Software Development Kit development
tools for building Microsoft Windows applications. This manual assumes:

■ A working knowledge of the C programming language.

• General DBMS knowledge and a familiarity with SQL.

Document Conventions
This manual uses the following typographic conventions.

Format 	 Used for

WIN.INI 	 Uppercase letters indicate filenames, SQL statements,
macro names, and terms used at the operating-system
command level.

RETCODE SQLFetch (hdbc) This font is used for sample command lines and program
code.

argument 	 Italicized words indicate information that the user or the
application must provide, or word emphasis.

SQLTransact 	 Bold type indicates that syntax must be typed exactly as
shown, including function names.

[Brackets indicate optional items; if in bold text, brackets
must be included in the syntax.

I 	 A vertical bar separates two mutually exclusive choices in a
syntax line.

{ 	 Braces delimit a set of mutually exclusive choices in a
syntax line; if in bold text, braces must be included in the
syntax.

An ellipsis indicates that arguments can be repeated several
times.

A column of three dots indicates continuation of previous
lines of code.

Page 18 of 434 RA v. AMS
Ex. 1020

ODBC Programmer's Reference 	xvii

Where to Find Additional Information
For more information about SQL, the following standards are available:

■ Database Language—SQL with Integrity Enhancement, ANSI, 1989 ANSI
X3.135-1989.

■ X/Open and SQL Access Group SQL CAE specification (1992).

■ Database Language—SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3
9075:1992 (SQL-92).

In addition to standards and vendor-specific SQL guides, there are many books
that describe SQL, including:

■ Date, C. J.: A Guide to the SQL Standard (Addison-Wesley, 1989).

■ Emerson, Sandra L., Darnovsky, Marcy, and Bowman, Judith S.: The
Practical SQL Handbook (Addison-Wesley, 1989).

■ Groff, James R. and Weinberg, Paul N.: Using SQL (Osborne McGraw-Hill,
1990).

■ Gruber, Martin: Understanding SQL (Sybex, 1990).

■ Hursch, Jack L. and Carolyn J.: SQL, The Structured Query Language (TAB
Books, 1988).

■ Pascal, Fabian: SQL and Relational Basics (M & T Books, 1990).

■ Trimble, J. Harvey, Jr. and Chappell, David: A Visual Introduction to SQL
(Wiley, 1989).

■ Van der Lans, Rick F.: Introduction to SQL (Addison-Wesley, 1988).

■ Vang, Soren: SQL and Relational Databases (Microtrend Books, 1990).

■ Viescas, John: Quick Reference Guide to SQL (Microsoft Corp., 1989).

Page 19 of 434 RA v. AMS
Ex. 1020

3

CHAPTER 1

ODBC Theory of Operation

The Open Database Connectivity (ODBC) interface allows applications to access
data in database management systems (DBMS) using Structured Query Language
(SQL) as a standard for accessing data.

The interface permits maximum interoperability—a single application can access
different database management systems. This allows an application developer to
develop, compile, and ship an application without targeting a specific DBMS.
Users can then add modules called database drivers that link the application to
their choice of database management systems.

ODBC History
In the traditional database world, application has usually meant a program that
performed a specific database task with a specific DBMS in mind such as payroll,
financial analysis, or inventory management. Such applications have typically
been written using embedded SQL. While embedded SQL is efficient and is
portable across different hardware and operating system environments, the source
code must be recompiled for each new environment.

Embedded SQL is not optimal for applications that need to analyze data stored in
databases such as DB2® and Oracle®, and prefer to do so from within a familiar
application interface, such as a Microsoft Excel® spreadsheet. Under the
traditional approach to database access, one version of Microsoft Excel would
have to be precompiled with the IBM® precompiler and another with the Oracle
precompiler, clearly a radical departure from simply buying a single packaged
product.

ODBC offers a new approach: provide a separate program to extract the database
information, and then have a way for applications to import the data. Since there
are and probably always will be many viable communication methods, data
protocols, and DBMS capabilities, the ODBC solution is to allow different
technologies to be used by defining a standard interface. This solution leads to the

Page 20 of 434 RA v. AMS
Ex. 1020

4 	Part 1 Introduction to ODBC

idea of database drivers—dynamic-link libraries that an application can invoke
on demand to gain access to a particular data source through a particular
communications method, much like a printer driver running under Windows.
ODBC provides the standard interface that allows both application writers and
providers of libraries to shuttle data between applications and data sources.

ODBC Interface
The ODBC interface defines the following:

■ A library of ODBC function calls that allow an application to connect to a
DBMS, execute SQL statements, and retrieve results.

■ SQL syntax based on the X/Open and SQL Access Group (SAG) SQL CAE
specification (1992).

■ A standard set of error codes.

■ A standard way to connect and log on to a DBMS.

■ A standard representation for data types.

The interface is flexible:

■ Strings containing SQL statements can be explicitly included in source code or
constructed on the fly at run time.

■ The same object code can be used to access different DBMS products.

■ An application can ignore underlying data communications protocols between
it and a DBMS product.

■ Data values can be sent and retrieved in a format convenient to the application.

The ODBC interface provides two types of function calls:

■ Core functions are based on the X/Open and SQL Access Group Call Level
Interface specification.

■ Extended functions support additional functionality, including scrollable
cursors and asynchronous processing.

To send an SQL statement, include the statement as an argument in an ODBC
function call. The statement need not be customized for a specific DBMS.
Appendix C, "SQL Grammar," contains an SQL syntax based on the X/Open and
SQL Access Group SQL CAE specification (1992). We recommend that ODBC
applications use only the SQL syntax defined in Appendix C to ensure maximum
interoperability.

Page 21 of 434 RA v. AMS
Ex. 1020

ODBC Interface

Chapter 1 ODBC Theory of Operation 	5

ODBC Components
The ODBC architecture has four components:

■ Application Performs processing and calls ODBC functions to submit SQL
statements and retrieve results.

■ Driver Manager Loads drivers on behalf of an application.

■ Driver Processes ODBC function calls, submits SQL requests to a specific
data source, and returns results to the application. If necessary, the driver
modifies an application's request so that the request conforms to syntax
supported by the associated DBMS.

■ Data source Consists of the data the user wants to access and its associated
operating system, DBMS, and network platform (if any) used to access the
DBMS.

The Driver Manager and driver appear to an application as one unit that processes
ODBC function calls. The following diagram shows the relationship between the
four components. The following paragraphs describe each component in more
detail.

Application
An application using the ODBC interface performs the following tasks:

■ Requests a connection, or session, with a data source.

■ Sends SQL requests to the data source.

■ Defines storage areas and data formats for the results of SQL requests.

■ Requests results.

Page 22 of 434 RA v. AMS
Ex. 1020

6 	Part 1 Introduction to ODBC

■ Processes errors.

■ Reports results back to a user, if necessary.

■ Requests commit or rollback operations for transaction control.

■ Terminates the connection to the data source.

An application can provide a variety of features external to the ODBC interface,
including mail, spreadsheet capabilities, online transaction processing, and report
generation; the application may or may not interact with users.

Driver Manager
The Driver Manager, provided by Microsoft, is a dynamic-link library (DLL) with
an import library. The primary purpose of the Driver Manager is to load drivers.
The Driver Manager also performs the following:

■ Uses the ODBC.INI file or registry to map a data source name to a specific
driver dynamic-link library (DLL).

■ Processes several ODBC initialization calls.

■ Provides entry points to ODBC functions for each driver.

■ Provides parameter validation and sequence validation for ODBC calls.

Driver
A driver is a DLL that implements ODBC function calls and interacts with a data
source.

The Driver Manager loads a driver when the application calls the
SQLBrowseConnect, SQLConnect, or SQLDriverConnect function.

A driver performs the following tasks in response to ODBC function calls from an
application:

■ Establishes a connection to a data source.

■ Submits requests to the data source.

■ Translates data to or from other formats, if requested by the application.

■ Returns results to the application.

■ Formats errors into standard error codes and returns them to the application.

■ Declares and manipulates cursors if necessary. (This operation is invisible to
the application unless there is a request for access to a cursor name.)

■ Initiates transactions if the data source requires explicit transaction initiation.
(This operation is invisible to the application.)

Page 23 of 434 RA v. AMS
Ex. 1020

Chapter 1 ODBC Theory of Operation 	7

Data Source
In this manual, DBMS refers to the general features and functionality provided by
an SQL database management system. A data source is a specific instance of a
combination of a DBMS product and any remote operating system and network
necessary to access it.

An application establishes a connection with a particular vendor's DBMS product
on a particular operating system, accessible by a particular network. For example,
the application might establish connections to:

■ An Oracle DBMS running on an OS/2® operating system, accessed by Novell®
netware.

■ A local Xbase file, in which case the network and remote operating system are
not part of the communication path.

■ A Tandem NonStop" SQL DBMS running on the Guardian 90 operating
system, accessed via a gateway.

Types of Drivers
ODBC defines two types of drivers:

■ Single-tier The driver processes both ODBC calls and SQL statements. (In
this case, the driver performs part of the data source functionality.)

■ Multiple-tier The driver processes ODBC calls and passes SQL statements
to the data source.

One system can contain both types of configurations.

The following paragraphs describe single-tier and multiple-tier configurations in
more detail.

Single-Tier Configuration
In a single-tier implementation, the database file is processed directly by the
driver. The driver processes SQL statements and retrieves information from the
database. A driver that manipulates an Xbase file is an example of a single-tier
implementation.

A single-tier driver may limit the set of SQL statements that may be submitted.
The minimum set of SQL statements that must be supported by a single-tier driver
is defined in Appendix C, "SQL Grammar."

Page 24 of 434 RA v. AMS
Ex. 1020

Application
Driver Manager

■ Driver (includes data
access software)
Data storage

Application
Driver Manager
Driver (includes data
access software)

■ Data storage

Part 1 Introduction to ODBC

The following diagram shows two types of single-tier configurations.

System A

Client B
	

Server B

Multiple-Tier Configuration
In a multiple-tier configuration, the driver sends SQL requests to a server that
processes SQL requests.

Although the entire installation may reside on a single system, it is more often
divided across platforms. The application, driver, and Driver Manager reside on
one system, called the client. The database and the software that controls access to
the database typically reside on another system, called the server.

Another type of multiple-tier configuration is a gateway architecture. The driver
passes SQL requests to a gateway process, which in turn sends the requests to the
data source.

Page 25 of 434 RA v. AMS
Ex. 1020

Chapter 1 ODBC Theory of Operation 	9

The following diagram shows three types of multiple-tier configurations. From an
application's perspective, all three configurations are identical.

System C

Client D Server D

Client E Server El Server E2

Page 26 of 434 RA v. AMS
Ex. 1020

System A

(standalone
Xbase file
on local disk)

Server B
*ft
(Xbase file on
network file server)

N

System C

(standalone
DBMS server;
SQL Server
on OS/2)

Client D

Gateway
Server El
	

Server E2

(DB2
on MVS)

r. .7. 1=:,1

1=

10 	Part 1 Introduction to ODBC

Network Example
The following diagram shows how each of the preceding configurations could
appear in a single network. The diagram includes examples of the types of
DBMS' s that could reside in a network.

Client B

(to Xbase file
on network
server)

Server D

(Oracle
DBMS
on UNIX)

(to Oracle
DBMS on
UNIX server

Client E

(to DB2
via gateway)

Network

Page 27 of 434 RA v. AMS
Ex. 1020

Chapter 1 ODBC Theory of Operation 	11

Applications can also communicate across wide area networks:

Client F Server F

Matching an Application to a Driver
One of the strengths of the ODBC interface is interoperability; a programmer can
create an ODBC application without targeting a specific data source. Users can
add drivers to the application after it is compiled and shipped.

From an application standpoint, it would be ideal if every driver and data source
supported the same set of ODBC function calls and SQL statements. However,
data sources and their associated drivers provide a varying range of functionality.
Therefore, the ODBC interface defines conformance levels, which determine the
ODBC procedures and SQL statements supported by a driver.

ODBC Conformance Levels
ODBC defines conformance levels for drivers in two areas: the ODBC API and
the ODBC SQL grammar (which includes the ODBC SQL data types).
Conformance levels help both application and driver developers by establishing
standard sets of functionality. Applications can easily determine if a driver
provides the functionality they need. Drivers can be developed to support a broad
selection of applications without being concerned about the specific requirements
of each application.

To claim that it conforms to a given API or SQL conformance level, a driver must
support all the functionality in that conformance level, regardless of whether that
functionality is supported by the DBMS associated with the driver. However,
conformance levels do not restrict drivers to the functionality in the levels to
which they conform. Driver developers are encouraged to support as much
functionality as they can; applications can determine the functionality supported
by a driver by calling SQLGetInfo, SQLGetFunctions, and SQLGetTypelnfo.

API Conformance Levels
The ODBC API defines a set of core functions that correspond to the functions in
the X/Open and SQL Access Group Call Level Interface specification. ODBC

Page 28 of 434 RA v. AMS
Ex. 1020

12 	Part 1 Introduction to ODBC

also defines two extended sets of functionality, Level 1 and Level 2. The
following list summarizes the functionality included in each conformance level.

Important Many ODBC applications require that drivers support all of the
functions in the Level 1 API conformance level. To ensure that their driver works
with most ODBC applications, driver developers should implement all Level 1
functions.

Core API
■ Allocate and free environment, connection, and statement handles.

■ Connect to data sources. Use multiple statements on a connection.

■ Prepare and execute SQL statements. Execute SQL statements immediately.

■ Assign storage for parameters in an SQL statement and result columns.

■ Retrieve data from a result set. Retrieve information about a result set.

■ Commit or roll back transactions.

■ Retrieve error information.

Level 1 API
■ Core API functionality.

■ Connect to data sources with driver-specific dialog boxes.

■ Set and inquire values of statement and connection options.

■ Send part or all of a parameter value (useful for long data).

■ Retrieve part or all of a result column value (useful for long data).

■ Retrieve catalog information (columns, special columns, statistics, and tables).

■ Retrieve information about driver and data source capabilities, such as
supported data types, scalar functions, and ODBC functions.

Level 2 API
■ Core and Level 1 API functionality.

■ Browse connection information and list available data sources.

■ Send arrays of parameter values. Retrieve arrays of result column values.

■ Retrieve the number of parameters and describe individual parameters.

■ Use a scrollable cursor.

■ Retrieve the native form of an SQL statement.

■ Retrieve catalog information (privileges, keys, and procedures).

■ Call a translation DLL.

For a list of functions and their conformance levels, see Chapter 21, "Function
Summary."

Page 29 of 434 RA v. AMS
Ex. 1020

Chapter 1 ODBC Theory of Operation 	13

Note Each function description in this manual indicates whether the function is a
core function or a level 1 or level 2 extension function.

SQL Conformance Levels
ODBC defines a core grammar that roughly corresponds to the X/Open and SQL
Access Group SQL CAE specification (1992). ODBC also defines a minimum
grammar, to meet a basic level of ODBC conformance, and an extended grammar,
to provide for common DBMS extensions to SQL. The following list summarizes
the grammar included in each conformance level.

Minimum SQL Grammar
■ Data Definition Language (DDL): CREATE TABLE and DROP TABLE.

■ Data Manipulation Language (DML): simple SELECT, INSERT, UPDATE
SEARCHED, and DELETE SEARCHED.

■ Expressions: simple (such as A > B + C).

■ Data types: CHAR, VARCHAR, or LONG VARCHAR.

Core SQL Grammar
■ Minimum SQL grammar and data types.

■ DDL: ALTER TABLE, CREATE INDEX, DROP INDEX, CREATE
VIEW, DROP VIEW, GRANT, and REVOKE.

■ DML: full SELECT.

■ Expressions: subquery, set functions such as SUM and MIN.

■ Data types: DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL,
FLOAT, DOUBLE PRECISION.

Extended SQL Grammar
■ Minimum and Core SQL grammar and data types.

■ DML: outer joins, positioned UPDATE, positioned DELETE, SELECT
FOR UPDATE, and unions.

Note In ODBC 1.0, positioned update, positioned delete, and SELECT FOR
UPDATE statements and the UNION clause were part of the core SQL
grammar; in ODBC 2.0, they are part of the extended grammar. Applications
that use the SQL conformance level to determine whether these statements are
supported also need to check the version number of the driver to correctly
interpret the information. In particular, applications that use these features with
ODBC 1.0 drivers need to explicitly check for these capabilities in ODBC 2.0
drivers.

Page 30 of 434 RA v. AMS
Ex. 1020

14 	Part 1 Introduction to ODBC

■ Expressions: scalar functions such as SUBSTRING and ABS, date, time, and
timestamp literals.

■ Data types: BIT, TINYINT, BIGINT, BINARY, VARBINARY, LONG
VARBINARY, DATE, TIME, TIMESTAMP

■ Batch SQL statements.

■ Procedure calls.

For more information about SQL statements and conformance levels, see
Appendix C, "SQL Grammar." The grammar listed in Appendix C is not intended
to restrict the set of statements that an application can submit for execution.
Drivers should support data source—specific extensions to the SQL language,
although interoperable applications should not rely on those extensions.

For more information about data types, see Appendix D, "Data Types."

How to Select a Set of Functionality
The ODBC functions and SQL statements that a driver supports usually depend
on the capabilities of its associated data source. Driver developers are encouraged,
however, to implement as many ODBC functions as possible to ensure the widest
possible use by applications.

The ODBC functions and SQL statements that an application uses depend on:

■ The functionality needed by the application.

■ The performance needed by the application.

■ The data sources to be accessed by the application and the extent to which the
application must be interoperable among these data sources.

■ The functionality available in the drivers used by the application.

Because drivers support different levels of functionality, application developers
may have to make trade-offs among the factors listed above. For example, an
application might display the data in a table. It uses SQLColumnPrivileges to
determine which columns a user can update and dims those columns the user
cannot update. If some of the drivers available to the developer of this application
do not support SQLColumnPrivileges, the developer can decide to:

■ Use all the drivers and not dim any columns. The application behaves the same
for all data sources, but has reduced functionality: the user might attempt to
update data in a column for which they do not have update privileges. The
application returns an error message only when the driver attempts to update
the data in the data source.

■ Use only those drivers that support SQLColumnPrivileges. The application
behaves the same for all supported data sources, but has reduced functionality:
the application does not support all the drivers.

Page 31 of 434 RA v. AMS
Ex. 1020

Chapter 1 ODBC Theory of Operation 	15

■ Use all the drivers and, for drivers that support SQLColumnPrivileges, dim
columns the user cannot update. Otherwise, warn the user that they might not
have update privileges on all columns. The application behaves differently for
different data sources but has increased functionality: the application supports
all drivers and sometimes dims columns the user cannot update.

■ Use all the drivers and always dim columns the user cannot update; the
application locally implements SQLColumnPrivileges for those drivers that
do not support it. The application behaves the same for all data sources and
has maximum functionality. However, the developer must know how to
retrieve column privileges from some of the data sources, the application
contains data source—specific code, and developement time is longer.

Developers of specialized applications may make different trade-offs than
developers of generalized applications. For example, the developer of an
application that only transfers data between two DBMS's (each from a different
vendor) can safely exploit the full functionality of each of the drivers.

Connections and Transactions
Before an application can use ODBC, it must initialize ODBC and request an
environment handle (henv). To communicate with a data source, the application
must request a connection handle (hdbc) and connect to the data source. The
application uses the environment and connection handles in subsequent ODBC
calls to refer to the environment and specific connection.

An application may request multiple connections for one or more data sources.
Each connection is considered a separate transaction space.

An active connection can have one or more statement processing streams.

A driver maintains a transaction for each active connection. The application can
request that each SQL statement be automatically committed on completion;
otherwise, the driver waits for an explicit commit or rollback request from the
application. When the driver performs a commit or rollback operation, the driver
resets all statement requests associated with the connection.

The Driver Manager manages the work of allowing an application to switch
connections while transactions are in progress on the current connection.

Page 32 of 434 RA v. AMS
Ex. 1020

23

CHAPTER 3

Guidelines for
Calling ODBC Functions

This chapter describes the general characteristics of ODBC functions, determining
driver conformance levels, the role of the Driver Manager, ODBC function
arguments, and the values ODBC functions return.

General Information
Each ODBC function name starts with the prefix "SQL." Each function accepts
one or more arguments. Arguments are defined as input (to the driver) or output
(from the driver).

C programs that call ODBC functions must include the SQL.H, SQLEXT.H, and
WINDOWS.H header files. These files define Windows and ODBC constants and
types and provide function prototypes for all ODBC functions.

Determining Driver Conformance Levels
ODBC defines conformance levels for drivers in two areas: the ODBC API and
the ODBC SQL grammar (which includes the ODBC SQL data types). These
levels establish standard sets of functionality. By inquiring the conformance
levels supported by a driver, an application can easily determine if the driver
provides the necessary functionality. For a complete discussion of ODBC
conformance levels, see "ODBC Conformance Levels" in Chapter 1, "ODBC
Theory of Operation."

Note The following sections refer to SQLGetInfo and SQLGetTypeInfo, which
are part of the Level 1 API conformance level. Although it is strongly
recommended that drivers support this conformance level, drivers are not required
to do so. If these functions are not supported, an application developer must
consult the driver documentation to determine its conformance levels.

Page 33 of 434 RA v. AMS
Ex. 1020

24 	Part 2 Developing Applications

Determining API Conformance Levels
ODBC functions are divided into core functions, which are defined in the X/Open
and SQL Access Group Call Level Interface specification, and two levels of
extension functions, with which ODBC extends this specification. To determine
the function conformance level of a driver, an application calls SQLGetInfo with
the SQL_ODBC_SAG_CLI_CONFORMANCE and
SQL_ODBC_API_CONFORMANCE flags. Note that a driver can support one or
more extension functions but not conform to ODBC extension Level 1 or 2. To
determine if a driver supports a particular function, an application calls
SQLGetFunctions. Note that SQLGetFunctions is implemented by the Driver
Manager and can be called for any driver, regardless of its level.

Determining SQL Conformance Levels
The ODBC SQL grammar, which includes SQL data types, is divided into a
minimum grammar, a core grammar, which corresponds to the X/Open and SQL
Access Group SQL CAE specification (1992), and an extended grammar, which
provides common extensions to SQL. To determine the SQL conformance level
of a driver, an application calls SQLGetInfo with the
SQL_ODBC_SQL_CONFORMANCE flag. To determine whether a driver
supports a specific SQL extension, an application calls SQLGetInfo with a flag
for that extension. For more information, see Appendix C, "SQL Grammar." To
determine whether a driver supports a specific SQL data type, an application calls
SQLGetTypelnfo.

Using the Driver Manager
The Driver Manager is a DLL that provides access to ODBC drivers. An
application typically links with the Driver Manager import library (ODBC.LIB) to
gain access to the Driver Manager.

Whenever an application calls an ODBC function, the Driver Manager performs
one of the following actions:

■ For SQLDataSources and SQLDrivers, the Driver Manager processes the
call. It does not pass the call to the driver.

■ For SQLGetFunctions, the Driver Manager passes the call to the driver
associated with the connection. If the driver does not support
SQLGetFunctions, the Driver Manager processes the call.

■ For SQLA11ocEnv, SQLAllocConnect, SQLSetConnectOption,
SQLFreeConnect, and SQLFreeEnv, the Driver Manager processes the call.
The Driver Manager calls SQLAllocEnv, SQLAllocConnect, and
SQLSetConnectOption in the driver when the application calls a function to

Page 34 of 434 RA v. AMS
Ex. 1020

Chapter 3 Guidelines for Calling ODBC Functions 	25

connect to the data source (SQLConnect, SQLDriverConnect, or
SQLBrowseConnect). The Driver Manager calls SQLFreeConnect and
SQLFreeEnv in the driver when the application calls SQLDisconnect.

■ For SQLConnect, SQLDriverConnect, SQLBrowseConnect, and
SQLError, the Driver Manager performs initial processing then passes the
call to the driver associated with the connection. •,

■ For any other ODBC function, the Driver Manager passes the call to the driver
associated with the connection.

If requested, the Driver Manager records each called function in a trace file. The
name of each function is recorded, along with the values of the input arguments
and the names of the output arguments (as listed in the function definitions).

Calling ODBC Functions
The following paragraphs describe general characteristics of ODBC functions.

Buffers
An application passes data to a driver in an input buffer. The driver returns data to
an application in an output buffer. The application must allocate memory for both
input and output buffers. (If the application will use the buffer to retrieve string
data, the buffer must contain space for the null termination byte.)

Note that some functions accept pointers to buffers that are later used by other
functions. The application must ensure that these pointers remain valid until all
applicable functions have used them. For example, the argument rgbValue in
SQLBindCol points to an output buffer in which SQLFetch returns the data for a
column.

Caution ODBC does not require drivers to correctly manage buffers that cross
segment boundaries in Windows 3.1. The Driver Manager supports the use of
such buffers, since it passes buffer addresses to drivers and does not operate on
buffer contents. If a driver supports buffers that cross segment boundaries, the
documentation for the driver should clearly state this.

For maximum interoperability, applications that use buffers that cross segment
boundaries should pass them in pieces to ODBC functions. None of these pieces
can cross a segment boundary. For example, suppose a data source contains 100
kilobytes of bitmap data. A Windows 3.1 application can safely allocate 100K of
memory (beginning at a segment boundary) and retrieve the data in two pieces
(64K and 36K), each of which begins on a segment boundary.

Page 35 of 434 RA v. AMS
Ex. 1020

26 	Part 2 Developing Applications

Input Buffers
An application passes the address and length of an input buffer to a driver. The
length of the buffer must be one of the following values:

■ A length greater than or equal to zero. This is the actual length of the data in
the input buffer. For character data, a length of zero indicates that the data is
an empty (zero length) string. Note that this is different from a null pointer. If
the application specifies the length of character data, the character data does
not need to be null-terminated.

■ SQL_NTS. This specifies that a character data value is null-terminated.

■ SQL_NULL_DATA. This tells the driver to ignore the value in the input
buffer and use a NULL data value instead. It is only valid when the input
buffer is used to provide the value of a parameter in an SQL statement.

The operation of ODBC functions on character data containing embedded null
characters is undefined, and is not recommended for maximum interoperability.

Unless it is specifically prohibited in a function description, the address of an
input buffer may be a null pointer. When the address of an input buffer is a null
pointer, the value of the corresponding buffer length argument is ignored.

For more information about input buffers, see "Converting Data from C to SQL
Data Types" in Appendix D, "Data Types."

Output Buffers
An application passes the following arguments to a driver, so that it can return
data in an output buffer:

■ The address of the buffer in which the driver returns the data (the output
buffer). Unless it is specifically prohibited in a function description, the
address of an output buffer can be a null pointer. In this case, the driver does
not return anything in the buffer and, in the absence of other errors, returns
SQL_SUCCES S.

If necessary, the driver converts data before returning it. The driver always
null-terminates character data before returning it.

■ The length of the buffer. This is ignored by the driver if the returned data has a
fixed length in C, such as an integer, real number, or date structure.

■ The address of a variable in which the driver returns the length of the data (the
length buffer). The returned length of the data is SQL_NULL_DATA if the
data is a NULL value in a result set. Otherwise, it is the number of bytes of
data available to return. If the driver converts the data, it is the number of
bytes after the conversion. For character data, it does not include the null
termination byte added by the driver.

Page 36 of 434 RA v. AMS
Ex. 1020

Chapter 3 Guidelines for Calling ODBC Functions 	27

If the output buffer is too small, the driver attempts to truncate the data. If the
truncation does not cause a loss of significant data, the driver returns the truncated
data in the output buffer, returns the length of the available data (as opposed to the
length of the truncated data) in the length buffer, and returns
SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of significant data,
the driver leaves the output and length buffers untouched and returns
SQL_ERROR. The application calls SQLError to retrieve information about the
truncation or the error.

For more information about output buffers, see "Converting Data from SQL to C
Data Types" in Appendix D, "Data Types."

Environment, Connection, and Statement Handles
When so requested by an application, the Driver Manager and each driver allocate
storage for information about the ODBC environment, each connection, and each
SQL statement. The handles to these storage areas are returned to the application.
The application then uses one or more of them in each call to an ODBC function.

The ODBC interface defines three types of handles:

■ The environment handle identifies memory storage for global information,
including the valid connection handles and the current active connection
handle. ODBC defines the environment handle as a variable of type HENV.
An application uses a single environment handle; it must request this handle
prior to connecting to a data source.

■ Connection handles identify memory storage for information about a
particular connection. ODBC defines connection handles as variables of type
HDBC. An application must request a connection handle prior to connecting to
a data source. Each connection handle is associated with the environment
handle. The environment handle can, however, have multiple connection
handles associated with it.

■ Statement handles identify memory storage for information about an SQL
statement. ODBC defines statement handles as variables of type HSTMT. An
application must request a statement handle prior to submitting SQL requests.
Each statement handle is associated with exactly one connection handle. Each
connection handle can, however, have multiple statement handles associated
with it.

For more information about requesting a connection handle, see Chapter 5,
"Connecting to a Data Source." For more information about requesting a
statement handle, see Chapter 6, "Executing SQL Statements."

Page 37 of 434 RA v. AMS
Ex. 1020

28 	Part 2 Developing Applications

Using Data Types
Data stored on a data source has an SQL data type, which may be specific to that
data source. A driver maps data source—specific SQL data types to ODBC SQL
data types, which are defined in the ODBC SQL grammar, and driver-specific
SQL data types. (A driver returns these mappings through SQLGetTypelnfo. It
also uses the ODBC SQL data types to describe the data types of columns and
parameters in SQLColAttributes, SQLDescribeCol, and SQLDescribeParam.)

Each SQL data type corresponds to an ODBC C data type. By default, the driver
assumes that the C data type of a storage location corresponds to the SQL data
type of the column or parameter to which the location is bound. If the C data type
of a storage location is not the default C data type, the application can specify the
correct C data type with the fCType argument in SQLBindCol, SQLGetData, or
SQLBindParameter. Before returning data from the data source, the driver
converts it to the specified C data type. Before sending data to the data source, the
driver converts it from the specified C data type.

For more information about data types, see Appendix D, "Data Types." The C
data types are defined in SQL.H and SQLEXT.H.

ODBC Function Return Codes
When an application calls an ODBC function, the driver executes the function and
returns a predefined code. These return codes indicate success, warning, or failure
status. The return codes are:

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

SQL_NO_DATA_FOUND

SQL_ERROR

SQL_INVALID_HANDLE

SQL_STILL_EXECUTING

SQL_NEED_DATA

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the
application can call SQLError to retrieve additional information about the error.
For a complete description of return codes and error handling, see Chapter 8,
"Retrieving Status and Error Information."

Page 38 of 434 RA v. AMS
Ex. 1020

31

CHAPTER 5

Connecting to a Data Source

This chapter briefly describes data sources. It then describes how to establish a
connection to a data source.

About Data Sources
A data source consists of the data a user wants to access, its associated DBMS, the
platform on which the DBMS resides, and the network (if any) used to access that
platform. Each data source requires that a driver provide certain information in
order to connect to it. At the core level, this is defined to be the name of the data
source, a user ID, and a password. ODBC extensions allow drivers to specify
additional information, such as a network address or additional passwords.

The connection information for each data source is stored in the ODBC.INI file or
registry, which is created during installation and maintained with an
administration program. A section in this file lists the available data sources.
Additional sections describe each data source in detail, specifying the driver
name, a description, and any additional information the driver needs to connect to
the data source.

For example, suppose a user has three data sources: Personnel and Inventory,
which use an Rdb DBMS, and Payroll, which uses an SQL Server DBMS. The
section that lists the data sources might be:

[ODBC Data Sources]
Personnel—Rdb
Inventory—Rdb
Payroll—SQL Server

Suppose also that an Rdb driver needs the ID of the last user to log in, a server
name, and a schema declaration statement. The section that describes the
Personnel data source might be:

Page 39 of 434 RA v. AMS
Ex. 1020

32 	Part 2 Developing Applications

[Personnel]

Driver—c:\windows\system\rdb.d11

Description—Personnel database: CURLY

Lastuid=smithjo

Server—curly

Schema—declare schema personnel filename

"sys$sysdevice:[corpdata]personnel.rdb"

For more information about data sources and how to configure them, see Chapter
20, "Configuring Data Sources."

Initializing the ODBC Environment
Before an application can use any other ODBC function, it must initialize the
ODBC interface and associate an environment handle with the environment. To
initialize the interface and allocate an environment handle, an application:

1. Declares a variable of type HENV. For example, the application could use the
declaration:

HENV henvl:

2. Calls SQLAllocEnv and passes it the address of the variable. The driver
initializes the ODBC environment, allocates memory to store information
about the environment, and returns the environment handle in the variable.

These steps should be performed only once by an application; SQLA11ocEnv
supports one or more connections to data sources.

Allocating a Connection Handle
Before an application can connect to a driver, it must allocate a connection handle
for the connection. To allocate a connection handle, an application:

1. Declares a variable of type HDBC. For example, the application could use the
declaration:

HDBC hdbcl;

2. Calls SQLAllocConnect and passes it the address of the variable. The driver
allocates memory to store information about the connection and returns the
connection handle in the variable.

Page 40 of 434 RA v. AMS
Ex. 1020

Chapter 5 Connecting to a Data Source 	33

Connecting to a Data Source
Next, the application specifies a specific driver and data source. It passes the
following information to the driver in a call to SQLConnect:

■ Data source name The name of the data source being requested by the
application.

■ User ID The login ID or account name for access to the data source, if
appropriate (optional).

■ Authentication string (password) A character string associated with the
user ID that allows access to the data source (optional).

When an application calls SQLConnect, the Driver Manager uses the data source
name to read the name of the driver DLL from the appropriate section of the
ODBC.INI file or registry. It then loads the driver DLL and passes the
SQLConnect arguments to it. If the driver needs additional information to
connect to the data source, it reads this information from the same section of the
ODBC.INI file.

If the application specifies a data source name that is not in the ODBC.INI file or
registry, or if the application does not specify a data source name, the Driver
Manager searches for the default data source specification. If it finds the default
data source, it loads the default driver DLL and passes the application-specified
data source name to it. If there is no default data source, the Driver Manager
returns an error.

ODBC Extensions for Connections
ODBC extends the X/Open and SQL Access Group Call Level Interface to
provide additional functions related to connections, drivers, and data sources. The
remainder of this chapter describes these functions. To determine if a driver
supports a specific function, an application calls SQLGetFunctions.

Connecting to a Data Source With SQLDriverConnect
SQLDriverConnect supports:

■ Data sources that require more connection information than the three
arguments in SQLConnect.

■ Dialog boxes to prompt the user for all connection information.

■ Data sources that are not defined in the ODBC.INI file or registry.

SQLDriverConnect uses a connection string to specify the information needed to
connect to a driver and data source.

Page 41 of 434 RA v. AMS
Ex. 1020

34 	Part 2 Developing Applications

A connection string contains the following information:

■ Data source name or driver description

■ Zero or more user IDs

■ Zero or more passwords

■ Zero or more data source—specific parameter values

The connection string is a more flexible interface than the data source name, user
ID, and password used by SQLConnect. The application can use the connection
string for multiple levels of login authorization or to convey other data source—
specific connection information.

An application calls SQLDriverConnect in one of three ways:

■ Specifies a connection string that contains a data source name. The Driver
Manager retrieves the full path of the driver DLL associated with the data
source from the ODBC.INI file or registry. To retrieve a list of data source
names, an application calls SQLDataSources.

■ Specifies a connection string that contains a driver description. The Driver
Manager retrieves the full path of the driver DLL. To retrieve a list of driver
descriptions, an application calls SQLDrivers.

■ Specifies a connection string that does not contain a data source name or a
driver description. The Driver Manager displays a dialog box from which the
user selects a data source name. The Driver Manager then retrieves the full
path of the driver DLL associated with the data source.

The Driver Manager then loads the driver DLL and passes the
SQLDriverConnect arguments to it.

The application may pass all the connection information the driver needs. It may
also request that the driver always prompt the user for connection information or
only prompt the user for information it needs. Finally, if a data source is specified,
the driver may read connection information from the appropriate section of the
ODBC.INI file or registry. (For information on the structure of the ODBC.INI file
or the subkeys used in the registry, see "Structure of the ODBC.INI File" in
Chapter 20, "Configuring Data Sources.")

After the driver connects to the data source, it returns the connection information
to the application. The application may store this information for future use.

If the application specifies a data source name that is not in the ODBC.INI file or
registry, the Driver Manager searches for the default data source specification. If
it finds the default data source, it loads the default driver DLL and passes the
application-specified data source name to it. If there is no default data source, the
Driver Manager returns an error.

Page 42 of 434 RA v. AMS
Ex. 1020

Accounting
Documentation
Inventory
Marketing
Personnel

Chapter 5 Connecting to a Data Source 	35

The Driver Manager displays the following dialog box if the application calls
SQLDriverConnect and requests that the user be prompted for information.

On request from the application, the driver displays a dialog box similar to the
following to retrieve login information.

Connection Browsing With SQLBrowseConnect
SQLBrowseConnect supports an iterative method of listing and specifying the
attributes and attribute values required to connect to a data source. For each level
of a connection, an application calls SQLBrowseConnect and specifies the
connection attributes and attribute values for that level. First level connection
attributes always include the data source name or driver description; the
connection attributes for later levels are data source—dependent, but might include
the host, user name, and database.

Each time SQLBrowseConnect is called, it validates the current attributes,
returns the next level of attributes, and returns a user-friendly name for each
attribute. It may also return a list of valid values for those attributes. (Note,
however, that for some drivers and attributes, this list may not be complete.) After
an application has specified each level of attributes and values,
SQLBrowseConnect connects to the data source and returns a complete
connection string. This string can be used in conjunction with
SQLDriverConnect to connect to the data source at a later time.

Page 43 of 434 RA v. AMS
Ex. 1020

36 	Part 2 Developing Applications

Connection Browsing Example for SQL Server
The following example shows how SQLBrowseConnect might be used to browse
the connections available with a driver for Microsoft's SQL Server. Although
other drivers may require different connection attributes, this example illustrates
the connection browsing model. (For the syntax of browse request and result
strings, see SQLBrowseConnect in Chapter 22, "ODBC Function Reference.")

First, the application requests a connection handle:

SQLAllocConnect(henv, &hdbc);

Next, the application calls SQLBrowseConnect and specifies a data source name:

SQLBrowseConnect(hdbc, "DSN—MySQLServer", SQL_NTS,
szBrowseResult, 100, &cb);

Because this is the first call to SQLBrowseConnect, the Driver Manager locates
the data source name (MySQLServer) in the ODBC.INI file and loads the
corresponding driver DLL (SQLSRVR.DLL). The Driver Manager then calls the
driver's SQLBrowseConnect function with the same arguments it received from
the application.

The driver determines that this is the first call to SQLBrowseConnect and returns
the second level of connection attributes: server, user name, password, and
application name. For the server attribute, it returns a list of valid server names.
The return code from SQLBrowseConnect is SQL_NEED_DATA. The browse
result string is:

"SERVER:Server={red,blue,green,yellow};UID:Login ID—?;PWD:Password—?;
r► *APP:AppName—?;*WSID:WorkStation ID—?"

Note that each keyword in the browse result string is followed by a colon and one
or more words before the equal sign. These words are the user-friendly name that
an application can use as a prompt in a dialog box.

In its next call to SQLBrowseConnect, the application must supply a value for
the SERVER, UID, and PWD keywords. Because they are prefixed by an
asterisk, the APP and WSID keywords are optional and may be omitted. The
value for the SERVER keyword may be one of the servers returned by
SQLBrowseConnect or a user-supplied name.

The application calls SQLBrowseConnect again, specifying the green server and
omitting the APP and WSID keywords and the user-friendly names after each
keyword:

SQLBrowseConnect(hdbc, "SERVER—green;UID—Smith;PWD—Sesame", SQL_NTS,
szBrowseResult, 100, &cb);

Page 44 of 434 RA v. AMS
Ex. 1020

Chapter 5 Connecting to a Data Source 	37

The driver attempts to connect to the green server. If there are any nonfatal errors,
such as a missing keyword-value pair, SQLBrowseConnect returns
SQL_NEED_DATA and remains in the same state as prior to the error. The
application can call SQLError to determine the error. If the connection is
successful, the driver returns SQL_NEED_DATA and returns the browse result
string:

"*DATABASE:Database—{master,model,pubs,tempdb};
r► *LANGUAGE:Language={us_english,Frangais}"

Since the attributes in this string are optional, the application can omit them.
However, the application must call SQLBrowseConnect again. If the application
chooses to omit the database name and language, it specifies an empty browse
request string. In this example, the application chooses the pubs database and calls
SQLBrowseConnect a final time, omitting the LANGUAGE keyword and the
asterisk before the DATABASE keyword:

SQLBrowseConnect(hdbc, "DATABASE=pubs", SQL_NTS,

szBrowseResult, 100, &cb);

Since the DATABASE attribute is the final connection attribute of the data
source, the browsing process is complete, the application is connected to the data
source, and SQLBrowseConnect returns SQL_SUCCESS. SQLBrowseConnect
also returns the complete connection string as the browse result string:

"DSN—MySQLServer;SERVER—green;UID=Smith;PWD=Sesame;DATABASE—pubs"

The final connection string returned by the driver does not contain the user-
friendly names after each keyword, nor does it contain optional keywords not
specified by the application. The application can use this string with
SQLDriverConnect to reconnect to the data source on the current hdbc (after
disconnecting) or to connect to the data source on a different hdbc:

SQLDriverConnect(hdbc, szBrowseResult, SQL_NTS, szConnStrOut, 100, &cb,

SQL_DRIVER_NOPROMPT);

Connection Browsing Example for DAL
The following example shows how SQLBrowseConnect might be used in
conjunction with a driver that uses Apple's Data Access Language (DAL) to
access an Oracle host. To browse the available connections, an application
repeatedly calls SQLBrowseConnect:

retcode = SQLBrowseConnect(hdbc, szConnStrIn, SQL_NTS,

szConnStrOut, 200, &cb);

In the first call, the application specifies a data source name in szConnStrin. In
each subsequent call, the application bases the value of szConnStrin on the value
of szConnStrOut returned by the previous call. The application continues to call

Page 45 of 434 RA v. AMS
Ex. 1020

38 	Part 2 Developing Applications

SQLBrowseConnect as long as the function returns SQL_NEED_DATA. The
following list shows, for each call to SQLBrowseConnect, the value that the
application specifies for szConnStrin and the values that the driver returns for
retcode and szConnStrOut. (For the syntax of the strings used in szConnStrin and
szConnStrOut, see SQLBrowseConnect in Chapter 22, "ODBC Function
Reference.")

szConnStrIn : "DSN=DAL"

szConnStrOut: "HOST:Host={ilyVax,Direct,Unix};UID1:Host User Name=?;
r► PWD1:Password=?"

retcode 	: SQL_NEED_DATA

szConnStrIn : "HOST=MyVax;UID1=Smith;PW01=Sesame"

szConnStrOut: "DBMS:DBMS={0racle,Informix,Sybase};UID2:DBMS User Name=?;
r► PWD2:Password=?"

retcode 	: SQL_NEED_DATA

szConnStrIn : "DBMS=Orac1e;UID2=John;PWD2=Lion"

szConnStrOut: "DATABASE:Database—{DalDemo,Personnel,Production};
r► *ALIAS:Alias=?;*UID3:User Name—?;*PWD3:Password—?"

retcode 	: SQL_NEED_DATA

szConnStrIn : "DATABASE=DalDemo;ALIAS=Demo"

szConnStrOut: "DSN=DAL;HOST—MyVax;UID1=Smith;PWD1—Sesame;DBMS=Oracle;

UID2=John;PWD2=Lion;DATABASE=DalDemo;ALIAS=Demo"

retcode 	: SQL SUCCESS

Note that the database alias, database user name, and database password are
optional, as indicated by the asterisk before those attribute names. The application
chooses not to specify the user name and password.

Translating Data
An application and a data source can store data in different formats. For example,
the application might use a different character set than the data source. ODBC
provides a mechanism by which a driver can translate all data (data values, SQL
statements, table names, row counts, and so on) that passes between the driver and
the data source.

The driver translates data by calling functions in a translation DLL. A default
translation DLL can be specified for the data source in the ODBC.INI file or
registry; the application can override this by calling SQLSetConnectOption.
When the driver connects to the data source, it loads the translation DLL (if one
has been specified). After the driver has connected to the data source, the
application may specify a new translation DLL by calling
SQLSetConnectOption. For more information about specifying a default
translation DLL, see "Specifying a Default Translator" in Chapter 20,
"Configuring Data Sources."

Page 46 of 434 RA v. AMS
Ex. 1020

Chapter 5 Connecting to a Data Source 	39

Translation functions may support several different types of translation. For
example, a function that translates data from one character set to another might
support a variety of character sets. To specify a particular type of translation, an
application can pass an option flag to the translation functions with
SQLSetConnectOption.

Additional Extension Functions
ODBC also provides the following functions related to connections, drivers, and
data sources. For more information about these functions, see Chapter 22, "ODBC
Function Reference."

Function Description

SQLDataSources

SQLDrivers

SQLGetFunctions

SQLGetInfo

Retrieves a list of available data sources. The Driver
Manager retrieves this information from the ODBC.INI
file or registry. An application can present this
information to a user or automatically select a data
source.

Retrieves a list of installed drivers and their attributes.
The Driver Manager retrieves this information from the
ODBCINST.INI file or registry. An application can
present this information to a user or automatically select
a driver.

Retrieves functions supported by a driver. This function
allows an application to determine at run time whether a
particular function is supported by a driver.

Retrieves general information about a driver and data
source, including filenames, versions, conformance
levels, and capabilities.

Retrieves the SQL data types supported by a driver and
data source.

These functions set or retrieve connection options, such
as the data source access mode, automatic transaction
commitment, timeout values, function tracing, data
translation options, and transaction isolation.

SQLGetTypelnfo

SQLSetConnectOption
SQLGetConnectOption

Page 47 of 434 RA v. AMS
Ex. 1020

41

CHAPTER 6

Executing SQL Statements

An application can submit any SQL statement supported by a data source. ODBC
defines a standard syntax for SQL statements (listed in Appendix C, "SQL
Grammar"). For maximum interoperability, an application should only submit
SQL statements that use this syntax; the driver will translate these statements to
the syntax used by the data source. If an application submits an SQL statement
that does not use the ODBC syntax, the driver passes it directly to the data source.

Note For CREATE TABLE and ALTER TABLE statements, applications
should use the data type name returned by SQLGetTypelnfo in the
TYPE_NAME column, rather than the data type name defined in the SQL
grammar.

The following diagram shows a simple sequence of ODBC function calls to
execute SQL statements. Note that statements can be executed a single time with
SQLExecDirect or prepared with SQLPrepare and executed multiple times with
SQLExecute. Note also that an application calls SQLTransact to commit or roll
back a transaction.

Page 48 of 434 RA v. AMS
Ex. 1020

SQLPrepa
SQLSetParam

SQLExecute

SQLNuniltesultCois
SQLDescribeCol

SQLBindCol

SQLFetch

42 	Part 2 Developing Applications

Allocating a Statement Handle
Before an application can submit an SQL statement, it must allocate a statement
handle for the statement. To allocate a statement handle, an application:

Page 49 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	43

1. Declares a variable of type HSTMT. For example, the application could use
the declaration:

HSTMT hstmtl ;

2. Calls SQLAllocStmt and passes it the address of the variable and the
connected hdbc with which to associate the statement. The driver allocates
memory to store information about the statement, associates the statement
handle with the hdbc, and returns the statement handle in the variable.

Executing an SQL Statement
An application can submit an SQL statement for execution in two ways:

■ Prepared Call SQLPrepare and then call SQLExecute.

■ Direct Call SQLExecDirect.

These options are similar, though not identical to, the prepared and immediate
options in embedded SQL. For a comparison of the ODBC functions and
embedded SQL, see Appendix E, "Comparison Between Embedded SQL and
ODBC."

Prepared Execution
An application should prepare a statement before executing it if either of the
following is true:

■ The application will execute the statement more than once, possibly with
intermediate changes to parameter values.

■ The application needs information about the result set prior to execution.

A prepared statement executes faster than an unprepared statement because the
data source compiles the statement, produces an access plan, and returns an access
plan identifier to the driver. The data source minimizes processing time as it does
not have to produce an access plan each time it executes the statement. Network
traffic is minimized because the driver sends the access plan identifier to the data
source instead of the entire statement.

Important Committing or rolling back a transaction, either by calling
SQLTransact or by using the SQL_AUTOCOMMIT connection option, can
cause the data source to delete the access plans for all hstmts on an hdbc. For
more information, see the SQL_CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_ROLLBACK_BEHAVIOR information types in SQLGetInfo.

Page 50 of 434 RA v. AMS
Ex. 1020

44 	Part 2 Developing Applications

To prepare and execute an SQL statement, an application:

1. Calls SQLPrepare to prepare the statement.

2. Sets the values of any statement parameters. For more information, see
"Setting Parameter Values" later in this chapter.

3. Retrieves information about the result set, if necessary. For more information,
see "Determining the Characteristics of a Result Set" in Chapter 7, "Retrieving
Results."

4. Calls SQLExecute to execute the statement.

5. Repeats steps 2 through 4 as necessary.

Direct Execution
An application should execute a statement directly if both of the following are
true:

■ The application will execute the statement only once.

■ The application does not need information about the result set prior to
execution.

To execute an SQL statement directly, an application:

1. Sets the values of any statement parameters. For more information, see
"Setting Parameter Values" later in this chapter.

2. Calls SQLExecDirect to execute the statement.

Setting Parameter Values
An SQL statement can contain parameter markers that indicate values that the
driver retrieves from the application at execution time. For example, an
application might use the following statement to insert a row of data into the
EMPLOYEE table:

INSERT INTO EMPLOYEE (NAME, AGE, HIREDATE) VALUES (?, ?, ?)

An application uses parameter markers instead of literal values if:

■ It needs to execute the same prepared statement several times with different
parameter values.

■ The parameter values are not known when the statement is prepared.

■ The parameter values need to be converted from one data type to another.

Page 51 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	45

To set a parameter value, an application performs the following steps in any
order:

■ Calls SQLBindParameter to bind a storage location to a parameter marker
and specify the data types of the storage location and the column associated
with the parameter, as well as the precision and scale of the parameter.

■ Places the parameter's value in the storage location.

These steps can be performed before or after a statement is prepared, but must be
performed before a statement is executed.

Parameter values must be placed in storage locations in the C data types specified
in SQLBindParameter. For example:

Parameter Value 	SQL Data Type 	C Data Type 	Stored Value

ABC 	 SQL_CHAR 	SQL_C_CHAR 	ABC\0 a

10 	 SQL_INTEGER SQL_C_SLONG 10

10 	 SQL_INTEGER 	SQL_C_CHAR 	10\0 a

1 P.M. 	 SQL_TIME 	SQL_C_TIME 	13,0,0 b

1 P.M. 	 SQL_TIME 	SQL_C_CHAR 	ft '13:00:001\0a,c

a "\0" represents a null-termination byte; the null termination byte is required only if the parameter
length is SQL_NTS.

b The numbers in this list are the numbers stored in the fields of the TIME_STRUCT structure.

The string uses the ODBC date escape clause. For more information, see "Date, Time, and
Timestamp Data" later in this chapter.

Storage locations remain bound to parameter markers until the application calls
SQLFreeStmt with the SQL_RESET_PARAMS option or the SQL_DROP
option. An application can bind a different storage area to a parameter marker at
any time by calling SQLBindParameter. An application can also change the
value in a storage location at any time. When a statement is executed, the driver
uses the current values in the most recently defined storage locations.

Performing Transactions
In auto-commit mode, every SQL statement is a complete transaction, which is
automatically committed. In manual-commit mode, a transaction consists of one
or more statements. In manual-commit mode, when an application submits an
SQL statement and no transaction is open, the driver implicitly begins a
transaction. The transaction remains open until the application commits or rolls
back the transaction with SQLTransact.

If a driver supports the SQL_AUTOCOMMIT connection option, the default
transaction mode is auto-commit; otherwise, it is manual-commit. An application
calls SQLSetConnectOption to switch between manual-commit and auto-

Page 52 of 434 RA v. AMS
Ex. 1020

46 	Part 2 Developing Applications

commit mode. Note that if an application switches from manual-commit to auto-
commit mode, the driver commits any open transactions on the connection.

Applications should call SQLTransact, rather than submitting a COMMIT or
ROLLBACK statement, to commit or roll back a transaction. The result of a
COMMIT or ROLLBACK statement depends on the driver and its associated
data source.

Important Committing or rolling back a transaction, either by calling
SQLTransact or by using the SQL_AUTOCOMMIT connection option, can
cause the data source to close the cursors and delete the access plans for all hstmts
on an hdbc. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_ROLLBACK_BEHAVIOR information types in SQLGetInfo.

ODBC Extensions for SQL Statements
ODBC extends the X/Open and SQL Access Group Call Level Interface to
provide additional functions related to SQL statements. ODBC also extends the
X/Open and SQL Access Group SQL CAE specification (1992) to provide
common extensions to SQL. The remainder of this chapter describes these
functions and SQL extensions.

To determine if a driver supports a specific function, an application calls
SQLGetFunctions. To determine if a driver supports a specific ODBC extension
to SQL, such as outer joins or procedure invocation, an application calls
SQLGetInfo.

Retrieving Information About the Data Source's Catalog
The following functions, known as catalog functions, return information about a
data source's catalog:

■ SQLTables returns the names of tables stored in a data source.

■ SQLTablePrivileges returns the privileges associated with one or more tables.

■ SQLColumns returns the names of columns in one or more tables.

■ SQLColumnPrivileges returns the privileges associated with each column in
a single table.

■ SQLPrimaryKeys returns the names of columns that comprise the primary
key of a single table.

■ SQLForeignKeys returns the names of columns in a single table that are
foreign keys. It also returns the names of columns in other tables that refer to
the primary key of the specified table.

Page 53 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	47

■ SQLSpecialColumns returns information about the optimal set of columns
that uniquely identify a row in a single table or the columns in that table that
are automatically updated when any value in the row is updated by a
transaction.

■ SQLStatistics returns statistics about a single table and the indexes associated
with that table.

■ SQLProcedures returns the names of procedures stored in a data source.

■ SQLProcedureColumns returns a list of the input and output parameters, as
well as the names of columns in the result set, for one or more procedures.

Each function returns the information as a result set. An application retrieves
these results by calling SQLBindCol and SQLFetch.

Sending Parameter Data at Execution Time
To send parameter data at statement execution time, such as for parameters of the
SQL_LONGVARCHAR or SQL_LONGVARBINARY types, an application uses
the following three functions:

■ SQLBindParameter

■ SQLParamData

■ SQLPutData

To indicate that it plans to send parameter data at statement execution time, an
application calls SQLBindParameter and sets the pcbValue buffer for the
parameter to the result of the SQL_LEN_DATA_AT_EXEC(length) macro. If the
fSqlType argument is SQL_LONGVARBINARY or SQL_LONGVARCHAR and
the driver returns "Y" for the SQL_NEED_LONG_DATA_LEN information type
in SQLGetInfo, length is the total number of bytes of data to be sent for the
parameter; otherwise, it is ignored.

The application sets the rgbValue argument to a value that, at run time, can be
used to retrieve the data. For example, rgbValue might point to a storage location
that will contain the data at statement execution time or to a file that contains the
data. The driver returns the value to the application at statement execution time.

When the driver processes a call to SQLExecute or SQLExecDirect and the
statement being executed includes a data-at-execution parameter, the driver
returns SQL_NEED_DATA. To send the parameter data, the application:

1. Calls SQLParamData, which returns rgbValue (as set with
SQLBindParameter) for the first data-at-execution parameter.

2. Calls SQLPutData one or more times to send data for the parameter. (More
than one call will be needed if the data value is larger than the buffer; multiple

Page 54 of 434 RA v. AMS
Ex. 1020

48 	Part 2 Developing Applications

calls are allowed only if the C data type is character or binary and the SQL
data type is character, binary, or data source—specific.)

3. Calls SQLParamData again to indicate that all data has been sent for the
parameter. If there is another data-at-execution parameter, the driver returns
rgbValue for that parameter and SQL_NEED_DATA for the function return
code. Otherwise, it returns SQL_SUCCESS for the function return code.

4. Repeats steps 2 and 3 for the remaining data-at-execution parameters.

For additional information, see the description of SQLBindParameter in Chapter
22, "ODBC Function Reference."

Specifying Arrays of Parameter Values
To specify multiple sets of parameter values for a single SQL statement, an
application calls SQLParamOptions. For example, if there are ten sets of column
values to insert into a table—and the same SQL statement can be used for all ten
operations—the application can set up an array of values, then submit a single
INSERT statement.

If an application uses SQLParamOptions, it must allocate enough memory to
handle the arrays of values.

Executing Functions Asynchronously
By default, a driver executes ODBC functions synchronously; the driver does not
return control to an application until a function call completes. If a driver supports
asynchronous execution, however, an application can request asynchronous
execution for the functions listed below. (All of these functions either submit
requests to a data source or retrieve data. These operations may require extensive
processing.)

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLDescribeCol

SQLDescribeParam

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLGetData

SQLGetTypelnfo

SQLMoreResults

SQLNumParams

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLSetPos

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

Page 55 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	49

Asynchronous execution is performed on a statement-by-statement basis. To
execute a statement asynchronously, an application:

1. Calls SQLSetStmtOption with the SQL_ASYNC_ENABLE option to enable
asynchronous execution for an hstmt. (To enable asynchronous execution for
all hstmts associated with an hdbc, an application calls
SQLSetConnectOption with the SQL_ASYNC_ENABLE option.)

2. Calls one of the functions listed earlier in this section and passes it the hstmt.
The driver begins asynchronous execution of the function and returns
SQL_STILL_EXECUTING.

Note If the application calls a function that cannot be executed
asynchronously, the driver executes the function synchronously.

3. Performs other operations while the function is executing asynchronously. The
application can call any function with a different hstmt or an hdbc not
associated with the original hstmt. With the original hstmt and the hdbc
associated with that hstmt, the application can only call the original function,
SQLAllocStmt, SQLCancel, or SQLGetFunctions.

4. Calls the asynchronously executing function to check if it has finished. While
the arguments must be valid, the driver ignores all of them except the hstmt
argument. For example, suppose an application called SQLExecDirect to
execute a SELECT statement asynchronously. When the application calls
SQLExecDirect again, the return value indicates the status of the SELECT
statement, even if the szSq/Str argument contains an INSERT statement.

If the function is still executing, the driver returns SQL_STILL_EXECUTING
and the application must repeat steps 3 and 4. If the function has finished, the
driver returns a different code, such as SQL_SUCCESS or SQL_ERROR. For
information about canceling a function executing asynchronously, see
"Terminating Statement Processing" in Chapter 9, "Terminating Transactions
and Connections."

5. Repeats steps 2 through 4 as needed.

To disable asynchronous execution for an hstmt, an application calls
SQLSetStmtOption with the SQL_ASYNC_ENABLE option. To disable
asynchronous execution for all hstmts associated with an hdbc, an application
calls SQLSetConnectOption with the SQL_ASYNC_ENABLE option.

Using ODBC Extensions to SQL
ODBC defines the following extensions to SQL, which are common to most
DBMS's:

■ Date, time, and timestamp data

■ Scalar functions such as numeric, string, and data type conversion functions

Page 56 of 434 RA v. AMS
Ex. 1020

50 	Part 2 Developing Applications

■ LIKE predicate escape characters

■ Outer joins

■ Procedures

The syntax defined by ODBC for these extensions uses the escape clause
provided by the X/Open and SQL Access Group SQL CAE specification (1992)
to cover vendor-specific extensions to SQL. Its format is:

--(*vendor(vendor-name), product(product-name) extension *)--

For the ODBC extensions to SQL, product-name is always "ODBC", since the
product defining them is ODBC. Vendor-name is always "Microsoft", since
ODBC is a Microsoft product. ODBC also defines a shorthand syntax for these
extensions:

{extension}

Most DBMS's provide the same extensions to SQL as does ODBC. Because of
this, an application may be able to submit an SQL statement using one of these
extensions in either of two ways:

■ Use the syntax defined by ODBC. An application that uses the ODBC syntax
will be interoperable among DBMS's.

■ Use the syntax defined by the DBMS. An application that uses DBMS-specific
syntax will not be interoperable among DBMS's.

Due to the difficulty in implementing some ODBC extensions to SQL, such as
outer joins, a driver might only implement those ODBC extensions that are
supported by its associated DBMS. To determine whether the driver and data
source support all the ODBC extensions to SQL, an application calls
SQLGetInfo with the SQL_ODBC_SQL_CONFORMANCE flag. For
information about how an application determines whether a specific extension is
supported, see the section that describes the extension.

Note Many DBMS's provide extensions to SQL other than those defined by
ODBC. To use one of these extensions, an application uses the DBMS-specific
syntax. The application will not be interoperable among DBMS's.

Date, Time, and Timestamp Data
The escape clauses ODBC uses for date, time, and timestamp data are:

--(*vendor(Microsoft),product(ODBC) d 'value' *)--
--(*vendor(Microsoft),product(ODBC) t 'value' *)--
--(*vendor(Microsoft),product(ODBC) is 'value' *)--

Page 57 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	51

where d indicates value is a date in the "yyyy-mm-dd" format, t indicates value is
a time in the "hh:mm:ss" format, and ts indicates value is a timestamp in the
"yyyy-mm-dd hh:mm:ss[1...1" format. The shorthand syntax for date, time, and
timestamp data is:

{d 'value'}
{t 'value'}
{ts 'value}

For example, each of the following statements updates the birthday of John Smith
in the EMPLOYEE table. The first statement uses the escape clause syntax. The
second statement uses the shorthand syntax. The third statement uses the native
syntax for a DATE column in DEC's Rdb and is not interoperable among
DBMS's.

UPDATE EMPLOYEE

SET BIRTHDAY---(*vendor(Microsoft),product(ODBC) d '1967-01-15' *)--

WHERE NAME='Smith, John'

UPDATE EMPLOYEE

SET BIRTHDAY—{d '1967-01-15'}

WHERE NAME='Smith, John'

UPDATE EMPLOYEE

SET BIRTHDAY='15-Jan-1967'

WHERE NAME='Smith, John'

The ODBC escape clauses for date, time, and timestamp literals can be used in
parameters with a C data type of SQL_C_CHAR. For example, the following
statement uses a parameter to update the birthday of John Smith in the
EMPLOYEE table:

UPDATE EMPLOYEE SET BIRTHDAY=? WHERE NAME='Smith, John'

A storage location of type SQL_C_CHAR bound to the parameter might contain
any of the following values. The first value uses the escape clause syntax. The
second value uses the shorthand syntax. The third value uses the native syntax for
a DATE column in DEC's Rdb and is not interoperable among DBMS's.

"--(*vendor(Microsoft),product(ODBC) d '1967-01-15' *)--"

"{d '1967-01-15'}"

"'15-Jan-1967'"

An application can also send date, time, or timestamp values as parameters using
the C structures defined by the C data types SQL_C_DATE, SQL_C_TIME, and
S QL_C_TIMES TAMP.

Page 58 of 434 RA v. AMS
Ex. 1020

52 	Part 2 Developing Applications

To determine if a data source supports date, time, or timestamp data, an
application calls SQLGetTypelnfo. If a driver supports date, time, or timestamp
data, it must also support the escape clauses for date, time, or timestamp literals.

Scalar Functions
Scalar functions—such as string length, absolute value, or current date—can be
used on columns of a result set and on columns that restrict rows of a result set.
The escape clause ODBC uses for scalar functions is:

--(*vendor(Microsoft),product(ODBC) fn scalar-function *)--

where scalar-function is one of the functions listed in Appendix F, "Scalar
Functions." The shorthand syntax for scalar functions is:

{fn scalar-function}

For example, each of the following statements creates the same result set of
uppercase employee names. The first statement uses the escape clause syntax. The
second statement uses the shorthand syntax. The third statement uses the native
syntax for Ingres" for OS/2 and is not interoperable among DBMS's.

SELECT --(*vendor(Microsoft),product(ODBC) fn UCASE(NAME) *)--

FROM EMPLOYEE

SELECT {fn UCASE(NAME)} FROM EMPLOYEE

SELECT uppercase(NAME) FROM EMPLOYEE

An application can mix scalar functions that use native syntax and scalar
functions that use ODBC syntax. For example, the following statement creates a
result set of last names of employees in the EMPLOYEE table. (Names in the
EMPLOYEE table are stored as a last name, a comma, and a first name.) The
statement uses the ODBC scalar function SUBSTRING and the SQL Server
scalar function CHARINDEX and will only execute correctly on SQL Server.

SELECT {fn SUBSTRING(NAME, 1, CHARINDEX(',', NAME) - 1)} FROM EMPLOYEE

To determine which scalar functions are supported by a data source, an
application calls SQLGetInfo with the SQL_NUMERIC_FUNCTIONS,
SQL_STRING_FUNCTIONS, SQL_SYSTEM_FUNCTIONS, and
SQL_TIMEDATE_FUNCTIONS flags.

Data Type Conversion Function
ODBC defines a special scalar function, CONVERT, that requests that the data
source convert data from one SQL data type to another SQL data type. The escape
clause ODBC uses for the CONVERT function is:

Page 59 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	53

--(*vendor(Microsoft),product(ODBC)
fn CONVERT(value_exp, data_type) *)--

where value_exp is a column name, the result of another scalar function, or a
literal value, and data_type is a keyword that matches the #define name used by
an ODBC SQL data type (as defined in Appendix D, "Data Types"). The
shorthand syntax for the CONVERT function is:

{fn CONVERT(value_exp, data_type)}

For example, the following statement creates a result set of the names and ages of
all employees in their twenties. It uses the CONVERT function to convert each
employee's age from type SQL_SMALLINT to type SQL_CHAR. Each resulting
character string is compared to the pattern "2%" to determine if the employee's
age is in the twenties.

SELECT NAME, AGE FROM EMPLOYEE

WHERE {fn CONVERT(AGE,SQL_CHAR)} LIKE '2%'

To determine if the CONVERT function is supported by a data source, an
application calls SQLGetInfo with the SQL_CONVERT_FUNCTIONS flag. For
more information about the CONVERT function, see Appendix F, "Scalar
Functions."

LIKE Predicate Escape Characters
In a LIKE predicate, the percent character (%) matches zero or more of any
character and the underscore character (_) matches any one character. The percent
and underscore characters can be used as literals in a LIKE predicate by
preceding them with an escape character. The escape clause ODBC uses to define
the LIKE predicate escape character is:

--(*vendor(Microsoft),product(ODBC) escape 'escape-character' *)--

where escape-character is any character supported by the data source. The
shorthand syntax for the LIKE predicate escape character is:

{escape 'escape-character'}

For example, each of the following statements creates the same result set of
department names that start with the characters "%AAA". The first statement uses
the escape clause syntax. The second statement uses the shorthand syntax. The
third statement uses the native syntax for Ingres and is not interoperable among
DBMS's. Note that the second percent character in each LIKE predicate is a
wild-card character that matches zero or more of any character.

Page 60 of 434 RA v. AMS
Ex. 1020

54 	Part 2 Developing Applications

SELECT NAME FROM DEPT WHERE NAME

LIKE '\%AAA%' --(*vendor(Microsoft),product(ODBC) escape '\'*)--

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%' {escape '\'}

SELECT NAME FROM DEPT WHERE NAME LIKE '\%AAA%' ESCAPE '\'

To determine whether LIKE predicate escape characters are supported by a data
source, an application calls SQLGetInfo with the
SQL_LIKE_ESCAPE_CLAUSE information type.

Outer Joins
ODBC supports the ANSI SQL-92 left outer join syntax. The escape clause
ODBC uses for outer joins is:

--(*vendor(Microsoft),product(ODBC) oj outer-join *)--

where outer-join is:

table-reference LEFT OUTER JOIN (table-reference I outer-join)
ON search-condition

table-reference specifies a table name, and search-condition specifies the join
condition between the table-references. The shorthand syntax for outer joins is:

{oj outer-join}

An outer join request must appear after the FROM keyword and before the
WHERE clause (if one exists). For complete syntax information, see Appendix
C, "SQL Grammar."

For example, each of the following statements creates the same result set of the
names and departments of employees working on project 544. The first statement
uses the escape clause syntax. The second statement uses the shorthand syntax.
The third statement uses the native syntax for Oracle and is not interoperable
among DBMS's.

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME

FROM --(*vendor(Microsoft),product(ODBC) oj

EMPLOYEE LEFT OUTER JOIN DEPT ON EMPLOYEE.DEPTID—DEPT.DEPTID*)--

WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME

FROM {oj EMPLOYEE LEFT OUTER JOIN DEPT

ON EMPLOYEE.DEPTID—DEPT.DEPTID}

WHERE EMPLOYEE.PROJID=544

SELECT EMPLOYEE.NAME, DEPT.DEPTNAME

FROM EMPLOYEE, DEPT

WHERE (EMPLOYEE.PROJID=544) AND (EMPLOYEE.DEPTID = DEPT.DEPTID (+))

Page 61 of 434 RA v. AMS
Ex. 1020

Chapter 6 Executing SQL Statements 	55

To determine the level of outer joins a data source supports, an application calls
SQLGetInfo with the SQL_OUTER_JOINS flag. Data sources can support two-
table outer joins, partially support multi-table outer joins, fully support multi-table
outer joins, or not support outer joins.

Procedures
An application can call a procedure in place of an SQL statement. The escape
clause ODBC uses for calling a procedure is:

--(*vendor(Microsoft),product(ODBC)
[?=] call procedure-nameR[parameter][4parameter]]...)] *)--

where procedure-name specifies the name of a procedure stored on the data
source and parameter specifies a procedure parameter. A procedure can have zero
or more parameters and can return a value. The shorthand syntax for procedure
invocation is:

{[?=] call procedure-nameNparameter][,[parameter]]...)]}

For output parameters, parameter must be a parameter marker. For input and
input/output parameters, parameter can be a literal, a parameter marker, or not
specified. If parameter is a literal or is not specified for an input/output parameter,
the driver discards the output value. If parameter is not specified for an input or
input/output parameter, the procedure uses the default value of the parameter as
the input value; the procedure also uses the default value if parameter is a
parameter marker and the pcbV alue argument in SQLBindParameter is
SQL_DEFAULT_PARAM. If a procedure call includes parameter markers
(including the "?." parameter marker for the return value), the application must
bind each marker by calling SQLBindParameter prior to calling the procedure.

Note For some data sources, parameter cannot be a literal value. For all data
sources, it can be a parameter marker. For maximum interoperability, applications
should always use a parameter marker for parameter.

If an application specifies a return value parameter for a procedure that does not
return a value, the driver sets the pcbValue buffer specified in
SQLBindParameter for the parameter to SQL_NULL_DATA. If the application
omits the return value parameter for a procedure returns a value, the driver
ignores the value returned by the procedure.

If a procedure returns a result set, the application retrieves the data in the result set
in the same manner as it retrieves data from any other result set.

For example, each of the following statements uses the procedure
EMPS_IN_PROJ to create the same result set of names of employees working on
a project. The first statement uses the escape clause syntax. The second statement

Page 62 of 434 RA v. AMS
Ex. 1020

56 	Part 2 Developing Applications

uses the shorthand syntax. For an example of code that calls a procedure, see
SQLProcedures in Chapter 22, "ODBC Function Reference."

--(*vendor(Microsoft),product(ODBC) call EMPS_IN_PROJ(?)*)--

{call EMPS_IN_PROJ(?)}

To determine if a data source supports procedures, an application calls
SQLGetInfo with the SQL_PROCEDURES information type. To retrieve a list
of the procedures stored in a data source, an application calls SQLProcedures.
To retrieve a list of the input, input/output, and output parameters, as well as the
return value and the columns that make up the result set (if any) returned by a
procedure, an application calls SQLProcedureColumns.

Additional Extension Functions
ODBC also provides the following functions related to SQL statements. For more
information about these functions, see Chapter 22, "ODBC Function Reference."

Function Description

SQLDescribeParam

SQLNativeSql

SQLNumParams

SQLSetStmtOption
SQLSetConnectOption
SQLGetStmtOption

Retrieves information about prepared parameters.

Retrieves the SQL statement as processed by the data
source, with escape sequences translated to SQL code used
by the data source.

Retrieves the number of parameters in an SQL statement.

These functions set or retrieve statement options, such as
asynchronous processing, orientation for binding rowsets,
maximum amount of variable length data to return,
maximum number of result set rows to return, and query
timeout value. Note that SQLSetConnectOption sets
options for all statements in a connection.

Page 63 of 434 RA v. AMS
Ex. 1020

91

CHAPTER 11

Guidelines for Implementing
ODBC Functions

Each driver supports a set of ODBC functions. These functions perform tasks
such as allocating and deallocating memory, transmitting or processing SQL
statements, and returning results and errors.

This chapter describes the role of the Driver Manager, the general characteristics
of ODBC functions, supporting ODBC conformance levels, ODBC function
arguments, and what ODBC functions return.

Role of the Driver Manager
ODBC function calls are passed through the Driver Manager to the driver. An
application typically links with the Driver Manager import library (ODBC.LIB) to
gain access to the Driver Manager. When an application calls an ODBC function,
the Driver Manager performs one of the following actions:

■ For SQLDataSources and SQLDrivers, the Driver Manager processes the
call. It does not pass the call to the driver.

■ For SQLGetFunctions, the Driver Manager passes the call to the driver
associated with the connection. If the driver does not support
SQLGetFunctions, the Driver Manager processes the call.

■ For SQLAllocEnv, SQLAllocConnect, SQLSetConnectOption,
SQLFreeConnect, and SQLFreeEnv, the Driver Manager processes the call.
The Driver Manager calls SQLAllocEnv, SQLAllocConnect, and
SQLSetConnectOption in the driver when the application calls a function to
connect to the data source (SQLConnect, SQLDriverConnect, or
SQLBrowseConnect). The Driver Manager calls SQLFreeConnect and
SQLFreeEnv in the driver when the application calls SQLFreeConnect.

■ For SQL Connect, SQLDriverConnect, SQLBrowseConnect, and
SQLError, the Driver Manager performs initial processing, then sends the
call to the driver associated with the connection.

■ For any other ODBC function, the Driver Manager passes the call to the driver
associated with the connection.

Page 64 of 434 RA v. AMS
Ex. 1020

92 	Part 3 Developing Drivers

If requested, the Driver Manager records each called function in a trace file after
checking the function call for errors. The name of each function that does not
contain errors detectable by the Driver Manager is recorded, along with the values
of the input arguments and the names of the output arguments (as listed in the
function definitions).

The Driver Manager also checks function arguments and state transitions, and for
other error conditions before passing the call to the driver associated with the
connection. This reduces the amount of error handling that a driver needs to
perform. However, the Driver Manager does not check all arguments, state
transitions, or error conditions for a given function. For complete information
about what the Driver Manager checks, see the following sections, the
Diagnostics section of each function in Chapter 22, "ODBC Function Reference,"
and the state transition tables in Appendix B, "ODBC State Transition Tables."

Validating Arguments
The following general guidelines discuss the arguments or types of arguments
checked by the Driver Manager. They are not intended to be exhaustive; the
Diagnostics section of each function in Chapter 22, "ODBC Function Reference,"
lists those SQLSTATEs returned by the Driver Manager for that function. Unless
otherwise noted, the Driver Manager returns the return code SQL_ERROR.

■ Environment, connection, and statement handles are checked to make sure
they are not null pointers and are the correct type of handle for the argument.
For example, the Driver Manager checks that the application does not pass an
hdbc where an hstmt is required. If the Driver Manager finds an invalid handle,
it returns SQL_INVALID_HANDLE.

■ Other required arguments, such as the phenv argument in SQLAllocEnv or the
szCursor argument in SQLSetCursorName, are checked to make sure they
are not null pointers.

■ Option flags that cannot be extended by the driver are checked to make sure
they specify only supported options. For example, the Driver Manager checks
that the fDriverCompletion argument in SQLDriverConnect is a valid value.

■ Option flags that can be extended by the driver, such as the finfoType
argument in SQLGetInfo, are checked only to make sure that values in the
ranges reserved for ODBC options are valid; drivers must check that values in
the ranges reserved for driver-specific options are valid. For more information,
see "Driver-Specific Data Types, Descriptor Types, Information Types, and
Options," later in this chapter.

■ All option flags are checked to make sure that no ODBC 2.0 option values are
sent to ODBC 1.0 drivers. For example, the Driver Manager returns an error if
the finfoType argument in SQLGetInfo is SQL_GROUP_BY and the driver is
an ODBC 1.0 driver.

Page 65 of 434 RA v. AMS
Ex. 1020

Chapter 11 Guidelines for Implementing ODBC Functions 	93

■ Argument values that specify a column or parameter number are checked to
make sure they are greater than 0 or greater than or equal to 0, depending on
the function. The driver must check the upper limit of these argument values
based on the current result set or SQL statement.

■ Buffer length arguments are checked as possible to make sure that their values
are appropriate for the corresponding buffer in the context of the given
function. For example, szTableName in SQLColumns is an input argument.
Therefore, the Driver Manager checks that if the corresponding length
argument (cbTableName) is less than 0, it is SQL_NTS. The szColName
argument in SQLDescribeCol is an output argument. Therefore, the Driver
Manager checks that the corresponding length argument (cbColNameMax) is
greater than or equal to 0.

Note that the driver may also need to check the validity of buffer length
arguments. For example, the driver must check that the cbTableName
argument in SQLColumns is less than or equal to the maximum length of a
table name in the data source.

Checking State Transitions
The Driver Manager validates the state of the henv, hdbc or hstmt in the context of
the function's requirement. For example, an hdbc must be in an allocated state
before the application can call SQLConnect and an hstmt must be in a prepared
state before the application can call SQLExecute.

The state transition tables in Appendix B, "ODBC State Transition Tables," list
those state transition errors detected by the Driver Manager for each function. The
Driver Manager always returns the SQL_ERROR return code for state transition
errors.

Checking for General Errors
The following general guidelines discuss general error checking done by the
Driver Manager. They are not intended to be exhaustive; the Diagnostics section
of each function in Chapter 22, "ODBC Function Reference," lists those
SQLSTATEs returned by the Driver Manager for that function. The Driver
Manager always returns the SQL_ERROR return code for general errors.

■ Function calls are checked to make sure that the functions are supported by the
associated driver.

■ The Driver Manager completely implements SQLDataSources and
SQLDrivers. Therefore, it checks for all errors in these functions.

■ The Driver Manager checks if a driver implements SQLGetFunctions. If the
driver does not implement SQLGetFunctions, the Driver Manager
implements and checks for all errors in it.

Page 66 of 434 RA v. AMS
Ex. 1020

Part 3 Developing Drivers

■ The Driver Manager partially implements SQLAllocEnv, SQLABocConnect,
SQL Connect, SQLDriverConnect, SQLBrowseConnect,
SQLFreeConnect, SQLFreeEnv, and SQLError. Therefore, it checks for
some errors in these functions. It may return the same errors as the driver for
some of these functions, as both perform similar operations. For example, the
Driver Manager or driver may return SQLSTATE IM008 (Dialog failed) if
they are unable to display a login dialog box for SQLDriverConnect.

Elements of ODBC Functions
The following characteristics apply to all ODBC functions.

General Information
Each ODBC function name starts with the prefix "SQL". Each function includes
one or more arguments. Arguments are defined for input (to the driver) or output
(from the driver). Applications can include variable-length data where
appropriate.

C programs that call ODBC functions include the SQL.H, SQLEXT.H, and
WINDOWS.H header files. These files define Windows and ODBC constants and
types and provide function prototypes for all ODBC functions.

Supporting ODBC Conformance Levels
ODBC defines conformance levels for drivers in two areas: the ODBC API and
the ODBC SQL grammar (which includes the ODBC SQL data types). These
levels establish standard sets of functionality. By returning the conformance
levels it supports, a driver informs applications of the functionality it supports.
For a complete discussion of ODBC conformance levels, see "ODBC
Conformance Levels" in Chapter 1, "ODBC Theory of Operation."

To claim that it conforms to a given API or SQL conformance level, a driver must
support all the functionality in that conformance level, regardless of whether that
functionality is supported by the DBMS associated with the driver. A driver may
support functionality beyond that in its stated conformance levels.

Note The following sections describe the functions through which a driver
returns its conformance levels. Since these are Level 1 extension functions, a
given driver may not support them. If a driver does not support these functions,
the conformance levels it supports must be included in its documentation.

Page 67 of 434 RA v. AMS
Ex. 1020

Chapter 11 Guidelines for Implementing ODBC Functions 	95

Supporting API Conformance Levels
ODBC functions are divided into core functions, which are defined in the X/Open
and SQL Access Group Call Level Interface specification, and two levels of
extension functions, with which ODBC extends this specification. A driver
returns its function conformance level through SQLGetInfo with the
SQL_ODBC_SAG_CLI_CONFORMANCE and
SQL_ODBC_API_CONFORMANCE flags. Note that a driver can support one or
more extension functions but not conform to ODBC extension Level 1 or 2. The
Driver Manager or driver determines and returns whether the driver supports a
particular function through SQLGetFunctions.

Important Many ODBC applications require that drivers support all of the
functions in the Level 1 API conformance level. To ensure that their driver works
with most ODBC applications, driver developers should implement all Level 1
functions.

Supporting SQL Conformance Levels
The ODBC SQL grammar, which includes SQL data types, is divided into a
minimum grammar, a core grammar, which corresponds to the X/Open and SQL
Access Group SQL CAE specification (1992), and an extended grammar, which
provides common SQL extensions. A driver returns its SQL conformance level
through SQLGetInfo with the SQL_ODBC_SQL_CONFORMANCE flag. It
returns whether it supports a specific SQL extension through SQLGetInfo with a
flag for that extension. It returns whether it supports specific SQL data types
through SQLGetTypelnfo. For more information, see Appendix C, "SQL
Grammar," and Appendix D, "Data Types."

Note If a driver supports SQL data types that map to the ODBC SQL date, time,
or timestamp data types, the driver must also support the extended SQL grammar
for specifying date, time, or timestamp literals.

Buffers
An application passes data to a driver in an input buffer. The driver returns data to
an application in an output buffer. The application must allocate memory for both
input and output buffers. (If the application will use the buffer to retrieve string
data, the buffer must contain space for the null termination byte.)

Page 68 of 434 RA v. AMS
Ex. 1020

96 	Part 3 Developing Drivers

Caution ODBC does not require drivers to correctly manage buffers that cross
segment boundaries in Windows 3.1. The Driver Manager supports the use of
such buffers, since it passes buffer addresses to drivers and does not operate on
buffer contents. If a driver supports buffers that cross segment boundaries, the
documentation for the driver should clearly state this.

If a driver does not support the use of buffers that cross segment boundaries, an
application can still use such buffers. The application uses these buffers by
passing them to ODBC functions in pieces, none of which crosses a segment
boundary.

Input Buffers
An application passes the address and length of an input buffer to a driver. The
length of the buffer must be one of the following values:

■ A length greater than or equal to zero. This is the actual length of the data in
the input buffer. For character data, a length of zero indicates that the data is
an empty (zero length) string. Note that this is different from a null pointer. If
the application specifies the length of character data, the character data does
not need to be null-terminated.

■ SQL_NTS. This specifies that a character data value is null-terminated.

■ SQL_NULL_DATA. This tells the driver to ignore the value in the input
buffer and use a NULL data value instead. It is only valid when the input
buffer is used to provide the value of a parameter in an SQL statement.

The operation of ODBC functions on character data containing embedded null
characters is undefined, and is not recommended for maximum interoperability.
Unless it is specifically prohibited in the description of a given function, the
address of an input buffer may be a null pointer. When the address of an input
buffer is a null pointer, the value of the corresponding buffer length argument is
ignored.

For more information about input buffers, see "Converting Data from C to SQL
Data Types" in Appendix D, "Data Types."

Output Buffers
An application passes the following arguments to a driver, so that it can return
data in an output buffer:

■ The address of the buffer in which the driver returns the data (the output
buffer). Unless it is specifically prohibited in a function description, the
address of an output buffer can be a null pointer. In this case, the driver does
not return anything in the buffer and, in the absence of other errors, returns
SQL_SUCCESS.

Page 69 of 434 RA v. AMS
Ex. 1020

Chapter 11 Guidelines for Implementing ODBC Functions 	97

If necessary, the driver converts data before returning it. The driver always
null-terminates character data before returning it.

■ The length of the buffer. This is ignored by the driver if the returned data has a
fixed length in C, such as an integer, real number, or date structure.

■ The address of a variable in which the driver returns the length of the data (the
length buffer). The returned length of the data is SQL_NULL_DATA if the
data is a NULL value in a result set. Otherwise, it is the number of bytes of
data available to return. If the driver converts the data, it is the number of
bytes after the conversion. For character data, it does not include the null-
termination byte added by the driver.

If the output buffer is too small, the driver attempts to truncate the data. If the
truncation does not cause a loss of significant data, the driver returns the truncated
data in the output buffer, returns the length of the available data (as opposed to the
length of the truncated data) in the length buffer, and returns
SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of significant data,
the driver leaves the output and length buffers untouched and returns
SQL_ERROR. The application calls SQLError to retrieve information about the
truncation or the error.

For more information about output buffers, see "Converting Data from SQL to C
Data Types" in Appendix D, "Data Types."

Environment, Connection, and Statement Handles
When so requested by an application, the Driver Manager and each driver allocate
storage for information about the ODBC environment, each connection, and each
SQL statement. The handles to these storage areas are returned to the application.
The application then uses one or more of them in each call to an ODBC function.

The ODBC interface defines three types of handles:

■ The environment handle identifies memory storage for global information,
including the valid connection handles and current active connection handle.
ODBC defines the environment handle as a variable of type HENV. An
application uses a single environment handle; it must request this handle prior
to connecting to a data source.

■ Connection handles identify memory storage for information about a
particular connection. ODBC defines connection handles as variables of type
HDBC. An application must request a connection handle prior to connecting to
a a data source. Each connection handle is associated with the environment
handle. The environment handle can, however, have multiple connection
handles associated with it.

■ Statement handles identify memory storage for information about an SQL
statement. ODBC defines statement handles as variables of type HSTMT. An

Page 70 of 434 RA v. AMS
Ex. 1020

98 	Part 3 Developing Drivers

application must request a statement handle prior to submitting SQL requests.
Each statement handle is associated with exactly one connection handle. Each
connection handle can, however, have multiple statement handles associated
with it.

For more information about connection handles, see Chapter 13, "Establishing
Connections." For more information about statement handles, see Chapter 14,
"Processing an SQL Statement."

Data Type Support
ODBC defines SQL data types and C data types; a data source may define
additional SQL data types. A driver supports these data types in the following
ways:

■ Accepts SQL and ODBC C data types as arguments in function calls.

■ Translates ODBC SQL data types to SQL data types acceptable by the data
source, if necessary.

■ Converts C data from an application to the SQL data type required by the data
source.

■ Converts SQL data from a data source to the C data type requested by the
application.

■ Provides access to data type information through the SQLDescribeCol and
SQLColAttributes functions. If a driver supports them, it also provides data
type information through the SQLGetTypelnfo and SQLDescribeParam
functions.

For more information on data types, see Appendix D, "Data Types." The C data
types are defined in SQL.H and SQLEXT.H.

ODBC Function Return Codes
When an application calls an ODBC function, the driver executes the function and
returns a predefined code. These return codes indicate success, warning, or failure
status. The return codes are:

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

SQL_NO_DATA_FOUND

SQL_ERROR

SQL_INVALID_HANDLE

SQL_STILL_EXECUTING

SQL_NEED_DATA

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, the
application can call SQLError to retrieve additional information. For a complete

Page 71 of 434 RA v. AMS
Ex. 1020

Chapter 11 Guidelines for Implementing ODBC Functions 	99

description of return codes and error handling, see Chapter 16, "Returning Status
and Error Information."

Driver-Specific Data Types, Descriptor Types, Information Types,
and Options

Drivers can allocate driver-specific values for the following items:

■ SQL data types. These are used in the fSqlType argument in
SQLBindParameter and SQLGetTypelnfo and returned by
SQLColAttributes, SQLColumns, SQLDescribeCol, SQLGetTypelnfo,
SQLDescribeParam, SQLProcedureColumns, and SQLSpecialColumns.

■ Descriptor types. These are used in the fDescType argument in
SQLColAttributes.

■ Information types. These are used in the f7nfoType argument in SQLGetInfo.

■ Connection and statement options. These are used in the fOption argument in
SQLGetConnectOption, SQLGetStmtOption, SQLSetConnectOption, and
SQLSetStmtOption.

For each of these items, there are two ranges of values: a range reserved for use
by ODBC, and a range reserved for use by drivers. If you want to implement
driver-specific values, such as driver-specific SQL data types or driver-specific
statement options, you must reserve a block of values in the driver-specific range.
To do this, post a request to the section lead of the ODBC section of the WINEXT
forum on CompuServe® or send a request by electronic mail to
odbcwish@microsoft.com. Furthermore, you must describe all driver-specific
data types, descriptor types, information types, statement options, and connection
options in your driver's documentation.

When any of these values is passed to an ODBC function, the Driver Manager
checks that values in the ODBC ranges are valid. Drivers must check that values
in the driver-specific range are valid. In particular, drivers return SQLSTATE
S1C00 (Driver not capable) for driver-specific values that apply to other drivers.
The following table shows the ranges of the driver-specific values for each item:

Item 	 Driver-Specific Range

SQL data types

Descriptor types

Information types

Connection and statement options

Less than or equal to
SQL_TYPE_DRIVER_START

Greater than or equal to
SQL_COLUMN_DRIVER_START

Greater than or equal to
SQL_INFO_DRIVER_START

Greater than or equal to
SQL_CONNECT_OPT_DRVR_START

Page 72 of 434 RA v. AMS
Ex. 1020

100 	Part 3 Developing Drivers

Yielding Control to Windows
Generally, drivers should not explicitly yield control back to Windows. In
particular, drivers should not call PeekMessage in the Windows API with the
PM_REMOVE value set, even when an ODBC function takes a long time, such as
when it generates a large result set. Furthermore, driver developers should be
careful not to use other, lower-level DLLs (such as network DLLs) that call
PeekMessage.

If a driver attempted to yield with PeekMessage, it would not set the
PM_NOYIELD flag. Furthermore, it would not set the PM_NOREMOVE flag,
since the first message in the queue is usually for the current application and no
other application could be scheduled until that message is removed. However,
calling PeekMessage with the PM_REMOVE flag causes two problems: the
application can be reentered and the PeekMessage/DispatchMessage loop in the
driver will bypass any preprocessing of messages that may have otherwise been
done by the application.

The application can be reentered when the driver dispatches the message; the
driver is obligated to dispatch the message because it removed it from the
message queue. Because many Windows applications do not guard against
reentrancy, this is likely to cause unpredictable results in the application.

Many Windows applications extensively preprocess messages. Because the driver
has no knowledge of this preprocessing, it simply calls DispatchMessage and is
therefore likely to cause unpredictable results in the application. For example,
suppose the accelerator key for the Save command is CTRL+S. The message-
processing loop in the application calls TranslateAccelerator to translate the
WM_KEYDOWN and WM_KEYUP messages for C'TRL+S into a
WM_COMMAND message and to dispatch this message to the menu window.
By only calling DispatchMessage, the driver does not translate the messages and
sends the wrong messages to the menu window.

Page 73 of 434 RA v. AMS
Ex. 1020

153

CHAPTER 18

Constructing an ODBC Driver

This chapter contains a summary of development, debugging, installation, and
administration tools provided by the ODBC SDK 2.0.

Testing and Debugging a Driver
The ODBC SDK 2.0 provides the following tools for driver development:

■ ODBC Test, an interactive utility that enables you to perform ad hoc and
automated testing on drivers. A sample test DLL (the Quick Test) is included
which covers basic areas of ODBC driver conformance.

■ ODBC Spy, a debugging tool with which you can capture data source
information, emulate drivers, and emulate applications.

■ A sample driver template written in the C language that illustrates how to write
an ODBC driver (16- and 32-bit versions).

■ A #define, ODBCVER, to specify which version of ODBC you want to
compile your driver with. By default, the SQL.H and SQLEXT.H files include
all ODBC 2.0 constants and prototypes. To use only the ODBC 1.0 constants
and prototypes, add the following line to your driver code before including
SQL.H and SQLEXT.H:

iidefine ODBCVER Ox0100

For additional infomation about the ODBC SDK tools, see the Microsoft ODBC
SDK Guide.

Page 74 of 434 RA v. AMS
Ex. 1020

154 	Part 3 Developing Drivers

Installing and Configuring ODBC Software
Users install ODBC software with a setup program and configure the ODBC
environment with an administration program. The setup program uses the installer
DLL to retrieve information from the ODBC.INF file. This file is created by a
driver developer and describes the disks on which the ODBC software is shipped.
For more information, see "Constructing the ODBC.INF File" and "Structure of
the ODBC.INF File" in Chapter 19, "Installing ODBC Software."

The administration program uses the installer DLL to configure data sources. The
installer DLL calls a setup DLL to configure a data source. Driver developers
must create a setup DLL for each driver; it may be the driver DLL or a separate
DLL. For more information, see Chapter 20, "Configuring Data Sources," and
Chapter 23, "Setup DLL Function Reference."

Page 75 of 434 RA v. AMS
Ex. 1020

157

CHAPTER 19

Installing ODBC Software

This chapter describes the files that a developer must redistribute in order to
enable users to install ODBC software. The ODBC SDK 2.0 provides you with
two ways to install ODBC software components (the Driver Manager, drivers,
translators, and so on) as follows:

■ Use the Driver Setup Toolkit to create a driver setup program, which can be
customized by the developer. For more information about using the Driver
Setup Toolkit, see the Microsoft ODBC SDK Guide.

Important The Driver Setup Toolkit is a subset of Windows Setup, designed
specifically for driver installation. You cannot use it for customizing any other
type of installation.

■ Create your own setup program. Developers who want to install their own
ODBC-enabled applications can use the Windows SDK setup utilities or setup
software from other vendors. For more information about the Windows SDK
setup utilities, see the Windows SDK documentation.

A setup program makes function calls to the installer DLL. The installer DLL
reads information about the ODBC software to be installed from an installation
file, ODBC.INF. The installer DLL records information about installed drivers
and translators in the ODBCINST.INI file (or registry). The ODBCINST.INI file
is used by the Driver Manager to determine which drivers and translators are
currently installed. The structure of the ODBC.INF and ODBCINST.INI files is
described in the sections that follow.

Redistributing ODBC Files
A number of files are shipped with the ODBC SDK that may be redistributed by
application and driver developers. All developers who ship ODBC drivers must
redistribute the following files for the specified environments:

Page 76 of 434 RA v. AMS
Ex. 1020

CTL3DV2.DLL
ODBC.INF2
ODBCINST.DLL
ODBCINST.HLP

CTL3DV2.DLL
ODBC.DLL
ODBC16UT.DLL
ODBC32.DLL1

CPN16UT.DLL
CTL3DV2.DLL
ODBC.INF2
ODBCCP32.DLL3
ODBCINST.DLL
ODBCINST.HLP

CTL3D32.DLL
ODBC.DLL
ODBC16GT.DLL
ODBC32GT.DLL

CTL3D32.DLL
DS16GT.DLL
DS32GT.DLL
ODBC.INF2
ODBCINST.DLL
ODBCINST.HLP

CTL3D32.DLL
ODBC32.DLL1

CTL3D32.DLL
ODBC.INF2
ODBCCP32.DLL3
ODBCINST.HLP

Driver Manager 	CTL3DV2.DLL
ODBC.DLL

Installer

158 	Part 4 Installing and Configuring ODBC Software

Windows 3.1,
WOW (16-bit
	

WOW (32-bit
ODBC Component drivers)

	
Win32s
	

drivers)
	

Windows NT

1 The ODBC32.DLL file shipped for use with Win32s® is different from the ODBC32.DLL file shipped for use with Windows
NT. Under Win32s, it is a thunking layer that calls ODBC16UT.DLL, which in turn calls ODBC.DLL; under Windows NT, it
is the Driver Manager. Applications created under Win32s or Windows NT that use the Win32s API will run under either
environment.

2 Developers must customize ODBC.INF for the files they ship. For more information, see "Constructing the ODBC.INF File,"
later in this chapter.

3 The ODBCCP32.DLL file shipped for use with Win32s is different from the ODBCCP32.DLL file shipped for use with
Windows NT. Under Win32s, it is a thunking layer that calls CPN16UT.DLL, which in turn calls ODBCINST.DLL; under
Windows NT, it is the installer DLL. Applications created under Win32s or Windows NT that use the Win32s API will run
under either environment.

Any developers who use the ODBC Driver Setup Toolkit, the program version of
the ODBC Administrator, or the ODBC cursor library must redistribute the files
required by these components, as listed in the following table. For information
about the ODBC Administrator, see the Microsoft ODBC SDK Guide. For
information about the ODBC cursor library, see Appendix G, "ODBC Cursor
Library."

ODBC Component
	

Windows 3.1, WOW
	

Windows NT

Driver Setup Toolkit

Administrator 3

Cursor Library

_BOOTSTP.EXE
_MSSETUP.EXE
DRVSETUP.EXE 1,2

SETUP.EXE
SETUP.LST 2

ODBCADM.EXE

ODBCCURS.DLL

_BOOTSTP.EXE
_MSSETUP.EXE
DRVSETUP.EXE 1,2

SETUP.EXE
SETUP.LST 2

ODBCAD32.EXE

ODBCCR32.DLL

1 The DRVSETUP.EXE file shipped for setting up ODBC components on Windows 3.1 and WOW
is a 16-bit program. The DRVSETUP.EXE file shipped for setting up ODBC components on
Windows NT is a 32-bit program. All other files used by the driver setup program are the same.

2 Developers must customize the DRVSETUP.EXE and SETUP.LST files for their product. For
more information, see the Microsoft ODBC SDK Guide.

3 The ODBC Administrator can be run as a control panel device or as a program on Windows 3.1 or
later and on Windows NT. It can be run only as a program on Windows on Windows (WOW).

Page 77 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	159

Creating Your Own Setup Program
If you decide to create your own setup program, it must use the installer DLL
shipped with the ODBC SDK. The installer DLL provides functions that a
program can call to set up drivers and other ODBC components. The installer can
be used to install ODBC components interactively (with a dialog box interface) or
silently. For more information about installer DLL functions, see Chapter 24,
"Installer DLL Function Reference."

Installing the Software Interactively
To display a dialog box from which a user selects the ODBC components to
install (Driver Manager, drivers, and translators), a program calls
SQLInstallODBC in the installer DLL. It passes a window handle and the full
path of the ODBC.INF file to the function. After the user has selected the
components to install, SQLInstallODBC installs the selected components and
records the installed drivers and translators in the ODBCINST.INI file (or
registry).

Installing the Software Silently
To silently install the ODBC software, a program calls SQLInstallODBC in the
installer DLL and passes it a null window handle, the full path of the ODBC.INF
file, and, optionally, a list of drivers to install. SQLInstallODBC installs the
drivers in the list (if any), the Driver Manager, and any translators that are listed
in the ODBC.INF file and records the installed drivers and translators in the
ODBCINST.INI file (or registry).

Installing Individual ODBC Components
A program can also install individual ODBC components. To install the Driver
Manager, a program first calls SQLlnstallDriverManager in the installer DLL to
get the target directory for the Driver Manager. This is usually the directory in
which Windows DLLs reside. The program then uses the information in the
[ODBC Driver Manager] section of the ODBC.INF file to copy the Driver
Manager and related files from the installation disk to this directory.

To install an individual driver, a program first calls SQLlnstallDriver in the
installer DLL to add the driver specification to the ODBCINST.INI file.
SQLlnstallDriver returns the driver's target directory—usually the directory in
which Windows DLLs reside. The program then uses the information in the
driver's section of the ODBC.INF file to copy the driver DLL and related files
from the installation disk to this directory.

Page 78 of 434 RA v. AMS
Ex. 1020

160 	Part 4 Installing and Configuring ODBC Software

Constructing the ODBC.INF File
The ODBC.INF file must be constructed by anyone who ships drivers. The
ODBC.INF file shipped with the ODBC SDK may be used as a template.
Particular care should be taken to ensure that:

■ All disks are described in the [Source Media Descriptions] section and each
entry is placed in double quotation marks (") and separated by commas.

■ The [ODBC Driver Manager] and [ODBC] sections are not modified and the
[ODBC Administrator] section is not modified if the ODBC Administrator is
being used.

■ All drivers are listed in the [ODBC Drivers] section, each driver has a section
describing all the files it needs, and each entry in the driver specification
section has the correct number of commas.

■ There is a data source specification section for each data source listed in a
driver keyword section.

■ All translators are listed in the [ODBC Translators] section, each translator has
a section describing all the files it needs, and each entry in the translator
specification section has the correct number of commas.

■ The ODBC.INF file does not contain any tab characters.

Structure of the ODBC.INF File
The ODBC.INF file contains the following sections:

■ The [Source Media Descriptions] section describes the disks used to install the
ODBC software.

■ The [ODBC Driver Manager] section describes the files shipped for the Driver
Manager.

■ The [ODBC] section describes the files shipped for the installer DLL.

■ The [ODBC Administrator] section describes the files shipped for the ODBC
Administrator.

■ The [ODBC Drivers] and [ODBC Translators] sections describes the ODBC
drivers and translators shipped on the disk.

■ For each driver described in the [ODBC Drivers] section, there is a section that
describes the files shipped for that driver and an optional section that lists
driver attribute keywords. For each data source listed in a driver keyword
section, there is a section that describes the data source. For each translator
described in the [ODBC Translator] section, there is a section that describes
the files shipped for that translator.

Page 79 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	161

[Source Media Descriptions] Section
The entries in the [Source Media Descriptions] section describe each of the
shipped disks. Each must be enclosed in double quotation marks (") and separated
by a comma (,). The format of the section is:

[Source Media Descriptions]
"disk-ID-numberl","disk-labell","tag-filenamel","setup.exe-rel-path"
"disk-ID-number2","disk-label2","tag-filename2","setup.exe-rel-path"

where each of the arguments has the following meaning:

Argument 	 Meaning

disk-ID-number 	 Disk identification number. A unique integer from 1 to
999.

disk-label 	 Disk label.

tag-filename 	 The name of a file residing on the disk. The setup
program uses this to check that the correct disk has been
placed in the drive.

setup.exe-rel-path 	 The relative path of SETUP.EXE. (This is used only if
the installable files reside on a network disk drive.)

For example, if the ODBC software is shipped on a single disk, this section might
be:

[Source Media Descriptions]

"1","ODBC Setup","SETUP.EXE","."

[ODBC Drivers] Section
The [ODBC Drivers] section lists the descriptions of the shipped drivers. A driver
description is usually the name of the DBMS associated with that driver. Each
entry in the section must start in column 1. The format of the section is:

[ODBC Drivers]
"driver-descl".
"driver-desc2"=

For example, suppose drivers for formatted text files and SQL Server are shipped.
The [ODBC Drivers] section might contain the following entries:

Page 80 of 434 RA v. AMS
Ex. 1020

162 	Part 4 Installing and Configuring ODBC Software

[ODBC Drivers]
"Text"—
"SQL Server"=

Driver Specification Sections
For each driver in the [ODBC Drivers] section, a separate section lists the disk
location, name, and installation properties of each file needed by the driver. The
section name is the driver description as listed in the [ODBC Drivers] section.
The driver DLL must be listed with the Driver keyword. If there is a separate
setup DLL, it must be listed with the Setup keyword. All other files, such as
network communication DLLs and driver data files, must be listed with their own
keywords. If any of these other files are to be placed in the \WINDOWS (as
opposed to the \WINDOWS\SYSTEM) directory, they must use the Windowsnn
keyword, where nn is a number from 00 to 99. The format of a driver
specification section is:

[driver-desc]
"Driver"=driver-disk-ID,driver-DLL-filename„„Date„,Replace„„„
i► Shared,Size,,,,Version,
["Setup"=setup-disk-ID,setup-DLL-filename„„Date„,Replace,„„,
w Shared,Size,,,,Version,]
["keyword3"=disk-ID3,filename3„„Date,„Replace,„„,Shared,Size,„,Version,]
["keyword4"=disk-ID4,filename4„„Date„,Replace„„„Shared,Size„„Version,]

where Date, Replace, Shared, Size, and Version are installation properties and
non-bold brackets ([1) indicate optional keywords. All commas (20 per line) must
be included, even if the properties are left blank. For more information, see
"Installation Properties" later in this section.

For example, suppose that a driver for formatted text files is created on May 11,
1992, has a separate setup DLL, and is shipped on the first installation disk.
Suppose also that a driver for SQL Server is created on May 15, 1992, does not
have a separate setup DLL, requires DBNMP3.DLL (a Microsoft SQL Server
Net-Library file) for network communications, and is shipped on the second
installation disk. The driver specification sections for these drivers might be:

[Text]
"Driver"=1,TEXT.DLL,,,,1992-05-11 	89302„„01.00.17.11,

"Setup" —1,TXTSETUP.DLL„„1992-05-11 	9601,„,01.00.17.11,

[SQL Server]
"Driver"=2,SQLSRVR.DLL,,,,1992-05-15 	95264„„01.00.17.15,

"Sqlnet"=2,DBNMP3.DLL,,,,1992-05-15 	SHARED,7473„„01.00.17.15,

Page 81 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	163

Driver Keyword Sections
For each driver in the [ODBC Drivers] section, a separate section lists the driver
attribute keywords. If a driver does not have any keywords that describe it, this
section should not be included in the ODBC.INF file.

For each data source listed with the CreateDSN keyword, SQLInstallODBC
creates a data source in the ODBC.INI file (or registry). For all other driver
keywords, SQLInstallODBC copies the keywords and their values to the driver's
specification section in the ODBCINST.INI file (or registry). To find out
information about a driver before connecting to it, an application retrieves these
keywords by calling SQLDrivers.

The format of a driver keyword section is:

[driver-desc-Keys]
[APILevel=0 I 1 I 2]
[CreateDSN=data-source-name[,data-source-name]...]
[ConneetFunctions= YIN) {YIN) (YIN)]
[DriverODBCVer=01.00 I 02.00]
[FileUsage=0 I 1 I 2]
[FileExtns=*.file-extensionl[,*.file-extension2]...]
[SQLLeve1=0 I 1 I 2]

where the use of each keyword is:

Keyword 	Usage

APILevel 	A number indicating the ODBC API conformance level supported
by the driver:

0 = None

1 = Level 1 supported

2 = Level 2 supported

This must be the same as the value returned for the
SQL_ODBC_API_CONFORMANCE information type in
SQLGetInfo.

CreateDSN 	The name of one or more data sources to be created when the
driver is installed. The ODBC.INF file must include one data
source specification section for each data source listed with the
CreateDSN keyword. These sections should not include the Driver
keyword, since this is specified in the driver specification section,
but must include enough information for the ConfigDSN function
in the driver-specific setup DLL to create a data source
specification without displaying any dialog boxes. For the format
of a data source specification section, see "Data Source
Specification Sections" in Chapter 20, "Configuring Data Sources."

Page 82 of 434 RA v. AMS
Ex. 1020

164 	Part 4 Installing and Configuring ODBC Software

Keyword 	Usage

ConnectFunctions 	A three-character string indicating whether the driver supports
SQL Connect, SQLDriverConnect, and SQLBrowseConnect. If
the driver supports SQLConnect, the first character is "Y";
otherwise, it is "N". If the driver supports SQLDriverConnect, the
second character is "Y"; otherwise, it is "N". If the driver supports
SQLBrowseConnect, the third character is "Y"; otherwise, it is
"N". For example, if a driver supports SQLConnect and
SQLDriverConnect, but not SQLBrowseConnect, this is "YYN".

DriverODBCVer 	A character string with the version of ODBC that the driver
supports. The version is of the form ##.##, where the first two
digits are the major version and the next two digits are the minor
version. For the version of ODBC described in this manual, the
driver must return "02.00".

FileUsage

This must be the same as the value returned for the
SQL_DRIVER_ODBC_VER information type in SQLGetInfo.

A number indicating how a single-tier driver directly treats files in
a data source.

0 = The driver is not a single-tier driver. For example, an ORACLE
driver is a two-tier driver.

1 = A single-tier driver treats files in a data source as tables. For
example, an Xbase driver treats each Xbase file as a table.

2 = A single-tier driver treats files in a data source as a qualifier.
For example, a Microsoft Access® driver treats each Microsoft
Access file as a complete database.

An application might use this to determine how users will select
data. For example,)(base and Paradox® users often think of data as
stored in files, while ORACLE and Microsoft Access users
generally think of data as stored in tables.

When a user selects Open Data File from the File menu, an
application could display the Windows File Open common dialog
box. The list of file types would use the file extensions specified
with the FileExtns keyword for drivers that specify a FileUsage
value of 1 and "Y" as the second character of the value of the
ConnectFunctions keyword. After the user selects a file, the
application would call SQLDriverConnect with the DRIVER
keyword, then execute a SELECT * FROM table-name statement.

When the user selects Import Data from the File menu, an
application could display a list of descriptions for drivers that
specify a FileUsage value of 0 or 2 and "Y" as the second character
of the value of the ConnectFunctions keyword. After the user
selects a driver, the application would call SQLDriverConnect
with the DRIVER keyword, then display a custom Select Table
dialog box.

Page 83 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	165

Keyword 	Usage

FileExtns

SQLLeve1

For single-tier drivers, a comma-separated list of extensions of the
files the driver can use. For example, a dBASE driver might
specify *.dbf and a formatted text file driver might specify
.txt,.csv. For an example of how an application might use this
information, see the FileUsage keyword.

A number indicating the ODBC SQL conformance level supported
by the driver:

0 = Minimum grammar

1 = Core grammar

2 = Extended grammar

This must be the same as the value returned for the
SQL_ODBC_SQL_CONFORMANCE information type in
SQLGetInfo.

For example, suppose a driver for formatted text files can use files with the .TXT
and .CSV extensions and that a data source for this driver is to be created when it
is installed. The driver keyword and data source specification sections might be:

[Text-Keys]
CreateDSN=Text Files
FileExtns—*.txt,*.csv
FileUsage-1

[Text Files]
Directory4current directory#
TextFormat—Comma Delimited

[ODBC Translators] Section
The [ODBC Translators] section lists the descriptions of the shipped translators.
Each entry in the section must start in column 1. The format of the section is:

[ODBC Translators]
"translator-descl"=
"translator-desc2"=

For example, suppose only the Microsoft Code Page Translator is shipped. The
[ODBC Translators] section might contain the following entry:

[ODBC Translators]
"MS Code Page Translator"—

Page 84 of 434 RA v. AMS
Ex. 1020

166 	Part 4 Installing and Configuring ODBC Software

Translator Specification Sections
For each translator in the [ODBC Translator] section, a separate section lists the
disk location, name, and installation properties of each file needed by the
translator. The section name is the translator description as listed in the [ODBC
Translators] section. The translation DLL must be listed with the Translator
keyword. If there is a separate translator setup DLL, it must be listed with the
Setup keyword. All other files, such as translation tables for a code page
translator, must be listed with their own keywords. If any of these other files are
to be placed in the \WINDOWS directory, they must use the Windowsnn
keyword, where nn is a number from 00 to 99. The format of a translator
specification section is:

[translator-desc]
"Translator"=translator-disk-ID,translator-DLL-filename„„Date„,Replace„,„,

Shared, Size,,,, Version,
["Setup"=setup-disk-ID,setup-DLL-filename,„,Date„,Replace„„„

Shared,Size,,,,Version,]
["keyword3"=disk-ID3,filename3,„,Date„,Replace,„„,Shared,Size„„Version,]
["keyword4"=disk-ID4,filename4„„Date„,Replace„„„Shared,Size„„Version,]

where Date, Replace, Shared, Size, and Version are installation properties and
non-bold brackets ([]) indicate optional keywords. All commas (20 per line) must
be included, even if the properties are left blank. For more information, see
"Installation Properties" in the following section.

For example, suppose the Microsoft Code Page Translator is shipped with
translation tables for the Multilingual (850) and Nordic (865) code pages.
Suppose also that it does not have a separate setup DLL, that it requires the
CTL3D.DLL file, and that the files are created on June 1, 1993. The translator
specification section for this translator might be:

[MS Code Page Translator]

"Translator"=1,MSCPXLT.DLL„„1993-06-01 	 10512„„01.01.27.25,

"Ctl3d"=1,CTL3D.DLL,„,1993-06-01 	SHARED,14480„„1.1.3.0,

"Code Page 850"=1,10070850.CPX„„1993-06-01 	 2216 	

"Code Page 865"=1,10070865.CPX„„1993-06-01 	 2130 	

Installation Properties
The following table describes the installation properties used in the driver
specification and translator specification sections. A blank value means no value
was specified for the property.

Page 85 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	167

Property Possible values 	Meaning

Date 	 blank 	 The file has no date and is treated as if it
was created before all other files.

Date the file was created. This should
date in the 	match the date in the version.
format
YYYY-MM-DD

Replace 	 ALWAYS 	Always overwrite an existing copy of the
file.

NEVER 	 Never overwrite an existing copy of the
file.

blank or OLDER 	Overwrite an existing copy of the file if
it is older.

UNPROTECTED 	Overwrite an existing copy of the file if
it is unprotected.

Shared 	 blank 	 Do not treat the file as if it is a shared
file.

SHARED 	Treat the file as if it is a shared file, that
is, as if non-ODBC programs use it.

Size 	 integer 	 Approximate size of the uncompressed
file in bytes.

blank 	 0

Version 	 blank 	 00.00.00.00

VV.vv.mm.dd 	Version number of the file. The format
is:

VV: 	major version number

vv: 	minor version number

mm: 	month file was created
(may be greater than 12)

dd: 	date file was created

Structure of the ODBCINST.INI File
The ODBCINST.INI file is a Windows initialization file used in Windows 3.1 and
WOW that contains the following sections:

■ The [ODBC Drivers] section lists the description of each available driver.

■ For each driver described in the [ODBC Drivers] section, there is a section that
lists the driver DLL, the setup DLL, and any driver attribute keywords.

■ An optional section that specifies the default driver.

Page 86 of 434 RA v. AMS
Ex. 1020

168 	Part 4 Installing and Configuring ODBC Software

■ The [ODBC Translators] section lists the description of each available
translator.

■ For each translator described in the [ODBC Translators] section, there is a
section that lists the translator DLL and the setup DLL.

On Windows NT, this information is stored in the registry. The key structure in
which it is stored is:

HKEY_LOCAL_MACHINE
Software

ODBC
ODBCINST.INI

A subkey of the ODBCINST.INI subkey is created for each section of the
ODBCINST.INI file. A value is added to this subkey for each keyword-value pair
in the section. The value's name is the same as the keyword, the value's data is
the same as the value associated with the keyword, and the value's type is
REG_SZ.

Note This section uses terminology for Windows initialization files. For the
registry, you should substitute ODBCINST.INI subkey for ODBCINST.INI file,
subkey for section, value for keyword-value pair, value name for keyword, and
value data for value.

For information on the general structure of Windows initialization files, see the
Windows SDK documentation. For information on the Windows NT registry, see
the Windows NT SDK documentation.

[ODBC Drivers] Section
The [ODBC Drivers] section lists the descriptions of the installed drivers. A
driver description is usually the name of the DBMS associated with that driver.
Each entry in the section also states that the driver is installed (no other options
are allowed). The format of the section is:

[ODBC Drivers]
driver-desc I =Installed
driver-desc2=Installed

For example, suppose a user has installed drivers for formatted test files and SQL
Server. The [ODBC Drivers] section might contain the following entries:

Page 87 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	169

[ODBC Drivers]
Text—Installed
SQL Server—Installed

Driver Specification Sections
Each driver described in the [ODBC Drivers] section has a section of its own. The
section name is the driver description from the [ODBC Drivers] section. It lists
the full paths of the driver and setup DLLs, which are the same if the setup
function is in the driver DLL. It also lists any driver attribute keywords. The
format of a driver specification section is:

[driver-desc]
Driver=driver-DLL-path
Setup=setup-DLL-path
[APILevel=0 I 1 I 2]
[ConnectFunctions={ YIN} {YIN} {YIN}]
[DriverODBCVer=01.00 I 02.00]
[FileUsage=0 I 1 I 2]
[FileExtns=*.ffle-extension)[, .file-extension2]...]
[SQLLeve1=0 I 1 I 2]

For information about driver attribute keywords, see "Driver Keyword Sections"
earlier in this chapter.

For example, suppose driver for formatted text files has a driver DLL named
TEXT.DLL and a setup DLL named TXTSETUP.DLL, and that it can use files
with the .TXT and .CSV extensions. Suppose also that a SQL Server driver has a
driver DLL named SQLSRVR.DLL, which contains the setup function. The
specification sections for these drivers might be:

[Text]
Driver—C:\WINDOWS\SYSTEM\TEXT.DLL
Setup—C:\WINDOWS\SYSTEM\TXTSETUP.DLL
FileExtns—*.txt,*.csv
Fi1eUsage-1

[SQL Server]
Driver—C:\WINDOWS\SYSTEM\SQLSRVR.DLL
Setup=C:\WINDOWS\SYSTEM\SQLSRVR.DLL

Because the driver and setup DLLs are different for the formatted text file driver,
two different files are listed; because they are the same for the SQL Server driver,
the same file is listed twice.

Page 88 of 434 RA v. AMS
Ex. 1020

170 	Part 4 Installing and Configuring ODBC Software

Default Driver Specification Section
The ODBCINST.INI file may contain a default driver specification section. The
section must be named [Default]. It contains a single entry, which gives the
description of the default driver, which is the driver used by the default data
source. (This driver must also be described in the [ODBC Drivers] section and in
a driver specification section of its own.) The format of the default driver
specification section is:

[Default]
Driver=default-driver-desc

For example, if the SQL Server driver is the default driver, the default driver
specification section might be:

[Default]
Driver—SQL Server

[ODBC Translators] Section
The [ODBC Translators] section lists the descriptions of the installed translators.
Each entry in the section also states that the translator is installed (no other
options are allowed). The format of the section is:

[ODBC Translators]
translator-desc1=Installed
translator-desc2=Installed

For example, suppose a user has installed the Microsoft Code Page Translator and
a custom ASCII to EBCDIC translator. The [ODBC Translators] section might
contain the following entries:

[ODBC Translators]

MS Code Page Translator—Installed
ASCII to EBCDIC—Installed

Translator Specification Sections
Each translator described in the [ODBC Translators] section has a section of its
own. The section name is the translator description from the [ODBC Translator]
section. It lists the full paths of the translation and setup DLLs, which are the
same if the setup function is in the translator DLL. The format of a translator
specification section is:

Page 89 of 434 RA v. AMS
Ex. 1020

Chapter 19 Installing ODBC Software 	171

[translator-desc]
Driver=translator-DLL-path
Setup=setup-DLL-path

For example, suppose the Microsoft Code Page Translator has a translation DLL
named MSCPXLT.DLL, which contains the setup function. Suppose also that a
custom ASCII to EBCDIC translator has a translation DLL named ASCEBC.DLL
and a setup DLL named ASCEBCST.DLL. The specification sections for these
translators might be:

[MS Code Page Translator]
Translator—C:\WINDOWS\SYSTEM\MSCPXLT.DLL
Setup—C:\WINDOWS\SYSTEM\MSCPXLT.DLL

[ASCII to. EBCDIC]
Translator—C:\WINDOWS\SYSTEM\ASCEBC.DLL
Setup—C:\WINDOWS\SYSTEM\ASCEBCST.DLL

Because the translator and setup DLLs are the same for the Microsoft Code Page
Translator, the same file is listed twice; because they are different for the ASCII
to EBCDIC translator, two different files are listed.

Page 90 of 434 RA v. AMS
Ex. 1020

173

CHAPTER 20

Configuring Data Sources

This chapter describes the files that a developer must redistribute in order to
enable users to configure ODBC data sources. The ODBC SDK 2.0 provides you
with two ways to configure ODBC data sources, as. follows:

■ Use the ODBC Administrator (available as a program or as a Control Panel
item). For more information about using the ODBC Administrator, see the
Microsoft ODBC SDK Guide.

■ Create your own program to configure data sources.

A program that configures data sources makes function calls to the installer DLL.
The installer DLL calls a setup DLL to configure a data source. There is one setup
DLL for each driver; it may be the driver DLL or a separate DLL. The setup DLL
prompts the user for information that the driver needs to connect to the data
source and the default translator, if supported. It then calls the installer DLL and
the Windows API to record this information in the ODBC.INI file (or registry).
The structure of the ODBC.INI file is described in the sections that follow.

Creating Your Own Data Source-Management Program
If you decide to create your own data source—management program, it must use
the installer DLL shipped with the ODBC SDK. The installer DLL provides
functions that a program can call to add, modify, and delete data sources, remove
a default data source, and select a translator. These functions work with the
driver's setup DLL, which returns the information a driver needs to connect to a
data source, and the translator's setup DLL, which returns a default translation
option for a data source. For more information about installer DLL functions, see
Chapter 24, "Installer DLL Function Reference."

Adding, Modifying, and Deleting Data Sources
To display a dialog box with which a user can add, modify, and delete data
sources, a program calls SQLManageDataSources in the installer DLL. This is

Page 91 of 434 RA v. AMS
Ex. 1020

174 	Part 4 Installing and Configuring ODBC Software

the function that is invoked when the installer DLL is called from the Control
Panel. To add, modify, or delete a data source, SQLManageDataSources calls
ConfigDSN in the setup DLL for the driver associated with that data source.

To directly add, modify, or delete data sources, a program calls
SQLConfigDataSource in the installer DLL. The program passes the name of the
data source and an option that specifies the action to take.
SQLConfigDataSource calls ConfigDSN in the setup DLL and passes it the
arguments from SQLConfigDataSource.

For more information, see Chapter 23, "Setup DLL Function Reference," and
Chapter 24, "Installer DLL Function Reference."

Specifying a Default Data Source
The default data source is the same as any other data source, except that it has the
name Default. (Hence, the connection information includes the keyword-value
pair DSN=Default.) To add or modify a default data source, a program performs
the same steps that it does to add or modify any other data source. To remove the
default data source, a program calls SQLRemoveDefaultDataSource in the
installer DLL.

Specifying a Default Translator
If a driver supports translators, its setup DLL must provide a way for users to
select the default translator and default translation option for a data source. To do
this, a setup DLL can call SQLGetTranslator. This function displays a list of all
installed translators. If the user selects a translator, SQLGetTranslator calls
ConfigTranslator in the selected translator's setup DLL to get the default
translation option. The user can also specify that there is no default translator.
SQLGetTranslator returns the name, path, and option of the default translator (if
any).

To add, modify, or delete the default translator and default translation option
specified in the ODBC.INI file (or registry), the driver's setup DLL calls
SQL WritePrivateProfileString in the installer DLL for the TranslationName,
TranslationDLL, and TranslationOption keywords. These keywords have the
following values:

Keyword
	

Value

TranslationName 	 Name of the translator as listed in the
[ODBC Translators] section of the
ODBCINST.INI file (or registry).

TranslationDLL 	 Full path of the translation DLL.

TranslationOption 	 ASCII representation of the 32-bit integer
translation option.

Page 92 of 434 RA v. AMS
Ex. 1020

Chapter 20 Configuring Data Sources 	175

Structure of the ODBC.INI File
The ODBC.INI file is a Windows initialization file used in Windows 3.1 and
WOW. It is created by the installer DLL when data sources are first configured
and contains the following sections:

■ The [ODBC Data Sources] section lists the name of each available data source
and the description of its associated driver.

■ For each data source listed in the [ODBC Data Sources] section, there is a
section that lists additional information about that data source.

■ An optional section that specifies the default data source.

■ An optional section that specifies ODBC options.

On Windows NT, this information is stored in the registry. The key structure in
which it is stored is:

HKEY_CURRENT_USER
Software

ODBC
ODBC.INI

A subkey of the ODBC.INI subkey is created for each section of the ODBC.INI
file. A value is added to this subkey for each keyword-value pair in the section.
The value's name is the same as the keyword, the value's data is the same as the
value associated with the keyword, and the value's type is REG_SZ.

Note This section uses terminology for Windows initialization files. For the
registry, you should substitute ODBC.INI subkey for ODBC.INI file, subkey for
section, value for keyword-value pair, value name for keyword, and value data for
value.

For information on the general structure of Windows initialization files, see the
Windows SDK documentation. For information on the Windows NT registry, see
the Windows NT SDK documentation.

Page 93 of 434 RA v. AMS
Ex. 1020

176 	Part 4 Installing and Configuring ODBC Software

[ODBC Data Sources] Section
The [ODBC Data Sources] section lists the data sources specified by the user.
Each entry in the section lists a data source and the description of the driver it
uses. The driver description is usually the name of the associated DBMS. The
format of the section is:

[ODBC Data Sources]
data-source-namel=driver-descl
data-source-name2=driver-desc2

For example, suppose a user has three data sources: Personnel and Inventory,
which use formatted text files, and Payroll, which uses an SQL Server DBMS.
The [ODBC Data Sources] section might contain the following entries:

[ODBC Data Sources]
Personnel—Text
Inventory—Text
Payroll—SQL Server

Data Source Specification Sections
Each data source listed in the [ODBC Data Sources] section has a section of its
own. The section name is the data source name from the [ODBC Data Sources]
section. It must list the driver DLL and may list a description of the data source. If
the driver supports translators, the section may list the name of a default
translator, the default translation DLL, and the default translation option. The
section may also list other information required by the driver to connect to the
data source. For example, the driver might require a server name, database name,
or schema name.

The format of a data source specification section is:

[data-source-name]
Driver=driver-DLL-path
[Description=data-source-desc]
[TranslationDLL=translation-DLL-path]
[TranslationName=translator-name]
[TranslationOption=translation-option]
[keywordl=stringl]
[keyword2=string2]

Page 94 of 434 RA v. AMS
Ex. 1020

Chapter 20 Configuring Data Sources 	177

where brackets ([]) indicate optional keywords.

For example, suppose an Rdb driver requires the ID of the last user to log in, a
server name, and a schema declaration statement. Suppose also that the Personnel
data source uses the Microsoft Code Page Translator to translate between the
Windows Latin 1 (1007) and Multilingual (850) code pages. The data source
specification sections for the Personnel and Inventory data sources might be:

[Personnel]
Driver—C:\WINDOWS\SYSTEM\RDB.DLL
Description—Personnel database: CURLY
TranslationName—MS Code Page Translator
TranslationDLL=C:\WINDOWS\SYSTEM\MSCPXLT.DLL
TranslationOption-10070850
Lastuid—smithjo
Server—curly
Schema—declare schema personnel filename
r► "sys$sysdevice:[corpdata]personnel.rdb"

[Inventory]
Driver—C:\WINDOWS\SYSTEM\RDB.DLL
Description—Western Region Inventory
Lastuid—smithjo
Server—larry
Schema—declare schema inventory filename
r► "sys$sysdevice:[regionw]inventory.rdb"

Note that more than one data source can use the same driver.

Default Data Source Specification Section
The ODBC.INI file may contain a default data source specification section. The
data source must be named Default and is not listed in the [ODBC Data Sources]
section. The format of the default data source specification section is the same as
the structure of any other data source specification section.

Page 95 of 434 RA v. AMS
Ex. 1020

178 	Part 4 Installing and Configuring ODBC Software

ODBC Options Section
The ODBC.INI file may contain a section that specifies ODBC options. These
options are set in the Options dialog box displayed by the
SQLManageDataSources function. The format of the ODBC options section is:

[ODBC]
Trace=0 I 1
TraceFile=tracefile-path
TraceAutoStop=O I 1

where each keyword has the following meaning:

Keyword 	Meaning

Trace 	 If the Trace keyword is set to 1 when an application calls
SQLAllocEnv, then tracing is enabled. On Windows and WOW, it
is enabled for all ODBC-enabled applications. On Windows NT, it
is enabled only for the calling application.

If the Trace keyword is set to 0 when an application calls
SQLAIIocEnv, then tracing is disabled. On Windows and WOW, it
is disabled for all ODBC-enabled for all applications. On
Windows NT, it is disabled only for the calling application. This is
the default value.

An application can enable or disable tracing with the
SQL_OPT_TRACE connection option. However, doing so does
not change the value of this keyword.

TraceFile 	If tracing is enabled, the Driver Manager writes to the trace file
specified by the TraceFile keyword.

If no trace file is specified, the Driver Manager writes to the
\SQL.LOG file in the current directory. This is the default value.

On Windows NT, tracing should only be used for a single
application or each application should specify a different trace file.
Otherwise, two or more applications will attempt to open the same
trace file at the same time, causing an error.

An application can specify a new trace file with the
SQL_OPT_TRACEFILE connection option. However, doing so
does not change the value of this keyword.

TraceAutoStop 	If the TraceAutoStop keyword is set to 1 when an application calls
SQLFreeEnv, then tracing is disabled for all applications and the
Trace keyword is set to 0. On Windows and WOW, it is disabled
for all applications; on Windows NT, it is disabled for the calling
application and any applications started after the application calls
SQLFreeEnv. This is the default value.

If the TraceAutoStop keyword is set to 0, then tracing must be
disabled with the Options dialog box displayed by the
SQLManageDataSources function.

Page 96 of 434 RA v. AMS
Ex. 1020

181

CHAPTER 21

Function Summary

This chapter summarizes the functions used by ODBC-enabled applications and
related software:

■ ODBC functions

■ Setup DLL functions

■ Installer DLL functions

■ Translation DLL functions

ODBC Function Summary
The following table lists ODBC functions, grouped by type of task, and includes
the conformance designation and a brief description of the purpose of each
function. For more information about conformance designations, see "ODBC
Conformance Levels" in Chapter 1, "ODBC Theory of Operation." For more
information about the syntax and semantics for each function, see Chapter 22,
"ODBC Function Reference."

An application can call the SQLGetInfo function to obtain conformance
information about a driver. To obtain information about support for a specific
function in a driver, an application can call SQLGetFunctions.

Page 97 of 434 RA v. AMS
Ex. 1020

182 	Part 5 API Reference

Task
	

Function Name
	

Conformance
	

Purpose

Connecting to a
Data Source

SQLAllocEnv
	

Core

SQLAllocConnect
	

Core

SQLConnect
	

Core

SQLDriverConnect 	Level 1

SQLBrowseConnect 	Level 2

Obtains an environment handle. One
environment handle is used for one or
more connections.

Obtains a connection handle.

Connects to a specific driver by data
source name, user ID, and password.

Connects to a specific driver by
connection string or requests that the
Driver Manager and driver display
connection dialog boxes for the user.

Returns successive levels of
connection attributes and valid
attribute values. When a value has
been specified for each connection
attribute, connects to the data source.

Obtaining
Information about a
Driver and Data
Source

SQLDataSources

SQLDrivers

SQLGetInfo

SQLGetFunctions

SQLGetTypelnfo

Level 2

Level 2

Level 1

Level 1

Level 1

Returns the list of available data
sources.

Returns the list of installed drivers
and their attributes.

Returns information about a specific
driver and data source.

Returns supported driver functions.

Returns information about supported
data types.

Setting and
Retrieving Driver
Options

SQLSetConnectOption 	Level 1

SQLGetConnectOption Level 1

SQLSetStmtOption
	

Level 1

SQLGetStmtOption
	

Level 1

Sets a connection option.

Returns the value of a connection
option.

Sets a statement option.

Returns the value of a statement
option.

Page 98 of 434 RA v. AMS
Ex. 1020

Chapter 21 Function Summary 	183

Task
	

Function Name
	

Conformance
	

Purpose

Preparing SQL
Requests

SQLAllocStmt
	

Core

SQLPrepare
	

Core

SQLBindParameter
	

Level 	1

SQLParamOptions
	

Level 	2

SQLGetCursorName
	

Core

SQLSetCursorName
	

Core

SQLSetScrollOptions 	Level 	2

Allocates a statement handle.

Prepares an SQL statement for later
execution.

Assigns storage for a parameter in an
SQL statement.

Specifies the use of multiple values
for parameters.

Returns the cursor name associated
with a statement handle.

Specifies a cursor name.

Sets options that control cursor
behavior.

Submitting
Requests

SQLExecute

SQLExecDirect

SQLNativeSql

SQLDescribeParam

SQLNumParams

SQLParamData

SQLPutData

Core

Core

Level 2

Level 2

Level 2

Level 1

Level 1

Executes a prepared statement.

Executes a statement.

Returns the text of an SQL statement
as translated by the driver.

Returns the description for a specific
parameter in a statement.

Returns the number of parameters in a
statement.

Used in conjunction with
SQLPutData to supply parameter
data at execution time. (Useful for
long data values.)

Send part or all of a data value for a
parameter. (Useful for long data
values.)

Page 99 of 434 RA v. AMS
Ex. 1020

ran 	mri nuiciumw

Task
	

Function Name
	

Conformance
	

Purpose

Retrieving Results
and Information
about Results

SQLRowCount

SQLNumResultCols

SQLDescribeCol

SQLColAttributes

SQLBindCol

SQLFetch

SQLExtendedFetch

SQLGetData

SQLSetPos

SQLMoreResults

SQLError

Core

Core

Core

Core

Core

Core

Level 2

Level 1

Level 2

Level 2

Core

Returns the number of rows affected
by an insert, update, or delete request.

Returns the number of columns in the
result set.

Describes a column in the result set.

Describes attributes of a column in
the result set.

Assigns storage for a result column
and specifies the data type.

Returns a result row.

Returns multiple result rows.

Returns part or all of one column of
one row of a result set. (Useful for
long data values.)

Positions a cursor within a fetched
block of data.

Determines whether there are more
result sets available and, if so,
initializes processing for the next
result set.

Returns additional error or status
information.

Page 100 of 434 RA v. AMS
Ex. 1020

