
Page 1 of 11 RA v. AMS
Ex. 1013

Object Orientfid Programming
or

Motion Control

By

David E. Halpert, Technical Director
Creonics Operation, Allen-Bradley Company

Lebanon, New Hampshire USA

Abstract: The application of motion control to solve general
automation problems has been hampered in the past by the steep
learning curve of traditional programming languages. From the
application development standpoint, traditional motion control
languages demand not only a complete understanding of the details of
the application, but also a thorough knowledge of programming
concepts before a solution can be implemented. A radically new
motion control concept utilizing a graphical user interface and icons
to represent motion functions is presented. This graphical motion
control language allows free-form motion programming by simply
connecting the icons to conceptualize the application in block diagram
form. Motion and process details can be filled in later. Once the

diagram is complete, it is converted into a text file in the native
language of the particular motion controller to be used and
downloaded for execution.

The Need for Motion Control Software

Today's manufacturing needs are generating requirements for greater speed, greater efficiency
and affordable cost in many types of machinery and for many types of applications. An industry-
wide desire to reduce capital equipment costs and at the same time increase the variety of products
available has stimulated a requirement for so-called “flexible manufacturing” capabilities. This need
has caused a rethinking of machine design and process control in newly engineered systems as well
as providing the impetus to retrofit existing equipment with new functionality in motion control.
Many machines with existing fixed-motion automation——such as mechanical timing devices (cams,
jackshaflzs, gears, etc.)—are now being redesigned with servo mechanisms and intelligent electronic
controls. Also, many small machines that were never previously automated are being fitted with
computerized control systems.

Today, powerful technology is available for sophisticated and precise motion control which
allows innovative solutions for “flexible manufacturing” requirements. The cost of these controls has
dropped significantly in recent years permitting broad use of motion control products for both OEMs
(Original Equipment Manufacturers) and end users.

Object Oriented Programming for Motion Control
0-7803-0453-5/9l$1.00© l99llEEE 1330

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2 of 11 RA v. AMS
Ex. 1013

The electronic and performance capabilities of these controls are reaching a high level of
maturity and standardization. As this has happened, the job of factory automation has become more
focused on software and application development tools, rather than on hardware features and
performance. Certainly, one of the largest costs involved with implementation of electronic motion
control, is the cost of deyelgning the application solution rather than the actual cost of the control

hardware itself. Maintenance of the electronics and software has a significant impact as well. It
involves employing trained personnel with the right expertise, available in-house.

Tools Currently Available

Most of the functionality required for solving motion control applications now resides within
the resident software of the of motion controller. This has led process and design engineers to focus
on the software to get the efficiencies they need for plant floor automation. With the primary thrust
of developing motion control solutions now focused on software, more efficient software development
tools are becoming increasingly important. The software tools now have the most direct impact on
both the time it takes to implement an application solution as well as on the cost in associated
engineering resources.

Presently, many motion controllers require the use of some form of proprietary programming
language to access their functionality. These languages range from variants of traditional
programming languages-—such as BASIC, Pascal or Forth—to completely customized command sets.
Even though they may have different syntax, the software available in all motion controllers share a
common heritage in their use of traditional programming methodology (i.e. commands in text files).

Customized languages are diverse, highly specialized, and incompatible with each other as well

as with traditional programming languages. There are six or eight standard programming
languages in common use and an even a broader spectrum of specialized languages. As a result of
this diversity and the fact that no control manufacturer dominates the field, no standard has arisen.
Therefore, OEMs and end users today are faced with the fact that unless a particular facility has
only one supplier of‘ motion control equipment, they are likely to have a difficult support issue.
Training people to understand and be efficient in developing application solutions and supporting
them with multiple programming environments is very costly and time consuming.

Some motion control manufacturers have chosen the alternative route of providing their
functionality as an extension to existing commercial software development packages rather than
implementing a custom language themselves. Such motion controllers usually include libraries that
are linked into third party products such as Microsoft’s C or QuickBASIC; or Borland’s popular
TurboPascal. Some even supply assembly language drivers and/or interfaces. This still requires
expertise in traditional programming techniques to implement motion automation solutions. The
third party approach also requires the developer become familiar with two or more difi"erent products
from different suppliers. This can lead to a problem of responsibility and support since the
commercial software vendor usually has no knowledge of motion control and the specific extensions
provided by the motion control manufacturer. The motion control manufacturer, on the other hand,
supplies only a small part of the software and is hard-pressed to support the entire language and
maintain compatibility with the software vendor’s enhancements and upgrades.

Object Oriented Programming for Motion Control
1331

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 11 RA v. AMS
Ex. 1013

The Problem with Traditional Programming Languages

Unfortunately, there are several major drawbacks to using any kind of traditional
programming language or a customized version of a traditional language. First and foremost, skilled

software specialists are needed to implement motion control solutions. Second, there is a great
inefficiency in having the process engineer communicate hi desires to the “programmer”. Thirdly,
the resulting code is often very difficult to support by others after it is completed.

The way most process engineers think about automation is not naturally compatible with the
way conventional software tools force them to think. For example, the syntax of conventional
programming languages requires complete entry of all associated details at the time it is written. In
other words, you must know everything all at once! They also force design of the solution in a linear
way, since conventional programs are inherently linear by nature. Automation system designers
need an equivalent to a sketchpad, it's much easier and more natural to conceptualize major process
functions and their associated timing sequences first and then go back later to fill in the details.
Process engineers—because of the way they think—are more comfortable with a hierarchical flow

chart approach rather than linear program code. Conventional programming languages force too
much attention to be spent on the use of the tools and not enough on actually designing!

Often machine designers are forced to turn to software experts because programming
languages require specialized and non-intuitive terminology, structure, and syntax. Unfortunately,
developing software requires learning and understanding a whole set of jargon that is unrelated to
the actual automation problem. To write programs in conventional programming languages, the
developer must understand many software-specific concepts. These include things like variable
“types”, subroutines, labels, loop and control structures such as IF...THEN...ELSE, DO...LOOP,
CASE structures, etc. No process engineer really wants to know how to properly terminate an IF
statement, or whether to use a FOR...NEXT structure rather than a WHlLE...LOOP. Nor should

one be expected to remember the specific name of the command (is it GOTO or GO TO). How many
non-programmers (or even sometimes software experts) have been frustrated by not remembering
the rules for statement terminator characters or where commas are required? Automation engineers
don't spend enough time writing software to become proficient programmers and they shouldn't need
to!

The traditional software development environment contributes to the problem by adding new
terminology to worry about. One must know what the difference between a compiler and an
interpreter is, what a linker does, etc.. The end result is that instead of concentrating on the
automation solution, the engineer is forced to spend his time concentrating on the details of the
“language”.

Some motion control products have attempted to alleviate the problem by providing a “syntax-
directed editor” with the development package. This is a tool which puts an English language
interface between the programmer and the resulting code. Prompting for individual functions in
English only provides a limited degree of assistance. In reality, a syntax-directed editor only helps
you create a mess more easily, it doesn’t address the main issue which is overall readability.

The multi-leveled structure required by conventional programming does not facilitate
readability. Hierarchical structures such as nested loops or subroutine calls are not easily indicated
in a text oriented program listing. Anyone familiar with programming knows that artificial aids
such as indentation must be used to make the program readable. Such formatting aids are still
insufficient to clarify the overall structure of a conventional program. It is often difficult to locate
the source code for a subroutine that you are calling (in order to remember what parameters need to
be specified), since the routine in question might be located in a completely different place in the

Object Oriented Programming for Motion Control
1332

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 11 RA v. AMS
Ex. 1013

program's listing. Programming languages were developed to focus on implementation, not on
readability.

Using traditional programming languages for motion control applications incurs significant
support costs after they are installed in the factory. Plant floor engineers, technicians and other

support people are usually not trained software experts. This can make it a frustrating experience to
attempt to make minor adjustments in the process or diagnose problems not anticipated by the
original designer. The verbose nature and specialized syntax of conventional application
programming languages make it hard to gain a quick understanding of the underlying operating
concept of the machine. Natural visual markers to aid in following the sequence of operations are
lacking. Attempting to understand someone else’s software, one quickly encounters “word overflow”
staring at pages and pages of program code listings!

The end result is that the application or process control engineer is overwhelmed with a
plethora of possible software environments, and the few software tools available are difficult to use.

Further, conventional programming languages are not a natural or intuitive way to developing
automation applications. The problem thus persists that solving motion control problems involves

an investment in software experts both for developing the application solution and for supporting it
afterward. Today, there just aren’t enough competent software people available.

Using Graphics

The first part of the solution to making motion control applications development easier is to
take advantage of more of our natural capabilities than just language. Psychologists have known for
a long time that combining the visual capabilities of our brains with the verbal facilities can make

learning much easier. The old saying that “a picture is worth a thousand words” really has validity
for programming as well. Dr. Jesse Quatse stated it eloquently in an article in a recent issue [1] of

Industrial Computing magazine, "It is difiicult to say a dozen things at the same time but it is very
easy to see a picture ofa dozen things... C is for saying not seeing!”

A good way to take advantage of this combined visual/verbal method is to allow the engineer to
conceptualize ideas in the form of simple pictures which represent basic process functions with lines
connecting them to represent the timing sequence. This is really a graphical flow chart which is a
very natural extension of the way the engineer thinks about machine operation. The function blocks
can be represented by icons on the computer’s screen which also have a text field for additional

clarity. The eye is much better at quickly picking up a symbol on a page than a word or phrase. By
designing the icons so that they either look like what they do, or illicit a mental image of their
function, it becomes easy to see what’s going on.

Some scientific evidence now supports real benefits to users of a graphical environment. The
consulting firm of Temple, Barker & Sloane conducted a study in 1989 in which they measured the
benefits of a graphical interface versus a conventional text entry system [2]. When two sets of
subjects where given a series of tasks to accomplish, their test results showed that 35% more tasks

were completed in the same amount of time by those using the graphical system. The study also
indicated that 58% more correct work was done in the same time. Novice users appeared to have
attempted 23% more different tasks than their counterparts using a text entry system. Rated
fatigue and frustration levels were documented as 50% less when using a graphical environment.

Object Oriented Design

The second component of the solution to making motion controllers easier to apply is to
combine the graphical user interface with an object-oriented, modular structure. Object-oriented
programming is a new concept just coming into wide use, particularly for graphically oriented tools.

Object Oriented Programming for Motion Control

1333

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 11 RA v. AMS
Ex. 1013

A major attribute of an object-oriented programming system is that it is designed to allow individual
modules within the system to be developed independently. It provides the capability to design using
sophisticated functional modules that don't necessarily require detailed knowledge of their inner
workings. Another key attribute of object-oriented environments is the facility for allowing modules
to be easily re~used with little or no modification. This allows creation of application-specific “black
boxes”, greatly reducing the time to develop additional related applications or modify the original
one.

Brad Cox in his recent article on Object-Oriented Programming in Byte Magazine [3] describes
the concept by stating that custom control systems can be built from off-the-shelf cards without
having to understand soldering irons and silicon chips, just as vendors can engineer cards from off-
the-shelf chips without detailed knowledge of transistors. This process has been applied for some
time to electrical and mechanical systems design, it now needs to be applied to the software used for
motion control applications. The potential productivity benefits are very substantial.

Putting It All Together

The Creonics Operation of Allen-Bradley has applied some of these principles in a unique
application development environment called Graphical Motion Control Language (GML) which can
be used to implement motion control solutions using Allen-Bradley Stand-Alone and PLC plug-in
motion controllers. Following are 5 examples of the more than 100 functions blocks and their
associated icons used to implement motion control solutions with GML:

Sefiimer

Providing a graphical function block library—where you can scroll through all the available
function blocks and just point and click to select a particular one to include in the flow chart,—makes
it very easy to put together complex operational sequences. Color coding related function types, using
green for all blocks that cause motion or red for all blocks that stop motion for example, can greatly
aid in quickly selecting the needed function. An example of such a library is shown below:

Does absolute or incremental move or an axis to a programmable position at
a programmable speed, aceol 8: local rate, optionally volts for completion

Fooaack II: Feedback Off So! Duipul Wall for Axis Status d lL1m1(Output Limit

l62£::1%¢‘é
Change Gain Direct Drive Show Axis Redefine Clear Axis

Control Position Position Fault

Efi file its is
Set Move Set Maximum Set Maximum Set Maximum Configure

Profile Velocity Cam

Object Oriented Programming for Motion Control

1334

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

