THIENO [2,3-c]PYRIDINE
 DERIVATIVES AND THERAPEUTIC COMPOSITION CONTAINING SAME

[75] Inventor: Jean-Pierre Maffrand, Toulouse France
[73] Assignee: Parcor, Paris, France
Appl. No.: 692,186
Filed: June 2, 1976
[30] \therefore Foreign Application Priority Data June 27, 1975 France \qquad 7520241
[51] Int. Cl. ${ }^{2}$ \qquad A61K 31/54; C07D 417/04
[52] U.S. Cl. 424/256; 260/294.8 C
[58] Field of Search 260/294.8 C; 424/256
[56] References Cited PUBLICATIONS
Karrer, Organic Chemistry, 4th Eng. Edition, Elsevier Pub. Co., (N.Y.), p. 928, 1950.
Chemical \& Engineering News, vol. 50 p. 18, Apr. 3, 1972.

Burger, Medicinal Chemistry, Sec. Edition, p. 497, 1960.

Elderfield, Heterocyclic Compounds, vol. I, Wiley Pub., p. 485, (1950).
Klingsberg, Pyridine and its Derivatives, Part Two, Interscience Pub., pp. 50-51, (1961).
Descamps et al., Chem. Abstracts, vol. 59, (2), pp. 1605-1607, July 22, 1963.

Primary Examiner-Alan L. Rotman Attorney, Agent, or Firm-Young \& Thompson

[57]
 ABSTRACT

This invention relates to derivatives having the formula:

(I)
or

(IV)
in which R_{1} is hydrogen or alkyl having $1-6$ carbon atoms; X is $\left(\mathrm{CHR}_{2}\right)_{m}$ in which m is an integer from 2 to 15 , or $\left(\mathrm{CHR}_{2}\right)_{n} \mathrm{R}_{3}$ in which n is an integer from 1 to 15 , R_{2} is hydrogen, or a hydroxy, acyloxy or alkyl group having 1-6 carbon atoms, and the various symbols R_{2} may have different meanings in each radical (CHR_{2}) when several radicals $\left(\mathrm{CHR}_{2}\right)$ are present, R_{3} is a trichloromethyl, acetyl, carboxy or alkoxycarbonyl group, or a phenyl, phenoxy, benzoyl, thienyl or pyridyl radical optionally substituted with at least a halogen atom, or a hydroxy, nitro, amino, cyano, carboxy, alkyloxycarbonyl, alkyl having 1-6 carbon atoms, alkoxy having 1-6 carbon atoms or methylenedioxy group, and to the acid addition salts of the derivatives of the formula (I).
Said derivatives have useful anti-inflammatory and antiarrhythmic activities and an inhibiting action on blood platelet aggregation.

5 Claims, No Drawings

THIENO [2,3-c] PYRIDINE DERIVATIVES AND THERAPEUTIC COMPOSITION CONTAINING SAME

This invention relates to new thieno[2,3-c]pyridine derivatives and to their applications in human and veterinary medicine.

The new compounds of this invention have the following formula:

in which \mathbf{R}_{1} represents hydrogen or an alkyl radical having 1-6 carbon atoms; X represents $\left(\mathrm{CHR}_{2}\right)_{m} \mathrm{H}$ in which m is an integer from 2 to 15 , or $\left(\mathrm{CHR}_{2}\right)_{n} \mathrm{R}_{3}$ in which n is an integer from 1 to $15, \mathrm{R}_{2}$ represents hydrogen, or a hydroxy, acyloxy or alkyl group having 1-6 carbon atoms, and the various symbols \mathbf{R}_{2} may have different meanings in each radical $\left(\mathrm{CHR}_{2}\right)$ when several radicals $\left(\mathrm{CHR}_{2}\right)$ are present, \mathbf{R}_{3} represents a trichloromethyl, acetyl, carboxy or alkoxycarbonyl group, or a phenyl, phenoxy, benzoyl, thienyl or pyridyl radical optionally substituted with at least a halogen atom, or a hydroxy group, a nitro group, and amino group, a cyano group, a carboxy group, an alkyloxycarbonyl group, an alkyl group having 1-6 carbon atoins, an alkoxy group having 1-6 carbon atoms or a methylenedioxy group.
The invention includes also within its scope the acid addition salts with inorganic or organic acids of the derivatives of the formula (I).

A process for the preparation of compounds of the formula (I) comprises condensing a compound of the 40 formula:

(II)
in which \mathbf{R}_{1} has the above-defined meaning, with a halide having the formula:
Hal-X
in which Hal represents a halogen atom and X has the above-defined meaning, to give a pyridinium salt having the formula:

and subsequently hydrogenating the resulting pyridinium salt; to give the desired derivative of the formula (I). According to a modification, the compounds of the formula (I) in which R_{2} is an acyloxy group may be prepared from the corresponding compounds in which $\mathbf{R}_{\mathbf{2}}$ is a hydroxy group, by reaction with an acid anhydride, such as acetic anhydride, for example.
The starting thieno[2,3-c]pyridines of the formula (II) are known compounds which have been described in the literature.
The purification of the compounds obtained according to the above process is preferably effected by extraction with an organic solvent such as ether, after addition of a base (e.g., ammonia), evaporating off the solvent and taking up the residue into an acid (HCl , for example) which causes precipitation as crystals which may be recrystallized, after filtration, from ethanol.
The salts and the quaternary ammonium derivatives of the compounds of the formula (I) may be prepared by methods well known by those expert in the art.

The following non limiting Examples are given to illustrate the preparation of compounds of this invention.

EXAMPLE 1

Preparation of
6-n-dodecyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine (Derivative No. 1)
(a) A mixture of thieno[2,3-c]pyridine ($7 \mathrm{~g} ; 0.052$ mole), 1-bromododecane ($13 \mathrm{~g} ; 0.052 \mathrm{~mole}$) and acetonitrile $(100 \mathrm{cc})$ is refluxed during 4 hours. The solution is then concentrated in vacuo and the residue is triturated with ether to give, after filtration and drying, 12 g (Yield: 60%; m.p. $=95-100^{\circ} \mathrm{C}$) 6-dodecyl-thieno[2,3clpyridinium bromide (derivative of the formula (IV)).
(b) The salt obtained in (a) ($11.5 \mathrm{~g} ; 0.030 \mathrm{~mole})$ is 60 dissolved in water (50 cc) and ethanol (200 cc) and sodium borohydride (2.3 g) is added portionwise thereto. After stirring overnight at room temperature, excess borohydride is destroyed by addition of acetone. The mixture is concentrated in vacuo and the residual 65 oil is dissolved in methylene chloride. The resulting solution is washed with water, dried over sodium sulfate and concentrated in vacuo. The oily residue (9.6 g) is converted to the maleate which is recrystallized from
isopropyl ether-isopropanol (M.p. $=146^{\circ}$ C. Reduction yield: 80.5%).

EXAMPLE 2

Preparation of
6-dodecyl-7-methyl-4,5,6,7-tetrahydro-thieno[2,3c]pyridinium iodide (Derivative No. 2)
A mixture of 6-dodecyl-4,5,6,7-tetrahydro-thieno[2,3c]pyridine ($2.4 \mathrm{~g} ; 7.17$ mmoles), methyl iodide (0.9 cc) and acetonitrile (30 cc) is refluxed during 2 hours. The reaction mixture is concentrated in vacuo and the residue is crystallized from ether. The resulting crystals are filtered off, washed with ether, dried in vacuo and recrystallized from ethanol (M.p. $=120^{\circ}$ C; Yield: 95%).

EXAMPLE 3

Preparation of
7-methyl-6-(3,4,5-trimethoxy-benzyl)-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine (Derivative No. 3)
(a) A mixture of 7-methyl-thieno[2,3-c]pyridine (3.90 g; 26.2 mmoles), 3,4,5-trimethoxy-benzyl chloride (5.67 g ; 26.2 mmoles) and acetonitrile (40 cc) is refluxed during 5 hours. The mixture is then concentrated in vacuo and the residue is crystallized from acetone. The resulting crystals are filtered off, washed with ether and dried in vacuo (M.p. $=203^{\circ}-204^{\circ} \mathrm{C}$; Yield: 37%).
(b) The product obtained in (a) ($3.5 \mathrm{~g} ; 9.58 \mathrm{mmoles})$ is dissolved in water (24 cc) and ethanol (72 cc), and sodium borohydride (3 g) is added portionwise thereto. After stirring overnight at room temperature, the reaction medium is made acidic with 2 N hydrochloric acid, made basic with 2 N sodium hydroxide and extracted with methylene chloride. The organic extracts are washed with water, dried over sodium sulfate and concentrated in vacuo. The residue is converted to the hydrochloride which is recrystallized from ethyl ace-tate-ethanol (M.p. $=180^{\circ}-186^{\circ} \mathrm{C}$. Reduction yield: 54%).

EXAMPLE 4

Preparation of
6-o-methoxycarbonylbenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine (Derivative No. 4)
(a) A mixture of thieno[2,3-c]pyridine ($15 \mathrm{~g} ; 0.111$ mole), methyl 2-bromomethylbenzoate ($26.7 \mathrm{~g} ; 0.116$ mole) and acetonitrile (150 cc) is refluxed during 2 hours. After cooling, the resulting crystals are filtered off, washed with ether and dried in vacuo (M.p. $=170^{\circ}$ C. Yield: 93\%).
(b) The compound obtained in (a) above ($37.6 \mathrm{~g} ; 0.103$ mole) is dissolved in water (100 cc) and ethanol (400 cc), after which sodium borohydride (7.85 g) is added thereto portionwise, while cooling in an ice-bath. After stirring overnight at room temperature, the excess borohydride is destroyed by addition of acetone, the resulting material is concentrated in vacuo and extracted with ether. The organic extracts are washed with water, dried over sodium sulfate and concentrated in vacuo. The residual oil is then converted to the maleate (M.p. $=144^{\circ} \mathrm{C}$. Reduction yield $=73.5 \%$).

EXAMPLE 5

Preparation of
6-o-carboxybenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine (Derivative No. 5)
A mixture of 6-o-methoxycarbonylbenzyl-4,5,6,7-tet-rahydro-thieno[2,3-c]pyridine (19 g ; 0.066 mole), soda
lye ($d=1.38 ; 20 \mathrm{cc}$) and ethanol (200 cc) is refluxed during one hour. The solution is exactly neutralized with 6 N hydrochloric acid, concentrated in vacuo, and the residue is extracted with methylene chloride. The
5 organic extracts are dried over sodium sulfate and concentrated in vacuo. The resulting crystals are recrystallized from benzene (M.p. $=151^{\circ} \mathrm{C}$. Yield: 52\%).

EXAMPLE 6

Preparation of
6-[2-(5-chloro-thienyl)-methyl]-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine (Derivative No. 6)
(a) A mixture of thieno[2,3-c]pyridine ($10 \mathrm{~g} ; 0.074$ mole), and 5-chloro-2-chloromethyl-thiophene (13.95 g ; 0.083 mole) in acetonitrile (80 cc) is refluxed during 4 hours. After cooling, the resulting crystals are filtered off, washed with ether and dried in vacuo (M.p. $=158^{\circ}$ C. Yield $=88.5 \%$).
(b) The salt obtained above in (a) ($19.8 \mathrm{~g} ; 0.066$ mole) is dissolved in water (100 cc) and ethanol (400 cc), after which sodium borohydride (5 g) is added portionwise thereto, with cooling. After stirring overnight at room temperature, the solution is concentrated in vacuo, 25 made acidic with 3 N hydrochloric acid, then made basic with concentrated ammonia and extracted with methylene chloride: The organic extracts are washed with water, dried over sodium sulfate and concentrated in vacuo. The residual oil (16.3 g) is converted to the 30 hydrochloride which is then recrystallized from 95% ethanol (M.p. $=200^{\circ}$ C. Yield $=35 \%$).

EXAMPLE 7

Preparation of concentrating the mixture in vacuo, the residue is poured over ice, made basic with ammonia and extracted with ether. The organic extracts are washed
with water, dried over sodium sulfate and concentrated in vacuo. The resulting crystals are recrystallized from isopropanol (M.p. $=92^{\circ} \mathrm{C}$. Yield $=80 \%$).

Using analogous procedures, the following derivatives were prepared:
derivative No. 9 : 6-(2-hydroxy-propyl)-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine, hydrochloride; white crystals, m.p. $=212^{\circ} \mathrm{C}$.
derivative No. $10: 6$-(2-acetoxy-2m.methoxyphenyl-ethyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; white crystals; m.p. $=80^{\circ} \mathrm{C}$.
derivative No. $11: 6$-o-nitrobenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=100^{\circ} \mathrm{C}$ (decomposition).
derivative No. $12: 6$-p-nitrobenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; brown crystals; m.p. $=$ $116^{\circ}-118^{\circ} \mathrm{C}$
derivative No. 13 : 6-o-cyanobenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, maleate; pale green crystals; m.p. $=168^{\circ} \mathrm{C}$.
derivative No. 14 : 6-(2-p.chlorophenyl-2-hydroxy-ethyl)-7-methyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=$ $201^{\circ}-203^{\circ} \mathrm{C}$.
derivative No. $15: 6$-o-chlorobenzyl-7-methyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, oxalate; off-white crystals; m.p. $=142^{\circ} \mathrm{C}$.
derivative No. 16 : 6-(2-chloro-benzyl)-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine, maleate; white crystals; m.p. $=187^{\circ} \mathrm{C}$.
derivative No. $17: 6$-(3,4,5-trimethoxy-benzyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, ' maleate; white crystals; m.p. $=168^{\circ} \mathrm{C}$.
derivative No. $18: 6$-p.methoxybenzyl-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine, hydrochloride; yellowishwhite material; m.p. $=198^{\circ}-200^{\circ} \mathrm{C}$.
derivative No. $19: 6-\beta$-phenethyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $238^{\circ} \mathrm{C}$.
derivative No. 20 : 6-m.methoxybenzyl-4,5,6,7-tetrahy-dro-thieno-[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=208^{\circ} \mathrm{C}$.
derivative No. 21 : 6-p.chlorobenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=235^{\circ} \mathrm{C}$ (decomposition)
derivative No. 22 : 6-m.chlorobenzyl-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine, hydrochloride; yellowishwhite crystals; m.p. $>240^{\circ} \mathrm{C}$.
derivative No. 23 : 6-(2-hydroxy-2-phenyl-ethyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=210^{\circ}-212^{\circ} \mathrm{C}$.
derivative No. 24 : 6-p.methylbenzyl-4,5,6,7-tetrahy-dro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=240^{\circ} \mathrm{C}$ (decomposition).
derivative No. 25 : 6-(3,4-dimethoxy-benzyl)-4,5,6,7-tet-rahydro-thieno[2,3-c]pyridine, hydrochloride, white crystals; m.p. $=216^{\circ} \mathrm{C}$.
derivative No. $26: 6$-o.fluorobenzyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, fumarate; white crystals; m.p. $=173^{\circ} \mathrm{C}$.
derivative No. 27 : 6-(2-hydroxy-2-p.chlorophenyl-ethyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; white crystals; m.p. $=122^{\circ} \mathrm{C}$.
derivative No. $28: 6$-(2,3,4-trimethoxy-benzyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, oxalate; white crystals; m.p. $=175^{\circ} \mathrm{C}$.
derivative No. 29 : 6-(2-hydroxy-2-p.fluorophenyl-ethyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; white crystals, m.p. $=102^{\circ} \mathrm{C}$.
derivative No. 30 : 6-(2-hydroxy-2-p.methoxyphenyl-ethyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; white crystals; m.p. $=106^{\circ} \mathrm{C}$.
derivative No. $31: 7$-methyl-6- β-phenethyl-4,5,6,7-tet-rahydro-thieno[2,3-c]pyridine, maleate; white crystals; m.p. $=162^{\circ} \mathrm{C}$.
derivative No. 32 : 6-(2-hydroxy-2-p.methoxyphenyl-ethyl)-7-methyl-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; off-white crystals; m.p. $=169^{\circ}-171^{\circ} \mathrm{C}$.
derivative No. 33 : 6-(2-hydroxy-2-m.methoxyphenyl-ethyl)-7-methyl-4,5,6,7,-tetrahydro-thieno[2,3-c]pyridine; creamy-white crystals; in.p. $=143^{\circ}-145^{\circ} \mathrm{C}$.
derivative No. 34 : 6-[2-(2,5-dimethoxy-phenyl)-2-hydroxy-ethyl]-7-methyl-4,5,6,7-tetrahydro-
thieno[2,3-c]pyridine; white crystals; m.p. $=$ $207^{\circ}-209^{\circ} \mathrm{C}$.
derivative No. 35 : 6-(2-hydroxy-3-p.methoxyphenoxy-propyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine, hydrochloride; white crystals; m.p. $=152^{\circ} \mathrm{C}$.
derivative No. 36 : 6-(3-oxo-butyl)-4,5,6,7-tetrahydro-thieno[2,3-c]-pyridine, maleate; white crystals; m.p. $=131^{\circ} \mathrm{C}$.
derivative No. 37 : 6-(2-hydroxy-3,3,3-trichloro-propyl)-4,5,6,7-tetrahydro-thieno[2,3-c]pyridine; white crystals; m.p. $=150^{\circ} \mathrm{C}$.
derivative No. 38 : 6-(3,4-dimethoxy-benzyl)-4,5,6,7-tet-rahydro-thieno[2,3-c]pyridine; white crystals; m.p. $=$ $216^{\circ} \mathrm{C}$.
The following derivatives of the formula (IV) were also prepared:
derivative No. 49 : 6-p-fluorophenacyl-7-methyl-thieno[2,3-c]pyridinium iodide; pale yellow crystals; m.p. $=220^{\circ} \mathrm{C}$.
derivative No. 50 : 6-2,5-dimethoxy)-7-methyl-thieno[2,3-c]pyridinium bromide; white crystals; m.p. $252^{\circ} \mathrm{C}$. Intermediate of derivative No. 34.
derivative No. 51 : 6-m-methoxyphenacyl-7-methyl-thieno[2,3-c]pyridinium bromide; white crystals; m.p. $=245^{\circ} \mathrm{C}$; intermediate of derivative No. 33 .
derivative No. 52 : 6-(3,4-dihydroxy-phenacyl)-7-meth-yl-thieno[2,3-c]pyridinium iodide; brown crystals; m.p. $>260^{\circ} \mathrm{C}$.
derivative No. 53 : 7-methyl-6-p-methylphenacyl-thieno[2,3-c]pyridinium bromide; white crystals; m.p. $>260^{\circ} \mathrm{C}$.
derivative No. 54 : 6-p-hydroxyphenacyl-7-methyl-thieno[2,3-c]pyridinium bromide; brown crystals; m.p. $>260^{\circ} \mathrm{C}$.
derivative No. 55 : 6-ethoxycarbonylmethyl-thieno[2,3c]pyridinium bromide; white crystals; m.p. $>260^{\circ} \mathrm{C}$.
derivative No. $56: 6$-acetonyl-thieno[2,3-c]pyridinium chloride; white crystals; m.p. $>260^{\circ} \mathrm{C}$.
derivative No. 57 : 6-(2-carboxy-ethyl)-thieno[2,3c]pyridinium chloride; white crystals; m.p. $=25$ $246^{\circ}-248^{\circ} \mathrm{C}$.
derivative No. 58 : 6-carboxymethyl-thieno[2,3-c]pyridinium chloride; pale pink crystals; m.p. $=170^{\circ}$ C.

The results of toxicological and pharmacological tests reported hereinafter demonstrate the good tolerance and the activities of the derivatives of this invention, particularly their anti-inflammatory, anti-arrhythmic activities and their inhibiting activity on blood platelet aggregation.

Thus, this invention relates also to a therapeutic composition having in particular anti-inflammatory, antiarrhythmic activities and an inhibiting activity on blood platelet aggregation, comprising as active ingredient, a derivative of the formula (I) or a derivative of the formula (IV) or a pharmaceutically acceptable acid addition salt of a derivative of the formula (1), together with a pharmaceutically acceptable carrier.

I. TOXICOLOGICAL INVESTIGATION

Said investigation demonstrates the low toxicity of the derivatives of this invention.

For indicative purposes, the $\mathrm{LD}_{50} / 24 \mathrm{hrs} / \mathrm{kg}$ body weight, determined by the intravenous route by the method according to Miller and Tainter, is 135 mg for derivative No. 6, 120 mg for derivative No. $9,80 \mathrm{mg}$ for derivative No. 10, 160 mg for derivative No. $11,80 \mathrm{mg}$ for derivative No. $17,60 \mathrm{mg}$ for derivative No. 18,48 mg for derivative No. $19,63 \mathrm{mg}$ for derivative No. 20 , 55 mg for derivative No. $21,67 \mathrm{mg}$ for derivative No. $23,45 \mathrm{mg}$ for derivative No. $24,90 \mathrm{mg}$ for derivative No. $25,87 \mathrm{mg}$ for derivative No. $26,45 \mathrm{mg}$ for derivative No. 27, 60 mg for derivative No. 29, 53 mg for derivative No. $31,84 \mathrm{mg}$ for derivative No. $34,19 \mathrm{mg}$ for derivative No. 35, 16 mg for derivative No. 36, 18 mg for derivative No. 37, 22 mg for derivative No. 38, 35 mg for derivative No. 39 and 51 mg for derivative No. 44.

Experimentation has shown that the derivatives of this invention were well tolerated throughout the acute, chronic or delayed toxicity tests and that no anomaly could be found on autopsy of the sacrificed animals.

II. PHARMACOLOGICAL INVESTIGATION

1. Anti-inflammatory Action
a) Localized Carrageenin-induced Edema Method

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

