
CHAPTER 11

FILE
SYSTEM
IMPLEMENTATION

As we saw in Chapter 10, the file system provides the mechanism for on­
line storage and access to both data and programs. The file system resides
permanently on secondary storage, which has the main requirement that it
must be able to hold a large amount of data, permanently. This chapter is
primarily concerned with issues concerning file storage and access on the
most. common secondary-storage medium, the disk. We explore ways to
allocate disk space, to recover freed space, to track the locations of data,
and to interface other parts of the operating system to secondary storage.
Performance issues are considered throughout the chapter.

11.1 • File-System Structure

Disks provide the bulk of secondary storage on which a file system is
maintained. To improve I/0 efficiency, 110 transfers between memory and
disk are performed in units of blocks. Each block is one or more sectors.
Depending on the disk drive, sectors vary from 32 bytes to 4096 bytes;
usually, they are 512 bytes. Disks have two important characteristics that
mal<e them a convenient medium for storing multiple files:

1. They can be rewritten in place; it is possible to read a block from the
disk, to modify the block, and to write it back into the same place.

2. We can access directly any given block of information on the disk.
Thus, it is simple to access any file either sequentially or randomly,

383

Apple 1013 (Part 3 of 4)
U.S. Pat. 8,504,746

384 • Chapter 11: File-System Implementation

and switching from one file to another requires only moving the
read-write heads and waiting for the disk to revolve.

We discuss disk structure in great detail in Chapter 12.

·11.1.1 File-System Organization

To provide an efficient and convenie:nt access to the disk, the operating
system imposes a file system to allow the data to be stored, located, and
retrieved easily. A file system poses two quite different design problems.
The first problem is defining how the file system should look to the user.
This task involves the definition of a file and its attributes, operations
allowed on a file, and the directory structure for organizing the files. Next,
algorithms and data structures must be created to map the logical file
system onto the physical secondary-storage devices.

The file system itself is generally composed of many different levels.
The structure shown in Figure 11.1 is an example of a layered design. Each
level in the design uses the features of lower levels to create new features
for use by higher levels.

The lowest level, the 110 control, consists of device drivers and interrupt
ha11diers to transfer information between memory and the disk system. A
device driver can be thought of as a translator. Its input consists of high­
level commands such as "retrieve block 123." Its output consists of low­
level, hardware-specific instructions, which are used by the hardware
controller, which interfaces the I/O device to the rest of the system. The

application programs

J
logical file system

' file- organization module

' basic fil~ system

' 1/0 control ,.
devices

Figure 11.1 Layered file system.

11.1 File-System Structure • 385

device driver usually writes specific bit patterns to special locations ·in the
110 controller's memory to tell the controller on which device location to act
and what actions to take.

The basic file system needs only to issue generic commands to the
appropriate device driver to read and write physical blocks on the disk.
Each physical block is identified by its numeric disk address (for example,
drive 1, cylinder 73, surface 2, sector 10).

The file-organization module knows about files and their logical blocks, as
well as physical blocks. By knowing the type of file allocation used and the
location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer.
Each file's logical blocks are numbered from 0 (or 1) through N, whereas
the physical-· blocks containing this data usually do not match the logical
numbers, so a translation is needed to locate each block. The file­
organization module also includes the free-space manager, which tracks
unallocated blocks and provides these blocks to the file-organization
module when requested.

Finally, the logical file system uses the directory structure to provide the
file-organization module with the information the latter needs, given a
symbolic file name. The logical file system is also responsible for
protection and security, as was discussed in Chapter 10 and will be further
discussed in Chapter 13.

To create a new file, an application program calls the logical file
system. The logical file system knows the format of the directory
structures. To create a new file, it reads the appropriate directory into
memory, updates it with the new entry, and writes it back to the disk. A
directory can be treated exactly as a file - one with a type field indicating
that it is a directory. Thus, the logical file system can call the file­
organization module to map the directory 110 into disk-block numbers,
which are passed on to the basic file system and 110 control system.

Once the directory has been updated, the logical file system can. use it
to perform I/O. When a file is opened, the directory structure is searched
for the desired file entry. It would be possible to search the directory
structure for every 110 operation, but that would be inefficient. To speed
the search, the operating system generally keeps in memory a table,
referred to as the open-file table, consisting of information about all the
currently opened files (Figure 11.2).

The first reference to. a file (normally an open) causes the directory
structure to be searched and the directory entry for this file to be copie~
into the table of opened files. The index into this table is returned to the
user program, and all .further ·references are made through the index (a file
descriptor or file control block), rather than with a symbolic name.
Consequently, as long as the file is not closed, all directory lookups are
done on the open-file table. All changes to the directory entry are made to
the open-file table in memory. When the file is closed by all users that

386 • Chapter 11: File-System Implementation

index file name permissions access dates pointer to disk block
0
1
2

n

TEST.C

MAIL. TXT

rw rw rw· ... ~

rw ~

Figure 11.2 A typical open-file table.

have opened it, the updated entry is copied back to the disk-based
directory structure.

Some systems complicate this scheme even further by using multiple
levels of in-memory tables. For example, in the BSD UNIX file system, each
process has an open-file table that merely points to a systemwide open-file
table, which in turn points to a table of active inodes. The active-inodes
table is an in-memory cache of inodes currently in use, and includes the
inode index fields that point to the on-disk data blocks. In this way, once
a file is opened, all but the actual data blocks are in memory for rapid
access by any process accessing the file. The BSD UNIX system is typical in
its use of caches wherever disk 110 can be saved. Its cache hit rate of 85
percent shows that these techniques are well worth implementing. The BSD

UNIX system is described fully in Chapter 19. The open-file table is detailed
in Section 10.1.2.

11.1.2 File-System Mounting
Just as a file must be opened before it is used, a file system must be
mounted before it can be available to processes on the system. The mount
procedure is straightforward. The operating system is given the name of

. the device, and the location within the file structure at which to attach the
file system (called the mount point). For instance, on a UNIX system, a file
system containing user's home directories might be mounted as /home;
then, to access the directory struch~re within that file system, one could
precede the directory names with /home, as in /home/jane. Mounting that
file system under /users would result in the path name !users/jane to reach
the same directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the
operating system notes in its directory structure that a file system is
mounted at the specified mount point. This scheme enables· the operating

11.2 Allocation Methods • 387

system to traverse its directory structure, switching among file systems as
appropriate.

Consider the actions of the Macintosh Operating System. Whenever
the system encounters a disk for the first time (hard disks are found at
boot time, floppy disks are seen when they are inserted into the drive), the
Macintosh Operating System searches for a file system on the device. If it
finds one, it automatically mounts the file system at the root level, adding
a folder icon on the screen labeled with the name of the file system (as
stored in the device directory). The user is then able to click on the icon
and thus to display-the newly mounted file system.

File system mounting is further discussed in Sections 17.6.2 and 19.7.5.

11.2 • Allocation Methods

The direct-access nature of disks allows us flexibility in the implementation
of files. In almost every case, many files will be stored on the same disk.
The main problem is how to allocate space to these files so that disk space
is utilized effectively and files can be accessed quickly. Three major
methods of allocating disk space are in wide use: contiguous, linked, and
indexed. Each method has its advantages and disadvantages. Accordingly,
some systems (such as Data General's RDOS for its Nova line of computers)
support all three. More common, a system will use one particular method
for all files.

11.2.1 Contiguous Allocation

The contiguous allocation method requires each file to occupy a set of
contiguous blocks on the disk. Disk addresses define a linear ordering on
the disk. Notice that, with this ordering, accessing block b + 1 after block b
normally requires no head movement. When head movement is needed
(from the last sector of one cylinder to the first sector of the next cylinder),
it is only one track. Thus, the number of disk seeks required for accessing
contiguously allocated files is minimal, as is seek time when a seek is
finally needed. The IBM VM/CMS operating system uses contiguous
allocation because it provides such good performance.

Contiguous allocation of a file is defined by the disk address and
length (in block units) of the first block. If the file is n blocks long, and
starts at location b, then it occupies blocks b, b + 1, b + 2, ... , b + n - 1.
The directory entry for each file indicates the address of the starting block.
and the length of the area allocated for this file (Figure 11.3).

Accessing a file that has been allocated contiguously is easy. For
sequential access, the file system remembers the disk address of the last
block referenced and, when necessary, reads the next block. For direct
access to block i of a file that starts at block b, we can immediately access

Chapter 11: File-System Implementation

directory

file start length

count 0 2
tr 14 3
mail 19 6
fist 28 4
f 6 2

Figure 11.3 Contiguous allocation of disk

block b + i. Thus, both sequential and direct access can be
contiguous allocation.

One difficulty with contiguous allocation finding
. The implementation of the free-space management
Section 11.3, determines how this task

management system can be used, but some are slower than
The contiguous disk-space-aiJocation problem can be

application of the general dynamic
""""'""""'- in Section 8.4, which is how to satisfy a

holes. First-fit and best-fit are the most common
to select a hole from the set of available
shown that both first-fit and best-fit are more efficient
terms of both tin1e and storage utilization. Neither

best in terms of storage utilization, but first-fit generally "~.._.._
These algorithms suffer from external fragmentation.

allocated and deleted, the free disk space broken into
fragmentation exists whenever free space broken into

becomes a problem when the largest contiguous chunk
a request; storage is fragmented into a number of holes, no one

enough to store the data. Depending on the total ~u''""''"'
and the average file size, external fragmentation may be

or a major problem. ·

11.2 Allocation Methods • 389

Some older microcomputer systems used contiguous allocation on
floppy disks. To prevent loss of significant amounts of disk space to
external fragmentation, the user had to run a repacking routine that copied
the entire file system onto another floppy disk or onto a tape. The original
floppy disk was then freed completely, creating one large contiguous free
space. The routine then copied the files back onto the floppy disk by
allocating contiguous space from this one large hole. This scheme
effectively compacts all free space into one contiguous space, solving the
fragmentation problem. The cost of this compaction is time. Copying all
the files from a disk to compact space may take hours and may be
necessary on a weekly basis. During this down time, normal system
operation cannot continue, so such compaction is avoided at all costs on
production machines.

There are other problems with contiguous allocation. A major problem
is determining how much space is needed for a file. When the file is
created, the total amount of space it will need must be found and
allocated. How does the creator (program or person) know the size of the
file to be created? In some cases, this determination may be fairly simple
(copying an existing file, for example); in general, however, the size of an
output file may be difficult to estimate.

If we allocate too little space to a file, we may find that that file cannot
be extended. Especially with a best-fit allocation strategy, the space on
both sides of the file may be in use. Hence, we cannot make the file larger
in place. Two possibilities then exist. First, the user program can be
terminated, with an appropriate error message. The user must then
allocat~ more space and run the program again. These repeated runs may
be costly. To prevent them, the user will normally overestimate the
amount of space needed, resulting in considerable wasted space.

The other possibility is to find a larger hole, to copy the contents of the
file to the new space, and to release the previous space. This series of
actions may be repeated as long as space exists, although it can also be
time-consuming. Notice, however, that in this case the user never needs to
be informed explicitly about what is happening; the system continues
despite the problem, although more and more slowly.

Even if the total amount of space needed for a file is known in
advance, preallocation may be inefficient. A file that grows slowly over a
long period (months or years) must be allocated enough space for its final
size, even though much of that space may be unused for a long time. The
file therefore has a large amount of internal fragmentation.

To avoid several of these drawbacks, some operating systems use a
modified contiguous allocation scheme, where a contiguous chunk of space
is allocated initially, and then, when that amount is not large enough,
ctnother chunk of contiguous space, an extent, is added to the initial
allocation. The location of a file's blocks is then recorded as a location and
a block count,· plus a link to the first block of the next extent. On some

390 Chapter 11: File·System Implementation

the owner of the file can set the extent
results in inefficiencies if the owner incorrect. Internal
can still be a problem if the extents are too large,
fragmentation can be a problem as extents of varying

deallocated.

2 Allocation
allocation solves all problems of contiguous allocation.

allocation, each file is a linked list of disk blocks; the disk blocks
anywhere on the disk. The directory contains a pointer

and last blocks of the file. For example, a file of five blocks
block 9, continue at block 16, then block 1, block 10, and finally

11.4). Each block contains a pointer to the next block.
pointers are not made available to the user. Thus, if block
bytes, and a disk address (the pointer) requires 4 bytes, then user sees
blocks of 508 bytes.

To create a new file, we simply create a new entry
With linked allocation, each directory entry has a pointer
block of the file. This pointer is initialized to nil (the
value) to signify an empty file. The size field also set to 0.

file causes a free block to be found via the

directory

file start end

jeep 9 25

Figure 11.4 Linked allocation of disk space.

11.2 Allocation Methods • 391

system, and this new block is then written to, and is linked to the end of
the file. To read a file, we simply re~d blocks by following the pointers
from block to block.

There is no external fragmentation with linked allocation, and any free
block on the free-space list can be used to satisfy a request. Notice also .
that there is no need to declare the size of a file when that file is created.
A file can continue to grow as long as there are free blocks. Consequently,
it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major
problem is that it can be used effectively for only sequential-access files. To
find the ith block of a file, we must start at the beginning of that file, and
follow the pointers until we get to the ith block. Each access to a pointer
requires a disk read, and sometimes a disk seek. Consequently, it is
inefficient to support a direct-access capability for linked allocation files.

Another disadvantage to linked allocation is the space required for the
pointers. If a pointer requires 4 bytes out of a 512-byte block, then 0.78
percent of the disk is being used for pointers, rather than for information.
Each file requires slightly more space than it otherwise would.

The usual solution to this problem is to collect blocks into multiples,
called clusters, and to allocate the clusters rather than blocks. For instance,
the file system may define a cluster as 4 blocks, and operate on the disk in
only cluster units. Pointers then use a much smaller percentage of the
file's disk space. This method allows the logical-to-physical block mapping
to remain simple, but improves disk throughput (fewer disk head seeks)
and decreases the space needed for block allocation and free-list
management. The cost of this approach is an increase in internal
fragmentation, because more space is wasted if a cluster is partially full
than when a block is partially full. Clusters can be used to optimize disk
access for many other algorithms, so they ;:lre used in most operating
systems.

Yet another problem is reliability. Since the files are linked together by
pointers scattered all over the disk, consider what would happen if a
pointer were lost or damaged. A bug in the operating-system software or a
disk hardware failure might result in picking up the wrong pointer. This
error could result in linking into the free-space list or into another file. One
partial solution is to use doubly linked lists or to store the file name and
relative block number in each block; however, these schemes require even
more overhead for each file.

An important variation on the linked allocation method is the use of a.
file-allocation table (FAT). This simple but efficient method of disk-space
allocation is used by the MS-DOS and OS/2 operating systems. A section of
disk at the beginning of each partition is set aside to contain the table.
The table has one entry for each disk block, and is indexed by block
number. The FAT is used much as is a linked list. The directory entry
contains the block number of the first block of the file. The table entry

392 II Chapter 11: File-System Implementation

indexed by that block number then contains the block number
block in the file. This chain continues until the last block,
special end-of-file value as the table entry. Unused blocks are
a 0 table value. Allocating a new block to a file is a simple
finding the first 0-valued table entry, and replacing the previous
value with the address of the new block. The 0 is then replaced
end-,of-file value. An illustrative example the FAT structure of H•c.rn"'""

for a file consisting of disk blocks 217, 618, and 3311.
Note that the FAT allocation scheme can result in a significant

of head seeks, unless the FAT is cached. The disk head must move
start of the partition to read the FAT and find the location of
question, then move to the location of the block itself. In the
both moves occur for each block. A benefit is that random access
optimized, because the disk head can find the location of any by
rectding the information in the FAT.

11.2.3 Indexed Allocation

Linked allocation solves the external-fragmentation and
problems of contiguous allocation. However, linked
support efficient direct access, since the pointers to the blocks are

directory entry

name start block

339

FAT

Figure 11.5 File-allocation table.

with the blocks themselves all over the disk and need to be
order. Indexed allocation solves this problem by bringing
together into one location: the index block.

Each file has its own index block, which is an array
addresses. The ith entry in the index block points to ith
file. The directory contains the address of the index block (Figure
read the ith block, we use the pointer in the ith index-block
and read the desired block. this scheme is similar to the
described in Chapter 8.

When the file is created, all pointers in the index block
When the ith block is first written, a block is obtained from
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without
external fragmentation, because any free block on the disk
request for more space.

Indexed allocation does suffer from wasted
overhead of the index block is generally greater than the
of linked allocation. Consider a common case in which we
only one or two blocks. With linked allocation, we lose
one pointer per block (one or two pointers). With
entire index block must be allocated, even only one or
be non-nil.

directory

file index block

jeep 19

Figure 11.6 Indexed allocation of disk

394 • Chapter 11: File-System Implementation

This point raises the question of how large the index block should be.
Every file must have an index block, so we want the index block to be as
small as possible. If the index block is too small, however, it will not be
able to hold enough pointers for a large file, and a mechanism will have to
be available to deal with this issue:

• Linked scheme. An index block is normally one disk block. Thus, it
can be read and written directly by itself. To allow for large files, we
may link together several index blocks. For example, an index block
might contain a small header giving the name of the file, and a set of
the first 100 disk-block addresses. The next address (the last word in
the index block) is nil (for a small file) or is a pointer to another index
block (for a large file).

• Multilevel index. A variant of the linked representation is to use a
separate index block to point to the index blocks, which point to the
file blocks themselves. To access a block, the operating system uses the
first-level irtdex to find the second-level index to find the desired data
block. This approach could be continued to a third or fourth level,
depending on the desired maximum file size. With 4096-byte blocks
(through clustering), we can get 1024 4-byte pointers into an index block.
Two levels of indexes allow 1,048,576 data blocks, which allows a file of
up to 4 gigabytes. This number of bytes currently exceeds the physical
capacity of most individual disk drives.

• Combined scheme. Another alternative, used in the BSD UNIX system,
is to keep the first, say, 15 pointers of the index block in the file's
index block (or inode). (The directory entry points to the inode, as
discussed in Section 19.7.) The first 12 of these pointers point to direct
blocks; that is, they contain addresses of blocks that contain data of the
file. Thus, the data for small (no more thfn 12 blocks) files do not peed
a separate index block. If the block size· is 4K, then up to 48K of data
may be accessed directly. The next three pointers point to indirect
blocks. The first indirect block pointer is the address of a single indirect
block. The single indirect block is an index block, containing not data,
but rather the addresses of blocks that do contain data. Then there is a
double indirect block pointer, which contains the address of a block that
contains the addresses of blocks that contain pointers to the actual data
blocks. The last pointer would contain the address of a triple indirect
block. Under this method; the number of blocks that can be allocated
to a file exceeds the amount of space addressable by the 4-byte file
pointers used by the operating s~stem or passed in system calls. The
32-bit file pointer reaches only 2 2 bytes, or 4 gigabytes. An inode is
shown in Figure 11.7.

mode

owners (2)

timestamps (3)

size

block count

Figure 11.7 The UNIX in ode.

Note that indexed allocation schemes suffer from some
performance problems as does linked allocation. Specifically/
blocks can be cached in memory, but the data blocks may be Qn,r€'>r:\t1

over a partition. ,

11.2.4 Performance
The allocation methods that we have discussed vary in
efficiency and data-block access times. Both are
selecting the proper method or methods an
implement.

One difficulty in comparing the performance of the
determining how the systems will A
sequential access should use a method
with mostly random access. any of ""'-"·"""''"'
requires only one access to get a disk block. Since we can
initial address of the file in memory, we can calculate
address of the ith block (or the next block) and read it directly.

For linked allocation, we can also the address of the
memory and it directly. This method fine for
direct access, however, an access to the ith block might

396 • Chapter 11: File-System Implementation

reads. This problem indicates why linked allocation should not be used for
an application requiring direct access.

As a result, some systems support direct-access files by using
contiguous allocation and sequential access by linked allocation. For these
systems, the type of access to be made must be declared when the file is

· created. A file created for sequential access will be linked and cannot be
used for direct access. A file created for direct access will be contiguous
and can support both direct access and sequential access, but its maximum
length must be declared when it is created. Notice that, in this case, the
operating system must have appropriate data structures and algorithms to
support both allocation methods. Files can be converted from one type to
another by the creation of a new file of the desired type, into which the
contents of the old file are copied. The old file may then be deleted, and
the new file renamed.

Indexed allocation is more complex. If the index block is already in
memory, then the access can be made directly. However, keeping the
index block in memory requires considerable space. If this memory space is
not available, then we may have to read first the index block and then the
desired data block. For a two-level index, two index-block reads might be
necessary. For an extremely large file, a,cessing a block near the end of the
file would require reading in all the index blocks to follow the pointer
chain before the data block finally could be read. Thus, the performance of
indexed allocation depends on the index structure, on the size of the file,
and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation
by using contiguous allocation for small files (up to three or four blocks),
and automatically switching to an indexed allocation if the file grows large.
Since most files are small, and contiguous allocation is efficient for smaJ.l
files, average performance can be quite good.

For instance, the version of UNIX from Sun Microsystems was changed
in 1991 to improve performance in the file-system allocation algorithm.
The performance measurements indicated that the maximum disk
throughput on a typical workstation (12-MIPS Sparcstationl) took 50 percent
of the CPU and produced a disk bandwidth of only 1.5 megabytes per
second .. To improve performance, Sun made changes to allocate space in

· very large clusters (56K) whenever possible. This allocation reduced
external fragmentation, and thus seek and latency times. In addition, the
disk.-reading routines were optimized to read· in these large clusters. The
inode structure was left unchanged. These changes, plus the use of read­
ahead and free-behind (discussed in Section 11.5.2) resulted in 25 percent
less CPU being used for somewhat improved throughput.

Many other optimizations are possible and are in use. Given the
disparity between CPU and disk speed, it is not unreasonable to add
thousands of extra instructions to the operating system to save just a few

11.3 Free-Space Management • 397

disk head movements. Furthermore, this disparity is increasing over time,
to the point where hundreds of thousands of instructions reasonably could
be used to optimize head movements. For example, research is proceeding
on the use of artificial-intelligence algorithms to analyze past disk-access
patterns so as to predict future ones.

11.3 • Free-Space Management

Since there is only a limited amount of disk space, it is necessary to reuse
the space from deleted files for new files, if possible. (Write-once optical
disks only allow one write to any given sector, and thus such reuse is not
physically possible.) To keep track of free disk space, the system
maintains a free-space list. The free-space list records all disk blocks that are
free - those not allocated to some file or directory. To create a file, we
search the free-space list for the required amount of space, and allocate
that space to the new file. This space is then removed from the free-space
list. When a file is deleted, its disk space is added to the free-space list.
The free-space list, despite its name, might not be implemented as a list, as
we shall discuss.

11.3.1 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector.
Each block is represented by 1 bit. If the block is free, the bit is 1; if the
block is allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12,
13, 17, 18, 25, 26, and 27 are free, and the rest of the blocks are allocated.
The free-space bit map would be

001111001111110001100000011100000 ...

The main advantage of this approach is that it is relatively simple and
efficient to find the first free block, or n consecutive free blocks on the
disk. Indeed, many computers supply bit-manipulation instructions that
can be used effectively for that purpose. For example, the Intel 80386 and
80486 and Motorola 68020 through 68040 microprocessors (the processors
that power recent IBM PC compatibles and Macintosh systems,
respectively) have instructions that return the offset in a word of the first
bit with the value 1. In fact, the Apple Macintosh Operating System uses
the bit-vector method to allocate disk space. To find the first free block, the
Macintosh Operating System checks sequentially each word in the bit map
to see whether that value is not 0, since a: 0-valued word has all 0 bits and
represents a set of allocated blocks. The first nonO word is scanned for the

398 • Chapter 11: File-System Implementation

first 1 bit, which is the location of the first free block. The calculation of
the block number is

(number of bits per word)* (number of 0-value words) + offset of first 1 bit

Again, we see hardware features driving software functionality.
Unfortunately, bit vectors are inefficient unless the entire vector is kept in
main memory (and is written to disk occasionally for recovery needs).
Keeping it in main memory is possible for smaller disks, such as on
microcomputers, but not for larger ones. A now-common 1.3-gigabyte disk
with 512-byte blocks would need a bit map of over 310K to track its free
blocks. Clustering the blocks in intervals of four reduces this number to
78K per disk.

11.3.2 Linked List

Another approach is to link together all the free disk blocks, keeping a
pointer to the first free block in a special location on the disk and caching
it in memory. This first block contains a pointer to the next free disk block,
and so on. In our example (Section 11.3.1), we would keep a pointer to
block 2, as the first free block. Block 2 would contain a pointer to block 3,
which would point to block 4, which would point to block 5, which would
point to block 8, and so on (Figure 11.8). However, this scheme is not
efficient; to traverse the list, we must read each block, which requires
substantial 110 time. Fortunately, traversing the free list is not a frequent
action. Usually, the operating system simply needs a free block so that it
can allocate that block to a file, so the first block in the free list is used.
Note that the FAT method incorporates free-block accounting into the
allocation data structure. No separate method is needed.

11.3.3 Grouping

A modification of the free-list approach is to store the addresses of n free
blocks in the first free block. The first n -1 of these blocks are actually free.
The last block contains the addresses of another n free blocks, and so on.
The importance of this implementation is that the ·addresses· of a large
number of free blocks can be found quickly, unlike in the standard linked­
list approach.

11.3.4 Counting

Another approach is to take advantage of the fact that, generally, several
contiguous blocks may be allocated or freed simultaneously, particularly
when space is allocated with the contiguous allocation algorithm or
through clustering. Thus, rather than . keeping a list of n free disk

11.4 Directory

Figure 11.8 Linked free-space list on

addresses, we can keep the address of the first free block
n of contiguous blocks that follow the first block
free-space list then consists of a disk address and a count.
entry requires more space than would a simple disk
list will be shorter, as long as the count generally

.4 • Directory Implementation

The selection of directory-allocation and
has a effect on the efficiency, performance
system. Therefore, it is important to understand the

algorithms.

11.4.1 List
The simplest method of implementing a directory
file names with pointers to the data blocks. A linear list
requires a linear search to find a particular entry. This
program but is time-consuming to execute. To create a new we
first search the directory to be sure that no the same name.
Then, we add a new entry at the end of the directory. To a we

-

400 • Chapter 11: File-System Implementation

search the directory for the named file, then release the space allocated to
it. To reuse the directory entry, we can do one of several _things. We can
mark the entry as unused (by assigning it a special name, such as an all­
blank name, or with a used -unused bit in each entry), or we can attach it
to a list of free directory entries. A third alternative is to copy the last entry
in the directory into the freed location, and to decrease the length of the
directory. A linked list can also be used to decrease the time to delete a
file.

The real disadvantage of a linear list of directory entries is the linear
search to fiild a file. Directory information is used frequently, and a slow
implementation of access to it would be noticed by users. In fact, many
operating systems implement a software cache to store the most recently
used directory information. A cache hit avoids constantly rereading the
information from disk. A sorted list allows a binary search and decreases
the average search time. However, the search algorithm is more complex
to program. In addition; the requirement that the list must be kept sorted
may complicate creating and deleting files, since we may have to move
substantial amounts of directory information to maintain a sorted directory.
(However, notice that if we want to be able to produce a list of all files in a
directory sorted by file name, we do not have to sort separately before
listing.) A linked binary tree might help here.

11.4.2 Hash Table

Another data structure that has been used for a file directory is a hash table.
In this method, a linear list stores the directory entries, but a hash data
structure is also used. The hash table takes a value computed from the file
name and returns a pointer to the file name in the linear list. Therefore, it
can greatly decrease the directory search time. Insertion and deletion are
also fairly straightforward, although some provision must be made for
collisions - situations where two file names hash to the same location. The
major difficulties with a hash table are the generally fixed size of the hash
table and the dependence of the hash function . on the size of the hash
table.

For e~ample, assume that we establish a hash table of 64 entries. The
hash function converts file names into integers from 0 to 63, probably by a
final operation that uses the remainder of a division by 64. If we later try
to create a sixty-fifth file, we must enlarge the directory hash table- say,
to 128 entries. As a result, we need a new hash function, which must map
file names to the range 0 to 127, and we must reorganize the existing
directory entries to reflect their new hash-function values. Alternately,
each hash entry can be a linked list instead of an individual value, and we
can resolve collisions by adding the new entry to the linked list. Lookups
are somewhat slowed, because resolving a name to a pointer might requir~
stepping through the linked list of the hash entry to find the 'correct entry.

11.5 Efficiency and Performance • 401

11.5 • Ef'ficiency and Performance

Now that we have discussed the block-allocation and directory­
management options, we can further consider their effect on performance
and efficient disk use; Disks tend to be a major bottleneck in system
performance, since they are the slowest main computer component. In
this section, we discuss a variety of techniques used to improve the
efficiency and performance of secondary storage.

11.5.1 Efficiency

The efficient use of disk space is heavily dependent on the disk allocation
and directory algorithms in use. For instance, UNIX inodes are preallocated
on a partition. Even an "empty" disk has a percentage of its space lost to
ihodes. However, by preallocating the inodes and spreading them across
the partition, we improve the file system's performance. This improved
performance is a result of the UNIX allocation and free-space algorithms,
which try to keep a file's data blocks near that file's inode block to reduce
seek time.

As another example, let us reconsider the clustering scheme discussed
in Section 11.2, which aids in file-seek and file-transfer performance at the
cost of internal fragmentation. To reduce this fragmentation, BSD UNIX

varies the cluster size as a file grows. Large clusters are used where they
can be filled, and small clusters are used for small files and the last cluster
of a file. This system is described in Chapter 19.

Also requiring consideration are the types of data normally kept in a
file's directory (or inode) entry. Commonly, a "last write date" is recorded
to supply information to the user and to determine whether the file needs
to be· backed up. Some systems also keep a "last access date," so that a
user can determine when the file was last read. The result of keeping this
information is that, whenever the file is read, a field in the directory
structure needs to be written to. This change requires the block to be re~d
into memory, a section changed, and the block written back out to. ·disk,
because operations on disks occur only in block (or cluster) chunks. So;
any time a file is opened for reading, its directory entry must be read and
written as well. This requirement can be inefficient for frequently accessed
files, so we must weigh its benefit against its performance cost when
de.signing a file system. Generally, every data item associated with a file
needs to be considered for its affect on efficiency and performance. .

As an example, consider how efficiency is affected by the size of the
pointers used to access. data. Most systems use either 16- or 32-bit pointers
throughout the operating s±stem. These pointer sizes limit the length of a
file ~o eit~er 216 (6~K), ·or 2 2 ~yte~ (~ gigab~tes). Some _syst~ms implement
64-btt pomters to tncrease this hmit to 2 bytes, which IS a very large
number indeed. However, 64-bit pointers take more space to store, and in

402 • Chapter 11: File-System Implementation

turn make the allocation and free-space management methods (linked lists,
indexes, and so on) use more disk space.

One of the difficulties in choosing a pointer size, or indeed any fixed
allocation size within an operating system, is planning for the effects of
c\1-anging technology. Consider that the first IBM PC XT had a 5-megabyte
hard drive, and an MS-DOS file system that could support only 32
megabytes. (Each FAT entry was 12 bits, pointing to an 8K cluster.) As
disk capacities increased, larger disks had to be split into 32-megabyte
partitions, because the file system could not track blocks beyond 32
megabytes. As hard disks of over 100-megabyte capacities became
common, the disk data structures and algorithms in MS-DOS had to be
modified to allow larger file systems. (Each FAT entry was expanded to 16
bits.) The initial file-system decisions were made for efficiency reasons;
however, with the advent of MS-DOS, Version 4, millions of computer users
were inconvenienced when they had to switch to the new, larger file
system. .

As another example, consider the evolution of Sun's Solaris operating
system. Originally, many data structures were of fixed lengths, allocated
at system startup. These structures included the process table and the
open-file table. When the process table became full, no_ more processes
could be created. When the file table became full, no more files could be
opened. The system would fail to provide services to the users. These
table sizes could be increased only by recompiling the kernel and rebooting
the system. Since the release of Solaris 2, almost all kernel structures are
allocated dynamically, eliminating these artificial limits on system
performance. Of course, the algorithms that manipulate these tables are
more complicated, and the operating system is a little slower because it
must dynamically allocate and deallocate table entries, but that price is the
usual one for more functional generality.

11.5.2 Performance
Once the basic disk inethods are selected, there are still several ways to
improve performance. As noted in Chapter 2, some disk controllers
include enough local memory to create an on-board cache that may be
sufficiently large to store an entire track at a time. Once a seek is
performed, the track is read into the disk cache starting at the sector under
the disk head (alleviating latency time). The disk controller then transfers
any sector requests to the operating system. Once blocks make it from the
disk controller into main memory, the operating system may cache the
blocks there. Some systems maintain a separate section of main memory
for a disk cache, where blocks are kept under the assumption that they will
be used again shortly. LRU is a reasonable general-purpose algorithm for

11.6 Recovery • 403

block replacement. Other systems (such as Sun's version of UNIX) treat all
unused physical memory as a buffer pool that is shared by the paging
system and the disk-block caching system. A system performing many 110

operations will use most of its memory as a block cache, whereas a system
executing many programs will use more memory as paging space.

Some systems optimize their disk cache by using different replacement
algorithms, depending on the access type of the file. A file being read or
written sequentially should not have its blocks replaced in LRU order,
because the most recently used block will be used last, or perhaps never.
again. Instead, sequential access may be optimized by techniques known
as free-behind and read-ahead. Free-behind removes a block from the buffer
as soon as the next block is requested. The previous blocks are not likely to
be used again and waste buffer space. With read-ahead, a requested block
and several subsequent blocks are read and cached. It is likely that these
blocks will be requested after the current block is processed. Retrieving
these blocks from the disk in one transfer and caching them saves a
considerable amount of time. Even a track cache on the controller may not
eliminate the need for read-ahead on a multiprogrammed system, since
some other process may request a transfer at another track before the next
sequential request takes place.

Another method of·- using main memory to improve performance is
common on personal computers. A section of memory is set aside and
treated as a virtual disk, or RAM disk. In this case, a RAM disk device driver
accepts all the standard disk operations, but performs those operations on
the memory section, instead of on a disk. All disk operations can then be
executed on this RAM disk and, except for the lightning-fast speed, users
will not notice a difference. Unfortunately, RAM disks are useful for only
temporary storage, since a power failure or a reboot of the system will
usually erase them. Commonly, temporary files such as intermediate
compiler files are stored there.

The difference between a RAM disk and a disk cache is that the
contents of the RAM disk are totally user controlled, whereas those of the
disk cache are under the control of the operating system. For instance, a
RAM disk will stay empty until the user (or programs, at a user's direction)
creates files there. Figure 11.9 shows the possible caching loca.tions in a
system.

11.6 • Recovery

Since files and directories are kept both in main memory and on disk, care
must taken to ensure that system failure does not result in loss of data or
in data inconsist~ncy.

404 11 Chapter 11: File-System Implementation

CPU controller

main memory

Figure 11.9 Various disk-caching locations.

11.6.1 Consistency Checking

As discussed in Section 11.4, part of the directory information
main memory (cache) so as to speed up access. The directory

disk

in main memory is generally more up to date than is the coJrresponctu
information on tl)e disk, because the write of cached directory mtorrna1:10r
to disk does not necessarily occur as soon as the update takes place.

Consider the possible effect of a computer crash. In this case,
opened files is generally lost, and with it any changes in the ,1"~''"'"'''0"
opened files. This event can leave the file system in an

state: The actual state of some files is not as described in the
structure. Frequently, a special program is run at reboot time to
and correct disk inconsistencies.

The consistency checker compares the data in the directory
the data blocks on disk, and tries to fix any inconsistencies it
allocation and free-space management algorithms dictate what
problems the checker can find, and how successful it will be in
problems. For instance, if linked allocation is used and there is a
any block to its next block, then the entire file can be
the data blocks, and the directory structure can be recreated. The
directory ~ntry on an indexed allocation system could be
because the data blocks have no knowledge of one another.
reason, UNIX caches directory entries for reads, but any data
results in an inode update generally causes the inode block to be ur-..·'*'*'"''n
disk before the data themselves are.

11.6.2 Backup and Restore

Because magnetic disks fail and loss of data may occur, care must
to ensure that the data are not lost forever. To this end, system
can be used to back up data from disk to another storage device,

11.7 Summary • 405

floppy disk, magnetic tape, or optical disk. Recovery from the loss of an
individual file, or of an entire disk, may then be a matter of restoring the
data from backup.

To minimize the copying needed, we can use information from each
file's directory entry. For instance, if the backup program knows when the
last backup of a file was done, and the file's last write date in the directory
indicates that the file has not changed since then, then the file does not
need to be copied again. A typical backup schedule may then be as
follows:

• Day 1. Copy to a backup medium all files from the disk.

• Day 2. Copy to another medium all files changed since day 1.

• Day 3. Copy to another medium all files changed since day 2.

• Day N. Copy to another medium all files changed since day N- 1.
Then go back to Day 1.

The new cycle can have its backup written over the previous set, or onto a
new set of backup media. In this manner, we can restore an entire disk by
starting restores with the backup from day 1 and continuing through day
N. Of course, the larger N 1s, the more tapes or disks need to be read for
a complete restore. An added advantage of this backup cycle is that we
can restore any file accidently deleted during the cycle by retrieving the
deleted file from the backup of the previous day. The length of the cycle
is a compromise between the amount of backup medium needed and the
number of days back from which a restore can be done.

11.7 • Summary

The file system resides permanently on secondary storage, which has the
main requirement that it must be able to hold a large amount of data,
permanently. The most common secondary-storage medium is the disk.

Files can be allocated space on the disk in three ways: through
contiguous, linked, or indexed allocation. Contiguous allocation can suffer
from external fragmentation. Direct-access files cannot be supported with
linked allocation. Indexed allocation may require substantial overhead for
its index block. There are many ways in which these algorithms can be
optimized. Contiguous space may be enlarged through extents to increase

406 • Chapter 11: File-System Implementation

flexibility and to decrease external fragmentation. Indexed allocation can
be done in clusters of multiple blocks to increase throughput and to reduce
the number of index entries needed. Indexing in large clusters is similar to
contiguous allocation with extents.

Free-space allocation methods also influence the efficiency of use of
disk space, the performance of the file system, and the reliability of
secondary storage. The methods used include bit vectors and linked lists.
Optimizations include grouping, counting, and the FAT, which places the
linked list in one location.

The directory-management routines must consider efficiency,
performance, and reliability. A hash table is the most frequently used
method; it is fast and efficient. Unfortunately, damage to the table or a
system crash could result in the directory information not corresponding to
the disk's contents. A consistency checker - a systems program - can be
used to repair the damage.

• Exercises

11.1 Consider a file currently consisting of 100 blocks. Assume that the
file control block (and the index block, in the case of indexed
allocation) is already in memory. Calculate how many disk 110

operations are required for contiguous, linked, and indexed (single­
level) allocation strategies, if, for one block, the following conditions
hold. In the contiguous-allocation case, assume that there is no
room to grow in the beginning, but there is room to grow in the
end. Assume that the block information to be added is stored in
memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e: The block is removed from the middle.

f. The block is removed from the end.

11.2 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the
system reconstruct the free-space list? Explain your answer.

b. Suggest a scheme to ensure that the pointer is never lost as a
result of memory failure.

Exercises • 407

11.3 What problems could occur if a system allowed a file system to be
mounted simultaneously at more than one location? ·

11.4 Why must the bit map for file allocation be kept on mass storage,
rather than in main memory?

11.5 Consider a system that supports the strategies of contiguous, linked,
and indexed . allocation. What criteria should be used in deciding
which strategy is best utilized for a particular file~

11.6 Consider a file system on a disk that has both logical and· physical
block sizes of 512 bytes. Assume that the information about each
file is already in memory. For each of the three allocation strategies
(contiguous~ linked, and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished in
this system? (For the indexed allocation, assume that a file is
always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed
was block 10) and want to access logical block 4, how many
physical blocks must be read from the disk?

11.7 One problem with contiguous allocation is that the user must
preallocate enough space for each file. If the file grows to be larger
than the space allocated for it, special actions must be taken. One
solution to this problem is to define a file structure consisting of an
initial contiguous area (of a specified size). If this area is filled, the
operating system automatically defines an overflow area that is
linked to the ·initial contiguous area. If the overflow area is filled,
another overflow area is allocated. Compare this implementation of
a file with the standard contiguous and linked implementations.

11.8 Fragmentation on a storage device could be eliminated by
recompaction of the information. Typical disk devices do not have
relocation or base registers (such as are used when memory is to be
compacted), so how can we relocate files? Give three reasons why
recompacting and relocation of files often are avoided.

11.9 How do caches help improve performance? Why do systems not
use more or larger caches if they are so useful?

11.10 In what situations would using memory as a RAM disk be more ·
useful than using it as a disk cache?

11.11 Why is it advantageous for the user for ah operating system to
dynamically allocate its internal tables? What are the penalties to
the operating system for doing so?

408 • Chapter 11: File-System Implementation

11.12 Consider the following backup scheme:

• Day 1. Copy to a backup medium all files from the disk.

• Day 2. Copy to another medium all files changed since day 1.

• Day 3. Copy to another medium all files changed since day 1.

This contrasts to the schedule given in Section 11.6.2 by having all
subsequent backups copy all files modified since the first full
backup. What are the benefits of this system over the one in Section
11.6.2? Are restore operations made easier or more difficult? Explain
your answer.

Bibliographic Notes

The Apple Macintosh disk-space management scheme was discussed in
Apple [1987, 1991]. The MS-DOS FAT system was explained in Norton and
Wilton [1988], and the OS/2 description is found in [Iacobucci 1988]. These
operating systems use the Motorola MC68000 family [Motorola 1989a] and
the intel 8086 [Intel 1985a, 1985b, 1986, 1990] CPUs, respectively. IBM
allocation methods were described in Deitel [1990]. The internals of the
BSD UNIX system were covered in full in Leffler et al. [1989]; McVoy arid
Kleiman [1991] presented optimizations to these methods made in SunOS.

Disk file allocation based on the buddy system was discussed by Koch
[1987]. A file-organization scheme that guarantees retrieval in one access
was discussed by Larson and Kajla [1984].

Disk caching was discussed by McKeon [1985] and Smith [1985].
Caching in the experimental Sprite operating system was described in
Nelson et al. [1988]. General discu~sions concerning mass-storage
technology were offered by Chi [1982] and Hoagland [1985]. Folk and
Zoellick [1987] covered the gamut of file structures.

CHAPTER 12

SECONDARY
STORAGE
STRUCTURE

The file system can be logically viewed as consisting of three parts. In
Chapter 10, we saw the user and programmer interface to the file system.
In Chapter 11, we described the internal data structures and algorithms
used by the operating system to implement this interface. In this chapter
we discuss the lowest level of the file system - the secondary storage
structure. We first describe disk-head-scheduling algorithms. Next we
discuss disk formatting, and management of boot blocks, damaged blocks,
and swap space. We end with coverage of disk reliability and stable­
storage.

12.1 • Disk Structure

Disks provide the bulk of secondary storage for modern computer systems.
Magnetic tape was used as an early secondary-storage medium. Although
it is relatively permanent, and can hold large numbers of data, magnetic
tape is slow in comparison to the access time of main memory. Even more
important, magnetic tape is limited to sequential access. Thus, it is
unsuitable for providing the random access needed by files. Tapes are
currently used mainly for backup, for storage of infrequently used
information, and as a medium for transferring information from one
system to another. ·

Information on the disk is referenced by a multipart address, which
includes the drive number, the surface, the track, and the sector. All the
tracks on one drive that can be accessed without the heads being moved
(the equivalent tracks on the different surfaces) constitute a cylinder.

409

410 • Chapter 12: Secondary-Storage Structure

Within a track, information is stored in sectors. IBM mainframes allow
the user to select the size of the sector, but most other disks have a sector
size fixed by hardware. A sector is the smallest unit of information that ,can
be read from or written to the disk. Depending on the disk drive, sectors
vary from 32 bytes to 4096 bytes; usually, they are 512 bytes. There are 4 to
32 sectors per track, and from 20 to 1500 tracks per disk surface. To access
a sector, we must specify the surface, track, and sector. To help the disk
drive to locate its sector location, the drive records sector marks between
the sectors. The read-write heads are moved to the correct track (seek
time) and are electronically switched to the correct surface; then, we wait
(latency time) for the requested sector to rotate below the heads. Seek
time is dependent on the time it takes for the disk heads to move, so the
farther apart the tracks are, the longer the seek time is.

110 transfers between memory and disk are performed in units of one
or more sectors, called blocks, to improve I/0 efficiency. Addressing a
particular block requires a track (or cylinder) number, a surface number,
and a sector number. Thus, the disk can be viewed as a three-dimensional
array of blocks. Commonly, this array is treated by the operating system
as a one-dimensional array of blocks. Typically, block addresses increase
through all blocks on a track, then through all the tracks in a cylinder, and
finally from cylinder 0 to the last cylinder on the disk. We use s to denote
the number of sectors per track, and t to denote the number of tracks per
cylinder; clearly, we can convert from a disk address of cylinder i, surface
j, sector k to a one-dimensional block number b, by

b = k + S X (j + i X t).

Notice that, with this mapping, accessing block b + 1 when the last block
accessed was b requires a seek only when b was the last block of one
cylinder and b + 1 is the first block of the next cylinder. Even in this case,
the head is moved only one track.

12.2 • Disk Scheduling

Because most jobs depend heavily on the disk for program loading and
input and output files, it is important that disk service be as fast as
possible. The operating system can improve on the average disk service
time by scheduling the requests for disk access.

Disk speed is composed of three parts. To access a block on the disk,
the system must first move the head to the appropriate track or cylinder.
This head movement is called a seek, and the time to complete it is seek
time. Once the head is at the right track, it must wait until the desired
block rotates under the read-write head. This delay is latency time. Finally,

12.2 Disk Scheduling • 411

the actual transfer of data between the disk and main memory can take
place. This last part is transfer time. The total time to service a disk request
is the sum of the seek time, latency time, and transfer time.

As we discussed in Chapter 2, every 110 device, including each disk
drive, has a queue of pending requests. Whenever a process needs 110 to or
from the disk, it issues a system call to the operating system. The request
specifies several pieces of necessary information:

• Whether this operation is input or output

• What is the disk address (a block number, translated by the file
organization module into drive, cylinder, surface, and sector
coordinates)

• What "is the memory address to copy to or from

• What is the amount of information to be transferred (a byte count)

If the desired disk drive and controller are available, the request can be
serviced immediately. However, while the drive or controller is serving
one request, any additional requests, normally from other processes, will
need to be queued.

For a multiprogramming system with many processes, the disk queue
may often be nonempty. Thus, when a request is complete, we must pick
a new request from the queue and service it. A disk service requires a
move of the head to the desired track, then a wait for latency, and finally a
transfer of the data.

12.2.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, first-come, first-served
(FCFS) scheduling. This algorithm is easy to program and is intrinsically
fair. However, it may not provide the best (average) service. Consider, for
example, an ordered disk queue with requests involving tracks

98, 183, 37, 122, 14, 124, 65, and 67,

listed first (98) to last (67). If the read -write head is initially at track 53, it
will first move from 53 to 98, then to 183, 37, 122, 14, 124, 65, and finally
to 67, for a total head movement of 640 tracks. This schedule is
diagrammed in Figure 12.1.

The problem with this schedule is illustrated by the wild swing from
122 to 14 and then back to 124. If the requests for tracks 37 and 14 could be
serviced together, before or after the requests at 122 and 124, the total
head movement could be decreased substantially and the average time to
service each request would decrease, improving disk throughput.

412 • Chapter 12: Secondary-Storage Structure

0 14

queue= 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 53 6567 98 122124 183 199

Figure 12.1 FCFS disk scheduling.

12.2.2 SSTF Scheduling

It seems reasonable to service together all requests close to the current
head position, before moving the head far away to service another request.
This assumption is the basis for the shortest-seek-time-first (SSTF) disk­
scheduling algorithm. The SSTF algorithm selects the request with the
minimum seek time from the current head position. Since seek time is
generally proportional to the track difference between the requests, we
implement this approach by moving the head to the closest track in the
request queue.

For our example request queue, the closest request to the initial head
position (53) is at track 65. Once we are at track 65, the next closest request
is at track 67. At this point, the distance to track 37 is 30, whereas the
distance to 98 is 31. Therefore, the request at track 37 is closer and is
served next. Continuing, we service the request at track 14, then 98, 122,
124, and finally at 183 (Figure 12.2). This scheduling method results in a
total head movement of only 236 tracks - little more than one-third of the
distance needed for FCFS scheduling. This algorithm would result in a
substantial improvement in average disk service.

SSTF scheduling is essentially a form of shortest-job-first (SJF)
scheduling, and, like SJF scheduling, it may cause starvation of some
requests. Remember that, in a real system, requests may arrive at any
time. Assume that we have two requests in the queue, for 14 and 186. If a
request near 14 arrives while we are servicing that request, it will be
serviced next, making the request at 186 wait. While this request is being
serviced, another request close to 14 could arrive. In theory, a continual
stream of requests near one another could arrive, causing the request for

0 14

12.2 Disk Scheduling • 413

queue= 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183 199

Figure 12.2 SSTF disk scheduling.

track 186 to wait indefinitely. This scenario is statistically unlikely, but is
possible.

Finally, the SSTF algorithm, although a substantial improvement over
the FCFS algorithm, is not optimal. For example, if we move the head from
53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183, we can reduce the
total head movement to 208 tracks.

12.2.3 SCAN Scheduling

Recognition of the dynamic nature of the request queue leads to the SCAN
algorithm. The read -write head starts at one end of the disk, and moves
toward the other end, servicing requests as it reaches each track, until it
gets to the other end of the disk. At the other end, the direction of head
movement is reversed and servicing continues. The head continuously
scans the disk from end to end. We again use our example.

Before applying SCAN to scheduling,

98, 183, 37, 122, 14, 124, 65, and 67

we need to know the direction of head movement, in addition to the
head's last position. If the head was moving toward 0, the head movement
would service 37 and 14 as it moved to 0. At track 0, the head would
reverse and move to the other end of the disk, servicing the requests at 65,
67, 98, 122, 124, and 183 as it moves (Figure 12.3). If a request arrives in
the queue just in front of the head, it will be serviced almost immediately,
whereas a request arriving just behind the head will have to wait until the

414 • Chapter 12: Secondary-Storage Structure

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 53 6567 98 122124 183 199

Figure 12.3 SCAN disk scheduling.

head moves to the end of the disk, reverses direction, and returns, before
being serviced.

The SCAN algorithm is sometimes called the elevator algorithm, since it is
similar to the behavior of elevators as they service requests to move from
floor to floor in a building. Another analogy is that of shoveling snow
from a sidewalk during a snowstorm. Starting from one end, we remove
snow as we move toward the other end. As we move, new snow falls
behind us. At the far end, we reverse direction and remove the newly
fallen snow behind us.

Assuming a uniform distribution of requests for tracks, consider the
density of requests when the head reaches one end and reverses direction.
At this point, there are relatively few requests immediately behind the
head, since these tracks have recently been serviced. The heaviest density
of requests is at the other end of the disk. These requests have also waited
the longest.

12.2.4 C-SCAN Scheduling

A variant of SCAN scheduling that is designed to provide a more uniform
wait time is C-SCAN (circular SCAN) scheduling. As does SCAN scheduling,
C-SCAN scheduling moves the head from one end of the disk to the other,
servicing requests as it goes. When it reaches the other end, however, it
immediately returns to the beginning of the disk, without servicing any
requests on the return trip (Figure 12.4). The C-SCAN scheduling algorithm
essentially treats the disk as though it were circular, with the last track
adjacent to the first one.

0 14

12.2 Disk Scheduling • 415

queue= 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 53 6567 98 122124 183 199

Figure 12.4 C-SCAN disk scheduling.

12.2.5 LOOK Scheduling

Notice that, as we described them, both SCAN and C-SCAN scheduling
always move the head from one end of the disk to the other. In practice,
neither algorithm is implemented in this way. More commonly, the head is
only moved as far as the last request in each direction. As soon as there
are no requests in the current direction, the head movement is reversed.
These versions of SCAN and C-SCAN scheduling are called LOOK scheduling
(look for a request before moving in that direction) and C-LOOK scheduling
(Figure 12.5).

12.2.6 Selecting a Disk-Scheduling Algorithm

Given so many disk-scheduling algorithms, how do we choose a particular
algorithm? SSTF scheduling is common and has a natural appeal. The SCAN

and C-SCAN scheduling algorithms are more appropriate for systems that
place a heavy load on the disk. It is possible to define an optimal
algorithm, but the computation needed for an optimal schedule may not
justify the savings over SSTF or SCAN scheduling.

With any scheduling algorithm, however, performance depends
heavily on the number and types of requests. In particular, if the queue
seldom has more than one outstanding request, then all scheduling
algorithms are effectively equivalent. In this case, FCFS scheduling is also a
reasonable algorithm.

Notice also that the requests for disk service can be greatly influenced
by the file-allocation method. A program reading a contiguously allocated

416 • Chapter 12: Secondary-Storage Structure

0 14

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183 199

Figure 12.5 C-LOOK disk scheduling.

file will generate several requests that are close together on the disk,
resulting in limited head movement. A linked or indexed file, on the other
hand, may include blocks that are widely scattered on the disk, resulting
in better disk-space utilization at the expense of head movement.

The location of directories and index block~ also is important. Since
every file must be opened to be used, and opening a file requires searching
the directory structure, the directories will be accessed frequently. Placing
the directories halfway between the inner and outer edge of the disk,
rather than at either end, can significantly reduce disk-head movement.
For instance, if a directory entry is in the first sector and a file's data are in
the last sector, then the disk head needs to move the entire width of the
disk. If the directory entry is more toward the middle, the head will have
to move at most one-half the width.

It should be clear that, as a result of these considerations, the disk­
scheduling algorithm, like all others, should be written as a separate
module of the operating system, allowing it to be removed and to be
replaced with a different algorithm if necessary. Either FCFS or SSTF
scheduling is a reasonable initial choice. In fact disk controller
manufacturers have been helping operating system designers by moving
head scheduling algorithms into the hardware itself. The operating system
sends requests to the controller in FCFS order, and the controller queues
them and executes them in some more optimal order. Unfortunately, if
the operating system is unaware of the controller's methodology, the
operating system may be ordering the requests in a way it expects to be
optimal, and the controller may be rearranging them into the order it likes
best. The result could be decreased, rather than increased, performance!

'·"
12.3 Disk Management • 417

12.3 • Disk Management

There are several other aspects of disk management for which an operating
system is responsible. Here we discuss disk initialization, booting from
disk, and bad-block recovery.

12.3.1 Disk Formatting
When a magnetic disk is manufactured, it is essentially a blank slate, just a
platter or platters of magnetically changeable medium. Before the
computer can make use of the disk, the disk must be broken into the
sectors that the computer can understand. This process is called physical
formatting. When formatted, a disk consists of a set of sectors on each
track the head can address. Each sector has a header containing the sector
number (so the disk knows when it has found the correct sector) and space
for an error correcting code (ECC). When data are written to the sector, the
ECC is updated with a value calculated from the values of each byte written
into the sector. When the sector is read, the ECC is recalculated and is
compared with the stored value. If the stored and calculated numbers are
different, the data are corrupted and the disk sector may be bad (see
Section 12.3.3). This calculation and comparison are done automatically by
the controller.

Most hard disks come physically formatted from the factory. The
operating system still needs to partition and to format logically a disk before
it can use that disk. This logical formatting writes an initial, blank
directory onto the disk, and may install a FAT, inodes, free space lists, or
any other information the system needs to track the disk's contents. Some
database systems do not require their partitions to be logically formatted.
Rather, they use the raw disk and bypass all the operating system 110 calls.
This bypassing results in performance gain at the cost of duplicating some
operating-system code.

12.3.2 Boot Block
For a computer to start running- for instance, when it is powered up or
rebooted - it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. It initializes all aspects
of the system, from CPU registers to device controllers to memory contents.
The bootstrap program must know how to load the operating system and
to start it executing. To accomplish this goal, the bootstrap program must
locate the operating system kernel, load it into memory, and jump to an
initial address.

How does the computer know the location of the bootstrap program to
start it running? Some systems, such as the Apple Macintosh, store most

418 • Chapter 12: Secondary-Storage Structure

of the bootstrap in read-only memory (ROM). This location is convenient,
because ROM needs no initialization, and so is always available. The
problem is that changing the bootstrap requires changing the ROM
hardware chips. For this reason, most systems store a little of the
bootstrap in ROM, and store the remainder in the boot blocks at a fixed
location on a disk. This disk is known as the boot disk or system disk; the
system cannot function without it.

The code stored in ROM requests the block transfer from the disk
controller (no device drivers are loaded at this point), loads data from the
boot blocks into memory, and starts executing the new code. Changes to
the boot program are made by rewriting of the boot blocks. The program
stored in the boot blocks is more sophisticated than is the one stored in the
ROM, and is able to load the entire operating system from a nonfixed
location on disk, and to start the operating system running. It may be able
to do so with very little code. For example, the IBM PC uses one 512-byte
block for its boot program (Figure 12.6).

12.3.3 Bad Blocks
13ecause disks have moving parts and small tolerances (recall that the
magnetic-disk read-write head floats just above the disk surface), they are
prone to failure. Sometimes, the failure is complete, and the disk needs to
be replaced, and its contents restored from backup media to the
replacement. More frequently, one or more blocks become unreadable and
unwritable. Most disks even come from the factory with bad blocks.
Depending on the disk and controller in use, these blocks are handled in a
variety of ways.

On the IBM PC family with IDE drives, bad blocks must be handled
manually. The format command finds bad blocks when the disk is
logically formatted, and writes a special value into the FAT entries to tell

sector 0
~~~~,:-..-~~ 

sector 1 

Figure 12.6 MS-DOS disk layout. 



12.4 Swap-Space Management • 419 

the allocation routines not to use those blocks. If blocks go bad during 
normal operation, a special program is run manually to search for new bad 
blocks and to lock them away as before. Data that resided on the bad 
blocks usually are lost. 

The SCSI disk and controller, used in high-end- PCs and most 
workstations, are smarter about bad-block recovery. The controller keeps a 
list of bad blocks on the disk, initialized during physical format and 
updated over the life of the disk. The controller also sets aside sectors not 
available to the operating system. For each bad sector, the controller can be 
told to replace it logically with a sector from this pool. This scheme is 
known as slipping or forwarding the sector. Thus, the operating system 
might request a write of sector 10 on track 12, but the controller would 
notice that sector is bad and would instead write sector 27 on track 153. A 
typical bad-sector transaction might then be as follows: 

• The operating system requests sector 5, track 20. 

• The controller calculates the ECCs and finds the sector is bad. It reports 
this finding to the operating system. 

• The next time that the system is rebooted, a special command is run to 
tell the SCSI controller to replace the bad sector with a good one. 

• The next time the system requests sector 5, track 20, the request is 
translated into the replacement sector's address by the controller. 

Note that such a redirection by the controller could invalidate any 
optimization by the disk-scheduling algorith1nt As a solution, some disks 
place replacement sectors in each cylinder, and then try to slip a sector 
with another from the same cylinder. Since a low percentage of sectors is 
bad, little performance is actually lost. An alternative is to move the disk­
scheduling algorithm into the disk controller, since it knows the "real" 
location of all blocks on the disk. · 

The reason that the correction is not done totally automatically is that 
the data in the bad block usually are lost, and the file must be repaired 
either manually or through a file restoration. 

12.4 • Swap-Space Management 

Swap-space management is another low-level task of the operating system. 
Virtual memory requires the use of disk as an extension of memory. 
Unfortunately, disk access is much slower than memory access. Because 
swap space has a large impact on system performance, its design and 
implementation are focused on providing the best throughput for the 
virtual memory system. In this section we discuss how swap space is used, 
where swap space is located on disk, and how the swap space is managed. 



420 • Chapter 12: Secondary-Storage Structure 

12.4.1 Swap-Space Use 
Swap space is used in various ways by different operating systems, 
depending upon the implemented memory management algorithms. For 
instance, systems which implement swapping may use swap space to hold 
the entire process image, including the code and data sections. Paging 
systems may simply store pages which have been pushed out of main 
memory. The amount of swap space needed on a system can therefore 
vary depending on the amount of memory it is backing and the way in 
which it is used. On personal computers, only a few megabytes of disk 
space may be needed. On UNIX workstations and minicomputers, tens or 
hundreds of megabytes may be used. 

Some operating systems, such as UNIX, allow the use of multiple swap 
spaces. These extra swap spaces are usually put on separate disks, so the 
load placed on the I/O system by paging and swapping can be balanced 
over the system's IIO devices. 

Note that it is safer to overestimate than to underestimate swap space, 
because if a system runs out of swap space it may be forced to abort 
processes or crash entirely. Overestimation results in wasted disk space 
which could otherwise be used for files, but does no other harm. 

12.4.2 Swap-Space Location 

There are two places a swap space can reside. Swap space can be carved 
out of the normal file system, or can be a separate disk partition. If the 
swap space is simply a large file within the file system (as in Microsoft 
Windows), normal file system routines can be used to create and destroy 
it, name it, and allocate its space. Adding another swap space is as easy as 
creating another file. This approach is therefore easy to implement. 
Unfortunately, it is also inefficient. Navigating the directory structure and 
the disk allocation data structures takes time, and (potentially) extra disk 
accesses. External fragmentation may also greatly increase swap space 
read and write times as reading an entire process image can require 
multiple seeks. Performance can be optimized by using caches to hold the 
block location information, and using special tools to allocate sequential 
blocks for this file, but still there is the added cost of traversing the in­
cache data structures. 

More commonly, swap space is created in a separate disk partition. 
No file system or directory structure is placed on this space. Rather, 
separate swap-space management algorithms are used to allocate and 
deallocate the blocks. The advantage of this method is its speed. The 
algorithms are optimized for very fast storage and retrieval of data, rather 
than storage efficiency. Internal fragmentation is increased, but this 
tradeoff is acceptable because data in swap space generally live for much 
shorter amounts of time than files in the file system, and this data is 



12.4 Swap-Space Management • 421 

accessed much more frequently than that in the file system. 
Unfortunately, this raw method requires that space be set aside during file 
system creation. Adding more swap space can only be done by destroying 
extant file systems or adding new disks. 

Some systems are flexible and allow both raw and file-system based 
swap spaces. Solaris 2 is an example of this. The policy and 
implementation are separate, allowing the machine's administrator to 
decide which type to use. The tradeoff is between convenience of 
allocation and management, and system performance. 

12.4.3 Swap-Space Management 
As an example of the methods used to manage swap space, we now follow 
the evolution of swapping and paging in UNIX. As fully discussed in 
Chapter 19, UNIX started with an implementation of swapping. Entire 
processes were written to swap space or read into memory, contiguously, 
at one time. UNIX moved to a combination of swapping and paging as 
paging hardware became available. 

In 4.3BSD, 1 swap space is allocated to a process when the process is 
started. Enough space is set aside to hold the instruction pages (known as 
the text pages, or the text segment) and the data segment of the process. In 
this way, a process will generally not run out of swap space while it 
executes. When a process starts, its text is paged in from the file system. 
These pages are written out to swap as needed, and read back in from 
there, so the file system is consulted once for each text page. Pages from 
the data segment are read in from the file system, or created (if they are 
uninitialized), and are written to swap space and paged back in as needed. 
One optimization is that processes with the same text pages (for instance, 
two users running the same editor) share these pages, both in physical 
memory and in swap space. If one process has already paged the blocks 
in from the file system arid out to the swap space, the other process can 
get them directly from the swap space. 

Two per-process swap maps are used by the kernel to track swap space 
use. The text segment is a fixed size, so its swap space is allocated in 512K 
chunks, except for the last chunk which holds the remainder of the pages, 

-in lK increments (Figure 12.7). 
The data segment swap map is more complicated, because the data 

segment can grow over time. The map is of fixed size, but contains swap 
addresses for blocks of varying size. Given index i, a block pointed to by 
swap map entry i is of size 2; * 16K, to a maximum of 2 megabytes. This 
data structure is shown in Figure 12.8. (The block size minimum and 
maximum are variable, and can be changed at system reboot.) If the last 
block is full and the process grows, a new block is allocated in swap space. 
This scheme results in small processes using only small blocks and 



422 • Chapter 12: Secondary-Storage Structure 

map 

Figure 12.7 4.3BSD text segment swap map. 

m1n1m1Z1ng fragmentation. The blocks of large processes can be quickly 
found, and the swap map remains rather small. 

In Solaris 1 (Sunos 4), some changes were made to standard UNIX 
methods to improve efficiency and reflect technological changes. When a 
process executes, text segment pages are brought in from the file system, 
accessed in main memory, and thrown away if selected for pageout. It is 
more efficient to read a page back in from the file system than to write it 
and then read it from swap space. 

More changes were made in Solaris 2. · The largest change is in the 
time of swap-space allocation. Solaris 2 allocates swap space only when a 
page is forced out of memory, not when the page is allocated. This is an 
improvement on modern systems which have more main memory than 
older systems, and tend to page less. 

12.5 • Disk Reliability 

Disks used to be the least reliable component of a system. They still have 
relatively high failure rates, and their failure causes a loss of data and 
significant downtime while the disk is replaced and data are restored. The 
recovery in case of a disk crash may take hours, as backup copies of the 
data on tape are transferred to the disk. Under normal circumstances, 
these restored data are not a precise image of the disk when it crashed. 
Backups are usually performed daily or weekly, meaning that any changes 
to the data since the last backup are lost if a disk crashes. Improving disk 
speed and reliability is therefore an important topic in current research. 

Several improvements in disk-use techniques have been proposed. 
These methods involve the use of multiple disks working cooperatively. 
To improve speed, researchers have developed disk striping (or 
interleaving), a technique now in use on a few systems. A group of disks 
is treated as one storage unit, with each block broken into several 
subblocks. Each subblock is stored on a separate disk. The time required to 
transfer one block into memory decreases drastically, since the disks 



12.5 Disk Reliability • 423 

map 

256K 

Figure 12.8 4.3BSD data segment swap map. 

transfer their subblocks in parallel, fully utilizing their 110 bandwidth, or 
transfer capacity. This decrease is especially notable if the disks are 
synchronized such that there is no latency between the subblock-access on 
each drive. This advantage is also magnified if many small, inexpensive 
disks are used in place of a few, large, expensive disks. The access rate 
improves because seeks occur in parallel and more data can be transferred 
after the seek. 

This idea was the basis for the development of redundant arrays of 
inexpensive disks (RAID), which improves performance, especially the 
price-performance ratio, and provides for the duplication of data to 
improve reliability. Redundancy can be organized in various ways, with 
differing performance and cost efficiencies. 

The simplest RAID organization, called mirroring or shadowing, consists 
of keeping a duplicate copy of each disk. This solution is, of course, 
costly, because twice as many disks are used to store the same number of 
data. In the most complex RAID organization, block interleaved parity, data 
are written to each disk in the array in a block unit, just as in more normal 
configurations. However, an exfra block of parity data is written. This 
parity block is the parity of all the equivalent blocks on each disk in the 
array. For instance, if there are eight disks in the array, then sector 0 of 
disks 1 through 7 have their parity computed and stored on disk 8. The 
computation takes place on a bit level for each byte, just as memory papty 
is computed. If one disk crashes, one of the data bits is essentially erased 
(an erasure error), but can be recomputed from the other data bits plus the 
parity. Thus, a single disk crash no longer results in loss of data (although 
multiple simultaneous crashes do have that result). 

Of course, use of RAID improves speed by virtue of the use of multiple 
disks and controllers. This gain is less than that realized from pure disk 
striping, however, since the parity block must also be read or written for 
each block access, and the parity computation mq.st be performed. We can 
decrease this overhead by distributing the parity over all disks, rather than 
setting aside one parity disk. Since · the tradeoff between speed and 
reliability is a reasonable one, RAID use is becoming more commorr, with 



424 • Chapter 12: Secondary-Storage Structure 

many vendors either researching or producing RAID hardware and 
software. It has been shown that, with an array of 100 inexpensive disks 
and 10 parity disks, the mean time to data loss (MTDL) of the array is 90 
years, compared to the 2 or 3 years of standard, large, expensive disks. 

12.6 • Stable-Storage Implementation 

In Chapter 6, we introduced the concept of a write-ahead log, which 
required the availability of stable storage. Information residing in stable 
storage is never lost. To implement such a storage, we need to replicate the 
needed information on more than nonvolatile storage media (usually disk) 
with independent failure modes. We also need to update the information 
in a controlled manner to ensure that failure during data transfer does not 
damage the needed information. For the remainder of this section, we will 
discuss the issue of how the storage media can be protected from failure 
during data transfer. 

Block transfer between memory and disk storage can result in: 

• Successful completion: The transferred information arrived safely at its 
destination. 

• Partial failure: A failure occurred in the midst of transfer and the 
destination block has incorrect information. 

• Total failure: The failure occurred sufficiently early during the transfer 
so that tll.e destination block remains intact. 

We require that if a data-transfer failure occurs, the system detects it 
and invokes a recovery procedure to restore the block to a consistent state. 
To do so, the system must maintain two physical blocks for each logical 
block. An output operation is executed as follows: 

1. Write the information onto the first physical block. 

2. When the first write successfully completes, write the same 
information onto the second physical block. 

3. The output is complete only after the second write successfully 
completes. 

During recovery from a failure, each pair of physical blocks is 
examined. If both are the same and no detectable error exists, then no 
further actions are necessary. If one block contains a detectable error, then 
we replace its content with the value of the second block. If both blocks 
contain no detectable error, but they differ in content, then we replace the 



12.7 Summary • 425 

content of the first block with the value of the second. This recovery 
procedure ensures that a write to stable storage either succeeds completely 
or results in no change. The attempt to write to stable storage succeeds 
only if all copies are written. 

this procedure can be extended easily to allow the use of ari. arbitrarily 
large number of copies of each block of stable storage. Although a large 
number of copies further reduces the probability of a failure, it is usually 
reasonable to simulate stable storage with only two copies. 

12.7 • Summary 

Disk systems are the major secondary-storage 110 device on most 
computers. Requests for disk I/O are generated both by the file system and 
by virtual-memory systems. Each request specifies the address on the disk 
to be referenced, which is in the form of a block number. The lower levels 
of the file..;.system manager convert this address into the hardware-level 
partition, cylinder, surface, and sector number; 

Moving-head disk-scheduling algorithms are designed to minimize 
total head movement; they include the FCFS, SSTF, SCAN, C-SCAN, LOOK, and 
C-LOOK algorithms. 

Disk efficiency is still an active area of research. For instance, Hewlett­
Packard is experimenting with making disk controllers smarter, and the 
University of California at Berkeley has a log-based file system that uses 
the extreme approach of treating the disk as though it were a sequential­
access device, greatly reducing disk seeks and fragmentation. 

In order to reduce fragmentation the system can back up and restore 
the entire disk or partition. The blocks are read from their scattered 
locations, and the restore writes them back more contiguously. Some 
systems (such as MS-DOS) have utilities that will scan the disk and then 
move blocks around to decrease the fragmentation. The performance 
increases realized from these techniques can be large, but the system is 
generally unusable while the techniques operate. 

The operating system also must manage the disk blocks. First, a disk 
must be formatted to create the blocks on the raw hardware. Then boot 
blocks are added to store the system's boot-strap code. Finally, when a 
block becomes corrupt, the system must have a way to logically replace 
that block with another, good block. 

Because efficient swap space use is a key to performance, systems 
frequently bypass the file system structure and use disk blocks rri.ore 
directly to store memory pages which do not fit within physical memory. 
Some systems just use a .file within the file system for this, but there can 
be a performance penalty. Other systems allow the user or system 
administrator to make the decision by providing both options. 



426 • Chapter 12: Secondary-Storage Structure 

The write-ahead log scheme requires the availability of stable storage. 
To implement such a storage, we need to replicate the neecled information 
on more than one nonvolatile storage media (usually disk) with 
independent failure modes. We also need to update the Information in a 
controlled manner to ensure that failure during data transfer does not 
damage the needed information. 

• Exercises 

12.1 All the disk-scheduling disciplines, except FCFS scheduling, are not 
truly fair (starvation may occur). 

a. Explain why this assertion is true. 

b. Describe a scheme to ensure fairness. 

c. Explain why fairness is an important goal in a time-sharing 
system. 

12.2 Suppose that the head of a moving-head disk with 200 tracks, 
numbered 0 to 199, is currently serving a request at track 143 and 
has just finished a request at track 125. The queue of requests is 
kept in the FIFO order: 

86, 147, 91, 177, 94, 150, 102, 175, 130. 

What is the total number of head movements needed to satisfy these 
requests for the following disk-scheduling algorithms? 

a. FCFS scheduling 

b. SSTF scheduling 

c. SCAN scheduling 

d. LOOK scheduling 

e. C-SCAN scheduling 

12.3 Write a monitor-type program (see Chapter 6) for disk scheduling 
using the SCAN and C-SCAN disk-scheduling algorithms. 

12.4 When the average queue length is small, all the disk-scheduling 
algorithms reduce to FCFS scheduling. Explain why this assertion is 
true. 

12.5 Compare the throughput of C-SCAN and SCAN scheduling, assuming 
a uniform distribution of requests. 

12.6 Is disk scheduling, other than FCFS scheduling, useful in a single­
user environment? Explain your answer. 



Bibliographic Notes • 427 

12.7 SSTF scheduling tends to favor mid-range cylinders over the 
innermost and outermost cylinders. Explain why this assertion is 
true. 

12.8 Requests are not usually uniformly distributed. For example, the 
cylinders on which the file directory structures reside are accessed 
more frequently than are most files. Suppose that you know that 50 
percent of the requests are for a small fixed number of cylinders. 

a. Which of the scheduling algorithms discussed in this chapter 
would be best? 

b. Can you suggest a new scheduling algorithm for this case? If 
you can, describe your algorithm. 

12.9 Why is latency optimization usually not employed in disk 
scheduling? How would the standard algorithms (FCFS, SSTF, SCAN, 

and C-SCAN scheduling) be modified to include latency optimization? 

12.10 How would the use of a RAM disk affect your selection of a disk­
scheduling algorithm? What factors would you need to consider? 

12.11 Why is it important to try to balance file system IIO among the disks 
and controllers on a system in a multitasking environment? 

12.12 What are the tradeoffs involved in re-reading code pages from the 
file system rather than using swap space to store them? 

12.13 Is there any way to implement truly stable storage? Explain your 
answer. 

Bibliographic Notes 

Discussions concerning magnetic-disk technology were presented by 
Freedman [1983], and Harker et al. [1981]. Optical disks were covered by 
Kenville [1982], Fujitani [1984], O'Leary and Kitts [1985], Gait [1988], and 
Olsen and Kenly [1989]. Ammon et al. [1985] discussed a high-speed, 
large-capacity "jukebox" optical-disk system. Discussions of floppy disks 
were offered by Pechura and Schoeffler [1983] and Sarisky [1983]. 
Discussions of redundant arrays of inexpensive disks (RAID) were 
presented by Patterson et al. [1988] and Chen and Patterson [1990]. Disk 
system architectures for high performance computing are discussed by 
Katz et al. [1989]. Nelson and Cheng [1992] compared the performance of 
IPI and SCSI disks and controllers in a real system. 

A complete survey of all the various disk-scheduling algorithms, and a 
comparative analysis of these algorithms was presented by Teorey and 
Pinkerton [1972]. The comparison was done using simulations, and it was 



428 • Chapter 12: Secondary-Storage Structure 

recommended that either SCAN or C-SCAN scheduling should be used, 
depending on the load. Wilhelm [1976] and Hofri [1980] compared the 
FCFS and the SSTF seek disk-scheduling algorithms. A continuum of disk­
scheduling algorithms was presented by Geist and Daniel [1987]. 

The Loge project [English and Stepanov 1992] experimented with 
adding intelligence to the disk controller. The log-based file system, which 
works hard to make disk access sequential, was discussed in Rosenblum 
and Ousterhout [1991]. Both of these projects are the topics of continuing 
research. 



PART FOUR 

PROTECTION AND SECURITY 

Protection mechanisms provide controlled access by limiting the types of 
file access that can be made by the various users. Protection must also be 
available to ensure that besides the files, memory segments, CPU, and other 
resources can be operated on by only those processes that have gained 
proper authorization from the operating system. 

Protection is provided by a mechanism that controls the acce·ss of 
programs, processes, or users to the resources defined by a computer 
system. This mechanism must provide a means for specification of the 
controls to be imposed, together with a means of enforcement. 

The security system prevents unauthorized access to a system, and 
ensuing malicious destruction or alteration of data. Security ensures the 
authentication of users of the system to protect the integrity of the 
information stored in the system (both data· and code), as well as the 
physical resources of the computer system. 





CHAPTER 13 

PROTECTION 

The various processes in an operating system must be protected from one 
another's activities. For that purpose, various mechanisms exist that can be 
used to ensure that the files, memory segments, CPU, and other resources 
can be operated on by only those processes that have gained proper 
authorization from the operating system. 

Protection refers to a mechanism for controlling the access of programs, 
processes, or users to the resources defined by a computer system. This 
mechanism must provide a means for specification of the controls to be 
imposed, together with some means of enforcement. We distinguish 
between protection and security, which is a measure of confidence that the 
integrity of a system and its data will be preserved. Security assurance is a 
much broader topic than is protection, and we address it in Chapter 14. 

In this chapter, we examine the problem of protection in great detail, 
and develop a unifying model for implementing protection. 

13.1 • Goals of Protection 

As computer systems have become more sophisticated and pervasive in 
their applications, the need to protect their integrity has also grown .. 
Protection was originally conceived as an adjunct to multiprogramming 
operating systems, so . that untrustworthy users might safely share a 
common logical name space, such as a directory of files, or share a 
common physical name space, such as memory. Modern protection 
concepts have evolved to increase the reliability of any complex system 
that makes use of shared resources. 

431 



• 

432 • Chapter 13: Protection 

There are several reasons for providing protection. Most obvious is the 
need to prevent mischievous, intentional violation of an access restriction 
by a user. Of more general importance, however, is the need to ensure 
that each program component active in a system · uses system resources 
only in ways consistent with the stated policies for the uses of these 
resources. This requirement is an absolute one for a reliable system. 

Protection can improve reliability by detecting latent errors at the 
interfaces between component subsystems. Early detection of interface 
errors can often prevent contamination of a healthy subsystem by a 
subsystem that is malfunctioning. An unprotected resource cannot defend 
against use (or misuse) by an unauthorized or incompetent user. A 
prote.ction-oriented system provides means to distinguish between 
authorized and unauthorized usage. 

The role of protection in a computer system is to provide a mechanism 
for the enforcement of the policies governing resource use. These policies 
can be established in a variety of ways. Some are fixedin the design of the 
system, whereas others are formulated by the management of a system. 
Still others are defined by the individual users to protect their own files 
and programs. A protection system must have the flexibility to enforce a 
variety of policies that can be declared to it. 

Policies for resource use may vary, depending on the application, and 
they may be subject to change over time. For these reasons, protection can 
no longer be considered solely as a matter of concern to the designer of an 
operating system. It should also be available as a tool for the applications 
programmer, so that resources created and supported by an applications 
subsystem can be guarded against misuse. In this chapter, we describe the 
protection mechanisms the operating system should provide, so that an 
application designer can use them in designing her own protection 
software. · 

One Important principle is the separation of policy from mechanism. 
Mechanisms determine how something will be done. In contrast, policies 
decide what will be done. The separation of policy and mechanism is 
important for flexibility. Policies are ·likely to change from place to place or 
time to time. In the worst case, every change in policy would require a 
change in the underlying mechanism. General mechanisms are more 

·desirable; because a change in a policy would then require the modification 
of only some system parameters or tables. 

13.2 • Domain of Protection 

A computer system is a collection of processes and objects. By objects, we 
mean both hardware objects (such as the CPU, memory segments, printers, 
disks, and tape drives), and software objects (such as files, programs, and 
semaphores). Each object has a unique name that differentiates it from all 



13.2 Domain of Protection • .433 

other objects in· the system, and each can be accessed only through well­
defined and meaningful operations. Objects are essentially abstract data 
types. 

The operations that are possible may depend on the object. For 
example, a CPU can only be executed on. Memory segments can be read 
and written, whereas a card reader can only be read. Tape drives can be 
read, written, and rewound. Data files can be created, opened, read, 
written, closed, and deleted; program files can be read, written, executed, 
and deleted. 

Obviously, a process should be allowed to access only those resources 
it has been authorized to access. Furthermore, at any time, it should be 
able to access only those resources that it currently requires to complete its 
task. This requirement, commonly referred to as the need-to-know principle, 
is useful in limiting the amount of damage a faulty process can cause in 
the system. For example, when process p invokes procedure A, the 
procedure shouid be allowed to access only its own variables and the 
formal parameters passed to it; it should not be able to access all the 
variables of process p. Similarly, consider the case where process p invokes 
a compiler to compile a particular file. The compiler should not be able to 
access any arbitrary files, but only a well-defirted subset of files (such as~ 
the source file, listing file, and S<?, on) related to the fiie to be compiled. 
Conversely, the compiler may have private files used for accounting or 
optimization purposes, which process p should not be able to access. 

13.2.1 Domain Structure 
To facilitate this scheme, we introduce the concept of a protection domain. A 
process operates within a protection domain, which specifies the resources 
that the process may access. E~ch domain defines a set of objects and the 
types of operations that may be invoked on each object. The ability to 
execute an operation on an object is an access right. A domain is a collection 
of access rights, each of which is an ordered pair <object-name, rights-set>. 
For example, if domain D has the access right <file F, {read,write}>, then 
a process executing in domain D can both read and write file F; it cannot, 
however, perform any other operation on that object. 

Domains do not need to be disjoint; they may share access rights. For 
example, in Figure 13.1, we have three domains: D1, D2, and D3. The 
access right <04, {print}> is shared by both D2 and D3, implying that a 
process executing in either one of these two domains can print object 0 4. 
Note that a process must be executing in domain D1 to read and write· 
object 0 1. On the other hand, only processes in domain D3 may execute 
object 0 1. · . 

The association between a process and a domain may be either static (if 
the set of resources available to a process is fixed throughout the latter's 
lifetime) or dynamic. As might be expected, the problems inherent in 



434 Ill Chapter 13: Protection 

Figure System with three protection domains. 

establishing dynamic protection domains require more 
than do the simpler problems of the static case. 

If the association between processes and domains fixed, we 
want to adhere to the need-to-know principle, then a mechanism 
available to change the content of a domain. A process may'"""''"-"'-""" 
different phases. For example, it may need read access in one 
write access in another. If a domain static, we must define the 
include both and write access. However, this 
more rights than are needed in each of the two phases, since we 
access in the phase where we need only write and 
Thus, the need-to-know principle violated. We must allow 
of a domain to be modified, so that it always reflects the 
necessary access rights. 

If the association dynamic, a mechanism is available 
process to switch from one domain to another. We may also 
the content a domain to be changed. If we cannot change the '-'-J""''"' 

a domain, we can provide the same effect by creating a new 
the changed content, and switching to that new domain when we 
change the domain content. 

We note a domain can be realized in a variety of ways: 

• Each user may be a domain. In this case, the set of objects 
depends on the identity of the user. Domain 

occurs when the user changed generally when one user 
and another user logs in. 

• Each process may be a domain. In this case, the 
be accessed depends on the identity of the process. 
corresponds to one process sending a to another 
then waiting for a response. 

• Each procedure may be a domain. In this case, the set of objects can 
be accessed corresponds to the local variables defined 
procedure. Domain switching occurs when a procedure 

We shall discuss domain switching in greater detail later on this 



13.2 Domain of Protection • 435 

13.2.2 Examples 
Consider the standard dual-mode (monitor-user mode) model of 
operating-system execution. When a process executes in monitor mode, it 
can execute privileged instructions and thus gain complete control of the 
.computer system. On the other hand, if the process executes in user mode, 
it can invoke only nonprivileged instructions. Consequently, it can execute 
only within its predefined memory space. These two modes protect the 
operating system (executing in monitor domain) from the user processes 
(executing in user domain). In a multiprogrammed operating system, two 
protection domains are insufficient, since users also want to be protected 
from one another. Therefore, a more elaborate scheme is needed. We 
illustrate this scheme by examining two influential operating systems -
UNIX and MULTICS - to see how these concepts have been implemented 
there. 

13.2.2.1 UNIX 

In the UNIX operating system, a domain is associated with the user. 
Switching the domain corresponds to changing the user identification 
temporarily. This change is accomplished through the file system as 
follows. An owner identification and a domain bit (known as the setuid bit) 
are associated with each file. When a user (with user-id = A) starts 
executing a file owned by B, whose associated domain bit is off, the user-id 
of the process is set to A. When the setuid bit is on, the user-id is set to 
that of the owner of the file: B. When the process exits, this temporary 
user-id change ends. 

There are other common methods used to change domains in 
operating systems in which user-ids are used for domain definition, 
because almost all systems need to provide such a mechanism. This 
mechanism is used when an otherwise privileged facility needs to be made 
available to the general user population. For instance, it might be 
desirable to allow users to access a network without letting them write 
their own networking programs. In such a case, on a UNIX system, the 
setuid bit on a networking program would be set, causing the user-id to 
change when the program is run. The user-id would change to that of a 
user with network access privilege (such as "root," the most powerful 
user-id). One problem with this method is that if a user manages to create 
a file with user-id "root" and with its setuid bit on, that user can become 
"root" and do anything and everything on the system. The setuid 
mechanism is discussed further in Chapter 19. 

An alternative to this method used on other operating systems is to 
place privileged programs in a special directory. The operating system 
would be designed to change the user-id of any program run from this 
directory, either to the equivalent of "root" or to the user-id of the owner 
of the directory. This eliminates the setuid problem of secret setuid 



1111 Chapter 13: Protection 

programs, because all these programs are in one location. 
less flexible than that used in UNIX, however. 

Even more restrictive, and thus more protective, are 
simply do not allow a change of user-id. In these 
techniques must be used to allow users access to privileged _...,.._ .. u~·'-L> 
instance, a daemon process may be started at boot time and run as 
user-id. Users then run a separate program, which sends 

whenever they need to use the facility. This method 
TOPS-20 operating system. 
In any of these systems, great care must be taken 

programs. Any oversight or carelessness can result in a 
protection on the system. Generally, these programs are the 
attacked by people trying to break into a system; unfortunately, 
attackers are frequently successful. For instance/ there are many 
where security has been breached on UNIX systems because of 
feature. We discuss security in Chapter 14. 

13.2.2.2 MULTICS 

In the MULTICS system, the protection domains are organized 
into a ring structure. Each ring corresponds to a 
13.2). The rings are numbered from 0 to 7. Let Di and 
domain rings. If j < i, then Di is a subset of Dj. That is, a Prle>CE~ss 

domain Dj has more privileges than does a process 
A process executing in domain D0 has the most privileges. 

only two rings, this scheme is equivalent to the monitor-user 

ring 1 

ring N 1 

Figure 13.2 MULTICS ring structure. 



13.2 Domain of Protection • 437 

execution, where monitor mode corresponds to D0 and user mode 
corresponds to D 1. 

MULTICS has a segmented address space; each segment is a file. Each 
segment is associated with one of the rings. A segment description 
includes an entry that identifies the ring number. In addition, it includes 
three access bits to control reading, writing, and execution. The association 
between segments and rings is a policy decision with which we are not 
concerned in this book. With each process, a current-ring-number counter is 
associated, identifying the ring in which the process is executing currently. 
When a process is executing in ring i, it cannot access a segment associated · 
with ring j, j < i. It can, however, access a segment associated with ring k, 
k > i. The type of access, however, is restricted, according to the access 
bits associated with that segment. 

Domain switching in MULTICS occurs when a process crosses from one 
ring to another by calling a procedure in a different ring. Obviously, this 
switch must be done in a controlled manner; otherwise, a process can start 
executing in ring 0, and no protection wW be provided. To allow controlled 
domain switching, we modify the ring fi'eld of the segment descriptor to 
include the following: 

• Access bracket: A pair of integers, bl and b2, such that bl < b2. 

• Limit: An integer b3, such that b3 > b2. 

• List of gates: Identifies the entry points (gates) at which the segments 
may be called. 

If a process executing in ring i calls a procedure (segment) with access 
bracket (bl,b2), then the call is allowed if bl < i < b2, and the current ring 
number of the process remains i. Otherwise, a trap to the operating system 
occurs, and the situation is handled as follows: 

• If i < bl, then the call is allowed to occur, because we have a transfer 
to a ring (domain) with fewer privileges. However, if parameters are. 
passed that refer to segments in a lower ring (that is, segments that are 
not accessible to the called procedure), then these segments must be 
copied into an area that can be accessed by the called procedure. 

• If i > b2, then the call is allowed to occur only if b3 is less than or equal 
to i, and the call has been directed to one of · the designated entry 
points in the list of gates. This scheme allows processes with limited. 
access rights to call procedures in lower rings that have more access 
rights, but only in a carefully controlled manner. 

The main disadvantage of the ring (hierarchical) structure is that it does 
not allow us to enforce the need-to-know principle. In particular, if an 



Chapter 13: Protection 

must be accessible in domain D1 but not accessible in 
we must have j < i. But this requirement means that 

""-'""'"'"'U-'"''"' in Di is also accessible in Dr 
The MULTICS protection system is generally more complex 

than are those used in current operating systems. 
with the ease of use of the system, or significantly 

performance, then its use must be weighed carefully 
of the system. For instance/ it would be reasonable to 
protection system on a computer used by a university 

grades, and also used by students for class work. 
protection system would not be suited to a computer being 
number crunching in which performance is of utmost 
would therefore be of benefit to separate the mechanism 

policy/ allowing the same system to have complex 
protection depending on the needs of its users. To separate 
from policy, we require more general models of protection . 

. 3 Access Matrix 

model of protection can be viewed abstractly as a 
access matrix. The rows of the access matrix represent 
columns represent objects. Each entry in the matrix 
access rights. Because objects are defined explicitly by 

the object name from the access right. The entry acc:ess(i,j) 
of operations that a process, executing in domain Di, 

Q .. 
To Ulustrate these concepts, we consider the access 

13.3. There are four domains and four objects: three 
F3), and one laser printer. When a process executes in domain 

Figure 13.3 Access matrix. 



13.3 Access 

read files F1 and F3. A process executing in domain D4 
privileges as it does in domain D1, but in addition, it can also 
files F 1 and F3. Note that the laser printer can be accessed 
process executing in domain D2. 

The access-matrix scheme provides us with the 
specifying a variety of policies. The mechanism consists of lffiPilemten 
the access matrix and ensuring that the semantic properties 
outlined indeed hold. More specifically, we must ensure that 
executing in domain Di can access only those objects row 1, 

and then only as allowed by the access-matrix entries. 
Policy decisions concerning protection can be implemented 

access matrix. The policy decisions involve which rights 
included in the (i,j)th entry. We must also decide the domain 
each process executes. This last policy usually decided by the "'r\"""""' 
system. 

The users normally decide the contents of the 
When a user creates a new object Oj, the column Oj is added 
matrix with the appropriate initialization entries, as dictated by 
The user may decide to enter some rights in some entries in 
other rights in other entries, as needed. 

The access matrix provides an appropriate mechanism for 
implementing strict control for both the static and dynamic 
between processes and domains. When we switch a process 
domain to another, we are executing an operation (switch) on an oo1:ect 
(the domain). We can control domain switching by 
among the objects of the access matrix. Similarly, when we 
content of the access matrix, we are performing an operation on an 
the access matrix. Again, we can control these changes by 
access matrix itself as an object. Actually, each onr-..,., 

Figure 13.4 Access matrix of Figure 13.3 with domains as 



440 II Chapter 13: Protection 

be modified individually, we must consider 
access matrix as an object to be protected. 

Now, we need to consider only the operations that are on 
these new objects (domains and the access matrix), and decide we 
want processes to be able to execute these operations. 

Processes should able to switch from one domain to 
Domain switching from domain D i to domain Dj is allowed to occur 
only the access right switch e access(i, j ). Thus, in Figure 13.4, ~-,,~~,~~ 

executing in domain D2 can switch to domain D3 or to 
in domain D4 can switch to Di, and one in domain D 1 can 

domain D2. 

Allowing controlled change to the contents of the 
requires three additional operations: copy, owner, and control. 

The ability to copy an access right from one domain (row) of 
matrix to another is denoted by an asterisk (*) appended to 
right. The copy right allows the copying of the access right only 
column (that is, for the object) for which the right is defined. 
in Figure 13.5(a), a process executing in domain can copy 
operation into any entry associated with file Hence, the access 
of Figure 13.5(a) can be modified to the access matrix shown 
13.5(b). 

(a) 

(b) 

Figure 13.5 Access matrix with copy rights. , 



There are two variants to this scheme: 

1. A right is copied from access(i, j) to access(k, j); it is 
from access(i, j); this action is a transfer of a right, rather a 

Propagation of the copy right may be limited. That 
R * is copied from access(i, j) to access(k, j), only the right 
is created. A process executing in domain Dk cannot further 
rlghtR. . 

A system may select only one of these three copy rights, or it 
all three by identifying them as separate rights: copy, transfer, 
copy. 

The copy right allows a process to copy some rights from an 
one column to another entry in the same column. We 

441 

mechanism to allow addition of new rights and removal of some n£Yhtc. 

The owner right controls these operations. If access(i, j) includes owner 
right, then a process executing in domain Di can add 
in any entry in column j. For example, in Figure 13.6(a), 

(a) 

(b) 

Figure 13.6 Access matrix with owner rights. 



442 Ill Chapter 13: Protection 

owner of F 1, and thus can add and delete any valid right in .._-.n.uu 

Similarly, domain D2 the owner of F2 and F3, and thus can 
remove any valid right within these two columns. Thus, the access 

Figure 13.6(a) can be modified to the access matrix shown 
13.6(b). 

The copy and owner rights allow a process to change 
column. A mechanism also needed to change the entries in a row. 
control right is applicable to only domain objects. If access(i, j) 
control right, then a process executing in domain Di can remove 
right from row j. For example, suppose that, in Figure we 
control right in access(D2 , D4). Then, a process executing in 
could modify domain D4, as shown in Figure 13.7. 

Although the copy and owner rights provide us with a 
limit the propagation of access rights, they do not, however, 
with the appropriate tools for preventing the propagation of 
(that is, disclosure of information). The problem of 
information initially held in an object can migrate outside its ... ".~···· 
environment called the confinement problem. This problem 
unsolvable (see Bibliographic Notes for references). 

These operations on the domains and the access matrix 
themselves particularly important. What is more important 
illustrate the ability of the access-matrix model to allow the 
and control of dynamic protection requirements. New objects 
domains can be created dynamically and included in the 
model. However, we have shown only that the basic mechanism 
the policy decisions concerning which domains are to have access 
objects in which ways must be made by the system designers and users. 

Figure 13.7 Modified access matrix of Figure 13.4. 



13.4 Implementation of Access Matrix • 443 

13.4 • Implementation of Access Matrix 

How can the access matrix be implemented effectively? In general, the 
matrix will be sparse; that is, most of the entries will be empty. Although 
there are data-structure techniques available for representing sparse 
matrices, they are not particularly useful for this application, because of 
the way in which the protection facility is used. 

13.4.1 Global Table 

The simplest implementation of the access matrix is a global table 
consisting of a set of ordered triples <domain, object, rights-set>. 
Whenever an operation M is executed on an object Oj within domain Di, 
the global table is searched for a triple <Di, oj, Rk>, where M E Rk. If this 
triple is found, the operation is allowed to continue; otherwise, an 
exception (error) condition is raised. This implementation suffers from 
several drawbacks. The table is usually large and thus cannot be kept in 
main memory, so additional I/O is needed. Virtual-memory techniques are 
often used for managing this table. In addition, it is difficult to take 
advantage of special groupings of objects or domains. For example, if a 
particular object can be read by everyone, it must have a separate entry in 
every domain. 

13.4.2 Access Lists for Objects 
Each column in the access matrix can be implemented as an access list for 
one object, as described in Section 10.4.2. Obviously, the empty entries can 
be discarded. The resulting list for each object consists of ordered pairs 
<domain, rights-set>, which define all domains with a non empty set of 
access rights for that object. 

This approach can be extended easily to define a list plus a default set 
of access rights. When an operation M on an object Oj is attempted in 
domain Di, we search the access list for object Oj, looking for an entry <Di, 
Rk> with Me Rk. If the entry is found, we allow the operation; if it is not, 
we check the default set. If M is in the default set, we allow the access. 
Otherwise, access is denied and an exception condition occurs. Note that, 
for efficiency, we may check the default set first, and then search the 
access list. 

13.4.3 Capability Lists for Domains 
Rather than associating the columns of the access matrix with the objects 
as access lists, we can associate each row with its domain. A capability list 
for a domain is a list of objects together with the operations allowed on 



444 • Chapter 13: Protection 

those objects. An object is often represented by its physical name or 
address, called a capability. To execute operation M on object Oj, the 
process executes the operation M, specifying the capability (pointer) for 
object Oj as a parameter. Simple possession of the capability means that 
access is allowed. 

The capability list is associated with a domain, but is never directly 
accessible to a process executing in that domain. Rather, the capability list 
is itself a protected object, maintained by the operating system and 
accessed by the user only indirectly. Capability-based protection relies on 
the fact that the capabilities are never allowed to migrate into any address 
space directly accessible by a user process (where they could be modified). 
If all capabilities are secure, the object they protect is also secure against 
unauthorized access. 

Capabilities were originally proposed as a kind of secure pointer, to 
meet the need for resource protection that was foreseen as 
multiprogrammed computer systems came of age. The idea of an 
inherently protected pointer (from the point of view of a user of a system) 
provides a foundation for protection that can be extended up to the 
applications level. 

To provide inherent protection, we must distinguish capabilities from 
other kinds of objects, and must interpret them by an abstract machine on 
which higher-level programs run. Capabilities are usually distinguished 
from other data in one of two ways: 

• Each object has a tag to denote its type as either a capability or as 
accessible data. The tags themselves must not be directly accessible by 
an applications program. Hardware or firmware support may be used 
to enforce this restriction. Although only 1 bit is necessary to 
distinguish between capabilities and other objects, more bits are often 
used. This extension allows all objects to be tagged with their types by 
the hardware. Thus, the hardware can distinguish integers, floating­
point numbers, pointers, Booleans, characters, instructions, 
capabilities, and uninitialized values by their tags. 

• Alternatively, the address space associated with a program can be split 
into two parts. One part is accessible to the program and contains the 
program's normal data and instructions. The other part, containing the 
capability list, is accessible by only the operating system. A segmented 
memory space (Section 8.6) is useful to support this approach. 

Several capability-based protection systems have been developed; we 
describe them briefly in Section 13.6. The Mach operating system also 
uses a version of capability-based protection; it is described in great detail 
in Chapter 20. 



13.4 Implementation of Access Matrix • 445 

13.4.4 A Lock-Key Mechanism 
The lock-key scheme is a compromise between access lists and capability 
lists. Each object has a list of unique bit patterns, called locks. Similarly, 
each domain has a list of unique bit patterns, called keys. A process 
executing in a domain can access an object only if that domain has a key 
that matches one of the locks of the object. 

As capability lists must be, the list of keys for a domain must be 
managed by the operating system on behalf of the domain. Users are not 
allowed to examine or modify the list of keys (or locks) directly. 

13.4.5 Comparison 
Access lists correspond directly to the needs of the users. When a user 
creates an object, she can specify which domains can access the object, as 
well as the operations allowed. However, because access-rights information 
for a particular domain is not localized, determining the set of access rights 
for each domain is difficult. In addition, every access to the object must be 
checked, requiring a search of the access list. In a large system with long 
access lists, this search can be time-consuming. 

Capability lists do not correspond directly to the needs of the users; 
they are useful, however, for localizing information for a particular 
process. The process attempting access must present a capability for that 
access. Then, the protection system needs only to verify that the capability 
is valid. Revocation of capabilities, however, may be inefficient (Section 
13.5). 

The lock-key mechanism is a compromise between these · two 
schemes. The mechanism can be both effective and flexible, depending on 
the length of the keys. The keys can be passed freely from domain to 
domain. In addition, access privileges may be effectively revoked by the 
simple technique of changing some of the keys associated with the object 
(Section 13.5). 

Most systems use a combination of access lists and capabilities. When 
a process first tries to access an object, the access list is searched. If access 
is denied, an exception condition occurs. Otherwise, a capability is created 
and is attached to the process. Additional references use the capability to 
demonstrate swiftly that access is allowed. After the last access, the 
capability is destroyed. This strategy is used in the MULTICS system and in 
the CAL system; these systems use both access lists and capability lists. 

As an example, consider a file system. Each file has an associated. 
access list. When a process opens a file, the directory structure is searched 
to find the file, access permission is checked, and buffers are allocated. All 
this information is recorded in a new entry in a file table associated with 
the process. The operation returns an index into this table for the newly 



446 • Chapter 13: Protection 

opened file. All operations on the file are made by specification of the 
index into the file table. The entry in the file table then points to the file 
and its buffers. When the file is closed, the file-table entry is deleted. 
Since the file table is maintained by the operating system, it cannot be 
corrupted by the user. Thus, the only files that the user can access are 

· those that have been opened. Since access is checked when the file is 
opened, protection is ensured. This strategy is used in the UNIX system. 

Note that the right to access must still be checked on each access, and 
the file-table entry has a capability only for the allowed operations. If a file 
is opened for reading, then a capability for read access is placed in the 
file-table entry. If an attempt is made to write onto the file, the system 
determines this protection violation by comparing the requested operation 
with the capability in the file-table entry. 

13.5 • Revocation of Access Rights 

In a dynamic protection system, it may sometimes be necessary to revoke 
access rights to objects that are shared by different users. Various 
questions about revocation may arise: 

• Immediate versus delayed: Does revocation occur immediately, or is it 
delayed? If revocation is delayed, can we find out when it will take 
place? 

• Selective versus general: When an access right to an object is revoked, 
does it affect all the users who have an access right to that object, or 
can we specify a select group of users whose access rights should be 
revoked? 

• Partial versus total: Can a subset of the rights associated with an object 
be revoked, or must we revoke all access rights for this object? 

• Temporary versus permanent: Can access be revoked permanently 
(that is, the revoked access right will never again be available), or can 
access be revoked and later be obtained again? 

With an access-list scheme, revocation is easy. The access list is 
searched for the access right(s) to be revoked, and they are deleted from 
the list. Revocation is immediate, and can be general or selective, total or 
partial, and permanent or temporary. 

Capabilities, however, present a much more difficult revocation 
problem. Since the capabilities are distributed throughout the system, we 
must find them before we can revoke them. There are several different 
schemes for implementing revocation for capabilities, including the 
following: 



13.5 Revocation of Access Rights • 447 

• Reacquisition. Periodically, capabilities are deleted from each domain. 
If a process wants to use a capability, it may find that that capability 
has been deleted. The process may then try to reacquire the capability. 
If access has been revoked, the process will not be able to reacquire the 
capability. 

• Back-pointers. A list of pointers is maintained with each object, 
pointing to all capabilities associated with that object. When revocation 
is required, we can follow these pointers, changing the c~pabilities as 
necessary. This scheme has been adopted in the MULTICS system. It is 
quite general, although it is a c?stly implementation. · 

• Indirection. The capabilities do not point to the objects directly, but 
instead point indirectly. Each capability points to a unique entry in a 
global table, which in turn points to the object. We implement 
revocation by searching the global table for the desired entry and 
deleting it. When an access is attempted, the capability is found to 
point to an illegal table entry. Table entries can be reused for other 
capabilities without difficulty, since both the capability and the table 
entry contain the unique name of the object. The object for a capability 
and its table entry must match. This scheme was adopted in the CAL 

system. It does not allow selective revocation. 

• Keys. A key is a unique bit pattern that can be associated with each 
capability. This key is defined when the capability is created, and it can 
be neither modified nor inspected by the process owning that 
capability. A master key associated with each object ca,n be defined or 
replaced with the set-key operation. When a capability is created, the 
current value of the master key is associated with the capability. When 
the capability is exercised, its key is compared to the master key. If the 
keys match, the operation is allowed to continue; otherwise, an 
exception condition is raised. Revocation replaces the master key with 
a new value by the set-key operation, invalidating all previous 
capabilities for this object. · 

Note that this scheme does not allow selective revocation, since 
only one master key is associated with ea,ch object. If we associate a list 
of keys with each object, then selective revocation can be implemented~ 
Finally, we can group all keys into one global table of keys. A 
capability is valid only if its key matches some key in the global table. 
We implement revocation by removing the matching key from the 
table. With this scheme, a key can be associated with several objects,. 
and several keys can be associated with each object, providing 
maximum flexibility .. 

In key-based schemes, the operations of defining keys, inserting 
them into lists, and deleting them from lists should not be available to 
all users. In particular, it would be reasonable to allow only the owner 



448 • Chapter 13: Protection 

of an object to set the keys for that object. This choice, however, is a 
policy decision that the protection system can implement, put should 
not define. 

13.6 • Capability-Based Systems 

In this section, we briefly survey two capability-based protection systems. 
These systems vary in their complexity and in the type of policies that can 
be implemented on them. Neither of them is widely used, but they are 
interesting proving grounds for protection theories. 

13.6.1 Hydra 

Hydra is a capability-based protection system that provides considerable 
flexibility. The system provides a fixed set of possible access rights that are 
known to and interpreted by the system. These rights include such basic 
forms of access as the right to read, write, or execute a memory segment. 
In addition, the system provides the means for a user (of the protection 
system) to qeclare additional rights. The interpretation of user-defined 
rights is performed solely by the user's program, but the system provides 
access protection for the use of these rights, as well as for the use of 
system-defined rights. The facilities provided by this system are 
interesting, and constitute a significant development in prot~ction 
technology. 

Operations on objects are defined procedurally. The procedures that 
implement such operations are themselves a form of object, and are 
accessed indirectly by capabilities. The names of user-defined procedures 
must be identified to the protection system if it is to deal with objects of 
the user-defined type. When the definition of an object is made known to 
Hydra, the names of operations on the type become . auxiliary· rights. 
Auxiliary rights can be described in a capability for an instance of the type. 
For a process to perform an operation on a typed object, the capability it 
holds for that object must contain the name of the operation being invoked 
among its auxiliary rights. This restriction enables discrimination of access 
rights to be made on an instance-by-instance and process-by-process basis. 

Another interesting concept is rights. amplification. This scheme allows 
certification of a procedure as trustworthy to act on a formal parameter of a 
specified type, on behalf of any process that holds a right to execute the 
procedure. The rights held by a trustworthy procedure are independent of, 
and may exceed, the rights held by the calling process. However, it is 
necessary neither to regard such a procedure as universally trustworthy 
(the procedure is not allowed to act on other types, for instance), nor to 
extend trustworthiness to any other procedures or program segments that 
might be executed by a process. 



13.6 Capability-Based Systems • 449 

Amplification is useful in allowing implementation procedures access 
to the representation variables of an abstract data type. If a process holds a 
capability to a typed object A, for instance, this capability may include an 
auxiliary right to invoke some operation P, but would not include any of 
the so-called kernel rights, such as read, write, or execute, on the segment 
that represents A. Such a capability gives a process a means of indirect 
access (through the operation P) to the representation of A, but only for 
specific purposes. 

On the other hand, when a process invokes the operation P on an 
object A, the capability for access to A may be amplified as control passes 
to the code body ·of P. This amplification may be necessary, to allow P the 
right to access the storage segment representing A, to implement the 
operation that P defines on the abstract data type. The code body of P may 
be allowed to read or to write to the segment of A directly, even though 
the calling process cannot. On return from P, the capability for A is 
restored to its original, unamplified state. This case is a typical one in 
which the rights held by a process for access to a protected segment must 

· change dynamically, depending on the task to be performed. The dynamic 
adjustment of rights is performed to guarantee consistency of a 
programmer-defined abstraction. Amplification of rights can be stated 
explicitly in the declaration of an abstract type to the Hydra system. 

When a user passes an object as an argument to a procedure, it may be 
necessary to ensure that the procedure cannot modify the object. We can 
implement this restriction readily by passing an access right that does not 
have the modification (write) right. However, if amplification may occur, 
the right to modify may be reinstated. Thus, the user-protection 
requirement can be circumvented. In general, of course, a user may trust 
that a procedure indeed performs its task correctly. This assumption, 
however; is not always correct, because of hardware or software errors. 
Hydra solves this problem bx restricting amplifications. 

The procedure call mechanism of Hydra was designed as a direct 
solution to the problem of mutually suspicious subsystems. This problem is 
defined as follows. Suppose that a program is provided that can be 
invoked as a service by a number of different users (for example, a sort 
routine, a compiler, a game). When users invoke this service program, 
they take the risk that the program will malfunction and will either 
damage the given data, or will retain some access right to the data to be 
used (without authority) later. Similarly, the service program may have 
some private files (for accounting purposes, for example) that should not 
be accessed directly by the calling user program. Hydra provides 
mechanisms for directly dealing with this problem. 

A Hydra subsystem is built on top of its protection kernel and may 
require protection of its own components. A subsystem interacts with the 
kernel through calls on a set of kernel-defined primitives that defines 
access rights to resources defined by the subsystem. Policies for use of 



450 • Chapter 13: Protection 

these resources by user processes can be defined by the subsystem 
designer, but are enforceable by use of the standard access protection 
afforded by the capability system. 

A programmer can make direct use of the protection system, after 
acquainting himself with its features in the appropriate reference manual. 
tfydra provides a large library of system-defined procedures that can be 
called by user programs. A user of the Hydra system would explicitly 
incorporate calls on these system procedures into the code of his programs, 
or would use a program translator that had been interfaced to Hydra. 

13.6.2 Cambridge CAP System 
A different approach to capability-based protection has been taken in the 
design of the Cambridge CAP system. CAP's capability system is simpler 
and superficially less powerful than that of Hydra. However, closer 
examination shows that it too can be used to provide secure protection of 
user-defined objects. In CAP, there are two kinds of capabilities. The 
ordinary kind is called a data capability. It can be used to provide access to 
objects, but the only rights provided are the standard read, write, or 
execute of the individual storage segments associated with the object. Data 
capabilities are interpreted by microcode in the CAP machine. 

A so-called software capability is protected by, but not interpreted by, 
the CAP microcode.· It is interpreted by a protected (that is, a privileged) 
procedure, which may be written by an applications programmer as part of 
a subsystem. A particular kind of rights amplification is associated with a 
protected procedure. When executing the code body of such a procedure, a 
process temporarily acquires the rights to read or write the contents of a 
software capability itself. This specific kind of rights amplification 
corresponds to an implementation of the seal and unseal primitives on 
capabilities (see Bibliographic Notes for references). Of course, this 
privilege is still subject to type verification to ensure that only software 
capabilities for a specified abstract type are allowed to be passed to any 
such procedure. Universal trust is not placed in any code other than the 
CAP machine's microcode. 

The interpretation of a software capability is left completely to the 
$Ubsystem, through the protected procedures it contains. This scheme 
allows a variety of protection policies to be implemented. Although a 
programmer can define her own protected procedures (any of which might 
be incorrect), the security of the overall system cannot be compromised. 
The basic protection system will not allow an unverified, user-defined, 
protected procedure access to any storage segments (or capabilities) that do 
not belong to the protection environment in which it resides. The most 
serious consequence of an insecure protected procedure is a protection 
breakdown of the subsystem for which that procedure has responsibility. 



13.7 Language-Based Protection • 451 

The designers of the CAP system have noted that the use of software 
capabilities has allowed them to realize considerable economies in 
formulating and implementing protection policies commensurate with the 
requirements of abstract resources. However, a subsystem designer who 
wants to make use of this facility cannot simply study a reference manual, 
as is the case with Hydra. Instead, he must learn the principles and 
techniques of protection, since the system provides him with no library of 
procedures to be used. 

13.7 • Language-Based Protection 

To the degree that protection is provided in existing computer systems, it 
has usually been achieved through the device of an operating-system 
kernel, which acts as a security agent to inspect and validate each attempt 
to access a protected resource. Since comprehensive access validation is 
potentially a source of considerable overhead, either we must give it 
hardware support to reduce the cost of each validation, or we must accept 
that the system designer may be inclined to compromise the goals . of 
protection. It is difficult to satisfy all these goals if the flexibility to 
implement various protection policies is restricted by the support 
mechanisms provided or if protection environments are made larger than 
necessary to secure greater operational efficiency. 

As operating systems have become more complex, and particularly as 
they have attempted to provide higher-level user interfaces, the goals of 
protection have become much more refined. In this refinement, we find 
that the designers of protection systems have drawn heavily on ideas that 
originated in programming languages and especially on the concepts of 
abstract data types and objects. Protection systems are now concerned not 
only with the identity of a resource to which access is attempted but also 
with the functional nature of that access. In the newest protection systems, 
concern for the function to be invoked extends beyond a set of system­
defined functions, such as standard file access methods, to include 
functions that may be user-defined as well. 

Policies for resource use may also vary, depending on the application, 
and they may be subject to change over time. For these reasons, protection 
can no longer be considered as a matter of concern to only the designer of 
an operating system. It should also be available as a tool for use by the 
applications designer, so that resources of an applications subsystem can 
be guarded against tampering or the influence of an error. · 

At this point, programming languages enter the picture. Specifying 
the desired control of access to a shared resource in a system is making a 
declarative statement about the resource. This kind of statement can be 
integrated into a language by an extension of its typing facility. When 



452 • Chapter 13: Protection 

protection is declared along with data typing, the designer of each 
subsystem can specify its requirements for protection, as well as its need 
for use of other resources in a system. Such a specification should be given 
directly as a program is composed, and in the language in which the 
program itself is stated. There are several significant advantages to this 
approach: 

1. Protection needs are simply declared, rather than programmed as a 
sequence of calls on procedures of an operating system. 

2. Protection requirements may be stated independently of the facilities 
provided by a particular operating system. 

3. The means for enforcement do not need to be provided by the 
designer of a subsystem. 

4. A declarative notation is natural because access privileges are closely 
related to the linguistic concept of data type. 

There is a variety of techniques that can be provided by a 
programming language implementation to enforce protection, but any of 
these must depend on some degree of support from an underlying 
machine and its operating system. For example, suppose a language were 
used to generate code to run on the Cambridge CAP system. On this 
system, every storage reference made on the underlying hardware occurs 
indirectly through a capability. This restriction prevents any process from 
accessing a resource outside of its protection environment at any time. 
However, a program may impose arbitrary restrictions on how a resource 
may be used during execution of a particular code segment by any process. 
We can implem~:nt ·such restrictions most readily by using the software 
capabilities- provided by CAP. A language implementation might provide 
standard, protected procedures to interpret software capabilities that would 
realize the protection policies that could be specified in the language. This 
scheme puts policy specification at the disposal of the programmers, while 
freeing them from the details of implementing its enforcement. 

Even if a system does not provide a protection kernel as powerful as 
those of ·Hydra or CAP, there are still mechanisms available for 
implementing protection specifications given in a programming language. 
The principal distinction is that the security of this protection will not be as 
great as that supported by a protection kernel, because the mechanism 
must rely on more assumptions about the operational state of the system. 
A compiler can separate references for which it can certify that no 
protection violation could occur from those for which a violation might be 
possible, and can treat them differently. The security provided by this form 
of protection rests on the assumption that the code generated by the 
compiler will not be modified prior to or during its execution. · 



13.7 Language-Based Protection • 453 

What, then, are the relative merits of enforcement based solely on a 
kernel, as opposed to enforcement provided largely by a compiler? 

• Security: Enforcement by a kernel provides a greater degree of security 
of the protection system itself than does the generation of protection­
checking code by a compiler. In a compiler-supported scheme, security 
rests on correctness of the translator, on some underlying mechanism 
of storage management that protects the segments from which 
compiled code is executed, and, ultimately, on the security of files 
from which a program is loaded. Some of these same considerations 
also apply to a software-supported protection kernel, but to a lesser 
degree, since the kernel may reside in fixed physical storage segments 
and may be loaded from only a designated file. With a tagged 
capability system, in which all address computation is performed either 
by hardware or by a fixed microprogram, even greater security is 
possible. Hardware-supported protection is also relatively immune to 
protection violations that might occur as a result of either hardware or 
system software malfunction. 

• Flexibility: There are limits to the flexibility of a protection kernel in 
implementing a user-defined policy, although it may supply adequate 
facilities for the system to provide enforcement for its own policies. 
With a programming language, protection policy can be declared and 
enforcement provided as needed by an implementation. If a language 
does not provide sufficient flexibility, it can be extended or replaced, 
with less perturbation of a system in service than would be caused by 
the modification of an operating-system kernel. 

• Efficiency: The greatest efficiency is obtained when enforcement of 
protection is supported directly by hardware (or microcode). Insofar as 
software support is required, language-based enforcement has the 
advantage that static access enforcement can be verified off-line at 
compile time. Also, since the enforcement mechanism can be tailored 
by an- intelligent compiler to meet the specified ·need, the fixed 
overhead of kernel calls can often be avoided. 

In summary, the specification of protection in a programming language 
allows the high-level description of policies for the allocation and use of 
resources. A language implementation can provide software for protection 
enforcement when automatic hardware-supported checking is unavailable. 
In addition, it can interpret protection specifications to generate calls on 
whatever protection system is provided by the hardware and the operating 
system. 

One way of making protection available to the application program is 
through the use of software capability that could be used as an object of 
computation. Inherent in this concept is the idea that certain program 



454 • Chapter 13: Protection 

components might have the privilege of creating or exammmg these 
software capabilities. A capability-creating program would be able to 
execute a primitive operation that would seal a data structure, rendering 
the latter's contents inaccessible to any program components that did not 
hold either the seal or the unseal privileges. They might copy the data 
structure, or pass its address to other program components, but they could 
not gain access to its contents. The reason for introducing such software 
capabilities is to bring a protecpon mechanism into the programming 
language. The only problem with the concept as proposed is that the use 
of the seal and unseal operations takes a procedural approach to specifying 
protection. A nonprocedural or declarative notation seems a preferable way 
to make protection available to the applications programmer. 

What is needed is a safe, dynamic access-control mechanism for 
distributing capabilities to system resources among user processes. If it is 
to contribute to the overall reliability of a system, the access-control 
mechanism should be safe to use. If it is to be useful in practice, it should 
also be reasonably efficient. This requirement has led to the development 
of a number of language constructs that allow the programmer to declare 
various restrictions on the use of a specific managed resource (see the 
Bibliographic Notes for appropriate references). These constructs provide 
mechanisms for three functions: 

1. Distributing capabilities safely and efficiently among customer 
processes: In particular, mechanisms ensure that a user process will 
use the managed resource only if it was granted a capability to that 
resource. 

2. Specifying the type of operations that a particular process may invoke 
on an allocated resource (for example, a reader of a file should be 
allowed only to read the file, whereas a writer should be able both to 
read and to write): It should not be necessary to grant the same set of 
rights to every user process, and it should be impossible for a process 
to enlarge its set of access rights, except with the authorization of the 
access control mechanism. 

3. Specifying the order in which a particular process may invoke the 
various operations of a resource (for example, a file must be opened 
before it can be read): It should be possible to give two processes 
different restrictions on the order in which they can invoke the 
operations of the allocated resource. 

The incorporation of protection concepts into programming languages, 
as a practical tool for system design, is at present in its infancy. It is likely 
that protection will become a matter of greater concern to the designers of 
new systems with distributed architectures and increasingly stringent 



13.8 Summary • 455 

requirements on . data security. Then, the importance of suitable language 
notations in which to express protection requirements will be recognized 
more widely. 

13.8 • Summary 

Computer systems contain many objects. These objects need to be 
protected from misuse. Objects may be hardware (such as memory, CPU 
time, or 110 devices) or software (such as files, programs, and abstract data 
types). An access right is permission to perform an operation on an object. 
A domain is a set of access rights. Processes execute in domains and may 
use any of the access rights in the domain to access and manipulat~ 
objects. 

The access matrix is a general moqel of protection. The access matrix 
provides a mechanism for protection without imposing a particular 
protection policy on the system or its users. The separation of policy and 
mechanism is an important design property. 

The a.ccess matrix is sparse. It is normally implemented either as access 
lists associated with· each object, or as capability lists associated with each 
domain. We can include dynamic protection in the access-matrix model by 
considering domains and the access matrix itself as objects. 

Real systems are much more limited, and tend to provide protection 
for only files. UNIX is representative, providing read, write, and exe.:ution 
protection separately for the owner, group, and general public for each 
file. MULTICS uses a ring structure in addition to file access. Hydra, the 
Cambridge CAP system, and Mach are capability systems that extend 
protection to user-defined software objects. 

• Exercises 

13.1 What are the main differences between capability lists and access 
lists? 

13.2 A Burroughs B7000/B6000 MCP file can be tagged as sensitive data. 
When such a file is deleted, its storage area is overwritten by some 
random bits. For what purpose would such a scheme be useful? 

13.3 In a ring-protection system, level 0 has the greatest access to objects 
and level n (greater than zero) has fewer access rights. The access 
rights of a program at a particular level in the ring structure are 
considered as a set of capabilities. What is the relationship between 
the capabilities of a domain at level j and a domain at level i to an 
object (for j > i)? 



456 • Chapter 13: Protection 

13.4 Consider a computer system in which "computer games" can be 
played by students only between 10 P.M. and 6 A.M., by faculty 
members between 5 P.M.· and 8 A.M., and by the computer center 
staff at all times. Suggest a· scheme for implementing this policy 
efficiently. 

13.5 The RC 4000 system (and other systems) have defined a tree of 
processes (called a process tree) such that all the descendants of a 
process are given resources (objects) and access rights by their 
ancestors only. Thus, a descendant can never have the ability to do 
anything that its ancestors cannot do. The root of the tree is the 
operating system, which has the ability to do anything. Assume the 
set of access rights was represented by an access matrix; A. A(x,y) 
defines the access rights of process X to object y. If X is a descendant 
of z, what is the relationship between A(x,y) and A(z,y) for an 
arbitrary opject y? 

13.6 What hardware features are needed in a computer system for 
efficient capability manipulation? Can these be used for memory 
protection? 

13.7 Consider a computing environment where a unique number is 
associated with each process artd each object in the system. Suppose 
that we allow a process with number n to access an object with 
number m only if n > m. What type of protection structure do we 
have? 

13.8 What protection problems may arise if a shared stack is used for 
parameter passing? · 

13.9 Consider a computing environment where a process is given the 
privilege of accessing an object only n times. Suggest a scheme for 
implementing this policy. 

13.10 If all the access rights to an object are deleted, the object can no 
• longer be accessed. At this point, the object should also be deleted, 

and the space it occupies should be returned to the system. Suggest 
an efficient implementatiop. of this scheme. · 

13.11 What is the need-to-know principle? Why is it important for a 
protection system to adhere to this principle? 

13.12 Why is it difficult to protect a system in which users are allowed to 
do their own IJO? 

13.13 Capability lists are usually kept within th~ address space of the user. 
How does the system ensure that the user cannot modify the 
contents of the list? 



Bibliographic Notes • 457 

Bibliographic Notes 

The access-matrix inodel of protection between domains and objects was 
developed by Lampson [1969, 1971]. Popek [1974], Saltzer and Schroeder 
[1975] provided excellent surveys on the subject of protection. Harrison et 
al. [1976] used a formal version of this model to enable them to prove 
mathematically properties of a protection system. _· 

The concept of a capability evolved from Iliffe's and Jodeit's codewords, 
which were implemented in the Rice University computer [Iliffe and Jodeit 
1962]. The term capability was introduced by Dennis and Van Horn [1966]. · 

The Hydra system was described by Wulf et al. [1981]. The CAP 

system was described by Needham and Walker [1977]. Organick [1972] 
discussed the MULTICS ring protection system. 

Revocation was discussed by Redell and Fabry [1974], Cohen and 
Jefferson [1975], and Ekanadham and Bernstein [1979]. ·The principle of 
separation of policy and mechanism was advocated by the designer of • 
Hydra [Levin et al. 1975]. The confinement problem was first discussed by 
Lampson [1973], and was further examined by Lipner [1975]. 

The use of higher-level languages for specifying access control was 
suggested first by Morris [1973], who proposed the use of the seal and 
unseal operation discussed in Section 13.7. Kieburtz and Silberschatz [1978, 
1983], and McGraw and Andrews [1979], proposed various language 
constructs for dealing with general dynamic resource-management 
schemes. Jones and Liskov [1978] considered the problem of how a static 
access-control scheme can be incorporated in a programming language that 
supports abstract data types. 





CHAPTER 14 

SECURITY 

Protection, as we have discussed it in Chapter 13, is strictly an internal 
problem: How do we provide controlled access to programs and data 
stored in a computer system? Security, on the other hand, requires not 
only an adequate protection system, but also consideration.. of the external 
environment within which the system operates. Internal protection is not 
useful if the operator's console is exposed to unauthorized personnel, or if 
files (stored, for example, on tapes and disks) can simply be removed from 
the computer system and taken to a system with no protection. These 
security problems are essentially management, not operating-system, 
problems. 

The information stored in the system (both data and code), as well as 
the physical resources of the computer system, need to be protected from 
unauthorized access, malicious destruction or alteration, . and accidental 
introduction of inconsistency. In this chapter, we examine the ways in 
which information may be misused or intentionally made inconsistent. We 
then present mechanisms to guard against this occurrence. 

14.1 • The Security Problem 

In Chapter 13, we discussed various mechanisms that the operating system 
can provide (with an appropriate aid from the hardware) that will allow 
users to protect their resources (usually programs and data). These 
mechanisms work well as long as the users of the system do not try to 
circumvent the intended use of and access to these resources. 
Unfortunately, in reality, this situation is seldom realized. When it is not, 

459 



460 • Chapter 14: Security 

security comes into play. We say that a system is secure if its resources 
are utilized and accessed as intended under all circumstances. 
Unfortunately, it is not generally possible to achieve total security. 
Nonetheless, mechanisms must be available to make security breaches a 
rare occurrence, rather than the norm. 

Security violations (misuse) of the system can be categorized as being 
either intentional (malicious) or accidental. It is easier to protect against 
accidental misuse than to protect against malicious misuse. Among the 
forms of malicious access are the following: 

• Unauthorized reading of data (theft of information) 

• Unauthorized modification of data 

• Unauthorized destruction of data 

Absolute protection of the system from malicious abuse is not possible, but 
the cost to the perpetrator can be made sufficiently high to deter most if 
not all attempts to access, without proper authority, the information 
residing in the system. 

To protect the system, we must take security measures at two levels: 

• Physical: The site or sites containing the computer systems must be 
physically secured against armed or surreptitious entry by intruders. 

• Human: Users must be authorized carefully to reduce the chance of 
any such user giving access to an intruder in exchange for a bribe or 
other favors. 

Security at both levels must be maintained to ensure operating system 
security. A weakness at a high level of security (physical or human) 
allows circumvention of strict low-level (operating system) security 
measures. 

It is worthwhile, in many applications, to devote a considerable effort 
to the security of the computer system. Large commercial systems 
containing payroll or other financial data are inviting targets to thieves. 
Systems that contain data pertaining to corporate operations may be of 
interest to unscrupulous competitors. Furthermore, loss of such data, 
whether via accident or fraud, can seriously impair the ability of the 
corporation to function. 

On the other hand, the system hardware must provide protection (as 
discussed in Chapter 13) to allow for the implementation of security 
features. For instance, MS-DOS and Macintosh OS provide little security 
because the hardware for which they were originally designed for did not 
provide memory or 110 protection. Now that the hardware has become 
sufficiently sophisticated to provide protection, the desigp.ers of these 



14.2 Authentication • 461 

operating systems are struggling to add security. Unfortunately, addin-g a 
feature to a functional system is a much more difficult and challenging task 
than is designing and implementing the feature before the system is built. 

In the remainder of this chapter, we shall address security at the 
operating-system level. Security at the physical and human levels, 
although important, is far beyond the scope of this text. Security within 
the operating system is implemented at several levels, ranging from 
passwords for access to the system to the isolation of concurrent processes 
running within the system. The file system also provides some degree of 
protection. 

14.2 • Authentication 

A major security problem for operating systems is the authentication 
problem. The protection system depends on an ability to identify the 
programs and processes that are executing. This ability, in turn, eventually 
rests on our power to identify each user of the system. A user normally 
identifies himself. How do we determine if a user's identity is authentic? 
Generally, authentication is based on some combination of three sets of 
items: user possession (a key or card), user knowledge (a user identifier 
and password), and a user attribute (fingerprint, retina pattern, or 
signature). 

The most common approach to authenticating a user identity is the use 
of user passwords. When the user identifies herself by user-id or account 
name, she is asked for a password. If the user-supplied password matches 
the password stored in the system, the system assumes that the user is 
legitimate. 

Passwords are often used to protect objects in the computer system, in 
the absence of more complete protection schemes. They can be considered 
a special case of either keys or capabilities. For instance, a password could 
be _associated with each resm;trce (such as a file). Whenever a request is 
made to use the resource, the password must be given. If the password is 
correct, access is granted. Different passwords may be associated with 
different access rights. For example, different passwords may be used for 
reading, appending, and updating a file. 

Although there are some problems associated with the use of 
passwords, they are nevertheless extremely common, because they are 
easy to understand and use. The problems with passwords are related to 
the difficulty of keeping a password secret. Passwords can be compromised 
by being guessed, accidentally exposed, or illegally transferred from an 
authorized user to an unauthorized one, as we show next. 

There are two common ways to guess a password. One is for the 
intruder (either human or program) to know the user or have information 
about the user. All too frequently, people use obvious information (such 



462 • Chapter 14: Security 

as the name of their cat or spouse) as their password. The other way is 
brute-force; trying all possible combinations of letters, numbers, and 
punctuation until the password is found. Short passwords do not leave 
enough choices to prevent a password from being guessed by repeated 
trials. For example, a four-decimal password provides only 10,000 
yariations. On the average, guessing 5000 times would produce the 
password. If a program could be written that would try a password every 
1 millisecond, it would then take only about 5 seconds to guess a 
password. Longer passwords are less susceptible to being guessed by 
enumeration, and systems that allow uppercase and lowercase letters, 
numbers, and all punctuation characters to b~used in passwords make the 
task of guessing the password much more diffltult. Of course users must 
take advantage. of the large password space and not just use lower-case 
letters. 

The failure of password security due to exposure can result from visual 
or electronic monitoring. An intruder could look over the shoulder of a 
user when the user is logging in, and can, learn the password easily. 
Alternatively, anyone with access to the network on which a computer 
resides could seamlessly add a network monitor, allowing her to watch all 
data being transferred on the network, including user-ids and passwords. 
Exposure is a particularly severe problem if the password is written down 
where it can be read or lost. As we shall see, some systems force the user 
to select hard-to-remember or long passwords. Taken to extreme, this can 
cause a user to record the password, providing much worse security than 
when the system allows easy passwords! 

The final method of password compromise is the result of human 
nature. Most computer installations have the rule that users are not 
allowed to share accounts. This rule is sometimes implemented for 
accounting reasons, but often it is used to aid in security. For instance, if 
one user-id was shared by several users, and a security breach occurred 
from that user-id, then it is impossible to know who was using that user-id 
at the time, or even if it was one of the authorized users. With one user 
per user-id, the user could be questioned directly about the use of that 
account. Sometimes, users break account-sharing rules to help out friends 
or circumvent accounting, and this behavior can result in a system being 
accessed by unauthorized users, possibly harmful ones. 

Passwords can be either system-generated or user-selected. System­
generated passwords may be difficult to remember, and thus may be 
commonly written down. User-selected passwords, however, are often 
easy to guess (the user's name or favorite car, for example). At some sites, 
administrators occasionally check user passwords and notify the users if 
the password is too short or easy to guess. Some systems also age 
passwords, forcing users to change them at regular intervals (every month, 
for instance). This method is not foolproof either, since users may easily 
toggle between two passwords. 



14.2 Authentication • 463 

Several variants on the simple password scheme can be used. For 
example, the password can be changed frequently. In the extreme, the 
password is changed for each session. A new password is selected (either 
by the system or by the user) at the end of each session., and that password 
must be used for the next session. Note ·that, even if a password is 
misused, it can be used only once, and its use prevents the legitimate user 
from using it. Consequently, the legitimate user discovers the security 
violation at the next session, when he uses a now-invalid password. Steps 
can then be taken to repair the broached security. 

Another approach is to have a set of paired passwords. · When a 
session begins, the system randomly selects and presents one part of a 
password pair; the user must supply the other part. This approach can be 
generalized to the use ofan algorithm as a password. The algorithm might 
be an integer function, for example. The system selects a random integer 
and presents it to the user. The user applies the function and replies with 
the result of the function. The system also applies the function. If the two 
results match, access is allowed. 

One problem with all these approaches is the difficulty of keeping the 
password (or list of password pairs, or algorithms) secret. The UNIX system 
uses a variant of the algorithmic password to avoid the necessity of 
keeping its password list secret. Each user has a password. The system 
contains a function that is very difficult (the designers hope impossible) to 
invert, but simple to compute. That is, given a value x, it is easy to 
compute the function value f(x). Given a function value f(x), however, it is 
impossible to compute x. This function is used to encode all passwords. 
Only the encoded passwords are stored. When a user presents a 
password, it is encoded and compared against the stored encoded 
password. Even if the stored encoded password is seen, it cannot be 
decoded, so the password cannot be determined. Thus, the password file 
does not need to be kept secret. 

The fl..aw in this method is that the system no longer has .control over 
the passwords. Although ·the passwords are encrypted, anyone with a 
copy of the password file may run fast encryption routines against it, 
encrypting each word in a dictionary, for instance, and comparing the 
results against the passwords. If the user has selected a password that is 
also a word in the dictionary, the password is cracked. On sufficiently fast 
computers, or even on clusters of slow computers, such a comparison may 
only take a few hours. For this reason, new versions of UNIX hide the 
password entries. On current UNIX systems, it is a good idea for users to 
use combination passwords, such as two dictionary words separated by a 
punctmttion character. Such passwords do not easily succumb to 
algorithmic guessing techniques because the result is a very large space 
(number of words in the dictionary squared) which needs to be encrypted 
to try to match such passwords. To avoid the dictionary encryption 
method, some systems disallow the use of dictionary words as passwords. 



464 • Chapter 14: Security 

14.3 • Program Threats 

In an environment where a program written by one user may be used by 
another user, there is an opportunity for misuse, which may result in 
unexpected behavior. Below, we describe two common meth9ds for 
achieving this. 

14.3.1 Trojan Horse 

Many systems have mechanisms for allowing programs written by users to 
be executed by other users. If these programs are executed in a domain 
that provides the access rights of the executing user, they may misuse 
these rights. Inside a text-editor program, for example, there may be code 
to search the file to be edited for certain keywords. If any are found, the 
entire fil~ may be copied to a special area accessible to the creator of the 
text editor. A code segment that misuses its environment is called a Trojan 
horse. The Trojan-horse problem is exacerbated ~y long search paths (such 
as are common on UNIX systems). The searCh path lists the set of 
directories to search when an ambiguous program name is given. The path 
is searched for a file of that name and the file is executed. All the 
directories in the search path must be secure, or a Trojan horse could be 
slipped into the user's path and executed accidentally. 

For instance, consider the use of the "." character in a search path. 
The "." tells the shell to include the current directory in the search. Thus, 
if a user has "." in her search path, has set her current directory to a 
friend's directory, and enters the name of a normal system command, the 
command may be executed from the friend's directory instead. The 
program would run within the user's domain, allowing the program to do 
anything that the user is allowed to do, including deleting the user's files 
for instance. 

14.3.2 Trap Door 

The designer of a program or syst~ffi ilifgftt leave a hole in the softw~:r~ 
that only he is capable of using. This type of security breach was shown 
-in the m·ovie "War Games." For instance, the code might check fof 'iJ. 
specific user identifier or password and circumvent normal se<:!urity 
procedures. There have been cases of programmers being arrest~d for 
embezzling from banks by including rounding errors in their code, and 
having the occasional half-cent credited to their accounts. This account 
crediting can add up to quite a large amount of money, considering the 
number of transactions a bank executes! 

A clever trap door could be included in a compiler. The compiler 
could generate standard object code as well as a trap door, regardless of 
the source code being compiled. This activity IS particularly nefarious, 



14.4 System Threats • 465 

since a search 'of the source code of the program would not reveal any 
problems. Only the source code of the compiler would contain the 
information. Trap doors pose a difficult problem because, to detect them, 
we would have to analyze all the source code for all components of a 
system. Given that software systems may consist of millions of lines of 
code, this analysis is not done frequently. 

14.4 • System Threats 

Most operating systems provide a means for processes to spawn other 
processes. In such an environment, it is possible to create a situation 
where operating-system resources and user files are misused. The two 
most common methods for doing this are worms and viruses, which are 
discussed below. 

14.4.1 Worms 

A worm is a process that uses the spawn mechanism to clobber system 
performance. The worm spawns copies of itself, using up system 
resources and perhaps locking out system use by all other processes. On 
computer ·networks, worms are particularly potent, since they may 
reproduce themselves among systems and thus shut down the entire 
network. Such an event occurred in 1988 to. UNIX systems on the 
worldwide Internet network, causing millions of dollars of lost system and 
programmer time. 

The Internet links thousands of government, academic, research, and 
industrial computers internationally and serves as the infrastructure for 
electroruc exchange of scientific information. At the close of the work day 
of November 2, 1988, Robert Tappan Morris, Jr., a first-year Cornell 
graduate student, unleashed a worm program on one or more hosts 
connected to the Internet. Targeting Sun Microsystems' Sun 3 workstations 
and v AX computers running variants of 4 BSD UNIX, the worm quickly 
spread over great distances and within a few hours of its release had 
consumed system resources to the point of bringing down the infected 
machines. 

Although Morris designed the self-replicating program for rapid 
reproduction and distribution, ·features of the UNIX networking 
environment provided the means to propagate the worm throughout the 
system. It is likely that Morris chose for initial infection an Internet host· 
left open for and accessible to outside users. From there, the worm 
program exploited flaws in the UNIX operating system~ s security routines 
and took advantage of UNIX utilities that simplify resource sharing in local 
area networks to gain unauthorized access tO thousands of other connected 
sites. Morris' methods of attack are outlined next. 



466 II Chapter 14: Security 

The worm was made up of two programs, a grappling hook 
bootstrap or vector) program and the main program. Named .c, 
grappling hook consisted of 99 lines of C code compiled and run on 
machine it accessed. Once established on the system under 
grappling hook connected to the machine where it 
uploaded a copy of the main worm onto the "hooked" system 
14.1). The main program proceeded to search for other machines to 
the newly infected system could connect easily. ln these actions, 
exploited a UNIX networking utility, rsh, for easy remote task CA<:CLLL 

setting up special files that list host-login name pairs, users 
entering a password each time they access a remote account on 
list. The worm searched these special files for site names that 
remote execution without a password. Where remote were 
established, the worm program was uploaded and began executing anew. 

The attack via remote access was one of three infection methods 
into the worm. The other two methods involved operating system 
the UNIX finger and sendmail programs. The finger utility functions as an 
electronic telephone directory; the command 

finger username@sitename 

returns a person's real and login names, along with other 
the user may have provided, such as office and home 
telephone numbers, research plan, or their birthdays. Finger runs as a 
background process (daemon) at each BSD site and responds 
throughout the Internet. The point vulnerable to malicious entry 
reading input without checking bounds for overflow. Morris' 

rsh attack 

finger attack 

sendmail attack 

worm sent 

target system 

Figure 14.1 The Morris Internet worm. 



14.4 System Threats • 467 

queried finger with a 536-byte string crafted to exceed the buffer allocated 
for input and to overwrite the stack frame. Instead of returning to the 
main routine it was in before Morris' call, the finger daemon was routed to 
a procedure within the invading 536-byte string now residing on the stack. 
The new procedure executed /bin/sh, which; if successful, provided the 
worm a remote shell on the machine under attack. 

The bug exploited in sendmail also involved utilizing a daemon process 
for malicious entry. Send mail routes electronic mail in a network 
environment. Debugging code in the utility permits testers to verify and 
display the state of the mail system. The debugging option is useful to · 
system administrators and is often left on as a background process. Morris 
included in his attack arsenal a call to debug, which, instead of specifying a 
user address, as would be normal in testing, issued a set of commands that 
mailed and executed a copy of the grappling-hook program. 

Once in place, the main worm proceeded in systematic attempts to 
discover user passwords. It began by trying simple cases of no password 
or passwords constructed of account-user name combinations, to 
comparisons with an internal dictiQnary of 432 favorite password choices, 
to the final stage of trying each word in the standard UNIX on-line 
dictionary as a possible password. This elaborate and efficient three-stage 
password-cracking algorithm enabled the worm to gain further access to 
other user accounts on the infected system. The worm then searched for 
rsh data files in these newly broken accounts. Any rsh entries were tried, 
and, as described previously, the worm could then gain access to user 
accounts on remote systems. 

With each new access, the worm program searched for already active 
copies of itself. If it found one, the new copy exited, except for every 
seventh instance. Had the worm exited on all duplicate sightings, it might 
have remained undetected. Allowing every seventh duplicate to proceed 
(possibly to confound efforts to stop its spread by baiting with "fake" 
worms) created a wholesale infestation of Sun and v AX systems on the 
Internet. 

The very features of the UNIX network environment that assisted the 
worm's propagation also helped to stop its advance. Ease of electronic 
communication, mechanisms to copy source and binary files to remote 
machines and access to both source code and human expertise allowed 
cooperative efforts to develop solutions to proceed apace. By the evening 
of the next day, November 3, methods of halting the invading program 
were circulated to system administrators via the Internet. Within days,. 
specific software patches for the exploited security flaws were available. 

One natural response is to question Morris' motives in unleashing the 
worm. The action has been characterized as both a harmless prank gone 
awry and a serious criminal offense. Based on the complexity of starting 
the attack, it is unlikely that the worm's release or the scope of its spread 
was unintentional. The worm program took elaborate steps to cover its 



468 • Chapter 14: Security 

tracks and to repel efforts to stop its spread. Yet the program contained 
no code aimed at damaging or destroying the systems on which it ran. 
The author clearly had the expertise to include such commands; in fact, 
data structures were present in the bootstrap code that could have been 
used to transfer Trojan horse or virus programs (see Section 14.4.2). The 
.actual behavior of the program may lead to interesting observations, but 
does not provide a sound basis for inferring motive. What is not open to 
speculation, however, is the legal outcome: A federal court convicted 
Morris and handed down a sentence of 3 years probation, 400 hours of 
community service, and a $10,000 fine. Morris' legal costs probably were 
in excess of $100,000. 

14.4.2 Viruses 
Another form of computer attack is a virus. Like worms, viruses are 
designed to spread into other programs and can wreak havoc in a system, 
including modifying or destroying files and causing system crashes and 
program malfunctions. Whereas a worm is structured as a complete, 
standalone program, a virus is a fragment of code embedded in a 
legitimate program. Viruses are a major problem for computer users, 
especially users of microcomputer systems. Multiuser computers, 
generally, are not prone to viruses because the executable programs are 
protected from writing by the operating system. Even if a virus does infect 
a program, its powers are limited because other aspects of the system are 
protected. Single-user systems have no such protections and, as a result, a 
virus has free run . 

. Viruses usually spread by users downloading viral programs from 
public bulletin boards or exchanging floppy disks containing an infection. 
A case from February 1992 involving two Cornell University students 
provides an illustration. The students had developed three Macintosh 
game programs with an embedded virus that they distributed to 
worldwide software archives via the Internet. The virus was discovered 
when a mathematics professor in Wales downloaded the games, and 
antivirus programs on his system alerted him to an infection. Some 200 
other users had also downloaded the games. Although the virus was not 
-designed ·to destroy data, it could spread to application files and cause 
such problems as long delays and program malfunctions. The authors 
were easy to trace, since the games had been mailed electronically from a 
Cornell account. New York state authorities arrested the students on 
misdemeanor charges of computer tampering and may have since filed 
additional charges. · 

In another incident, a programmer in California being divorced by his 
wife gave her a disk to load on a disputed computer. The disk contained a 
virus and erased all the files on the system. The husband was arrested 
and charged with destruction of property. 



14.5 Threat Monitoring • 469 

On occasion, upcoming viral infections are announced in high-profile 
media events. Such was the case with the Michelangelo virus, that was 
scheduled to erase infected hard disk files on March 6, 1992, the 
Renaissance artist's five hundred seventeenth birthday. Because of the 
extensive publicity surrounding the virus, most U.S. sites had located and 
destroyed the virus before it was activated, so it caused little or no 
damage. Such cases both alert the general public to and alarm them about 
the virus problem. Antivirus programs are currently very good sellers. 
Most commercial packages are effective against only particular, known 
viruses. They work by searching all the programs on a system for the 
specific pattern of instructions known to make up the virus. When they 
find a known pattern, they remove the instructions, "disinfecting" the 
program. These commercial packages have catalogs of hundreds of viruses 
for which they search. 

The best protection against computer viruses is prevention, or the 
practice of safe computing. Purchasing unopened software from vendors 
and avoiding free or pirated copies from public sources or floppy-disk 
exchange is the safest route to preventing infection. However, even new 
copies of legitimate software applications are not immune to virus 
infection. 

Another safeguard, while not preventing infection, does permit e~rly 
detection. A user must begin by completely reformatting the hard disk, 
especially the boot sector, which is often targeted for viral attack. Only 
secure software is uploaded, and a checksum for each file is calculated. 
The checksum list must be then be kept free from unauthorized access. 
Following any system reboot, a program can recompute the checksums and 
compare them to the original list; any differences serve as a warning of 
possible infection. Because they usually work among systems, worms and 
viruses are generally considered to pose security, rather than protection, 
problems. 

14.5 • Threat Monitoring 

The security of a system can be improved by two management techniques. 
One is threat monitoring. The system can check for suspicious patterns of 
activity in an attempt to detect a security violation. A common example of 
this scheme is a time-sharing system that counts the number of incorrect 
passwords given when a user is trying to log in. More than a few incorrect 
attempts may signal an attempt to guess a password. · 

Another common technique is an audit log. An audit log simply records 
the time, user, and type· of all accesses to an object. After security has been 
violated, the audit log can be used to determine how and when the 
problem occurred and perhaps the amount of damage done. This 
information can be useful, both for recovery from the violation and, 



470 • Chapter 14: Security 

possibly, in the development of better security measures to prevent future 
problems. Unfortunately, logs can become large, and logging uses system 
resources which are then unavailable to the users. 

Rather than log system activities, we can scan the system periodically 
for security holes. These scans can be done when the computer is 
relatively unused, and therefore have less effect than logging. Such a scan 
can check a variety of aspects of the system: 

• Short or easy-to-guess passwords 

• Unauthorized set-uid programs, if the system supports this mechanism 

• Unauthorized programs in system directories 

• Unexpected long-running processes 

• Improper directory protections, on both user and system directories 

• Improper protections on system data files, such as the password file, 
device drivers, or even the operating-system kernel itself 

• Dangerous entries in the program search path (for example, Trojan 
horse as discussed in Section 14.3.1) 

• 'Changes to system programs; we can detect unexpected changes by 
keeping a list of the checksum values of all system programs, and 
comparing this list against the current checksum values of the 
programs - checksums do not change unless the contents of the file 
have changed 

Ariy problems found by a security scan can either be fixed automatically or 
be reported to· the managers of the system. 

Networked computers are much more susceptible to security attacks 
than are standalone systems. Rather than attacks from a known set of 
access points, such as directly connected terminals, we face attacks from an 
unknown and very large set of access points - a potentially severe 
security problem. To a lesser extent, systems connected to telephone lines 
via modems are also more exposed. 

In fa~t, the U.S. federal government considers systems to be only as 
· secure as is their most far-reaching connection. For instance, a top-security 
system may be accessed only from within a building also considered top­
secure. The system loses the top-secure rating if any form of 
communication can occur outside that environment. Some government 
facilities take extreme security precautions. The connectors into which. a 
terminal plugs to communicate with the secure computer are locked in a 
safe in the office when the terminal is not being used. A person needs to 
know a physical lock combination, as well as authentication information 
for the computer itself, to gain access to the computer. 



14.6 Encryption • 471 

14.6 • Encryption 

The various provisions that an operating system may make for 
authorization may not offer sufficient protection for highly sensitive data. 
Moreover, as computer networks gain ··popularity, more sensitive 
(classified) information is being transmitted over channels where 
eavesdropping and message interception are possible. To keep such 
sensitive information secure, we need mechanisms to allow a user to 
protect data transferred over the network. 

Encryption is one common method of protecting information· 
transmitted over unreliable links. The basic mechanism works as follows: 

1. The Information (text) is encrypted (encoded) from its initial readable 
form (called clear text), to an internal form (called cipher text). This 
internal text form, although readable, does not make any sense. 

2. The cipher text can be stored in a readable file, or transmitted over 
unprotected channels. · 

3. To make sense of the cipher text, the receiver must decrypt (decode) it 
back into clear text. 

Even· if the encrypted information is accessed by an unauthorized person, 
it will be useless unless it can be decoded. The main issue is the 
development of encryption schemes that are impossible (or at least 
exceedingly difficult) to break. 

There is a variety of methods to accomplish this task. The · most 
common ones provide a general encryption algorithm E, a general 
decryption algorithm D, and a secret key (or keys) to be supplied for each 
application. Let E k and Dk denote the encryption and decryption 
algorithms, respectively, for a particular application with a key k. Then the 
encryption algorithm must satisfy the following properties for any message 
m: 

1. Dk(Ek(m)) = m. 

2. Both Ek and Dk can be computed efficiently. 

3. The secuiity of the system depends only on the secrecy of the key, and 
not on the secrecy of the algorithms E and D. 

One such. scheme, called the Data Encryption Standard, was recently 
adopted by the National Bureau of Standards. This scheme suffers from 
the key-distribution problem: Before communication can take place, the 
secret keys must be sent securely to both the sender and receiver. This task 
cannot be done effectively in a communication-network environment. A 



472 • Chapter 14: Security 

solution to this problem is to use a public key-encryption scheme. Each user 
has both a public and a private key, and two users can communicate 
knowing only each other's public key. 

An algorithm based on this concept follows. This algorithm is believed 
to be almost unbreakable. The public encryption key is a pair (e,n); the 

. private key is a pair (d,n), where e, d, and n are positive integers. Each 
message is represented as an integer between 0 and n - 1. (A long 
message is broken into a series of smaller messages, each of which can be 
represented as such an integer.) The functions E and D are defined as 

E(m) = m e mod n = C, 
D(C) = C d mod n. 

The main problem is choosing the encryption and decryption keys. The 
integer n is computed as the product of two large (100 or more digits) 
randomly chosen prime numbers p and q with 

n = p x q. 

The value of d is chosen to be a large, randomly chosen integer relatively 
prime to (p - 1) x (q - 1). That is, d satisfies 

greatest common divisor[d, (p - 1) x (q - 1)] = 1. 

Finally, the integer e is computed from p, q, and d to be the multiplicative 
inverse of d modulo (p - 1) x (q - 1). That is, e satisfies 

e x d mod (p - 1) x (q - 1) = 1. 

We should point out that, although n is publicly known, p and q are not. 
This condition is allowed because of the well-known fact that it is difficult 
to factor n. Consequently, the integers d and e cannot be guessed easily. 

Let us illustrate this scheme with an example. Let p = 5 and q = 7. 
Then, n = 35 and (p - 1) x (q - 1). = 24. Since 11 is relatively priine to 24, 
we can choose d = 11; and since 11 x 11 mod 24 = 121 mod 24 = 1, e = 

.11. Suppose noW that m = 3. Then, 

C = m e mod n = 311 mod 35 = 12, 

and 

C d mod n = 1211 mod 35 = 3 = m. 

Thus, if we encode musing e, we can decode musing d. 



.. 

Exercises • 473 

14.7 • Summary 

Protection is an internal problem. Security must consider both the 
computer system and the environment (people, buildings, businesses, 
valuable objects, and threats) within which the system is used. 

The data stored in the computer system need to be protected from 
unauthorized access, malicious destruction or alteration, and accidental 
introduction of inconsistency. It is easier to protect against accidental loss 
of data consistency than to protect against malicious access to the data. 
Absolute protection of the information stored in a computer system from 
malicious abuse is not possible, but the cost to the perpetrator can be made 
sufficiently high to deter most, if not all, attempts to access that 
information without proper authority. 

The v~rious authorization provisions in a computer system may not be 
sufficient protection for highly sensitive data. In such cases, data may be 
encrypted. It is not possible 'fpr encrypted data to be read unless the reader 
knows how to decipher (decrypt) the encrypted data; 

• Exercises 

14.1 A password may become known to other users in a variety of ways. 
Is there a simple method for detecting that such an event has 
occurred? Explain your answer. · 

14.2 The list of all passwords is kept within the operating system. Thus, 
if a user manages to read this list, password protection is no longer 
provided. Suggest a scheme that will avoid this problem. (Hint: Use 
different internal and external represent~tions.) 

14.3 An experimental addition to UNIX allows a user to connect a watchdog 
program to a file, such that the watchdog is invoked whenever a 
progra:rp. requests access to the file. The watchdog then either 
grants or denies access to the file. Discuss the pros and cons of 
using watchdogs -for security. 

14.4 The UNIX program, COPS, scans a given system for possible security 
holes and alerts the user to possible problems. What are the 
potential hazards of using such a system for security? How can 
these problems be limited or eliminated? 

14.5 Discuss ways by which managers of systems connected to the 
Internet could have limited or eliminated the damage done by the 
worm. What are the drawbacks of making such changes to the way 
in which the system operates? 



474 • Chapter 14: Security 

14,6 Argue for or against the sentence handed down against Robert 
Morris, Jr., for his creation and execution of the Internet worm. 

14.7 Make a list of security concerns for a computer system for a bank. 
For each item on your list, state whether ·this concern relates to 
physical security, human security, or operating-system security. 

14.8 What are the advantages of encrypting data stored in the computer 
system? 

Bibliographic Notes 

General discussions concerning security were offered by Hsiao et al. [1979], 
Landwehr [1981], Denning [1982], Pfleeger [1989], and Russell and 
Gangemi [1991]. Th~ U.S. federal government is, of course, ·concerned 
about security. It publishes the Orange Book, which describes a set of 
security levels, and the features that an operating system must have to 
qualify for each security rating. Reading it is a good starting point for 
understanding security concerns. Also of general interest is the the text by 
Lobel [1986]. 

Issues concerning the design and verification of secure systems were 
discussed by Rushby [1981] and Silverman [1983]. A security kernel for a 
multiprocessor ni.icrocomputer was described by Schell [1983]. A 
distributed secure system was described by Rushby and Randell [1983]. 

Morris and Thompso11 [1979] discussed password security. Morshedian 
[1986] presented method~ to fight password pirates. ·:Password 
authentication with insecure communications was considered by Lamport 
[1981]. The issue of password cracking was discussed by Seely [1989]. The 
issue of computer breakins was discussed by Lehmann· [1987] and Reid 
[1987]. . 

Discussions concerning UNIX security were offered by Grampp and 
Morris [1984], Wood and Kochan [1985], Farrow [1986a, 1986b], Filipski 
and Hanko [1986], Hecht et al. [1988], Kramer [1988], and Garfirikel ~nd 
Spafford [19~1]. Bershad and Pinkerton [1988] presented the watchdogs 
.extension· to BSD UNIX. The COPS security-scanning package for UNIX was 
written by Dan Farmer at Purdue University. It is available to users on the 
Internet via the ftp program from host ftp. uu.net in directory 
/pub/security/cops; 

Spafford [1989] presented a detailed technical discussion of the Internet 
worm. The Spafford article appeared with three others in a special" section 
on the Internet worm in Communications of the ACM, Volume 32, Number (5, 
June 1989. 

Diffie and Hellman [1976, 1979] were the first researchers to propose 
the use of the public key-encryption scheme. The algorithm. presented in 



Bibliographic Notes • 475 

Section 14.6, which is based on the public key-encryption scheme, was 
developed by Rivest et al. [1978]. Lempel [1979], Simmons [1979], Gifford 
[1982], Denning [1982], and Ahituv et al. [1987] concerned the use of 
cryptography in computer systems. Discussions concerning protection of 
digital signatures were offered by Akl [1983], Davies [1983], and Denning 
[1983, 1984]. 





PART FIVE 

DISTRIBUTED SYSTEMS 

A distributed system is a collection of processors that do not share memory 
or a clock. Instead, each processor has its own local memory, and the 
processors communicate with each other through various communication 
lines. The processors in a distributed system vary in size and function. 
They may include small microprocessors, workstations, minicomputers, 
and large general-purpose computer systems. 

A distributed system provides the user with access to the various 
resources that the system maintains. Access to a shared resource allows 
computation speedup, and improved data availability and reliability. 

A distributed file system is a file-service system whose users, servers, 
and storage devices are dispersed among the various sites of a distributed 
system. Accordingly, service activity has to be carried out across the 
network; instead of a single centralized data repository, there are multiple 
and independent storage devices. 

A distributed system must provide various mechanisms for process 
synchronization and communication, for dealing with the deadlock 
problem, and for dealing with a variety of failures that are not encountered 
in a centralized system. 





CHAPTER 15 

NETWORK 
STRUCTURES 

A recent trend in computer systems is to distribute computation among 
several physical processors. There are basically two schemes for building 
such systems. In a multiprocessor (tightly coupled) system, the processors 
share mem.ory and a clock, and communication usually takes place through 
the shared memory. In a distributed (loosely coupled) system, the 
processors do not share memory or a clock. Instead, each processor has its 
own local memory. The processors communicate with one another 
through various communication networks,. such as high-speed buses or 
telephone lines. In this chapter, we <fiscuss the general structure of 
distributed systems and the networks that interconnect them. Detailed 
discussions are given in Chapters 16 to 18. 

15.1 • Background 

A distributed system is a collection of loosely coupled processors 
interconnected by a communication network. From the point of view of a 
specific processor in a distributed system, the rest of the processors and 
their respective resources are remote, whereas its own resources are local. 

The processors in a distributed system may vary in size and function .. 
They may include small microprocessors, workstations, minicomputers, 
and large general-purpose computer systems. These processors are referred 
to by a number of different names, such as sites, nodes, computers, machines, 
hosts, and so on, depending on the context in which they are mentioned. 
We mainly use the term site, to indicate a location of machines and host to 
refer to a specific system at a site. Generaliy, one host at one site, the 

479 



480 II Chapter 15: Network Structures 

server, has a resource that another host at another site, the 
would like to use. The purpose of the distributed system 
efficient and convenient environment for this type of 

distributed system shown in Figure 1. 
A distributed operating system provides users with access 

various resources that the system provides. By resources, we 
hardware (such as printers and tape drives) and software (such as 
programs). Access to these resources is controlled by the 
There are basically two complementary schemes for 

• Network operating systems: The users are aware of 
machines, and need to access these resources by either 
appropriate remote machine, or transferring data from 
machine to their own machines. 

• Distributed operating systems: The users do not 
the multiplicity of machines. They access remote resources 
manner as they do local resources. 

Before discussing these two types of operating systems/ 
why such systems are useful, and what the structure 
computer network is. In Chapter 16, we present 
concerning the structure of these two types of operating 

site A 

site B 

Figure 15.1 A distributed system. 

site C 

-

same 



15.2 Motivation • 481 

15.2 • Motivation 

There are four major reasons for building distributed systems: resource 
sharing, computation speedup, reliability, and communication. In this section, 
we briefly elaborate on ea,ch of them. 

15.2.1 Resource Sharing 
If a number of different sites (with different capabilities) are connected to 
one another, then a user at one site may be able to use the resources 
available at another. For example, a user at site A may be using a laser 
printer available at only site B. Meanwhile, a user at B may access a file 
that resides at A. In· general, resource sharing in a distributed system 
provides mechanisms for sharing files at remote sites, processing 
information in a distributed database, printing files at remote sites, using 
remote specialized hardware devices (such as a high-speed array 
processor), and performing other operations. 

15.2.2 Computation Speedup 

If a particular computation can be partitioned into a number of 
subcomputations that can run concurrently, then the availability of a 
distributed system may allow us to distribute the computation among the 
various sites, to run the computation concurrently. In addition, if a 
particular ~ite is currently overloaded with jobs, some of them may be 
moved to other, lightly loaded, sites. This movement of jobs is called. load 
sharing. Automated load sharing, in which the distributed operating 
system automatically moves jobs, is still uncommon in commercial 
systems. It remains an active research area, however. 

15.2.3 Reliability 

If one site fails in a distributed system, the remaining sites· can potentially 
continue operating. If the system is composed of a number of large 
autonomous installations (that is, general-purpose computers), the failure 
of one of them should not affect the rest. If, on the other hand, the 
system is composed of a number of small machines, each of which is 
responsible for some crucial system function (such as terminal character I/O 

or the file system), then a single failure may halt the operation of the 
whole system. In general, if enough redundancy exists in the system (in· 
both hardware and data), the system can continue with its operation, even 
if some of its sites have failed. 

The failure of a site must be detected . by the system, and appropriate 
action may be needed to recover from the failure. The system must no 



482 • Chapter 15: Network Structures 

longer use the services of that site. In addition, if the function of the failed 
site can be taken over by another site, the system must ensure that the 
transfer of function occurs correctly. Finally, when the failed site recovers 
or is repaired, mechanisms must be available to integrate it back into the 
system smoothly. As we shall see in the following chapters, these actions 
present difficult issues with many possible solutions. 

15.2.4 Communication 
When several sites are connected to one another by a communication 
network, the users at different sites have the opportunity to exchange 
information. At a low level, messages are passed between systems in a 
manner similar to the single-computer message system discussed in Section 
4.6. Given message passing, all the higher-level functionality found in 
standalone systems can be expanded to encompass the distributed system. 
Such functions include file transfer, login, mail, and remote procedure calls 
(RPCs). 

The advantage of a distributed system is that these functions can be 
carried out over great distances. A project can be performed by two 
people at geographically separate sites. By transferring the files of the 
project, logging in to each other's remote systems to run programs, and 
exchanging mail to coordinate the work, the users are able to minimize the 
limitations inherent in long-distance work. In fact, this book was written 
in such a manner. 

Taken together, the advantages of distributed systems have resulted in 
an industry-wide trend toward downsizing. Many companies are replacing 
their mainframes with networks of workstations or personal computers. 
The advantages to the companies include a better "bang for the buck" 
(better functionality for the cost), flexibility in locating resources ·and 
expanding facilities, better user interfaces, and easier maintenance. 

Obviously, an operating system that was designed as a collection of 
processes that communicate through a message system (such as the Accent 
system) can be extended more easily to a distributed system than can a 
nonmessage passing system. For instance, MS-DOS is not easily integrated 
into a network because its kernel is interrupt based and lacks any support 
for message passing~ 

15.3 • Topology 

The sites in the system can be connected physically in a variety of ways. 
Each configuration has advantages and disadvantages. We describe briefly 
the most common configurations implemented, and compare them with 
respect to the following criteria: 



15.3 

• Basic cost: How expensive it to link the various in 

• Communication cost:. How long does it take to send a 
site A to site B? 

• Reliability: If a link or a site in the system fails, can 
sites still communicate with one another? 

The various topologies are depicted as graphs whose nodes rrl1~r<=>·c.nt 

sites. An edge from node A to node B corresponds to a direct 
between the two sites. 

15.3.1 Fully Connected Networks 
In a fully connected network, each site is directly linked with all 
the system (Figure 15.2). The basic cost of this configuration 
a direct communication line must be available between 
The cost grows as the square of the number 
environment, however, between the sites can 
message needs to use only one link to travel between 
addition, such are reliable, since many links must 
system to become partitioned. A system is partitioned if it 
into two (or more) subsystems that lack any connection 

15.3.2 Partially Connected Networks 
In a partially connected network, direct links exist between some, 
pairs of (Figure 15.3). Hence, the basic cost of 
lower than that of the fully connected network. However, a '"'"'c'"""' 

one site to another may have to be sent through several 
resulting in slower communication. For example, in the .:on<o+,,,.... 

Figure 15.2 Fully connected network. 



1111 Chapter 15: Network Structures 

Figure 15.3 Partially connected network. 

Figure 15.3, a message from site A to site D must be sent through B 
and C. 

In addition, a partially connected system 
connected network. The failure of one link partition the 
the example in Figure 15.3, if the link from B to C fails, then 

partitioned into two subsystems. One subsystem includes 
and E; the second subsystem includes C and D. The 
partition cannot communicate with the sites the other. 
possibility is minimized, each site is usually linked to at least 

For example, if we add a link from A to D, the failure 
cannot result in the partition of the network. 

15.3.3 Hierarchical Networks 

In a hierarchical network, the sites are organized as a tree (Figure 
organization is commonly used for corporate networks. Individual 
are linked to the local main office. Main offices are linked to 

regional offices are linked to corporate headquarters. 
Each site (except the root) has a unique parent, and some 

zero) numl?er of children. The basic cost of this configuration 
than that of the partially connected scheme. In this 

parent and child communicate directly. Siblings may communicate 
each other only through their common parent. A message from one 

another must be sent up to the parent, and then down to the 
Similarly, cousins can communicate with each other only 
common grandparent. This configuration matches well 
generalization that systems near each other communicate more 
that are distant. For instance, systems within a building are more 
transfer data than those at separate installations. 

-



Figure 15.4 Tree-structured network. 

If a parent site fails, then its children can no longer 
each other or with other processors. In general, the failure 
(except a leaf) partitions the network into disjoint 

15.3.4 Star Networks 
In a star network, one of the sites in the system 
sites (Figure 15.5). None of the other sites are connected to 
basic cost of this system is linear in the 
communication cost is also low, because a message 
requires at most two transfers (from A to the central 
the central site B). This simple transfer scheme, 
speed, since the central site may become a 
though the number of message transfers needed 

Figure 15.5 Star network. 

'-



486 II Chapter 15: Network Structures 

to send these messages may be high. In many star systemsr '"~"~'""""''"r.''"' 
central site is completely dedicated to the message-switching task. 

If the central site fails, the network is completely partitioned. 

5 Ring Networks 

a ring network, each site is physically connected to exactly two 
(Figure 15.6a). The ring can be either unidirectional or 
unidirectional architecture, a site can transmit information to 

neighbors. All sites must send information in the same 
bidirectional architecture, a site can transmit information to 
neighbors. The basic cost of a ring is linear in the number 
However, the communication cost can be high. A message from one 
another travels around the ring until it reaches its 
unidirectional ring, this process could require n 
bidirectional ring, at most n/2 transfers are needed. 

In a bidirectional ring, two links must fail before 
partitioned. In a unidirectional ring, a single failure 
would partition the network. One remedy is to extend the 
providing double links, as depicted in Figure 15.6b. IBM 
network a ring network. 

15.3.6 Multiaccess Bus Networks 
In a multiaccess bus network, there is a single shared link (the 

in the system are directly connected to that link/ 

(a) (b) 

Figure 15.6 Ring networks. (a) Single links. (b) Double 



15.3 

organized as a straight line (Figure 15.7a) or as a ring (Figure 
sites can communicate with ~ach other directly through this 
cost of the network is linear in the number of sites. The "n'!'ln'""' 
cost is quite low, unless the link becomes a bottleneck 
network· topology is similar to that of the star network with a 
centred site. The failure of one site does not affect 
the rest of the sites. However, if the link fails, the n~twork 
completely. The ubiquitous Ethernet network, used by many 
worldwide, is based on the multiaccess bus modeL 

15.3.7 Hybrid Networks 
It is common for networks of differing types to be connected Trl>£1""" ..... "'

0
"" 

example, within a site, a multiaccess bus such as Ethernet 
but between sites, a hierarchy may be used. Communications 
environment can be tricky because the multiple 
translated to one another and the routing of data is more 

••• 

(a) 

(b) 

Figure 15.7 Bus network. (a) Linear bus. (b) 

-



488 • Chapter 15: Network Structures 

15.4 • Network Types 

There are basically two types of networks: local-area networks and wide-area 
networks. The main difference between the two is· the way in which they 
are geographically distributed. Local-area networks are composed of 
processors that are distributed over small geographical areas, such as a 
single building or a number of adjacent buildings. Wide-area networks, on 
the other hand, are composed of a number of autonomous processors that 
are distributed over a large geographical area (such as the United States). 
These differences imply major variations in the speed and reliability of the 
communications network, and are reflected in the distributed operating­
system design. 

15.4.1 Local-Area Networks 
Local-area networks (LANs) emerged in the early 1970s, as a substitute for 
large mainframe computer systems. It had become apparent that, for many 
enterprises, it is more economical to have a number of small computers, 
each with its own self-contained applications, rather than a single large 
sy~tei:n. Because each small computer is likely to ne~d a full complement of 
peripheral devices (such as disks and printers), and because some form of 
data sharing is likely to occur in a single enterprise, it was a natural step to 
connect these small systems into a network. 

LANs are usually designed to cover a small geographical area (such as a 
single building, or a few adjacent buildings) and are generally used in an 
offiCe environment. All the sites in such systems are close to one another, 
so the communication links tend to have a higher speed and lower error 
rate. than do their counterparts in wide-area networks. So that this higher 
speed and reliability can be attained, high-quality (expensive) cables are 
needed. It is also possible to use the cable exclusively for data network 
traffic. Over longer distances, the cost of using high-quality cable is 
enormous, and the exclusive use of the cable tends to be prohibitive. 

The most common links in a local-area network are twisted pair, 
baseband coaxial cable, broadband coaxial cable, and fiber optics. The most 
com,mon configurations are multiaccess bus, ring, and star networks, 
·Communication speeds range from 1 megabyte per second, for networks 
such as Appletalk and IBM's ~low token ring, to 1 gigabit per second for 
experimental optical networks. Ten megabits per second is most common, 
and is the speed of Ethernet. Recently, the optical-fiber-based FDDI 

network has been increasing its market share. This network is token based 
and runs at 100 megabits per second. 

A typical LAN may consist of a number of different minicomputers or 
workstations, various shared peripheral devices (such as laser printers or 
magnetic-tape units), and one or more gateways (specialized processors) 



15.4 Network 

micro printer mini 

processors 

processors 

file system mini 

Figure 15.8 Local-area network. 

that provide access to other networks (Figure 15.8). An 
commonly used to construct LANs. There is no central 
Ethernet network, because it is a multiaccess bus, so new 
added easily to the network. 

15.4.2 Wide-Area Networks 

Wide-area networks (w ANs) emerged in 
academic research project to provide efficient 

allowing hardware and software to be shared 
economically by a wide community of users. The first WAN 
and developed was the Arpanet. Work on the Arpanet began 
Arpanet has grown from a four-site experimental network 
network of networks, the Internet, comprising thousands 
systems. Recently, several commercial networks have also 
market. The Telenet system available within the 

the Datapac system is available in Canada. These 
their customers with the ability to access a wide range 

computing resources. 
Because the sites in a WAN are physically distributed 

geographical area, the communication links are by 
and unreliable. Typical links are telephone lines, 
satellite channels. These communication links are 

-

micro 



490 • Chapter 15: Network Structures 

H 

user processes network host 

communication 
subsystem 

network host user processes 

H 

communication 
processor 

Figure 15.9 Communication processors in a wide-area ""''""''"\1"1<" 

communication processors (Figure 15.9), which are responsible for 
the interface through which the sites communicate over the 
well as for transferring information among the various sites. 

Asan example, let us consider the Internet WAN. The 
an ability for hosts at geographically separated sites to '-'"'"""u" 

one another. The host computers typically differ from one another 
speed, word length, operating system, and so on. Hosts are s;e1n.e1:a 
LANs, which are in turn connected to the Internet via 
The regional networks, such as NSFnet in the Northeast 
interlinked with routers (described in Section 15.5.2) to form the urr.1"l£1l'tArl 

network. Connections between networks frequently use a 
system service called T1, which provides a transfer rate of 
per second. The routers control the path each message takes 
net. This routing may be either dynamic, to increase 
efficiency, or static, to reduce security risks or to allow "'"""'·'"'""' 
charges to be computed. 



15.5 Communication • 491 

Other w ANs in operation use standard telephone lines as their primary 
means of communication. Modems are the devices that accept digital data 
from the computer side and convert it to the analog signals that the 
telephone system uses. A modem at the destination site converts the 
analog signal back to digital and the destination receives the data. The 
UNIX news network, UUCP, allows systems to communicate with each other 
at ·predetermined times, via modems, to exchange messages. The 
messages are . then routed to other nearby systems and in this way either 
are propagated to all hosts on the network (public messages) or are 
transferred to their destination (private messages). WANs are· generally 
slower than LANs; their transmission rates range from 1200 bits per second 
to over 1 megabit per second. 

15.5 • Communication 

Now that we have discussed the physical aspects of networking, we turn 
to the internal workings. T.he designer of a communication network must 
address four basic issues: 

• Naming and name resolution: How do two processes locate each other 
to communicate? 

• Routing strategies: How are messages sent through the network? 

• Connection strategies: How do two processes send a sequence of 
messages? 

• Contention: The network is a shared resource, so how do we resolve 
conflicting demands for its use? 

In Sections 15.5.1 through 15.5.4, we elaborate each of these issues. 

15.5.1 Naming and Name Resolution 
The first component of network communication is the naming of the 
systems in the network. For a process at site A to exchange information 
with a process at site B, they must be able to specify each other. Within a 
computer system, each process has a process-id, and messages may be 
addressed with the process-id. Because networked systems share no 
memory, they initially have no knowledge of the host of their target 
process, or even if the other process exists. 

To solve this problem, processes on remote systems are generally 
identified by the pair <host name, identifier>, where "host name" is a 
name unique within the network, and "identifier" may be a process-id or 



492 • Chapter 15: Network Structures 

other unique number within that host. A "host name" is usually an 
alphanumeric identifier, rather than a number, to make it easier for users 
to specify. For instance, site A might have hosts named "homer," 
"marge," "bart," and "lisa." "Bart" is certainly easier to remember than is 
"12814831100." 

Names are convenient for humans to use, but computers prefer 
numbers for speed and simplicity. For this reason, there must be a 
mechanism to resolve the host name into a host-id which describes the 
destination system to the networking hardware. This resolve mechanism is 
similar to the name-to-address binding which occurs during program 
compilation, linking, loading, and execution (Chapter 8). In the case of 
host names, there are two possibilities. First, every host may have a data 
file containing the names and addresses of all the other hosts reachable on 
the network (similar to binding at compile time). The problem with this 
model is that adding or removing a host from the network requires 
updating the data files on all the hosts. The alternative is to distribute the 
information among systems on the network. The network must then use a 
protocol to distribute and retrieve the information. This scheme is like 
execution-time binding. The first method was the original method used on 
the Internet, but as the Internet grew it became untenable, and the second 
method, the domain name service (DNS) is now in use. 

DNS specifies the naming structure of the hosts, as well as name to 
address resolution. Hosts on the Internet are logically addressed with a 
multipart host. Names progress from the most specific to the most general 
part of the address, with periods separating the fields. For instance, 
"bob.cs.brown.edu" refers to host "bob" in the Department of Computer 
Science at Brown University. Generally, the system resolves addresses by 
examining the host name components in reverse order. Each component 
has a name server (simply a process on a system) that accepts a name and 
returns the address of the name server responsible for that name. As the 
final step, the name server for the host in question is contacted and a 
host-id is returned. For our example system, "bob.cs.brown.edu," the 
following steps would be taken as result of a request made by a process on 
system A to communicate with "bob.cs.brown.edu": 

·1. The kernel of system A issues a request to the name server for the 
"edu" domain, asking for the address of the name server for 
"brown.edu." The name server for the "edu" domain must be at a 
known address, so that it can be queried. (Other top-level domains 
include "com" for commercial sites, "org" for organizations, and one 
for each country connected to the network (for systems specified by 
their country rather than organization type)). 

2. The "edu" name server returns the address of the host on which the 
"brown.edu" name server resides. 



15.5 Communication • 493 

3. The kernel on system A then queries the name server at this address 
and asks about "cs.brown.edu." 

4. An address again is returned, and a request to that address for 
"bob.cs.brown.edu" finally returns an Internet address host-id for that 
host (for example, 128.148.31.100). 

This protocol may seem. inefficient, but local caches are usually kept at 
each name server to speed the process. For example, the "edu" name 
server would have "brown.edu" in its cache, and would inform system A 
that it can resolve two portions of the name, returning a pointer to the 
"cs.brown.edu" name server. Of course, the contents of these caches must 
be refreshed over time in case the name server is moved or its address 
changes. In fact, this service is such an important one that there are many 
optimizations in the protocol, and many safeguards. Consider what would 
happen if the primary "edu" name server crashed. It is possible that no 
"edu" hosts would be able to have their addresses resolved, making them 
all unreachable! The solution is the use of secondary, backup, name 
servers to duplicate the contents of the primary servers. 

Before the domain name service was introduced, all hosts on the 
Internet needed copies of a file that contained the names and addresses of 
each host on the network. All changes to this file had to be registered at 
one site (host SRI-NIC), and periodically all hosts had to copy the updated 
file from SRI-NIC to be able to contact new systems or find hosts whose 
addresses changed. Under the domain name service, each name server 
site is responsible for updating the host information for that domain~ For 
instance, any host changes at Brown University are the responsibility of 
the name server for "brown.edu," and do not have to be reported 
anywhere else. DNS lookups will automatically retrieve the updated 
information because "brown.edu" is contacted ··directly. Within domains, 
there can be autonomous subdomains to distribute further the 
responsibility for host name and host-id changes. 

Generally, it is the responsibility of the operating system to accept 
from its processes a message destined for <host name, identifier>, and to 
transfer that message to the appropriate host. The kernel on the 
destination host is then responsible for transferring the message to the 
process named by the identifier. This exchange is by no means trivial, and 
is described later in Section 15.5.3. 

15.5.2 Routing Strategies 
When a process at site A wants to communicate with a process at site B, 
how is the message sent? If there is only one physical path from A to B 
(such as in a star or hierarchical network), the message must be sent 
through that path. However, if there are multiple physical paths from A 



494 • Chapter 15: Network Structures 

to B, then several routing options exist. Each site has a routing table, 
indicating the alternative paths that can be used to send a message to 
other sites. The table may include information about the speed and cost of 
the various communication paths, and it may be· updated as necessary, 
either manually or via programs that exchange routing information. The 
·three most common routing schemes are fixed routing, virtual routing, and 
dynamic routing: 

• Fixed routing: A path from A to B is specified in advance and does not 
change unless a hardware failure disables this path. Usually, the 
shortest path is chosen, so that communication costs are minimized. 

• Virtual circuit: A ·path from A to B is fixed for .the duration of one 
session. Different sessions involving messages from A to B may have 
different paths. A session could be as short as a file transfer or as long 
as a remote-login period. 

• Dynamic routing: The path used to send a message from site A to site 
B is chosen only when a message is sent. Because the decision is 
made dynamically, separate messa~' s may be assigned different paths. 
Site A will make a decision to sen the message to site C; C, in turn, 
will decide to send it to site D, d so on. Eventually, a site will 
deliver the message to B. Usually a site sends a message to another site 
on that link that is the least used at that particular time. 

There are tradeoffs among these three schemes. Fixed routing cannot 
adapt to link failures or load changes. In other words, if a path has been 
established between A and B, the messages must be sent along this path, 
even if the path is down or is used heavily while another possible path is 
used lightly. We can partially remedy this problem by using virtual 
circuits, and can avoid it completely by using dynamic routing. Fixed 
routing and virtual circuits ensure that messages from A to B will be 
delivered in the order in which they were sent. In dynamic routing, 
messages may arrive out of order. We can remedy this problem by 
appending a sequence number to each message. 

Note _that dynamic routing is the most complicated to set up and run. 
It is the best way to manage routing in complicated environments, 
however. UNIX provides both static routing for use on hosts within simple 
networks, and dynamic routing for complicated network environments. It 
is also possible to mix the two. Within a site, the hosts may just need to 
know how to reach the system that connects the local network to other 
networks (such as companywide networks or the Internet). Such a host is 
known as a gateway. These individual hosts would have a static route to 
the gateway. The gateway itself would use dynamic routing to be able to 
reach any host on the rest of the network. 



-
15.5 Communication • 495 

A router is· the entity within the computer system responsible for 
routing messages. A router can be a host computer with routing software, 
or a special-purpose device. Either way, a router must have at least two 
network connections, or else it would have nowhere to route messages. A 
router decides whether any given message needs to be passed from the 
network on which it is received to any other network connected to the 
router. It makes this determination by examining the destination Internet 
address of the message. The router examines its tables to determine the 
location of the destination host, or at least of the network to which to send 
the message toward the destination host. In the case of static routing, this 
table is changed only by manual update (a new file is loaded onto the 
router). With dynamic routing, a routing protocol is used between routers 
to inform them of network changes and to allow them to update their 
routing tables automatically. 

15.5.3 Connection Strategies 

Once messages are able to reach their destinations, processes may institute 
communications "sessions" to exchange information. There are a number 
of different ways to connect pairs of processes that want to communicate 
over the network. The three most common schemes are circuit switching, 
message switching, and packet switching: 

• Circuit switchirtg: If two processes want to communicate, a permanent 
physical link is established between them. This link is allocated for the 
duration of the communication, and no other process can use that link 
during this period (even if the two processes are not actively 
communicating for a while). This scheme is similar to that used in the 
telephone system. Once a communication line has been opened 
between two parties (that is, party A calls party B), no one else can use 
this circuit, until the communication is terminated explicitly (for 
example, when one of the parties hangs up). 

• Message switching: If two ~ocesses want to communicate, a temporary 
link is established for the du'ra,tion of one message transfer. Physical 
links are allocated dynamically among correspondents as needed, and 
are allocated for only short periods. Each message is a block of data, 
with system information (such as the source, the destination, and 
error-correction codes) that allows the communication network to . 
deliver the message to the destination correCtly. This scheme is similar 
to the post-office mailing system. Each letter is considered a message 
that contains both the destirlation address and source (return) address. 
Note that many messages (from different users) can be shipped over 
the same link. 



496 • Chapter 15: Network Structures 

• Packet switching: Messages ani generally of variable length. To 
simplify the system design, we commonly implement communication 
with fixed-length messages called packets, frames, or .datagrams. One 
logical message may have to be divided into · a number of packets. 
Each packet may be sent to its destination separately, and therefore 
must include a source and destination address with its data. Each 
packet may take a different path through the network. The packets 
must be reassembled into messages as they arrive. 

There are obvious tradeoffs among these schemes. Circuit switching 
requires set-up time, but incurs less overhead for shipping each message, 
and may waste network bandwidth. Message and packet switching, on the 
other hand, require less set-up time, but incur more overhead per 
message. Also, in packet switching, each message must be divided into 
packets and later reassembled. Packet switching is the most common 
method used on data netWorks because it makes the best use of netWork 
bandwidth and it is not harmful for data to be broken into packets, 
possibly routed separately, and reassembled at the destination. Doing the 
same with an audio signal (say, a telephone communication) could cause 
great confusion if not done carefully. 

15.5.4 Contention 
Depending on the network topology, a link may connect more than two 
sites in the computer network, so it is possible that several sites will want 
to transmit information over a link simultaneously. This difficulty occurs 
mainly in a ring or multiaccess btis network. In this case, the transmitted 
information may become scrambled and must be discarded. The sites must 
be notified about the problem, so that they can retransmit the information. 
If no special provisions are made, this situation may be repeated, resulting 
in degraded performance. Several techniques have been developed to 
avoid repeated collisions, includirig collision detection, token passing, and 
message slots. 

• CSMA/CD: Before transmitting a message over a link, a site must listen 
to determine whether another message is currently being transmitted 
over that link; this technique is called carrier sense with multiple access 
(CSMA). If the link is free, the site can start transmitting. Otherwise, it 
must wait (and continue to listen) until the link is free. If two or more 
sites begin transmitting at exactly the same time (each thinking that no 
other site is using the iink), then they will register a collision detection 
(CD) and will stop transmitting. Each site will try again after some 
random time interval. Note that, when site A starts transmitting over a 
link, it must listen continuously to detect collisions with messages from 
other sites. The main problem with this approach is that, when the 



15.5 Communication • 497 

system is very busy, many collisions may occur, and thus performance 
may be degraded. Nevertheless, CSMNCD has been used successfully in 
the Ethernet system, the most common network system. (The Ethernet 
protocol is defined by the IEEE ~02.3 .standard.) To limit the number of 
collisions, the number of hosts per Ethernet network must be limited. 
Adding more hosts to a congested network could result in poor 
network throughput. As systems get faster, they are able to send more 
packets per time segment. As a result, the number of systems per 
Ethernet segment generally is decreasing, to keep networking 
performance reasonable. 

• Token passing: A unique message type, known as a token, 
continuously circulates in the system (usually a ring structure). A site 
that wants to transmit information must wait until the token arrives. It 
removes the token from the ring and b~gins to transmit its messages. 
When the site completes its round of message passing, it retransmits 
the token. This action, in turn, · allows another site to receive and 
remove the token, and to start Its message transmission. If the token 
gets lost, then the systems must detect the loss and generate a new 
token. They usually do that by declaring an election, to elect a unique 
site where a new token will be generated. Later, in Section 18.6, we 
present one election algorithm. A token-passing scheme has been 
adopted by the IBM and HP/ Apollo systems. The benefit of a token­
passing network is that performance is constant. Adding new systems 
to a network may lengthen the time a system waits for the token, but it 
will not cause a large performance decrease as may happen on 
Ethernet. On lightly loaded networks, however, Ethernet is more 
efficient, because systems may send messages at any time. 

• Message slots: A number of fixed-length message slots continuously 
circulate in the system (usually a ring structure). Each slot can hold a 
fixed-sized message and control information (such as what the .source 
and destination are, and whether the slot is empty or full). A site that 
is ready to transmit must wait until an empty slot arrives. It then 
inserts its message into the slot, setting the appropriate control 
information. The slot with its message then continues in the network. 
When it arrives at a site, that site inspects the control information to 
determine whether the slot contains a message for this site. If not, that 
site recirculates the slot and message. Otherwise, it removes the 
message, resetting the control information to indicate that the slot is 
empty. The site can then either use the slot to send its own message or · 
release the slot. Because a slot can contain only fixed-sized messages, 
a . single logical message may have to be broken down into sever.al 
smaller packets, each of which is sent in a separate slot. This scheme 
has been adopte.d in the experimental Cambridge Digital Communica­
tion Ring. 



498 Chapter 15: Network Structures 

.. 6 Design Strategies 

When designing a communication network, we must 
inherent complexity of coordinating asynchronous 
communicating in a potentially slow and error-prone 

essential that the systems on the network agree on a 
protocols for determining host names, locating hosts on 

establishing connections, and so on. We can simplify the 
(and related implementation) by partitioning the problem 

Each layer on one system communicates with the 
on other systems. Each layer may have its own protocols, 
m2"Icai segmentation. The protocols may be implemented 

For instance, Figure 15.10 shows the logical 
between two computers, with the three lowest-level layers 
hardware. Following the International Standards Organization 

to the layers with the following descriptions: 

1. Physical layer: The physical layer is responsible for handling 
mechanical and electrical details of the physical 
stream. At the physical layer, the communicating 
on the electrical representation of a binary 0 and 1, so 
are sent as a stream of electrical signals, the receiver able 
the data properly as binary data. This layer is 
hardware of the networking device. 

Figure 15.10 Two computers communicating via the ISO network 

-



15.6 Design Strategies • 499 

2. Data-link layer: The data-link layer is responsible for handling the 
frames, or fixed-length parts of packets, including any error detection 
and recovery that occurred in the physical layer. 

3. Network layer: The network layer if) responsible for providing 
connections and for r,outing packets in the communication network, 
including handling the address of outgoing packets, decoding the 
address of incoming packets, and maintaining routing information for 
proper response to changing load levels. Routers work at this layer. 

4. Transport layer: The transport layer is responsible for low-level access 
to the network and for transfer of messages between the clients, 
including partitioning messages into packets, maintaining packet order, 
controlling flow, and generating physical addresses. 

5. Session layer: The session layer is responsible for implementing 
sessions, or process-to-process communications protocols. Typically, 
these protocols are the actual communications for remote logins, and 
for file and mail transfers. 

6. Presentation layer: The presentation layer is responsible for resolving 
the differences in formats among the various sites in the network, 
including character conversions, and half duplex-full duplex modes 
(character echoing). 

7. Application layer: The application layer is responsible for interacting 
directly with the users. This layer deals with file transfer, remote-login 
protocols, and electronic mail, as well as with schemas for distributed 
databases. 

Figure 15.11 summarizes the ISO protocol stack (a set of cooperating 
protocols), showing the physical flow of data. As mentioned, logically 
each layer of a protocol stack communicates with the equivalent layer on 
other systems. But physically; a message starts at or above the application 
layer, and is passed through each lower level in turn. Each of these layers 
may modify the message and include message header data for the 
equivalent layer on the receiving side. Finally, the message makes it to the 
data-network layer and is transferred as one or more packets (Figure 
15.12). These data are received by the data link layer of the target system, 
and the message is moved up through the protocol stack, being analyzed, 
modified, and stripped of headers as it progresses. It finally reaches the 
application layer for use by the receiving process. · 

The ISO model formalizes some of the earlier work done in network 
protocols, but was developed in late 1970s and is not yet in widespread· 
use. Part of the basis for ISO is the more timeworn and widely used 
protocol stack developed under UNIX for use in the Arpanet (which became 
the Internet.) 



500 Chapter 15: Network Structures 

application layer 

presentation layer 

session layer 

transport layer 

network layer 

link layer 

physical 

Figure 15.11 The ISO protocol layer summary. 

Most Internet sites still communicate via the Transmission 
Protocol/Internet Protocol, commonly known as TCPIIP. The TCP/IP """'"''"'*T"""' 
stack has fewer layers than does the ISO model. Theoretically, 
combines several functions in each layer, it is more difficult to 
but more efficient than ISO networking. The TCP/IP stack 
correspondence) is shown in Figure 15.13. The IP protocol is 

transmitting IP datagrams, the basic unit of information, across a 
internet. TCP uses IP to transport a reliable stream of information rU.Jl"UT~Jfi.' 

two processes. The other common internet transmission protocol 

-



15.7 Networking Example • 501 

The User Datagram Protocol (UDP) is an unreliable, connectionless transport 
protocol. It uses IP to transfer the packets, but adds error correction and a 
protocol port address to specify the process on the remote system for which 
the packet is destined. 

15.7 • Networking Example 

We shall now return to the name-resolution issue raised in Section 15.5.1, 
and shall examine its operation with respect to the TCP/IP protocol-stack on 
the Internet. We consider the processing needed to transfer a packet 
between hosts on different Ethernet networks. 

In a TCP/IP network, every host has a name and an associated 32-bit 
Internet number (host-id). Both of these must be unique, and, so that the 
name space can be managed, they are segmented. The name is 
hierarchical (as explained in Section 15.5.1), describing the host name and 
then the organizations with which the host is associated. The host-id is 
split into a network number and a host number. The proportion of the 
split varies, depending on the size of the network. Once a network 
number is assigned by the Internet administrators, the site with that 
number is free to assign host-ids. 

The sending system checks its routing tables to locate a router to send 
the packet on its way. The routers use the network part of the host-id to 
transfer the packet from its source network to the destination network. 

data-link-layer header 

network -layer header 

transport-layer header 

session -layer header 

presentation layer 

application layer 

message 

data-link-layer trailer 

Figure 15.12 An ISO network message. 



502 II Chapter 15: Network Structures 

layers 5-7 

layer 4 

layers1-3{ ~-"'-'.__-~-:-. 

TCP = transmission control protocol 
UDP user datagram protocol 

IP = internet protocol 

Figure 15.13 The TCP/IP protocol 

The destination system then receives the packet. The packet a 
complete message, or it may just be a component of a 
packets needed before the message is reassembled and 
TCP/UDP layer for transmission to the destination process. 

Now we know how a packet moves from its source 
destination. Within a network, how a packet 
(host or router) to receiver? Every Ethernet device 
number assigned to it for addressing. Two devices 
other only with this number. Periodically, kernel 
packet containing the host-id and Ethernet number of 
packet broadcast to all other systems on that Ethernet 
broadcast uses a special network address (usually, the maximum 
to signal that all hosts should receive and 
broadcast not resent by gateways, so only on the 
receive them. On receipt of this message, every host .. a,_,,..":"' 

from the UDP packet and caches the pair in an internal 
sequence is the Address Resolution Protocol (ARP). The cache 
so that they eventually get removed from the if a renewing nr<Jac1.ca 
is not received. In this way hosts that are removed from a 
eventually ''forgotten." 

Once an Ethernet device has announced host-id and 
communication can begin. A process may specify the name of a 
which to communicate. The kernel takes that name and 



Internet number o.f the target, using a DNS lookup. The 
from the application layer, through the software layers, 
hardware layer. At the hardware layer, the packet (or packets) 
Ethernet address at its start, and a trailer at the end to indicate 
the packet and containing a checksum for detection of 
(Figure 15.14). The packet placed on the network 
device. Note that the data section of the packet may contain some or 
the data of the original message, but may also contain some 
level headers that compose the message. In other words, all 
original message must be sent from source to destination, 
above the 802.3 layer (data-link layer) are included as data in 
packets. 

If the destination is on the same local network as the 
system can look in its ARP cache, can find the Ethernet address 
and can place the packet on the wire. The destination 
then sees its address in the packet and reads in the packet, 
the protocol stack. 

If the destination system is on a network 
source, the source system finds an appropriate router on 
sends the packet there. Routers then pass the packet along 
it reaches its destination network. The router that 
network checks ARP cache, finds the 
destination, and sends the packet to that host. 

bytes 

7 

1 

2 or6 

2 or6 

2 

0-1500 

0-46 

4 

each byte pattern 10101010 

pattern 10101011 

ethernet address or broadcast 

ethernet address 

length in 

message data 

message must be > 63 

for error detection 

Figure 15.14 An Ethernet packet. 



504 • Chapter 15: Network Structures 

transfers, the data-link-layer header may change as the Ethernet address 
of the next router in the chain is used, but the other headers of the packet 
remain the same until the packet is received and they are processed by the 
protocol stack, finally being passed to the receiving process by the kernel. 

15.8 • Summary 

A distributed system is a collection of processors that do not share memory 
or a clock. Instead, each processor has its own local memory, and the 
processors communicate with one another through various communication 
lines, such as high-speed buses or telephone lines. The processors in a 
distributed system vary in size and function. They may include small 
microprocessors, workstations, minicomputers, and large general-purpose 
computer systems. 

The processors in the system are connected through a communication 
network, which can be configured in a number of different ways. The 
network may be fully or partially connected. It may be a tree, a star, a 
ring, . or a multiaccess bus. The communication-network design must 
include routing and connection strategies, and must solve the problems of 
contention and security. 

Principally, there are two types of distributed systems: LANs and WANs. 
The main difference between the two is in the way they are distributed 
geographically. LANs are composed of processors that are distributed over 
small geographical areas, stich as a single building or a few adjacent 
buildings. w ANs are composed of autonomous processors that are 
distributed over a large geographical area (such as the United States). 

Protocol stacks, as specified by network layering models, massage the 
message, adding information to it to ensure that it reaches its destination. 
A naming system such as DNS must be. used t() translate from a host name 
to network address, and another protocol (such as ARP) may be needed to 
translate the network number to a network device address (an Ethernet 
address, for instance). If systems are on separate networks, routers are 
needed to pass packets from source network to destination network. 

• Exercises 

15.1 Contrast the various network topologies in terms of reliability. 

15.2 Why do most WANs employ only a partially connected topology? 

15.3 What are the main differences between a WAN and a LAN? 



1: Bibliographic Notes • 505 

15.4 What network configuration would best suit the following environ­
ments? 

a. A dormitory floor 

b. 'A university campus 

c. A state 

d. A nation 

15.5 Even though the ISO model of networking specifies seven layers of 
functionality, most computer systems use fewer layers to implement 
a network. Why do they use fewer layers? What problems could 
the use of fewer layers cause? 

15.6 Explain why a doubling of the speed of the systems on an Ethernet 
segment may result in decreased network performance. What 
changes could be made to ameliorate the problem? 

15.7 Under what circumstances is a token-ring network more effective 
than an Ethernet network? 

15.8 Why would it be a bad idea for gateways to pass broadcast packets 
between networks? What would be the advantages of doing so? 

15.9 In what ways is using a name server better than using static host 
tables? What are the problems and complications associated with 
name servers? What methods could be used to decrease the amount 
of traffic name servers generate to satisfy translation requests?. 

15.10 Of what use is an address resolution protocol? Why is the use of 
such a protocol better than making each host read each packet to 
determine to whom it is destined? Does a token-ring network need 
such a protocol? 

Bibliographic Notes 

Tanenbaum [1988] and Halsall [1992] provided general overviews of 
computer networks. Fortier [1989] presented a detailed discussion of 
networking hardware and software. 

The Internet and several other networks were discussed in Quarterman 
and Hoskins [1986]. The Internet and its protocols was described in 
Comer [1991] and Comer and Stevens [1991, 1993]. UNIX network 
programming was described thoroughly in Stevens [1990]. The general 
state of networks has been given in Quarterman [1990]. 



I 
I 

506 • Chapter 15: Network Structures 

Feng [1981] surveyed the various network topologies. Boorstyn and 
Frank (1977] and Gerla and Kleinrock [1977] discussed topology design 
problems. Day and Zimmerman [1983] discussed the OSI model. 

A special issue of Computer Networks [December 1979] included nine 
papers on LANs covering such subjects as hardware, software, simulation, 
and examples. A taxonomy and extensive list of LANs were presented by 
Thurber and Freeman [1980]. Stallings [1984] discussed various types of 
ring-structured LANs. 

Reliable communication in the presence of failures was discussed by 
Birman and Joseph [1987]. Integrating security in a large distributed system 
was discussed by Satyanarayanan [1989]. 



CHAPTER 16 

DISTRIBUTED-SYSTEM 
STRUCTURES 

In this chapter, we discuss the general structure of distributed systems. We 
contrast the main differences in operating-system design between these 
types of systems and the centralized systems with which we were 
concerned previously. 

16.1 • Network-Operating Systems 

. A network operating system provides an environment where users, who are 
aware of the multiplicity of machines, can access remote resources by 
either logging into the appropriate remote machine, or transferring data 
from the remote machine to their own machines. 

16.1.1 Remote Login 
An important function of a network operating system is to allow users to 
log in remotely on another computer. The Internet provides the telnet 
facility for this purpose. To illustrate this facility, let us suppose that a 
user at Brown University wishes to compute on "cs.utexas.edu," a 
computer that is located at the University of Texas. To do so, the user 
must have a valid account on that machine. To log in remotely, the user 
issues the command 

telnet cs. utexas.edu 

This command results in a connection being formed between the local 
machine at Brown University and the "cs.utexas.edu" computer. After this 

507 



508 • Chapter 16: Distributed-System Structures 

connection has been established, the networking software creates a 
transparent, bidirectional link such that all characters entered by the user 
are sent to a process on "cs.utexas.edu," and all the output from that 
process is sent back to the user. The process on the remote machine asks 
the user for a login name and a password. Once the correct information 
has been received, the process acts aE a proxy for the user, who can 
compute on. the remote machine just as any local user can. 

16.1.2 Remote File Transfer 

Another major function of a network operating system is to provide a 
mechanism for file transfer from one machine to another. In such an 
environment, each computer maintains its own local file system. If a user 
at one site (say, "cs.brown.edu") wants to access a file located on another 
computer (say, "cs. utexas.edu"), then the file must be copied explicitly 
from the computer at Texas to th_e computer at Brown. 

The Internet provides a mechanism for such a transfer with the File 
Transfer Protocol (FTP) program. Suppose that a user on cs.brown.edu 
wants to copy a file paper.tex that resides on cs.utexas.edu into a local file 
my-paper.tex. The user must first invoke the FTP program, by executing 

ftp cs. utexas.edu 

The program then asks the user for the login name and a password. Once 
the correct information has been received, the user must connect to the 
subdirectory where the file paper.tex resides, and then copy the file by 
executing 

get paper. tex my-paper. tex 

In this scheme, the file location is not transparent to the user; tisers must 
know exactly where each file is. Moreover, there is no real file sharing, 
because a user can only copy a file from one site ,to another. Thus, several 
copies of the same file may exist, resulting in a waste of space. In addition, 
if these copies are modified, the various copies will be inconsistent. 

Notice· that, in our example, the user at Brown university must have 
login permission on "cs.utexas.edu." FTP also provides a way to allow a 
user who does not have an account on the Texas computer to copy files 
remotely. This remote copying is accomplished through the "anonymous 
ftp" method, which works as follows. The file to be copied (that is, 
paper.tex) must be placed in a special subdirectory (say ftp) with the 
protection set to allow the public to read the file. A user who wishes to 
copy the file uses the ftp command as before. When the user is asked for 
the login name, the user supplies the name "anonymous," and an arbitrary 
password. 



16.2 Distributed-Operating Systems • 509 

Once anonymous login is accomplished, care must be taken by the 
system to ensure that this partially authorized user .does not access 
inappropriate files. Generally, the user is allowed to access only those files 
that are in the directory tree of user "anonymous." Any files placed here 
are accessible to any anonymous users, subject to the usual file-protection 
scheme used on that machine. Anonymous users, however, cannot access 
files outside ofthis directory tree. 

The FTP mechanism is implemented in a manner similar to telnet. 
There is a daemon on the remote site that watches for connection requests 
to the system's FTP port. Login authentication is accomplished, and the 
user is allowed to execute commands remotely. Unlike the telnet daemon, 
which executes any command for the user, the FTP daemon responds only 
to a predefined set of file-related commands. These include: 

• get: Transfer a file from the remote machine to the local machine 

• put: Transfer from the local machine to the remote machine 

• Is or dir: List files in the current directory on the remote machine 

• cd: Change the current directory on the remote machine 

There are also various commands to change transfer modes (for binary or 
ASCII files) and to determine connection status. 

An important point about telnet and FTP is that they require the user to 
change paradigms. FTP requires the user to know a command set entirely 
different from the normal operating-system commands. Telnet requires a 
smaller shift, in which the user must know appropriate commands on the 
remote system. For instance, a user on a UNIX machine who telnets to a 
VMS machine must switch to VMS commands for the duration of the telnet 
session. Facilities are more convenient for users if they do not require the 
use of a different set of commands. Distributed operating systems are 
designed to ameliorate this problem. 

16.2 • Distributed-Operating Systems 
' 

In a distributed operating system, the users access remote resources in the 
same manner as they do local resources. Data and process migration from 
one site to another is under the control of the distributed operating 
system. 

16.2.1 Data Migration 

Suppose that a user on site A wants to access data (such as a file) that 
reside at site B. There are two basic methods for the system to transfer the 
data. One approach is to transfer the entire file to site A. From that point 



510 • Chapter 16: Distributed-System Structures 

on, all access to the file is local. When the user no longer needs access to 
the file, a copy of the file (if it has been modified) is sent back to site B. 
Even if only a modest change has been made to a large file, all the data 
must be transferred. This mechanism can be thought of as an automated 
FTP system. This approach was used in the Andrew file system, as will be 
discussed in Chapter 17, but it was found to be too inefficient. 
· The other approach is to transfer to site A only those portions of the 
file that are actually necessary for the immediate task. If another portion is 
required later, another transfer will take place. When the user no longer 
wants to access the file, any part of it that has been modified must be sent 
back to site B. (Note the similarity to demand paging.) The Sun 
Microsystems' Network File System (NFS) protocol uses this method (see 
Chapter 17), as do newer versions of Andrew. 

Clearly, if only a small part of a large file is being accessed, the latter 
approach is preferable. If significant portions of the file are being accessed, 
it is more efficient to copy the entire file. 

Note that it is not sufficient merely to transfer data from one site to 
another. The system must also perform various data translations if the two 
sites involved are not directly compatible (for instance, if they use different 
character-code representations or represent integers with a different 
number or order of bits). 

16.2.2 Computation Migration 

In some circumstances, it may be more efficient to transfer the 
computation, rather than the data, across the system. For example, 
consider a job that needs to access various large files that reside at 
different sites, to obtain a summary of those files. It would be more 
efficient to access the files at the sites where they reside and then to return 
the desired results to the site that initiated the computation. Generally, if 
the time to transfer the data is longer than the time to execute the remote 
command, the remote command should be used. 

Such a computation can be carried out in a number of different ways. 
Suppose that process P wants to access a file at site A. Access to the file is 
carried out at site A, and could be initiated by a remote procedure call, or 
RPC. An RPC uses a datagram protocol (UDP on the internet) to execute a 
routine on a remote system (Section 16.3.1). Process P invokes a 
predefined procedure at site A. The procedure executes appropriately, and 
then returns the results to P. 

Alternatively, process P can send a message to site A. The operating 
system at site A would then create a new process Q whose function is to 
carry out the designated task. When process Q completes its execution, it 
sends the needed result back to P via the message system. Note that, in 
this scheme, process P may execute concurrently with process Q and in 
fact may have several processes running concurrently on sev~ral sites. 



16.2 Distributed-Operating Systems • 511 

Both methods could be used to access several files residing at various 
sites. One remote procedure call might resu~t 1n the invocation of another 
remote procedure call, or even in the transfer of messages to another site. 
Similarly, proc~ss Q could, during the course of its. execution, send a 
message to another site, which in turn. would create another process. This 
process might either send a m~ssage back to Q or repeat the cycle. 

16.2.3 Process Migration 

A logical extension to computation migration is process migrati~n. When a 
process is submitted for execution, it is not always executed at the site in 
which it is initiated. It may be advantageous to execute the entire process, 
or parts of it, at different sites. This scheme ~ay be used for severed 
reasons: 

• Load balancing: The processes (or subprocesses) may be distributed 
across the network to evert the workload; 

• Computation speedup: If a single process can be divided into a 
number of subprocesses that may run concurrently on different sites, 
then the total process turnaround time can be reduced. 

• Hardware preference: The process may have characteristics that make 
it more suitable for execution on some specialized processor (such as 
matrix inversion on an array processor, rather than on a 
microprocessor). 

• Software preference: The process may require software that is available 
at only a particular site, and either the software cartnot be moved, or it 
is less expensive to move the process. · 

• Data access: Just as in computation migration, if the data being used in 
the computation are numerous, it may ·be more efficient to have a 
process rurt remotely, rather than to transfer all the data locally. 

There are basically two complementary techniques that can be used to 
move processes in a computer network. In the first, the system can 
attempt to hide the. fact that the process has migrated from the client. This 
scheme has the advantage that the user does not need to code his program 
explicitly to accomplish the migration. This method is usually employed for 
achieving load balancing and computation speedup among homogeneous 
systems, as they do not need user input to help them execute programs 
remotely. 

The other approach is to allow (or require) the user to specify explicitly 
how the process should migrate. This method is usually employed in a 
situation when the process must be moved to satisfy a hardware or 
software preference. 



512 • Chapter 16: Distributed-System Structures 

16.3 • Remote Services 

Consider a user who needs access to data located at some other site. For 
example, a user may wish to find out the total number of lines, words and 
characters in a file located at another site A. The· request for doing so is 
handled by a remote server at site A, who accesses the file, computes the 
·desired result, and eventually transfers the actual dc::tta back to the user. 

One way to achieve this transfer is through the remote-service method. 
Requests for accesses are delivered to the server. The server machine 
performs the accesses, and their results are forwarded back to the user. 
There is a direct correspondence between accesses and traffic to and from 
the server. Access requests are translated to messages for the servers, and 
server replies are packed as messages seht back to the users. Every access 
is handled by the server and results in network traffic. For example, a read 
results in a request message being sent to the server, and a reply to the 
user with the requested data. · 

16.3.1 Remote Procedure CaJls 

One of the most common forms of remote service is the remote procedure call 
(RPC) paradigm, which we discussed briefly in Section 4.6.3. The RPC was 
designed as a way to abstract the procedure-call mechanism for use 
between systems with network connections. It is similar in many respects 
to the IPC mechanism described in Section 4.6, and is usually built on top 
of such a system. Because we are dealing with an environment where the 
processes are executing on separate systems, we must use a message-based 
communication scheme to provide remote service. In contrast to the IPC 
facility, the messages exchanged· for RPC communication are well 
structured, and are thus no longer just packets of data. They are 
addressed to an RPC daemon listening to a port on the remote system, and 
contain an identifier of the function to execute and the parameters to pass 
to that function. The function is then executed as requested, and any 
output is sent back to the requester in a separate message. 

A port is simply a number included at the start of a message packet. 
Whereas a system normally has one network address, it can have many 
ports wit.hin that address to differentiate the many network services it 
·supports. If a remote process needs a service, it addresses its messages to 
the proper port. For instance, if a system wished to allow other systems to 
be able to list the current users on it, it would have a daemon supporting 
such an RPC attached to a port, say port 3027. Any remote system could 
obtain the needed information (that is, the ·list of current users) by sending 
an RPC message to port 3027 on the server; the data would be received in a 
reply message. 

The RPC mechanism is common on networked systems, so there are 
several issues that we should discuss in regard to its operation. One 



16.3 Remote Services • 513 

important issue is that of the semantics of a call. Whereas local procedure 
calls fail only under extreme circumstances, RPCs can fail, or be dupli~ated 
and executed more than once, due to common network errors. Because we 
are dealing with message transfer over unreliable communication links, it 
is much easier for an operating system to ensure that a message was acted 
on at most once, than it is to ensure that the message was acted on exactly 
once. Because local procedure calls have the latter meaning, most systems 
attempt to duplicate that functionality. They do so by attaching to each 
message a timestamp. The server must keep a history of all the_ timestamps 
of messages it has already processed, or a history large enough to ensure 
that repeated messages are detected. Incoming messages that have a 
timestamp already in the history are ignored. Generation of these 
timestamps is discussed in Section 18.1. 

Another important issue concerns the communication between server 
and client. With standard procedure calls, some form of binding t<;l.kes 
place during link, load, or execution time (see Chapter 8), such that a 
procedure call's name is replaced by the memory address of the procedure 
call. The RPC scheme requires a similar binding of the client and the server 
port, but how does a client know the port numbers on the server? Neither 
system has full information about the other because they do not share 
memory. Two approaches are common. First, the binding information 
may be predecided, in the form of fixed port addresses. At compile time, 
an RPC call has a fixed port number associated with it. Once a program is 
compiled, the server cannot change the port number of the requested 
service. Second, binding can be done dynamically by a rendezvous 
mechanism. Typically, an operating system provides a rendezvous (also 
called a matchmaker) daemon on a fixed RPC port. A client then sends a 
message, containing the name of the RPC, to the rendezvous daemon 
requesting the port address of the RPC it needs to execute. The port 
number is returned, and the RPC calls may be sent to that port until the 
process terminates (or the server crashes). This method requires the extra 
overhead of the initial request, but is more flexible than the first approach. 
A sample interaction is shown in Figure 16.1. 

The remote procedure calls scheme is useful in implementing a 
distributed file system (see Chapter 17). Such a system can be 
implemented as a set of RPC daemons and clients. The messages are 
addressed to the DFS port on a server on which a file operation is to take 
place. The message contains the disk operation to be performed. Disk 
operations might be read, write, rename, delete, or status, corresponding 
to the usual file-related system calls. The return message contains any data 
resulting from that call, which is executed by the DFS daemon on behalf of 
the client. For instance, a message might contain a request to transfer a 
whole file to a client, or be limited to simple block requests. In the latter 
case, several such requests might be needed if a whole file is to be 
transferred. 



514 • Chapter 16: Distributed·System Structures 

Figure 16.1 Execution of a remote procedure call (RPC). 

16.3.2 Threads 

Distributed systems often utilize both threads and RPCs. Threads 
used to send and receive messages while other operations within 
continue asynchronously. For instance, a daemon might 
threads waiting to receive request messages, with a single Int:~:s:s•:tl:e.t: 



16.3 Remote Services • 515 

picked up by· a thread and processed concurrently with other threads 
doing the same. Researchers are studying how the use of threads can 
make RPCs more lightweight. One improvement over conventional RPC 
takes advantage of the fact that a server thread that blocks waiting for a 
new request has little significant context .. information. In a scheme 
sometimes referred to as implicit receive, a thread that has completed a job 
disappears. The kernel then simply creates a new thread to handle 
incoming requests. It also writes the message onto the server's address 
space and sets up the stack so that the new thread can access the message. 
A thread created on an "as needed" basis to respond to a new RPC can be· 
called a pop-up thread. This technique improves performance because it is 
cheaper to start a new thread than to restore an existing one. Because no 
threads block waiting for new work, no context has to be saved, or 
restored. Additional time is saved because incoming RPCs do not have to 
be copied to a buffer within a server thread. 

It has been shown that a significant number of RPCs in distributed 
systems are to processes on the same machine as the caller. RPC can be 
made more lightweight if highly efficient communication is enabled via 
shared memory between threads in different processes that are running on 
the same machine. On starting up, a server thread, ST, exports its 
interface to the kernel. Defined in the interface are those procedures that 
are callable, their parameters, and other related features. A client thread, 
CT, that imports this interface will receive a unique identifier that it will 
use later to make the call. To make a call to ST, CT pushes the arguments 
onto an argument stack, which is a data structure shared by both ST and 
CT. As part of the call, ST also puts the unique identifier in a register. 
Once the kernel observes this placement, it knows that the call is not 
remote, but rather is local. The kernel then puts the client in the server's 
address space and initiates CT's execution of ST's procedure. Because the 
arguments are already in place and do not have to be copied, local RPCs 
handled in this manner show an improved performance time over 
conventional RPCs. 

Let us illustrate the use of threads in a distributed environment by 
examining a specific threads package available through the Open Software 
Foundation's Distributed Computing Environment (DCE). DCE is important 
because almost all major UNIX vendors have agreed to add it to their UNIX 
implementations as a way of standardizing the network functionality and 
protocols and allow better interoperability between systems. It will also be 
used by Microsoft's Windows/NT. The DCE package provides, for user 
convenience, a large number of calls. In this chapter, we consider the 
most significant; we group them into the following five categories: 

1. Thread-management calls: create, exit, join, detach 

2. Synchronization calls: mutex_init, mutex_destroy, mutex_lock, 
mutex_trylock, mutex_unlock 



516 • Chapter 16: Distributed-System Structures 

3. Condition-variable calls: cond_init, cond_destroy, cond_wait, 
cond_signal, cond_broadcast 

4. Scheduling calls: setscheduler, getscheduler, setprio, getprio 

5. Kill-thread calls: cancel, setcancel 

We now briefly discuss each of these. 
The four thread-management calls create new threads and allow them 

to exit on completing a request. The call join, which is similar to the UNIX 
system call wait, permits a parent. to. wait .for its child. If a parent thread 
need not wait for the child, it may decline to do so with detach. 

Access to shared data can be synchronized through the use of mutex, 
which is a variant of a binary semaphore (see Chapter 6). Mutexes in DCE 

can be created (initiated) or destroyed dynamically. A mutex is either in a 
locked or unlocked state. Three operations are defined on mutexes, 
mutex.Jock, mutex_trylock, and mutex_unlock. A lock attempt succeeds 
on only an unlocked mutex; once locked, the mutex is confined to a single 
atomic action. Conversely, a mutex is unlocked by mutex_unlock; if 
several threads are waiting on the mutex, only a single thread is released. 
The rriutex_trylock call attempts to lock a mutex. If that mutex is already 
locked, then this call returns a status code indicating that it did not lock, 
and the thread issuing the call is not blocked. If that mutex is unlocked, 
then the call returns a success status code. 

DCE also provides the condition variable feature found in most thread 
packages. This feature functions in much the same way as do the condition 
variables in monitors (Chapter 6). A condition variable works in 
conjunction with a mutex but has a significantly different use. To 
illustrate, let us suppose that a thread A has locked a mutex ml to gain 
entry to a critical region. Once there, the thread discovers that it cannot 
continue executing until another thread B has executed and has modified 
data in that critical region. Thread A would normally lock a second mutex 
m2 for that purpose. This second locking, however, would result in a 
deadlock, because thread B cannot enter the critical region to change the 
data for which A is waiting. 

Rather than locking mutex m2, thread A could lock a condition 
variable. This condition-variable locking would automatically unlock mutex 
ml if the setting of the lock by thread A results in a wait. When thread B 
changes the desired data, it issues a wakeup call that activates the waiting 
thread A. 

Like mutexes, condition variables can also be created and deleted 
dynamically. The capacity to wait on a condition variable is provided by 
cond_ wait. DCE provides two types of wakeup operations: cond_signal 
resumes the execution of only a single waiting thread, whereas 
cond_broadcast resumes the execution of all threads that are waiting on the 
condition variable. 



I 16.4 Robustness • 517 

Another category of .calls we consider comprises scheduling calls. The 
set of scheduling calls in the DCE package allow the scheduling algorithms 
and priorities to be set and read. A number of preemptive and 
nonpreemptive scheduling algorithms are available, including round robin 
and FIFO. 

The threads package provides calls for killing threads. The system call 
cancel enacts an attempt to kill another thread. That thread can use the 
setcancel call either to allow or to disallow the kill attempt. 

16.4 • Robustness 

A distributed system may suffer from various types of hardware failure. 
The failure of a link, the failure of a site, and the loss of a message are the 
most common failures.' To ensure that the system is robust, we must detect 
any of these failures, reconfigure the system so that computation may 
continue, and recover when a site or a link is repaired. 

16.4.1 Failure Detection 
In an environment with no shared memory, it is generally not possible to 
differentiate among link failure, site failure, and message loss. We can 
usually detect that one of these failures has occurred, but we may not be 
able to identify what kind of failure it is. Once a failure has been detected, 
appropriate action must be taken, depending on the particular application. 

To detect link and site failure, we use a handshaking procedure. 
Suppose that sites A and B have a direct physical link between them. At 
fixed intervals, both sites send each other an l-am-up message. If site A 
does not receive this message within a predetermined time period, it can 
assume that site B has failed, that the link between A and B has failed, or 
that the message from B has been lost. At this point, site A has two 
choices. It can wait for another time period to receive an l-am-up message 
from B, or it can send an Are-yow-up? message to B. 

If site A does not receive an l-am-up message or a reply to its inquiry, 
the procedure can be repeated. The only conclusion that site A can draw 
safely is that some type of failure has occurred. 

Site A can try to differentiate between link failure and site failure by 
sending an Are-you-up? message to B by another route (if one exists). If and 
when B receives this message, it immediately replies positively. This 
positive reply tells A that B is up, and that the failure is in the direct link 
between them. Since it is not known in advance how long it will take the 
message to travel from· A to B and back, a time-out scheme must be used. 
At the time A sends the Are-you-up? message, it specifies a time interval 
during which it is willing to wait for the reply from B. If A. receives the 
reply message within that time interval, then it can safely condude that B 



518 • Chapter 16: Distributed-System Structures 

is up. If, however, it does not receive the reply message within the time 
interval (that is, a time-out occurs), then A may conclude only that one or 
more of the following situations has occurred: 

1. Site B is down. 

· 2. The direct link (if one exists) from A to B is down. 

3. The alternative path from A to B is down. 

4. The message has been lost. 

Site A cannot, however, decide which of these events has indeed occurred. 

16.4.2 Reconfiguration 

Suppose that site A has discovered, through the mechanism described in 
the previous section, that a failure has occurred. It must then initiate a 
procedure that will allow the system to reconfigure and to continue its 
normal mode of operation. 

• If a direct link from A to B has failed, this information must be 
broadcast to every site in the system, so that the various routing tables 
can be updated accordingly. 

• If the system believes that, a site has failed (because that site can be 
reached no longer), then every site in the system must be so notified, 
so that they will no longer attempt to use the services of the failed site. 
The failure of a site that serves as a central coordinator for some 
activity (such as deadlock detection) requires the election of a new 
coordinator. Similarly, if the failed site is part of a logical ring, then a 
new logical ring must be constructed. Note that, if the site has not 
failed (that is, if it is up but cannot be reached), then we may have the 
undesirable situation where two sites serve as the coordinator. When 
the network is partitioned, the two coordinators (each for its own 
partition) may initiate conflicting actions. For example, if the 
coordinators are responsible for implementing mutual exclusion, we 
may 'have a situation where two processes may be executing 
simultaneously in their critical sections. 

16.4.3 Recovery from Failure 

When a failed link or site is· repaired, it must be integrated into the system 
gracefully and smoothly. 

• Suppose that a link between A and B has failed. When it is repaired, 
both A and B must be notified. We can accomplish this notification by 



16.5 Design Issues • 519 

continuously repeating the handshaking procedure, described in 
Section 16.4.1. 

• Suppose that site B has failed. When it recovers, it must notify all 
other sites that it is up again. Site B then may have to receive from the 
other sites various information to update its local tables; for example, it 
may need routing table information, a list of sites that are down, or 
undelivered messages and mail. Note that, if the site has not failed, 
but simply could not be reached, then this information is still required. 

16.5 • Design Issues 

It has been the challenge of many designers to make the multiplicity of 
processors and storc:tge devices transparent to the 1.1sers. Ideally; a 
distributed system should look to its users like a conventional, centralized 
system. The ·user interface of a transparent distributed system should not 
distinguish between local and remote resources. That is, users should be 
able to access remote distributed systems as though the latter were local, 
and it should be the responsibility of the distributed system to locate the 
resources and to arrange for the appropriate interaction. 

Another aspect of transparency is user mobility. It would be 
convenient to allow users to log in to any machine in the system, and not 
to force them to use a specific machine. A transparent distributed system 
facilitates user mobility py bringing over the user's environment (for 
example, home directory) to wherever she logs in. Both the Andrew file 
system from CMU and Project Athena from MIT provide this functionality on 
a large scale. NFS can provide this transparency on a smaller scale. 

We use the term fault tolerance in a broad sense. Communication faults, 
machine failures (of type fail-stop), storage-device crashes, and decays of 
storage media are all considered to be faults that should be tolerated to 
some extent. A fault-tolerant system sho1.1ld continue to function, perhaps 
in a degraded form, when faced with these failures. The degradation can 
be in performance, in functionality, or in both. It should be, however, 
proportional, in some sense, to the failures that cause it. A system that 
grinds to a halt when only a few of its components fail is certainly not 
fault tolerant. Unfortunately, fault tolerance is difficult to implement. Most 
commercial systems provide only limited tolerance. For instance, the DEC 

v AXcluster allows multiple computers to share a set of disks. If a system 
crashes, users may still access their information from another system. Of 
course, if a disk fails, all the systems will lose access. But in this case, RAID 

can be 1.1sed to ensure continued access to the data even in the event of a 
failure (Section 12.5). 

The capability of a system to adapt to increased service load is called 
scalability. Systems have bounded resources and can become completely 



520 • Chapter 16: Distributed-System Structures 

saturated under increased load. For example, regarding a file system, 
saturation occurs either when a server's CPU runs at a high utilization rate, 
or when disks are almost full. Scalability is a relative property, but it can 
be measured accurately. A scalable system should react more gracefully to 
increased load than does a nonscalable one. First, its performance should 
.degrade more moderately than that of a nonscalable system. Second, its 
resources should reach a saturated state later, when compared with a 
nonscalable system. Even perfect design cannot accommodate an ever 
growing load. Adding new resources might solve the problem, but it might 
generate additional indirect load on other resources (for example, adding 
machines to a distributed system can clog the network and increase service 
loads). Even worse, expanding the system can incur expensive design 
modifications. A scalable system should have the potential to grow without 
these problems. In a distributed system, the ability to scale up gracefully is 
of special importance, since expanding the network by adding new 
machines or interconnecting two networks is commonplace. In short, a 
scalable design should withstand high service load, accommodate growth 
of the user community, and enable simple integration of added resources. 

Fault tolerance and scalability are related to each other. A heavily 
loaded component can become paralyzed and behave like a faulty 
component. Also, shifting the load from a faulty component to that 
component's backup can saturate the latter. Generally, having !'pare 
resources is essential for ensuring reliability as well as for handling peak 
loads gracefully. An inherent advantage that a distributed system has is a 
potential for fault tolerance and scalability because of the multiplicity of 
resources. However, inappropriate design can obscure this potential. 
Fault-tolerance and scalability considerations call for a design 
demonstrating distribution of control and data. 

Very large-scale distributed systems, to a great extent, are still only 
theoretical. There are no magic guidelines to ensure the scalability of a 
system. It is easier to point out why current designs are not scalable. We 
shall discuss several designs that pose problems, and shall propose 
possible solutions, all in the context of scalability. 

One principle for designing very large-scale system~ is the principle 
that the service demand from any component of the system should be 
·bounded by a constant that is independent of the number of nodes in the 
system. Any service mechanism whose load demand is proportional to the 
size of the system is destined to become clogged once the system grows 
beyond a certain size. Adding more resources would not alleviate such a 
problem. The capacity of this mechanism simply limits the growth of the 
syst~m. 

Central control schemes and central resources should not be used to 
build scalable (and fault-tolerant) systems. Examples of centralized entities 
are central authentication servers, central naming servers, and central file 
servers. Centralization is a form of functional asymmetry among machines 



16.6 Summary • S21 

constituting the system. The ideal alternative is a configuration that is 
functionally symmetric; that is, all the component machines have an equal 
role in the operation of the system, and hence each machine has some 
degree of autonomy. Practically, it is virtually impossible to comply with 
such a principle. For instance, incorporating diskless machines violates 
functional symmetry, since the workstations depend oh a central disk. 
However, autonomy and symmetry are important goals to which we 
should aspire. 

The practical approximation to symmetric and autonomous 
configuration is clustering. The system is partitioned into a collection of 
semiautonomous clusters. A cluster consists of a set of machines and a 
dedicated cluster server. So that cross-cluster resource references will be 
relatively infrequent, each machine's requests should be satisfied by its 
own cluster server most of the time. Of course, this scheme depends on 
the ability to localize resource references and to place the component units 
appropriately. If the cluster is well balanced - that is, if the server in 
charge suffices to satisfy all the cluster demands - it can be used as a 
modular building block to scale up the system. 

A major problem in the design of any service is the process structure 
of the server. Servers are supposed to operate efficiently in peak periods, 
when hundreds of active clients need to be served simultaneously. A 
single-process server is certainly not a good choice, since whenever a 
request necessitates disk 110, the whole service will be blocked. Assigning a 
process for each client is a better choice; however, the expense of frequent 
context switches between the processes must be considered. A related 
problem occurs because all the server processes need to share information. 
It· appears that one of the best solutions for the server architecture is the 
use of lightweight processes or threads, which we discussed. in Section 4.5. 
The abstraction presented by a group of lightweight processes is that of 
multiple threads of control associated with some shared resources. Usually, 
a lightweight process is not bound to a particular client. Instead, it serves 
single requests of different clients. Scheduling threads can be preemptive 
or nonpreemptive. If threads are allowed to run to completion 
(nonpreemptive), then their shared data do not need to be protected 
explicitly. Otherwise, some explicit locking mechanism must be used. It is 
clear that some form of lightweight-processes scheme is essential for 
servers to be scalable. 

16.6 • Summary 

A distributed system provides the user with access to the various resources 
the system provides. Access to a shared resource can be provided by data 
migration, computation migration, or job migration. A distributed file 
system must address two major issues: transparency (does a user access all 



522 • Chapter 16: Distributed-System Structures 

files in the same manner regardless of where they are in the network?) and 
locality (where do files reside in the system?). 

A distributed file system is built on top of lower-level networking 
functions. The most common lower-level function is the remote procedure 
call (RPC) mechanism. An RPC is a structured message addressed to an RPC 
daemon listening to a port on the remote system, and contains an identifier 
of the function to execute and the parameters to pass to that function. The 
function is then executed as requested, and any output is sent back to the 
requester in a separate message. Threads can be used to make the 
destination process easier to write and more efficient, as one thread can 
process a request from beginning to end while its fellow threads are doing 
the same for other requests. 

A distributed system may suffer from various types of hardware 
failure. For the system to be fault tolerant, it must detect failures and 
reconfigure the system. When the failure is repaired, the system must be 
reconfigured again. 

• Exercises 

16.1 What are the advantages and disadvantages of making the computer 
network transparent to the user? 

16.2 What are the formidable problems that designers must solve to 
implement a network transparent system? 

16.3 Process migration within a heterogeneous network is usually 
impossible, given the differences in architectures and operating 
systems. Describe a method for process migration across different 
architectures running: 

a. The same operating system 

b. Different operating systems 

16.4 To build a robust distributed system, you must know what kinds of 
failures can occur. 

a.· List possible types of failure in a distributed system. 

b. Specify which items in your list also are applicable to a 
centralized system. 

16.5 Is it always crucial to know that the message you have sent has 
arrived at its destination safely? If your answer is "yes," explain 
why. If your answer is "no," give appropriate examples. 

16.6 Present an algorithm for reconstructing a logical ring after a process 
in the ring fails. 



Bibliographic Notes • 523 

16.7 Consider a distributed system with two sites, A and B. Consider 
whether site A can distinguish among the following: 

a. B goes down. 

b. The link between A and B goes down. 

c. B is extremely overloaded and response time is 100 times longer 
than normal. 

What implications does your answer have for recovery in distributed 
systems? 

Bibliographic Notes 

Forsdick et al. [1978] and Donnelley [1979] discussed operating systems for 
computer networks. A survey of distributed operating systems was 
offered by Tanenbaum and Van Renesse [1985]. 

Discussions concerning distributed operating-system structures have 
been offered by Popek and Walker [1985] (the Locus system), Cheriton and 
Zwaenepoel [1983] (the V kernel), Ousterhout et al. [1988] (the Sprite 
network operating system), Balkovich et al. [1985] (Project Athena) and 
Tanenbaum et al. [1990] and Mullender et al. [1990] (the Amoeba 
distributed operating system). A comparison of Amoeba and Sprite is 
offered by DougHs et al. [1991]. 

Discussions concerning load balancing and load sharing were 
presented by Chow and Abraham [1982], Eager et al. [1986], and Ferguson 
et al. [1988]. Discussions concerning process migration were presented by 
Eager et al. [1986], Zayas [1987], Smith [1988], Jul et al. [1988], Artsy 
[1989b], DougHs and Ousterhout [1987, 1989], and Eskicioglu [1990]. A 
special issue on process migration was edited by Artsy [1989a]. 

Schemes for sharing idle workstations in a distributed shared 
computing environment are presented by Nichols [1987], Mutka and Livny 
[1987], and Litzkow et al. [1988]. 

Reliable communication in the presense of failures was discussed by 
Birman and Joseph [1987]. The principle that the service demand from any 
component of the system should be bounded by a constant that is 
independent of the number of nodes in the system was first advanced by 
Barak and Kornatzky [1987]. 





CHAPTER 17 

DISTRIBUTED 
FILE 
SYSTEMS 

In the previous chapter, we discussed network construction and the low­
level protocols needed for messages to be transferred between systems. 
Now we discuss one use of this infrastructure. A distributed file system 
(DFS) is a distributed implementation of the classical time-sharing model of 
a file system, where multiple users share files and storage resources 
(Chapter 10). The purpose of a DFS is to support the same kind of sharing 
when the files are physically dispersed among the various sites of a 
distributed system. 

In this chapter, we discuss the various ways a DFS can be designed and 
implemented. First, we discuss common concepts on which DFSs are 
based. Then, we illustrate our concepts by examining the UNIX United, NFS, 
Andrew, Sprite, and Locus DFSs. We take this approach to the 
presentation because distributed systems is an active research area, and the 
many design tradeoffs we shall illuminate are still being examined. By 
exploring these example systems, we hope to provide a sense of the 
considerations involved in designing an operating system, and also to 
indicate current areas of operating-system research. 

17.1 • Background 

A distributed system· is a collection of loosely coupled machines 
interconnected by a communication network. We use the term machine to 
denote either a mainframe or a workstation. From the point of view of a 
specific machine in a distributed system, the rest of the machines and their 

525 



526 • Chapter 17: Distributed-File Systems 

respective resources are remote, whereas the machine's own resources are 
referred to as local. 

To explain the structure of a DFS, we need to define the terms service, 
server, and client. A service is a software entity running on one or more 
machines and providing a particular type of function to a priori unknown 
-clients. A server is the service software running on a single machine. A 
client is a process that can invoke a service using a set of operations that 
forms its client interface. Sometimes, a lower-level interface is defined for 
the actual cross-machine interaction, which we refer to as the intermachine 
interface. 

Using this terminology, we say that a file system provides file services 
to clients. A client interface for a file service is formed by a set of primitive 
file operations, such as create a file, delete a file, read from a file, and write 
to a file. The primary hardware component that a file server controls is a 
set of local secondary-storage devices (usually, magnetic disks), on which 
files are stored, and from which they are retrieved according to the client 
requests. 

A DFS is a file system whose clients, servers, and storage devices are 
dispersed among the machines of a distributed system. Accordingly, 
service activity has to be carried out across the network, and instead of a 
single centralized data repository, there are multiple and independent 
storage devices. As will become evident, the concrete configuration and 
implementation. of a DFS may vary. There are configurations where servers 
run on dedicated machines, as well as configurations where a machine can 
be both a server and a client. A DFS can be implemented as part of a 
distributed operating system, or alternatively by a software layer whose 
task is to manage the communication between conventional operating 
systems and file systems. The distinctive features of a DFS are the 
multiplicity and autonomy of clients and servers in the system. 

Ideally, a DFS should look to its clients like a conventional, centralized 
file system. The multiplicity and dispersion of its servers and storage 
devices should be made transparent. That is, the client interface of a DFS 

should not distinguish between local and remote files. It is up to the DFS to 
locate the files and to arrange for the transport of the data. A transparent 
DFS facilitates user mobility by bringing over the user's environment (that 

·is, home "directory) to wherever a user logs in. 
The most important performance measurement of a DFS is the amount of 

time needed to satisfy various service requests. In conventional systems, 
this time consists of disk access time and a small amount of CPU processing 
time. In a DFS, however, a remote access has the additional overhead 
attributed to the distributed structure. This overhead includes the time 
needed to deliver the request to a server, as well as the time for getting the 
response across the network back to the client. For each direction, in 
addition to the actual transfer of the information, there is the CPU overhead 
of running the communication protocol software. The performance of a 



17.2 Naming and Transparency • 527 

DFS can be viewed as another dimension of the DFS's transparency. That is, 
the performance of an ideal DFS would be comparable to that of a 
conventional file system. 

The fact that a DFS manages a set of dispersed storage devices is the 
DFS's. key distinguishing feature. The overall storage space inanaged by a 
DFS is composed of different, and remotely located, smaller storage spaces. 
Usually, there is correspondence between these constituent storage spaces 
and sets of files. We use the term component unit to denote the smallest set 
of files that can be stored on a single machine, independently from other 
units. Ail files belonging to the same component unit must reside in the 
same location. 

17.2 • Naming and Transparency 

Naming is a mapping between logical al)d physical objects. For instance, 
users deal with logical data objects represented by file names, whereas the 
system manipulates physical blocks of data, stored on disk tracks. Usually, 
a user refers to a file by a textual name. The latter is mapped to a lower­
level numerical identifier that in turn is mapped to disk blocks. This 
multilevel mapping provides users with an abstraction of a file that hides 
the details of how and where on the disk the file is actually stored. 

In a transparent DFS, a new dimension is added to the abstraction: that 
of hiding where in the network the file is located. In a conventional file 
system, the range of the naming mapping is an address within a disk. In a 
DFS, this range is augmented to include the specific machine on whose disk 
the file is stored. Going one step further with the concept of treating files 
as abstractions leads to the possibility of file replication. Given a file name, 
the mapping returns a set of the locations of this file's replicas. In this 
abstraction, both the existence of multiple copies and their location are 
hidden. 

17.2.1 Naming Structures 

There are two related notions regarding name mappings in a DFS that need 
to be differentiated: . 

• Location transparency: The name of a file does not reveal any hint of 
the file's physical storage location. 

• Location independence: The name of a file does not need to be 
changed when the file's physical storage location changes. 

Both definitions are relative to the level of naming discussed previously, 
since files have different names at different levels (that is, user-level textual 
names, and system-level numerical identifiers). A location-independent 



528 • Chapter 17: Distributed-File Systems 

naming scheme is a dynamic mapping, since it can map the same file 
name to different locations at two different times. Therefore, location 
independence is a stronger property than is location transparency. 

In practice, most of the current DFSs provide a static, location­
transparent mapping for user-level names. These systems, however, do 
not support file migration; that l.s, changing the location of a file 
automatically is impossible. Hence, the notion of location independence is 
quite irrelevant for these systems. Files are associated permanently with a 
specific set of disk blocks. Files and disks can be moved between machines 
manually, but file migration implies an automatic, operating-system 
initiated action. Only Andrew (Section 17.6.3) and some experimental file 
systems support location independence and file mobility. Andrew supports 
file mobility mainly for administrative purposes. A protocol provides 
migration of Andrew's component units to satisfy high-level user requests, 
without changing either the user-level names, or the low-level names of 
the corresponding files. 

There are a few aspects that can further differentiate location 
independence and static location transparency: 

• Divorcing data from location, as exhibited by location independence, 
provides better abstraction for files. A file name should denote the 
file's most significant attributes, which are its contents, rather than its 
location. Location-independent files can be viewed as logical data 
containers that are not attached to a specific storage location. If only 
static location transparency is supported, the file name still denotes a 
specific, although hidden, set of physical disk blocks. 

• Static location transparency provides users with a convenient way to 
share data. Users can share remote files by simply naming the files irt a 
location-transparent manner, as though the files wer~ local. 
Nevertheless, sharing the storage space is cumbersome, because logical 
names are still statically attached to physical storage devices. Location 
independence promotes sharing the storage space itself, as well as the 
data objects. When files can be mobilized, the overall, system-wide 
storage space looks like a single, virtual resource. A possible benefit of 
such .a view is the ability to balance the utilization of disks across the 
system. 

• Location independence separates the naming hierarchy from the 
storage-devices hierarchy and from the intercomputer structure. By 
contrast, if static location transparency is used (although names are 
transparent), we can easily expose the correspondence between 
component units and machines. The machines are configured in a 
pattern similar to the naming structure. This may restrict the 
architecture · of the system unnecessarily and conflict with other 
considerations. A server in charge of a root directory is an example of a 



17.2 Naming and Transparency • 529 

structure that is dictated by the naming hierarchy and contradicts 
decentralization guidelines. 

Once the separation of name and location has been completed, files 
residing on remote server systems may be accessed by various clients. In 
fact, these clients may be diskless and rely on servers to provide all files, 
including the operating-system kernel. Special protocols are needed for 
the boot sequence, however. Consider the probiem of getting the kernel to 
a diskless workstation. The diskless workstation has no kernel, so it cannot 
use the DFS code to retrieve the kernel. Instead, a special boot· protocol, 
stored in read-only memory (ROM) on the client, is invoked. It enables 
networking and retrieves only one special file (the kernel or boot code) 
from a fixed location. Once the kernel is copied over the network and 
loaded, its DFS makes all the other operating-system files available. The 
advantages- of diskless clients are ,znany, including lower cost (because no 
disk is needed on each machine) and greater convenience (when an 
operating-system upgrade occurs, only the server copy needs to be 
modified, rather than all the clients as well). The disadvantages are the 
added complexity of the. boot protocols and the performance loss resulting 
from the use of a network rather than of a local disk. 

The current trend is toward clients with local disks. Disk drives are 
increasing in capacity and decreasing in cost rapidly, with new generations 
appearing every year or so. The same cannot be said for networks, which 
evolve every 5 to 10 years. Overall, systems are growing more quickly 
than are networks, so extra efforts are needed to limit network access to 
improve system throughput. 

17.2.2 Naming Schemes 
There are three main approaches to naming schemes in a DFS. In the 
simplest approach, files are named by some combination of their host 
name and local name, which guarantees a unique systemwide rtame. In 
Ibis, for instance, a file is identified uniquely by the name host:locai:-name, 
where local-name is a UNIX-like path. This naming scheme is neither location 
transparent nor location independent. Nevertheless,. the same file 
operations can be used for both local and remote files. The structure of the 
DFS is a collection of isolated component units that are entire conventional 
file systems. In this first approach, component units remained isolated, 
although means are provided to refer to a remote file. We do not consider 
this scheme any further in this text. · 

The second approach was popularized by Sun's Network File System 
(NFS). NFS is the file system component of ONC+, a networking package 
which will be supported by mClny UNIX vendors. NFS provides means to 
attach remote directories to locai directories, thus giving the appearance of 
a coherent directory tree. Early NFS versions only allowed previously 



530 • Chapter 17: Distributed-File Systems 

mounted remote directories to be accessed transparently. With the advent 
of the automount feature, mounts occur on-demand based on a table of 
mount points and file structure names. There is also some integration of 
component~ to support transparent sharing. This integration, however, is 
limited and is not uniform, because each machine may attach different 
remote directories to its tree. The resulting structure is versatile. Usually, it 
is a forest of UNIX trees with shared subtrees. 

Total integration of the component file systems is achieved using the 
third approach. A single global name structure spans all the files in the 
system. Ideally, the composed file-system .structure should be isomorphic 
to the structure of a conventional file system. In practice, however, .there 
are many special files (for example, UNIX device files and machine-specific 
binary directories) that make this goal difficult to attain. We shall examine 
different variations of this approach in our discussions of UNIX United, 
Locus, Sprite, and Andrew in Section 17.6. 

An important criterion for evaluation of the naming structures is their 
administrative complexity. The most complex and most difficult structure 
to maintain is the NFS structure. Because any remote directory can be 
attached anywhere onto the local directory tree, the resulting hierarchy can 
be highly unstructured. The effect of a server becoming unavailable is that 
some arbitrary set of directories on different machines becomes 
unavailable. In addition, a separate accreditation mechanism is used to 
control which machine is allowed to attach which directory to its tree. 
This mechanism can lead to the situation in which, on one client, a user 
can access a remote directory tree, whereas on another client, access is 
denied to that user. 

17.2.3 Implementation Techniques 
Implementation of transparent naming requires a proVIsion for the 
mapping of a file name to the associated location. Keeping this mapping 
manageable calls for aggregating sets of files into component units, and 
providing the mapping on a component unit basis rather than on a single­
file basis. This aggregation serves administrative purposes as well. UNIX­
like systems use the hierarchical directory tree to provide name-to-location 
·mapping,· and to aggregate files recursively into directories. 

To enhance the availability of the crueial mapping information, we can 
use methods such as replication, local caching, or both. As we already 
noted, location independence means that the mapping changes over time; 
hence, replicating the mapping renders a simple yet consistent update of 
this information impossible. A technique to overcome this obstacle is to 
introduce low-level, location-independ~nt file identifiers. Textual file names are 
mapped to lower-level file identifiers that indicate to which component 
unit the file belongs. These identifiers are still location independent. They 
can be replicated and cached freely without being invalidated by migration 



17.3 Remote File Access • 531 

of component units. A second level of mapping, which maps component 
units to locations and needs a simple yet consistent update mechanism, is 
the inevitable price. Implementing UNIX-like directory trees using these 
low-level, location-independent identifiers makes the whole hierarchy 
invariant under component unit migration. The only aspect that does 
change is the component unit-location mapping. 

A common way to implement these low-level identifiers is to use 
structured names. These names are bit strings that usually have two parts. 
The first part identifies the component unit to which the file belongs; the 
second part identifies the particular file within the unit. Variants with more 
parts are possible. The invariant of structured names, however, is that 
individual parts of the name are unique at all times only within the context 
of the rest of the parts. We can obtain uniqueness at all times by taking 
care not to reuse a name that is still used, by adding sufficiently more bits 
(this method is used in Andrew), or by using a timestamp as one of the 
parts of the name (as done in Apollo Domain). Another way to view this 
process is that we are taking a location-transparent system, such as Ibis, 
and adding another level of abstraction to produce a location-independent 
naming scheme. · 

The use of the techniques of aggregation of files into component units, 
and of lower-level location-independent file identifiers, is exemplified in 
Andrew and Locus. 

17.3 • Remote File Access 

Consider a user who requests access to a remote file. Assuming that the 
server storing the file was located by the naming scheme, the actual data 
transfer to satisfy the user request for the remote access must take place. 

One way to achieve this transfer is through a remote-service mechanism, 
where requests for accesses are delivered to the server, the server machine 
performs the accesses, and their results are forwarded back to the user. 
One of the most common ways of implementing remote service is the 
remote procedure call (RPC) paradigm, which we discussed in Section 16.3.1. 
We note that there is a direct analogy between disk-access methods in 
conventional file systems and the remote-service method in a DFS. The 
remote-service method is analogous to performing a disk access for each 
access request. 

To ensure reasonable performance of a remote-service mechanism, we. 
can use a form of caching. In conventional file systems, the rationale for 
caching is to reduce disk 110 (thereby increasing performance), whereas in 
DFSs, the goal is to reduce both network traffic and disk 110. In the 
following, we discuss various issues concerning the implementation of 
caching in a DFS, and contrast the latter with the basic remote-service 
paradigm. 



532 • Chapter 17: Distributed-File Systems 

17.3.1 Basic Caching Scheme 
The concept of caching is simple. If the data needed to satisfy the access 
request are not already cached, then a copy of those data is brought from 
the server to the client system. Accesses are performed on the cached 
copy. The idea is to retain recently accessed disk blocks in the cache, so 
that repeated accesses to the same information can be handled locally, 
without additional network traffic. A replacement policy (for example, least 
recently used) is used to keep the cache size bounded. There is no direct 
correspondence between accesses and traffic to the server. Files are still 
identified with one master copy residing at the server machine, but copies 
of (parts of) the file are scattered in different caches. When a cached copy 
is modified, the changes need to be reflected on the master copy to 
preserve the relevant consistency semantics. The problem of keeping the 
cached copies consistent with the master file is the cache-consistency problem, 
which will be discussed in Section 17.3.4. Observant readers will realize 

'that DFS caching could just as easily be called network virtual memory: It acts 
similarly to demand-paged virtual memory, except that the backing store is 
not a local disk, but rather is a remote server. 

The granularity of the cached data can vary from blocks of a file to an 
entire file. Usually, more data are cached than are needed to satisfy a 
single access, so that many accesses can be served by the cached data. This 
procedure is much like disk read-ahead (Section 11.5.2). The Andrew 
system caches files in large chunks (64K). The other systems discussed in 
this chapter support caching of individual blocks driven by clients' 
demands. Increasing the caching unit increases the hit ratio, but also 
increases the miss penalty because each miss requires more data to be 
transferred. It also increases the potential for consistency problems. 
Selecting the unit of caching involves considering parameters such as the 
network transfer unit and the RPC protocol service unit (in case an RPC 

protocol is used). The network transfer unit (for Ethernet, a packet) is 
about 1.5K, so larger units of cached data need to be disassembled for 
delivery and reassembled on reception. 

Block size and the total cache size are obviously of importance for 
block-caching schemes. In UNIX-like systems, common block sizes are 4K or 
.BK. For large caches (over 1 megabyte), large block sizes (over 8K) are 
beneficial. For smaller caches, large block sizes are less beneficial because 
they result in fewer blocks .in the cache. 

17.3.2 Cache Location 
Now we turn to the issue of where the cached data should be stored. Disk 
caches have one clear advantage over main memory cache -. reliability. 
Modifications to· cached data are lost in a crash if the cache is kept in 
volatile memory. Moreover, if the cached data are kept on .disk, they are 



I; 

17.3 Remote File Access • 533 

still there during recovery and there is no need to fetch them again. On 
the other hand, main-memory caches have several advantages of their 
own: 

• Main-memory caches permit workstations to be diskless. 

• Data can be accessed more quickly from a cache in main memory than 
from one on a disk. 

• The current technology trend is toward bigger and less expensive 
memories. The achieved performance speedup is predicted to·outweigh 
the advantages of disk caches. 

• The server caches (the ones used to speed up disk IJO) will be in main 
memory regardless of where user caches are located; by using main­
memory caches on the user machine too, we can build a single caching 
mechanism for use by both servers and users (as is done in Sprite). 

Many remote-access implementations can be thought of as a hybrid of 
caching and remote service. In NFS and Locus, for instance, the 
implementation is based on remote service but is augmented with caching 
for performance. On the other hand, Sprite's implementation is based on 
caching, but under certain circumstances a remote service method is 
adopted. Thus, when we evaluate the two methods, we actually evaluate 
to what degree one method is emphasized over the other. 

17.3.3 Cache Update Policy 

The policy used to write modified data blocks back to the server's master 
copy has critical effect on the system's performance and reliability. The 
simplest policy is to write data through to disk as soon as they are placed 
on any cache. The advantage of write-through is its reliability. Little 
information is lost when a client system crashes. However, this policy 
requires each write access to wait until the information is sent to the 
server, which results in poor write performance. Caching with write­
through is equivalent to using remote service for write accesses and 
exploiting caching only for read accesses. NFS provides write-through 
access. 

An alternate write policy is to delay updates to the master copy. 
Modifications are written to the cache and then are written through to the 
server at a later time. This policy has two advantages over write-through; 
First, because writes are to the cache, write accesses complete much more 
quickly. Second, data may be overwritten before they are written back, in 
which case all but the last update never needs to be written at all. 
Unfortunately, delayed-write schemes introduce reliability problems, since 
unwritten data will be lost whenever a user machine crashes. 



534 • Chapter 17: Distributed-File Systems 

There are several variations of the delayed-write policy that differ in 
when modified data blocks are flushed to the server. One alternative is to 
flush a block when it is about to be ejected from the client's cache. This 

· option can result in good performance, but some blocks can reside in the 
client's cache a long time before they are written back to the server. A 
.compromise between this alternative and the write-through policy is to 
scan the cache at regular intervals and to flush blocks that have been 
modified since the last scan, just as UNIX scans its local cache. Sprite uses 
this policy with a 30-second interval. 

Yet another variation on delayed-write is to write data back to the 
server when the file is closed. This policy, write-on-close, is used in the 
Andrew system. In the case of files that are open for short periods or are 
modified rarely, this policy does not significantly reduce network traffic. In 
addition, the write-on-dose policy requires the closing process to delay 
while the file is written through, which reduces the performance 
advantages of delayed writes. The performance advantages of this policy 
over delayed-write with more frequent flushing are apparent for files that 
are open for long periods and are modified frequently. 

17.3.4 Consistency 

A client machine is faced with the problem of deciding whether or not a 
locally cached copy of the data is consistent with the master copy (and 
hence can be used). If the client machine determines that its cached data 
are out of date, accesses can no longer be served by those cached data. An 
up-to-date copy of the data needs to be cached. There are two approaches 
to verify the validity of cached data: 

• Client-initiated approach: The client initiates a va]idity check in which 
it contacts the server and checks whether the local data are consistent 
with the master copy. The frequency of the validity check is the crux of 
this approach and determines the resulting consistency semantics. It 
can range from a check before every access, to a check on only first 
access to a file (on file open, basically). Every access that is coupled 
with a validity check is delayed, compared with an access served 
immediately by the cache. Alternatively, a check can be initiated every 
fixed interval of time. Depending on its frequency, the validity check 
can load both the network and the server. 

• Server-initiated approach: The server records, for each client, the 
(parts of) files· that it caches. When the server detects a potential 
inconsistency, it must react. A potential for inconsistency occurs when 
a file is cached by two different clients in conflicting modes. If session 
semantics (Section 10.5.2) are implemented, then, whenever a server 



17.3 Remote File Access • 535 

receives a request to close a file that has been modified, it should react 
by notifying the clients to consider the. cached data invalid and discard 
that data. Clients having this file open at that time discard their copy 
when the current session is over. Other clients discard their copy at 
once. Under session semantics, the server does not need to be 
informed about opens of already cached files. The server's reaction is 
triggered only by the close of a writing session, and hence only this 
kind of session , is delayed.. In Andrew, session semantics are 
implemented, and a server-initiated method, called callback, is 
employed (Section 17.6.3). 

On the other hand, if a more restrictive consistency semantics, 
such as UNIX semantics (Section 10.5.1), is implemented, the server 
must play a more active role. The server must be notified. whenever a 
file is opened and the intended mode (read or write mode) must be 
indicated for every open. Assuming such notification, the server can 
act when it detects a file that is opened simultaneously in conflicting 
modes by disabling caching for that particular file (as done in Sprite). 
Actually, disabling caching results in switching to a remote-service 
mode of operation. 

17.3.5 A Comparison of Caching and Remote Service 

Essentially, the choice between caching and remote service trades off a 
potentially increased performance with decreased simplicity. We evaluate 
this tradeoff by listing the advantages and disadvantages of the two 
methods: · 

• A substantial number of the remote accesses can be handled efficiently 
by the local cache when caching is used. Capitalizing on locality in 
file-access patterns makes caching even more attractive. Thus, most of 
the remote accesses will be served as fast as will local ones. Moreover, 
servers are contacted only occasionally, rather than for each access. 
Consequently, server load and network traffic are reduced, and the 
potential for scalability is enhanced. By contrast, every remote access is 
handled across the network when the remote-service method is used. 
The penalty in network traffic, server load, and performance is 
obvious. 

• Total network overhead in transmitting big chunks of data (as is done 
in caching) is lower than when series of responses to specific requests 
are transmitted (as in the remote-service method). 

• Disk-access routines on the server may be better optimized if it is 
known that requests are always for large, contiguous segments of data, 
rather than for random disk blocks. 



536 • Chapter 17: Distributed-File Systems 

• The cache-consistency problem is the major drawback of caching. In 
access patterns that exhibit infrequent writes, caching is superior. 
However, when writes are frequent, the mechanisms employed to 
overcome the consistency problem incur substantial overhead in terms 
of performance, network traffic, and server load. 

· • So that caching will confer a benefit, execution should be carried out 
on machines that have either local disks or large main memories. 
Remote access on diskless, small-memory-capacity machines should be 
done through the remote-service method. 

' 
• In caching, since data are transferred en masse between the server and 

client, rather than in response to the specific needs of a file operation, 
the lower intermachine interface is quite different from the upper-user 
interface. The remote-service paradigm, on the other hand, is just an 
extension of the local file-system interface across the network. Thus, 
the intermachine interface mirrors the local user-file-system interface. 

17.4 • Stateful versus Stateless Service 

There are two approaches to server-side information. Either the server 
tracks each file being accessed by each client, or it simply provides blocks 
as they are requested by the client without knowledge of the blocks' usage. 

The typical scenario of a stateful file service is as follows. A client must 
perform an open on a file before accessing that file. The server fetches 
some information about the file from its disk, stores it in its memory, and 
gives the client a connection identifier that is unique to the client and the 
open file. (In UNIX terms, the server fetches the inode and gives the client a 
file descriptor, which serves as an index to an in-core table of inodes.) This 
identifier is used for subsequent accesses until the session ends. A stateful 
service is characterized as a connection between the client and the server 
during a session. Either on closing the file, or by a garbage-collection 
mechanism, the server must reclaim the main-memory space used by 
clients who are no longer active. 

The advantage of stateful service is increased performance. File 
information is cached in main memory and can be accessed easily via the 
connection identifier, thereby saving disk accesses. In addition, a stateful 
server would know whether a file were open for sequential access and 
could therefore read ahead the next blocks. Stateless servers cannot do so, 
since they have no knowledge of the purpose of the client's requests. The 
key point regarding fault tolerance in a stateful service approach is that 
main-memory information is kept by the server about its clients. 

A stateless file server avoids this state information by making each 
request self-contained. That is, each request identifies the file and the 
position in the file (for read and write accesses) in full. The server does not 



17.4 Stateful versus Stateless Service • 537 

need to keep ·a table of open files in main memory, although it usually 
does so for efficiency reasons. Moreover, there is no need to establish and 
terminate a connection by open and close operations. They are totally 
redundant, since each file operation stands on its own and is not 
considered as part of a session. A client process would open a file, and 
that open would not result in a remote message being sent. Reads and 
writes would, of course, take place as remote messages (or cache lookups). 
The final close by the client would again result in only a local operation. 

The distinction between stateful and stateless service becomes evident 
when we consider the effects of a crash occurring during a service activity.· 
A stateful server loses all its volatile state in a crash. Ensuring the graceful 
recovery of such a server involves restoring this state - usually by a 
recovery protocol based on a dialog with clients. Less graceful recovery 
requires that the operations that were underway when the crash occurred, 
be aborted. A different problem is caused by client failures. The server 
needs to become aware of such failures, so that it can reclaim space 
allocated to record the state of crashed client processes. This phenomenon 
is sometimes referred to as orphan detection and elimination. 

A stateless server avoids these problems, since a newly reincarnated 
server can respond to a self-contained request without any difficulty. 
Therefore, the effects of server failures and recovery are almost 
unnoticeable. There is no difference between a slow server and a 
recovering server from a client's point of view. The client keeps 
retransmitting its request if it receives no response. 

The penalty for using the robust stateless service is longer request 
messages, and slower processing of requests, since there is no in-core 
information to speed the processing. In addition, stateless service imposes 
additional constraints on the design of the DFS. First, since each request 
identifies the target file, a uniform, systemwide, low-level naming scheme 
should be used. Translating remote to local names for each request would 
cause even slower processing of the requests. Second, since clients 
retransmit requests for file operations, these operations must be idempotent; 
that is, each operation must have the same effect and return the ·same 
output if executed several times consecutively. Self-contained read and 
write accesses are idempotent, as long as they use an absolute byte count 
to indicate the position within the file they access and do not rely on an 
incremental offset (as done in UNIX read and write system calls). However, 
we must be careful when implementing destructive operations (such as 
delete a file) to make them idempotent too. . 

In some environments, a stateful service is a necessity. If the server 
employs the server-initiated method for cache validation, it cannot provide 
stateless service, since it maintains a record of which files are cached by 
which clients. 

The way UNIX uses file descriptors and implicit offsets is inherently 
stateful. Servers must maintain tables to map the file descriptors to inodes, 



538 • Chapter 17: Distributed-File Systems 

and store the current offset within a file. This is why NFS, which employs a 
stateless service, does not use file descriptors, and does include an explicit 
offset in every access. 

17.5 • File Replication 

Replication of files on different machines is a useful redundancy for 
improving availability. Multimachine replication can benefit performance 
too, since selecting a nearby replica to serve an access request results in 
shorter service time. 

The basic requirement of a replication scheme is that different replicas 
of the same file reside on failure-independent machines. That is, the 
availability of one replica is not affected by the availability of the rest of the 
replicas. This obvious requirement implies that replication management is 
inherently a location-opaque activity. Provisions for placing a replica on a 
particular machine must be available. 

It is desirable to hide the details of replication from users. It is the task 
of the naming scheme to map a replicated file name to a particular replica. 
The existence of replicas should be invisible to higher levels. However, the 
replicas must be distinguished from one another by different lower-level 
names. Another transparency issue is providing replication control at 
higher levels. Replication control includes determination of the degree of 
replication and of the placement of replicas. Under certain circumstances, it 
is desirable to expose these details to users. Locus, for instance, provides 
users and system administrators with mechanisms to control the 
replication scheme. 

The main problem associated with replicas is their update. From a 
user's point of view, replicas of a file denote the same logical entity, and 
thus an update to any replica must be reflected on all other replicas. More 
precisely, the relevant consistency semantics must be preserved when 
accesses to replicas are viewed as virtual accesses to the replicas' logical 
files. If consistency is not of primary importance, it can be sacrificed for 
availability and performance. This option is an incarnation of a 
fundamental tradeoff in the area of fault tolerance. The choice is between 
preserving consistency at all costs, thereby creating a potential for 
indefinite blocking, and sacrificing consistency under some (we hope rare) 
circumstance of catastrophic failures for the sake of guaranteed progress. 
Among the surveyed systems, Locus employs replication extensively and 
sacrifices consistency in the case of network partition, for the sake of 
availability of files for both read and write accesses (see Section 17.6.5 for 
details). 

As an illustration of these concepts, we describe the replication scheme 
of Ibis, which uses a variation of the primary-copy approach. The domain 
of the name mapping is a pair <primary-replica-identifier; local-replica-



17.6 Example Systems • 539 

identifier>. Since there may be no replica locally, a special value is used in 
that case. Thus, the mapping is relative to a machine. If the local replica is 
the primary one, the pair contains two identical identifiers. Ibis supports 
demand replication, which is an automatic replication-control policy 
(similar to whole-file caching). Under demand replication, reading a 
nonlocal replica causes it to be cached locally, thereby generating a new 
nonprimary replica. Updates are performed on only the primary copy and 
cause all other replicas to be invalidated by sending appropriate messages. 
Atomic and serialized invalidation of all nonprimary replicas is not 
guaranteed. Hence, a stale replica may be considered valid.' To satisfy 
remote write accesses, we migrate the primary copy to the requesting 
machine. 

17.6 • Example Systems 

In this section, we illustrate the common concepts on which DFSs are based 
by examining five different and interesting DFSs: UNIX United, Sun NFS, 
Andrew, Sprite, and Locus. 

17 .6.1 UNIX United 

The UNIX united project from the University of Newcastle upon Tyne, 
England, is one of the earliest attempts to scale up the UNIX file system to a 
distributed one without modifying the UNIX kernel. In UNIX united, a 
software subsystem is added to each of a set of interconnected UNIX 
systems (referred to as component or constituent systems), to construct a 
distributed system that is functionally indistinguishable from a 
conventional centralized UNIX system. The system is presented in two 
levels of detail. First, an overview of UNIX United is given. Then, the 
implementation, the Newcastle Connection layer, is examined and issues 
regarding networking and internetworking are discussed. 

17.6.1.1 Overview 

Any number of interlinked UNIX systems can be joined to compose a UNIX 
United system. Their naming structures (for files, devices, directories, and 
commands) are joined together into a single naming structure, in which 
each component system is, for all intents and purposes, just a directory. 
Ignoring for the moment questions regarding accreditation and access 
control, the resulting system is one where each user can read or write any 
file, use any device, execute any command, or inspect any directory, 
regardless of the system to which it belongs. 

The component unit is a complete UNIX directory tree belonging to a 
certain machine. The position of these component units in the naming 
hierarchy is arbitrary. They can appear in the naming structure in positions 



540 • Chapter 17: Distributed-File Systems 

subservient to other component units (directly or through intermediary 
directories). 

Roots of component units are assigned names so that they become 
accessible and distinguishable externally. A file system's own root is still 
referred to as "/" and still serves as the starting point of all path names 
starting with a "/". However, a subservient file system can access its 
superior system by referring to its own root parent (that is, "/ .. "). 
Therefore, there is only one root that is its own parent and that is not 
assigned a string name - namely, the root of the composite name 
structure, which is just a virtual node needed to make the whole structure 
a single tree. Under this convention, there is no notion of absolute path 
name. Each path name is relative to some context, either to the current 
working directory or to the current component unit. 

In Figure 17.1, unixl, unix2, unix3, and unix4 are names of component 
systems. As an illustration of the relative path names, note that within the 
unixl system, file f2 on the system unix2 is referred to as / . .lunix2/f2. 
Within the unix3 system, this file is referred to as / . ./ . .lunix2/f2. Now, 
suppose that the current root ("/") is as shown by the arrow. Then, file f3 
is referred to as lf3, file fl is referred to as I . .lfl, file f2 is referred to as 
/ . ./ . ./unix2/f2, and finally file f4 is referred to as / . ./ . .lunix2/dirlunix4/f4. 

Observe that users are aware of the upward boundaries of their current 
component unit, since they must use the " . ./" syntax whenever they wish 
to ascend outside of their current machine. Hence, UNIX united does not 
provide complete location transparency. 

The traditional root directories (for example, /dev, /temp) are maintained 
for each machine separately. Because of the relative naming scheme they 
are named, from within a component system, in exactly the same manner 
as in a conventional UNIX. 

'!'- unix3 
f1 f2 

unix4 
f3 

f4 

Figure 17.1 Example of a UNIX united directory struc~ure. 



17.6 

Each component system has its own set of named users 
administrator (superuser). The latter is responsible for the 
users of his own system, as well as for that of remote users. 
user's identifier is prefixed with the name of the user1s '"'"~'F."J··"'" 
uniqueness. Accesses are governed by the standard UNIX 
mechanisms, even if they cross components/ boundaries. 
no need for users to log in separately, or to provide passwords, 
access remote files. However, users wishing to access files 
system must arrange with the specific system administrator 

It is often convenient to set the naming structure 
organizational hierarchy of the environment in which the "'""'~"'""""' 

17.6.1.2 The Newcastle Connection 

The Newcastle Connection is a (user-level) software layer 
each component system. This connection layer separates 
on one hand, and the user-level programs on the other 
17.2). It intercepts all system calls concerning files, 
that have to be redirected to remote systems. Also, the 
accepts system calls that have been directed to it from 
Remote layers communicate by the means of an protocoL 

The connection layer preserves the same UNIX ""''"*'"'1rn-t 

that of the UNIX kernel, in spite of the extensive 
system carries out. The penalty of preserving the kernel 

implemented as user-level daemon processes, 
remote operation. 

Each connection layer stores a partial skeleton of 
structure. Obviously, each system stores locally its own 
addition, each system stores fragments of the overall name 
relate it to its neighboring systems in the naming 
that can be reached via traversal of the naming 
through another system). In Figure 17.3, we show the 
the hierarchy of the file systems of Figure 17.1 as 
systems unixl, unix2 1 and unix3, respectively (only the 
shown). 

RPC 

Figure 17.2 Schematic view of UNIX united 



542 • Chapter 17: Distributed-File Systems 

unixt unix2 unixt unix2 

dir 7 
unix3 unix3 

unix4 

(a) (b) (c) 

Figure 17.3 The file system of (a) unixl, (b) unix2, and (c) unix3. 

The fragments maintained by different systems overlap and hence 
must remain consistent, a requirement that makes changing the overall 
structure an infrequent event. Some leaves of the partial structure stored 
locally correspond to remote roots of other parts of the global file system. 
These leaves are specially marked, and contain addresses of the 
appropriate storage sites of the descending file systems. Path-name 
traversals have to be continued remotely when such marked leaves are 
encountered, and, in fact, can span several systems until the target file is 
located. Once a name is resolved and the file is opened, that file is 
accessed using file descriptors. The connection layer marks descriptors that 
refer to remote files, and keeps network addresses and routing information 
for them in a per-process table. 

The actual remote file accesses are carried out by a set of file-server 
processes on the target system. Each client has its own file server process 
with which it communicates directly. The initial connection is established 
with the aid of a spawner process that has a standard fixed name that 
makes it callable from any external process. This spawner process performs 
the remote access-rights checks according to a machine-user identification 
pair. Also, it converts this identification to a valid local name. So that UNIX 
semantics will be preserved, once a client process forks, its file service 
process forks as well. This service scheme does not excel in terms of 
robustness. Special recovery actions have to be taken in case of 
simultaneous server and client failures. However, the connection layer 

. attempts. to mask and isolate failures resulting from the fact that the system 
is a distributed one. 

17.6.2 The Sun __ Network File System 

The Network File System (NFS) is both an implementation and a 
specification of a software system for accessing remote files across LANs (or 
even WANs). NFS is part of ONC+, which most UNIX vendors are 
supporting. The implementation is part of the Solaris operating system, 
which is a modified version of UNIX SVR4, running on Sun ~orkstations and 



17.6 Example Systems • 543 

other hardware. It uses the unreliable datagram protocol (UDP/IP protocol) 
and Ethernet (or another networking system). The specification and the 
implementation are intertwined in our description of NFS. Whenever a level 
of detail is needed, we refer to the Sun implementation; whenever the 
description is general enough, it applies to the specification also. 

17.6.2.1 Overview 
' 

NFS views a set of interconnected workstations as a set of independent 
machines with independent file systems. The goal is to allow some degree 
of sharing among these file systems (on explicit request) in a transparent 
manner. Sharing is based on server-client relationship. A machine may 
be, and often is, both a client and a server. Sharing is allowed between 
any pair of machines, rather than with only dedicated server machines. To 
ensure machine independence, sharing of a remote file system affects only 
the client machine and no other machine. 

So that a remote directory will be accessible in a transparent manner 
from a particular machine - say, from Ml - a client of that machine has 
to carry out a mount operation first. The semantics of the operation are 
that a remote directory is mounted over a directory of a local file system. 
Once the mount operation is completed, the mounted directory looks like 
an integral subtree of the local file system, replacing the subtree 
descending from the local directory. The local directory becomes the name 
of the root of the newly mounted directory. Specification of the remote 
directory as an argument for the mount operation is done in a 
nontransparent manner; the location (that is, host name) of the remote 
directory has to be provided. However, from then on7 users on machine 
Ml can access files in the remote directory in a totally transparent manner. 

To illustrate file mounting, we consider the file system depicted in 
Figure 17.4, where the triangles represent subtrees of directories that are of 
interest. In this figure, three independent file systems of machines named 
U, 51, and 52 are shown. At this point, at each machine, only the local 
files can be accessed. In Figure 17.5(a), the effects of the mounting of 
51 :!usr!shared over U:!usr!local are shown. This figure depicts the view users 

U: $1: 

usr 

local 

usr 

shared ,, 
/ \ 

/ \ 

/dirt\ 
L-----~ 

S2: 

Figure 17.4 Three independent file systems. 

usr 

dir3 /\ 
I \ 

(_ __ ~ 



544 • Chapter 17: Distributed-File Systems 

on U have of their file system. Observe that they can access any file within 
the dirl directory, for instance, using the prefix !usr!local!dirl on U after the 
mount is complete. The original· directory !usr/local on that machine is no 
longer visible. 

Subject to access-rights accreditation, potentially any file system, or a 
~irectory within a file system, can be mounted remotely on top of any local 
directory. Diskless workstations can even mount their own roots from 
servers. 

Cascading mounts are also permitted. That is, a file system can be 
mounted over another file system that is not a local one, but rather is a 
remotely mounted one. However, ~ machine is affected by only those 
mounts that it has itself invoked. 

By mounting a remote file system, the client does not gain access to 
other file systems that were, by chance, mounted over the former file 
system. Thus, the mount mechanism does not exhibit a transitivity 
property. In Figure 17.5(b), we illustrate cascading mounts by continuing 
with our previous exampl~. The figure shows the result of mounting 
52:/dir2/dir3 over U:!usr/local/dirl, which is already remotely mounted from 
51. Users can access files within dir3 on U using the prefix !usr/local!dirl. If 
a shared file syste:m is mounted over a user's home directories on all 
machines in a network, a user can log in to any workstation and get his 
home environment. This property is referred to as user mobility. 

One of the design goals of NFS was to operate in a heterogeneous 
environment of different machines, operating systems, and network 
architectures. The NFS specification is independent of these media and thus 
encourages other implementations. This independence is achieved through 
the use of RPC primitives built on top of an External Data Representation 
(XDR) protocol used between two implementation-independent interfaces. 
Hence, if the system consists of heterogeneous machines and file systems 
that are properly interfaced to NFS, file systems of different .types can be 
mounted both locally and remotely. 

U: 

usr 

local " 

(a) 

I \ 
I \ 

/dirt\ 
L-----~ 

U: 

usr 

local " 

(b) 

I \ 
I \ 

1f:iirtl\ 
L--.-L--~ 

L_ __ ~ 

Figure 17.5 Mounting in NFS. (a) Mounts. (b) Cascading mounts. 



17.6 Example Systems • 545 

The NFS specification distinguishes between the services provided by a 
mount mechanism and the actual remote-file-access services. Accordingly, 
two separate protocols are specified for these services; a mount protocol, and 
a protocol for remote file accesses called the NFS protocol. The protocols are 
specified as sets of RPCs. These RPCs are the building blocks used to 
implement transparent remote file access. 

17.6.2.2 The Mount Protocol 

The mount protocol is used to establish the initial logical c~nnection . 
between a server and a client. In Sun's implementation, each machine has 
a server process, outside the kernel, performing the protocol functions. 

A mount operation includes the name of the remote directory to be 
mounted and the name of the server machine storing it. The mount 
request is mapped to the corresponding RPC and is forwarded to the mount 
server running on the specific server machine. The server maintains an 
export list (the /etc/exports in UNIX, which can be edited by only a 
superuser), which specifies local file systems that it exports for mounting, 
along with names of machines that are permitted to mount them. 
Unfortunately, this list has a maximum length, so NFS is limited in 
scalability. Recall that any directory within an exported file system can be 
mounted remotely by an accredited machine. Hence, a component unit is 
such a directory. When the server receives a mount request that conforms 
to its export list, it returns to the client a file handle that serves as the key 
for further accesses to files within the mounted file system. The file handle 
contains all the information that the server needs to distinguish an 
individual file it stores. In UNIX terms, the file handle consists of a file­
system identifier, and an inode number to identify the exact mounted 
directory within the exported file system. 

The server also maintains a list of the client machines and the 
corresponding currently mounted directories. This list is used mainly for 
administrative purposes - for instance, for notifying all clients that the 
server is· going down. Adding and deleting an entry in this list is the. only 
way that the server state can be affected by the mount protocol. 

Usually, a system has a static mounting preconfiguration that is 
established at boot time (letc!fstab in UNIX); however, this layout can be 
modified. Besides the actual mount procedure, the mount protocol 
includes several other procedures, such as unmount and return export list. 

17.6.2.3 The NFS Protocol 

The NFS protocol provides a set of RPCs for remote file operations. The 
procedures support the following operations: 

• Searching for a file within a directory 



546 • Chapter 17: Distributed-File Systems 

• Reading a set of directory entries 

• Manipulating links and directories 

• Accessing file attributes 

• Reading and writing files 

These procedures can be invoked only after a file handle for the remotely 
mounted directory has been established. 

The omission of open and close operations is intentional. A prominent 
feature of NFS servers is that they are stateless. Servers do not maintain 
information about their clients from one access to another access. There are 
no parallels to UNIX's open-files table or file structures on the server side. 
Consequently, each request has to provide a full set of arguments, 
including a unique file identifier and an absolute offset inside the file for 
the appropriate operations. The resulting design is robust; no special 
measures need to be taken to recover a server after a crash. File 
operations need to be idempotent for this purpose. 

Maintaining the list of clients mentioned above seems to violate the 
statelessness of the server. However, it is not essential for the correct 
operation of the client or the server, and hence this list does not need to 
be restored after a server crash. Consequently, it might include 
inconsistent data and is treated only as a hint. 

A further implication of the stateless-server philosophy and a result of 
the synchrony of an RPC is that modified data (including indirection and 
status blocks) must be committed to the server's disk before results are 
returned to the client. That is, a client can cache write blocks, but when it 
flushes them to the server, it assumes that they have reached the server's 
disks. Thus, a server crash and recover will be invisible to a client; all 
blocks that the server is managing for the client will be intact. The 
consequent performance penalty can be large, because the advantages of 
caching are lost. In fact, there are several products now on the market 
that specifically address this NFS problem by providing fast stable storage 
(usually memory with battery backup) in which to store blocks written by 
NFS. These blocks- remain intact even after system crash, and are written 
from this stable storage to disk periodically. 

A single NFS write procedure call is guaranteed to be atomic, and also 
is not intermixed with other write calls to the same file. The NFS protocol, 
however, does not provide concurrency-control mechanisms. A write 
system call may be broken down into several RPC writes, because each NFS 
write or read call can contain up to 8K of data and UDP packets are limited 
to 1500 bytes. As a result, two users writing to the same remote file may 
get their data intermixed. The claim is that, because lock management is 
inherently stateful, a service outside the NFS should provide locking (and 
Solaris does). Users are advised to coordinate access to shared files using 
mechanisms outside the scope of NFS. 



17.6.2.4 The NFS Architecture 

The NFS architecture consists of three major layers; it 
schematically in Figure 17.6. The first layer is the UNIX file-system 
based on the open, read, write, and dose calls, and file 

The second layer is called Virtual File System (VFS) layer; it serves 
important functions: 

• It separates file-system generic operations from their 
by defining a clean VFS interface. Several implementations 
interface may coexist on the same machine, allowing rr:::~,n'l:na 
to different types of file systems mounted locally. 

• The VFS is based on a file representation structure called a 7 ''"'nno 

contains a numerical designator for a file that is networkwide 
(Recall that UNIX inodes are unique within only a single 
The kernel maintains one vnode structure for each active 
directory). 

Thus, the VFS distinguishes local files from remote ones, and are 
further distinguished according to their file-system types. 

Similarly to standard UNIX, the kernel maintains a table 
UNIX) recording the details of the mounts in which it took as a 
Further, the vnodes for each directory that is mounted over are 

sarver 

Figure 17.6 Schematic view of the NFS architecture. 

• 



548 • Chapter 17: Distributed-File Systems 

memory at all times and are marked, so that requests concerning such 
directories will be redirected to the corresponding mounted file systems via 
the mount table. Essentially, the vnode structures, complemented by the 
mount table, provide a pointer for every file to its parent file system, as 
well as to the file system over which it is mounted. 
. The VFS activates file-system- specific operations to handle local 
requests according to their file-system types, and calls the NFS protocol 
procedures for remote requests. File handles are constructed from the 
relevant vnodes and are passed as arguments to these procedures. The 
layer implementing the NFS protocol is the bottom layer of the architecture 
and is called the NFS service layer. 

As an illustration of the architecture, let us trace how an operation on 
an already-open remote file is handled (follow the example onFigure 17.6). 
The client initiates the operation by a regular system call. The operating­
system layer maps this call to a VFS operation on the appropriate vnode. 
The VFS layer identifies the file as a remote one and invokes the 
appropriate NFS procedure. An RPC call is made to the NFS service layer at 
the remote server. This call is reinjected to the VFS layer on the remote 
system, which finds that it is local and invokes the appropriate file-system 
operation. This path is retraced to return the result. An advantage of this 
architecture is that the client and the server are identical; thus, a machine 
may be a client, or a server, or both. 

The actual service on each server is performed by several kernel 
processes that provide a temporary substitute to a lightweight process 
(threads) facility. 

17.6.2.5 Path-Name Translation 

We do path-name translation by breaking the path into component names' 
and performing a separate NFS lookup call for every pair of component 
name and directory vnode. Once a mount point is crossed, every 
component lookup causes a separate RPC to the server (see Figure 17.7). 
This expensive path-name-traversal scheme is needed, since each client 
has a unique layout of its logical name space, dictated by the mounts it 
performed. It would have been much more efficient to hand a server a 
path na~e and to receive a target vnode once a mount point was 
encountered. At any point, however, there can be another mount point 
for the particular client of which the stateless server is unaware. 

So that lookup is faster, a directory name lookup cache on the client's 
side holds the vnodes for remote directory names. This cache speeds up 
references to files with the same initial path name. The directory cache is 
discarded when attributes returned from the server· do not match the 
attributes of the cached vnode. 

Recall that mounting a remote file system on top of another already­
mounted remote file system (cascading mount) is allowed in NFS. However, 



U: 

/\_ ··sr 

/ \,local 
/ ' 

/ ' 
/ ' 

/ ' 
/ ' 

' dirt ' L ________ ':. bin 
/'\ 

I \ 
I \ 

I dir3 \ L. ____ .:::, 

S1: 

17.6 Example Systems • 549 

usr 

shared 
'' / ' 

/ ' 
/ ' / \ 

/ \ 

/ dirt \ 
L---------~ 

S2: 

dir2 

dir3 
1\ 

I \ 
I \ 

I \ L. ____ .:::, 

Figure 17.7 Path-name translation. 

a server cannot act as an intermediary between a client and another server. 
Instead, a client must establish a direct server-client connection with the 
second server by directly mounting the desired directory. When a client 
has a cascading mount, more than one server can be involved in a path­
name. traversal. However, each component lookup is performed between 
the original client and some server. Therefore, when a client does a lookup 
on a directory on which the server has mounted a file system, the client 
sees the underlying directory, instead of the mounted directory. 

17.6.2.6 Remote Operations 

With the exception of opening and closing files, there is almost one-to-one 
correspondence between the regular UNIX system calls for file operations 
and the NFS protocol RPCs. Thus, a remote file operation can be translated 
directly to the corresponding RPC. Conceptually, NFS adheres to the 
remote-service paradigm, but in practice buffering and caching techniques 
are employed for the sake of performance. There is no direct 
correspondence between a remote operation and an RPC. Instead, file 
blocks and file attributes are fetched by the RPCs and are cached locally. 
Future remote operations use the cached data, subject to consistency 
constraints. 

There are two caches: file-blocks cache and file-attribute (inode­
information) cache. On a file open, the kernel checks with the remote 
server whether to fetch or revalidate the cached attributes. The cached file 
blocks are used only if the corresponding cached attributes are up to date: 
The attribute cache is updated whenever new attributes arrive from the 
server. Cached attributes are (by default) discarded after 60 seconds. Both 
read-ahead and delayed-write techniques are used between the server and 
the client. Clients do not free delayed-write blocks until the server 
confirms that the data have been written to disk. In contrast to the system 



550 • Chapter 17: Distributed-File Systems 

used in Sprite, delayed-write is retained even when a file is opened 
concurrently, in conflicting modes. Hence, UNIX semantics are not 
preserved. 

Tuning the system for performance makes it difficult to characterize the 
consistency semantics of NFS. New files created on a machine may not be 
visible elsewhere for 30 seconds. It is indeterminate whether writes to a file 
at one site are visible to other sites that have this file open for reading. 
New opens of that file observe only the changes that have already been 
flushed to the server. Thus, NFS provides neither strict emulation of UNIX 
semantics, nor the session semantics of Andrew. In spite of these 
drawbacks, the utility and high performance of the mechanism makes it 
the most widely used, multivendor distributed system in operation. 

17.6.3 Andrew 
Andrew is a distributed computing environment that has been under 
development since 1983 at Carnegie Mellon University. As such, it is one 
of the newest DFSs. The Andrew 'file system (AFS) constitutes the 
underlying information-sharing mechanism among clients of the 
environment. A commercial implementation of AFS, known as DFS, is part 
of the DCE distributed computing environment from the OSF organization. 
Many UNIX vendors, as well as Microsoft, have announced support for this 
system. One of the most formidable attributes of Andrew is scalability: 
The Andrew system is targeted to span over 5000 workstations. 

17.6.3.1 Overview 

Andrew distinguishes between client machines (sometimes referred to as 
workstations) and dedicated server machines. Servers and clients alike run 
the 4.2BSD UNIX operating system and are interconnected by an internet of 
LANS. 

Clients are presented with a partitioned space of file names: a local 
name space and a shared name space. Dedicated servers, collectively called 
Vice, after the name of the software they run, present the shared name 
space to the clients as a homogeneous, identical, and location transparent 

. file hierarchy. The local name space is the root file system of a 
workstation, from which the shared name space descends. Workstations 
rtin the Virtue protocol to communicate with Vice, and are required to have 
local disks where they store their local name space. Servers collectively are 
responsible for the storage and management of the shared name space. 
The local name space is small, is distinct for each workstation, and 
contains system programs essential for autonomous operation and better 
performance. Also local are temporary files and files that the workstation 
owner, for privacy reasons, explicitly wants to store locally. 



17.6 Example Systems • 551 

Viewed at a finer granularity, clients and servers are structured in 
clusters interconnected .by a WAN. Each cluster consists of· a collection of 
workstations on a LAN, and a representative of Vice called a cluster server, 
and is connected to the WAN by a router. The decompo~ition into clusters is 
done primarily to address the problem of scale. For optimal performance, 
workstations should use the server on their own cluster most of the time, 
thereby making cross-cluster file references relatively infrequent. 

The file-system architecture was based on consideration of scale, too. 
The basic heuristic was to offload work from the servers to the clients, in 
light of experience indicating that server CPU speed is the system's 
bottleneck. Following this heuristic, the key mechanism selected for remote 
file operations is to cache files in large chunks (64K). This feature reduces 
file-open latency, and allows reads and writes to be directed to the cached 
copy without frequently involving the servers. 

There are additional issues in Andrew's design that we shall not 
discuss here; briefly, they are these: 

• Client mobility: Clients are able to access any file in the shared name 
space from any workstation. The only effect clients may notice when 
accessing files from other than their usual workstations is some initial 
performance degradation due to the caching of files. 

• Security: The Vice interface is considered as the boundary of 
trustworthiness, because no client programs are executed on Vice 
machines. Authentication and secure-transmission functions are 
provided as part of a connection-based communication package, based 
on the RPC paradigm. After mutual authentication, a Vice server and a 
client communicate via encrypted messages. Encryption is performed 
by hardware devices or (more slowly) in software. Information about 
clients and groups is stored in a protection database that is replicated 
at each server. 

• Protection: Andrew provides access lists for protecting directories and 
the regular UNIX bits for file protection. The access list may contain 
information about those users that are allowed to access a directory, as 
well as information about those users that are not allowed to access a 
directory. Thus, with this scheme, it is simple to specify that everyone 
except, say, Jim can access a directory. Andrew supports the access 
types read, write, lookup, insert, administer, lock, and delete. 

• Heterogeneity: Defining a clear interface to Vice is a key for integration · 
of diverse workstation hardware and operating system. So that 
heterogeneity is facilitated, some files in the local /bin directory are 
symbolic links pointing to machine-specific executable files residing in 
Vice. 

I' 



552 • Chapter 17: Distributed-File Systems 

17.6.3.2 The Shared Name Space 

Andrew's shared name space is constituted of component units called 
volumes. Andrew's volumes are unusually small component units. 
Typically, they are associated with the files of a single client. Few volumes 
reside within a single disk partition, and they may grow (up to a quota) 
and shrink in size. Conceptually, volumes are glued together by a 
mechanism similar to the UNIX mount mechanism. However, the 
granularity difference is significant, since in UNIX only an entire disk 
partition (containing a file system) can be mounted. Volumes are a key 
administrative unit and play a vital role in identifying and locating an 
individual file. 

A Vice file or directory is identified by a low-level identifier called a fid. 
Each Andrew directory entry maps a path-name component to a fid. A fid 
is 96 bits long and has three equal-length components: a volume number, a 
vnode number, and a uniquifier. The vnode number is used as an index into 
an array containing the in odes of files in a single volume. The uniquifier 
allows reuse of vnode numbers, thereby keeping certain data structures 
compact. Fids are location transparent; therefore, file movements from 
server to server do not invalidate cached directory contents. 

Location information is kept on a volume basis in a volume-location 
database replicated on each server. A client can identify the location of 
every volume in the system by querying this database. It is the aggregation 
of files into volumes that makes·it possible to keep the location database at 
a manageable size. 

To balance the available disk space and utilization of servers, volumes 
need to be migrated among disk partitions and servers. When a volume is 
shipped to its new location, its original server is left with temporary 
forwarding information, so that the location database does not need to be 
updated synchronously. While the volume is being transferred, the original 
server still can handle updates, which are shipped later to the new server. 
At some point, the volume is briefly disabled so that the recent 
modifications can be processed; then, the new volume becomes available 
again at the new site. The volume-movement operation is atomic; if either 
server crashes, the operation is aborted. 

Read-only replication at the granularity of an entire volume is 
supported for system-executable files and for seldom-updated files in the 
upper levels of the Vice name space. The volume-location d(ltabase 
specifies the server containing the only read -write copy of a volume and a 
list of read-only replication sites. 

17.6.3.3 File Operations and Consistency Semantics 

The fundamental architectural principle in Andrew is the caching of entire 
files from servers. Accordingly, a client workstation interacts with Vice 
servers only during opening and closing of files, and even this interaction 



17.6 Example Systems • 553 

is not always 'necessary. No remote interaction is caused by reading or 
writing files (in contrast to the remote-service method). This key distinction 
has far-reaching ramifications for performance, as well as for semantics of 
file operations. 

The operating system on each workstation intercepts file-system calls 
and forwards them to a client-level process on that workstation. This 
process, called Venus, ca.ches files from Vice when they are opened, and 
stores modified copies of files back on the servers from which they came 
when they are closed. Venus may contact Vice only when a file is opened 
or closed; reading and writing of .individual bytes of a file are performed 
directly on the cached copy and bypass Venus. As a result, writes at some 
sites are not visible immediately at other sites. 

Caching is further exploited for future opens of the cached file. Venus 
assumes that cached entries (files or directories) are valid unless notified 
otherwise. Therefore, Venus does not need to contact Vice on a file open 
to validate the cached copy. The mechanism to support this policy, called 
callback, dramatically reduces the number of cache-validation requests 
received by servers. It works as follows. When a client caches a file or a 
directory, the server updates its state information recording this caching. 
We say that the client has a callback on that file. The server notifies the 
client before allowing a modification to the file by another client. lrt such a 
case, we say that the server removes the callback on the file for the former 
client. A client can use a cached file for open purposes only when the file 
has a callback. If a client closes a file after modifying it, all other clients 
caching this file lose their callbacks. Therefore, when these clients open the 
file later, they have to get the new version from the server. 

Reading and writing bytes of a file are done directly by the kernel 
without Venus intervention on the cached copy. Venus regains control 
when the file is closed and, if the file has been modified locally, Venus 
updates the file on the appropriate server. Thus, the only occasions in 
which Venus contacts Vice servers are on opens of files that either are not 
in the cache or have had their callback revoked, and on closes of locally 
modified files. 

Basically, Andrew implements session semantics. The only exceptions 
are file operations other than the primitive read and write (such as 
protection changes at the directory level), which are visible everywhere on 
the network immediately after the operation completes. 

In spite of the callback mechanism, a small amount of cached 
validation traffic is still present, usually to replace callbacks lost because of. 
machine or network failures. When a workstation is rebooted, Venus 
considers all cached files and directories suspect, and generates a cache­
validation request for the first use of each such entry. 

The callback mechanism forces each server to maintain callback 
information and each client to maintain validity information. If the amount 
of callback information maintained by a server is excessive, the server can 



554 • Chapter 17: Distributed-File Systems 

break callbacks and reclaim some storage by unilaterally notifying clients 
and revoking the validity of their cached files. There is a potential for 
inconsistency if the callback state maintained by Venus gets out of sync 
with the corresponding state maintained by the servers. 

Venus also caches contents of directories and symbolic links, for path­
name translation. Each component in the path name is fetched, and a 
callback is established for it if it is not already cached, or if the client does 
not have a callback on it. Lookups are done locally by Venus on the 
fetched directories using fids. There is no forwarding of requests from one 
server to another. At the end of a path-name traversal, all the intermediate 
directories and the target file are in the cache with callbacks on them. 
Future open calls to this file will involve no network communication at all, 
unless a callback is broken on a component of the path name. 

The only exceptions to the caching policy are modifications to 
directories that are made directly on the server responsible for that 
directory for reasons of integrity. There are well-defined operations in the 
Vice interface for such purposes. Venus reflects the changes in its cached 
copy to avoid refetching the directory. 

17.6.3.4 Implementation 

Client processes are interfaced to a UNIX kernel with the usual set of 
system calls. The kernel is modified slightly to detect references to Vice 
files in the relevant operations and to forward the requests to the client­
level Venus process at the workstation. 

Venus carries out path-name translation component by component, as 
was described above. It has a mapping cache that associates volumes to 
server locations in order to avoid server interrogation for an already-known 
volume location. If a volume is not present in this cache, Venus contacts 
any server to which it already has a connection, requests the location 
information, and enters that information into the mapping cache. Unless 
Venus already has a connection to the server, it establishes a new 
connection. It then uses this connection to fetch the file or directory. 
Conrtection establishment is needed for authentication and security 
purposes. When a target file is found and cached, a copy is created on the 
local disk. Venus then returns to the kernel, which opens the cached copy 
and returns its handle to the client process. 

The UNIX file system is used as a low-level storage system for both 
servers and clients. The client cache is a local directory on the 
workstation's disk. Within this directory are · files whose names are 
placeholders for cache entries. Both Venus and server processes access 
UNIX files directly by the latter's inodes to avoid the expensive path­
name-to-inode translation routine (namei). Because the internal inode 
interface is not visible to client-level processes (both Venus and server 



17.6 Example Systems • 555 

processes are client-level processes), an appropriate set of additional 
system calls was added. 

Venus manages two separate caches: one for status and the other for 
data. It uses a simple least recently used (LRU) algorithm to keep each of 
them bounded in size. When a file is flushed from the cache, Venus 
notifies the appropriate server to remove the callback for this file. The 
status cache is kept in virtual memory to allow rapid servicing of stat (file 
status returning) system calls. The data cache is resident on the local disk, 
but the UNIX I/O buffering mechanism does some caching of disk blocks in 
memory that is transparent to Venus. 

A single client-level process on each file server services all file requests 
from clients. This process uses a lightweight-process package with 
nonpreemptable scheduling to service many client requests concurrently. 
The RPC package is integrated with the lightweight-process package, 
thereby allowing the file server to be concurrently making or servicing one 
RPC per lightweight process. RPC is built on top of a low-level datagram 
abstraction. Whole file transfer is implemented as a side effect of these RPC 
calls. There is one RPC connection per client, but there is no a priori 
binding of lightweight processes to these connections. Instead, a pool of 
lightweight processes services client requests on all connections. The use of 
a single multithreaded server process allows the caching of data structures 
needed to service requests. On the other hand, a crash of a single server 
process has the disastrous effect of paralyzing this particular server. 

17.6.4 Sprite 

Sprite is an experimental distributed operating system under development 
at the University of California at Berkeley. Its main research thrusts have 
been in the areas of network file systems, process migration, and high­
performance file systems. Sprite runs on Sun and DEC workstations and is 
used for day-to-day computing by a few dozen students, faculty, and staff. 

17.6.4.1 Overview 

Sprite designers envision the next generation of workstations as powerful 
machines with vast physical memory. The configuration for which Sprite is 
targeted is large and fast disks concentrated on a few server machines 
servicing the storage needs of hundreds of diskless workstations. The 
workstations are interconnected by several LANs. Because file caching is 
used, the large physical memories will compensate for the lack of local 
disks. 

The interface that Sprite provides in general, and to the file system in 
particular, is much like the one provided by UNIX. The file system appears 
as a single UNIX tree encompassing all files and devices in the network, 



556 • Chapter 17: Distributed-File Systems 

making them equally and transparently accessible from every workstation. 
The location transparency in Sprite is complete; there is no way to discern 
a file's network location from that file's name. 

Unlike NFS, Sprite enforces consistency of shared files. Each read 
system call is guaranteed to return the most up-to-date data for a file, even 
if it is being opened concurrently by several remote processes. Thus, Sprite 
emulates a single time-sharing UNIX system in a distributed environment. 

A unique feature of the Sprite file system is its interplay with the 
virtual-memory system. Most versions of UNIX use a special disk partition 
as a swapping area for virtual-memory purposes. In contrast, Sprite uses 
ordinary files, called backing files, to store the data and stacks of running 
processes. The basis for this design is that it simplifies process migration 
and enables flexibility and sharing of the space allocated for swapping. 
Backing files are cached in the main memories of servers, just like any 
other file. The designers claim that clients should be able to read random 
pages from server's (physical) cache faster than they can from local disks, 
which means that a server with a large cache may provide better paging 
performance than will local disk. 

The virtual memory and file system share the same cache and 
negotiate on how to divide it according to their conflicting needs. Sprite 
allows the file cache on each machine to grow and shrink in response to 
changing demands of the machine's virtual memory and file system. This 
scheme is similar to Apollo's Domain operating system, which has a 
dynamically sized swap space. 

We briefly mention a few other features of Sprite. In contrast to UNIX, 
where only code can be shared among processes, Sprite provides a. 
mechanism for sharing an address space between client processes on a 
single workstation. A process-migration facility, which is transparent to 
clients as well as to the migrated process, is also provided. 

17.6.4.2 Prefix Tables 

Sprite presents its client with a single file-system hierarchy. The hierarchy 
is composed of several subtrees called domains (the Sprite term for 
component units), with each server providing storage for one or more 
domains. _Each machine maintains a server map called· a prefix table, whose 
function is to map domains to servers. The mapping is built and updated 
dynamically by a broadcast protocol that places a message on tlie network 
for all other network members to read. We first describe how the tables are 
used during name lookups, and later describe how the tables change 
dynamically. 

Each entry in a prefix ta:ble corresponds to one of the domains. It 
contains the name of the topmost directory in the <:Iomain (called the prefix 
for the domain), the network address of the server storing the domain, 
and a numeric designator identifying the domain's root directory for the 



17.6 Example Systems • 557 

storing server. Typically, this designator is an index into the server table of 
open files; it saves repeating expensive name translation. 

Every lookup operation for an absolute path name starts with the client 
searching its prefix table for the longest prefix matching the given file 
name. The client strips the matching prefix· from the file name and sends 
the remainder of the name to the selected server along with the designator 
from the prefix-table entry. The server uses this designator to locate the 
root directory of the domain, and then proceeds by usual UNIX path-name 
translation for the remainder of the file name. If the server succeeds in 
completing the translation, it replies with a designator for the open file. 

There are several cases where the server does not complete the lookup 
operation: 

• When the server encounters an absolute path name in a symbolic link, 
it immediately returns to the client the absolute path name. The client 
looks up the new name in its prefix table and initiates another lookup 
with a new server. 

• A path name can ascend past the root of a domain (because of a parent 
" .. " component). In such a case, the server returns the remainder of 
the path name to the client. The latter combines the remainder with 
the prefix of the domain that was just exited to form a new absolute 
path name. 

• A path name can also descend into a new domain. This descent can 
happen when an entry for a domain is absent from the table, and as a 
result the prefix of the domain above the missing domain is the longest 
matching prefix. The selected server cannot complete the path-name 
traversal, since the latter descends outside its domain. Alternatively, 
when a root of a domain is beneath a working directory and a file in 
that domain is referred to with a relative path name, the server also 
cannot complete the translation. The solution to these situations is to 
place a marker to indicate domain boundaries (a mount point, in NFS 
terms). The marker is a special kind of file called a remote link. Similar 
to a symbolic link, its content is a file name - its own name in this 
case. When a server encounters a remote link, it returns the file name 
to the client. 

Relative path names are treated much as they are in conventional UNIX. 
When a process specifies a new working directory, the prefix mechanism is 
used to open the working directory and both its server address and . 
designator are saved in the process's state. When a lookup operation 
detects a relative path name, it sends the path name directly to the server 
for the current working directory, along with the directory's designator. 
Hence, from the server's point of view, there is no difference between 
relative and absolute name lookups. 



558 • Chapter 17: Distributed-File Systems 

So far, the key difference from mappings based on the UNIX mount 
mechanism was the initial step of matching the file name against the prefix 
table, instead of looking it up component by component. Systems (such as 
NFS and conventional UNIX) that employ a name-lookup cache create a 
similar effect of avoiding the compmi.ent-by-component lookup once the 
cache holds the appropriate information., 

Prefix tables are a unique mechanism mainly because of the way they 
evolve and change. When a remote link is encountered by the server, this 
indicates to the server that the client lacks an entry for a domain - the 
domain whose remote link was encountered. To obtain the missing prefix 
information, the client must broadcast a file name. A broadcast is a network 
message that is seen by all the computer systems on the network. The 
server storing that file responds with the prefix-table entry for this file, 
including the string to use as a prefix, the server's address, and the 
descriptor corresponding to the domain's root. The client then can fill in 
the details in its prefix table. 

Initially, each client starts with an empty prefix table. The broadcast 
protocol is invoked to find the entry for the root domain. More entries are 
added gradually as needed; a domain that has never been accessed will not 
appear in the table. 

The server locations kept in the prefix table are hints that are corrected 
when found to be wrong. Hence, if a client tries to open a file and gets no 
response from the server, it invalidates the prefix-table entry and attempts 
a broadcast query. If the server has become available again, it responds to 
the broadcast and the prefix-table entry is reestablished. This same 
mechanism also works if the server reboots at a different network address, 
or if its domains are moved to other servers. 

The prefix mechanism ensures that, whenever a server storing a 
domain is functioning, the domain's files can be opened and accessed from 
any machine regardless of the status of the servers of domains above the 
particular domain. Essentially, the built-in broadcast protocol enables 
dynamic configuration and a certain degree of robustness. Also, when a 
prefix for a domain exists in a client's table, a direct client-server 
connection is established as soon as the client attempts to open a file in 
that domain (in contrast to path-name traversal schemes). 

A maG:hine with a local disk that wishes to keep private some local files 
can place an entry for the private domain in its prefix table and refuse to 
respond to broadcast queries about that domain. One of the uses of this 
provision can be for the directory /usrltmp, which holds temporary files 
generated by many UNIX programs. Every workstation needs access to 
lusrltmp. But workstations with local disks would probably prefer to use 
their own disk for the temporary space. Recall that the designers of Sprite 
expect reads from a server cache to be faster than those from a local disk, 
but do not predict this relationship for writes. They can set up their 
/usrltmp domains for private use, with a network file serv~r providing a 



17.6 Example Systems • 559 

public version· of the domain for diskless clients. All broadcast queries for 
!usr/tmp would be handled by the public server. 

A primitive form of read-only replication can also be provided. It can 
be arranged that servers storing a replicated domain give differertt clients 
different prefix entries (standing for different replicas) for the same 
domain. The same technique can be used for sharing binary files by 
different hardware types of machines. 

Since the prefix tables bypass part of the directory-lookup mechanism, 
the permission checking done during lookup is bypassed too. The effect is 
that all programs implicitly have search permission along all the paths · 
denoting prefixes of domains. If access to a domain is to be restricted, it 
must be restricted at or below the root of the domain. 

17.6.4.3 Caching and Consistency 

An important aspect of the Sprite file-system design is the extent of the use 
of caching techniques. Capitalizing on the large main memories· and 
advocating diskless workstations, file caches are stored in memory, instead 
of on local disks (as in Andrew). Caching is used by both client and server 
workstations. The caches are organized on a block basis, rather than on a 
file basis (as in Andrew). The size of the blocks is currently 4K. Each block 
in the cache is virtually addressed by the file designator and a block 
location within the file. Using virtual addresses instead of physical disk 
addresses enables clients to create new blocks in the cache and to locate 
any block without the file inode being brought from the server. 

When a read kernel call is invoked to read a block of a file, the kernel 
first checks its cache and returns the information from the cache, if it is 
present. If the block is not in the cache, the kernel reads it from disk (if the 
file is locally stored), or requests it from the server; in either case, the block 
is added to the cache, replacing the least recently used block. If the block 
is requested from the server, the server checks its own cache before issuing 
a disk 110 request, and adds the block to its cache, if the block was not 
already there. Currently, Sprite does not use read-ahead to speed up 
sequential read (in contrast to NFS). 

A delayed-write approach is used to handle file modification. When an 
application issues a write kernel call, the kernel simply writes the block 
into its cache and returns to the application. The block is not written 
through to the server's cache or the disk until it is ejected from the cache, 
or 30 seconds have elapsed since the block was last modified. Hence, a 
block written on a client machine will be written to the server's cache in at· 
most 30 seconds, and will be written to the server's disk after an additional 
30 secortds. This policy results in better performance in exchange for the 
possibility of recent changes being lost in a crash. 

Sprite employs a version-number scheme to enforce consistency of 
shared files. The version number of a file is incremented whenever a file 



560 • Chapter 17: Distributed-File Systems 

is opened in write mode. When a client opens a file, it obtains from the 
server the file's current version number, which the client compares to the 
version number associated with the cached blocks for that file. If they are 
different, the client discards all cached blocks for .the file and reloads its 
cache from the server when the blocks are needed. Because of the 

.delayed-write .policy, the server does not always have the current file data. 
Servers handle this situation by keeping track of the last writer for each 
file. When a client other than the last writer opens the file, the server 
forces the last writer to write back all its modified data blocks to the 
server's cache. 

When a server detects (during an open operation) that a file is open on 
two or more workstations and that at least one of them is writing the file, 
it disables client caching for that file. All subsequent reads and writes go 
through the server, which serializes the accesses. Caching is disabled on a 
file basis, resulting in only clients with open files being affected. 
Obviously, a substantial degradation of performance occurs when caching 
is disabled. A noncachable file becomes cachable again when it has been 
closed by all clients. A file may be cached simultaneously by several active 
readers. 

This approach depends on the server being notified whenever a file is 
opened or closed. This notification requirement prohibits performance 
optimizations such as name caching in which clients opeh files without 
contacting the file servers. Essentially, the servers are used as centralized 
control points for cache consistency. To fulfill this function, they must 
maintain state information about open files. 

17.6.5 Locus 

Locus is a project at the University of California at Los Angeles to build a 
full-scale distributed operating system. The system is upward-compatible 
with UNIX, but unlike those irt NFS, UNIX united, and other UNIX-based 
distributed systems, the extensions are major ahd necessitate an entirely 
new kernel, rather than a modified one. 

17.6.5.1 Overview 

. The Loct.is file system presents to clients and applications a single tree­
structure naming hierarchy. This structure covers all objects (files, 
directories, executable files, and devices) of all the machines in the system. 
Locus names are fully transparent; it is not possible to discern from a name 
of an object the object's location in the network. To a first approximation, 
there is almost no way to distinguish the Locus name structure from a 
standard UNIX tree. 

A Locus file may correspond to a set of copies distributed on different 
sites. An additional transparency dimension is intro~uced since it is the 



17.6 Example Systems • 561 

system's responsibility to keep all copies up to date and to ensure that 
access requests are served by the most recent available version. Clients 
may have control over both the number and location of replicated files. 
Conversely, clients may prefer to be totally unaware of the replication 
scheme. In Locus, ffie replication serves mainly to increase availability for 
reading purposes in the event of failures and partitions. A primary-copy 
approach is adopted for modifications. 

Locus adheres to the same file-access semantics with which standard 
UNIX presents clients. Locus provides these semantics in the distributed 
and replicated environment in which it operates. Alternate mechanisms of· 
advisory and enforced locking of files and parts of files are also offered. 
Moreover, atomic updates of files are supported by commit and abort 
system calls. 

Operation during failures and network partitions is emphasized in 
Locus' design. As long as a copy of a file is available, read requests can be 
served, and it is still guaranteeq that the version read is the most recent 
available one. Automatic mechanisms update stale copies of files at the 
time of the merge of the latter's storage site to a partition. 

Emphasis on high performance in the design of Locus led to the 
incorporation of networking functions (such as formatting, queuing, 
transmitting, and retransmitting messages) into the operating system. 
Specialized remote-operations protocols were devised for kernel-to-kernel 
communication, in . contrast to the prevalent approach of using the RPC 

protocol, or some other existing protocol. The reduction of the number of 
network layers has achieved high performance for remote operations. On 
the other hand, this specialized protocol hampers the portability of Locus 
to different networks and file systems. 

An efficient but limited process facility called server processes 
(lightweight processes) was created for serving remote requests. These 
processes have no nonprivileged address space. All their code and stacks 
are resident in the operating-system nucleus; they can call internal system 
routines directly, and can share some data. These processes are assigned to 
serve network requests that accumulate in a system queue. The system is 
configured with some number of these processes, but that number is 
automatically and dynamically altered during system operation. 

17.6.5.2 The Name Structure 

The logical name structure disguises both location and replication details 
from clients and applications. In effect, logical filegroups are joined· 
together to form this unified structure. Physically, a logical filegroup is 
mapped to multiple physical containers (called also packs) that reside at 
various sites and that store replicas of the files of that filegroup. The pair 
<logical-filegroup-number, inode number>, which is referred to as a file's 



562 • Chapter i7: Distributed-File Systems 

designator, serve~ as a globally uruque low-level name for a file. Observe 
that the designator itself hides both location and replication details. 

Each site has a consistent and complete view of the logical name 
structure. A logical mount tcible is replicated globally and contains an 
entry for each logical filegroup. An entry records the file designator of the 
directory over which the filegroup is logically inounted, and indication of 

· which site is currently responsible "for access synchronization within the 
filegroup. We shall explain the function of this site later in this section. In 
addition, each site that stores a copy of the directory over which a subtree 
is mounted must keep that directory's in ode in memory with an indication 
that it is mounted over. Keeping the inode in memory is done so that any 
access from any site to that directory will be caught, allowing the standard 
UNIX mount indirection to function (via the logical mount table, Section 
11.1.2). A protocol, implemented within the mount and unmount Locus 
system calls, performs update of the logical mount tables on all sites, when 
necessary. 

On the physical level, physical containers correspond to disk partitions 
and are assigned pack numbers that, together with a logical filegroup 
number, identify an individual pack. One of the packs is designated as the 
primary copy. A file must be stored at the site of the primary copy, and in 
addition can be stored at any subset of the other sites where there exists a 
pack corresponding to its filegroup. Thus, the primary copy stores the 
filegroup completely, whereas the rest of the packs might be partial. 

Replication is especially useful for directories in the high levels of the 
name hierarchy.· Such directories exhibit mostly read-only characteristics 
and are crucial for path-name translation of most files. 

The various copies of a file are assigned the same inode number on all 
the filegroup's packs. Consequently, a pack has an empty inode ~lot for all 
files that it does not store. Data-page numbers may be different on 
different packs; hence, reference over the network to data pages use logical 
page numbers rather than physical ones. Each pack has a mapping of 
these logical numbers to its physical numbers. So that automatic 
replication management will be facilitated, each inode of a file copy 
contains a version number, determining which copy dominates other 
copies. 

Each site has a container table, which maps logical filegroup numbers 
to disk locations for the filegroups that have packs locally on this site. 
When requests for accesses to files stored locally arrive at a site, the system 
consults this table to map the file designator to a local disk address. 

Although globally unique file naming is important most of the time, 
there are certain files and directories that are hardware and site specific 
(that is, /bin, which is hardware specific, and /dev, which is site specific). 
Locus provides transparent means for translating references to these 
traditional file names to hardware- and site-specific files. 



17.6 Example Systems • 563 

17.6.5.3 File Operations 

Locus' approach to file operations is certainly a departure from the 
prevalent client- server model. Providing replicated files with synchronous 
access necessitates an additional function. Locus distinguishes three 
logical roles in file accesses, each one potentially performed by a different 
site: 

• Using site (US): The us issues the requests to open and access a remote 
file. 

• Storage site (ss): The ss is the site selected to serve the requests. 

• Current synchronization site (css): The css enforces global 
synchronization policy for a filegroup, and selects an ss for each open 
request referring to a file in the filegroup. There is at most one css for 
each filegroup in any set of communicating sites (that is, a partition). 
The css maintains the version number and a list of physical containers 
for every file in the filegroup. 

We now describe the open, read, write, dose, commit, and abort 
operations, as they are carried out by the us, ss, and css entities. Related 
synchronization issues are described separately in the next subsection. 

Opening a· file commences as follows. The us determines the relevant 
css by looking up the filegroup in the logical mount table, and then 
forwards the open request to the css. The css polls potential sss for that 
file to decide which one of them will act as the real ss. In its polling 
messages, the css includes the version number for the particular file, so 
that the potential ss can, by comparing this number to their own, decide 
whether or not their copy is up to date. The css selects an ss by 
considering the responses it received from the candidate sites, and sends 
the selected ss identity to the us. Both the css and the ss allocate in-core 
inode structures for the opened file. The css needs this information to 
make future synchronization decisions, and the ss maintains the inode to 
serve forthcoming accesses efficiently. 

After a file is open, read requests are sent directly to the ss without the 
css intervention. A read request contains the designator of the file, the 
logical number of the needed page within that file, and a guess as to 
where the in-core inode is stored in the ss. Once the inode is found, the ss 
translates the logical page number to a physical number, and a standard 
low-level routine is called to allocate a buffer and to obtain the appropriate 
page from disk. The buffer is queued on the network queue for· 
transmission as a response to the us, where it is stored in a kernel buffer. 
Once a page is fetched· to the us, further read calls are serviced from the 
kernel buffer. As in the case of local disk reads, read-ahead is useful to 
speed up sequential reads, at both the us and the ss. 



564 • Chapter 17: Distributed-File Systems 

If a process loses its connection with a file that it is reading remotely, 
the system attempts to reopen a different copy of the same version of the 
file. 

Translating a path name into a file designator proceeds by a seemingly 
conventional path-name traversal mechanism, since path names are regular 

·UNIX path names, with no exceptions (unlike UNIX united). Every lookup of 
a component of the path name within a directory involves opening the 
directory and reading from it. Observe that there is no parallel to NFS' s 
remote lookup operation, and that the actual directory searching is 
performed by the client, rather than by the server. 

A directory opened for path-riame searching is open not for normal 
read, but instead for an internal unsynchronized read. The distinction is 
that no global synchronization is needed, and no locking is done while the 
reading is performed; that is, updates to the directory can occur while the 
search is ongoing. When the directory is local, the css is not even informed 
of such access. 

In Locus, a primary-copy policy is employed for file modification. The 
css has to select the primary-copy pack site as the ss for an open for a 
write. The act of modifying data takes on two forms. If the modification 
does not include the entire page, the old page is read from the ss using the 
read protocol. If the change involves the entire page, a buffer is set up at 
the us without any reads. In either case, after changes are made, possibly 
by delayed-write, the page is sent back to the ss. All modified pages must 
be flushed to the ss before a modified file can be closed. 

If a file is closed by the last client process at a us, the ss and css must 
be informed so that they can dealloc~te in-core inode structures, and so 
that the css can alter state data that might affect its next synchronization 
decision. 

Commit and abort system calls are provided, and closing a file commits 
it. If a file is open for modification by more than one process, the changes 
are not made permanent until one of the processes issues a commit system 
call or until ~11 the processes close the file. 

When a file is modified, shadow pages are allocated at the ss. The in­
core copy of the disk inode is updated to point to these new shadow 
pages. The disk inode is kept intact, pointing to the original pages. The 
atomic commit operation consists of replacing the disk inode with the in­
core inode. After that point, the file contains the new information. To 
abort a set of changes, we merely discard the in-core inode information 
and free up the disk space used to record the changes. The us function 
never deals with actual disk pages, but rather deals with logical pages. 
Thus, the entire shadow-page mechanism is implemented at the ss and is 
transparent to the us. 

Locus deals with file modification by first committing the change to the 
primary copy. Later, messages are sent to all other sss of the modified file, 



17.6 Example Systems • 565 

as well as to the css. At minimum, these messages identify the modified 
file and contain the new version number (to prevent attempts to read the 
old versions). At this point, it is the responsibility of these additional sss to 
bring their files up to date by propagating the entire file or just the 
changes. A queue of propagation requests is kept within the kernel at each 
site, and a kernel process services the queue efficiently by issuing 
appropriate read requests. This propagation procedure uses the standard 
commit mechanism. Thus, if contact with the file containing the newer 
version is lost, the local file is left with a coherent copy, albeit one still out 
of date. 

Given this commit mechanism, we are always left with either the 
original file or a completely changed file, but never with a partially made 
change, even in the face of site failures. 

17.6.5.4 Synchronized Accesses to Files 

Locus tries to emulate conventional UNIX semantics on file accesses in a 
distributed environment. In standard UNIX, multiple processes are 
permitted to have the same file open concurrently. These processes issue 
read and write system calls, and the system guarantees that each 
successive operation sees the effects of the ones that precede it. We can 
implement this scheme fairly easily by having the processes share the same 
operating-system data structures and caches, and by using locks on data 
structures to serialize requests. Since remote tasking is supported in Locus, 
such situations can arise when the sharing processes do not co-reside on 
the same machine and hence complicate the implementation significantly. 

There are two sharing modes to consider. First, in UNIX, several 
processes descending from the same ancestor process can share the same 
current position (offset) in a file. A single token scheme is devised to 
preserve this special mode of sharing. A site can proceed to execute system 
calls that need the offset only when the token is present. 

Second, in UNIX, the same in-core inode for a file can be shared by 
several processes. In Locus, the situation is much more complicated, since 
the inode of the file can be cached at several sites. Also, data pages are 
cached at multiple sites. A multiple-data-tokens scheme is used to 
synchronize sharing of the file's inode and data. A single exclusive-writer, 
multiple-readers policy is enforced. Only a site with the write token for a 
file may modify the file, and any site with a read token can read the file. 
Both token schemes are coordinated by token managers operating at the. 
corresponding storage sites. 

The cached data pages are guaranteed to contain valid data only when 
the file's data token is present. When the write data token is taken from 
that site, the inode is copied back to the ss, as are all modified pages. Since 
arbitrary changes may have occurred to the file when the token was· not 



566 • Chapter 17: Distributed-File Systems 

present, all cached buffers are invalidated when the token is released. 
When a data token is granted to a site, both the inode and data pages 
need to be fetched from the ss. There are some exceptions to this policy. 
Some attribute reading and writing calls (for example, stat), as well as 
directory reading and modifying (for example, lookup) calls are not subject 
to the synchronization constraints. These calls are sent directly to the ss, 
where the changes are made, committed, and propagated to all storage 
and using sites. 

This mechanism guarantees consistency; each access sees the most 
recent data. A different issue regarding access synchronization is 
serializability of accesses. To this end, Locus offers facilities for locking 
entire ·files or parts of them. Locking can be advisory (checked only as a 
result of a locking attempt), or enforced (checked on all reads and writes). 
A process can choose either to fail if it cannot immediately get a lock, or to 
wait for the lock to be released. 

17.6.5.5 Operation in a Faulty Environment 

The basic approach in Locus is to maintain, within a single partition, strict 
synchronization among copies of a file, so that all clients of that file within 
that partition see the most recent version. 

The primary-copy approach eliminates the possibility of conflicting 
updates, since the primary copy must be in the client's partition to allow 
an update. However, the problem of detecting updates and propagating 
them to all the copies remains, especially since updates are allowed in a 
partitioned network. During normal operation~ the commit protocol 
ascertains proper detection and propagation of updates, as was described 
in the last subsection. However, a more elaborate scheme has to be 
employed by recovering sites that wish to bring their packs up to date. To 
this end, the system maintains a commit count for each filegroup, 
enumerating each commit of every file in the filegroup. Each pack has a 
lower-water mark (LWM) that is a commit-count value, up to which the 
system guarantees that all prior commits are reflected in the pack. Also, 
the primary copy pack keeps a complete list of all the recent commits in 
secondary storage. When a pack joins a partition, it contacts the primary 
copy site, and checks whether its LWM is within the recent commit-list 
bounds. If it is, the pack site schedules a kernel process, which brings the 
pack to a consistent state by performing the missing updates. If the 
primary pack is not available, writing is disallowed in this partition, but 
reading is possible after a new css is chosen. The new css communicates 
with the partition members so that it will be informed of the most recent 
available (in the partition) version of each file in the filegroup. Once the 
new css accomplishes this objective, other pack sites can reconcile 



17.7 Summary • 567 

themselves with it. As a result, all communicating sites see the same view 
of the filegroup, and this view is as complete as possible, given a particular 
partition. Note that, since updates are allowed within the partition with 
the primary copy, and reads are allowed in the rest of the partitions, it is 
possible to read out-of-date replicas of a .. file. Thus, Locus sacrifices 
consistency for the ability to continue and both to update and to read files 
in a partitioned environment. 

When a pack is too far out of date (that is, its LWM indicates a value 
prior to the earliest commit-count value in the primary-copy commit list), 
the system invokes an application-level process to bring the filegroup up to 
date. At this point, the system lacks sufficient knowledge of the most 
recent commits to redo the changes. Instead, the site must inspect the 
entire inode space to determine which files in its pack are out of date. 

When a site is lost from an operational Locus network, a clean-up 
procedure is necessary. Essentially, once a site has decided that a 
particular site is unavailable, it must invoke failure handling for all the 
resources that the. processes were using at that site. This substantial 
cleaning procedure is the penalty of the state information kept by all three 
sites participating in file access. 

Since directory updates are not restricted to being applied to the 
primary copy, conflicts among updates in different partitions may arise. 
However, because of the simple nature of directory-entry modification, an 
automatic reconciliation procedure is devised. This procedure is based on 
comparing the inodes and string-name pairs of replicas of the same 
directory. The most extreme action taken is when the same name string 
corresponds to two different inodes. The file's name is altered slightly, and 
the file's owner is notified by electronic mail. 

17.7 • Summary 

A DFS is a file-service system whose clients, servers, and storage devices 
are dispersed among the various sites of a distributed system. Accordingly, 
service activity has to be carried out across the network; instead of a single 
centralized data repository, there are multiple and independent storage 
devices. 

Ideally, a DFS should look to its clients like a conventional, centralized 
.file system. The multiplicity and dispersion of its servers and storage 
devices should be made transparent. That is, the client interface of a DFS 
should not distinguish between local and remote files. It is up to the DFS · 
to locate the files and to arrange for the transport of the data. A 
transparent DFS facilitates client mobility by bringing over the client's 
environment to the site where a client logs in. 



568 • Chapter 17: Distributed-File Systems 

There are several approaches to naming schemes in a DFS. In the 
simplest approach, files are named by some combination of their host 
name and local name, which guarantees a unique systemwide name. 
Another approach, popularized by NFS, provides means to attach remote 
directories to local directories, thus giving the appearance of a coherent 
. directory tree. 

Requests to access a remote file are usually handled by two 
complementary methods. With remote service, requests for accesses are 
delivered to the. server. The server machine performs the accesses, and 
their results are forwarded back to the client. With caching, if the data 
needed to satisfy the access request are not already cached, then a copy of 
those data is brought from the server to the client. Accesses are performed 
on the cached copy. The idea is to retain recently accessed disk blocks in 
the cache, so that repeated accesses to the same information can be 
handled locally, without additional network traffic. A replacement policy is 
used to keep the cache size bounded. The problem of keeping the cached 
copies consistent with the master file is the cache-consistency problem. 

There are two approaches to server-side information. Either the sel'Ver 
tracks each file being accessed by each client, or it simply provides blocks 
as they are requested by the client without knowledge of their use. These 
approaches are the stateful versus stateless service paradigms. 

Replication of files on different machines is a useful redundancy for 
improving availability. Multimachine replication can benefit performance 
too, since selecting a nearby replica to serve an access request results in 
shorter service time. 

• Exercises 

17.1 What are the benefits of a DFS when compared to a file system in a 
centralized system? 

17.2 Which of the example DFSs would handle a large, multiclient 
database application most efficiently? Explain your answer. 

17.3 Under which circumstances would a client prefer a location­
tra.nsparent DFS? Under which would she prefer a location­
independent DFS? Discuss the reasons for these preferences. 

17.4 What aspects of a distributed system would you select for a system 
running on a totally reliable network? 

17.5 Compare and contrast .the techniques of caching disk blocks locally, 
on a client system, and remotely, on a server. 

17.6 What are the benefits of mapping objects into virtual memory, as 
Apollo Domain does? What are the detriments? 



Bibliographic Notes • 569 

Bibliograp-hic Notes 

A distributed file service based on optimistic concurrency control was 
described by Mullender and Tanenbaum [1985]. Discussions concerning 
consistency and recovery control for replicated files were offered by 
Davcev and Burkhard [1985]. Management of replicated files in a UNIX 
environment is covered by Brereton [1986] and Purdin et al. [1987]. Wah 
[1984] discussed the issue of file placement on distributed computer 
systems. 

UNIX united was described by Brownbridg~ et al. [1982]. The Locus 
system was discussed by Popek and Walker [1985]. The Sprite system was 
described by Ousterhqut et al. [1988], and Nelson et al. [1988]. Sun's 
Network File System (NFS) was presented in Sandberg et al. [1985], 
Sandberg [1987], and Sun Microsystems [1990]. The Andrew system was 
discussed by Morris et al. [1986], Howard et al. [1988], and 
Satyanarayanan [1990]. The Apollo Domain system was discussed by 
Leach et al. [1982]. · 

A detailed survey of mainly centralized file servers was given in 
Svobodova [1984]. The emphasis there is on support of atomic transactions, 
and not on location transparency and naming. 





CHAPTER 18 

DISTRIBUTED 
COORDINATION 

In Chapter 6, we described various mechanisms that allow processes to 
synchronize their actions. We also discussed a :number of schemes to 
ensure the atomicity property of a transaction that executes either in 
isolation or concurrently with other transactions. In Chapter 7 we 
described various methods that an operating system can use to deal with 
the deadlock problem. In this chapter, we examine how the centralized 
synchronization mechanisms can be extended to a distributed 
environment. We also discuss various methods for handling deadlocks in a 
distributed system. 

18.1 • Event Ordering 

In a centralized system, it is always possible to determine the order in 
which two events have occurred, since there is a single common memory 
and clock. In many applications, it is of utmost importance to be able to 
determine order. For example, in a resource-allocation scheme, we specify 
that a resource can be used only after the resource has been granted. In a 
distributed system, however, there is no common memory and no 
common clock. Therefore, it is sometimes impossible to say which of two 
events occurred first. The happened-before relation is only a partial ordering 
of the events in distributed systems. Since the ability to define a total 

. ordering is crucial in many applications, we present a distributed algorithm 
for extending the happened-before relation to a consistent total ordering of all 
the events in the system. 

571 



572 • Chapter 18: Distributed Coordination 

18.1.1 The Happened-Before Relation 
Since we are considering only sequential processes, all events executed in a 
single process are totally ordered. Also, by the law of causality, a message 
can be received only after it has been sent. Therefore, we can define the 
happened-before relation (denoted by ~) on a set of events as follows 
·(assuming that sending and receiving a message constitutes an event): 

1. If A and Bare events in the same process, and A was executed before 
B, then A~ B. 

2. If A is the event of sending a message by one process and B is the 
event of receiving that message by another process, then A~ B. 

3. If A ~ B and B ~ C then A ~ C. 

Since an event cannot happen before itself, the ~ relation is an irreflexive 
partial ordering. 

If two events, A and B, are not related by the ~ relation (that is, A did 
not happen before B, and B did not happen before A), then we say that 
these. two events were executed concurrently. In this case, neither event can 
causally affect the other. If, however, A~ B, then it is possible for event 
A to affect event B causally. 

The definitions of concurrency and of happened-before can best be 
illustrated by a space-time diagram, such as that in Figure 18.1. The 
horizontal direction represents space (that is, different processes), and the 
vertical direction represents time. The labeled vertical lines denote 
processes (or processors). The labeled dots denote events. A wavy line 
denotes a message sent from one process to another. From this diagram, it 
is clear that events A and B are concurrent if and only if no path exists 
either from A to B or from B to A. 

For example, consider Figure 18.1. Some of the events related by the 
happened-before relation are 

Pt ~ q2, 
'o ~ q4, 
q3 ~ r1, 
Pt ~ q4 (since Pt ~ q2 and q2 ~ q4). 

Some of the concurrent events in the system are 

qo and P2' 
r0 and q3, 

r0 and p3, 

q3 and P3· 



18.1 Event Ordering • 573 

p Q R 

Figure 18.1 Relative time for three concurrent processes . 
. , 

We cannot know which of two concurrent events, such as q0 and p2, 

happened first. However, since neither event can affect the other (there is 
no way for one of them to know whether the other has occurred yet), it is 
not important which of them happened first. It is important only that any 
processes that care about the order of two concurrent events agree on 
some order. 

18.1.2 Implementation 
To determine that an event A happened before an event B, we need either 
a common clock or a set of perfectly synchronized clocks. Since, in a 
distributed system neither of these is available, we must define the 
happened-before relation without the use of physical clocks. 

We associate with each system event a timestamp. We can then define 
the global ordering requirement: For every pair of events A and B, if A~ B, 
then the timestamp of A is less than the timestamp of B. Below we will see 
that the converse does not need to be true. 

How do we enforce the global ordering requirement in a distributed 
environment? We define within each process Pi a logical clock, LCi. The 
logical clock can be implemented as a simple counter that is incremented 
between any two successive events executed within a process. Since the 
logical clock has a monotonically increasing value, it assigns a unique 
number to every event, and if an event A occurs before event Bin process 
Pi, then LCi(A) < LCi(B). The timestamp for an event is the value of the 
logical clock for that event. Clearly, this scheme ensures that, for any two 
events in the same process, the global ordering requirement is met. 

Unfortunately, this scheme does not ensure that the global ordering 
requirement is met across processes. To illustrate the problem, we consider 
two processes P1 and P2 that communicate with each other. Suppose that 
P1 sends a message to P2 (event A) with LC 1(A) = 200, and P2 receives the 
message (event B) with LC2(B) = 195 (because the processor for P2 is 



574 • Chapter 18: Distributed Coordination 

slower than the processor for P1 and so its logical clock ticks slower). This 
situation violates our requirement, since A ~ B, but the timestamp of A is 
greater than the timestamp of B. 

To resolve this difficulty, we require a process to advance its logical 
clock when it receives a message whose timestamp is greater than the 
current value of its logical clock. In particular, if process Pi receives a 
message (event B) with timestamp t and LCi(B) < t, then it should advance 
its clock such that LCi(B) = t+ 1. Thus, in our example, when P 2 receives 
the message from P1, it will advance its logical clock such that LC2(B) = 

201. 
Finally, to realize a total ordering, we need only to observe that, with 

our timestamp ordering scheme, if the timestamps of two events A and B 
are . the same, then the events are concurrent. In this case, we may use 
process identity numbers to break ties and to create a total ordering. The 
use of timestamps is discussed later in this chapter. 

18.2 • Mutual Exclusion 

In this section, we present a number of different algorithms for 
implementing mutual exclusion in a distributed environment. We assume 
that the system consists of n processes, each of which resides at a different 
processor. To simplify our discussion, we assume that processes are 
numbered uniquely from 1 to n, and that there is a one-to-one mapping 
between processes and processors (that is, each process has its own 
processor). 

18.2.1 Centralized Approach 
In a centralized approach to providing mutual exclusion, one of the 
processes in the system is chosen to coordinate the entry to the critical 
section. Each process that wants to invoke mutual exclusion sends a request 
message to the coordinator. When the process receives a reply message 
from the coordinator, it can proceed to enter its critical section. After 
exiting its critical section, the process sends a release message to the 

, coordinator and proceeds with its execution. 
On receiving a request message, the coordinator checks to see whether 

some other process is in its critical section. If no process is in its critical 
section, the coordinator immediately sends back a reply message. 
Otherwise, the request is queued. When the coordinator receives a release 
message, it removes one of the request messages from the queue (in 
accordance with some scheduling algorithm) and sends a reply message to 
the requesting process. 

It should be clear that this algorithm ensures mutual exclusion. In 
addition, if the scheduling policy within the coordinator is fair (such as 



18.2 Mutual Exclusion • 575 

first-come, first-served scheduling), no starvation can occur. This scheme 
requires three messages per critical-section entry: a request, a reply, and a 
release. 

If the coordinator process fails, then a new process must take its place. 
In Section 18.6, we describe· various algorithms for electing a unique new 
coordinator. Once a new coordinator has been elected, it must poll all the 
processes in the system, to reconstruct its request queue. Once the queue 
has been constructed, the computation may resume. 

18.2.2 Fully Distributed Approach 
If we want to distribute the decision making across the entire system, then 
the solution is far more complicated. We present an algorithm th~t is based 
on the event-ordering scheme described in Section 18.1. 

When a process Pi wants to enter its critical section, it generates a new 
timestamp, TS, and sends the message request(Pi, TS) to all other processes 
in the system (including itself). On receiving a request message, a process 
may reply immediately (that is, send a reply message back to Pi), or it may 
defer sending a reply back (because it is· already in its critical section, for 
example). A process that has received a reply message from all other 
processes in the system can enter its critical section, queueing incoming 
requests and deferring them. After exiting its critical section, the process 
sends reply messages to all its deferred requests. 

The decision whether process Pi replies immediately to a request(Pj, TS) 
message or defers its reply is based on three factors: 

1. If process Pi is in its critical section, then it defers its reply to Pt 

2. If process Pi does not want to enter its critical section, then it sends a 
reply immediately to Pt 

3. If process Pi wants to enter its critical section but has not yet entered 
it, then it compares its own request timestamp ·with the timestamp TS 
of the incmrung request made by process Pj. If its own request 
timestamp is greater than TS, then it sends a reply immediately to Pj 
(Pj asked first). Otherwise, the reply is deferred. 

This algorithm exhibits the following desirable behavior: 

• Mutual exclusion is obtained. 

• Freedom from deadlock is ensured. 

• Freedom from starVation is ensured, since entry to the critical section is 
scheduled according to the f4nestamp ordering. The timestamp 
ordering ensures that processes are served in a first-come~ first-:served 
order. 



576 • Chapter 18: Distributed Coordination 

• The number of messages per critical-section entry is 2 x (n - 1). This 
number is the minimum number of required messages per critical­
section entry when processes act independently and concurrently. 

To illustrate how the algorithm functions, we consider a system 
.consisting of processes PI, P2, and P3. Suppose that processes PI and P3 
want to enter their critical sections. Process PI then sends a message 
request (P1, timestamp = 10) to processes P2 and P3, while process P3 sends 
a message request (P3, timestamp = 4) to processes PI and P2. The 
timestamps 4 and 10 were obtained from the logical clocks described in 
Section 18.1. When process P2 receives these request messages, it replies 
immediately. When process P 1 receives the request from process P 3 it 
replies immediately, since the timestamp (10) on its own request message is 
greater than the timestamp (4) for process P3• When process P3 receives 
the request from process PI, it defers its reply, since the timest&mp (4) on 
its request message is less than the timestamp (10) for the message of 
process P 1. On receiving replies from both process PI and process P 2, 

process P3 can enter its critical section. After exiting its critical section, 
process P3 sends a reply to process P1, which can then e~ter its critical 
section. 

Note that this scheme requires the participation of all t~e processes in 
the system. This approach has three undesirable consequences: 

1. The processes need to know the identity of all other processes in the 
system. When a new process joins the group of processes participating 
in the mutual-exclusion algorithm, the following actions need to be 
·taken: 

a. The process must receive the names of all the other processes in 
the group. 

b. The name of the new process must be distributed to all the other 
processes in the group. 

This task is not as trivial as it may seem, since some request and reply 
messages may be circulating in the system when the new process joins 

:the group. The interested reader is referred to the Bibliographic Notes 
for more details. 

2. If one of the processes fails, then the entire scheme collapses. We can 
resolve this difficulty by continuously monitoring the state of all the 
processes in the system. If one process fails, then all other processes 
are notified, so that they will no longer send request messages to the 
failed process. When a process recovers, it must initiate the procedure 
that allows it to rejoin the group. 



18.3 Atomicity • 577 

3. Processes ·that have not entered their critical section must pause 
frequently to assure other processes that they intend to enter the 
critical section. This protocol is therefore suited for small, stable sets of 
cooperating processes. 

18.2.3 Token-Passing· Approach 
Another method of providing mutual exclusion is to circulate a token 
among the processes in the system. A token is a special type of message 
that is passed around the system. Possession of the token entitles the· 
holder to enter the critical section. Since there is only a single token in the 
system, only one process can be in its critical section at a time. 

We assume that the processes in the system are logically organized in a 
ring structure. The physical communication network does not need to be a 
ring. As long as the processes are connected to one another, it is possible 
to implement a logical ring. To implement mutual exclusion, we pass the 
token around the ring. When a process receives the token, it may enter. its 
critical section, keeping the token. After the process exits its critical 
section, the token is passed around again. If the process receiving the 
token does not want to enter its critical section, it passes the token to its 
neighbor. This scheme is similar to algorithm 1 in Chapter 6, but a token 
is substituted for a shared variable. · 

Since there is only a single token, only one process at a time can be in 
its critical section. In addition, if the ring is unidirectional, freedom from 
starvation is ensured. The number of messages required to implement 
mutual exclusion may vary from one message per entry, in the case of high 
contention (that is, every process wants to enter its critical section), to an 
infinite number of messages, in the case of low contention (that is, no 
process wants to enter its critical section). 

Two types of failure must be considered. First, if the token is lost, an 
election must be called to generate a new token. Second, if a process fails, 
a new logical ring must be established. There are several different 
algorithms for election and for reconstructing a logical ring. In Section 18.6, 
we present an election algorithm. The development of an algorithm for 
reconstructing the ring is left to you in Exercise 18.6. 

18.3 • Atomicity 

In Chapter 6, we introduced the concept of an atomic transaction, which is 
a program unit that must be executed atomically. That is, either all the 
operations associated with it are executed to completion, or none are 
performed. When we are dealing with a distributed system, it becomes 
much more complicated to ensure the atomicity property of a transaction, 



578 • Chapter 18: Distributed Coordination 

as compared to in a centralized system. This difficulty occurs because 
several sites may be participating in the execution of a single transaction. 
The failure of one of these sites, or the failure of a communication link 
connecting these sites, may result in erroneous computations. 

It is the function of the transaction coordinator of a distributed system to 
ensure that the execution of the various transactions in the distributed 
system preserves atomicity. Each site has its own local transaction 
coordinator that is responsible for coordinating the execution of all the 
transactions initiated at that site. For each such transaction, the coordinator 
is responsible for the following: 

• Starting the execution of the transaction 

• Breaking the transaction into a number of subtransactions, and 
distributing these subtransactions to the appropriate sites for execution 

• Coordinating the termination of the transaction, which may result in 
the transaction being committed at all sites or aborted at all sites 

We assume that each local site maintains a log for recovery purposes. 

18.3.1 The Two-Phase Commit Protocol 
For atomicity to be ensured, all the sites in which a transaction T executed 
must agree on the final outcome of the execution. T must either commit at 
all sites or it must abort at all sites. To ensure this property, the transaction 
coordinator of T must execute a commit protocol. Among the simplest and 
most widely used commit protocols is the two-plmse commit (2PC) protocol, 
which we discuss here. 

Let T be a transaction initiated at site Si, and let the transaction 
coordinator at Si be Ci. When T completes its execution - that is, when all 
the sites at which T has executed inform Ci that T has completed - then 
C i starts the 2PC protocol. 

• Phase 1: Ci adds the record <prepare T> to the log and forces the 
record onto stable storage. It then sends a prepare T message to all 
sites at which T executed. On receiving such a message, the 
transaction manager at that site determines whether it is willing to 
commit its portion ofT. If the answer is no, it adds a record <no T> to 
the log, and then it responds by sending an abort T message to Ci. If 
the answer is yes, it adds a record <ready T> to the log, and forces all 
the log records corresponding to Tonto stable storage. The transaction 
manager then replies with a ready T message to Ci. 

• Phase 2: When Ci receives responses to the prepare T message from all 
the sites, or when a prespecified interval of time has elapsed since the 
prepare T message was sent out, Ci can determine. whether the 



18.3 Atomicity • 579 

transaction T can be committed or aborted. Transaction T can be 
committed if Ci received a ready .T message from all the participating 
sites. Otherwise, transaction T must be aborted. Depending on t~e 
verdict, either a record <commit T> or a record <abort T> is added to 
the log and is forced onto stable storage. At this point, the fate of the 
transaction has been sealed. Following this, the coordinator sends 
either a commit T or an abort T message to all participating sites. 
When a site receives that message, it records the message in the log. 

A site at which T executed can unconditionally abort T at any time 
prior to its sending the message ready T to the coordinator. The ready T 
message is, in effect, a promise by a site to follow the coordinator's order 
to commit T or to abort T. The only situation in which a site can make 
such a promise is if the needed information is stored in stable storage. 
Otherwise, if the site crashes after sending ready T, it may be unable to 
make good on its promise. 

Since unanimity is required to commit a transaction, the fate of T is 
sealed as soon as at least one site responds abort T. Since the coordinator 
site Si is one of the sites at which T executed, the coordinator can decide 
unilaterally to abort T. The final verdict regarding Tis determined at the 
time the coordinator writes that verdict (commit or abort) to the log and 
forces it to stable storage. In some implementations of the 2PC protocol, a 
site sends an acknowledge T message to the coordinator at the end of the 
second phase of the protocol. When the coordinator receives the 
acknowledge T message from all the sites, it adds the record <complete T> 
to the log. 

18.3.2 Failure Handling in 2PC 

We now examine in detail how 2PC responds to various types of failures. 
As we shall see, one major disadvantage of the 2PC protocol is that 
coordinator failure may result in blocking, where a decision either to 
commit or to abort T may have to be postponed until Ci recovers. 

18.3.2.1 Failure of a Participating Site 

When a participating site Sk recovers from a failure, it must examine its log 
to determine the fate of those transactions that were in the midst of 
execution when the failure occurred. Let T be one such transaction. We 
consider each of the possible cases: 

• The log contains a <commit T> record. In this case, the site executes 
redo(T). 

• The log contains an <abort T> record. In this case, the site executes 
undo(1). 



580 • Chapter 18: Distributed Coordination 

• The log contains a <ready T> record. In this case, the site must consult 
Ci to determine the fate of T. If Ci is up, it notifies Sk regarding 
whether T committed or aborted. In the former case, it executes 
redo(T); in the latter case, it executes undo(T). If Ci is down, Sk must 
try to find the fate of T from other sites. It does so by sending a 
query-status T message to all the sites in the system. On receiving 
such a message, a site must consult its log to determine whether T has 
executed there, and if so, whether T committed or aborted. It then 
notifies Sk about this outcome. If no site has the appropriate 
information (that is, whether T committed or aborted), then Sk can 
neither abort nor commit T. The decision concerning T is postponed 
until Sk can obtain the needed information. Thus, Sk must periodically 
resend. the query-status message to the other sites. It does so until a 
site recovers that contains the needed information. Note that the site at 
which Ci resides always has the needed information. 

• The log contains no control records (abort, commit, ready) concerning 
T. The absence of control records implies that Sk failed before 
responding to the prepare T message from Ci. Since the failure of Sk 
precludes· the sending of such a response, by our algorithm Ci must 
abort T. Hence, Sk must execute undo(1). 

18.3.2.2 Failure of the Coordinator 

If the coordinator fails in the midst of the execution of the commit protocol 
for transaction T, then the participating sites must decide on the fate of T. 
We shall see that, in certain cases, the participating sites cannot decide 
whether to commit or abort T, and therefore it is necessary for these sites 
to wait for the recovery of the failed coordinator. 

• If an active site contains a <commit T> record in its log, then T must 
be committed. 

• If an active site contains an <abort T> record in its log, then T must be 
aborted. 

• If some active site does not contain a <ready T> record in its log, then 
the failed coordinator Ci cannot have decided to commit T. We can 
draw this conclusion because a site that does not have a <ready T> 
record in its log cannot have sent a ready T message to Ci. However, 
the coordinator may have decided to abort T, but not to commit T. 
Rather than wait for Ci to recover, it is preferable to abort T. 

• If none of the preceding cases holds, then all active sites must have a 
<ready T> record in their logs, but no additional control records (such 



18.4 Concurrency Control • 581 

as <abort' T> or <commit T>). Since the coordinator has failed, it is 
impossible to determine whether a decision has been made, or what 
that decision is, until the coordinator recovers. Thus, the active sites 
must wait for Ci to recover. Since the fate of T remains in doubt, T 
may continue to hold system resources. For example, if locking is 
used, T may hold locks on data at active sites. Such a situation is 
undesirable because it may take hours or days before Ci is again active. 
During this time other transactions may be forced to wait for T. As a 
result, data are unavailable not only on the failed site (Ci) but on active 
sites as well. The number of unavailable data increases as the 
downtime of Ci grows. This situation is called the blocking problem, 
because Tis blocked pending the recovery of site Ci. 

18.3.2.3 Failure of the Network 

When a link fails, all the messages that are in the process of being routed 
through the link do not arrive at their destination intact. From the 
viewpoint of the sites connected throughout that link, it appears that the 
other sites have failed. Thus, our previous schemes apply here as well. 

When a number of links fail, the network may partition. In this case, 
two possibilities exist. The coordinator and all its participants may remain 
in one partition; in this case, the failure has no effect on the commit 
protocol. Alternatively, the coordinator and its participants may belong to 
several partitions; in this case, messages between the participant and the 
coordinator are lost, reducing the case to a link failure, as discussed. 

18.4· • Concurrency Control 

In this section, we show how certain of the concurrency-control schemes 
discussed in Chapter 6 can be modified so that they can be used in a 
distributed environment. 

It is the function of the transaction manager of a distributed database 
system to manage the execution of those transactions (or subtransactions) 
that access data stored in a local site. Note that each such transaction may 
be either a local transaction (that is, a transaction that only executes at that 
site) or part of a global transaction (that is, a transaction that executes at 
several sites). Each transaction manager is responsible for maintaining a 
log for recovery purposes, and for participating in an appropriate 
concurrency-control scheme to coordinate the concurrent execution of the 
transactions executing at that site. As we shall see, the concurrency 
schemes described in Chapter 6 need to be modified to accommodate the 
distribution of transactions. 



582 • Chapter 18: Distributed Coordination 

18.4.1 Locking Protocols 
The two-phase locking protocols. described in Chapter 6 can be used in a 
distributed environment. The only change that needs to be incorporated is 
in the way the lock manager is implemented. In this section, we present 
several possible schemes, the first of which deals with the case where no 
data replication is allowed. The other schemes are applicable to the more 
general case where data can be replicated in several sites. As in Chapter 6, 
we shall assume the existence of the shared and exclusive lock modes. 

18.4.1.1 Nonreplicated Scheme 

If no data are replicated in the system, then the locking schemes described 
in Section 6.9 can be applied as follows. Each site maintains a local lock 
manager whose function is to administer the lock and unlock requests for 
those data items that are stored in that site. When a transaction wishes to 
lock data item Q at site Si, it simply sends a message to the lock manager 
at site si requesting a lock (in a particular lock mode). If data item Q is 
locked. in an incompatible mode, then the request is delayed until that 
request can be granted. Once it has been determined that the lock request 
can be granted, the lock manager sends a message back to the initiator 
indicating that the lock request has been granted. 

The scheme has the advantage of simple implementation. It requires 
two message transfers for handling lock requests, and one message 
transfer for handling unlock requests. However, deadlock handling is more 
complex. Since the lock and unlock requests are no longer made at a single 
site, the various deadlock-handling algorithms discussed in Chapter 7 must 
be modified, as will be discussed in Section 18.5. 

18.4.1.2 Single-Coordinator Approach 

Under the single-coordinator approach, the system maintains a single lock 
manager that resides in a single chosen site, say Si. All lock and unlock 
requests are made at site Si. When a transaction needs to lock a data item, 
it sends a lock request to Si. The lock manager determines whether the 
lock can be granted immediately. If so, it sends a message to that effect to 
~he site at. which the lock request was initiated. Otherwise, the request is 
delayed until it can be granted, at which time a message is sent to the site 
at which the lock request was initiated. The transaction can read the data 
item from any one of the sites at which a replica of the data item resides. 
In the case of a write, all the sites where a replica of the data item resides 
must be involved in the writing. · 

The scheme has the following advantages:. 

• Simple implementation: This scheme requires two messages for 
handling lock requests, and one message for handling unlock requests. 



18.4 Concurrency Control • 583 

• Simple deadlock handling: Since all lock and unlock requests are made 
at one site, the deadlock-handling algorithms discussed in Chapter 7 
can be applied directly to this environment. 

The disadvantages of the scheme include the following: 

• Bottleneck: The site Si becomes a bottleneck, since all requests must be 
processed there. 

• Vulnerability: If the site Si fails, the concurrency controller is lost: 
Either processing must stop or a recovery scheme must be used. 

A compromise between these advantages and disadvantages can be 
achieved through a multiple-coordinator approach, in which the lock-manager 
function is distributed over several sites. 

Each lock manager administers the lock and unlock requests for a 
subset of the data items. Each lock manager resides in a different site. This 
distribution reduces the degree to which the coordinator is a bottleneck, 
but it complicates deadlock handling, since the lock and unlock requests 
are not made at one single site. 

18.4.1.3 Majority Protocol 

The majority protocol is a modification of the nonreplicated data scheme 
that we presented earlier. The system maintains a lock manager at each 
site. Each manager manages the locks for all the data or replicas of data 
stored at that site. When a transaction wishes to lock a data item Q, which 
is replicated in n different sites, it must send a lock request to more than 
one-half of the n sites in which Q is stored. Each lock manager determines 
whether the lock ~an be granted immediately (as far as it is concerned). As 
before, the response is delayed until the request can be granted. The 
transaction does not operate on Q until it has successfully obtained a lock 
on a majority of the replicas of Q. , 

This scheme deals with replicated data in a decentralized manner, thus 
avoiding the drawbacks of central control. However, it suffers from its own 
disadvantages: 

• Implementation: The majority protocol is more complicated to 
implement than the previous schemes. It requires 2(n /2 + 1) messages 
for handling lock requests, and (n /2 + 1) messages for handling 
unlock requests. 

• Deadlock handling: Since the lock and unlock requests are not made at 
one site, the deadlock-handling algorithms must be modified (see 
Section 18.5). In addition, it is possible for a deadlock to occur even if 
only one data item is being locked. To illustrate, consider a system 


