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with four sites and full replication. Suppose that transactions T 1 and T 2 
wish to lock data item Q in exclusive mode. Transaction T1 may 
succeed in locking Q at sites 51 and 53, while transaction T2 may 
succeed in locking Qat sites 52 and 54. Each then must wait to acquire 
the third lock, and hence a deadlock has occurred. 

18.4.1.4 Biased Protocol 

The biased protocol is based on a model similar to that of the majority 
protocol. The difference is that requests for shared locks are given more 
favorable treatment than are requests for exclusive locks. The system 
maintains a lock manager at each site. Each manager manages the locks for 
all the data items stored at that site. Shared and exclusive locks are handled 
differently. · 

• Shared locks: When a transaction needs to lock data item Q, it simply 
requests a lock on Q from the lock manager at one site containing a 
replica of Q. 

• Exclusive locks: When a transaction needs to lock data item Q, it 
requests a lock on Q from the lock manager at all sites containing a 
replica of Q. 

As before, the response to the request is delayed until the request can be 
granted. 

The scheme has the advantage of imposing less overhead on read 
operations than does the majority protocol. This advantage is especially 
significant in common cases in which the frequency of reads is much 
greater than is the frequency of writes. However, the additional overhead 
on writes is a disadvantage. Furthermore, the biased protocol shares the 
majority protocol's disadvantage of complexity in handling deadlock. 

1.8.4.1.5 Primary Copy 

In the case of data replication, we may choose one of the replicas as the 
primary copy. Thus, for each data item Q, the primary copy of Q must 
reside in precisely one site, which we call the primary site of Q, 

When a transaction needs to lock a data item Q, it requests a lock at 
the primary site of Q. As before, the response to the· request is delayed 
until the request can be granted. 

Thus, the primary copy enables concurrency control for replicated data 
to l:>e handled in q. manner· similar to that for unreplicated data. This 
method of handling allows for a simple implementation. However, if the 
primary site of Q fails, Q is inaccessible even tho11gh other sites containing 
a replica may be ·accessible. · 
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18.4.2 Timestamping 
The principal idea behind the timestamping scheme 
6. 9 is that each transaction is given a unique timestamp 
deciding the serialization order. Our first task, then, 
centralized scheme to a distributed scheme is to 
generating unique timestamps. Once this scheme has 
previous protocols can be applied directly to 
environment. 

18.4.2.1 Generation of Unique Timestamps 

There are two primary methods for generating unique 
centralized and one distributed. In the centralized scheme, a 
chosen for distributing the timestamps. The site can use a ""'"·"''"'-u 

or its own local clock for this purpose. 
In the distributed scheme, each site a unique 

using either a logical counter or the local dock. The 
timestamp is obtained by concatenation of the unique local 
the site identifier, which must be unique (Figure 18.2). 
concatenation is important! We use the identifier in 
position to ensure that the global timestamps generated 
always greater than those generated in another 
technique for generating unique timestamps with the one we 
Section 18.1.2 for generating unique names. 

We may still have a problem if one site generates local 
faster rate than do other sites. In such a case, the fast 
will be larger than that of other sites. Therefore, all 
by the fast site will be larger than those generated by 
needed is a mechanism to ensure that local timestamps are 
across the system. To accomplish the generation of 
define within each site Si a logical clock (LCi), which U",_,,,,..,,,, 

local timestamp. The logical clock can be implemented as a 

local unique timestamp site identifier 

global unique identifier 

Figure 18.2 Generation of unique 
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incremented after a n~w local timestamp is generated. To ensure that the 
various logical clocks are synchronized, we require that a site Si advance its 
logical clock whenever a transaction Ti with timestamp <x,y> visits that site 
and x is greater than the current value of LCi. In this case, site Si advances 
its logical clock to the value x + 1. 

If the system clock is used to generate timestamps, then timestamps 
are assigned fairly provided that no site has a system clock that runs fast 
or slow. Since clocks may not be perfectly accurate, a technique similar to 
that used for logical clocks must be used to ensure that no clock gets far 
ahead or far behind another clock. 

18.4.2.2 Timestamp-Ordering Scheme 

The basic timestamp scheme introduced in Section 6. 9 can be extended in a 
straightforward manner to a distributed system. As in the centralized case, 
cascading rollbacks may result if no mechanism is used to prevent a 
transaction from reading a data item value that is hot yet committed. To 
eliminate cascading rollbacks, we can combine the basic timestamp scheme 
of Section 6. 9 with the 2PC protocol of Section 18.3 to obtain a protocol that 
ensures serializability with no cascading rollbacks. We leave the 
development of such an algorithm to you. 

The basic timestamp scheme just described suffers from the 
undesirable property that conflicts between transactions are resolved 
through rollbacks, rather than through waits. To alleviate this problem, we 
can buffer the various read and write operations (that is, delay them) until 
a time when we are assured that these operations can take place without 
causing aborts. A read(x) operation by Ti must be delayed if there exists a 
transaction Ti that will perform a write(x) operation but has not yet done 
so, and TS('lj) < TS(Ti). Similarly, a write(x) operation by Ti must be 
delayed if there exists a transaction 1J. that will perform either read(x) or 
write(x) operation and TS(:!j) < TS(Ti)· There are various methods for 
ensuring this property. One such method, called the conservative 
timestamp..;ordering scheme, requires each site to maintain a read and write 
queue consisting of all the read and write requests, respectively, that are to 
be executed at the site and that must be delayed to preserve the above 
property._ We shall not present the scheme here. Rather, we leave the 
·development of the algorithm to you. 

18.5 • Deadlock Handling 

The deadlock-prevention, deadlock-avoidance, and deadlock-detection 
algorithms presented in Chapter 7 can be extended so that they can also be 
used in a distributed system. In the following, we describe several of 
these distributed algorithms. 
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18.5.1 Deadlock Prevention 
The deadlock-prevention and deadlock-avoidance algorithms presented in 
Chapter 7 can also be used in a distributed system, provided that 
appropriate modifications are made. For example, we can use the 
resource-ordering deadlock-prevention technique by simply defining a 
global ordering among the system resources. That is, all resources in the 
entire system are assigned unique numbers, and a process may request a 
resource (at any processor) with unique number i only if it is not holding a 
resource with a unique number greater than i. Similarly, we can use the 
banker's algorithm in a distributed system by designating one of the 
processes in the system (the banker) as the process that maintains the 
information necessary to carry out the banker's algorithm. Every resource 
request must be channeled through the banker. 

These two schemes can be used in dealing with the deadlock problem 
in a distributed environment. The first scheme is simple to implement and 
requires little overhead. The second scheme can also be implemented 
easily, but it may require too much overhead. The banker may become a 
bottleneck, since the number of messages to and from the banker may be 
large. Thus, the banker's scheme does not seem to be of practical use in a 
distributed system. 

In this section, we present a new deadlock-prevention scheme that is 
based on a timestamp-ordering approach with resource preemption. For 
simplicity, we consider only the case of a single instance of each resource 
type. 

To control the preemption, we assign a unique priority number to each 
process. These numbers are used to decide whether a process Pi should 
wait for a process Pj. For example, we can let Pi wait for Pi if Pi has a 
priority higher than that of Pj; otherwise Pi is rolled back. This scheme 
prevents deadlocks because, for every edge Pi~ Pj in the wait-for graph, 
Pi has a higher priority than Pj. Thus, a cycle cannot exist. 

One difficulty with this scheme is the possibility of starvation. Some 
processes with extremely low priority may always be tolled back. This 
difficulty can be avoided through the use of timestamps. Each process in 
the system is assigned a unique timestamp when it is created. Two 
complementary deadlock-prevention schemes using timestamps have been 
proposed: 

• The wait-die scheme: This approach is based on a nonpreemptive 
technique. When process Pi requests a resource currently held by Pj, Pi 
is allowed to wait only if it has a smaller timestamp than does Pj ~that 
is, Pi is older than Pj). Otherwise, Pi is rolled back (dies). For example, 
suppose that processes P1, P2, and P3 have timestamps 5, 10, and 15, 
respectively. If P 1 requests a resource held by P 2, P 1 will wait. If P 3 
requests a resource held by P 2, P 3 will be rolled back. 
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• The wound -wait scheme: This approach is based on a preemptive 
technique and is a counterpart to the wait-die system. When process 
Pi requests a resource currently held by Py Pi is allowed to wait only if 
it has a larger timestamp than does Pj (that is, Pi is younger than Pj). 
Otherwise, Pj is rolled back (Pj is wound by Pi)· Returning to our 
previous example, with processes PI, P2, and P3, if PI requests a 
resource held by P 2, then the resource will be preempted from P 2 and 
P 2 will be rolled back. If P 3 requests a resource held by P 2, then P 3 will 
wait. 

Both schemes can avoid starvation, provided that, when a process is 
rolled back, it is not assigned a new timestamp. Since timestamps always 
increase, a process that is rolled back will eventually have th~ smallest 
timestamp. Thus, it will not be rolled back again. There are, however, 
significant differences in the way the two schemes operate. 

• In the wait-die scheme, an older process must wait for a younger one 
to release its resource. Thus, the older the process gets, the more it 
tends to wait. By contrast, in the wound -wait scheme, an older 
process never waits for a younger process. 

• In the wait-die scheme, if a process Pi dies and is rolled back because 
it requested a resource held by process Pj, then Pi may reissue the 
same sequence of requests when it is restarted. If the resource is still 
held by Pj, then Pi will die again. Thus, Pi may die several times before 
acquiring the needed resource. Contrast this series of events with what 
happens in the wound-wait scheme. Process Pi is wounded and rolled 
back because Pj requested a resource it holds. When Pi is restarted and 
requests the resource now being held by Pj, Pi waits. Thus, there are 
fewer rollbacks in the wound-wait scheme. 

The major problem with these two schemes is that unnecessary rollbacks 
may occur. 

18.5.2 Deadlock Detection 

The deadlock-prevention algorithm may preempt resources even if no 
deadlock has occurred. To prevent unnecessary preemptions, we can use a 
deadlock-detection algorithm. We construct a wait-for graph describing the 
resource-allocation state. Since we are assuming only a single resource of 
each type, a cycle in the wait-for graph represents a deadlock. 

The main problem in a distributed system is deciding how to maintain 
the wait-for graph. We elaborate this problem by describing several 
common techniques to deal with this issue. These schemes require that 
each site keep a local wait-for graph. The nodes of the graph correspond 

-
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to all the processes (local as well as nonlocal) that are 
holding or requesting any of the resources local to that site. 
in Figure 18.3 we have a system consisting of two sites, each 
its local wait-for graph. Note that processes P2 and P3 
graphs, indicating that the processes have requested resources 
sites. 

These local wait-for graphs are constructed in the usual manner 
local processes and resources. When a process Pi in site A 
held by process Pj in site B, a request message is sent by Pi 
edge Pi~ Pj is then inserted in the local wait-for graph of 

Clearly, if any local wait-for graph has a cycle, deadlock 
On the other hand, the fact that there are no cycles in any 
wait-for graphs does not mean that there are no deadlocks. 
this problem, we consider the system depicted in Figure 
for graph is acyclic; nevertheless, a deadlock exists in the 
that a deadlock has not occurred, we must show that the 
graphs is acyclic. The graph (shown in Figure 18.4) that we 
taking the union the two wait-for graphs 9f Figure 18.3 
contain a cycle, implying that the system is a deadlock state. 

There are a number of different methods for organizing 
graph in a distributed system. We shall describe several common'"''--"''"-""' . .,. 

18.5.2.1 Centralized Approach 

In the centralized approach, a global wait-for graph is 
union of all the local wait-for graphs. It maintained in a 
the deadlock-detection coordinator. Since there is communication 
system, we must distinguish between two types of wait-for 
real graph describes the real but unknown state of cnc,f-t:n-n 

instance in time, as would be seen by an omniscient 
constructed an approximation generated by the 
the execution of its algorithm. Obviously, the constructed 
generated such that, whenever the detection algorithm is 

site A site 8 

Figure 18.3 Two local wait-for graphs. 
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reported results are correct in a sense that, if a deadlock exists, 
reported properly, and if a deadlock is reported, then the system 

a deadlock state. As we shall show, it is not easy to 
rn1''~""''~t algorithms. 

There are three different options (points in time) when the 
graph may be constructed: 

1. Whenever a new edge is inserted or removed in one of the 
for graphs 

Periodically, when a number of changes have occurred in a 
graph 

3. Whenever the coordinator needs to invoke the 
algorithm 

Let us consider option 1. Whenever an edge 
removed in a local graph, the local site must also send a mt:~ss<tge 
coordinator to notify it of this modification. On receiving such a 
the coordinator updates its global graph. Alternatively, a 
number of such changes in a single message periodically. 
previous example, the coordinator process will maintain the global "'701'~"-'tnr 
graph as depicted in Figure 18.4. When site B inserts the edge 

local wait-for graph, it also sends a message to the 
Similarly, when site A deletes the edge P5 ~ P 1, because P 1 has 
resource that was requested by an appropriate message is sent 
coordinator. 

When the deadlock-detection algorithm is invoked, 
searches its global graph. If a cycle is found, a victim 
rolled back. The coordinator must notify all the sites that a 
process has been selected as victim. The sites, in turn, roll back 
process. 

Note that, in this scheme (option 1), unnecessary rollbacks 
as a result of two situations: 

Figure 18.4 Global wait-for graph for Figure 18:3. 
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• False cycleso may exist in the global wait-for graph. 
point, we consider a snapshot of the system as depicted 
Suppose that P2 releases the resource it holding in 
in the deletion of the edge P1 ---? P2 in A. Process 
resource held by P3 at site B, resulting in the addition of 
P3 in B. If the insert P2 ---? P3 message from B arrives before 
---? P2 message from A, the coordinator may discover the 
---? P2 ---? P3 ---? P1 after the insert (but before the 
recovery may be initiated, although no deadlock has 

• Unnecessary rollbacks may also result when a deadlock 
occurred and a victim has been picked, but at the same 
processes was aborted for reasons unrelated to the 
the process exceeding its allocated time). For example, 
site A in Figure 18.3 decides to abort P2. At the same 
coordinator has discovered a cycle and picked 
and P 3 are now rolled back, although only 

Note that the same problems are inherited 
other two options (that is, options 2 and 3). 

Let us now present a centralized deadlock-detection aLJ;;,VLL 

option which detects all deadlocks that actually occur, 
detect false deadlocks. To avoid the report of false deadlocks, 
that requests from different sites be appended with 
(timestamps). When process Pi, at site A, requests a resource 
site B, a request message with timestamp is sent. The 
the label TS is inserted in the local wait-for of A. This 
the local wait-for graph of B only if B has received the 
and cannot immediately grant the requested resource. A 
Pj in the same site is handled in the usual manner; 
associated with the edge Pi ---? Pj' The detection 
follows: 

site A site B coordinator 

Figure 18.5 Local and global wait-for graphs. 
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1. The controller sends an initiating message to each site in the system. 

2. On receiving this message, a site sends its local wait-for graph to the 
coordinator. Note that each of these wait-for graphs contains all the 
local information the site has about the state of the real graph. The 
graph reflects an instantaneous state of the site, but it is not 
synchronized with respect to any other site. 

3. When the controller has received a reply from each site, it constructs a 
graph as follows: 

a. The constructed graph contains a vertex for every process in the 
system. 

b. The graph has an edge Pi~ Pj if and only if (1) there is an edge Pi 
~ Pj in one of the wait-for graphs, or (2) an edge Pi ~ Pj with 
some label TS appears in more than one wait-for graph. 

We assert that, if there is a cycle in the construCted graph, then the 
system is in a deadlock state. If there isno cycle in the constructed graph, 
then the system was not in a deadlock state when the detection algorithm 
was invoked as result of the initiating messages sent by the coordinator (in 
step 1). 

18.5.2.2 Fully Distributed Approach 

In the fully distributed deadlock-detection algorithm, all controllers share 
equally the responsibility for detecting deadlock. In this scheme, every site 
constructs a wait-for graph that represents a part of the total graph, 
depending on the dynamic behavior of the system. The idea is that, if a 
deadlock exists, a cycle will appear in (at least) one of the partial graphs. 
We present one such algorithm, which involves construction of partial 
graphs in every site. 

Each site maintains its own local wait-for graph. A local wait-for graph 
in this scheme differs from the one described earlier in that we add one 
additional node Pex to the graph. An arc Pi~ Pex exists in the graph if Pi 
is waiting for a data item in another site being held by any process. 
Similarly, an arc P ex ~ Pj exists in the graph if there exists a process at 
another site that is waiting to acquire a resource currently being held by Pj 
in this local site. 

To illustrate this situation, we consider the two local wait-for graphs of 
Figure 18.3. The addition of the node Pex in both graphs results in the local 
wait-for graphs shown in Figure 18.6. 

If a local wait-for graph contains a cycle that does not involve node P ex' 
then the system is in a deadlock state. If, however, there exists a cycle 
involving Pex' then this implies that there is a possibility of a deadlock. To 
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site 

Figure 18.6 Augmented local wait-for graphs of 

ascertain whether a deadlock does exist, we must invoke a 
deadlock-detection algorithm. 

Suppose that, at Si, the local wait-for graph a 
involving node P ex· This cycle must of the form 

which indicates that transaction in site si is waiting to 
item located in some other say, On discovering this 
sends to site Sj a deadlock-detection containing 
that cycle. 

When site receives this deadlock-detection message, 
local wait-for graph with the new information. Then, it 
constructed wait-for graph for a cycle not involving 
deadlock is found and an appropriate recovery scheme 
cycle involving discovered, then sj transmits a 
message to the appropriate say, Sk. Site Sk, in 
procedure. Thus, after a finite number of rounds, either a 
discovered, or the deadlock-detection computation halts. 

To illustrate this procedure, we consider the local 
Figure 18.6. Suppose that 51 the cycle 

Since P3 is waiting to a data in a 
message describing that cycle is transmitted from sl to 
site 52 receives this it updates its local wait-for 
the wait-for graph of 18.7. This graph contains the 

which does not include node Therefore, the a '1.4'-'<A'-'--'U'--"' 

state and an appropriate recovery scheme must be invoked. 
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Note that the outcome would be the same if site 
cycle first in its local wait-for graph and sent the 
message to site 51. In the worst case, both sites will discover the 
about the same time, and two deadlock-detection messages will 
one by 51 to and another by 52 to 51. This situation 
unnecessary message transfer and overhead in updating the 
wait-for graphs and searching for cycles in both graphs. 

To reduce message traffic, we assign to each transaction Pi a 
identifier, which we denote by ID(Pi). When site 5k discovers that 
wait-for graph contains a cycle involving node P ex of the form 

it sends a deadlock-detection message to another site only if 

ID(PK ) < ID(PK ). 
n 1 

Otherwise, site 5k continues its normal execution, leaving the 
initiating the deadlock-detection algorithm to some other site. 

To illustrate this scheme, we consider again the wait-for 
maintained at sites 51 and 52 of Figure 18.6. Suppose that 

both sites discover these local cycles at about the same time. 
site 51 is of the form 

Since ID(P3) > ID(P2)1 site 5 1 does not send a deadlock-detection 
to site 52. 

Figure 18.7 Augmented local wait-for graph in site 52 of ·Figure 
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The cycle in site 52 is of the form 

Since 1D(P2) < ID(P3), site 52 does send a deadlock-detection message to 
site 51, which, on receiving the message, updates its local wait-for graph. 
Site 51 then searches for a cycle in the graph and discovers that the system 
is in a deadlock state. 

18.6 • Election Algorithms 

As we pointed out in Section 18.3, many distributed algorithms employ a 
coordinator process that performs functions needed by the other processes 
in the system. These functions include enforcing mutual exclusion, 
·maintaining a global wait-for graph for deadlock detection, replacing a lost 
token, or controlling an input or output device in the system. If the 
coordinator process fails due to the failure of the site at which it resides, 
the system can continue execution only by restarting a new copy of the 
coordinator on some other site. The algorithms that determine where a 
new copy of the coordinator should be restarted are called election 
algorithms. 

Election algorithms assume that a unique priority number is associated 
with each active process in the system. For ease of notation, we assume 
that the priority number of process Pi is i. To simplify our discussion, we 
assume a one-to-one correspondence between processes and sites,. and 
thus refer to both as processes. The coordinator is always the process with 
the largest priority number. Hence, when a coordinator fails, the algorithm 
must elect that active process with the largest priority number. This 
number must be sent to each active process in the system. In addition, the 
algorithm must provide a mechanism for a recovered process to identify 
the current coordinator. 

In this section, we present two interesting examples of election 
algorithms for two different configurations of distributed systems. The 
first algorithm is applicable to systems where every process can send a 
message to every other process in the system. The second algorithm is 
applicable to systems organized as a ring (logically or physically). Both 
algorithms require n 2 messages for an election, where n is the number of 
processes in the system. We assume that a process that has failed knows 
on recovery that it indeed has failed and thus takes appropriate actions to · 
rejoin the set of active processes. 

18.6.1 The Bully Algorithm 

Suppose that process Pi sends a request that is not answered by the 
coordinator within a time interval T. In this situation, it is assumed that 



596 • Chapter 18: Distributed Coordination 

the coordinator has failed, and Pi tries to elect itself as the new 
coordinator. This task is completed through the following algorithm. 

Process Pi sends an election message to every process with a higher 
priority number. Process Pi then waits for a time interval T for an answer 
from any one of these processes. 

· If no response is received within time T, Pi assumes that all processes 
with numbers greater than i have failed, and elects itself the new 
coordinator. Process Pi restarts a new copy of the coordinator and sends a 
message to inform all active processes with priority numbers less than i 
that Pi is the new coordinator. 

However, if an answer is received, Pi begins a time interval T', waiting 
to rec~ive a message informing it that a process with a higher priority 
number has been elected. (Some other process is electing itself coordinator, 
and should report the results within time T'.) If no message is sent within 
T', then the process with a higher number is assumed to have failed, and 
process Pi should restart the algorithm. 

If Pi is not the coordinator, then, at any time during execution, Pi may 
receive one of the following two messages from process Pj: 

1. Pj is the new coordinator (j > i). Process Pi, in turn, records this 
information. 

2. Pj started an .election (j < i). Process Pi sends a response to Pj and 
begins its own election algorithm, provided that Pi has not already 
initiated such an election. 

The process that completes its algorithm has the highest number and is 
elected as the coordinator. It has sent its number to all active processes 
with smaller numbers. After a failed process recovers, it immediately 
begins execution of the same algorithm. If there are no active processes 
with higher numbers, the recovered process forces all processes with lower 
numbers to let it become the coordinator process, even if there is a 
currently active coordinator with a lower number. For this reason, the 
algorithm is termed the bully algorithm. 

Let us demonstrate the operation of the algorithm with a simple 
example of a system consisting of processes P 1 through P 4. The operations 
are as follows: 

1. All processes are active; P 4 is the coordinator process. 

2. P 1 ai)d P 4 fail. P 2 determines P 4 has failed by sending a request that is 
not answered within time T. P2 then begins its election algorithm by 
sending a request to P 3. 

3. P3 receives the request, responds to P2, and begins its own algorithm 
by sending an election request to P 4• · 
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4. P2 receives P3's response, and begins waiting for an interval T'. 

5. P 4 does not respond within an interval T, so P 3 elects itself the new 
coordinator, and sends the number 3 to P2 and P 1 (which P 1 does not 
receive, since it has failed). 

6. Later, when P1 recovers, it sends an election request to P2, P3, and P4• 

7. P2 and P3 respond to P 1 and begin their own election algorithms. P3 
will again be elected, using 'the same events as before. 

8. Finally, P4 recovers and notifies P1, P2, and P3 that it is the current 
coordinator. (P4 sends no election requests, since it is the process with 
the highest number in the system.) 

18.6.2 Ring Algorithm 
The ring algorithm assumes that the links are unidirectional, and that 
processes send their messages to their right neighbors. The main data 
structure used by the algorithm is the active list, a list that contains the 
priority numbers of all active processes in the system when the algorithm 
ends; each process maintains its own active list. The algorithm works as 
follows: 

1. If process Pi detects a coordinator failure, it creates a new active list 
that is initially empty. It then sends a message elect(i) to its right 
neighbor, and adds the number i to its active list. 

2. If Pi receives a message elect(j) from the process on the left, it must 
respond in one of three ways: 

a. If this is the first elect message it has seen or sent, Pi creates a new 
active list with the numbers i and j. It then sends the message 
elect(i), followed by the message elect(j). 

b. If i =I= j (that is, the message received does not contain P{ s · 
number), then Pi adds j to its active list and forwards the message 
to its right neighbor. 

c. If i = j (that is, Pi receives the message elect(i)), then the active list 
for Pi now contains the numbers of all the active processes in the 
system. Process Pi can now determine the largest number in the 
active list to identify the new coordinator process. 

This algorithm does not specify how a recovering process determines 
the number of the current coordinator process. One solution would be to 
require a recovering process to send an inquiry message. This message is 
forwarded around the ring to the current coordinator, which in turn sends 
a reply containing its number. 
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18.7 • Reaching Agreement 

For a system to be reliable, we need a mechanism that allows a set of 
processes to agree on a common "value." There are several reasons why 
such an agreement may not take place. First, the communication medium 
may be faulty, resulting in lost or garbled messages. Second; the processes 
themselves may be faulty, resulting in unpredictable process behavior. The 
best we can hope for, in this case, is that processes fail in a clean way, 
stopping their execution without deviating from their normal execution 
pattern. In the worst case, processes may send garbled or incorrect 
messages to other processes, or even collaborate with other failed 
processes in an attempt to destroy the integrity of the system. 

This problem has been expressed as the Byzantine generals problem. 
Several divisions of the Byzantine army, each commanded by its own 
general, surround an enemy camp. The Byzantine generals must reach a 
common agreement on whether or not to attack the enemy at dawn. It is 
crucial that all generals agree, since an attack by only some of the divisions 
would result in defeat. The various divisions are geographically dispersed 
and the generals can communicate with one another only via messengers 
who run from camp to camp. There are at least two major reasons why the 
generals may not be able to reach an agreement: 

• Messengers may get caught by the enemy and thus may be unable to 
deliver their messages. This situation corresponds to unreliable 
communication in a computer system, and is discussed further in 
Section 18.7.1. 

• Generals may be traitors, trying to prevent the loyal generals from 
reaching an agreement. This situation corresponds to faulty processes 
in a computer system, and is discussed further in Section 18.7.2. 

18.7 .1 Unreliable Communications 

Let us _assume that, if processes fail, they do so in a clean way, and that 
the communication medium is unreliable. Suppose that process Pi at site 
·A, which. has sent a message to process P; at site B, needs to know 
whether Pj has received the message so that 1t can decide how to proceed 
with its computation. For example, Pi may decide to compute a function S 
if Pj has received its message, or to compute a function F if Pj has not 
received the message (because of some hardware failure). 

To detect failures, we ca:n use a time-out scheme similar to the one 
described in Section 16.4.1. When Pi sends out a message, it also specifies 
a time interval during which it is willing to wait for an acknowledgment 
message from Pt When p. receives the message, it immediately sends an 
acknowledgment to Pi. If h receives the acknowledgment message within 
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the specified time interval, it can safely conclude that Pj has received its 
message. If, however; a time-out occurs, then Pi needs to retransmit its 
message and to wait for an acknowledgment. This procedure continues 
until Pi either gets the acknowledgment message back, or is notified by the 
system that site B is down. In the first case, it will compute S; in the latter 
case, it will compute F. Note that, if these are. the only two viable 
alternatives, Pi must wait until it has been notified that one of the 
situations has occurred. 

Suppose now that Pj also needs to know that Pi has received its 
acknowledgment message, to decide on how to proceed· with its 
computation. For example, Pj may want to compute S only if it is assured 
that Pi got its acknowledgment. In other words, Pi and Pj will compute S if 
and only if both have agreed on it. It turns otit that, m the presence of 
failure, it is rtot possible to accomplish this task. More precisely, it is .not 
possible in a distributed environment for processes Pi and Pj to agree 
completely on their respective states. 

Let us prove this claim. Suppose that there exists a minimal sequence 
of message transfers such that, after the messages have been delivered, 
both processes agree to compute S. Let m' be the last message sent by Pi 
to Pj. Since Pi does not know whether its message will arrive at p. (since 
the message may be lost due to a failure), Pi will execute S regardless of 
the outcome of the message delivery. Thus, m' could be removed from the 
sequence without affecting the decision procedure. Hence, the original 
sequence was not minimal, contradicting our assumption and showing that 
there is no sequence. The processes can never be sure that both will 
computeS. 

18.7 .2 Faulty Processes 
Let us assume that the communication medium is reliable but that 
processes can fail in unpredictable ways. Consider a system of n processes, 
of which no more than m are faulty. Suppose that each process Pi has 
some private value of Vi. We wish to devise an algorithm that allows each 
nonfaulty process Pi to construct a vector Xi = Ai,l' Ai,2, ... , Ai,n) such that 

1. If Pj is a nonfaulty process, then Ai, j = Vj. 

2. If pi and pj are both nonfaulty processes, then xi = xj' 

There are many solutions to this problem. These solutions share the 
. following properties: 

1. A correct algorithm can be devised only if n > 3 x m + 1. 

2. The worst-case delay for reaching agreement is proportionate to m + 1 
message-passing delays. 
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3. The number of messages required for reaching agreement is large. No 
single process is trustworthy, so all processes must collect all 
information and make their own decisions. 

Rather than presenting a general solution, which_ would be 
complicated, we present an algorithm for the simple case where m = 1 
and n = 4. The algorithm requires two rounds of information exchange: 

1. Each process sends its private value to the other three processes. 

2. Each process sends the information it has obtained in the first round to 
all other processes. 

A faulty process obviously may refuse to send messages. In this case, a 
nonfaulty process can choose an arbitrary value and pretend that that 
value was sent by that process. 

Once these two rounds are completed, a nonfaulty process P; can 
construct its vector Xi = (Ai 1, Ai 2, Ai 3, Ai 4) as follows: 

' ' ' ' 

1. Aii = vi. 
' 

2. For j =I= i, if at least two of the three values reported for process Pj (in 
the two rounds of exchange) agree, then the majority value is used to 
set the value ot A--· Otherwise, a default value, say nil, is used to set 

l,] 
the value of Ai,j" 

18.8 • Summary 

In a distributed system with no common memory and no common clock, it 
is sometimes impossible to determine the exact order in which two events 
occur. The happened-before relation is only a partial ordering of the events 
in distributed systems. Timestamps can be used to provide a consistent 
event ordering in a distributed system. 

Mutual exclusion in a distributed environment can be implemented in 
. a variety· of ways. In a centralized approach, one of the processes in the 
system is chosen to coordinate the entry to the critical section. In the fully 
distributed approach, the decision making is distributed across the entire 
system. A distributed algorithm, which is applicable to ring-structured 
network, is the token-passing approach. 

For atomicity to be ·ensured, all the sites in which a transaction T 
executed must agree on the final outcome of the execution. T either 
commits at all sites or aborts at all sites. To ensure this property, the 
transaction coordinator of T must execute a commit protocol. The most 
widely used commit protocol is the 2PC protocol. 
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The various concurrency-control schemes that can be used in a 
centralized system can be modified for use in a distributed environment. In 
the case of locking protocols, the only change that needs to be 
incorporated is in the way that the lock manager is implemented. In the 
case of timestamping and validation schemes; the only needed change is 
the development of a mechanism for generating unique global timestamps. 
The mechanism can either concatenate a local timestamp with the site 
identification or advance local clocks whenever a message arrives that has 
a larger timestamp. 

The primary method for dealing with deadlocks in a distributed 
environment is deadlock detection. The main problem is deciding how to 
maintain the wait-for graph. Different methods for organizing the wait-for 
graph include a centralized approach and a fully distributed approach. 

Some of the distributed algorithms require the use of a coordinator. If 
the coordinator fails owing to the failure of the site at which it resides, the 
system can continue execution only by restarting a new copy of the 
coordinator on some other site. It does so by maintaining a backup 
coordinator that is ready to assume responsibility if the coordinator fails. 
Another approach is to choose the new coordinator after the coordinator 
has failed. The algorithms that determine where a new copy of the 
coordinator should be restarted are called election algorithms. Two 
algorithms, the bully algorithm and a ring algorithm, can be used to elect a 
new coordinator in case of failures. 

• Exercises 

18.1 Discuss the advantages and disadvantages of the two methods we 
presented for generating globally unique timestamps. 

18.2 Your company is building a computer network, and you are asked 
to write an algorithm for achieving distributed mutual exclusion. 
Which scheme will you use? Explain your choice. 

18.3 Why is deadlock detection much more expensive in a distributed 
environment than it is in a centralized environment? 

18.4 Your company is building a computer network, and you are asked 
to develop a scheme for dealing with the deadlock problem. 

a. Would you use a deadlock-detection scheme, or a deadlock­
prevention scheme? 

b. If you were tp use a deadlock-prevention scheme, which one 
would you use? Explain your choice. 

c. If you were to use a deadlock-detection scheme, which one 
would you use? Explain your choice. 
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18.5 Consider the following hierarchical deadlock-detection algorithm, in 
which the global, wait-for graph is distributed over a number of 
different controllers, which are organized in a tree. Each nonleaf 
controller maintains a wait-for graph that contains relevant 
~nformation from the graphs of the controllers in the subtree below 
it. In particular, let S AI SB, and Sc be controllers such that Sc is the 
lowest common ancestor of SA and SB (Sc must be unique, since we 
are dealing with a tree). Suppose that node Ti appears in the local 
wait-for graph of controllers SA and SB. Then, Ti must also appear in 
the local wait-for graph of 

• Controller Sc 

• Every controller in the path from Sc to SA 

• Every controller in the path from Sc to SB 

In addition, if Ti and Tj appear in the wait-for graph of controller Sv 
and there exists a path from Ti to 1j_ in the wait-for graph of one of 
the children of D, then an edge 'l'i ~ Tj must be in the wait-for 
graph of Sv. 

Show that, if a cycle exists in any of the wait-for graphs, then 
the system is deadlocked. 

18.6 Derive an election algorithm for bidirectional rings that is more 
efficient than the one presented in this chapter. How many 
messages are needed for n processes? 

18.7 Consider a failure that occurs during two-phase commit for a 
transaction. For each possible failure, explain how two-phase 
commit ensures transaction atomicity despite the failure. 
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PART SIX 

CASE STUDIES 

The various concepts described in this book can now be drawn together by 
describing real operating systems. Two UNIX-based operating systems are 
covered in detail - Berkeley 4.3BSD and Mach. These operating systems 
were chosen in part because. UNIX at one time was almost small enough to 
understand and yet is not a toy operating system. Most of its internal 
algorithms were selected for simplicity, not for speed or sophistication. UNIX 
is readily available to departments of computer science, so many students 
may have access to it. Mach gives us an opportunity to study a modern 
operating system that provides compatibility with 4.3BSD but has a vastly 
different design and implementation. 

In addition to Berkeley 4.3BSD and Mach, we briefly discuss several 
other highly influential operating systems. The order of presentation has 
been chosen to highlight the similarities and differences of· the systems; it 
is not strictly chronological, and does not reflect the relative importance of 
the system. 





CHAPTER 19 

THE 
UNIX 
SYSTEM 

Although operating-system concepts can be considered in purely 
theoretical terms, it is often useful to see how they are implemented in 
practice. This chapter presents an in-depth examination of the 4.3BSD 

operating system, a version of UNIX, as an example of the various concepts 
presented in this book. By examining a complete, real system, we can see 
how the various concepts discussed in. this book relate both to one another 
and to practice. We consider first a brief history of UNIX, and present the 
system's user and programmer interfaces. Then, we discuss the internal 
data structures and algorithms used by the UNIX kernel to support the 
user-programmer interface. 

19.1 • llistory 

The first version of UNIX was developed in 1969 by Ken Thompson of the 
Research Group at Bell Laboratories to use an otherwise idle PDP-7. He was 
soon joined by Dennis Ritchie. Thompson, Ritchie, and other members of 
the Research Group produced the early versions of UNIX. 

Ritchie had previously worked on the Mt.JLncs project, and MULTICS 

had a strong influence on the newer operating system. Even the nam~ 
UNIX is merely a pun on MUL'TICS. The basic organization of the file system, 
the idea of the command interpreter (the shell) as a user process, the use 
of a separate process for each command, the original line-editing characters 
(#to erase the last character and@ to erase the entire line), and numerous 
other features came directly from MULTJCS. Ideas from various other 

607 
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operating systems, such as from MIT's CTSS and the XDS-940 system, were 
also used. 

Ritchie and Thompson worked quietly on UNIX for many years. Their 
work on the first version allowed them to move it to a PDP-11/20, for a 
second version. A third version resulted from their rewriting most of the 
operating system in the systems-programming language C, instead of the 
·previously used assembly language. C was developed at Bell Laboratories 
to support UNIX. UNIX was also moved to larger PDP-11 models, such as the 
11/45 and 11170. Multiprogramming and other enhancements were added 
when it was rewritten inC and moved to systems (such as the 11145) that 
had hardware support for multiprogramming. 

As UNIX developed, it became widely used within Bell Laboratories and 
gradually spread to a few universities. The first version widely available 
.outside Bell Laboratories was Version 6, released in 1976. (The version 
number for early UNIX systems corresponds to the edition number of the 
UNIX Programmer's Manual that was current when the distribution was 
made; the code and the manuals were revised independently.) 

In 1978, Version 7 was distributed. This UNIX system ran on the PDP-
11/70 and the Interdata 8/32, and is the ancestor of most modern 'uNIX 
systems. In particular, it was soon ported to other PDP-11 models and to the 
VAX computer line. The version available on the VAX was known as 32V. 
Research has continued since then. 

After the distribution of Version 7 in 1978, the UNIX Support Group 
(USG) assumed administrative control and responsibility from the Research 
Group for distrib'!ltions of UNIX within AT&T, the parent organization for 
Bell Laboratories. UNIX was becoming a product, rather than simply a 
research tool. The Research Group has continued to develop their own 
version of UNIX, however, to support their own internal computing. Next 
came Version 8, which included a facility called the stream 110 system that 
allows flexible configuration of kernel IPC modules. It also contained RFS, a 
remote file system similar to Sun's NFS. Next came Versions 9 and 10 (the 
latter version, released in 1989, is available only within Bell Laboratories). 

USG mainly provided support for UNIX within AT&T. The first external 
distribution from USG was System III, in 1982. System .JII incorporated 
features of Version 7, and 32V, and also of sev~ral UNIX systems developed 

. by groups other than Research. Features of UNIXIRT, a real-time UNIX 
system, as well as numerous portions of the Programmer's Work Bench 
(PWB) software tools package were included in System III. 

USG released System V in 1983; it is largely derived from System III. 
The divestiture of the various Bell operating companies from AT&T has left 
AT&T in a position to market System V aggressively. USG was restructured 
as the UNIX System Development Laboratory (USDL), which released UNIX 
System V Release 2 (V.2) in 1984. UNIX System V Release 2, Version 4 
(V.2.4) added a new implementation of virtual memory with copy-on-write 
paging and shared memory. USDL was in turn replaced by AT&T 
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Information Systems (ATTIS), which distributed System V Release 3 (V.3) in 
1987. V.3 adapts the V8 implementation of the stream I/O system and 
makes it available as STREAMS. It also includes RFS, an NFS-like remote file 
system. 

The small size, modularity, and clean design of early UNIX systems led 
to UNIX-based work at numerous other computer-science organizations, 
such as at Rand, BBN, the University of Illinois, Harvard, Purdue, and even 
DEC. The most influential of the non-Bell Laporat()ries and non-AT&T UNIX 
development groups, however, has been the University of California at 
Berkeley. 

The first Berkeley VAX UNIX work was the addition in 1978 of virtual 
memory, de:rnand paging, and page replacement to 32V by Bill Joy and 
Ozalp Babaoglu to produce 3BSD UNIX. This version was the first 
implementation of any of these facilities on any UNIX system. The large 
virtual-memory space of 3BSD allowed the development of very large 
programs, such as Berkeley's own Franz LISP. The memory-management 
work convinced the Defense Advanced Research Projects Agency (DARPA) 
to fund Berkeley for the development of a standard UNIX system for 
government use; 4BSD UNIX was the result. 

The 4BSD work for DARPA was guided by a steering committee that 
included many notable people from the UNIX and networking communities. 
One of the goals of. this project was to provide support for the DARPA 
Internet networking protocols (TCP/IP). This support was provided in a 
general manner. It is possible in 4.2BSD to communicate uniformly among 
diverse network facilities, including local-area networks (such as Ethernets 
and token rings) and wide-area networks (such as NSFNET) .. This 
implementation was the most important reason for the current popularity 
of these protocols. It was used as the basis for the implementations of 
many vendors of UNIX computer systems, and even other operating 
systems. It permitted the Internet to grow from 60 connected networks in 
1984 to more than 8000 networks and an estimated 10 million users in 
1993. 

In addition, Berkeley adapted many features from contemporary 
operating systems to improve the design and implementation of UNIX. 
Many of the terminal line-editing functions of the TENEX (TOPS-20) 
operating system were provided by a new terminal driver. A new user 
interface (the C Shell), a new text editor (ex/vi), compilers for Pascal and 
LISP, and many new systems programs were written at Berkeley. For 
4.2BSD, certain efficiency improvements were inspired by the VMS operating 
system. 

UNIX software from Berkeley is released in Berkeley Software 
Distributions. It is convenient to refer to the Berkeley VAX UNIX systems 
following 3BSD as 4BSD, although there were actually several specific 
releases, most notably 4.1BSD and 4.2BSD. The generic numbers BSD and 4BSD 
are used for the PDP-11 and VAX distributions of Berkeley UNIX. 4.2BSD, first 
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distributed in 1983, was the culmination of the original Berkeley DARPA 
UNIX project. 2.9BSD is the equivalent version for PDP-11 systems. 

In 1986, 4.3BSD was released. It was so similar to 4.2BSD that its manuals 
described 4.2BSD more comprehensively than the 4.2BSD manuals did. It did 
include numerous internal changes, however, including bug fixes and 
performance improvements. Some new facilities also were added, 
including support for the Xerox Network System protocols. 

4.3BSD Tahoe was the next version, released in 1988. It included 
various new developments, such as improved networking congestion 
control and TCPIIP performance. Also, disk configurations were separated 
from the device drivers, and are now read off the disks themselves. 
Expanded time-zone support is also included. 4.3BSD Tahoe was actually 
developed on and for the CCI Tahoe system (Computer Console, Inc., 
Power 6 computer), rather than for the usual VAX base. The corresponding 
PDP-11 release is 2.10.1BSD, which is distributed by the USENIX Association, 
which also publishes the 4.3BSD manuals. The 4.32BSD Reno release saw the 
inclusion of an implementation of ISO/OSI networking. 

The last Berkeley release, 4.4BSD, was finalized in June of 1993. It 
includes new X.25 networking support, and POSIX standard compliance. It 
also has a radically new file system organization, with a new virtual file 
system interface and support for stackable file systems, allowing file systems 
to be layered on top of each other for easy inclusion of new features. An 
implementation of NFS is also included in the release (Chapter 17), as is a 
new log-based file system (see Chapter 12). The 4.4BSD virtual memory 
system is derived from Mach (described in the next chapter). Several other 
changes, such as enhanced security and improved kernel structure, are 
also. included. With the release of version 4.4, Berkeley has halted its 
research efforts. 

4BSD was the operating system of choice for v AXes from its initial 
release (1979) until the release of Ultrix, DEC's BSD implementation. 4BSD is 
still the best choice for many research and networking installations. Many 
organizations would buy a 32V license and order 4BSD from Berkeley 
without even bothering to get a 32V tape. 

The current set of UNIX systems is not limited to those by Bell 
Laboratories, AT&T, and Berkeley, however. Sun Microsystems helped 
popularize the BSD flavor of UNIX by shipping it on their workstations. As 
UNIX has grown in popularity, it has been moved to many different 
computers and computer systems. A wide variety of UNIX, and UNIX-like, 
operating systems have been created. DEC supports its UNIX (called Ultrix) 
on its workstations and is replacing Ultrix with another UNIX-derived 
operating system, OSF/1; Microsoft rewrote UNIX for the Intel 8088 family 
and called it XENIX, and its new Windows/NT operating system is heavily 
influenced by UNIX; IBM has UNIX (AIX) on its PCs, workstations, and 
mainframes. In ·fact, UNIX is available on almost all general-purpose 
computers; it runs on personal computers, workstations, minicomputers, 
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mainframes, and supercomputers, from Apple Macintosh lis to Cray lis. 
Because of its wide availability, it is used in environments ranging from 
academic to military to manufacturing process control. Most of these 
systems are based on Version 7, System III, 4.2BSD, or System V. 

The wide popularity of UNIX with computer vendors has made UNIX the 
most portable of operating systems, and has made it possible for users to 
expect a UNIX environment independent of any specific computer 
manufacturer. But the large number of implementations of the system has 
led to remarkable variation in the programming and user interfaces 
distributed by the vendors. For true vendor independence, application­
program developers need consistent interfaces. Such interfaces would 
allow all "UNIX" applications to run on all UNIX systems, which is certainly 
not the current situation. This issue has become important as UNIX has 
become the preferred program-development platform for applications 
ranging from databases to graphics and networking, and has led to a 
strong market demand for UNIX standards. 

There are several standardization projects underway, starting with the 
!usrlgroup 1984 Standard sponsored by the UniForum industry user's group. 
Since then, many official standards bodies have continued the effort, 
including IEEE and ISO (the POSIX standard). The X/Open Group 
international consortium completed XPG3, a Common Application 
Environment, which subsumes the IEEE interface standard. Unfortunately, 
XPG3 is based on a draft of the ANSI c standard, ratht!r than the final 
specification, and therefore needs to be redone. The XPG4 is due out in 
1993. In 1989, the ANSI standards body standardized the C programming 
language, producing an ANSI c specification that vendors were quick to 
adopt. As these projects continue, the variant flavors of UNIX will converge 
and there will be one programming interface to UNIX, allowing UNIX to 
become even more popular. There are in fact two separate sets of 
powerful UNIX vendors working on this problem: the AT&T-guided UNIX 
International (UI) and -the Open Software Foundation ( OSF) have both 
agreed to follow the POSIX standard. Recently, many of the vendors 
involved in those two groups have agreed on further standardization (the 
COSE agreement) on the Motif window environment, and ONC+ (which 
includes Sun RPC and NFS) and DCE network facilities (which includes AFS 
and an RPC package). 

AT&T replaced its ATTIS group in 1989 with the UNIX Software 
Organization (uso), which shipped the first merged UNIX, System V 
Release 4. This system combines features from System V, 4.3BSD, and 
Sun's SunOS, including long file names, the Berkeley file system, virtual 
memory management, symbolic links, multiple access groups, job control, 
and reliable signals; it also conforms to the published POSIX standard, 
POSIX.l. After uso produced SVR4, it became an independent AT&T 
subsidiary named Unix System Laboratories (USL); ·in 1993, it was 
purchased by Novell, Inc. 
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Figure 19.1 summarizes the relationships among the various versions 
of UNIX. 

The UNIX system has grown from a personal project of two Bell 
Laboratories employees to an operating syst~m being defined . by 
multinational standardization bodies. Yet this system is still of interest to 
academia. We believe that UNIX has become and will remain an important 
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part of operating-system theory and practice. UNIX is an excellent vehicle 
for academic study. For example, the Tunis operating system, the Xinu 
operating system, and the Minix operating system are based on the 
concepts of UNIX, but were developed explicitly for classroom study. There 
is a plethora of ongoing UNIX-related research systems, including Mach, 
Chorus, Comandos, and Roisin. The original developers, Ritchie and 
Thompson, were honored in 1983 by the Association for Computing 
Machinery Turing award for their work on UNIX. 

The specific UNIX version used in this chapter is the VAX version of 
4.3BSD. This system is used because it implements many .interesting 
operating-system concepts, such as demand paging with clustering, and 
networking. It has also been influential in other UNIX systems, in 
standards, and in networking developments. The v AX implementation is 
used because 4.3BSD was developed on the v AX and that machine still 
represents a convenient point of reference, despite the recent proliferation 
of implementations on other hardware (such as the Motorola 68040 and 
88000, the Intel i486, the Sun SPARC, DEC Alpha, HP Precision, and the MIPS 
R4000 CPUs). 

19.2 • Design Principles 

UNIX was designed to be a time-sharing system. The standard user interface 
(the shell) is simple and can be replaced by another, if desired. The file 
system is a multilevel tree, which allows users to create their own 
subdirectories. Each user data file is simply a sequence of bytes. 

Disk files and I/O devices are treated as similarly as possible. Thus, 
device dependencies and peculiarities are kept in -the kernel as much as 
possible; even in the kernel, most of them are confined to the device 
drivers. 

UNIX supports multiple processes. A process can easily create new 
processes. <:;:PU scheduling is a simple, priority algorithm. 4.3BSD uses 
demand paging as a mechanism to support memory-manageme:r;tt and 
CPU-scheduling decisions. Swapping is used if a system is suffering from 
excess paging. 

Because UNIX was originated first by one programmer, Ken Thompson, 
and then by another, Dennis Ritchie, as a system for their own 
convenience, it was small enough to understand. Most of the algorithms 
were selected for simplicity, not for speed or sophistication. The intent was 
to have the kernel and libraries provide a small set of facilities that was 
sufficiently powerful to allow a person to build a more complex syste.IIJ if 
one were needed. UNIX's clean design has resulted in many imitations and 
modifications. 

Although the designers of UNIX had a significant amount of knowledge 
about other operating systems, UNIX had no elaborate design spelled out 
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before its implementation. This flexibility appears to have been one of the 
key factors in the development of the system. Some design principles were 
involved, however, even though they were not made explicit at the outset. 

The UNIX system was designed by programmers for programmers. 
Thus, it has always been interactive, and facilities for program 
development have always been a high priority. Such facilities include the 
program make (which can be used to check to see which of a collection of 
source files for a program need to be compiled, and then to do the 
compiling) and the Source Code Control System (sees) (which is used to keep 
successive versions of files available without having to store the entire 
contents of each step). 

The operating system is written mostly in C, which was developed to 
support UNIX, since neither Thompson nor Ritchie enjoyed programming in 
assembly language. The avoidance of assembly language· was also 
necessary because of the uncertainty about the machine or machines on 
which UNIX would be run. It has greatly simplified the problems of 
moving UNIX from one hardware system to another. 

From the beginning, UNIX development systems have had all the UNIX 

sources available on-line, and the developers have used the systems under 
development as their primary systems. This pattern of development has 
greatly facilitated the discovery of deficiencies and their fixes, as well as of 
new possibilities and their implementations. It has also encouraged the 
plethora of UNIX variants existing today, but the benefits have outweighed 
the disadvantages: if something is broken, it can be fixed at a local site; 
there is no need to wait for the next release of the system. Such fixes, as 
well as new facilities, may be incorporated into later distributions. 

The size constraints of the PDP-11 (and earlier computers used ,for UNIX) 
have forced a certain elegance. Where other systems have elaborate 
algorithms for dealing with pathological conditions, UNIX just does a 
controlled crash called panic. Instead of attempting to cure such conditions, 
UNIX tries to prevent them. Where other systems would use brute force or 
macro-expansion, UNIX mostly has had to develop more subtle, or at least 
simpler, approaches. 

These early strengths of UNIX produced much of its popularity, which 
in turn produced new demands that challenged those strengths. UNIX was 
used for tasks such as networking, graphics, and real-time operation, 
which did not always fit into its original text-oriented model. Thus, 
changes were made to certain internal facilities and new programming 
interfaces were added. These new facilities, and others - particularly 
window interfaces - required large amounts of code to support them, 
radically increasing the size of the system. For instance, networking and 
windowing both doubled the size of the system. This pattern in turn 
pointed out the continued strength of ·UNIX - whenever a new 
development occurred in the industry, UNIX could usually absorb it, but 
still remain UNIX. 
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As do most computer systems, UNIX consists of two 
kernel and the systems programs. We can view the UNIX 

as being layered, as shown in Figure 19.2. Everything 
call interface and above the physical hardware is the kernel. 
provides the file system, CPU scheduling, memory management, 
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operating-system functions through system calls. Systems use 
the kernel-supported system calls to provide useful as 
compilation and file manipulation. 

System calls define the programmer interface to UNIX; the 
programs commonly available defines the user interface. The 
and user interface define the context that the kernel must 

System calls in VAX 4.2BSD are made by a trap to location 
interrupt vectors. Parameters are passed to the kernel 
stack; the kernel returns values in registers RO Rl. 
also return an error code. The carry bit distinguishes a 
an error return. 

This level of detail seldom seen by a UNIX n ... ,,.o-"'"'Tru-r .. "'"" 

Most systems programs are written in C, and the UNIX Frr>o"r,rJmmPr· 

presents all system calls as C functions. A system program 
4.3BSD on the v AX can generally be moved to another 
simply recompiled, even though the two systems may be 
The details of system calls are known only to the compiler. 
a major reason for the portability of UNIX programs. 

Figure 19.2 4.3BSD layer structure. 
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System calls for UNIX can be roughly grouped into three categories: file 
manipulation, process control, and information manipulation. In Chapter 
3, we listed a fourth category, device manipulation, but since devices in 
UNIX are treated as (special) files, the same system .:ails support both files 
and devices (although there is an extra system call for setting device 
parameters). 

19.3.1 File Manipulation 

A file in UNIX is a sequence of bytes. Different programs expect various 
levels of structure, but the kernel does not impose a structure on files. For 
instance, the convention for text files is lines of ASCII characters separated 
by a single newline character (which is the linefeed character in ASCII), but 
the kernel knows nothing of this convention. 

Files are organized in tree-structured directories. Directories are 
themselves files that contain information on how to find other files. A path 
name to a file is a text string that identifies a file . by specifying a path 
through the directory structure to the file. Syntactically, it consists of 
individual file-name elements separated by the slash character. For 
example, in /usr/local/font, the first slash indicates the root of the directory 
tree, called the root directory. The n~xt element, usr, is a subdirectory of 
the root, local is a subdirectory of usr, and font is a file or directory in the 
.directory local. Whether font is an ordinary file or a directory cannot be 
determined from the path-name syntax. 

UNIX has both absolute path names and relative path names. Absolute path 
names start at the root of the file system and are distinguished by a slash 
at the beginning of the path name; /usrliocal/font is an absolute path name. 
Relative path names start at the current directory, which is an attribute of 
the process accessing the path name. Thus, local/font indicates a file or 
directory named font in the directory local in the current directory, which 
might or might not be lusr. 

A file may be known by more than one name in one or more 
directories. Such multiple names are known as links, and all links are 
treated equally by the operating system. 4.3BSD also supports symbolic links, 
which are files containing the path name of another file. The two kinds of 
l~ks are also known as hard links and soft links. Soft (symbolic) links, 
unlike hard links, may point to directories and may cross file-system 
boundaries. 

The file name"." in a directory is a hard link to the directory itself. The 
file name " .. " is a hard link to the parent directory. Thus, if the current 
directory is luserljlplprograms, then . .lbinlwdf refers to /user/jlplbinlwdf. 

Hardware devices have names in the file system. These device special 
files or special files are known to the kernel as device interfaces, but are 
nonetheless accessed by the user by much the same system calls a~ are 
other files. 
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Figure 19~3 shows a typical UNIX file system. The root (/) normally 
contains a small number of directories as well as /vmunix, the binary boot 
image of the operating system; /dev contains the device special flies, such 
as ldev/console, /dev/lpO, /dev/mtO, and so on; /bin contains the binaries of the 
essential UNIX systems programs. Other binaries may be in lusrlbin (for 
applications systems programs, such as text formatters), /usr/ucb (for 
systems programs written by Berkeley rather than by AT&T), or /usr/local/bin 
(for systems programs written at the local site). Library files- such as the 
C, Pascal, and FORTRAN subroutine libraries - are kept in /lib (or /usr/lib or 
/usrllocal/lib). 

The files of users themselves are stored in a separate directory for each 
user, typically in /user. Thus, the user directory for carol would normally be 
in /user/carol. For a large system, these directories may be further grouped 
to ease administration, creating a file structure with /userlproflavi and 
/user/staff/carol. Administrative files and programs, such as the password 
file, are kept in /etc. Temporary files can be put in ltmp, which is normally 
erased during system boot, or in lusrltmp. 

Each of these directories may have considerably more structure. For 
example, the font-description tables for the troff formatter for the 
Merganthaler 202 typesetter are kept in /usr!lib!troff/dev202. All the 
conventions concerning the location of specific files and directories have 
been defined by programmers and their programs; the operating-system 
kernel needs only letc/init, which is used to initialize terminal processes, to 
be operable. 

System calls for basic file manipulation are creat, open, read, write, 
close, unlink, and trunc. The creat system call, given a path name, creates 
an (empty) file (or truncates an existing one). An existing file is opened by 
the open system calt which takes a path name and a mode (such as read, 
write, or read-write) and returns a small integer, called a file descriptor. A 
file descriptor may then be passed to a read or write system call (along 
with a buffer address and the number of bytes to transfer) to perform data 
transfers to or from the file. A file is closed when its file descriptor is 
passed to the close system call. The trunc call reduces the length of a file 
to 0. 

A file ·descriptor is an index into a small table of open files for this 
process. Descriptors start at 0 and seldom get higher than 6 or 7 for 
typical programs, depending on the maximum number of simultaneously 
open files. 

Each read or write updates the current offset into the file, which is 
associated with the file-table entry and is used to determine the position in 
the file for the next read or write. The lseek system call allows the position 
to be reset explicitly. It also allows the creation of sparse files (files with 
"holes" in them). The dup and dup2 system calls can be used to produce a 
new file descriptor that is a copy of an existing one. The fcntl system call 
can also do that, and in addition can examine or set various parameters of 
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Figure 19.3 Typical UNIX directory structure. 
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an open file. For example, it can make each succeeding write to an open 
file append to the end of that file. There is an additional system call, ioctl, 
for manipulating device parameters. It can set the baud rate of a serial 
port, or rewind a tape, for instance. 

Information about the file (such as its size, protection modes, owner, 
and so on) can be obtained by the stat system call. Several system calls 
allow some of this information to be changed: rename (change file name), 
chmod (change the protection mode), and chown (change the owner and 
group). Many of these system calls have variants that apply to file 
descriptors instead of file names. The link system call makes a hard link 
for an existing file, creating a new name for an existing file. A link is 
removed by the unlink system call; if it is the last link, the file is deleted. 
The symlink system call makes a symbolic link. 

Directories are made by the mkdir system call and are deleted by 
rmdir. The current directory is changed by cd. 

Although it is possible to use the standard file calls (open and others) 
. on directories, it is inadvisable to do so, since directories have an internal 
structure that must be preserved. Instead, another set of system calls is 
provided to open a directory, to step through each file entry within the 
directory, to close the directory, and to perform other functions; these are 
opendir, readdir, closedir, and others. 

19.3.2 Process Control 

A process is a program in execution. Processes are identified by their process 
identifier, which is an integer. A new process is created by the fork system 
call. The new process consists of a copy of the address space of the original 
process (the same program and the same variables with the same values). 
Both processes (the parent and the child) continue execution at the 
instruction after the fork with one difference: The return code for the fork 
is zero for the new (child) process, whereas the (nonzero) process identifier 
of the child is returned to the parent. 

Typically, the execve system call is used after a fork by one of the two 
processes to replace that process' virtual memory space with a new 
program. The execve system call loads a binary file into memory 
(destroying the memory image of the program containing the execve 
system call) and starts its execution. 

A process may terminate by using the exit system call, and its parent 
process may wait for that event by using the wait system call. If the child 
process crashes, the system simulates the exit call. The wait system call 
provides the process id of a terminated child so that the parent can tell 
which of possibly many children terminated. A second system call, wait3, 
is similar to wait but also allows the parent to collect performance statistics 
about the child. Between the time the child exits, and the time the parent 
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completes one of the wait system calls, the child is defunct. A 
.-. .... '""~""'~~ can do nothing, but exists merely so that the parent can """"j'"'''·"L 
status information. If the parent process of a defunct process exits 
child, the defunct process is inherited by the init process (which 

on it) and becomes a zombie process. A typical use of these L""''-""'·"A"" 

shown in Figure 19.4. 
The simplest form of communication between processes is 

which may be created before the fork, and whose endpoints are 
up between the fork and the execve. A pipe is essentially a queue 
between two processes. The pipe is accessed by a file descriptor, 
ordinary file. One process writes into the pipe, and the other 

pipe. The size of the original pipe system was fixed by the '"''""T'"''rn 

With 4.3BSD, pipes are implemented on top of the socket system/ 
variable-sized buffers. Reading from an empty pipe or writing 
pipe causes the process to be blocked until the state of the pipe 
Special arrangements are needed for a pipe to be between a 
and child (so only one reading and one is writing). 

All user processes are descendants of one original 
(which has process identifier 1). Each terminal port available for Interatc 
use has a getty process forked for it by init. The getty process 
terminal line parameters and waits for a user's login name, which it """'"'"''"·"' 
through an execve as an argument to a login The login """'"'~"~,~~ 
collects the user's password, encrypts the password, and 
result to an encrypted string taken from the file 
comparison is successful, the user is allowed to log in. 
executes a shell, or command interpreter, after 
identifier of the process to that of the user logging 
user identifier are found in letc!passwd by the login 
with this shell that the user ordinarily communicates 
login session; the shell itself forks subprocesses for the 
tells it to execute. 

The user identifier is used by the kernel to 
permissions for certain system calls, especially 

shell process parent process 

child process 

program executes 

shell process 

Figure 19.4 A shell forks a subprocess to execute a program. 
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accesses. There is also a group identifier, which is used to provide similar 
privileges to a collection of users. In 4.3BSD a process may be in .several 
groups simultaneously. The login process puts the shell in all the 'groups 
permitted to the user by the files /etc/passwd and /etc/group. 

There are actually two user identifiers used by the kernel: the effective 
user identifier is the identifier used to determine file access permissions. If 
the file of a program being loaded by an execve has the setuid bit set in its 
inode, the effective user identifier of the process is set to the user identifier 
of the owner of the file, whereas the real user identifier is left as it was. 
This scheme allows certain processes to have more than ordinary privileges 
while still being executable by ordinary users. The setuid idea was 
patented by Dennis Ritchie (U.S. Patent 4,135,240) and is one of the 
distinctive features of UNIX. There is a similar setgid bit for groups. A 
process may determine its real and effective user identifier with the getuid 
and geteuid calls, respectively. The getgid and getegid calls determine the 
process identifier and group identifier, respectively. The rest of a process' 
groups may be found with the getgroups system call. 

19.3.3 Signals 

Signals are a facility for handling exceptional conditions similar to software 
interrupts. There are 20 different signals, each corresponding to a distinct 
condition. A signal may be generated by a keyboard interrupt, by an error 
in a process (such as a bad memory reference), or by a number of 
asynchronous events (such as timers or job-control signals from the shell). 
Almost any signal may also be generated by the kill system call. 

The interrupt signal, SIGINT, is used to stop a command before that 
command completes. It is usually produced by the "C character (AS.CII 3). 
As of 4.2BSD, the important keyboard characters are defined by a table for 
each terminal and can be redefined easily. The quit signal, SIGQUIT, is 
usually produced by the "\ character (ASCII 28). The quit signal both stops 
the currently executing program and dumps its current memory image to a 
file named core· in the current directory. The core file can be used by 
debuggers. SIGILL is produced by an illegal instruction and SIGSEGV by an 
attempt to address memory outside of the legal virtual-memory space of a 
process. 

Arrangements can be made either for most signals to be ignored (to 
have no effect), or for a routine in the user process (a signal handler) to be 
called. A signal handler may safely do one of two things before returning 
from catching a signal: call the exit system call, or modify a global variable. · 
There is one signal (the kill signal, number 9, SIGKILL) that cannot be 
ignored or caught by a signal handler. SIGKILL is used, for example, to kill 
a runaway process that is ignoring other signals such as SIGINT or SIGQUIT. 

Signals can be lost: If another signal of the same kind is sent before a 
previous signal has been accepted by the process to which it is directed, 
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the first sighal will be overwritten and only the last signal will be seen by 
the process. In other words, a call to the signal handler tells a process that 
there has been at least one occurance of the signal. Also, there is no 
relative priority among UNIX signals. If two different' signals are sent to the 
same process at the same time, it is indeterminate which one the process 
will receive first. 

Signals were originally intended to deal with exceptional events. As is 
true of the use of most other features in UNIX, however, signal use has 
steadily expanded. 4.1BSD introduced job control, which uses signals to 
start and stop subprocesses ·on demand. This facility allows one shell to 
control multiple processes: starting, stopping, and backgrounding them as 
the user wishes. 4.3BSD added the SIGWINCH signal, invented by Sun 
Microsystems, for informing a process that the window in which output is 
being displayed has changed size. Signals are also used to deliver urgent 
data from network connections. 

Users also wanted more reliable signals, and a bug fix in an inherent 
race condition in the old signals implementation. Thus, 4.2BSD also brought 
with it a race-free, reliable, separately implemented signal capability. It 
allows individual signals to be blocked during critical sections, and has a 
new system call to let a process sleep until interrupted. It· is similar to 
hardware-interrupt functionality. This capability is now part of the POSIX 
standard. 

19.3.4 Process Groups 

Groups of related processes frequently cooperate to accomplish a common 
task For instance, processes may create, and communicate over, pipes. 
Such a set of processes is termed a process group, or a job. Signals may be 
sent to all processes in a group. A process usually inherits its process 
group from its. parent,. btJt the setpgrp system call allows a process to 
change its group. 

Process groups are used by the C shell to control the operation of 
multiple jobs. Only one process group may use a terminal device for I/O at 
any time. This foreground job has the attention of the user on that terminal 
while all other nonattached jobs (background jobs) perform their function 
without user interaction. Access to the terminal is controlled by process 
group signals. Each job has a controlling terminal (again, inherited from its 
parent). If the process group of the controlling terminal matches the group 
of a process, that process is in the foreground, and is allowed to perform 
IIO. If a nonmatching (background) process attempts the same, a SIGTTIN or 
SIGTTOU signal is sent to its p:rocess group. This signal usually results in 
the process group freezing until it is foregrounded by the user, at which 
point it receives a SIGCONT signal, indicating that the process can perform 
the 1/0. Similarly, a SIGSTOP may be sent to the foreground process group to 
freeze it. · 
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19.3.5 Information Manipulation 
System calls exist to set and return both an interval timer 
(getitimer/setitimer) and the current time (gettimeofday/settimeofday) in 
microseconds. In addition, processes can as~ for their process identifier 
(getpid), their group identifier (getgid), the name of the machine on which 
they are executing (gethostname), and many other values. 

19.3.6 Library Routines 
The system-call interface to UNIX is supported and augmented by a large 
collection of library routines and header files. The header files provide the 
definition of complex data structures used in system calls. In addition, a 
large library of functions provides additional program support. 

For example, the UNIX 110 system calls provide for the reading and 
writing of blocks of bytes. Some applications may want to read and write 
only 1 byte at a time. Although it would be possible to read and Write 1 
byte at a time, that would require a system call for each byte - a very 
high overhead. Instead, a set of standard library routines (the standard.I!O 
package accessed through the header file <stdio.h>) provides another 
interface, which reads and writes several thousand bytes at a time using 
local buffers, and transfers between these buffers (in user memory) when 
110 is desired. Formatted 110 is also supported by the standard 110 package. 

Additional library support is provided for mathematical functions, 
network access, data conversion, and so on. The 4.3BSD ketnel supports 
over 150 system calls; the C program library has over 300 library functions. 
Although the library functions eventually result in system calls where 
necessary (for example, the getchar library routine will result in a read 
system call if the file buffer is empty), it is generally unnecessary for the 
programmer to distinguish between the basic set of kernel system calls and 
the additional functions provided by library functions. 

19.4 • User Interface 

Both the programmer and the user of a UNIX system deal mainly with the 
set of systems programs that have been written and are available for 
execution. These programs make the necessary system calls to support 
their function, but the system calls themselves are contained within the 
program and do not need to be obvious to the user. 

The common systems programs can be grouped into several categories; 
most of them are file or directory oriented. For example, the system 
programs to manipulate directories are mkdir to create a new directory, 
rmdir to remove a directory, cd to change the current directory to another, 
and pwd to print the absolute path name of the current (working) 
directory. 
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The ls program lists the names of the files in the current directory. Any 
of 18 options can ask that properties of the files be displayed also. For 
example, the -1 option asks for a long listing, showing the file name, 
owner, protection, date and time of creation, and size. The cp program 
creates a new file that is a copy of an existing file. The mv program moves 
·a file from one place to another in the directory tree. In most cases, this 
move simply requires a renaming of the file; if necessary, however, the file 
is copied to the new location and the old copy is deleted. A file is deleted 
by the rm program (which makes an unlink system call). 

To display a file on the terminal, a user can run cat. The cat program 
takes a list of files and concatenates them, copying the result to the 
standard output, commonly the terminal. On a high-speed cathode-ray 
tube ·(CRT) display, of course, the file may speed by too fast to be read. The 
more program displays the file one screen at a time, pausing until the user 
types a character to continue to the next screen. The he~d program displays 
just the first few lines of a file; tail shows the last few. lines. 

These are the basic systems programs widely used in UNIX. In addition, 
there are a number of editors (ed, sed, emacs, vi, and so on), compilers (C, 
Pascal, FORTRAN, and so on), and text formatters (troff, TEX, scribe, and so 
on). There are also programs for sorting (sort) and comparing files (cmp, 
diff), looking for patterns (grep, awk), sending mail to other users (mail), 
and many other activities. 

19.4.1 Shells and Commands 

Both user-written and systems programs are normally executed by a 
command interpreter. The command interpreter in UNIX is a user process 
like any other. It is called a shell, as it surrounds the kernel of the 
operating system. Users can write their own shell, and there are, in fact, 
several shells in general use. The Bourne shell, written by Steve Bourne, is 
probably the most widely used - or, at least, it is the most widely 
available. The C shell, mostly the work of Bill Joy, a founder of Sun 
Microsystems, · is the most popular on BSb systems. The Korn -shell, by 
Dave Korn, has become popular because it combines the features of the 
Bourne shell and the C shell. 

The common shells share much of their command-language syntax. 
UNIX is normally an interactive system. The shell indicates its readiness to 
accept another command by typing a prompt, and the user types a 
command on a single line. For instance, in the line 

% Is -l 

the percent sign is the usual C shell prompt, and the ls -l (typed by the 
user) is the (long) list-directory command. Commands can take arguments, 
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which the user types after the command name on the same line, separated 
by white space (spaces or tabs). 

Although there are a few commands built into the shells (such as cd), a 
typical command is an executable binary object file. A list of several 
directories, the search path, is kept by the shell. For each command, each of 
the directories in the search path is searched, in order, for a file of the 
same name. If a file is found, it is loaded and executed. The search path 
can be set by the user. The directories /bin and /usrlbin are almost always in 
the search path, and a typical search path on a BSD system might be 

( . lhomelprof/avilbin /usr/local/bin /usrlucb /bin !usr/bin ) 

The ls command's object file is lbin/ls, and the shell itself is /bin/sh (the 
Bourne shell) or lbin/csh (the C shell). 

Execution of a command is done by a fork system call followed by an 
execve of the object file. The shell usually then does a wait to suspend its 
own execution until the command completes (Figure 19.4). There is a 
simple syntax (an ampersand [&] at the end of the command line) to 
indicate that the shell should not wait for the completion of the command. 
A command left running in this manner while the shell continues to 
interpret further commands is said to be a background command, or to be 
running in the background. Processes for which the shell does wait are 
said to run in the foreground. 

The C shell in 4.3BSD systems provides a facility called job control 
(partially implemented in the kernel), as mentioned previously. Job 
control allows processes to be moved between the foreground and the 
background. The processes can be stopped and restarted on various 
conditions, such as a background job wanting input from the user's 
terminal. This scheme allows most of the control of processes provided by 
windowing or layering interfaces, but requires no special hardware. Job 
control is also useful in window systems, such as the X Window System 
developed at MIT. Each window is treated as a terminal, allowing multiple 
processes to be in the foreground (one per window) at any one time. Of 
course, background processes may exist on any of the windows. The Korn 
shell also supports job control, and it is likely that job control (and process 
groups) will be standard in future versions of UNIX. 

19.4.2 Standard I/O 

Processes can open files as they like, but most processes expect three file 
descriptors (numbers 0, 1, and 2) to be open when they start. These file 
descriptors are inherited across the fork (and possibly the execve) that 
created the process. They are known as standard input (0), standard output 
(1), and standard error (2). All three are frequently open to the user's 



626 • Chapter 19: The UNIX System 

terminal. Thus, the program can read what the user types by reading 
standard input, and the program can send output to the user's screen by 
writing to standard output. The standard-error file descriptor is also open 
for writing and J.s used for error output; standard output is used for 
ordinary output. Most programs can also accept a file (rather than a 
terminal) for standard input and standard output. The program does not 
care where its input is coming from and where its output is going. This is 
one of the elegant design features of UNlX. 

The common shells have a simple syntax for changing what files are 
open for the standard 110 streams of a process. Changing a standard file is 
called I/O redirection. The syntax for 110 redirection is shown in Figure 19.5. 
In this example, the ls command produces a listing of the names of files in 
the current directory, the pr command formats that list into pages suitable 
for a printer, and the lpr command spools the formatted output to a 
printer, such as !dev/lpO. The subsequent command forces all output and 
all error messages to be redirected to a file. Without the ampersand, error 
messages appear on the terminal. 

19.4.3 Pipelines, Filters, and Shell Scripts 
The first three commands of Figure 19.5 could have been coalesced into the 
one command 

% ls I pr I lpr 

Each vertical bar tells the shell to arrange for the output of the preceding 
command to be passed as input to the following command. A pipe is used 
to carry the data from one process to the other. One process writes into 
one end of the pipe, and another process reads from the other end. In the 
example, the write end of one pipe would be set up by the shell to be the 
standard output of ls, and the read end of the pipe would be the standard 
input of pr; there would be another pipe between pr and lpr. 

Command Meaning of command 
% Is> filea direct output of ls to file filea 
% pr < filea > fileb input from filea and output to fileb 
% lpr < fileb input from fileb 
% 
% make program >& errs save both standard output and 

standard error in a file 

Figure 19.5 Standard 110 redirection. 
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A command such as pr that passes its standard input to its standard 
output, performing some processing on it, is called a filter. Many UNIX 

commands can be used as filters. Complicated functions can be pieced 
together as pipelines of common commands. Also, common functions, 
such as output formatting, do not need to be built into numerous 
commands, because the output of almost any program can be piped 
through pr (or some other appropriate filter). 

Both of the common UNIX shells are also programming languages, with 
shell variables and the usual higher-level programming-language control 
constructs (loops, conditionals). The execution of a command is analogous 
to a subroutine call. A file of shell commands, a shell script, can be 
executed like any other command, with the appropriate shell being 
invoked automatically to read it. Shell programming thus can be used to 
combine ordinary programs conveniently for sophisticated applications 
without the necessity of any programming in conventional languages. 

This external user view is commonly thought of as the definition of 
UNIX, yet it is the most easily changed definition. Writing a new shell with 
a quite different syntax and semantics would greatly change the user view 
while not changing the kernel or even the programmer interface. Several 
menu-driven and iconic interfaces for UNIX now exist, and the X Window 
System is rapidly becoming a standard. The heart of UNIX is, of course, the 
kernel. This kernel is much more difficult to change than is the user 
interface, because all programs depend on the system calls that it provides 
to remain consistent. Of course, new system calls can be added to increase 
functionality, but programs must then be modified to use the new calls. 

19.5 • Process Management 

A major design problem for operating systems is the representation of 
processes. One substantial difference between UNIX and many other 
systems is the ease with which multiple processes can be created and 
manipulated. These processes are represented in UNIX by various control 
blocks. There are no system control blocks accessible in the virtual address 
space of a user process; control blocks associated with a process are stored 
in the kernel. The information in these control blocks is used by the kernel 
for process control and CPU scheduling. 

19.5.1 Process Control Blocks 
The most basic data structure associated with processes is the process 
structure. A process structure contains everything that the system needs to 
know about a process when the process is swapped out, such as its unique 
process identifier, scheduling information (such as the priority of the 
process), and pointers to other control blocks. There is an array of process 
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structures whose length is defined at system linking time. The process 
structures of ready processes are kept linked together by the scheduler in a 
doubly linked list (the ready queue), and there are pointers from each 
process structure to the process' parent, to its youngest living child, and to 
various other relatives of interest, such as a list of processes sharing the 
same program code (text). 

The virtual address space of a user process is divided into text (program 
code), data, and stack segments. The data and stack segments are always 
in the same address space, but may grow separately, and usually in 
opposite directions: most frequently, the stack grows down as the data 
grow up toward it. The text segment is sometimes (as on an Intel 8086 
with separate instruction and data space) in an address space different 
from the data and stack, and is usually read-only. The debugger puts a 
text segment in read-write mode to be able to allow insertion of 
breakpoints. 

Every process with sharable text (almost all, under 4.3BSD) has a pointer 
from its process structure to a text structure. The text structure records how 
many processes are using the text segment, including a pointer into a list 
of their process structures, and where the page table for the text segment 
can be found on disk when it is swapped. The text structure itself is 
always resident in main memory: an array of such structures is allocated at 
system link time. The text, data, and stack segments for the processes may 
be swapped. When the segments are swapped in, they are paged. 

The page tables record information on the mapping from the process' 
virtual memory to physical memory. The process structure contains 
pointers to the page table, for use when the process is resident in main 
memory, or the address of the process on the swap device, when the 
process is swapped. There is no special separate page table for a shared 
text segment; every process sharing the text segment has entries for its 
pages in the process' page table. ' 

Information about the process that is needed only when the process is 
resident (that is, not swapped out) is kept in the user structure (or u 
structure), rather than in the process structure. The u structure is mapped 
read-only into user virtual address space, so user processes can read its 
contents. It is writable by the kernel. On the v AX, a copy of the v AX PCB is 
kept here ·for saving the process' general registers, stack pointer, program 
counter, and page-table base registers when the process is not running. 
There is space to keep system-call parameters and return values. All user 
and group identifiers associated with the process (not just the effective 
user identifier kept in the process structure) are kept here. Signals, timers, 
and quotas have data structures here. Of more obvious relevance to the 
ordinary user, the current directory and the table of open files are 
maintained in the user structure. 

Every process has both a user and a system phase. Most ordinary work 
is done in user mode, but, when a system call is made, it is. performed in 



system mode. The system and user phases of a process never 
simultaneously. When a process is executing in system mode, 
for that process is used, rather than the user stack belonging 
process. The kernel stack for the process immediately follows user 
structure: The kernel stack and the user structure together rnltYlru"" 

system data segment for the process. The kernel has its own 
when it is not doing work on behalf of a process (for instance, 
handling). 

Figure 19.6 illustrates how the process structure is used 
various parts of a process. 

The fork system call allocates a new process structure 
process identifier) for the child process, and copies the 
There is ordinarily no need for a new text structure, as the ......... """'"'' 
their text; the appropriate counters and lists are merely 
page table is constructed, and new main memory is auoc<uea 
and stack segments of the child process. The copying of the user 
preserves open file descriptors, user and group identifiers, 
and most similar properties of a process. 

The vfork system call does not copy the data and 
process; rather, the new process simply shares the page 
one. A new user structure and a new process structure are 
common use of this system call by a shell to execute a 

resident tables 

swappable process image 

Figure 19.6 Finding parts of a process using the process 
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wait for its completion. The parent process uses vfork to produce the child 
process. Because the child process wishes to use an execve immediately to 
change its virtual address space completely, there is no need for a 
complete copy of the parent process. Such data structures as are necessary 
for manipulating pipes may be kept in registers between the vfork and the 
execve. Files ·may be closed in one process without affecting the other 
process, since the kernel data structures involved depend on the user 
structure, which is not shared. The parent is suspended when it calls vfork 
until the child either calls execve or terminates, so that the parent will not 
change memory that the child needs. 

When the parent process is large, vfork can produce substantial 
savings in system CPU time. However, it is a fairly dangerous system call, 
since any memory change occurs in both processes until the execve occurs. 
An alternative is to share all pages by duplicating the page table, but to 
mark the entries of both page tables as copy-on-write. The hardware 
protection bits ·are set to trap any attempt to write in these shared pages. If 
such a trap occurs, a new frame is allocated and the shared page is copied 
to the new frame. The page tables ar~ adjusted to show that this page is 
no longer shared (and therefore no longer needs to be write-protected), 
and execution can resume. 

An execve system call creates no new process or user structure; rather, 
the text and data of the process are replaced. Open files are preserved 
(although there is a way to specify that certain file descriptors are to be 
closed on an execve). Most signal-handling properties are preserved, but 
arrangements to call a specific user routine on a signal are canceled, for 
obvious reasons. The process identifier and most other properties of the 
process are unchanged. 

19.5.2 CPU Scheduling 
CPU scheduling in UNIX is designed to benefit interactive processes. 
Processes are given small CPU time slices by a priority algorithm that 
reduces to round-robin scheduling for CPU-bound jobs. 

Every process has a scheduling priority associated with it; larger 
numbers indicate lower priority. Processes doing disk 110 or other 
important tasks have priorities less than "pzero" and cannot be killed by 
signals. Ordinary user processes have positive priorities and thus are all 
less likely to be run than are any system process, although user processes 
can set precedence over one another thrm,1gh the nice command. 

The more CPU time a process accumulates, the lower (more positive) its 
priority becomes, and vice versa, so there is negative feedback in CPU 
scheduling and it is difficult for a single process to take all the CPU time. 
Process aging is employed to prevent starvation. 

Older UNIX systems used a 1-second quantum for the round-robin 
scheduling. 4.3BSD reschedules processes every 0.1 second and recomputes 
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priorities every second. The round-robin scheduling is accomplished by.the 
timeout mechanism, which tells the clock interrupt driver to call a kernel 
subroutine after a specified interval; the subroutine to be called in this case 
causes the rescheduling and then resubmits a timeout to call itself again. 
The priority recomputation is also timed by a· subroutine that resubmits a 
timeout for itself. 

There is no preemption of one process by another in the kernel. A 
process may relinquish the CPU because it is waiting on 110 or because its 
time slice has expired. When a process chooses to relinquish the CPU, it 
goes to sleep on an event. The kernel primitive used for this purpose is. 
called sleep (not to be confused with the user-level library routine of the 
same name). It takes an argument, which is by convention the address of a 
kernel data structure related to an event that the process wants to occur 
before that process is awakened. When the event occurs, the system 
process that knows about it calls wakeup with the address corresponding to 
the event, and all processes that had done a sleep on the same address are 
put in the ready queue to be run. 

For example, a process waiting for disk 110 to complete will sleep on the 
address of the buffer header corresponding to the data being transferred. 
When the interrupt routine for the disk driver notes that the transfer is 
complete, it calls wakeup on the buffer header. The interrupt uses the 
kernel stack for whatever process happened to be running at the time, and 
the wakeup is done from that system process. 

The process that actually does run is chosen by the scheduler. Sleep 
takes a second argument, which is the scheduling priority to be used for 
this purpose. This priority argument, if less than "pzero", also prevents the 
process from being awakened prematurely by some exceptional event, 
such as a signal. 

When a signal is generated, it is left pending until the system half of 
the affected process next runs. This event usually happens soon, since the 
signal normally causes· the process to be awakened if the process has been 
waiting for some other condition. 

There is no memory associated with events, and the caller of the 
routine that does a sleep on an event must be prepared to deal with a 
premature return, including the possibility that the reason for waiting has 
vanished. 

There are race conditions involved in the_ event mechanism. If a process 
decides (because of checking a flag in memory, for instance) to sleep on an 
event, and the event occurs before the process can execute the primitive 
that does the actual sleep on the event, the process sleeping may then · 
sleep forever. We prevent this situation by raising the hardware processor 
priority during the critical section so that no interrupts can occur, and thus 
only the process desiring the event can run until it is sleeping. Hardware 
processor priority is used in this manner to protect critical regions 
throughout the kernel, and is the greatest obstacle to porting UNIX to 
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multiple processor machines. However, this problem has not prevented 
such ports from being done repeatedly. 

Many processes such as text editors are I/O bound and usually will be 
scheduled mainly on the basis of waiting for I/0. Experience suggests that 
the UNIX scheduler performs best with I/O-bound jobs, as can be observed 
when there are several CPU-bound jobs, such as text formatters or language 
interpreters, running. 

What has been referred to here as CPU scheduling corresponds closely to 
the short-term scheduling of Chapter 4, although the negative-feedback 
property of the priority scheme provides some long-term scheduling in 
that it largely determines the long-term job mix. Medium-term scheduling 
is done by the swapping mechanism described in Section 19.6. 

19.6 • Memory Management 

Much of UNIX's early development was done on a PDP-11. The PDP-11 has 
only eight segments in its virtual address space, and each of these are at 
most 8192 bytes. The larger machines, such as the PDP-11/70, allow separate 
instruction and address spaces, which effectively double the address space 
and number of segments, but this address space is still relatively small. In 
addition, the kernel was even more severely constrained due to dedication 
of one data segment to interrupt vectors, another to point at the per­
process system data segment, and yet another for the UNIBUS (system I/O 
bus) registers. Further, on the smaller PDP-Us, total physical memory was 
limited to 256K. The total memory resources were insufficient to justify or 
support complex memory-management algorithms. Thus, VNIX swapped 
entire process memory images. 

19.6.1 Swapping 

Pre-3BSD UNIX systems use swapping exclusively to handle memory 
contention among processes: If there is too much contention, processes are 
swapped out until enough memory is available. Also, a few large processes 
can force many small processes out of memory, and a process larger than 
nonkernel main memory cannot be run at all. The system data segment 
(the u structure and kernel stack) and the user data segment (text [if 
nonsharable], data, and stack) are kept in contiguous main memory for 
swap-transfer efficiency, so external fragmentation of memory can be a 
serious problem. 

Allocation of both main memory and swap space is done first-fit. 
When the size of a process' memory image increases (due to either stack 
expansion or data expansion), a new piece of memory big enough for the 
whole image is allocated. The memory image is copied, the old memory is 
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freed, and the appropriate tables are updated. (An attempt is made in 
some systems to find memory contiguous to the end of the current piece, 
to avoid some copying.) If no single piece of main memory is large 
enough, the process is swapped out such that it will be swapped back in 
with the new size. 

There is no need to swap out a sharable text segment, because it is 
read-only, and there is no need to read in a sharable text segment for a 
process when another instance is already in core. That is one of the main 
reasons for keeping track of sharable text segments: less swap traffic. The 
other reason is the reduced amount of main memory required for multiple 
processes using the same text segment. 

Decisions regarding which processes to swap in or out are made by the 
scheduler process (also known as the swapper). The scheduler wakes up at 
least once every 4 seconds to check for processes to be swapped in or out. 
A process is more likely to be swapped out if it is idle, has been in main 
memory a long time, or is large; if no obvious candidates are found, oth~r 
processes are picked by age. A process is more likely to be swapped in if it 
has been swapped out a long time, or is small. There are· checks to 
prevent thrashing, basically by not letting a process be swapped out if it 
has not been in memory for a certain amount of time. 

If jobs do not need to be swapped out, the process table is searched for 
a process deserving to be brought in (determined by how small the process 
is and how long it has been swapped out). If there is not enough memory 
available, processes are swapped out until there is. 
· In 4.3BSD, swap space is allocated in pieces that are multiples of a 
power of 2 and a minimum size (for example, 32 pages), up to a maximum 
that is deterinined by the size of the swap-space partition on the disk. If 
several logical disk partitions may be used for swapping, they should be 
the same s1ze, for this reason. The several logical disk partitions should 
also be on separate disk arms to minimize disk seeks. 

Many UNIX systems still use the swapping scheme just described. All 
Berkeley UNIX systems, on the other hand, depend primarily on paging for 
memory-contention management, and depend only secondarily on 
swapping. A scheme similar in outline to the traditional one is used to 
determine which processes get swapped in or out, but the details differ 
and the influence of swapping is less. 

19.6.2 Paging 
Berkeley introduced paging to UNIX with 3BSD. VAX 4.2BSD is a demand­
paged ·virtual-memory system. External fragmentation of memory is 
eliminated by paging. (There is, of course, internal fragmentation, but it is 
n~gligible with a reasonably small page size.) Swapping can be kept to a 
minimum because more jobs can be kept in main memory, because paging 
allows execution with only parts of each process in memory. 
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Demand paging is done in a straightforward manner. When a process 
needs a page and the page is not there, a page fault to the kernel occurs, a 
frame of main memory is allocated, and the proper disk page is read into 
the frame. 

There are a few optimizations. If the page needed is still in the page 
table for the process, but has been marked invalid by the page-replacement 
process, it can be marked valid and used without any I/O transfer. Pages 
can similarly be retrieved from the list of free frames. When most processes 
are started, many of their pages are prepaged and are put on the free list 
for recovery by this mechanism. Arrangements may also be made for a 
process to have no prepaging on startup, but that is seldom done, as it 
results in more page-fault overhead, being closer to pure demand paging. 

If the page has to be fetched from disk, it must be locked in memory 
for the duration of the transfer. This locking ensures that the page will not 
be selected for page replacement. Once the page is fetched and mapped 
properly, it must remain locked if raw physical 110 is being done on it. 
· The page-replacement algorithm is more interesting. The v AX has no 
hardware memory page-reference bit. This lack makes many memory­
management algorithms, such as page-fault frequency, unusable. 4.2BSD 

uses a modification of the second chance (clock) algorithm described in 
Section 9.5.4. The map of all nonkemel main memory (the core map or 
cmap) is swept linearly and repeatedly by a software clock hand. When the 
clock hand reaches a given frame, if the frame is marked as in use by some 
software condition (for example, physical 110 is in progress using it), or the 
frame is already free, the frame is left untouched, and the clock hand 
sweeps to the next frame. Otherwise, the corresponding text or process 
page-table entry for this frame is located. If the entry is already invalid, the 
frame is added to the free list; otherwise, the page-table entry is made 
invalid but reclaimable (that is, if it does not get paged out by the next 
time it is wanted, it can just be made valid again). 4.3BSD Tahoe added 
support for systems which do implement the reference bit. On such 
systems, one pass of the clock turns the reference bit off, and a second 
pass places those pages whose reference bits remain off onto the free list 
for replacement. Of course, if the page is dirty (the VAX does have a dirty 
bit), it m~st first be written to disk before being added to the free list. 
Pageouts are done in clusters to improve performance. 

There are checks to make sure that the number of valid data pages for 
a process does· not fall too low, and to keep the paging device from being 
flooded with requests. There is also a mechanism by which a process may 
limit the amount of main memory it uses. 

The LRU clock hand is implemented in the pagedaemon, which is process 
2 (remember that the scheduler is process 0, and init is process 1). This 
process spends most of its time sleeping, but a check is done several times 
per second (scheduled by a timeout) to see if action is necessary; if it is, 
process 2 is awakened. Whenever the nu~ber of free frames· falls below a 
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threshold, lotsfree, the pagedaemon is awakened; thus, if there is always a 
large amount of free memory, the pagedaemon imposes no load on the 
system, because it never runs. 

The sweep of the clock hand each time the pagedaemon process is 
awakened (that is, the number of frames scanned, which is usually more 
than the number paged out), is determined both by the number of frames 
lacking to reach lotsfree and by the number of frames that the scheduler has 
determined are needed for various reasons (the more frames needed, the 
longer the sweep). If the number of frames free rises to lotsfree before the 
expected sweep is completed, the hand stops and the pagedaemo'n process· 
sleeps. The parameters that determine the range of the clock-hand sweep 
are determined at system startup according to the amount of main 
memory, such that pagedaemon does not use more than 10 percent of all CPU 
time. 

If the scheduler decides that the paging system is overloaded, processes 
will be swapped out whole until the overload is relieved. This swapping 
usually happens only if several conditions are met: load average is high, 
free memory has fallen below a low limit, minfree; and the average memory 
available over recent time is less than a desirable amount, desfree, where 
lotsfree > desfree > minfree. In other words, only a chronic shortage of 
memory with several processes trying to run will cause swapping, and 
even then free memory has to be extremely low at the moment. (An 
excessive paging rate or a need for memory by the kernel itself may also 
enter into the calculations, in rare cases.) Processes may be swapped by 
the scheduler, of course, for other reasons (such as simply for not running 
for a long time). 

The parameter lotsfree is usually one-quarter of the memory in the map 
that the clock hand sweeps, and desfree and minfree are usually the same 
across different systems, but are limited to fractions of available memory. 

Every process' text segment is by default shared and read-only. This 
scheme is practical with paging, because there is no external 
fragmentation, and the swap space gained by sharing more than offsets 
the negligible amount of overhead involved, as the kernel virtual space is 
large. 

CPU scheduling, swapping, and paging interact: the lower the priority 
of a process, the more likely that its pages will be paged out and the more 
likely that it will be swapped in its entirety. 

The age preferences in choosing processes to swap guard against 
thrashing, but paging does so more effectively. Ideally, processes will no~ 
be swapped out unless they are idle, because each process will need only a 
small working set of pages in main memory at any one time, and the 
pagedaemon will reclaim unused pages for use by other processes. 

The amount of memory the process will need is some fraction of that 
process' total virtual size, up to one-half if that process has been swapped 
out for a long time. 
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The VAX 512-byte hardware pages are too small for 110 efficiency, so 
they are clustered in groups of two so that all paging 110 is actually done in 
1024-byte chunks. In other words, the effective page size is not necessarily 
identical to the hardware page size of the machine, although it must be a 
multiple of the hardware page size. 

19.7 • File System 

The UNIX file system supports two main objects: files and directories. 
Directories are just files with a special format, so the representation of a 
file is the basic UNIX concept. 

19.7.1 Blocks and Fragments 
Most of the file system is taken up by data blocks, which contain whatever 
the users have put in their files. Let us consider how these data blocks are 
stored on the disk. 

The hardware disk sector is usually 512 bytes. A block size larger than 
512 bytes is desirable for speed. However, because UNIX file systems 
usually contain a very large number of small files, much larger blocks 
would cause excessive internal fragmentation. That is why the earlier 4.1BSD 

file system was limited to a 1024-byte (1K) block. 
The 4.2BSD solution is to use two block sizes for files which have no 

indirect blocks: all the blocks of a file are of a large block size (such as 8K), 
except the last. The last block is an appropriate multiple of a smaller 
fragment size (for example, 1024) to fill out the file. Thus, a file of size 
18,000 bytes would have two 8K blocks and one 2K fragment (which 
would not be filled completely). 

The block and fragment sizes are set during file-system creation 
according to the intended use of the file system: If many small files are 
expected, the fragment size should be small; if repeated transfers of large 
files are expected, the basic block size should be large. Implementation 
details force a maximum block-to-fragment ratio of 8 : 1, and a minimum 
block size of 4K, so typical choices are 4096: 512 for the former case and 
8192 : 1024 for the latter. 

Suppose data are written to a file in transfer sizes of 1K bytes, and the 
block and fragment sizes of the file system are 4K and 512 bytes. The file 
system will allocate a lK fragment to contain the data from the first 
transfer. The next transfer will cause a new 2K fragment to be allocated. 
The data from the original fragment must be copied into this new 
fragment, followed by the second ·lK transfer. The allocation routines do 
attempt to find the required space on the disk immediately following the 
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existing fragnl.ent so that no copying is necessary, but, if they cannot do 
so, up to seven copies may be required before the fragment becomes a 
block. Provisions have been made for programs to discover the block size 
for a file so that transfers of that size can be made, to avoid fragment 
recopying. 

19.7.2 Inodes 

A file is represented by an inode (Figure 11.7). An inode is a record that 
stores most of the information about a specific file on the disk. The name 
inode (pronounced EYE node) is derived from "index node" and was 
originally spelled "i-node"; the hyphen fell out of use over the years. The 
term is also sometimes spelled "I node". 

The inode contains the user and group identifiers of the file, the times 
of the last file modification and access, a count of the number of hard links 
(directory entries) to the file, and the type of the file (plain file, directory, 
symbolic link, character device, block device, or socket). In addition, the 
inode contains 15 pointers to the disk blocks containing the data contents 
of the file. The first 12 of these pointers point to direct blocks; that is, they 
contain addresses of blocks that contain data of the file. Thus, the data for 
small files (no more than 12 blocks) can be referenced immediately, 
because a copy of the inode is kept in main memory while a file is open. If 
the block size is 4K, then up to 48K of data may be accessed directly from 
the inode. 

The next three pointers in the inode point to indirect blocks. If the file is 
large enough to use indirect blocks, the indirect blocks are each of the 
major block size; the fragment size applies to only data blocks. The first 
indirect block pointer is the address of a single indirect block. The single 
indirect block is an index block, containing not data, but rather the 
addresses of blocks that do contain data. Then, there is a double-indirect­
block pointer, the address of a block that contains the addresses of blocks 
that contain pointers to the actual data blocks. The last pointer would 
contain the address of a triple indirect block; however, there is no need for 
it. The minimum block size for a file system in 4.2BSD is 4K, so files with as 
many as 232 bytes will use only double, not triple, indirection. That is, as 
each block pointer takes 4 bytes, we have 49,152 bytes accessible in direct 
blocks, 4,194,304 bytes accessible by a single indirection, and 4,294,967,296 
bytes reachable through double indirection, for a total of 4,299,210,752 
bytes, which is larger than 232 bytes. The number 232 is significant becaus~ 
the file offset in the file structure in main memory is kept in a 32-bit word. 
Files therefore cannot be larger than 232 bytes. Since file pointers are 
signed integers (for seeking backward and forward in a file), the actual 
maximum file size is 232-1 bytes. Two gigabytes is large enough for most 
purposes. 
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19.7.3 Directories 
There is no distinction between plain files and directories at this level of 
implementation; directory contents are kept in data blocks, and directories 
are represented by an inode in the same way as plain files. Only the inode 
type field distinguishes between plain files and directories. Plain files are 
·not assumed to have a structure, however, whereas directories have a 
specific structure. In Version 7, file names were limited to 14 characters, so 
directories were a list of 16-byte entries: 2 bytes for an inode number and 
14 bytes for a file name. 

In 4.2BSD, file names are of variable length, up to 255 bytes, so directory 
entries are also of variable length. Each entry contains first the length of 
the entry, then the file ;name and the inode number. This variable-length 
entry makes the directory management and search routines more complex, 
but greatly improves the ability of users to choose meaningful names for 
their files and directories, with no practical limit on the length of the 
name. 

The first two names in every directory are "." and " .. ". New directory 
entries are added to the directory in the first space available, generally 
after -the existing files. A linear search is used. 

The user refers to a file by a path name, whereas the file system uses 
the inode as its definition of a file. Thus, the kernel has to map the 
supplied user path name to an inode. The directories are used for this 
mapping. 

First, a starting directory is determined. If the first character of the 
path name is "/", the starting directory is the root directory. If the path 
name starts with any character other than a slash, the starting directory is 
the current directory of the current process. The starting directory is 
checked for proper file type and access permissions, and an error is 
returned if necessary. The inode of the starting directory is always 
available. 

The next element of the path name, up to the next"/", or to the end of 
the path name, is a file name. The starting directory is searched for this 
name, and an error is returned if the name is not found. If there is yet 
another element in the path name, the current inode must refer to a 
directory, and an error is returned if it does not, or if access is denied. This 
directory is searched as was the previous one. This process continues until 
the end of the path name is reached and the desired inode is returned. 
This step-by-step process is needed because at any directory a mount point 
(or symbolic link, see below) may be encountered, causing the translation 
to move to a different directory structure for continuation. 

Hard links are simply directory ehtries like any other. We handle 
symbolic links for the most part by starting the search over with the path 
name taken from the contents of the symbolic link. We prevent infinite 
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loops by counting the number of symbolic links encounter~d during a 
path-name search. and returning an error when a limit (eight) is exceeded. 

Nondisk files (such as devices) do not have data blocks allocated on 
the disk. The kernel notices these file types (as inqicateq in the inode) and 
calls appropriate drivers to handle I/O for them. 

Once the inode is found by, for instance, the open system call, a file 
structure is allocated to point to the inode. The file descriptor given to the 
user refers to this file strqcture. 43BSD added a. directory name cache to hold 
recent directory-to-inode translations. This improvement greatly increased 
file system performance. · · 

19.7.4 Mapping of a File Descriptor to an Inode 
System calls that refer to open files indicate the file by passing a file 
descriptor a.s an argument. The file descriptor is used by the kernel to 
index a table of open files for the current process. Each entry of the table 
contains a pointer to a fjle structure. This file structure in turn points to 
the inode; see Figure 19.7. The open file table has a fixed length which is 
only settable at boot time. Therefore, there is a fixed limit on the number 
of concurrently open files in a system. 

The read and write system calls do not take a position in the file as an 
argument. Rather, the kernel keeps a file offset, which is updated by an 
appropriate amount after each read or write according to the number of 
data actually transferred. The offset can be set directly by the lseek system 
call. If the file descriptor indexed an array of inode pointers instead of file 
pointers, this offset would have to be kept in the inode. Because· more 
than one process may open the same file, and each such process needs its 
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Figure 19.7 File-system control blocks. 
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own offset for the file, keeping the offset in the inode is inappropriate. 
Thus, the file structure is used to contain the offset. 

File structures are inherited by the child process after a fork, so several 
processes may share the same offset location for a file. 

The inode structure pointed to by the file structure is an in-core copy of 
the inode on the disk. The in-core inode has a few extra fields, such as a 
reference count of how many file structures are pointing at it, and the file 
structure has a similar reference count for how many file descriptors refer 
to it. When a count becomes zero, the entry is no longer needed and may 
be reclaimed and reused. 

19.7.5 Disk Structures 

The file system that the user sees is supported by data on a mass storage 
device - usually, a di$k. The user ordinarily knows of only one file 
system, but this one logical file system may actually consist of several 
physical file systems, each on a different device. Because device 
characteristics differ, each separate hardware device defines its own 
physical file system. In fact, it is generally desirable to partition large 
physical devices, such as disks, into multiple logical devices. Each logical 
device defines a physical file system. Figure 19.8 illustrates how a directory 
structure is partitioned into file systems, which are mapped onto logical 
devices, which are partitions of physical deVices. The sizes and locations 
of these partitions were coded into device drivers in earlier systems, but 
are maintained on the disk by 4.3BSD . 

. Partitioning a physical dev:ice into multiple file systems has several 
benefits. Different file systems can support different uses. Although most 
partitions would be used by the file system, .at least one will be necessary 
for a swap area for the virtual-memory software. Reliability is improved, 
because software damage is generally limited to only one file system. We 
can improve efficiency by varying the file-system parameters (such as the 
block and fragment sizes) for each partition. Also, separate file systems 
prevent one program from using all available space for a large file, because 
files cannot be split across file systems. Finally, disk backups are done 
per partition, and it is faster to search a backup tape for a file if the 
partition is smaller. Restoring the full partition from tape is also faster. 

The actual number of file systems on a drive varies according to the 
size of the disk and the purpose of the computer system as a whole. One 
file system, the root file system, is always available. Other file systems may 
be mounted- that is, integrated into the directory hierarchy of the root file 
system. 

A bit in the inode structure indicates that the inode has a file system 
mounted on it. A reference to this file causes the mount table to be searched 
to find the device number of the mounted device. The device number is 
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19.7.6 Implementations 
The user interface to the file system is simple and well defined, allowing 
the implementation of the file system itself to be changed without 
significant effect on the user. The file system was changed between 
Version 6 and Version 7, and again between Version 7 and 4BSD. For 
Version 7, the size of inodes doubled, the maximum file and file-system 
sizes increased, and the details of free-list handling and superblock 
information changed. At that time also, seek (with a 16-bit offset) became 
lseek (with a 32-bit offset), to allow specification of offsets in larger files, but 
few other changes were visible outside the kernel. 

In 4.0BSD, the size of blocks used in the file system was increased from 
512 bytes to 1024 bytes. Although this increased size produced increased 
internal fragmentation on the disk, it doubled throughput, due mainly to 
the greater number of data accessed on each disk transfer. This idea was 
later adopted by System V, along with a number of other ideas, device 
drivers, and programs. 

4.2BSD added the Berkeley Fast File System, which increased speed, 
and was accompanied by new features. Symbolic links required new 
system calls. Long file names necessitated the new directory system calls 
to traverse the now-complex internal directory structure. Finally, the 
truncate calls were added. The Fast File System was a success, and is now 
found in most implementations of UNIX. Its performance is made possible 
by its layout and allocation policies, which we discuss next. In Section 
11.2.4, we discussed changes made in Sunos to further increase disk 
throughput. 

19.7.7 Layout and Allocation Policies 
The kernel uses a <logical device number, inode number> pair to identify a 
file. The logical device number defines the file system involved. The inodes 
in the file system are numbered in sequence. In the Version 7 file system, 
all inodes are in an array immediately following a single superblock at the 
beginning of the logical device, with the data blocks following the inodes. 
The inode number is effectively just an index into this array. 

With the Version 7 file system, a block of a file can be anywhere on the 
disk between the end of the inode array and the end of the file system. 
Free blocks are kept in a linked list in the superblock. Blocks are pushed 
onto the front of the free li$t, and are removed from the front as needed to 
serve new files or to extend existing files. Thus, the blocks of a file may be 
arbitrarily far from both the inode and one another. Furthermore, the more 
a file system of this kind is used, the more disorganized the blocks in a file 
become. We can reverse this process only by reinitializing and restoring 
the entire file system, which is not a convenient task to perform. This 
process was described in Section 11.6.2. 
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Another difficulty is that the reliability of the file system is suspect. For 
speed, the superblock of each mounted file system is kept in memory. 
Keeping the superblock in memory allows the kernel to ·. access a 
superblock quickly, especially for using the free list. Every 30 seconds, the 
superblock is written to the disk, to keep the in-core and disk copies 
synchronized (by the update program, using the sync system call). 
However, it is not uncommon for system bugs or hardware failures to 
cause a system crash, which destroys the in-core superblock between 
updates to the disk. Then, the free list on disk does not reflect accurately 
the state of the disk; to reconstruct it, we must perform a lengthy· 
examination of all blocks in the file system. Note that this problem still 
remains in the new file system. 

The 4.2BSD file-system implementation is radically different from that of 
Version 7. This reimplementation was done primarily to improve efficiency 
and robustness, and most such changes are invisible outside the kernel. 
There were other changes introduced at the same time, such as symbolic 
links and long file names (up to 255 characters), that are visible at both the 
system-call and the user levels. Most of the changes required for these 
features were not in the kernel, however, but rather were in the programs 
that use them. 

Space allocation is especially different. The major new concept in 4.3BSD 
is the cylinder group. The cylinder group was introduced to allow 
localization of the blocks in a file. Each cylinder group occupies one or 
more consecutive cylinders of the disk, so that disk accesses within the 
cylinder group require minimal disk head movement. Every cylinder group 
has a superblock, a cylinder block, an array of inodes, and some data 
blocks (Figure 19. 9). 

The superblock is identical in each cylinder group, so that it can be 
recovered from any one of them in the event of disk corruption. The 
cylinder block contains dynamic parameters of the particular cylinder group. 
These include a bit map of free data blocks and fragments, and a bit map 

Figure 19.9 4.3BSD cylinder group. 
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of free inodes. Statistics on recent progress of the allocation strategies are 
also kept here. 

The header information in a cylinder group (the superblock, the 
cylinder block, and the in odes) is not always at -the beginning of the 
cylinder group. If it were, the header information for every cylinder group 
might be on the same disk platter; a single disk head crash could wipe out 
all of them. Therefore, each cylinder group has its header information at a 
different offset from the beginning of the group. 

It is common for the directory-listing command ls to read all the inodes 
of every file in a directory, making it desirable for all such inodes to be 
close together. For this reason, the inode for a file is usually allocated from 
the same cylinder group as is the inode of the file's parent directory. Not 
everything can be localized, however, so an inode for a new directory is 
put in a different cylinder group from that of its parent directory. The 
cylinder group chosen for such a new directory inode is that with the 
greatest number of unused inodes. 

To reduce disk head seeks involved in accessing the data blocks of a 
file, we allocate blocks from the same cylinder group as often as possible. 
Because a single file cannot be allowed to take up all the blocks in a 
cylinder group, a file exceeding a certain size (such as 2 megabytes) has 
further block allocation redirected to a different cylinder group, the new 
group being chosen from among those having more than average free 
space. If the file continues to grow, allocation is again redirected (at each 
megabyte) to yet another cylinder group. Thus, all the blocks of a small file 
are likely to be in the same cylinder group, and the number of long head 
seeks involved in accessing a large file is kept small. 

There are two levels of disk-block-allocation routines. The global policy 
routines select a desired disk block according to the considerations already 
discussed. The local policy routines use the specific information recorded 
in the cylinder blocks to choose a block near the one requested. If the 
requested block is not in use, it is returned. Otherwise, the block 
rotationally closest to the one requested in the same cylinder, or a block in 
a different cylinder but ~n the same cylinder group, is returned. If there are 
no more blocks in the cylinder group, a quadratic rehash is done among all 
the oth~r cylinder groups to find a block; if that fails, an exhaustive search 
is done. If'enough free space (typically 10 percent) is left in the file system, 
blocks usually are found where desired, the quadratic rehash and 
exhaustive search are not used, and performance of the file system does 
not degrade with use. 

Because of the increased efficiency of the Fast File System, typical disks 
are now utilized at 30 percent of their raw transfer capacity. This 
percentage is a marked improvement over that realized with the Version 7 
file system, which used about 3 percent of the bandwidth. 

4.3BSD Tahoe introduced the Fat Fast File System, which allows the 
number of inodes per cylinder group,· the number of cylinders per cylinder 



group, and the number of distinguished rotational positions 
the file system is created. 4.3BSD used to set these parameters 
the disk hardware type. 

19.8 I/O System 

One of the purposes of an operating system is to hide the 
specific hardware devices from the user. For example, 
presents a simple consistent storage facility (the file) 
underlying disk hardware. In UNIX, the peculiarities of I/O 

hidden from the bulk of the kernel itself by the 110 system. 
consists of a buffer caching system, general device driver 
for specific hardware devices. Only the device driver 
peculiarities of a specific device. The major parts of the 110 

diagrammed in Figure 19.10. 
There are three main kinds of IIO in 4.3BSD: block 

devices, and the socket interface. The socket interface, 
protocols and network interfaces, will be treated in Section 

Block devices include disks and tapes. Their distinguishing 
is that they are directly addressable in a fixed block 
bytes. A block-device driver is required to isolate 
cylinders, and so on, from the rest of the kernel. Block 
accessible directly through appropriate device special 
/devlrpO), but are more commonly accessed indirectly 
system. In either case, transfers are buffered through the 
which has a profound on efficiency. 

Character devices include terminals and line printers, 
everything (except network interfaces) that does 
buffer cache. For instance, /devlmem an interface 
memory, and ldevlnull a bottomless sink for 

Figure 19.10 4.3BSD kernel I/O structure. 
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of end-of-file markers. Some devices, such as high-speed graphics 
interfaces, may have their own. buffers or may always do 110 directly into 
the user's data space; because they do not use the block buffer cache, they 
are classed as character devices. 

Terminals and terminal-like devices use C-lists, which are buffers 
· smaller than those of the block buffer cache. 

Block devices and character devices are the two main device classes. 
Device drivers are accessed by one of two arrays of entry points. One array 
is for block devices; the other is for character devices. A device is 
distinguished by a class (block or character) and a device number. The device 
number consists of two parts. The major device number is used to index the 
array for character or block devices to find entries into the appropriate 
device driver. The minor device number is interpreted by the device driver 
as, for example, a logical disk partition or a terminal line. 

A device driver is connected to the rest of the kernel only by the entry 
points recorded in the array for its class, and by its use of common 
buffering systems. This segregation is important for portability, and also 
for system configuration. 

19.8.1 Block Buffer Cache 
The block devices use a block buffer cache. The buffer cache consists of a 
number of buffer headers, each of which can point to a piece of physical 
memory, as well as to a device number and a block number on the device. 
The buffer headers for blocks not currently in use are kept in several 
linked lists, one each for 

• Buffers recently used, linked in LRU order (the LRU list) 

• Buffers not recently used, or without valid contents (the AGE list) 

• EMPTY buffers with no physical memory associated with them 

The buffers in these lists are also hashed by device and block number for 
search efficiency. 

When a block is wanted from a device (a read), the cache is searched . 
. If the block is found, it is used, and no 110 transfer is necessary. If it is not 

found, a buffer is chosen from the AGE list, or the LRU list if AGE is empty. 
Then the device number and block number associated with it are updated, 
memory is found for it if necessary, and the new data are transferred into 
it from the device. If there are no empty buffers, the LRU buffer is written 
to its device (if it is modified) and the buffer is reused. 

On a write, if the block in question is already in the buffer cache, the 
new data are put in the buffer (overwriting any previous data), the buffer 
header is marked to indicate the buffer has been modified, and no 110 is 
immediately necessary. The data will be written when the b.uffer is needed 
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for other data. If the block is not found in the buffer cache, an empty 
buffer is chosen (as with a read) and a transfer is done to this buffer. 

Writes are periodically forced for dirty buffer blocks to minimize 
potential file-system inconsistencies after a crash. 

The number of data in a buffer in 4.3BSD is variable, up to a maximum 
over all file systems, usually 8K. The minimum size is the paging-cluster 
size, usually 1024 bytes. Buffers are page-cluster aligned, and any page 
cluster may be mapped into only one buffer at a time, just as any disk 
block may be mapped into only one buffer at a time. The EMPTY list holds 
buffer headers which are used if a physical memory block of BK ·is split to 
hold multiple, smaller blocks. Headers are needed for these blocks and are 
retrieved from EMPTY. 

The number of data in a buffer may grow as a user process writes 
more data following those already in the buffer. When this increase in the 
data occurs, a new buffer large enough to hold all the data is allocated, 
and the original data are copied into it, followed by the new data. If a 
buffer shrinks, a buffer is taken off the empty queue, excess pages are put 
in it, and that buffer is released to be written to disk. 

Some devices, such as magnetic tapes, require blocks to be written in a 
certain order, so facilities are provided to force a synchronous write of 
buffers to these devices, in the correct order. Directory blocks are also 
written synchronously, to forestall crash inconsistencies. Consider the 
chaos that could occur if many changes were made to a directory, but the 
directory entries themselves were not updated. 

The size of the buffer cache can have a profound effect on the 
performance of a system, because, if it is large enough, the percentage of 
cache hits can be high and the number of actual 110 transfers low. 

There are some interesting interactions among the buffer cache, the file 
system, and the disk drivers. When data are written to a disk file, they are 
buffered in the cache, and the disk driver sorts its output queue according 
to disk address. These two actions allow the disk driver to minimize disk 
head seeks and to write data at times optimized for disk rotation. Unless 
synchronous writes are required, a process writing to disk simply writes 
into the buffer cache, and the system asynchronously writes the data to 
disk when convenient. The user process sees very fast writes. When data 
are read from a disk file, the block 110 system does some read-ahead; 
however, writes are much nearer to asynchronous than are reads. Thus, 
output to the disk through the file system is often faster than is input for 
large transfers, counter to intuition. 

19.8.2 Raw Device Interfaces 
Almost every block device also has a character interface, and these are 
called raw device interfaces. Such an interface differs from the block interface 
in that the block buffer cache is bypassed. 
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Each disk driver maintains a queue of pending transfers. Each record 
in the queue specifies whether it is a read or a write, a main memory 
address for the transfer (usually in 512-byte increments), a device address 
for the transfer (usually the address of a disk sector); and a transfer size (in 
sectors). It is simple to map the information from a block buffer to what is 
required for this queue. 

It is almost as simple to map a piece of main memory corresponding to 
part of a user process' virtual address space. This mapping is what a raw 
disk interface, for instance, does. Unbuffered transfers directly to or from a 
user's virtual address space are thus allowed. The size of the transfer is 
limited by the physical devices, some of which require an even number of 
bytes. 

The kernel accomplishes transfers for swapping and paging simply by 
putting the appropriate request on the queue for the appropriate device. 
No special swapping or paging device driver is needed. 

The 4.2BSD file-system implementation was actually written and largely 
tested as a user process that used a raw disk interface, before the code was 
moved into the kernel. In an interesting about-face, the Mach operating 
system (Chapter· 20) has no file system per se. File systems can be 
implemented as user-level tasks. 

19.8.3 C-Lists 

Terminal drivers use a character buffering system. This system involves 
keeping small blocks of characters (usually 28 bytes) in linked lists. There 
are routines to enqueue and dequeue characters for such lists. Although 
all free character buffers are kept in a single free list, most device drivers 
that use them limit the number of characters that may be queued at one 
time for any given terminal line. 

A write system call to a terminal enqueues characters on a list for the 
device. An initial transfer is started, and interrupts cause dequeuing of 
characters and further transfers. · 

Input is similarly interrupt driven. Terminal drivers typically support 
two input queues, however, and conversion from the first (raw queue) to 
the other (canopical queue) is triggered by the interrupt routine putting an 
end-of-line characte.r on the raw queue. The process doing a read on the 
device is then awakened, and its system phase does the conversion; the 
characters thus put on the canonical queue are then available to be 
returned to the user process by the read. 

It is also possible to have the device driver bypass the canonical queue 
and return characters directly from the raw queue. This mode of operation 
is known as raw mode. Full-screen editors, and other programs that need 
to react to every :keystroke, use this mode. 
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19.9 • Interprocess Communication 

Many tasks can be accomplished in isolated processes, but many others 
require irtterprocess communication. Isolated computing systems have long 
served for many applications, but networking is increasingly important. 
With the increasing use of personal workstations, resource sharing is 
becoming more common. Interprocess communication has not traditionally 
been one of UNIX's strong points. 

Most UNIX systems have not permitted shared memory because the PDP-11 
hardware did not encourage it. System V does support a shared-memory 
facility, and one was planned for 4.2BSD, but was not implemented due to 
time constraints. Solaris 2 supports shared memory, as do many other 
current versions of UNIX. In any case, shared memory presents a problem 
in a networked environment, because network accesses can never be . as 
fast as memory accesses on the local machine. Although we could, of 
course, pretend that memory was shared between two separate machines 

_by copyirtg data across a network transparently, the major benefit of 
shared memory (speed) would be lost. 

19.9.1 Sockets 

The pipe (discussed in Section 19.4.3) is the IPC mechanism most 
characteristic of UNIX. A pipe permits a reliable unidirectional byte stream 
between two processes. It is traditionally implemented as an ordinary file, 
with a few exceptions. It has no name in the file system, being created 
instead by the pipe system call. Its size is fixed, and when a process 
attempts to write to a full pipe, the process is suspended. Once all data 
previously written into the pipe have been read out, writing continues at 
the beginning of the file (pipes are not true circular buffers). One benefit 
of the small size (usually 4096 bytes) of pipes 1s that pipe data are seldom 
actually written to disk; they usually are kept in memory by the normal 
block buffer cache. 

In 4.3BSD, pipes are implemented as a special case of the ·socket 
mechanism. The socket mechanism provides a general interface n.ot only to 
facilities such as pipes, which are local to one machine, but also to 
networking facilities. Even on the same machine, a pipe can be used only 
by two processes related through use of the fork system call. The socket 
mechanism can be used by unrelated processes. 

A socket is an endpoint of communication. A socket in use usually ha~ 
.. an address bound to it. The nature of the address depends on the 

communication domaiit: of the socket. A characteristic property of a domain is 
that processes communicating in the same domain use the same address 
format. A single socket can communicate in only one domain. 
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The three domains currently implemented in 4.3BSD are the UNIX 

domain (AF_UNIX), the Internet domain (AEJNET), and the XEROX Network 
Services (NS) domain (AENS). The address format of the. UNIX domain is 
ordinary file-system path names, such as /alpha/beta/gamma. Processes 
communicating in the Internet domain use DARPA Internet communications 
-protocols (such as TCPIIP) and Internet addresses, which consist of a 32-bit 
host number and a 32-bit port number (representing a rendezvous point on 
the host). 

There are several socket types, which represent classes of services. Each 
type may or may not be implemented in any communication domain. If a 
type is implemented in a given domain, it may be implemented by one or 
more protocols, which may be selected by the user: 

• Stream sockets: These sockets provide reliable, duplex, sequenced 
data streams. No data are lost or duplicated in delivery, and there are 
no record boundaries. This type is supported in the Internet domain by 
the TCP protocol. In the UNIX domain, pipes are implemented as a pair 
of communicating stream sockets. 

• Sequenced packet sockets: These sockets provide data streams like 
those of stream sockets, except that record boundaries are provided. 
This type is used in the XEROX AF ..NS protocol. 

• Datagram sockets: These sockets transfer messages of variable size in 
either direction. There is no guarantee that such messages will arrive in 
the same order they were sent, or that they will be unduplicated, or 
that they will arrive at all, but the original message (record) size is 
preserved in any datagram that does arrive. This type is supported in 
the Internet domain by the UDP protocol. 

• Reliably delivered message sockets: These sockets transfer messages 
that are guaranteed to arrive, and. that otherwise are like the messages 
transferred using datagram sockets. This type is currently 
unsupported. 

• Raw sockets: These sockets allow direct access by processes to the 
protocols that support the other socket types. The protocols accessible 
include not only the uppermost ones, but also lower-level protocols. 
For example, in the Internet domain, it is possible to reach TCP, IP 

beneath that, or an Ethernet protocol beneath that. This capability is 
useful for developing new protocols. 

The socket facility has a set of system calls specific to it. The socket 
system call creates a socket. It takes as arguments specifications of the 
communication domain, the socket type, and the protocol to be used to 
support that type. The value returned is a small integer called a socket 
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descriptor, which is in the same name space as file descriptors. The socket 
descriptor indexes the array of open "files" in the u structure in the kernel, 
and has a file structure allocated for it. The 4.3BSD file structure may point 
to a socket structure instead of to an inode. In this case, certain socket 
information (such as the socket's type, message count, and the data in its 
input and output queues) is kept directly in the socket structure. 

For another process to address a socket, the socket must have a name. 
A name is bound to a socket by the bind system call, which takes the 
socket descriptor, a pointer to the name, and the length of the name as a 
byte string. The contents and length of the byte string depend on the· 
address format. The connect system call is used to initiate a connection. 
The arguments are syntactically the same as those for bind; the socket 
descriptor represents the local socket and the address is that of the foreign 
socket to which the attempt to connect is made. 

Many processes that communicate using the socket IPC follow the 
client-server model. In this model, the server process provides a service to 
the client process. When the service is available, the server process listens 
on a well-known address, and the client process uses connect, as described 
previously, to reach the server. 

A server process uses socket to create a socket and bind to bind the 
well-known address of its service to that socket. Then, it uses the listen 
system call to tell the kernel that it is ready to accept connections from 
clients, and to specify how many pending connections the kernel should 
queue until the server can service them. Finally, the server uses the accept 
system call to accept individual connections. Both listen and accept take as 
an argument the socket descriptor of the original socket. Accept returns a 
new socket descriptor corresponding to the new connection; ·the original 
socket descriptor is still open for further connections. The server ,usually 
uses fork to produce a new process after the accept to service the client 
while the original server process continues to listen for more connections. 

There are also system calls for setting parameters of a connection and 
for returning the address of the foreign socket after an accept. 

When a connection for a socket type such as a stream socket is 
established, the addresses of both endpoints are known and no further 
addressing information is needed to transfer data. The ordinary read and 
write system calls may then be used to transfer data. 

The simplest way to terminate a connection and to destroy the 
associated socket is to use the close system call on its socket descriptor. 
We may also wish to terminate only one direction of communication of a 
duplex connection; the shutdown system call can be used for this purpose. · 

Some socket types, such as datagram sockets, do not support 
connections; instead, their sockets exchange datagrams that must be 
addressed individually. The system calls sendto and recvfrom are used for 
such connections. Both take as arguments a socket descriptor, a buffer 
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pointer and the length, and an address-buffer pointer and length. The 
address buffer contains the address to send to for sendto and is filled in 
with the address of the datagram just received by recvfrom. The number 
of data actually transferred is returned by both system calls. 

The select system call can be used to multiplex data transfers on 
several file descriptors and/or socket descriptors. It can even be used to 
allow one server process to listen for client connections for many services 
and to fork a process for each connection as the connection is made. The 
server does a socket, bind, and listen for each service, and then does a 
select on all the socket descriptors. When select indicates activity on a 
descriptor, the server does an accept on it and forks a process on the new 
descriptor returned by accept, leaving the parent process to do a select 
again. 

19.9.2 Network Support 
Almost all current UNIX systems support the UUCP network facilities, which 
are mostly used over dial-up telephone lines to support the UUCP mail 
network and the USENET news network. These are, however, rudimentary 
networking facilities, as they do not support even remote login, much less 
remote procedure call or distributed file systems. These facilities are also 
almost completely implemented as user processes, and are not part of the 
operating system proper. 

4.3BSD supports the DARPA Internet protocols UDP, TCP, IP, and ICMP on a 
wide range of Ethernet, token-ring, and ARPANET interfaces. The 
framework in the kernel to support this is intended to facilitate the 
implementation of further protocols, and all protocols are accessible via the 
socket interface. The first version of the code was written by Rob Gurwitz 
of BBN as an add-on package for 4.1BSD. 

The International Standards Organization's (ISO) Open System 
Interconnection ( OSI) Reference Model for networking prescribes seven 
layers of network protocols and strict methods of communication between 
them. An implementation of a protocol may communicate only with a peer 
entity speaking the same protocol at the same layer, or with the protocol­
protocol interface of a protocol in the layer immediately above or below in 
the same · system. The ISO networking model is implemented in 4.3BSD 
Reno and 4.4BSD. 

The 4.3BSD networking implementation, and to a certain extent the 
socket facility, is more oriented toward the ARPANET Reference Model (ARM). 

The ARPANET in its original form served as a proof of concept for many 
networking concepts, such as packet switching and protocol layering. The 
ARPANET was retired in 1988 because the hardware that supported it was 
no longer state of the art. Its successors, such as the NSFNET and the 
Internet, are even larger, and serve as a communications utility for 
researchers and as a testbed for Internet gateway research. The ARM 
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predates the ISO model; the ISO model was in large part inspired by the 
ARPANET research. 

Although the ISO model is often interpreted as requiring a limit of one 
protocol communicating per layer, the ARM allows several protocols in the 
same layer. There are only four protocol layers in the ARM, plus 

• Process/Applications: This layer subsumes the application, 
presentation, and session layers of the ISO model. Such user-level 
programs as the File Transfer Protocol (FTP) and Telnet (remote login) 
exist at this level. 

• Host-Host: This layer corresponds to ISO's transport and the top part 
of its network layers. Both the Transmission Control Protocol (TCP) and 
the Internet Protocol (IP) are in this layer, with TCP on top of IP. TCP 
corresponds to an ISO transport protocol, and IP performs the 
addressing functions of the ISO network layer. 

• Network Interface: This layer spans the lower part of the ISO network 
layer and all of the data-link layer. The protocols involved here depend 
on the physical network type. The ARPANET uses the IMP-Host 
protocols, whereas an Ethernet uses Ethernet protocols. 

• Network Hardware: The ARM is primarily concerned with software, so 
there is no explicit network hardware layer; however, any actual 
network will have hardware corresponding to the ISO hardware layer. 

The networking framework in 4.3BSD is more generalized than is either the 
ISO model or the ARM, although it is most closely related to the ARM; see 
Figure 19.11. 

User processes communicate with network protocols (and thus with 
other processes on other machines) via the socket facility, which 
corresponds to the ISO Session layer, as it is responsible for setting up and 
controlling communications. 

Sockets are supported by protocols - possibly by several, layered one 
on another. A protocol may provide services such as reliable delivery, 
suppression of duplicate transmissions, flow control, or addressing, 
depending on the socket type being supported and the services required 
by any higher protocols. 

A protocol may communicate with another protocol or with the 
network interface that is appropriate for the network hardware. There is 
little restriction in the general framework on what protocols may 
communicate with what other protocols, or on how many protocols may be 
layered on top of one another. The user process may, by means of the raw 
socket type, directly access any layer of protocol from the uppermost used 
to support one of the other socket types, such as streams, down to a raw 
network interface. This capability is used by Touting processes and also for 
new protocol development. 
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models and 

There tends to be one network-interface driver 
type. The network interface is responsible for 
specific to the local network being addressed. 
that the protocols using the interface do not 

characteristics. 
The functions of the network interface depend largely on 

hardware, which is whatever is necessary for the network 
connected. Som.e networks may support reliable transmission 
but most do not. Some networks provide broadcast 

not. 
The socket facility and the networking framework use a common set 

memory buffers, or mbufs. These are intermediate in 
buffers used by the block I/O system and the C-lists 

An mbuf is 128 bytes long, 112 bytes which 
the rest used for pointers to link mbuf into 

indicators pf how much of the data area is actually in use. 
Data are ordinarily passed between layers (socket-protocol, 

protocol, or protocol-network interface) in mbufs. This ability to 
buffers containing the data eliminates some data copying, but 
frequently a need to remove or add protocol headers. It is also 

efficient for many purposes to be able to hold data that occupy an area 
size of the memory-management page. Thus, it possible for 

an mbuf to reside not in the mbuf itself, but rather elsewhere in 
There an mbuf page table for this purpose, as well as a pool 
dedicated to mbuf use. 
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19.10 • Summary 

The early advantages of UNIX were that this system was written in a high­
level language, was distributed in source form, and had provided powerful 
operating-system primitives on an inexpensive platform. These advantages 
led to UNIX's popularity at educational, research, and government 
institutions, and eventually in the commercial world. This popularity first 
produced many strains of UNIX with variant and improved facilities .. Market 
pressures are currently leading to the consolidation of these versions. One 
of the most influential versions is 4.3BSD, developed at Berkeley for the VAX,· 

and later ported to many other platforms. 
UNIX provides a file system with tree-structured directories. Files are 

supported by the kernel as unstructured sequences of bytes. Direct access 
and sequential access are supported through system calls and library 
routines. 

Files are stored as an array of fixed-size data blocks with perhaps a 
trailing fragment. The data blocks are found by pointers in the inode. 
Directory entries point to inodes. Disk space is allocated from cylinder 
groups to minimize head movement and to improve performance. 

UNIX is a multiprogrammed system. Processes can easily create new 
processes with the fork system call. Processes can communicate with pipes 
or, more generally, sockets. They may be grouped into jobs that may be 
controlled with signals. 

Processes are represented by two structures: the process structure and 
the user structure. CPU scheduling is a priority algorithm with dynamically 
computed priorities that reduces to round-robin scheduling in the extreme 
case. 

4.3BSD meinory management is swapping supported by paging. A 
pagedaemon process uses a modified second-chance page-replacement 
algorithm to keep enough free frames to support the executing processes. 

Page and file I/O uses a block buffer cache to minimize the amount of 
actual I/0. Terminal devices use a separate character buffering system. 

Networking· support is one of the most important features in 4 .. 3BSD. · 
The socket concept provides the programming mechanism to access other 
processes, even across a network. Sockets provide an interface to several 
sets of protocols. 

• Exercises 

19.1 What are the major differences between 4.3BSD UNIX and SYSVR3? Is 
one system "better" than the other? Explain your answer. 

19.2 How were the design goals of UNIX different from those of oth~r 
operating systems during the early stages of UNIX development? 
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19.3 Why are there many different versions of UNIX currently available? 
In what ways is this diversity an advantage to UNIX? In what ways is · 
it a disadvantage? · 

19.4 What are the advantages and disadvantages of writing an operating 
system in a high-level language, such as C? 

19.5 In what circumstances is the system-call sequence fork execve most 
appropriate? When is vfork preferable? 

19.6 Does 4.3BSD UNIX give scheduling priority to 110 or CPU-bound 
processes? For what reason does it differentiate between these 
categories, and why is one given priority over the other? How does 
it know which of these categories fits a given process? 

19.7 Early UNIX systems used swapping for inemory management, 
whereas 4.3BSD used paging and swapping. Discuss the advantages 
and disadvantages of the two memory methods. 

19.8 Describe the modifications to a file system that the 4.3BSD kernel 
makes when a process requests the creation of a new file ltmplfoo 
and writes to that file sequentially until the file size reaches 20K. 

19.9 Directory blocks in 4.3BSD are written synchronously when they are 
changed. Consider what would happen if they were written 
asynchronously. Describe the state of the flle system if a crash 
occurred after all the files in a directory were deleted but before the 
directory entry was updated on disk. · 

19.10 Describe the process that is needed to recreate the free list after a 
crash in 4.1BSD. 

19.11 What effects on system performance would the following changes to 
4.3BSD have? Explain your answers. 

a. The merging of the block buffer cache and the process paging 
space 

b. Clustering disk 110 into larger chunks 

c. Implementing and using shared memory to pass data between 
processes, rather than using RPC or sockets 

d. Using the ISO seven-layer networking model, rather than the 
ARM network model 

19.12 What socket type should be used to implement an intercomputer 
file-transfer program? What type should be used for a program that 
periodically tests to see whether another computer is up on the 
network? Explain your answer. 
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CHAPTER 20 

THE 
MACH 
SYSTEM 

The Mach operating system is designed to incorporate the many recent 
innovations in operating-system research to produce a fully functional, 
technically advanced system. Unlike UNIX, which was developed without 
regard for multiprocessing, Mach incorporates multiprocessing support 
throughout. Its multiprocessing support is also exceedingly flexible, 
ranging from shared memory systems to systems with no memory shared 
between processors. Mach is designed to run on computer systems 
ranging from one to thousands of processors. In addition, Mach is easily 
ported to many varied computer architectures. A key goal of Mach is to be 
a distributed system capable of functioning on heterogeneous hardware. 

Although many experimental operating systems are being designed, 
built, and used, Mach is better able to satisfy the needs of the masses than 
the others are because it offers full compatibility with UNIX 4.3BSD. As such, 
it provides a unique opportunity for us to compare two functionally 
similar, but internally dissimilar, operating systems. The order and 
contents of the presentation of Mach is different from that of UNIX to reflect 
the differing emphasis of the two systems. There is no section on the user 
interface, because that component is similar in 4.3BSD when running the BSD 

server. As we shall see, Mach provides the ability to layer emulation of 
other operating systems as well, and they can even run concurrently. · 

20.1 • History 

Mach traces its .ancestry to the Accent operating system developed at 
Carnegie Mellon University (eMU). Although Accent pioneered a number 
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novel operating system concepts, its utility was limited by its 
execute UNIX applications and its strong ties to a single 
architecture that made it difficult to port. Mach's communication 
and philosophy are derived from Accent, but many other 
portions of the system (for example, the virtual memory system, 
thread management) were developed from scratch. An important 
the Mach effort was support for multiprocessors. 

Mach's development followed an evolutionary path from BSD UNIX 
systems. Mach code was initially developed inside the 4.2BSD 
BSD kernel components being replaced by Mach components as 
components were completed. The BSD components were updated 
when that became available. By 1986, the virtual 
communication subsystems were running on the DEC VAX computer 
including multiprocessor versions of the VAX. Versions for the IBM RT/PC 

and for SUN 3 workstations followed shortly. 1987 saw the 
the Encore Multimax and Sequent Balance multiprocessor 
including task and thread support, as well as the first official 
the system, Release 0 and Release 1. 

Through Release 2, Mach provides compatibility 
corresponding BSD systems by including much of BSD' s code in 
The new features and capabilities of Mach make the kernels 
releases larger than the corresponding BSD kernels. Mach 3 
moves the BSD code outside of the kernel, leaving a 
microkernel. This system implements only basic Mach 
kernel; ali UNIX-specific code has been evicted to run in 
Excluding UNIX-specific code from the kernel allows 
with another operating system, or the simultaneous execution 
operating-system interfaces on top of the microkerneL In 
user-mode implementations have been developed for DOS, the u .. .,_ • .._u 

OSF/1 
OS/2 

HPUX 

4.3 BSD 

Figure 20.1 Mach 3 structure. 

database 
system 
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operating system, and OSF/1. This approach has similarities to the virtual­
machine concept, but the virtual machine is defined by software (the Mach 
kernel interface), rather than by hardware. As of Release 3.0, Mach 
became available on a wide va~iety of systems, including single-processor 
SUN, Intel, IBM, and DEC machines, and multiprocessor DEC, Sequent, and 
Encore systems. 

Mach was propelled into the forefront of industry attention when the 
Open Software Foundation ( OSF) announced in 1989 that it would use 
Mach 2.5 as the basis for its new operating system, OSF/1. The initial 
release of OSF/1 occurred a year later, and now competes with UNIX System· 
V, Release 4, the operating system of choice among UNIX International (UI) 
members. OSF members include key technological companies such as IBM, 
DEC, and HP. Mach 2.5 is also the basis for the operating system on the 
NeXT workstation, the brainchild of Steve Jobs, of Apple Computer fame. 
OSF is evaluating Mach 3 as the basis for a future operating-system release, 
and research on Mach continues at CMU and OSF, and elsewhere. 

20.2 • Design Principles 

The Mach operating system was designed to provide basic mechanisms 
that most current operating systems lack. The goal is to design. an 
operating system that is BSD compatible and, in addition, excels in the 
following areas. 

• Support for diverse architectures, including multiprocessors . with 
varying degrees of shared memory access: Uniform Memory Access 
(UMA), Non-Uniform Memory Access (NUMA), and No Remote Memory 
Access (NORMA) 

• Ability to function with varying intercomputer network speeds, from 
wide-area networks to high-speed local-area networks and tightly 
coupled multiprocessors 

• Simplified kernel structure, with a small number of abstractions; in 
turn these abstractions are sufficiently general to allow other operating 
systems to be implemented on top of Mach 

• Distributed operation, providing network transparency to clients and 
an object-oriented organization both internally and externally 

• Integrated memory management and interprocess communication, to 
provide both efficient communication of large numbers of data, and 
communication-based memory management 

• Heterogeneous system support, to make Mach widely available and 
interoperable among computer systems from multiple vendors 
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The designers of Mach have been heavily influenced by BSD (and by 
UNIX in general), whose benefits include 

• A simple programmer interface, with a good set of primitives and a 
consistent set of interfaces to system facilities 

• Easy portability to a wide class of uniprocessors 

• An extensive library of utilities and applications 

• The ability to combine utilities easily via pipes 

Of course, BSD was seen as having several drawbacks that need to be 
redressed: 

• A kernel that has become the repository of many redundant features -
and that consequently is difficult to manage and modify 

• Original design goals that made it difficult to provide support for 
multiprocessors, distributed systems, and shared program libraries; for 
instance, because the kernel was designed for uniprocessors, it has no 
provisions for locking code or data that other processors might be 
using 

• Too many fundamental abstractions, providing too many similar, 
competing means to accomplish the same task 

It should be clear that the development of Mach continues to be a huge 
undertaking. The benefits of such a system are equally large, however. 
The operating system runs on many existing uni- and multiprocessor 
architectures, and can be easily ported to future ones. It makes research 
easier, because computer scientists can add features via user-level code, 
instead of having to write their own tailor-made operating system. Areas 
of experimentation include operating systems, databases, reliable 
distributed systems, multiprocessor languages, security, and distributed 
artificial intelligence. In its current instantiation, the Mach system is 
usually as efficient as are other major versions of UNIX when performing 
.similar tasks. 

20.3 • System Components 

To achieve the design goals of Mach, the developers reduced the 
operating-system functionality to a small set of basic abstractions, out of 
which all other functionality can be derived. The Mach approach is to 
place as little as possible within the kernel, but to make what is there 
powerful enough that all other features can be implemented at user level. 
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Mach's design philosophy is to have a simple, extensible kernel, 
concentrating on communication facilities. For instance, all requests to the 
kernel, and all data movement among processes, are handled through one 
communication mechanism. By limiting all data operations to one 
mechanism, Mach is able to provide systemwide protection to its users by 
protecting the communications mechanism. Optimizing this one 
communications path ca:h result in significant performance gains, and. is 
simpler than trying to optimize several paths. Mach is extensible, because 
many traditionally kernel-based functions can be implemented as user-level 
servers. For instance, all pagers (including the default pager) can be 
implemented externally and called by the kernel for the user. 

Mach is an example of an object-oriented system where the data and the 
operations that manipulate that data are encapsulated into an abstract 
object. Only the operations of the object are able to act on the entities 
defined in it. The details of how these operations are implemented are 
hidden, as are the internal data structures. Thus, a programmer can use an 
object only by invoking its defined, exported operations. A programmer 
can change the internal operations without changing the interface 
definition, so changes and optimizations do not affect other aspects of 
system operation. The object-oriented approach supported by Mach allows 
objects to reside anywhere in a network of Mach systems, transparent to 
the user. The port mechanism, discussed later in this section, makes all of 
this possible. 

Mach's primitive abstractions are the heart of the system, and are as 
follows: 

• A task is an execution environment that provides the basic unit of 
resource allocation. A task consists of a virtual address space and 
protected access to system resources via ports. A task may contain one 
or more threads. 

• A thread is the basic unit of execution, and must run in the context of 
a task (which provides the address space). All threads within a task 
share the tasks' resources (ports, memory, and so on). There is no 
notion of a 11 process 11 in Mach. Rather, a traditional process would be 
implemented as a task with a single thread of control. 

• A port is the basic object reference mechanism in Mach, and is 
implemented as a kernel-protected communication channel. 
Communication is accomplished by sending messages to ports; 
messages are queued at the destination port if no thread is 
immediately ready to receive them. Ports are protected by kernel­
managed capabilities, or port rights; a task mtist have a port right to 
send a message to a port. The programmer invokes an operation on 
an object by sending a message to a port associated with that object. 
The object being represented by a port receives the messages. 
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• A port set is a group of ports sharing a common message queue. A 
thread can receive messages for a port set, and thus service multiple 
ports. Each received message identifies the individual port (within the 
set) that it was received from; the receiver can use this to identify the 
object referred to by the message. 

• A message 1s the basic method of communication between threads in 
Mach. It is a typed collection of data objects; for each object, it may 
contain the actual data or a pointer to out-of-line data. Port rights are 
passed in messages; passing port rights in messages is the only way to 
move them among tasks. (Passing a port right in shared memory does 
not work, because the Mach kernel will not permit the new task to use 
a right obtained in this manner.) 

• A memory object is a source of memory; tasks may access it by 
mapping portions (or the entire object) into their address spaces. The 
object may be managed by a user-mode external memory manager. One 
example is a file managed by a file server; however, a memory object 
can be any object for which memory-mapped access makes sense. A 
mapped buffer implementation of a UNIX pipe is one example. 

Figure 20.2 illustrates these abstractions, which we shall elaborate in the 
remainder of this chapter. 

An unusual feature of Mach, and a key to the system's efficiency, is 
the blending of memory and interprocess-cominunication features. 
Whereas some other distributed systems (such as Solaris, with its NFS 
features) have special-purpose extensions to the file system to extend it 
over a network, Mach provides a general-purpose,· extensible merger of 
memory and messages at the heart of its kernel. This feature not only 
allows Mach to be used for distributed and parallel programming, but also 
helps in the implementation of the kernel itself. , 

Mach connects memory management and communication (IPC) by 
allowing each to be used in the implementation of the other. Memory 
management is based on the use of memory objects. A memory object is 
represented by a port (or ports), and IPC messages are sent to this port to 
request operations (for example, pagein, pageout) on the object. Because IPC 
is used, memory objects may reside on remote systems and be accessed 
transparently. The kernel caches the contents of memory objects in local 
memory. Conversely, memory-management techniques are used in the 
implementation of message passing. Where possibl~, Mach passes 
messages by moving pointers to shared memory objects, rather than by 
copying the object itself. 

IPC tends to involve considerable system overhead and is generally less 
efficient than is communication accomplished through shared memory, for 
intrasystem messages. Because Mach is a message-based kernel, it is 
important that message handling be carried out efficiently.· Most of the 



task 

Figure 20.2 Mach's basic abstractions. 

inefficiency of message handling in traditional operating 
either the copying of messages from one task to another 
intracomputer) or low network transfer speed 

To solve these problems, Mach uses 
remapping to transfer the contents of large messages. In 
message transfer modifies the receiving task's address 
copy of the contents. Virtual copy, or 
used to avoid or delay the actual copying of the data. 
advantages to this approach: 

• Increased flexibility in memory management to user 

• Greater generality, allowing the virtual copy 
tightly and loosely coupled computers 

• Improved performance over UNIX message passing 

• task migration; because ports are location 
and all its ports can be moved from one machine 
that previously communicated with the moved task can 
so because they reference a task by only its ports 
messages to these ports 
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We shall detail the operation of process management, .IPC, and memory 
management. Then, we shall discuss Mach's chameleonlike ability to 
support multiple operating-system interfaces. 

20.4 • Process Management 

A task can be thought of as a traditional process that does not have an 
instruction pointer or a register set. A task contains a virtual address 
space, a set of port rights, and accounting information. A task is a passive 
entity that does nothing unless it has one or more threads executing in it. 

20.4.1 Basic Structure 
A task containing one thread is similar to a UNIX process. Just as a fork 
system call produces a new UNIX process, Mach creates a new task to 
emulate this behavior. The new task's memory is a duplicate of the 
parent's address space, as dictated by the inheritance attributes of the 
parent's memory. The new task contains one thread, which is started at 
the same point as the creating fork call in the parent. Threads and tasks 
may also be suspended and resumed. 

Threads are especially useful in server applications, which are common 
in UNIX, since one task can have multiple threads to service multiple 
requests to the task. They also allow efficient use of parallel computing 
resources. Rather than having one process on each processor (with the 
corresponding performance penalty a11d operating-system overhead), a 
task may have its threads spread among parallel processors. Threads also 
add efficiency to user-level programs. For instance, in UNIX, an entire 
process must wait when a page fault occurs, or when a system call is 
executed. In a task-with multiple threads, only the thread that causes the 
page fault or executes a system call is delayed; all other threads continue 
executing. Because Mach has kernel-supported threads (see Section 4.5), 
the threads have some cost associated with them. They must have 
supporting data structures in the kernel, and more complex kernel­
scheduling algorithms must be provided. These algorithms and thread 
.states are-discussed in Section 4.5. 

At the user level, threads may be in one of two states. 

• Running: The thread is either executing or waiting to be allocated a 
processor. A thread is considered to be running even if it is blocked 
within the kernel (waiting for a page fault to be satisfied, for instance). 

• Suspended: The thread is neither executing on a processor nor waiting 
to be allocated a processor. A thread can resume its execution only if 
it is returned to the running state. 
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These two states are also associated with a task. An operation on a task 
affects all threads in a task, so suspending a task involves suspending all 
the threads in it. Task and thread suspensions are separate, independent 
mechanisms, however, so resuming a thread in a suspended task does not 
resume the task. · 

Mach provides primitives from which thread-synchronization tools can 
be built. This primitives provision is consistent with Mach's philosophy of 
providing minimum yet sufficient functionality in the kernel. The Mach 
IPC facility can be used for synchronization, with processes exchanging 
messages at rendezvous points. Thread-level synchronization is· provided· 
by calls to start and stop threads at appropriate times. A suspend count is 
kept for each thread. This count allows multiple suspend calls to be 
executed on a thread, and only when an equal number of resume calls 
occur is the thread resumed. Unfortunately, this feature has its own 
limitation. Because it is an error for a start call to be executed before a: 
stop call (the suspend count would become negative), these routines 

. cannot be used to synchronize shared data access. However, wait and 
signal operations associated with semaphores, and used for 
synchronization, can be implemented via the IPC calls. This method will be 
discussed in Section 20.5. · 

20.4.2 The C Threads Package 

Mach provides low-level but flexible routines instead of polished, large, 
and more restrictive functions. Rather than making programmers work at 
this low level, Mach provides many higher-level interfaces for 
programming in C and other languages. For instance, the C Threads 
package provides multiple threads of control, shared variables, mutual 
exclusion for critical sections, and condition variables for synchronization. 
In fact, C Threads is one of the major influences of the POSIX P Threads 
standard, which many operating systems are being modified to support. 
As a result there are strong similarities between the C Threads and P 
Threads programming interfaces. The thread-control routines include calls 
to perform these tasks: 

• Create a new thread within a task, given a function to execute and 
parameters as input. The thread then executes concurrently with the 
creating thread, which receives a thread identifier when the call 
returns. 

• Destroy the calling thread, and return a value to the creating thread. 

• Wait for a specific thread to terminate before allowing the calling 
thread to continue. This call is a synchronization tool, much like the 
UNIX wait system calls. 
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• Yield use of a processor, signaling that the scheduler may run another 
thread at this point. This call is also useful in the presence of a 
preemptive scheduler, as it can be used to relinquish the CPU 
voluntarily before the time quantum (scheduling interval) expires if a 
thread has no use for the CPU. 

Mutual exclusion is achieved through the use of spinlocks, as were 
discussed in Chapter 6. The routines associated with mutual exclusion are 
these: 

• The routine mutexJllloc dynamically creates a mutex variable. 

• The routine mutex-free deallocates a dynamically created mutex variable. 

• The routine mutex_lock locks a mutex variable. The executing thread 
loops in a spinlock until the lock is attained. A deadlock results if a 
thread with a lock tries to lock the same mutex variable. Bounded 
waiting is not guaranteed by the C Threads package. Rather, it is 
dependent on the hardware instructions used to implement the mutex 
routines. 

• The routine mutex_unlock unlocks a mutex variable, much like the 
typical signal operation of a semaphore. 

General synchronization without busy waiting can be achieved through the 
use of condition variables, which can be used to implement a condition critical 
region or a monitor, as was described in Chapter 6. A condition variable is 
associated with a mutex variable, and reflects a Boolean state of that 
variable. The routines associated with general synchronization are these: 

• The routine conditionJllloc dynamically allocates a condition variable. 

• The routine condition-free deletes a dynamically created condition 
variable allocated as result of conditionJllloc. 

• The routine condition_wait unlocks the associated mutex variable, and 
blocks the thread until a condition.....signal is executed on the condition 
variable, indicating that the event being waited for may have occurred. 
The mutex variable is then locked, and. the thread continues. A 
condition.....signal does not guarantee that the condition still holds . when 
the unblocked thread finally returns from its condition_wait call, so the 
awakened thread must loop, executing the condition_wait routine until it 
is unblocked and the condition holds. 

As an example of the C Threads routines, consider the bounded-buffer 
synchronization problem of Section 6.5.1. The producer and consumer are 
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repeat 

produce an item into nextp 

mutexJock(mutex); 
while(full) 

condition_wait(nonfull, mutex); 

add nextp to buffer 

condition_signal( nonempty); 
mutex_unlock( mutex); 

until false; 

Figure 20.3 The structure of the producer process. 

represented as threads that access the common bounded-buffer pool. We 
use a mutex variable to protect the buffer while it is being updated. Once 
we have exclusive access to the buffer, we use condition variables to block 
the producer thread if the buffer is full, and to block the consumer thread 
if the buffer is empty. Although this program normally would be written 
in the C language on a Mach system, we shall use the familiar Pascal-like 
syntax of previous chapters for clarity. As in Chapter 6, we assume that 
the buffer consists of n slots, each capable of holding one item. The mutex 
semaphore provides mutual exclusion for accesses to the buffer pool and is 
initialized to the value 1. The empty and full semaphores count the number 
of empty and full buffers, respectively. The semaphore empty is initialized 
to the value n; the semaphore full is initialized to the value 0. The 
condition variable nonempty is true while the buffer has items in it, and 
nonfull is true if the buffer has an empty slot. 

The first step includes the allocation of the mutex and condition 
variables: 

mutex_alloc(mutex); 
condition_alloc( nonempty, non full); 

The code for the producer thread is shown in Figure 20.3; the code for the 
consumer thread is shown in Figure 20.4. When the program terminates,. 
the mutex and condition variables need to be deallocated: 

mutex_free(mutex); 
condition_free( nonempty, non full); 
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repeat 
mutexJ.ock(mutex); 
while( empty) 

condition_wait(nonempty, mutex); 

remove an item from the buffer to nextc 

condition_signal(nonfull); 
mutex_unlock(mutex); 

consume the item in nextc 

until false; 

Figure 20.4 The structure of the consumer process. 

20.4.3 The CPU Scheduler 
The CPU scheduler for a thread-based multiprocessor operating system is 
more complex than are its process-based relatives. There are generally 
more threads in a multithreaded system than there are processes in a 
multitasking system. Keeping track of multiple processors is also difficult, 
and is a relatively new area of research. Mach uses a simple policy to keep 
the scheduler manageable. Only threads are scheduled, so no knowledge 
of tasks is needed in the scheduler. All threads compete equally for 
resources, including time quanta. 

Each thread has an associated priority number ranging from 0 through 
127, which is based on the exponential average of its usage of the CPU. 
That is, a thread that recently used the CPU for a large amount of time has 
the lowest priority. Mach uses the priority to place the thread in one of 32 
global run queues. These queues are searched in priority order for waiting 
threads when a processor becomes idle. Mach also keeps per-processor, or 
local, run queues. A local run queue is used for threads that are bound to 
an individual processor. For instance, a device driver for a device 

·connected to an individual CPU must run on only that CPU. 
Instead of there being a central dispatcher that assigns threads to 

processors, each processor consults the local and global run queues to 
select the appropriate next thread to run. Threads in the local run queue 
have absolute priority over those in the global queues, because it is 
assumed that they are performing some chore for the kernel. The run 
queues (like most other objects in Mach) are locl<ed when they are 
modified to avoid simultaneous changes by multiple processors. To speed 
dispatching of threads on the global run queue, Mach maintains a list of 
idle processors. 
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Additional scheduling difficulties arise from the multiprocessor nature 
of Mach. A fixed time quantum is not appropriate because there may be 
fewer r~nable threads than there are available processors, for instance. It 
would be wasteful to interrupt a thread with a context switch to the kernel 
when that thread's quantum runs out, only to have the thread be placed 
right back in the running state. Thus, instead of using a fixed-length 
quantum, Mach varies the size of the time quantum inversely with the 

· total number of threads in the system. It keeps the time quantum over the 
entire system constant, however. For example, in a system with 10 
processors, 11 threads, and a 100-millisecond quantum, a context switch 
needs to occur on each processor only once per second to maintain the 
desired quantum. 

Of course, there are still complications to be considered. Even 
relinquishing the CPp while waiting for a resource is more difficult than it 
is on traditional operating systems. First, a call must be issued by a thread 
to alert the scheduler that the thread is about to block. This alert avoids 
race conditions and deadlocks, which could occur when the execution 
takes place in a multiprocessor environment. A second call actually causes 
the thread to be moved off the run queue until the appropriate event 
occurs. There are many other internal thread states that are used by the 
scheduler to control thread execution. 

20.4.4 Exception Handling 
Mach was designed to provide a single, simple, consistent exception­
handling system, with support for standard as well as user-defined 
exceptions. To avoid redundancy in the kernel, Mach uses kernel 
pri:rriitives whenever possible. For instance, an exception handler is just 
another thread in the task in which the exception occurs. Remote 
procedure call (RPC) messages are used to synchronize the execution of the 
thread causing the exception (the "victin() and that of the handler, and to 
communicate information about the exception between the victim and 
handler. Mach exceptions are also used to emulate the BSD signal 
package, as described later in this section. 

Disruptions to normal program execution come in two varieties: 
internally generated exceptions and external interrupts. Interrupts are 
asynchronously generated disruptions of a thread or task, whereas 
exceptions are caused by the occurrence of unusual conditions during a 
thread's execution. Mach's general-purpm~e exception facility is used for 
error detection and debugger support. This facility is also useful for other 
reasons, such as taking a core dump of a bad task, allowing tasks to 
handle their own errors (mostly arithmetic), and emulating instructions not 
implemented in hardware. 

Mach supports two different granularities of exception handling. Error 
handling is supported by per-thread exception handling, whereas 
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debuggers use per-task handling. It makes little sense to try to debug only 
one thread, or to have exceptions from multiple threads invoke multiple 
debuggers. Aside from this distinction, the only other difference between 
the two types of exceptions. lies in their inheritance from a parent task. 
Taskwide exception-handling facilities are pq.ssed from the parent to child 
tasks, so debuggers are able to manipulate an entire tree of tasks. Error 
handlers are not inherited, and default to no handler at thread- and task­
creation time. Finally, error handlers take precedence over debuggers if 
the exceptions occur simultaneously. The reason for this approach is that 
error handlers are normally part of the task, and therefore should execute 
normally even in the presence of a deb1.1gger. 

Exception handling proceeds as follows: 

• The victim thread causes notification of an exception's occurrence via a 
raise RPC message being sent to t~e handler. 

• The victim then calls a routine to wait until the exception is handled. 

• The handler receives notification of the exception, usually including 
information about the exception, the thread, and the task causing the 
exception. 

• The handler performs its function according to the type of exception. 
The handler's action involves clearing the exception, causing the victim 
to resume, or terminating the victim thread.. 

To support the execution of BSD programs, Mach needs to support BSD­

style signals. Signals provide software generated interrupts and 
exceptions. Unfortunately, signals are of limited functionality in 
multithreaded operating systems. The first problem is that, in UNIX, a 
signal's handler must be a routine in the process receiving the signal. If 
the signal is caused by a problem in the process itself (for example, a 
division by zero), the problem cannot be remedied, because a process has 
limited access to its own context. A seconcl, more troublesome aspect of 
signals is that they were designed for only single-threaded programs. For 
instance, it makes no sense for all threads in a task to get a signal, but how 
.can a signal be seen by only one thread? 

Because the signal system must work correctly with multithreaded 
applications for Mach to run 4.3BSD . programs, signals could not be 
abandoned. Producing a functionally correct signal package required 
severed rewrites of the code, however!· A final problem with UNIX signals is 
that they can be lost. This loss occurs when another signal of the same 
type occurs before the first is handled. Mach exceptions are queued as a 
result of their RPC implementation. 

Externally generated signals, including those sent from one BSD process 
to another, are processed _by the BSD server section of the Mc;tch 2.5 kernel. 
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Their behavior is therefore the same as it is under BSD. Hardware 
exceptions are a different matter, because BSD programs expect to receive 
h(lrdware exceptions as signals. Therefore, a hardware excepti()n caused 
by a thread must arrive at the thread as a signal. So that this result is 
produced, hardware exceptions are converted to exception RPCs. For tasks 
and threads that do not make explicit use of the Mach exception-handling 
facility, the destination of this RPC defaults to an in-kernel task. This task 
has only one purpose: Its thread runs in a continuous loop, receiving these 
exception RPCs. For each RPC, it converts the exception into the 
appropriate signal, which is sent to the thread that caused the hardware 
exception. It then completes the RPC, dearing the original exception 
condition. With the completion of the RPC, the initiating thread reenters 
the run state. It immediately sees the signal and executes its signal­
handling code. In this manner, all hardware exceptions begin in a uniform 
way - as exceptions RPCs. Threads not designed to handle such 
exceptions, however, receive the exceptions as they would on a standard 
BSD system- as signals. In Mach 3.0, the signal-handling code is moved 
entirely into a server, but the overall structure and flow of control is 
similar to those of Mach 2.5. 

20.5 • Interprocess Communication 

Most commercial operating systems, such as UNIX, provide communication 
between processes, and between hosts with fixed, global names (internet 
addresses). There is no location independence of facilities, because any 
remote system needing to use a facility must know the name of the system 
providing th(:l.t facility. Usually, data in the messages are untyped streams 
of bytes. Mach simplifies this picture by sending messages between 
location-independent ports. The messages contain typed data for ease of 
interpretation. All BSD communication methods can be implemented with 
this simplified system. 

The two components of Mach IPC are ports and messages. Nmost 
everything in Mach is an object, and all objects are addressed via their 
communications ports. Messages are sent to these ports to initiate 
operations on the objects by the routines that implement the objects. By 
depending on only ports and messages for all communication, Mach 
delivers location independence of objects and security of communication. 
Data independence is provided by the NetMsgServer task, as discussed 
later. Mach ensures security by requiring that message senders and 
receivers have rights. A right consists of a port name and a capability 
(send or receive) on· that port, and is much like a capability in object­
oriented systems. There can be only one task with receive rights to any 
given port, but many tasks may have send rights. When an object is 
created, its creator also allocates a port to represent the object, and obtains 
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the access rights to that port. Rights can be given out by the creator of the 
object (including the kernel), and are passed in messages. If the holder of a 
receive right sends that right in a message, the receiver of the message 
gains the right and the sender loses it. A· task may allocate ports to allow 
access to any objects it owns, or for communication. The destruction of 
either a port or the holder of the receive right causes the revocation of all 
rights to that port, and the tasks holding send rights can be notified if 
desired. 

20.5.1 Ports 
A port is implemented as a protected, bounded queue within the kernel of 
the system on which the object resides. If a queue is full, a sender may 
abort the send, wait for a slot to become available in the queue, or have 
the kernel deliver the message for it. 

There are several system calls to provide the port functionality: 

• Allocate a new port in a specifieq task and give the caller's task all 
access rights to the new port. The port name is returned. 

• Deallocate a task's access rights to a port. If the task holds the receive 
right, the port is destroyed and all other tasks with send rights are, 
potentially, notified. 

• Get the current status of a task's port. 

• Create a backup port, which is given the receive right for a port if the 
task containing the receive right requests its de allocation (or 
terminates). 

When a task is created, the kernel creates several ports for it. The 
function task_self returns the name of the port that represents the task in 
calls to the kernel. For instance, for a task to allocate a new port, it would 
call port_allocate with task_self as the name of the task that will own the port. 
Thread creation results in a similar thread....self thread kernel port. This 
scheme is similar to the standard process-id concept found in UNIX. 
Another port created for a task is returned by task_notify, and is the name 
·of the port to which the kernel will send event-notification messages (such 
as notifications of port terminations). 

Ports can also be collected into port sets. This facility is useful if one 
thread is to service requests coming in on multiple ports (for example, for 
multiple objects). A port may be a member of at most one port set at a 
time, and, if a port is in a set, it may not be used directly to receive 
messages. Instead, the message will be routed to the port set's queue. A 
port set may not be passed in messages, unlike a port. Port sets are 
objects that serve 3. purpose similar to the 4.3BSD select system call, but 
they are more efficient. 



20.5 .2 Messages 

A message consists of a fixed-length header and a variable 
typed data objects. The header contains the destination's port 
name of the reply port to which return messages should be 
length of the message (see Figure 20.5). The data in the 
data) were limited to less than 8K in Mach 2.5 systems, but 
no limit. Any data exceeding that limit must be sent in multiple 
or more likely via reference by a pointer in a message (out-of-line 
we shall describe shortly). Each data section may be a 
(numbers or characters), port rights, or pointers to out-of-line 
section has an associated type, so that the receiver can unpack 
correctly even if it uses a byte ordering different from that 
sender. The kernel also inspects the message for certain 
For instance, the kernel must process port information within a In~::~::;::;e:u!.:t: 
either by translating the port name into an internal 
address, or by forwarding it for processing to the 
shall explain. 

The use of pointers in a provides the means 
entire address space of a task in one single message. The 
process pointers to out-of-line data, as a pointer to data 
address space would be invalid in the receiver's - especially if 
and receiver reside on different systems! Generally, systems 

· destination port 
reply port 
size I operation 
pure typed data 
port rights 
out-of-line-data 

Figure 20.5 Mach messages. 
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by copying the data from the sender to the receiver. 
technique can be inefficient, especially in the case of large m(~ss,aJ;?;es, 
optimizes this procedure. The data referenced by a pointer in a 
being sent to a port on the same system are not copied between 
and the receiver. Instead, the address map of the receiving 
modified to include a copy-on-write copy of the pages of the 
This operation is much faster than a data copy, and makes 
efficient. In essence, message passing is implemented via 
management. 

In Version 2.5, this operation was implemented in two 
pointer to a region of memory caused the kernel to map that ,.-.o.,n.r.n 

memory into its own space temporarily, setting the sender's mE~mon 
to copy-on-write mode to ensure that any modifications .did not 
original version of the data. When a message was received 
destination, the kernel moved its mapping to the receiver's ................ _oo 

using a newly allocated region of virtual memory within that task. 
In Version 3, this process was simplified. The kernel 

structure that would be a copy of the region if it were part of an aa·an:!ss 
map. On receipt, this data structure is added to the receiver's 
becomes a copy accessible to the receiver. 

The newly allocated regions in a task do not need to be 
with previous ailocations, so Mach virtual memory is said to 
consisting of regions of data separated by unallocated addresses. 
message transfer is shown in Figure 20.6. 

A map kernel map Bmap A map kernel map Bmap 

I 
I 
I 
I 
I 
I 
I 
I 
I I ___ 
I 

send operation receive operation 

Figure 20.6 Mach message transfer. 
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20.5.3 The NetMsgServer 
For a message to be sent between computers, the destination of a message 
must be located, and the message must be transmitted to the destination. 
UNIX traditionally leaves these mechanisms to the low-level network 
protocols, which require the use of statically assigned communication 
endpoints (for example, the port number for services based on TCP or UDP). 
One of Mach's tenets is that all objects within the system are location 
independent, and that the location is transparent to the user. This tenet 
requires Mach to provide location-transparent naming and tral).sport to . 
extend IPC across multiple computers. This naming and transport are 
performed by the Network Message Server or NetMsgServer, a user-level 
capability-based networking daemon that forwards messages between 
hosts. It also provides a primitive networkwide name service that allows 
tasks to register ports for lookup by tasks on any other computer in the 
network. Mach ports can be transferred only in messages, and messages 
must be sent to ports; the primitive name service solves the problem of 
transferring the first port that allows tasks on different computers to 
exchange messages. Subsequent IPC interactions are fully transparent; the 
NetMsgServer tracks all rights and out-of-line memory passed in 
intercomputer messages, and arranges for the appropriate transfers. The 
NetMsgServers maintain among themselves a distributed database of port 
rights that have been transferred between computers and of the ports to 
which these rights correspond. 

The kernel uses the NetMsgServer when a message needs to be sent to 
a port that is not on the kernel's comput~r. Mach's kernel IPC is used to 
transfer the message to the local NetMsgServer. The NetMsgServer then 
uses whatever network protocols are appropriate to transfer the message to 
its peer on the other computer; the notion of a NetMsgServer ·is protocol­
independent, and NetMsgServers have been built that use various 
protocols. Of course, the NetMsgServers involved in a transfer must agree 
on the protocol used. Finally, the NetMsgServer on the destination 
computer uses that kernel's IPC to send the message to the correct 
destination task. The ability to extend local IPC transparently across nodes 
is supported by the use of proxy ports. When a send right is transferred 
from one computer to another, the NetMsgServer on the destination 
computer creates a new port, or proxy, to represent the original port at the 
destination. Messages sent to this proxy are received by the NetMsgServer 
and are forwarded transparently to the original port; this procedure is one 
example of how the NetMsgServers cooperate to make a proxy· 
indistinguishable from the original port. 

Because Mach is designed to function in a network of heterogeneous 
systems, it must provide a way to send between systems data that are 
formatted in a way that is understandable by both the sender and receiver. 
Unfortunately, computers vary the format in which they store types of 
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data. For instance, an integer on one system might take 2 bytes 
and the most significant byte might be stored before the 
one. Another system might reverse this ordering. The 
therefore uses the type information stored in a message to 
data from the sender's to the receiver's format. In this way, 
represented correctly when they reach their destination. 

The NetMsgServer on a given computer accepts RPCs that addr 
and remove network ports from the NetMsgServer' s name 
security precaution, a port value provided in an add request 
that in the remove request for a thread to ask for a port name 
removed from the database. 

As an example of the NetMsgServer's operation, consider a 
node A sending a message to a port that happens to be in a task on 
B. The program simply sends a message to a port to which it 
right. The message is first passed to the kernel, which 
first recipient, the NetMsgServer on node A. The 
contacts (through its database information) the NetMsgServer on 
and sends the message. The NetMsgServer on node B then 
message to the kernel with the appropriate local port 
kernel finally provides the message to the receiving task when a 
that task executes a msg_receive calL This sequence of events is 
Figure 20.7. 

Mach 3.0 provides an alternative to the NetMsgServer as 
improved support for NORMA multiprocessors. The NORMA IPC 

system A system B 

kernel kernel 

sender receiver 

Figure 20.7 Network IPC forwarding by NetMsgServer. 
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of Mach 3.0 implements functionality similar to the NetMsgServer directly 
in the Mach kernel, providing much more efficient internode IPC for 
multicomputers with fast interconnection hardware. For example, the 
time-consuming copying of messages between the NetMsgServer and the 
kernel is eliminated. Use of NORMA IPC does not exclude use of the 
NetMsgServer; the NetMsgServer can still be used to provide MACH IPC 
service over networks that link a NORMA multiprocessor to other 
computers. In addition to NORMA IPC, Mach 3.0 also provides support for 
memory management across a NORMA system, and the ability for a task in 
such a system to create child tasks on nodes other than its own.. These 
features support the implementation of a single-system-image operating 
syste:rn on a NORMA multiprocessor; the multiprocessor behaves like one 
large system, rather than like an assemblage of smaller systems (for both 
users and applications). 

20.5.4 Synchronization Through IPC 

The IPC mechanism is extremely flexible, and is used throughout Mach. 
For example, it may be used for thread synchronization. A port may be 
used as a synchronization variable, and may have n messages sent to it for 
n resources. Any thread wishing to use a resource executes a receive call 
on that port. The thread will receive a message if the resource is available; 
otherwise, it will wait on the port until a message is available there. To 
return a resource after use, the thread can send a message to the port. In 
this regard, receiving is equivalent to the semaphore operation wait, and 
sending is equivalent to signal. This method can be used for synchronizing 
semaphore operations among threads in the same task, but cannot be used 
for synchronization among tasks, because only one task may have receive 
rights to a port. For more general-purpose semaphores, a simple daemon 
may be written that implements the same method. 

20.6 • Memory Management 

Given the object-oriented nature of Mach, it is not surpnsmg that a 
principle abstraction in Mach is the memory object. Memory objects are 
used to manage secondary storage, and generally represent files, pipes, or 
other data that are mapped into virtual memory for reading and writing 
(Figure 20.8). Memory objects may be backed by user-level memory' 
managers, which take the place of the more traditional kernel-incorporated 
virtual-memory pager found in other operating systems. In contrast to the 
traditional approach of having the kernel provide management of 
secondary storage, Mach treats secondary-storage objects (usually files) as 
it does all other objects in the system. Each object has a port associated 
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address space 

inheritance 

current/max 

Figure 20.8 Mach virtual memory task address 

with it, and may be manipulated by messages being 
Memory objects - unlike the memory-management routines in 
traditional kernels - allow experimentation with new 
manipulation algorithms. 

20.6.1 Basic Structure 

The virtual address space of a task is generally sparse, 
holes of unallocated space. For instance, a memory-mapped 
in some set of addresses. Large messages are also transferred 
memory segments. For each of these segments, a section 
address is used to provide the threads with access to the 
items are mapped or removed from the address space, holes 
memory appear in the address space. 
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Mach makes no attempt to compress the address space, although a 
task may fail (crash) if it has no room for arequ:ested region in its address 
space. Given that address spaces are 4 gigabytes or more, this limitation is 
not currently a problem. However, maintaining a regular page table for a 
4 gigabyte address space for each task, especially one with holes in it, 
would use excessive amounts of memory (1 megabyte or more). The key 
to sparse address spaces is that page-table space is used for only currently 
allocated regions. When a page fault occurs, the kernel must check to see 
whether the page is in a valid region, rather than simply indexing into the 
page table and checking the entry. Although the resulting lookup is more 
complex, the benefits of reduced memory-storage requirements and 
simpler address-space maintenance make the approach worthwhile. 

Mach also has system calls to support ·standard virtual-memory 
functionality, including the allocation, deallocation, and copying of virtual 
memory. When allocating a new virtual-memory object, the thread may 
provide an address for the object or may let the kernel choose the address. 
Physical memory is not allocated until pages in this object are accessed. 
The object's backing store is managed by the default pager (discussed in 
Section 20.6.2). Virtual-memory objects are also allocated automatically 
when a task receives a message containing out-of-line data. 

Associated system calls return information about a memory object in a 
task's address space, change the access protection of the object, and 
specify how an object is to be passed to child tasks at the time of their 
creation (shared, copy-on-write, or not present). 

20.6.2 User-Level Memory Managers 

A secondary-storage object is usually mapped into the virtual address 
space of a task. Mach maintains a cache of memory-resident pages of all 
mapped objects, as in other virtual-memory implementations. However, a 
page fault occurring when a thread accesses a nonresident page is executed 
as a message to the object's port. The concept of a memory object being 
created and serviced by nonkernel tasks (unlike threads, for instance, 
which are created and maintained by only the kernel) is important. The 
end result is that, in the traditional sense, memory can be paged by user­
written memory managers. When the object is destroyed, it is up to the 
memory manager to write back any changed pages to secondary storage. 
No assumptions are made by Mach about the content or importance of 
memory objects, so the memory objects are independent of the kernel. 

There are several circumstances in which user-level memory managers 
are insufficient. For instance, a task allocating a new region of virtual 
memory might not have a memory mari.ager assigned to that region, since 
it does not represent a secondary-storage object (but must be paged), or a 
memory manager could fail to perform pageout. Mach itself also needs a 
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memory manager to take care of its memory needs. For these cases, Mach 
provides a default memory manager. The Mach 2.5 default memory manager 
uses the standard file system to store data that must be written to disk, 
rather than requiring a separate swap space, as in 4.3BSD. In Mach 3.0 (and 
OSF/1), the default memory manager is capable of using either files in a 
standard filesystem .or dedicated disk partitions. The default memory 
manager has an interface similar to that of the user-level ones, but with 
some extensions to support its role as the memory manager that can be 
relied on to perform pageout when user-level managers fail to do so. 

Pageout policy is implemented by an internal kernel thread, the pageout 
daemon. A paging algorithm based on FIFO with second chance (Section 
9.5.4) is used to select pages for replacement. The selected pages are sent 
to the appropriate manager (either user level or default) for actual pageout. 
A user-level manager may be more intelligent than the default manager, 
and may implement a different paging algorithm suitable to the object it is 
backing (that is, by selecting some other page and forcibly paging it out). 
If a user-level manager fails to reduce the resident set of pages when asked 
to do so by the kernel, the default memory manager is invoked and it 
pages out the user-level manager to reduce the user-level manager's 
resident set size. Should the user-level manager recover from the problem 
that prevented it from performing its own pageouts, it will touch these 
pages (causing the kernel to page them in again), and can then page them 
out as it sees fit. 

If a thread needs access to data in a memory object (for instance, a 
file), it invokes the vm_map system call. Included in this system call is a 
port which identifies the object, and the memory manager which is 
responsible for the region. The kernel executes calls on this port when data 
are to be read or written in that region. An added complexity is that the 
kernel makes these calls asynchronously, since it would not be reasonable 
for the kernel to be waiting on a user-level thread. Unlike the situation 
with pageout, the kernel has no recourse if its request is not satisfied by 
the external memory manager. The kernel has no knowledge of the 
contents of an object or of how that object must be manipulated. 

Memory managers are responsible for the consistency of the contents 
of a memory object mapped by tasks on different machines (tasks on a 
·single machine share a single copy of a mapped memory object). Consider 
a situation in which tasks on two different machines attempt to modify the 
same page of an object concurrently. It is up to the manager to decide 
whether these modifications must be serialized. A conservative manager 
implementing strict memory consistency would force the modifications to 
be serialized by granting write access to only one kernel at a time. A more 
sophisticated manager could allow both accesses to proceed concurrently 
(for example, if the manager knew that the two tasks were modifying 
distinct areas within the page, and that it could merge the modifications 
successfully at some future time). Note that most external memory 
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managers written for Mach (for example, those implementing mapped 
files) do not implement logic for dealing with multiple kernels, due to the 
complexity of such logic. 

When the first vm_map call is made on a memory object, the kernel 
sends a message to the memory manager port passed in the call, invoking 
the memory_manager_init routine, which the memory manager must provide 
as part of its support of a memory object. The two ports passed to the 
memory manager are a control port and a name port. The control port is 
used by the memory manager to provide data to the kernel (for example, 
pages to be made resident). Name ports are used throughout Mach. They 
do not receive messages, but rather are used simply as a point of reference 
and comparison. Finally, the memory object must respond to a 
memory_manager_init call with a memory_object....set_attributes call to indicate 
that it is ready to accept requests. When all tasks with send rights to a 
memory object relinquish those rights, the kernel deallocates, the object's 
ports, thus freeing the memory manager and memory object for 
destruction. 

There are several kernel calls that are needed to support, external 
memory managers. The vm_map call has already been discussed in the 
paragraph above. There are also commands to get and set attributes and 
to provide page-level locking when it is required (for instance, after a page 
fault has occurred but before the memory manager has returned the 
appropriate data). Another call is used by the memory manager to pass a 
page (or multiple pages, if read-ahead is being used) to the kernel in 
response to a page fault. This call is necessary since the kernel invokes the 
memory manager asynchronously. There are also several calls to allow the 
memory manager to report errors to the kernel. 

The memory manager itself must provide support for several calls so 
that it can support an object. We have already discussed memory_objecLinit 
and others. When a thread causes a page fault on a memory object's page, 
the kernel sends a memory_objecLdata_request to the memory object's port on 
behalf of the faulting thread. The thread is placed in wait state until the 
memory manager either returns the page in a memory_objecLdata_provided 
call, or returns an appropriate error to the kernel. Any of the pages that 
have been modified, or any precious pages that the kernel needs to remove 
from resident memory (due to page aging, for instance), are sent to the 
memory object via memory_()bject_data_write. Precious pages are pages that 
may not have been modified, but that cannot be discarded as they 
otherwise would, because the memory manager no longer retains a copy. 
The memory manager declares these pages to be precious and expects the 
kernel to return them when they are removed from memory. Precious 
pages save unnecessary duplication and copying of memory. 

Again, there are several other calls for locking, protection information 
and modification, and the other details with which all virtual memory 
systems must deal. 
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In the. current version, Mach does not allow external memory 
managers to affect the page:.. replacement algorithm directly. Mach does 
not export the memory-access information that would be needed for an 
external task to select the least recently used page, Jor instance. Methods 
of providing such information are currently under investigation. An 
external memory manager is still useful for a variety of reasons, how~ver: 

• It may reject the kernel's replacement victim if it knows of a better 
candidate (for instance, MRU page replacement). 

• It may monitor the memory object it is backing, and request pages to 
be paged out before the memory usage invokes Mach's pageout 
daemon. 

• It is especially important in maintaining consistency of secondary 
storage for threads on multiple processors, as we shall show in Section 
20.6.3. 

• It can control the order of operations on secondary storage, to enforce 
consistency constraints demanded by database management systems. 
For example, in transaction logging, transactions must be written to a 
log file on disk before they modify the database data. 

• It can control mapped file access. 

20.6.3 Shared Memory 
Mach uses shared memory to reduce the complexity of various system 
facilities, as well as to provide these features in an efficient manner. 
Shared memory generally provides extremely fast interprocess 
communication, reduces overhead in file management, and helps to 
support multiprocessing and database management. Mach does not use 
shared memory for all these traditional shared-memory roles, however. 
For instance, all threads in a task share that task's memory, so no formal 
shared-memory facility is needed within a task. However, Mach must still 
provide traditional shared memory to support other operating-system 
constructs_, such as the UNIX fork system call. 
· It is obviously difficult for tasks on multiple machines to share 
memory, and to maintain data consistency. Mach does not try to solve this 
problem directly; rather, it provides facilities to allow the problem to be 
solved. Mach supports consistent shared memory only when the memory 
is shared by tasks running on processors that share memory. A parent task 
is able to declare which regions of memory are to be inherited by its 
children, and which are to be readable-writable. This scheme is different 
from copy-on-write inheritance, in which each task maintains its own copy 
of any changed pages. A writable object is addressed from each task's 
address map, and all changes are made to the same copy~ The threads 
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within the tasks are responsible for coordinating changes to memory so 
that they do not interfere with one another (by writing to the same 
location concurrently). This coordination may be done through normal 
synchronization methods: critical sections or mutual-exclusion locks. 

For the case of memory shared among separate machines, Mach allows 
the use of external memory managers. If a set of unrelated tasks wishes to 
share a section of memory, the tasks may use the same external memory 
manager and access the same secondary-storage areas through it. The 
implementor of this system would need to write the tasks and the external 
pager. This pager could be as simple or as complicated as needed. A 
simple implementation would allow no readers while a page. was being 
written to. Any write attempt would cause the pager to invalidate the 
page in all tasks currently accessing it. The pager would then allow the 
write and would revalidate the readers with the new version of the page. 
The readers would simply wait on a page fault until the page again became 
available. Mach provides such a memory manager: the Network Memory 
Server (NetMemServer). For multicomputers, the NORMA configuration of 
Mach 3.0 provides similar support as a standard part of the kernel. This 
XMM subsystem allows multicomputer systems to use external memory 
managers that do not incorporate logic for dealing with multiple kernels; 
the XMM subsystem is responsible for maintaining data consistency among 
multiple kernels that share memory, and makes these kernels appear to be 
a single kernel to the memory manager. The XMM subsystem also 
implements virtual copy logic for the mapped objects that it manages. This 
virtual copy logic includes both copy-on-reference among multicomputer 
kernels, and sophisticated copy-on-write optimizations. 

20.7 • Programmer Interface 

There are several levels at which a programmer may work within Mach. 
There is, of course, the system-call level, which, in Mach 2.5, is equivalent 
to the 4.3BSD system-call interface. Version 2.5 includes most of 4.3BSD as 
one thread in the kernel. A BSD system call traps to the kernel and is 
serviced by this thread on behalf of caller, much as standard BSD would 
handle it. The emulation is not multithreaded, so it has limited efficiency. 

Mach 3.0 has moved from the single-server model to support of 
multiple servers. It has therefore become a true microkernel without the 
full features normally found in a kernel. Rather, full functionality can be 
provided via emulation libraries, servers, or a combination of the two. In 
keeping with the definition of a microkernel, the emulation libraries and 
servers run outside the kernel at user level. In this way, multiple 
operating systems can run concurrently on one Mach 3.0 kernel. 

An emulation library is a set of routines that lives in a read-only part of 
a program's address space. Any operating-system calls the program makes 
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are translated into subroutine calls to the library. Single-user operating 
systems, such as MS-DOS and the Macintosh operating system, have been 
implemented solely as emulation libraries. For efficiency reasons, the 
emulation library lives in the address space of the program needing its 
functionality, but in theory could be a separate task. 

More complex operating systems are emulated through the use of 
libraries and one or more servers. System calls that cannot be 
implemented in the library are redirected to the appropriate server. 
Servers can be multithreaded for improved efficiency. BSD and OSF/1 are 
implemented as single multithreaded servers. Systems can be decomposed 
into multiple servers for greater modularity. 

Functionally, a system call starts in a task, and passes through the 
kernel before being redirected, if appropriate, to the library in the task's 
address space or to a server. Although this extra transfer of control will 
decrease the efficiency of Mach, this decrease is somewhat ameliorated by 
the ability for multiple threads to be executing BSD-like code concurrently. 

At the next higher programming level is the C Threads package. This 
package is a run-time library that provides a C language interface to the 
basic Mach threads primitives. It provides convenient access to these 
primitives, including routines for the forking and joining of threads, 
mutual exclusion through mutex variables (Section 20.4.2), and 
synchronization through use of condition variables. Unfortunately, it is 
not appropriate for the C Threads package to be used between systems 
that share no memory {NORMA systems), since it depends on shared 
memory to implement its constructs. There is currently no equivalent of C 
Threads for NORMA systems. Other run-time libraries have been written 
for Mach, including threads support for other languages. 

Although the use of primitives makes Mach flexible, it also makes 
many programming tasks repetitive. For instance, significant amounts of 
code are associated with sending and receiving messages in each task that 
uses messages (which, in Mach, is most tasks). The designers of Mach 
therefore provide an interface generator (or stub generator) called MIG. MIG 

is essentially a compiler that takes as input a definition of the interface to 
be used (declarations of variables, types and procedures), and generates 
the RPC interface code needed to send and receive the messages fitting this 
definition· and to connect the messages to the sending and receiving 
threads. 

20.8 • Summary 

The Mach operating system is designed to incorporate the many recent 
innovations in operating-system research to produce a fully functional, 
technically advanced operating system. 
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The Mach 'operating system was designed with the following three 
critical goals in mind: 

• Emulate 4.3BSD UNIX so that the executable files from a UNIX system can 
run correctly under Mach. 

• Have a modern operating system that supports many memory models, 
and parallel and distributed computing. 

• Design a kernel that is simpler and easier to modify than is 4.3BSD. 

As we have shown in this chapter, Mach is well on its way to achieving 
these goals. 

Mach 2.5 includes 4.3BSD in its kernel, which provides the emulation 
needed but enlarges the kernel. This 4.3BSD code has been rewritten to 
provide the same 4.3 functionality, but to use the Mach primitives. This 
change allows the 4.3BSD support code to run in user space on a Mach 3.0 
system. 

Mach uses lightweight processes, in the form of multiple threads . of 
execution within one task (or address space), to support multiprocessing 
and parallel computation. Its extensive use of messages as the only 
communications method ensures that protection mechanisms are complete 
and efficient. By integrating messages with the virtual-memory system, 
Mach ,also ensures that messages can be handled efficiently. Finally, by 
having the virtual-memory system use messages to communicate with the 
daemons managing the backing store, Mach provides great flexibility in the 
design and implementation of these memory-object-managing tasks. 

By providing low-level, or primitive, system calls from which more 
complex functions may be built, Mach reduces the size of the kernel while 
permitting operating-system emulation at the user level, much like IBM's 
virtual-machine systems. 

• Exercises 

20.1 What three features of Mach make it appropriate for distributed 
processing? 

20.2 Name two ways that port sets are useful in implementing parallel 
programs. 

20.3 Consider an application that maintains a database of information, 
and provides facilities for other tasks to add, delete, and query the 
database. Give three configurations of ports, threads, and message 
types that could be used to implement this system. Which is the 
best? Explain your answer. 
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20.4 Give the outline of a task that would migrate subtasks (tasks it 
creates) to other systems. Include information about how it would 
decide when to migrate tasks, which tasks to migrate, and how the 
migration would take place. 

20.5 Name two types of applications for which you would use the MIG 

package. 

20.6 Why would someone use the low-level system calls, instead of the C 
Threads package? 

20.7 Why are external memory managers not able to replace the internal 
page-replacement algorithms? What information would need to be 
made available to the external managers for them to make page­
replacement decisions? Why would providing this information 
violate the principle behind the external managers? 

20.8 Why is it difficult to implement mutual exclusion and condition 
variables in an environment where like-CPUs do not share any 
memory? What approach and mechanism could be used to make 
.such features available on a NORMA system? 

20.9 What are the advantages to rewriting the 4.3BSD code as an external, 
user-level library, rather than leaving it as part of the Mach kernel? 
Are there any disadvantages? Explain your answer. 
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CHAPTER 21 

HISTORICAL 
PERSPECTIVE 

In Chapter 1, we presented a short historical survey of the development of 
operating systems. That survey was brief and lacked detail, since the 
fundamental concepts of operating systems (CPU scheduling, memory 
management, processes, and so on) had not yet been presented. By now, 
however, you understand the basic concepts. We are thus in a position to 
examine how our concepts have been applied in several older and highly 
influential operating systems. Some of them (such as the XDS-940 or the THE 

system) were one-of-a-kind systems; others (such as OS/360) are widely 
used. The order of presentation has been chosen to highlight the 
similarities and differences of the systems, and is not strictly chronological 
or ordered by importance. The serious student of operating systems should 
be familiar with all these systems. 

The treatment of each system is brief, but each section contains 
references to further reading. The papers, written by the designers of the 
systems, are important both for their technical content, and for their style 
and flavor. 

21.1 • Atlas 

The Atlas operating system [Kilburn et al. 1961, Howarth et al. 1961] was 
designed at the University of Manchester in England in the late 1950s and 
early 1960s. Many of its basic features, which were novel at the time, have 
become standard parts of modern operating systems. Device drivers were a 
major part of the system. In addition, system calls were added by a set of 
special instructions called extra codes. 

691 
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Atlas was a batch operating system with spooling. Spooling allowed 
the system to schedule jobs according to the availability of peripheral 
devices, such as magnetic tape units, paper tape readers, paper tape 
punches, line printers, card readers, or card punches. 

The most remarkable feature of Atlas, however, was its memory 
·management. Core memory was new and expensive at the time. Many 
computers, like the IBM 650, used a drum for primary memory. The Atlas 
system used a drum for its main memory, but had a small amount of core 
memory that was used as a cache for the drum. Demand paging was used 
to transfer information between core memory and the drum automatically. 

The Atlas system used a British computer with 48-bit words. 
Addresses were 24 bits, but were encoded in decimal, which allowed orily 
1 million words to be addressed. At that time, this was a very large 
address space. The physical memory for Atlas was a 98K word drum and 
16K words of core. Memory was divided into 512-word pages, providing 
32 frames in physical memory. An associative memory of .32 registers 
implemented the mapping from a virtual address to a physical address. 

If a page fault occurred, a page-replacement algorithm was invoked. 
One memory frame was always kept empty, so that a drum transfer could 
start immediately. The page-replacement algorithm attempted to predict 
the future memory-accessing behavior based on past behavior. A reference 
bit for each frame was set whenever the frame was accessed. The reference 
bits were read into memory every 1024 instructions. The last 32 values of 
the reference bit were used to define the time since the last reference (t1) 

and the interval between the last two references (t2). Pages were chosen 
for replacement in the following order: 

1. Any page with t1 > t2 + 1. This page is considered to be no longer in 
use. 

2. If t1 < t2 for all pages, then replace that page with the largest t2 - t1. 

The page-replacement algorithm assumes that programs access memory in 
loops. If the time between the last two references is t2, then another 
reference is expected t2 time units later. If a reference does not occur 

. (t1 > t2), ·it is assumed that the page is no longer being used, and the page 
is replaced. If all pages are still in use, then the page that will not be 
needed for the longest time is replaced. The time to the next reference is 
expected to be t2 - t1. 

21.2 • XDS-940 

The XDS-940 operating system [Lichtenberger and Pirtle 1965] was 
designed at the University of California at Berkeley. Like the Atlas system, 
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it used paging for memory management. Unlike the Atlas system, the XDS-

940 was a time-shared system. 
The paging was used only for relocation; it was not used for demand 

paging. The virtual memory of any user process was only 16K words, 
whereas the physical memory was 64K words. Pages were 2K words each. 
The page table was kept in registers. Since physical memory was larger 
than virtual memory, several user processes could be in memory at the 
same time. The number of users could be increased by sharing of pages 
when the pages contained read-only reentrant code. Processes were kept 
on a drum and were swapped in and out of memory as necessar)r. 

The XDS-940 system was constructed from a modified XDS-930. The 
modifications were typical of the changes made to a basic computer to 
allow an operating system to be written properly. A user-monitor mode 
was added. Certain instructions, such as 110 and Halt, were defined to be 
privileged. An attempt to execute a privileged instruction in user mode 
would trap to the operating system. 

A system-call instruction was added to the user-mode instruction set. 
This instruction was used to create new resources, such as files, allowing 
the operating system to manage the physical resources. Files, for example, 
were allocated in 256-word blocks on the drum. A bit map was used to 
manage free drum blocks. Each file had an index block with pointers to the 
actual data blocks. Index blocks were chained together. 

The XDS-940 system also provided system calls to allow processes to 
create, start, suspend, and destroy subprocesses. A user programmer could 
construct a system of processes. Separate processes could share memory 
for communication and synchronization. Process creation defined ·a tree 
structure, where a process is the root and its subprocesses are nodes below 
it in the tree. Each of the subprocesses could, in turn, create more 
subprocesses. 

21.3 • THE 

The THE operating system [Dijkstra 1968, McKeag and Wilson 1976 
(Chapter 3)] was designed at the Technische Hogeschool at Eindhoven in 
the Netherlands. It was a batch system running on a Dutch computer, the 
EL X8, with 32K of 27-bit words. The system was mainly noted for its clean 
design, particularly its layer structure, and its use of a set of concurrent 
processes employing semaphores for synchronization. 

Unlike the XDS-940 system, however, the set of processes in the THE 

system was static. The operating system itself was designed as a set of 
cooperating processes.· In addition, five user processes were created, which 
served as the active agents to compile, execute, and print user programs. 
When one job was finished, the process would return to the input queue 
to select another job. 
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A priority CPU-scheduling algorithm was used. The priorities were 
recomputed every 2 seconds . and were inversely proportional to the 
amount of CPU time used recently (in the last 8 to 10 seconds). This scheme 
gave higher priority to I/O-bound processes and to new processes. 

Memory management was limited by the lack of hardware support. 
· However, since the system was limited and user programs could be 
written only in Algol, a software paging scheme was used. The Algol 
compiler automatically generated calls to system routines, which made 
sure the requested information was in memory, swapping if necessary. 
The backing store was a 512K word drum. A 512-word page was used, 
with an LRU page-replacement strategy. 

Another major concern of the THE system was deadlock control. The 
banker's algorithm was used to provide deadlock avoidance. 

Closely related to the THE system is the Venus system [Liskov 1972]. 
The Venus system was also a layer-structure design, using semaphores to 
synchronize processes. The lower levels of the design were implemented 
in microcode, however, providing a much faster system. The memory 
management was changed to a paged-segmented memory. The system was 
also designed as a time-sharing system, rather than a batch system. 

21.4 • RC 4000 

The RC 4000 system, like the THE system, was notable primarily for its 
design concepts. It was designed for the Danish RC 4000 computer by 
Regenecentralen, particularly by Brinch Hansen [1970, 1973 (Chapter 8)]. 
The objective was not to design a batch system, or a time-sharing system, 
or any other specific system. Rather, the goal was to create an operating­
system nucleus, or kernel, on which a complete operating system could be 
built. Thus, the system structure was layered, and only the lower levels -
the kernel- were provided. 

The kernel supported a collection of concurrent processes. Processes 
were supported by a round-robin CPU scheduler. Although processes could 
share memory, the primary communication and synchronization 
mechanism was the message system provided by the kernel. Processes could 

· communicate with each other by exchanging fixed-sized messages of eight 
words in length. All messages were stored in buffers from a common 
buffer pool. When a message buffer was no longer required, it was 
returned to the common pool. 

A message queue was associated with each process. It contained all the 
messages that had been sent to that process, but had not yet been 
received. Messages were removed from the queue in FIFO order. The 
system supported four primitive operations, which were executed 
atomically: · 
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• send-message (in receiver, i~ message, out buffer) 

• wait-message (out sender, out message, out buffer) 

• send-answer (out result, in message, in buffer) 

• wait-answer (out result, out message, in buffer) 

The last two operations allowed processes to exchange several messages at 
a time. 

These primitives required that a process ser-vice its message queue in a 
FlFO order, and that it block itself while other processes were handling its 
messages. To remove these restrictions, the developers provided two 
additional communication primitives. They allowed a process to wait for 
the ·arrival of the next message or to answer and service its queue in any 
order: 

• wait-event (in previous-buffer, out next-buffer, out result) 

• get-event (out buffer) 

I/O devices were also treated as processes. The device drivers were 
code that converted the device interrupts and registers into messages. 
Thus, a process would write to a terminal by sending that terminal a 
message. The device driver would receive the message and output the 
character to the terminal. An input character would interrupt the system 
and transfer to a device driver. The device driver would create a message 
from the input character and send it to a waiting process. 

21.5 • CTSS 

The CTSS (Compatible Time-Sharing System) system [Corbato et al. 1962] 
was designed at MIT as an experimental time-sharing system. It was 
implemented on an IBM 7090 and eventually supported up to 32 interactive 
users. The users were provided with a set of interactive commands, which 
allowed them to manipulate files and to compile and run programs 
through a terminal. 

The 7090 had a 32K memory, made up of 36-bit words. The monitor 
used SK words, leaving 27K for the users. User memory images were 
swapped between memory and a fast drum. CPU scheduling employed a. 
multilevel-feedback-queue algorithm. The time quantum for level i was 2z 
time units. If a program did not finish its CPU burst in one time quantum~ 
it was moved down to the next level of the queue, giving it twice as much 
time. The program at· the highest level (with the shortest quantum) was 
run first. The initial level of a program was determined by its size, so that 
the time quantum was at least as long as the swap time. 
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CTSS was extremely successful, and continued to be used as late as 
1972. Although it was quite limited, it succeeded in demonstrating that 
time sharing was a convenient and practical mode of computing. One 
result of CTSS was increased development of time-sharing systems. Another 
result was the development of MULTICS. 

21.6 • MULTICS 

The MULTICS operating system [Corbato and Vyssotsky 1965, Organick 
1972] was designed at MIT as a natural extension of CTSS. CTSS and other 
early time-sharing systems were so successful that there was an immediate 
desire to proceed quickly to bigger and better systems. As larger computers 
became available, the designers of CTSS set out to create a time-sharing 
utility. Computing service would be provided like electrical power. Large 
computer systems would be connected by telephone wires to terminals in 
offices and homes throughout a city. The operating system would be a 
time-shared system running continuously with a vast file system of shared 
programs and data. 

MULTICS was designed by a team from MIT, GE (which later sold its 
computer department to Honeywell), and Bell Laboratory (which dropped 
out of the project in 1969). The basic GE 635 computer was modified to a 
new computer system called the GE 645, mainly by the addition of paged­
segmentation memory hardware. 

A virtual address was composed of an 18-bit segment number and a 
16-bit word offset. The segments were then paged in 1K word pages. The 
second-chance page-replacement algorithm was used. 

The segmented virtual address space was merged into the file system; 
each segment was a file. Segments were addressed by the name of the file. 
The file system itself was a multilevel tree structUre, allowing users to 
create their own subdirectory structures. 

Like CTSS, MULTICS used a multilevel feedback queue for CPU 
scheduling. Protection was accompiished by an access list associated with 
each file and a set of protection rings for executing processes. The system, 
which was written almost entirely in PL!l, comprised about 300,000 lines of 
code. It was extended to a muitiprocessor system, allowing a CPU to be 
taken out of service for maintenance while the system continued running. 

21.7 • OS/360 

The longest line of operating-system development is undoubtedly that for 
IBM computers. The early IBM computers, such as the IBM 7090 and the IBM 

7094, are prime examples of the development of common I/0 subroutines, 
followed by a resident monitor, privileged instructions, memory 
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protection, arid simple batch processing. These systems were developed 
separately, often by each site independently. As a result, IBM was faced 
with many different computers, with different languages and different 
system software. 

The IBM/360 WC)S designed to alter this. situation. The IBM/360 was 
designed as a family of computers spanning the complete range from small 
business machines to large scientific machines. Only one set of software 
would be needed for these systems, which all used the same operating 
system: OS/360 [Mealy et al. 1966]. This arrangement was supposed to 
reduce the maintenance problems for I~M and to allow users· to move 
programs and applications freely from one IBM system to another. 

Unfortunately, OS/360 tried to be all things for all people. As a result, it 
did none of its tasks especially well. The file system included a type field 
that defined the type of each file, and different file types were defined for 
fixed-length and variable-length records and for blocked and unblocked 
files. Contiguous allocation was used, so the user had to guess the size of 
each output file. The Job Control Language (JCL) added parameters for 
every possible option, making it incomprehensible to the average user. 

The memory-management routines were hampered by the architecture. 
Although a base-register addressing mode was used, the program could 
access and modify the base register, so that absolute addresses were 
gener~ted by the CPU. This arrangement prevented dynamic relocation; the 
program was bound to physical memory at load time. Two separate 
versions of the operating system were produced: OSIMFT used fixed regions 
and OS/MVT used variable regions. 

The system was written in assembly language by thousands of 
programmers, resulting in millions of lines of code. The operating system 
itself required large amounts of memory for its code and tables. 
Operating-system overhead often consumed one-half of the total CPU 
cycles. Over the years, new versions were released to add new features 
and to fix errors. However, fixing one error often caused another in some 
remote part of the system, so that the number of known errors in the 
system was fairly constant. 

Virtual memory was added to OS/360 with the change to the IBM 370 
architecture. The underlying hardware provided a segmented-paged virtual 
memory. New versions of OS used this hardware in different ways. OSNSl 
created one large virtual address space, and ran OS/MFT in that virtual 
memory. Thus, the ·operating system itself was paged, as well as user 
programs. OSNS2 Release 1 ran OS/MVT in virtual memory. Finally, OSNS? 
Release 2, which is now called MVS, provided each user with his own 
virtual memory. 

MVS is still basically a batch operating system. The CTSS system was run 
on an IBM 7094, but MIT decided that the address space of the 360, IBM's 
successor to the 7094, was too small for MULTICS, so they switched vendors. 
IBM then decided to create its own time-sharing system, TSS/360 [Lett and 
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Konigsford 1968]. Like MULTICS, TSS/360 was supposed to be a large time.,. 
shared utility. The basic 360 architecture was modified in the model 67. to 
provide virtual memory. Several sites purchased the 360/67 in anticipation 
of TSS/360. 

TSS/360 was delayed, however, so other time-sharing systems were 
developed as temporary systems until TSS/360 was available. A time-sharing 
option (TSO) was added to OS/360. IBM's Cambridge Scientific Center 
developed CMS as a single-user system and CP/67 to provide a virtual 
machine to run it on [Meyer and Seawright 1970, Parmelee et al. 1972]. 

When TSS/360 was eventually delivered, it was a failure. It was too large 
and too slow. As a result, no site would switch from its temporary system 
to TSS/360. Today, time sharing on IBM systems is largely provided either by 
TSO under MVS or by CMS under CP/67 (renamed VM). 

What went wrong with TSS/360 and MULTICS? Part of the problem was 
that these were advanced systems, and were too large and too complex to 
be understood. Another problem was the assumption that computing 
power would be available from a large, remote computer by time sharing. 
It now appears that most computing will be done by small individual 
machines - personal computers - not by large, remote time-shared 
systems that try to be all things to all users. 

21.8 • Other Systems 

There are, of course, 9ther operating systems, anq most of them have 
interesting properties. The MCP operating system for the Burroughs 
computer family [McKeag and Wilson 1976] was the first to be written in a 
system programming language. It also supported segmentation and 
multiple CPUs. The SCOPE operating system for the CDC 6600 [McKeag and 
Wilson 1976] was also a multi-CPU system. The coordination and 
synchronization of the multiple processes were surprisingly well designed. 
Tenex [Bobrow et al. 1972] was an early demand-paging system for the 
PDP-10, which has had a great influence on subsequent time-sharing 
systems, Sl.lCh as TOPS-20 for the DEC-20. The VMS operating system for the 
VAX is based on the RSX operating system for the PDP-11. CP/M was the most 
common operating system for 8-bit microcomputer systems, few of which 
exist today; MS-DOS is the most common system for 16-bit microcomputers. 
Graphical user interfaces, or GUis, are becoming more popular in order to 
make computers easier to use. The Macintosh Operating System and 
Microsoft Windows are the two leaders in this area. 
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I hear and I forget, I see and I remember, 

I do and I understand. 

-- Chinese proverb 

A good way to gain a deeper understanding of modern operating-system 
concepts is to get your hands dirty - to take apart the code for an 
operating system to see how it works at a low level, to build significant 
pieces of the operating system yourself, and to observe the effects of your 
work. An operating-system course project provides this opportunity to see 
how you can use basic concepts to solve real-world problems. Course 
projects can also be valuable in many other areas of computer science, 
from compilers and databases to graphics and robotics. But a project is 
particularly important for operating systems, where many of the concepts 
are best learned by example and experimentation. 

That is why we created Nachos, an instructional operating system 
intended for use as the , course project for an undergraduate or first-year 
graduate course in operating systems. Nachos includes code for a simple 
but complete working operating system, a machine simulator that allows it 
to be used in a normal UNIX workstation environment, and a set of sampl~ 
assignments. Nachos lets anyone explore all the major components of a 
modern operating system described in this book, from threads and process 
synchronization, to file systems, to multiprogramming, to virtual memory, 
to networking. The assignments ask you to design and implement a 
significant piece of tunctionality in each of these areas. 

699 
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Nachos is distributed without charge. It currently runs on both Digital 
Equipment Corporation MIPS UNIX workstations and Sun SPARC 

workstations; ports to other machines are in progress. See Section A.4 to 
learn how to obtain a copy of Nachos. 

Here, we give an overview of the Nachos operating system and the 
machine simulator, and describe our experiences with the example 
assignments. Of necessity, Nachos is evolving continually, because the 
field of operating systems is evolving continually. Thus, we can give only 
a snapshot of Nachos; in Section A.4 we explain how to obtain more up to 
date information. 

A.l • Overview 

Many of the earliest operating-system course projects were designed in 
response to the development of UNIX in the mid-1970s. Earlier operating 
systems, such as MULTICS and OS/360, were far too complicated for an 
undergraduate to understand, much less to modify, in one semester. 

Even UNIX itself is too complicated for that purpose, but UNIX showed 
that ·the core of an operating system can be written in only a few dozen 
pages, with a few simple but powerful interfaces. However, recent 
advances in operating systems, hardware architecture, and software 
engineering have caused many operating-systems projects developed over 
the past two decades to become out-of-date. Networking and distributed 
applications are now commonplace. Threads are crucial for the 
construction of both operating systems and higher-level concurrent 
applications. And the cost-performance tradeoffs among memory, CPU 

speed, and secondary storage are now different from those imposed by 
core memory, discrete logic, magnetic drums, and card readers. 

Nachos is intended to help people learn about these modern systems 
concepts. Nachos illustrates and takes advantage of modern operating­
systems technology, such as threads and remote procedure calls; recent 
hardware advances, such as ruses and the prevalence ·of memory 
hierarchies; and modern software-design techniques, such as protocol 
layering and object-oriented programming. 

In designing Nachos, we faced constantly the tradeoff between 
simplicity and realism in choosing what code to provide as part of the 
baseline system, and what to leave for the assignments. We believe that a 
course project must achieve a careful balance among the time that students 
spend reading code, that they spend designing and implementing, and 
that they spend learning new concepts. At one extreme, we could have 
provided nothing but bare hardware, leaving a tabula rasa for students to 
build an entire operating system from scratch. This approach is 
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impractical, given the· scope of topics to cover. At the other extreme, 
starting with code that is too realistic would make it easy to lose sight of 
key ideas in a forest of details. 

Our approach was to build the simplest possible implementation for 
each subsystem of Nachos; this provides a working example - albeit an 
overly simplistic one - of the operation of each component of an 
operating system. The baseline Nachos operating-system kernel includes 
a thread manager, a file system, the ability to run user programs, and a 
simple network mailbox. As a result of our emphasis on simplicity, the 
baseline kernel comprises about 2500 lines of code, about one-half of which 
are devoted to interface descriptions and comments. (The hardware 
simulator takes up another 2500 lines, but you do not need to understand 
the details of its operation to do the assignments.) It is thus practical to 
read, understand, and modify Nachos during a single semester course. By 
contrast, building a project around a system like UNIX would add realism, 
but the UNIX 4.3BSD file system by itself, even excluding the device drivers, 
'comprises roughly 5000 lines of code. Since a typical course will spend 
only about 2 to 3 weeks of the semester on file systems, size makes UNIX 

impractical as a basis for an undergraduate operating-system course 
~~- ' 

We have found that the baseline Nachos kernel can demystify a 
number of operating-system concepts that are difficult to understand in the 
abstract. Simply reading and walking through the execution of the 

··baseline system can answer numerous questions about how an operating 
system works at a low level, such as: 

• How do all the pieces of an operating system fit together? 

• How does the operating system start a thre~d? How does it start a 
process? 

• What happens when one thread context switches to another thread? 

• How do interrupts interact with the implementation of critical sections? 

• What happens on a system call? What happens on a page fault? 

• How does address translation work? 

• Which data structures in a file system are on disk, and which are in 
memory? 

• What data need to be written to disk when a user creates a file? 

• How does the operating system interface with 110 devices? 

• What does it mean to build one layer of a network protocol on 
another? 
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Of course, reading code by itself can be a boring and pointless 
we addressed this problem by keeping the code as simple as 
by designing assignments that modify the system in fundamental 

we start with working code, the assignments can focus on 
more interesting aspects of operating-system design, where 
and there is no single right answer. 

Nachos Software Structure 

Before we discuss the sample assignments in detail, we first 
structure of the Nachos software. Figure A.l illustrates how 

in Nachos fit together. Like many earlier instructional 
systems, Nachos runs on a simulation of real hardware. Originally, 
operating-system projects were first being developed in the 1970s 
1980s, the reason for using a simulator was to make use 
hardware resources. Without a simulator, each student would 

UNIX process 

user 
programs 

portable 
OS kernel 

hardware 
simulation 

Figure A.l How the major pieces in Nachos fit together. 
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own physical· machine to test new versions of the kernel. Now that 
personal computers are commonplace, is there still a reason to develop an 
operating system on a simulator, rather than on physical hardware? 

We believe that the answer is yes, because using a simulator make~ 
debugging easier. On real hardware, operating-system behavior is 
nondeterministic; depending on the precise timing of interrupts, the 
operating system may Jake one path through its code or another. 
Synchronization can help to make operating-system behavior more 
predictable, but what if we have a bug in our synchronization code such 
that two threads can access the same data structure at the same time? ·The 
kernel may behave correctly most of the time, yet crash occasionally. 
Without being able to repeat the behavior that led to the crash, however, it 
would be difficult to find the root cause of the problem. Running on a 
simulator, rather than on real hardware, allows us to make system 
behavior repeatable. Of course, debugging 11onrepeatable execution 
sequences is part of life for professional operating-system engineers, but it 
did not seem advisable for us to make this experience part of anyone's 
introduction to operating systems. 

Running on simulated hardware has other advantages. During 
debugging, it is important to be able to make a change to the system 
quickly, to recompile, and to test the change to see whether it fixed the 
problem. Using a simulator reduces the time required for this 
edit-compile-debug cycle, because otherwise the entire system has to be 
rebooted to test a new version of the kernel. Moreover, normal debugging 
tools do not work on operating-system kernels, because, for example, if the 
kernel stops at a breakpoint, the debugger cannot use the kernel to print 
the prompt for the next debugging command. In practice, debugging an 
operating-system kernel on real hardware requires two machines: one to 
run the ~ernel under test, and the other to run the debugger. For these 
reasons, many commercial operating-system development projects now 
routinely use simulators to speed development. 

One approach would be to simulate the entire workstation hardware, 
including fetching, decoding, and executing each kernel- or user-mode 
instruction in tQrn. Instead, we take a shortcut for performance. The 
Nachos kernel code executes in native mode as a normal (debuggable) UNIX 
process linked with the hardware simulator. The simulator surrounds the 
kernel code, making it appear as though it is running on real hardware. 
Whenever the kernel code accesses an I/O device - such as a clock chip, a 
disk, a network controller, or a console - the simulator is invoked to 
perform the I/O activity.· For instance, the simulator implements disk I/O 

using UNIX file routines; it implements network packet transfer via UNIX 

sockets. 
In addition, we simulate each instruction executed in user mode. 

Whenever the kernel gives ~p control to run application code, the 
simulator fetches each application instruction in turn, checks for page 
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faults or other exceptions, and then simulates its execution. When an 
application page fault or hardware interrupt occurs, the simulator passes 
control back to the kernel for processing, as the hardware would in a real 
system. 

Thus, in Nachos, user applications, the operating-system kernel, and 
the hardware simulator run together in a normal UNIX process. The UNIX 

process thus represents a single workstation running Nachos. The Nachos 
kernel, however, is written as though it were running on real hardware. 
In fact, we could port the Nachos kernel to a physical machine simply by 
replacing the hardware simulation with real hardware and a few machine­
dependent device-driver routines. 

Nachos is different from earlier systems in several significant ways: 

1. We can run normal compiled C programs on the Nachos kernel, 
because we simulate a standard, well-documented, instruction set (MIPS 

R2/3000 integer instructions) for user-mode programs. In the past, 
operating-system projects typically simulated their own ad hoc 
instruction set, requiring user programs to be written in a special­
purpose assembly language. However, because the R2/3000 is a RISC, it 
is· straightforward to simulate its instruction set. In all, the MIPS 

simulation code is only about 10 pages long. 

2. We simulate accurately the behavior of a network of workstations, each 
running a copy of Nachos. We connect Nachos "machines," each 
running as a UNIX process, via UNIX sockets, simulating a local-area 
network. A thread on one "machine" can then send a packet to a 
thread running on a different "machine"; of course, both are simulated 
on the same physical hardware. 

3. The simulation is deterministic, and kernel behavior is reproducible. 
Instead of using UNIX signals to simulate asynchronous devices such as 
the disk and the timer, Nachos maintains a simulated time that is 
incremented whenever a user program executes ~n instruction and 
whenever a call is made to certain low-l~vel kernel routines. Interrupt 
handlers are then invoked when the s4nulated time reaches the 
appropriate point. At present, the precise timing of network packet 
delivery is not reproducible, although this limitation may be fixed iri 
later versions of Nachos. 

4. The simulation is randomizable to add unpredictable, but repeatable, 
behavior to the kernel thread scheduler. Our goal was to make it easy 

· to test kernel behavior given different interleavings of the execution of 
concurrent threads. Simulated time is incremented whenever 
interrupts are enabled within the kernel (in other words, whenever 
any low-level synchronization routine, such as semaphore P or V, is 
called); after a random interval of simulated time, the scheduler will 
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cause the current thread to be time sliced. As another example, the 
network simulation randomly chooses which packets to drop. Provided 
that the initial seed to the random number generator is the same, 
however, the behavior of the system is repeatable. 

5. We hide the hardware simulation from the rest of Nachos via a 
machine-dependent interface layer. For example, we define an abstract 
disk that accepts requests to read and write disk sectors and provides 
an interrupt handler to be called on request completion. The details of 
the disk simulator are hidden behind this abstraction, in much the 
same way that disk-device-specific details are isolated in a normal· 
operating system. One advantage to using a machine-dependent 
interface layer is to make clear which portions of Nachos can be 
modified (the kernel and the applications) and which portions are off­
limits (the hardware simulation - at least until you take a computer­
architecture course). 

A.3 • Sample Assignments 

Nachos contains five major components, each the focus of one assignment 
given during the semester: thread management and synchronization, the 
file system, user-level multiprogramming support, the virtual-memory 
system, and networking. Each assignment is designed to build on 
previous ones; for instance, every part of Nachos uses thread primitives for 
managing concurrency. This design reflects part of the charm of 
developing operating systems: You get to use what you build. It is easy, 
however, to change the assignments or to do them in a different order. 

In Sections A.3.1 through A.3.5, we discuss each of the five 
assignments in turn, describing what hardware-simulation facilities and 
operating-system structures we provide, and what we ask you to 
implement. Of course, because Nach6s is continuing to evolve, what is 
described here is a snapshot of what is available at the time of printing. 
Section A.4 explains how to obtain more up-to-date information. 

The assignments are intended to be of roughly equal size, each taking 
approximately 3 weeks of a 15-week (semester) course, assuming that two 
people work together on each. The file-system assignment is the most 
difficult of the five; the multiprogramming assignment is the least difficult. 
Faculty who have used Nachos say that they find it useful to spend 1/2 to 
1 hour per week discussing the assignments. W~ have found it useful for 
faculty to conduct a design review with each pair of students the week 
before each assignment is due. 

Nachos is intended to ~ncourage a quantitative approach to operating­
system design. Fr~quently, the choice of how to implement an operating­
system function reduces to a tradeoff between simplicity and performance. 
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Making informed decisions about tradeoffs is one of the key tasks to learn 
in an undergraduate operating-system course. The Nachos hardware 
simulation reflects current hardware performance characteristics (except 
that kernel execution time is estimated, rather . than being measured 
directly). The assignments exploit this feature by asking that you explain 
.and optimize the performance of your implementations on simple 
benchmarks. 

The Nachos kernel and simulator are implemented in a subset of C++. 
Object-oriented programming is becoming more popular, and it is a natural 
idiom for stressing the importance of modularity and clean interfaces in 
building systems. Unfortunately, C++ is a complicated language; thus, to 
simplify matters, we omitted certain aspects from standard C++: derived 
classes, operator and function overloading, C++ streams, and generics. 
We also kept inlines to a minimum. The Nachos distribution includes a 
short prin.1er to help people who know C to learn our subset of C + +; we 
have found that our students pick up this subset quickly. 

A.3.1 Thread Management 
The first assignment introduces the concepts of threads and concurrency. 
The baseline Nachos kernel provides a basic working thread system and an 
implementation of semaphores; the assignment is to implement Mesa-style 
locks and condition variables using semaphores, and then to implement 
solutions to a number of concurrency problems using these 
synchronization primitives. 

In much the same way as understanding pointers can be difficult for 
beginning programmers, understanding concurrency requires a conceptual 
leap. We believe that a good way to learn about concurrency is to take a 
hands-on approach. Nachos helps to teach concurrency in two ways. 
First, thread management in Nachos is explicit: it is possible to trace, 
literally statement by statement, what happens during a context switch 
from one thread to another, from the perspectives of an outside observer 
and of the threads involved. We pelieve that this experience is crucial to 
demystifying concurrency. Precisely because C and C++ allow nothing to 
be swept under the carpet, co11currency may be easier to understand 

. (although more difficult to use) in these programming languages than in 
those explicitly designed for concurrency, such as Ada or Modula-3. 

Second, a working thread system, like that in Nachos, provides a 
chance to practice writing, and testing, concurrent programs. Even 
experienced programmers find if difficult to think concurrently. When we 
first used Nachos, we omitted many of the practice problems that we now 
include in the assignment, thinking that students would see enough 
concurrency in the rest of the project. Later, we realized that many 
students were still making concurrency errors even in the final phase of 
the project. 
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Our primary goal in building the baseline thread system was 
simplicity, to reduce the effort required to trace through the thread 
system's behavior. The implementation takes a total of about 10 pages of 
C++ and one page of MIPS assembly code. For simplicity, thread 
scheduling is normally nonpreemptive, but to emphasize the importance of 
critical sections and synchronization, we have a command-line option that 
causes threads to be time sliced at "random," but repeatable, points in the 
program. Concurrent programs are correct only if they work when a 
context switch can happen at any time. 

A.3.2 File Systems 

Real file systems can be complex artifacts. The UNIX file system, for 
example, has at least three levels of indirection - the per-process file­
descriptor table, the system wide open-file table, and the in-core inode 
table - before you even get to disk blocks. As a result, to build a file 
system that is simple enough to read and understand in a couple of weeks, 
we were forced to make some difficult choices about where to sacrifice 
realism. 

We provide a basic working file system, stripped of as much 
functionality as possible. Although the file system has an interface similar 
to that of UNIX (cast in terms of C++ objects), it also has many significant 
limitations with respect to commercial file systems: there is no 
synchronization (only one thread at a time can access the file system), files 
have a very small maximum size, files have a fixed size once created, there 
is no caching or buffering of file data, the file name space is completely flat 
(there is no hierarchical directory structure), and there is no attempt to 
provide robustness across machine and disk crashes. As a result, the basic 
file system takes only about 15 pages of code. 

The assignment is (1) to correct some of these limitations, and (2) to 
improve the performance of the resulting file system. We list a few 
possible optimizations, such as caching and disk scheduling, but part of 
the exercise is to decide which solutions are the most cost effective. 

At the hardware level, we provide a disk simulator, which accepts read 
sector and write sector requests and signals the completion of an operation 
via an interrupt. The disk data are stored in a UNIX file; read and write 
sector operations are performed using normal UNIX file reads and writes. 
After the UNIX file is updated, we calculate how long the simulated disk 
operation should have taken (from the track and sector of the request), and 
set an interrupt to occur that far in the future. Read and write sector 
requests (emulating hardware) return immediately; higher-level software is 
responsible for waiting until the interrupt occurs. 

We made several mistakes in developing the Nachos file system. In 
out' first attempt, the file system was much more realistic than the current 
one, but it also took more than four times as much code. We were forced 
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to rewrite it to cut it down to code that could be read and understooq 
quickly. When we handed out this simpler file system, we did not provide 
sufficient code for it to be working completely; we left out file read and file 
write to be written as part of the assignment. Although these functions 
are fairly straightforward to implement, the fact that the code did not work 

. meant that students had difficulty understanding how each of the pieces of 
the file system fit with the others. 

We also initially gave students the option of which limitation to fix; we 
found that students learned the most from fixing the first four listed. In 
particular, the students who chose to implement a hierarchical directory 
structure found that, although it was conceptually simple, the 
implementation required a relatively large amount of code. 

Finally, many modern file systems include some form of write-ahead 
logging or log structure, simplifying crash recovery. The assignment now 
completely ignores this issue, but we are currently looking at ways to do 
crash recovery by adding -simple write-ahead logging code to the baseline 
Nachos file system. As it stands, the choice of whether or not to address 
crash recovery is simply a tradeoff. In the limited amount of time 
available, we ask students to focus on how basic file systems work, how 
the file abstraction allows disk data layout to be changed radically without 
changing the file-system interface, and how caching can be used to 
improve I/O performance. 

A.3.3 Multiprogramming 

In the third assignment, we provide code to create a user address space, to 
load a Nachos file containing an executable image into user memory, and 
. then to run the program. The initial code is restricted to running only a 
single user program at a time. The assignment is to expand this b~se to 
support multiprogramming, to implement a variety of system calls (such as 
UNIX fork and exec) as well as a user-level shell, and to optimize the 
performance of the resulting system on a mixed workload of I/O- and CPU­

bound jobs. 
Although we supply little Nachos kernel code as part of this 

assignment, the hardware simulation does require a fair amourit of code . 
. We simulate the entire MIPS R2/3000 integer instruction set and a simple 
single-level page-table translation scheme. (For this assignment, a 
program's entire virtual address space must be mapped into physical 
memory; true virtual memory is left for assignment 4.) In addition, we 
provide an abstraction that hides most of the details of the MIPS object-code 
format. 

This assignment requires few conceptual leaps, but it does tie together 
the work of the previous two assignments, resulting in a usable- albeit 
limited- operating system. Because the simulator can run C programs, it 
is easy to write utility programs (such as the shell or UNIX cat) to exercise 
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the system. (One overly ambitious student attempted unsuccessfully to 
port emacs.) The assignment illustrates that there is .little difference 
between writing user code and writing operating-system kernel code, 
except that user code runs in its own address space, isolating the kernel 
from user errors. 

One important topic that we chose to leave out (again, as a tradeoff 
against time constraints) is the trend toward a small-kernel operating­
system structure, where pieces of the operating system are split off into 
user-level servers. Because of Nachos' modular design, it would be 
straightforward to move Nachos toward a small-kernel structure, except· 
that (1) we have no symbolic debugging support for user programs, and (2) 
we would need a stub compiler to make it easy to make remote procedure 
calls across address spaces. One reason for adopting a micro-kernel design 
is that it is easier to develop and debug operating-system code as a user­
level server than if the code is part of the kernel. Because Nachos runs as a 
UNIX process, the reverse is true: It is easier to develop and debug Nachos 
kernel code than application code r?nning on top of Nachos. 

A.3.4 Virtual Memory 

Assignment 4 is to replace the simple memory-management system from 
the previous assignment with a true virtual-memory system- that is, one 
that presents to each user program the abstraction of an (almost) unlimited 
virtual-memory size by using main memory as a cache for the disk. We 
provide no new hardware or operating-system components for this 
assignment. 

The assignment has three parts. The first part is to implement the 
mechanism for page-fault handling - the kernel must catch the page fault, 
find the needed page on disk, find a page frame in memory to hold the 
needed page (writing the old contents of. the page frame to disk if the page 
frame is dirty), read the new page from disk into memory, adjust the 
page-table entry, and then resume the execution of the program. This 
mechanism can take advantage of the code written for the previous 
assignments: The backing store for an address space can be represented 
simply as a Nachos file, and synchronization is needed when multiple 
page faults occur concurrently. 

The second part of the assignment is to devise a policy for managing 
the memory as a cache - for deciding which page to toss out when a new 
page frame is needed, in what circumstances (if any) to do read-ahead, 
when to~ write unused dirty pages back to disk, and how many pages to· 
bring in before starting to run a program. 

These policy questions can · have a large effect on overall system 
performance, in part because of the large and increasing gap between CPU 
speed and disk latency - this gap has widened by two orders of 
magnitude in only the past decade. Unfortunately, the simplest policies 
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often have unacceptable performance. So that realistic policies are 
encouraged, the third part of the assignment is to measure the 
performance of the paging system on a matrix multiply program where the 
matrices do not fit in memory. This workload is not meant to be 
representative of real-life paging behavior, but it is simple enough to 
illustrate the influence of policy changes on application performance. 
Further, the application illustrates several of the problems with caching: 
Small changes in the implementation can have a large effect on 
performance. 

A.3.5 Networking 

Although distributed . systems . have become increasingly important 
commercially, most instructional operating systems do not· have a 
networking component. To address this omission, we chose the capstone 
of the project to be to write a significant and interesting distributed 
application. 

At the hardware level, each UNIX process running Nachos represents a 
uniprocessor workstation. We simulate the behavior of a network of 
workstations by running multiple copies of Nachos, each in its own UNIX 

process, and by using UNIX sockets to pass network packets from one 
Nachos "machine" to another. The Nachos operating system can 
communicate with other systems by sending packets into the simulated 
network; the transmission is accomplished by socket send and receive. The 
Nachos network provides unreliable transmission of limited-sized packets 
from machine to machine. The likelihood that any packet will be dropped 
can be set as a command-line 10ption, as can the seed used to determine 
which packets are "randomly" chosen to be dropped. Packets are dropped 
but are never corrupted, so that checksums are not required. 

To show how to use the network and, at the same time, to illustrate 
the benefits of layering, the Nachos kernel comes with a simple post-office 
protocol layered on top of the network. The post-office layer provides a 
set of mailboxes that route incoming packets to the appropriate waiting 
thread. Messages sent through the post office also contain a return 
address to be used for acknowledgments. 

The assignment is first to provide reliable transmission of arbitrary­
sized packets, and then to build a distributed application on top of that 
service. Supporting arbitrary-sized packets is straightforward- you need 
merely to split any large packet into fixed-sized pieces, to add fragment 
serial numbers, and to send the pieces one by one. Ensuring reliability is 
more interesting, requiring a careful analysis and design. To reduce the 
time required to do the assignment, we do not ask you to implement 
congestion control or window management although of course these are 
important issues in protocol design. 
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The choice of how to complete the project is left open. We do make a 
few suggestions: multiuser UNIX talk, a distributed file system with 
caching, a process-migration facility, 'distributed virtual memory, a gateway 
protocol that is robust to machine crashes. Perhaps the most interesting 
application that a student built (that we know of) was a distributed version 
of the "battleship" game, with each player on a different machine. This 
application illustrated the role of distributed state, since each machine kept 
only its local view of the gameboard; it also exposed several performance 
problems in the hardware simulation, which we have since fixed. 

Perhaps the biggest limitation of the current implementation is that we 
do not model network performance correctly, because we do not keep the 
timers on each of the Nachos machines synchronized with one another. 
We are currently working on fi~ing this problem, using distributed 
simulation techniques for efficiency. These techniques will allow us to 
make performance comparisons between alternate implementations of 
network protocols; they will also enable us to use the Nachos network as a 
simulation of a message-passing multiprocessor. 

A.4 • Information on Obtaining a Copy of Nachos 

You can obtain Nachos by anonymous ftp from the machine 
ftp.cs.berkeley.edu by following these steps: 

1. Use UNIX ftp to access ftp.cs.berkeley.edu: 

ftp ftp.cs.berkeley.edu 

2. You will get a login prompt. Type the word anonymous, and then use 
your e-mail address as the password. 

Name: anonymous 
Password: tea@cs.berkeley.edu (for example) 

3. You are now in ftp. Move to the Nachos subdirectory. 

ftp> cd ucb/nachos 

4. You must remember to turn on "binary" mode in ftp; unfortunately, if 
you forget to do so, when you fetch the Nachos file, it will be garbled 
without any kind of warning message. This error is one of the most 
common that people make in obtaining software using anonymous ftp. 

ftp> binary 
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5~ You can now copy the compressed UNIX tar file containing the Nachos 
distribution to your machine. The software will automatically enroll 
you in a mailing list for announcements of new releases of Nachos; 
you can remove yourself from this list by sending e-mail to 
nachos@cs. berkeley. edu. 

ftp> get nctchos.tar.Z 

6. Exit the ftp program: 

ftp> quit 

7. Decompress and detar to obtain the Nachos distribution. (If the 
decompress step fails, you probably forgot to set binary mode in ftp in 
step 4. You will need to start over.) 

uncompress nachos.tar.Z 
tar -xf nachos. tar 

8. The preceding steps will produce several files, including the code for 
the baseline Nachos kernel, the hardware simulator, documentation on 
the sample assignments, and the C++ primer. There will also be a 
README file to get you started: It explains how to build the baseline 
system, how to print out documentation, and which machine 
architectures are currently supported. 

cat README 

Mendel Rosenblum at Stanford has ported the Nachos kernel to run on 
Sun SP ARC workstations, although U$er programs running on top of 
Nachos must still be compiled for the MIPS R2/3000 RISe processor. Ports to 
machines other than Digital Equipment Corporation MIPS UNIX workstations 
and Sun SPARC workstations are in progress. Up-to-date information on 
machine availability is included in the README file in the distribution. The 
machine dependence comes in two parts. First, the Nachos kernel runs 
just like normal application code on a UNIX workstation, but a small 
amount of assembly code is needed in the Nachos kernel to implement 
thread context switching. Second, Nachos simulates the instruction-by­
instruction execution of user programs, to catch page faults and other 
exceptions. This simulation assumes the MIPS R2/3000 instruction set. To 
port Nachos to a new machine, we replace the kernel thread-switch code 
with machine-specific code, and rely on a C cross-compiler to generate MIPS 

object code for each user program. (A cross-compiler is a compiler that 
generates object code for one machine type while running on a different 
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machine type.) Because we rely on ,a cross-compiler, we do not have to 
rewrite the instruction-set simulator for each port to a new machine. The 
SPARC version of Nachos, for instance, comes with instructions on how to 
cross-compile to MIPS on the SPARC. 

Questions about Nachos and bug reports should be directed via e-mail 
to nachos@cs.berkeley.edu. Questions can also be posted to the 
alt.os.nachos newsgroup. 

A.S • Conclusions 

Nachos is an instructional operating system designed to reflect recent 
advances in hardware and software technology, to illustrate modern 
operating-system concepts, and, more broadly, to help teach the design of 
complex computer systems. The Nachos kernel and sample assignments 
illustrate principles of computer-system design needed to understand the 
computer systems of today and of the future: concurrency and 
synchronization, caching and locality, the tradeoff between simplicity and 
performance, building reliability from unreliable components, dynamic 
scheduling, object-oriented programming, the power of a level of 
translation, protocol layering, and distributed computing. Familiarity with 
these concepts is valuable, we believe, even for those people who do not 
end up working in operating-system development. 

• Bibliographic Notes 

Wayne Christopher, Steve Procter, and Thomas Anderson (the author of 
this appendix) did the initial implementation of Nachos in January 1992. 
The first version was used for one term as the project fot the 
undergraduate operating-systems course at The University of California at 
Berkeley. We then revised both the code and the assignments, releasing 
Nachos, Version 2 for public distribution in August 1992; Mendel 
Rosenblum ported Nachos to the Sun SPARC workstation. The second 
version is currently in use at seve:ral universities including Carnegie 
Mellon, Colorado State, Duke, Harvard, Stanford, State University of New 
York at Albany, University of Washington, and, of course, Berkeley; we 
have benefited tremendously from the suggestions and criticisms of 'our 
early users. 

In designing the Nachos project, we have borrowed liberally from 
ideas found in other systems, including the TOY operating system project, 
originally developed by Ken Thompson while he was at Berkeley, and 
modified extensively by a collection of people since then; Tunis, developed 
by Rick Holt [Holt 1983]; and Minix, developed by Andy Tanenbaum 
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[Tanenbaum 1987]. Lions [1977] was one of the first people to realize that 
the core of an operating system could be expressed in a few lines of code, 
and then used to teach people about operating systems. The instruction­
set simulator used in Nachos is largely based on a MIPS simulator written 
by John Ousterhout. 

We credit Lance Berc with inventing the acronym "Nachos" Not 
Another Completely Heuristic Operating System. 
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