
Apple 1013 (Part 1 of 4)
U.S. Pat. 6,470,399

Apple 1013 (Part 1 of 4)

U.S. Pat. 6,470,399

.___:_“[T%.__,_2,,_.T?,___,g__fi__E_.€

FOURTH EDITION

OPERATING
SYSTEM
CONCEPTS

Abraham. Silberschatz
University of Texas

Peter B. Galvin
Brown University

-r"T Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • W okingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan • Milan • Paris

Sponsoring Editor: Deborah Lafferty
Senior Editor: Tom Stone
Senior Production Supervisor: Helen Wythe
Marketing Manager: Phyllis Cerys
Technical Art Coordinator: Susan London-Payne
Cover and Endpaper Designer: HowardS. Friedman
Manufacturing Manager: Roy Logan

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and Addison-Wesley was aware of a trademark claim, the designa
tions have been printed in initial caps or all caps.

The procedures and applications presented in this book have been included
for their instructional value. They have been tested with care but are not guar
anteed for any particular purpose. The publisher does not offer any warranties
or representations, nor does it accept any liabilities with respect to the pro
grams or applications.

Library of Congress Cataloging-in-Publication Data

Silberschatz, Abraham.
Operating system concepts I Abraham Silberschatz, Peter B. Galvin.

p. em.
Includes bibliographical references and index.
ISBN 0-201-50480-4
1. Operating systems (Computers) I. Galvin, Peter B.

QA76.76.063S5583 1994
005.4'3--dc20

Reprinted with corrections January, 1995

II. Title.

93-24415
CIP

Reproduced by Addison-Wesley from camera-ready copy supplied by the
authors.

Copyright© 1994 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mech~n~cal, photocopying, recording, or otherwise, without the prior written
permiSSion of the publisher. Printed in the United States of America.

ISBN 0-201-50480-4
8 9 1 0-MA-99 98 97 96

To my parents, Wira and Mietek,
my wife, Haya,
and my children, Lemor, Sivan and Aaron.

Avi Silberschatz

To Carla and Gwendolyn.

Peter Galvin

PREFACE

Operating sysfems are an essential part of a computer system. Similarly, a
course on operating systems is an essential part of a computer-science
education. This book is intended as a text for an introductory course in
operating systems at the junior or senior undergraduate level, or first-year
graduate level. It provides a clear description of the concepts that underlie
operating systems. ·

This book does not concentrate on any particular operating system or
hardware. Instead, it discusses fundamental concepts that are applicable to
a variety of systems. We do, however, present a large number of
examples that pertain to UNIX and other popular operating systems. In
particular, we use Sun Microsystem's Solaris 2 operating system, a version
of UNIX, which recently has been transformed into a modern operating
system with support for threads at the kernel and user levels, symmetric
multiprocessing, and real-time scheduling. Other examples used include
Microsoft MS-DOS, Windows, and Windows/NT, IBM OS/2, the Apple
Macintosh Operating System, and PEC VMS and TOPS-20, among others.

Prerequisites
As prerequisites, we assume that the reader is familiar with general
computer organization and a high-level language, such as PASCAL. The
hardware topics required for an understanding of operating systems are
included in Chapter 2. We use pseudo-PASCAL notation for code examples,
but the algorithms can be understood without a thorough knowledge of
PASCAL.

v

vi • Preface

Content of this Book
The text is organized in six major parts:

• Overview (Chapters 1 to 3). These chapters explain what operating
systems are, what they do, and how they are designed and constructed.
They explain how the concept of an operating system has developed,
what the common features of an operating system are, what an
operating system does for the user, and what it does for the
computer-system operator. The presentation is motivational, historical,
and explanatory in nature. We have avoided a discussion of how
things are done internally in these chapters. Therefore, they are
suitable for individuals or lower-level classes who want to learn what
an operating system is, without getting into the details of the internal
algorithms. Additionally, Chapter 2 covers the hardware topics which
are important to an understanding of operating systems. Readers
well-versed in hardware topics, including 110, DMA, and hard disk
operation, may chose to skim or· skip this chapter.

• Process management (Chapters 4 to 7). The process concept and
concurrency are at the very heart of modern operating systems. A
process is the unit of work in a system. Such a system consists of a
collection of concurrently executing processes, some of which are
operating-system processes (those that execute system code), and the
rest of which are user processes (those that execute user code). These
chapters cover various methods for process scheduling, interprocess
communication, process synchronization, and deadlock handling. Also
included under this topic is a discussion of threads.

• Storage management (Chapters 8 to 12). A process must be in main
memory (at least partially) during execution. To improve both the
utilization of CPU and the speed of its response to its users, the
computer must keep several processes in memory. There are many
different memory-management schemes. These schemes reflect
various approaches to memory management, and the effectiveness of
the different algorithms depends on the particular situation. Since main
memory is usually too small to accommodate all data and programs
and cannot store data permanently, the computer system must provide
secondary storage to back up main memory. Most modern computer
systems use disks as the primary on-line storage medium for
information (both programs and data). The file system provides the
mechanism for on-line storage of and access to both data and programs
residing on the disks. These chapters deal with the classic internal
algorithms and structures of storage management. They provide a firm
practical understanding of the algorithms used - the properties,
advantages, and disadvantages.

Preface • vii

• Protection and security (Chapters 13 and 14). The various processes in
an operating system must be protected from one another's activities.
For that purpose, mechanisms exist that can be used to ensure that the
files, memory segments, CPU, and other resources can be operated on
by o:h.ly those processes that have gained proper authorization from the
operating system. Protection i~ a mechanism for controlling the access
of programs, processes, or users to the resources defined by a
computer system. This mechanism must provide a means for
specification of the controls to be imposed, together with some means
of enforcement. Security protects the information stored in the system
(both data and code), as well as the physical resources of the computer
system, from unauthorized access, malicious destruction or alteration,
and accidental introduction of inconsistency.

• Distributed systems (Chapters 15 to 18). A distributed system is a
collection of processors that do not share memory or a clock. Such a
system provides the user with access to the various resources the
system maintains. Access to a shared resource allows computation
speedup and improved data availability and reliability. Such a system
also provides the user with a distributed file system, which is a file
service system whose users, servers, and storage devices are dispersed
among the various sites of a distributed system. A distributed system
must provide various mechanisms for process synchronization and
communication, for dealing with the deadlock problem and the variety
of failures that are not encountered in a centralized system.

• Case studies (Chapters 19 to 21). The various concepts described in
this book can be drawn together by describing real operating systems.
Two UNIX-based operating systems are covered in detail - Berkeley
4.3BSD and Mach. These operating systems were chosen in part because
UNIX at one time was almost small enough to understand and yet was
not a toy operating system. Most of its internal algorithms were
selected for simplicity, not for speed or sophistication. UNIX is readily
available to computer-science departments, so many students have
access to it. Mach provides an opportunity for us to study a modern
operating system that provides compatibility with 4.3BSD but has a
drastically different design and implementation. Chapter 21 briefly
describes some of the most influential operating systems.

• The Nachos System (Appendix). A good way to gain a deeper
understanding of modern operating systems concepts is for the
students to get their hands dirty - to take apart the code for an
operating system, to see how it works at a low level, to build
significant pieces ·of the operating system themselves, and to observe
the impact of those changes. The Nachos instructional operating
system, which is briefly described in the Appendix, provides the

viii • Preface

opportunity to see how the basic concepts introduced in this text can
be used to solve real-world problems. The Nachos system was
developed by Professor Thomas Anderson from the University of
California at Berkeley, to complement the third edition of this text, and
it is freely available in the public domain via the Internet. Reviewers,
who ha~"_used the . Nachos project at other universities, call it a
practical and positive supplement.

The Fourth Edition
Many comments and suggestions were forwarded to us concerning our
previous editions. These, together with our own observations, have
prodded us to produce this fourth edition. Our basic procedure was to
reorganize and rewrite the material in each chapter,. adding new
information, examples, and diagrams where appropriate. We also brought
older material up to date and removed material that was no longer of
interest. Finally, we improved the exercises and updated the references.

Substantive revisions were made in the following chapters:

• Chapter 1. We have condensed some of the material related to older
systems and have expanded our discussion of parallel, distributed, and
real-time systems.

• Chapter 2. We collected coverage of strictly-hardware topics from the
other chapters and reorganized them here, making this material easier
to skip if it is already understood, and easier to use as a reference. We
also expanded discussion of IJO topics, caching, and protection.

• Chapter 4. This chapter introduces the process concept. The material
in this chapter appeared in parts of old Chapters 4 and 5. We moved
the IPC material from old Chapter 5 to Chapter 4, since we believe that
the material should be covered as part of the discussion on the process
concept rather that as part of the process coordination chapter. We
also expanded our discussion on threads considerably, and included
Solaris 2 threads as an example.

• Chapter 5. This chapter is a reorganized old Chapter 4. It now deals
primarily with CPU scheduling issues. ·

• Chapter 6. This chapter is a reorganized old Chapter 5. We removed
Eisenberg and McGuire's solution to the critical-section problem for n
processes from the main text (it is now an exercise).· We also
condensed the discussions concerning the critical region concept. We
added new material on atomic transactions, including write-ahead
logging and concurrency control schemes. Synchronization in Solaris 2
is included as an example.

Preface • ix

• Chapters 8 and 9. We have added new material on up-to-date
computer architectures th~t support paging and segmentation for large
address spaces. Segmentation and paging are illuminated by an OS/2

example.

• Chapters 10, 11, and 12. We have expanded the material and
completely reorganized the presentation of the file-system concept and
implementation. We now present the logical aspect of the file system
in Chapter 10, the implementation issues in Chapter 11, and the
underlying secondary storage system in Chapter 12. We also have
added new material on swap space, stable storage, recovery, reliability
and performance.

• Chapters 13 and 14. We have separated old Chapter 11 into hyo
chapters -one dealing with protection issues (Chapter 13), the other
dealing with security issues (Chapter 14). In each of these chapters,
we have reorganized the material, and have added new information.
Major expansions include coverage of the Internet Worm and viruses.

• Chapters 15 and 16. We have separated old Chapter 12 into two
chapters - one dealing with network structures (Chapter 15), the
other dealing with distributed system structure (Chapter 16). In each of
these chapters, we have reorganized the material, and have added new
information. Major expansions include coverage of network protocols
and functionality, remote services, thread-management, and the Open
Software Foundation's Distributed Computing Environment (DCE)
thread package.

• Chapter 17. This is old Chapter 14 on distributed file systems. We
have brought the material up-to-date in this rapidly changing area.

• Chapter 18. This is, old Chapter 13 on distributed coordination. We
have brought the material up-to-date and added new sections on the
two-phase commit protocol and concurrency control schemes.

• Chapter 19. This chapter on UNIX has been updated to reflect the
current state of BSD UNIX and its current implementation.

• Chapter 20. This is old Chapter 16 on the Mach operating system. It
has peen updated to describe components of Mach version 3.

• Appendix. This is a new Appendix, which was was authored by
Professor Thomas Anderson from UC Berkeley. This Appendix
provides a brief tutorial introduction to the Nachos system. The 1

Appendix presents the philosophy governing the Nachos environment/
as well as providing a general introduction to the Nachos operating
system and the five project activities which accompany the software.
The Appendix concludes with instructions fqr retrieving Nachos from
the Internet via ftp.

x • Preface

Mailing List and Supplements
We now provide an environment where users can communic~te among
themselves anq with us. We have created a mailing list consisting of users
of our book with the e-mail address - os-book@cs. utexas.edu. If you wish
to be on the list, please send a message to avi@cs. utexas.edu indicating
your name, affiliation, and e-mail address. ,

For information about the teaching supplements, which complement
this book, mail may be sent to os4e@aw.com.

Errata
We have attempted to clean up every error in this new edition, but- as
happens with operating systems - there will undoubtedly still be some
obscure bugs. We would appreciate it if you, the reader, would notify us
of any errors or omissions in the book. Also, if you would like to suggest
improvements or to contribute exercises, we would be glad to hear from
you. Any correspondence should be sent to A. Silberschatz, Department of
Computer Sciences, The University of Texas.

Acknowledgments
This book is derived from the previous editions, all of which were
coauthored by James Peterson. Other people that have helped with the
previous editions include Randy Bentson, Jeff Brumfield, Gael Buckley,
Thomas Casavant, Ajoy Kumar Datta, Joe Deck, Robert Fowler, G. Scott
Graham, Rebecca Hartman, Wayne Hathaway, Christopher Haynes,
Richard Kieburtz, Carol Kroll, Thomas LeBlanc, John Leggett, Michael
Molloy, Ed Posnak, John Quarterman, Charles Oualline, John Stankovic,
Steven Stepanek, Louis Stevens, and John Werth.

Lyn Dupre copyedited the book; Cliff Wilkes provided technical
copyediting; Sara Strandtman edited our text into troff format. Debbie
Lafferty, Tom Stone, and Helen Wythe were helpful with book production.

Chapter 17 was derived from a paper by Levy and Silberschatz [1990].
Chapter 19 was derived from a paper by Quarterman et al. [1985]. John
Quarterman helped us to convert the material on UNIX 4.2BSD to UNIX 4.3BSD.

David Black worked extensively with us to update Chapter 20.
We thank the following people, who reviewed this edition of the book:

Joseph Boykin, P. C. Capon, John Carpenter, Thomas Doeppner, Caleb
Drake, Hans Flack, Mark Holliday, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Yoichi Muraoka, Jim M. Ng, Boris Putanec,
Adam Stauffer, Hal Stern, David Umbaugh, Steve Vinoski, and J. S.
Weston.

.A.S.
P.B.G.

CONTENTS

PARTONE • OVERVIEW

Chapter 1 Introduction

1.1 What Is an Operating System?
1.2 Early Systems 6
1.3 Simple Batch Systems 7
1.4 Multiprogrammed Batched

Sys}erns 13
1.5 Time-Sharing Systems 15
1.6 Personal-Computer Systems

3 1.7
1.8
1.9

1.10

17

Parallel Systems 20
Distributed Systems
Real-Time Systems
Summary 25
Exercises 26
Bibliographic Notes

22
23

27

Chapter 2 Computer-System Structures

2.1 Computer-System Operation 29 2.6 General-System Architecture
2.2 I I 0 Structure 32 2.7 Summary 52
2.3 Storage Structure 37 Exercises 53
2.4 Storage Hierarchy 42 Bibliographic Notes 55
2.5 Hardware Protection 45

Chapter 3 Operating-System Structures

3.1 System Components 57
3.2 Operating-System Services 63
3.3 System Calls 65

3.4 System Programs 74
3.5 System Structure 76
3.6 Virtual Machines 82

51

xi

xii Contents

3.7 System Design and
Implementation 86

3.8 System Generation 89

3.9 Summary 90
Exercises 91
Bibliographic Notes 92

PART TWO • PROCESS MANAGEMENT

Chapter 4 Processes

4.1 Process Concept 97
4.2 Process Scheduling 100
4.3 Operation on Processes 105
4.4 Cooperating Processes 108
4.5 Threads 111

Chapter 5 CPU Scheduling

5.1 Basic Concepts 131
5.2 Scheduling Criteria 135
5.3 Scheduling Algorithms 137
5.4 Multiple-Processor Scheduling 149
5.5 Real-Time Scheduling 150

4.6 Interprocess Communication
4.7 Summary 126

Exercises 127
Bibliographic Notes 129

5.6 Algorithm Evaluation 152
5.7 Summary 158

Exercises 159
Bibliographic Notes 161

116

Chapter 6 Process Synchronization

6.1 Background 163
6.2 The Critical-Section Problem
6.3 Synchronization Hardware
6.4 Semaphores 175
6.5 Classical Problems of

Synchronization 181
6.6 Critical Regions 186

Chapter 7 Deadlocks

7.1 System Mode] 217

165
172

7.2 Deadlock Characterization 219
7.3 Methods for Handling

Deadlocks 223

6.7
6:8
6.9

6.10

Monitors 190
Synchronization in Solaris 2 198
Atomic Transactions 199
Summary 208
Exercises 210
Bibliographic Notes 214

7.4 Deadlock Prevention 224
7.5 Deadlock A voidance 227
7.6 Deadlock Detection 234
7.7 Recovery from Deadlock 238

\

7.8 Combined Approach to
Deadlock Handling 240

7.9 Summary 241

Contents xiii

Bibliographic Notes 245
Exercises 242

PART THREE • STORAGE MANAGEMENT

Chapter 8 Memory Management

8.1 Background 249

8.2 Logical versus Physical
Address Space 255

8.3 Swapping 256
8.4 Contiguous Allocation 259
8.5 Paging 267

Chapter 9 Virtual Memory

9.1 Background 301
9.2 Demand Paging 303
9.3 Performance of Demand Paging 309
9.4 Page Replacement 312
9.5 Page-Replacement Algorithms 315
9.6 Allocation of Frames 326

8.6 Segmentation 283
8.7 Segmentation with Paging 290
8.8 Summary 294

Exercises 296
Bibliographic Notes 299

9.7 Thrashing 329
9.8 Other Considerations 334
9.9 Demand Segmentation 341

9.10 Summary 342
Exercises 343
Bibliographic Notes 348

Chapter 10 File-System Interface

10.1 File Concept 349
10.2 Access Methods 358
10.3 Directory Structure 361
10.4 Protection 373

10.5 Consistency Semantics 378
10.6 Summary 379

Exercises 380
Bibliographic Notes 381

Chapter 11 File-System Implementation

11.1 File-System Structure 383 11.6 Recovery 403
11.2 Allocation Methods 387 11.7 Summary 405
11.3 Free-Space Management 397 Exercises 406
11.4 Directory Implementation 399 Bibliographic Notes 408
11.5 Efficiency and Performance 401

xiv Contents

Chapter 12 Secondary-Storage Structure

12.1 Disk Structure 409
12.2 Disk Scheduling 410
12.3 Disk Management 417
12.4 Swap-Space Management 419
12.5 Disk Reliability 422

12.6 Stable-Storage
Implementation 424

12.7 Summary 425
Exercises 426
Bibliographic Notes 427

PART FOUR • PROTECTION AND SECURITY

Chapter 13 Protection

13.1 Goals of Protection 431
13.2 Domain of Protection 432
13.3 Access Matrix 438
13.4 Implementation of Access

Matrix 443
13.5 Revocation of Access Rights 446

Chapter 14 Security

14.1 The Security Problem 459
14.2 Authentication 461
14.3 Program Threats 464
14.4 System Threats 465
14.5 Threat Monitoring 469

13.6 Capability-Based Systems 448
13.7 Language-Based Protection 451
13.8 Summary 455

Exercises 455
Bibliographic Notes 457

14.6 Encryption 471
14.7 Summary 473

Exercises 473
Bibliographic Notes 474

PART FIVE • DISTRIBUTED SYSTEMS

Chapter 15 Network Structures

15.1 Background 479
15.2 Motivation 481
15.3 Topology 482
15.4 Network Types 488
15.5 Communication 491

15.6 Design Strategies 498
15.7 Networking Example 501
15.8 Summary 504

Exercises 504
Bibliographic Notes 505

Contents xv

Chapter 16· Distributed-System Structures

16.1 Network-Operating Systems 507
16.2 Distributed-Operating Systems 509
16.3 Remote Services 512
16.4 Robustness 517

16.5 Design Issues 519
16.6 Summary 521

Exercises 522
Bibliographic Notes 523

Chapter 17 Distributed-File Systems

17.1 Background 525 17.6 Example Systems 539
17.2 Naming and Transparency 527 17.7 Summary 567
17.3 Remote File Access 531 Exercises 568
17.4 Stateful versus Stateless Service 536 Bibliographic Notes 569
17.5 File Replication 538

Chapter 18 Distributed Coordination

18.1 Event Ordering 571 18.6 Election Algorithms 595
18.2 Mutual Exclusion 574 18.7 Reaching Agreement 598
18.3 Atomicity 577 18.8 Summary 600
18.4 Concurrency Control 581 Exercises 601
18.5 Deadlock Handling 586 Bibliographic Notes 602

PART SIX • CASE STUDIES

Chapter 19 The UNIX System

19.1 History 607
19.2 Design Principles 613
19.3 Programmer Interface 615
19.4 User Interface 623
19.5 Process Management 627
19.6 Memory Management 632

Chapter 20 The Mach System

20.1 History 659
20.2 Design Principles 661
20.3 System Components 662
20.4 Process Management 666
20.5 Interprocess Communication 673

19.7 File System 636
19.8 I/0 System 645
19.9 Interprocess Communication 649

19.10 Summary 655
Exercises 655
Bibliographic Notes 657

20.6 Memory Management 679
20.7 Programmer Interface 685
20.8 Summary 686

Exercises 687
Bibliographic Notes 688

xvi Contents

Chapter 21 Historical Perspective

21.1 Atlas 691
21.2 XDS-940 692
21.3 THE 693
21.4 RC 4000 694

Appendix The Nachos System

A.1 Overview 700
A.2 Nachos Software Structure 702
A.3 Sample Assignments 705
A.4 Information on Obtaining a

Copy of Nachos 711

Bibliography 715

Credits 745

Index 747

21.5 CTSS 695
21.6 MULTICS 696
21.7 OS I 360 696
21.8 Other Systems 698

A.S Conclusions 713
Bibliographic Notes 713

PART ONE

OVERVIEW

An operating system is a program that acts as an intermediary between a
user of a computer and the computer hardware. The purpose of an
operating system'is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

We trace the development of operating systems from the first hands-on
systems to current multiprogrammed and time-shared systems.
Understanding the reasons behind the development of operating systems
gives us- an· appreciation for what an operating system does and how it
does it.

The operating system must ensure the correct operation of the
computer system. To prevent user programs from interfering with the
proper operation of the system, the hardware must provide appropriate
mechanisms to ensure such proper behavior. We describe the basic
computer architecture that makes it possible to write a correct operating
system.

The operating system provides certain services to programs and to the
users of those programs in order to make the programming task easier.
The specific se:J;Vices provided will, of course, differ from one operating
system to another, but there are some common classes of services that we
identify and explore.

CHAPTER 1

INTRODUCTION

An operating system is a program that acts as an intermediary between a
user of a computer and the computer hardware. The purpose of an
operating system is to provide an environment in which a user can execute
programs. The primary goal of an operating system is thus to make the
computer system convenient to use. A secondary goal is to use the
computer hardware. in an efficient manner.

To understand what operating systems are, we must first understand
how they· have developed. In this chapter, we trace the development of
operating systems frpm the first hands-on systems to current
multiprogrammed and time-shared systems. As we move through the
various stages, we see how the components of operating systems evolved
as natural solutions to problems in early computer systems.
Understanding the reasons behind the development of operating systems
gives us an appreciation for what tasks an operating system does and how
it does them.

1.1 • What Is an Operating System?

An operating system is an important part of almost every computer
.system. A computer system can be divided roughly into four components:
the hardware, the operating system, the applications programs, and the users
(Figure 1.1).

The hardware - the central processing unit (CPU), memory, and
input/output (I!O) devices - provides the basic computing resources. The
applications programs- such as compilers, database systems, games, and

3

user
1

user
2

assembler

user
3

text editor

user

database

a

1.1 What Is an Operating System? • 5

tasks. Since there may be many, possibly conflicting, requests for
resources, the operating system must decide which requests are allocated
resources to operate the computer system efficiently and fairly.

A slightly different view of an operating system focuses on the need to
control the various 1/0 devices and user programs. An operating system is
a control program. A control program controls the execution of user
programs to prevent errors and improper use of the computer. It is
especially concerned with the operation and control of 1/0 devices.

In general, however, there is no completely adequate definition of an
operating system. Operating systems exist because they are a reasonable
way to solve the problem of creating a usable computing system. The
fundamental goal of computer systems is to execute user programs and to,
make solving user problems easier. Toward this goal, computer hardware
is constructed. Since bare hardware alone is not particularly easy to use,
applications programs are developed. These various programs require
certain common operations, such as those controlling the I/O devices. The
common functions of controlling and allocating resources are then brought
together into one piece of software: the operating system.

There is also no universally accepted definition of ·what is part of the
operating system and what is not. A simple viewpoint is that everything a
vendor ships when you order "the operating system" should be
considered. The memory requirements and features included, however,
vary greatly across systems. Some take up less than 1 megabyte of space
(a megabyte is one million bytes) and lack even a full-screen editor, while
others require hundreds of megabytes of space and include spelling
checkers and entire "window systems." A more common definition is that
the operating system is the one program running at all times on the
computer (usually called the kernel), with all else being applications
programs. The latter is more common and is the one we generally follow.

It is easier to define operating systems by what they do, rather than by
what they are. The primary goal of an operating system is convenience for
the user. Operating systems exist because they are supposed to make it
easier to compute with one than without one. This view is particularly
clear when you look at operating systems for small personal computers.

A secondary goal is efficient operation of the computer system. This
goal is particularly important for large, shared multiuser systems. These
systems are typically expensive, so it is desirable to make them as efficient
as possible. These two goals, convenience and efficiency, are sometimes
contradictory. In the past, efficiency considerations were often more
important than convenience. Thus, much of operating-system theory
concentrates on optimal use of computing resources.

To see what operating systems are and what operating systems do, let
us consider how they have developed over the last 30 years. By tracing
that evolution, we can identify the common elements of operating systems
and see how and why these systems have developed as they have.

6 • Chapter 1: Introduction

Operating systems and computer architecture have had a great deal of
influence on each other. To facilitate the use of the hardware, operating
systems were developed. As operating systems were designed and used, it
became obvious that changes in the design of the hardware could simplify
them. In this short historiCal review, notice how operating-system
problems lead to the introduction of new hardware features.

1.2 • Early Systems

Early computers were (physically) enormously large machines run from a
console. The programmer, who was also the operator of the computer
system, would write a program, and then would operate the program
directly from the operator's console. First, the program would be loaded
manually into memory, from the front panel switch~s (one instruction at a
time), from paper tape, or from punched cards. Then, the appropriate
buttons would be pushed to set the starting address and to start the
execution of the program. As the program ran, the programmer/operator
could monitor its execution by the display lights on the console. If errors
were discovered, the programmer could halt the program, examine the
contents of memory and registers, and debug the program directly from
the console. Output was printed,,,ar was punched onto paper tape or cards
for later printing.

As time went on, additional software and hardware were developed.
Card readers, line printers, and magnetic tape became commonplace.
Assemblers, loaders, and linkers were designed to ease the programming
task. Libraries of common functions were created. Common functions
could then be copied into a new program without having to be written
again, providing software reusability.

The routines that performed 110 were especially important. Each new
1/0 device had its own characteristics, requiring careful programming. A
special subroutine was written for each 1/0 device. Such a subroutine is
called a device driver. A device driver knows how the buffers, flags,
registers, control bits, and status bits for a particular device should be
used. Each different type of device has its own driver. A simple task, such
as reading a character from a paper-tape reader, might involve complex
sequences of device-specific operations. Rather than writing the necessary
code every time, the device driver was simply used from the library.

Later, compilers for FORTRAN, COBOL, and other languages appeared,
making the programming task much easier, but the operation of the
computer more complex. To prepare a FORTRAN program for execution, for
example, the programmer would first need to load the FORTRAN compiler
into the computer. The compiler was normally kept on magnetic tape, so
the proper tape would need to be mounted on a tape drive. The program
would be read through the card reader and written onto another tape. The

1.3 Simple Batch Systems • 7

FORTRAN compiler produced assembly-language output, which then needed
to be assembled. This procedure required mounting another tape with the
assembler. The output of the assembler would need to be linked to
supporting library routines. Finally, the binary object form of the program
would be ready to execute. It could be loaded into memory and debugged
from the console, as before.

Notice that there could be a significant amount of set-up time involved
in the running of a job. Each job consisted of many separate steps: loading
the FORTRAN compiler tape, running the compiler, unloading the compiler
tape, loading the assembler tape, running the assembler, unloading the
assembler tape, loading the object program, and running the object
program. If an error occurred during any step, you might have to start
over at the beginning. Each job step might involve the loading and
unloading of magnetic tapes, paper tapes, and punch cards.

1.3 • Simple Batch Systems

The job set-~p time was a real problem. While tapes were being mounted
or the programmer was operating the console, the CPU sat idle. Remember
that, in the early days, few computers were available, and they were
expensive (they cost millions of dollars). In addition, there were the
operational costs of power, cooling, programmers, and so on. Thus,
compu.ter time was extremely valuable, and owners wanted their
computers to be used as much as possible. They needed high utilization to
get as much as they could from their investments.

1.3.1 Resident Monitor
The solution was two-fold. First, a professional computer operator was
hired. The programmer no longer operated the machine. As soon as one
job was finished, the operator could start. the next. Since the operator had
more experience with mounting tapes than a programmer, set-up time was
reduced. The user provided whatever cards or tapes were needed, as well
as a short description of how the job was to be run. Of course, the
operator could not debug an incorrect program at the console, since the
operator would not understand the program. Therefore, in the case of
program error, a dump of memory and registers was taken, and the
programmer had to debug from the dump. Dumping the memory and
registers allowed the operator to continue immediately with the next job,
but left the programmer with~ much more difficult debugging problem.

The second major time savings involved reducing set-up time. Jobs
with similar needs were batched together and run through the computer as
a group. For instan(:e, suppose the operator received one FORTRAN job, one
COBOL job, and another FORTRAN job. If she ran them in that order, she

• 1:

monitor

a

8 fl Chapter 1: Introduction

would have to set up for FORTRAN (load the compiler tapes, and so on),

then set up for COBOL, and then set up for FORTRAN again, If she ran the
two FORTRAN programs as a batch, however, she could set up only once for

FORTRAN, saving operator time.

These Changes, making the operator distinct from the user and
batching similar jobs, improved utilization quite a bit. Programmers would

leave their programs with the operator. The operator would sort them into
batches with similar requirements and, as the computer became availabie,

would run each batch. The output from each job would be sent back to the

appropriate programmer.

But there were still problems. For example, when a job stopped, the

operator would have to notice that fact by observing the console,

determine why the program stopped (normal or abnormal termination),
take a dump if necessary, and then load the appropriate device with the

next job and restart the Computer. During this transition from one job to
the next, the CPU sat idle.

To overcome this idle time, peopie developed automatic job sequencing;
with this technique, the first rudimentary operating systems were created‘

What was desired was a procedure for automatically transferring control
from one job to the next. A small program, called a resident monitor, was

created for this purpose (Figure 1.2.). The resicient monitor is always
(resident) in memory.

Wihen the computer was turned on, the resident monitor was invoked,
and it would transfer control to a program. When the program terminated,

monitor

Figure 1.2 Memory layout for a resident monitor.

1.3 Simple Batch Systems • 9

it would return control to the resident monitor, which would then go on to
the next program. Thus, the resident monitor would automatically
sequence from one progra~ to anoth~r and from o~e jol? to. another.

But how would the resident monitor know which program to execute?
Previously, the operator had been given a short description of what
programs were to be run on. what data. So that th~s information co~ld ~e
provided directly to the monitor, control cards were Introduced. The Idea Is
quite simple. In addition to the program or data for a job, the programmer
included special cards (control cards) containing directives to the resident
monitor indicating the program to run. For example, a normal user
program might require one of three programs to run: the FORTRAN compiler
(FTN), the assembler (ASM), or the user's program (RUN). We could use a
separate control card for each of these:

$FTN- Execute the FORTRAN compiler.
$ASM- Execute the assembler.
$RUN- Execute the user program.

These cards tell the resident monitor which programs to run.
We can use two additional control cards to define the boundaries of

each job:

$JOB - First card of a job.
$END- Last card of a job.

These two cards might be useful for accounting for the machine resources
used by the programmer. Parameters can be used to define the job name,
account number to be charged, and so on. Other control cards can be
defined for other functions, such as asking the operator to load or unload a
tape.

One problem with control cards is how to distinguish them from data
or program cards. The usual solution is to identify them by a special
character or pattern on the card. Several systems used the dollar-sign
character ($) in the first column to identify a control card. Others used a
different code. IBM's Job Control Language (JCL) used slash marks(//) in the
first two columns. Figure 1.3 shows a sample card-deck setup for a simple
batch system.

A resident monitor thus has several identifiable parts. One is the
control-card interpreter that . is responsible for reading and carrying out the
instructions on the cards at the point of execution. The control-card
interpreter at intervals invokes a loader to load systems programs and
applications programs into memory. Thus, a loader is a part of the resident
monitor. Both the control-card interpreter and the loader need to perform
IIO, so the resident monitor has a set of device drivers for the system's 110

devices. Often, the system and applications programs are linked to these

a

10 E Chapter 1: Introduction

($ENo

Figure 1.3 Card deck for a simple batch system.

same device drivers, providing continuity in their operatien, as well as

saving memory space and programming time.
These batch systems work fairly Well. The resident monitor provicfies

automatic: job sequencing as indicated by the Control cards. When a

control card indicates that a program is to be run, the moniter loads the

program into memory and transfers control be it. yWh.en the program
completes, it transfers control back to the monitor, which reads the next

control card, loads the appropriate program, and so on. This cycle is
repeated until all control cards are interpreted for the job. Then, the
monitor automatically Continues with the next job.

A batch operating system, thus, normally reads a stream of separate
jobs (from a card reader, for example), each with its own control Cards that

predefine what the job does. When the job is complete, its output is

usually printed (on a line printer, for example). The definitive feature of a

batch system is the lack of interaction between the user and they job while

that job is executing. The job is prepared and submitted. At some later

time (perhaps minutes, hours, or days), the output appears. The delay
between job submission and job Completion (called turnaround time) may

result from the amount of computing needed, or from deiays before the
operating system starts to process the job.

1.3.2 Overlapjped CPU and I/O Opehratioznhs

The switch to batch systems with automatic job sequencing was made ta

improve performance. The problem, quite simply, is that humans are

extremely slow (relative to the computer, of course). Consequently, it is

1.3 Simple Batch Systems • 11

desirable to replace human operation by operating-system software.
Automatic job sequencing eliminates the need for human set-up time and
job sequencing.

Even with automatic job sequencing, however, the CPU is often idle.
The problem is the speed of the mechanical I/O devices, which are
intrinsically slower than electronic devices. Even a slow CPU works in the
microsecond range, with millions of instructions executed per second. A
fast card reader, on the other hand, might read 1200 cards per minute (17
cards per second). Thus, the difference in speed between the CPU and its
IJO devices may be three orders of magnitude or more. Over time, of
course, improvements in technology resulted in faster IJO devices.
Unfortunately, CPU speeds increased even faster, so that the problem was
not only unresolved, but also exacerbated.

1.3.2.1 Off-line processing

One common solution was to replace the very slow card readers (input
devices) and line printers (output devices) with magnetic-tape units. The
majority of computer systems in the late 1950s and early 1960s were batch
systems reading from card readers and writing to line printers or card
punches. Rather than have the CPU read directly from cards, however, the
cards were first copied onto a magnetic tape via a separate device. When
the tape was sufficiently full, it was taken down and carried over to the
computer. When a card was needed for input to a program, the equivalent
record was read from the tape. Shnilarly, output was written to the tape
and the contents of the tape would be printed later. The card readers and
line printers were operated off-line, rather than by the main computer
(Figure 1.4).

The main advantage of off-line operation was that the main computer
was no longer constrained by the speed of the card readers and ·line
printers, but was limited by only the speed of the much faster magnetic

card reader line printer

(a)

card reader tape drives

(b)

Figure 1.4 Operation of 110 devices. (a) On-line. (b) Off-line.

12 • Chapter 1: Introduction

tape units. This technique of using magnetic tape for all I/O could be
applied with any similar equipment (card readers, card punches, plotters,
paper tape, printers). .

The real gain in off-line operation comes from the possibility of using
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU
can process input twice as fast as the reader can read cards, then two
readers working simultaneously can produce enough tape to keep the CPU
busy. On the other hand, there is now a longer delay in getting a
particular job run. It must first be read onto tape. Then, there is a delay
until enough other jobs are read onto the tape to "fill" it. The tape must
then be rewound, unloaded, hand-carried to the CPU, and mounted on a
free tape drive. This process is not unreasonable for batch systems, of
course. Many similar jobs can be hatched onto a tape before it is taken to
the computer.

1.3.2.2 Spooling

Although off-line preparation of jobs continued for some time, it was
quickly replaced in most systems. Disk systems became widely available
and greatly improved on off-line operation. The problem with tape systems
was that the card reader could not write onto one end of the tape while
the CPU read from the other. The entire tape had to be written before it
was rewound and read, because tapes are by nature sequential-access devices.
Disk systems eliminated this problem by being random-access devices.
Because the head is moved from one area of the disk to another, a disk can
switch rapidly from the area on the disk being used by the card reader to
store new cards, to the position needed by the CPU to read the "next" card.

In a disk system, cards are read directly from the card reader onto the
disk. The location of card images is recorded in a table kept by the
operating system. When a job is executed, the operating system satisfies its
requests for card-reader input by reading from the disk. Similarly, when
the job requests the printer to output a line, that line is copied into a
system buffer and is written to the disk. When the job is completed, the
output is actually printed.

This form of processing is called spooling (Figure 1.5). The name is an
acronym for simultaneous peripheral operation on-line. Spooling, in
essence, uses the disk as a very large buffer, for reading as far ahead as
possible on input devices and for storing output files until the output
devices are able to accept them.

Spooling is also used for processing data at remote sites. The CPU
sends the data via communications paths to a remote printer (or accepts an
entire input job from a remote card reader). The remote processing is
done at its own speed with no CPU intervention. The CPU just needs to be
notified when the processing is completed, so that it can spool the next
batch of data. r

disk

card reader

1.4 Multiprogrammecl Batched Systems I “I3

disk

 Gard reader tine prints:

Figure 1 .5 Spooling.

Spoofing overlaps the 1/0 of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job

While printing the output of {it different job. During this time, still another

job (or jobs) may be executed, reading their “Cars:is” from fiisk and
“printing” their output lines onto the disk.

Spoofing has a direct beneficial effect on the performance of the

system. For the cost of some disk space and a few tables, the computation
of one job can overlap with the 1/0 of other jobs. Thus, spoofing cam keep

both the CPU and the 1/0 deviceslwotking at much higher rates.

194 I Multiprogrammed Batched Systems

Spooling providesan important data structure: a job pool. Spoofing will
generally result in several jobs that have already been read waiting on
disk, ready to run. A pool of jobs on disk allows the operating system to
select which job to run next, in order to increase CPU utilization. When jobs

come in directly on cards or even on magnetic tape, it is not possible to

run jobs in a different order. Jobs must be run sequentially, on a first»

come, first-served basis. However, when several jobs are on a direct»

access device, such as a disk, job scheduling becomes possible. We discuss

gob and CPU scheduling in greater detail in Chapter 5; a. few important

aspects are covered here.

The most important aspect of job scheduling is the ability to

multiprogram, Off-line operation and spoofing for overlapped I/Q have their
limitations. A single user cannot, in general, keep either the CPU or the 1/0

devices busy at all times. Multiprogramming increases CPU utilization by

organizing jobs so that the CPU always has something to execute.

14 • Chapter 1: Introduction

The idea is as ·follows. The operating system keeps several jobs in
memory at a time (Figure 1.6). This set of jobs is a subset of the jobs kept
in the job pool (since the number of jobs that can be kept simultaneously
in memory is usually much smaller than the number of jobs that can be in
the job pool.) The operating system picks and begins to execute one of the
jobs in the memory. Eventually, the job may have to wait for some task,
such as a tape to be mounted, a command to be typed on a keyboard, or
an 110 operation to complete. In a nonmultiprogrammed system, the CPU
would sit idle. In a multiprogramming system, the operating system
simply switches to and executes another job. When that job needs to wait,
the CPU is switched to another job, and so on. Eventually, the first job
finishes waiting and gets the CPU back. As long as there is always some job
to execute, the CPU will never be idle.

This idea is quite common in other life situations. A lawyer does not
have only one client at a time. Rather, several clients may be in the process
of being served at the same time. While one case is waiting to go to trial or
to have papers typed, the lawyer can wo.rk on another case. With enough
clients, a lawyer need never be idle. (Idle lawyers tend to become
politicians, so there is a certain social value in keeping lawyers bu~y.)

Multiprogramming is the first instance where the operating system
must make decisions for the users. Multiprogrammed operating systems
are therefore fairly sophisticated. All the jobs that enter the system are
kept in the job pool. This pool consists of all processes residing on mass
storage awaiting allocation of main memory. If several jobs are ready to be
brought into memory, and there is not enough room for all of them, then
the system must choose among them. This decision is job scheduling, which

0

512K

Figure 1.6 Memory layout for a multiprogramming system.

1.5 Time-Sharing Systems • 15

is discussed in Chapter 5. When the operating system selects a job from
the job pool, it loads it into me~ory for .execution. Having several
programs in memory at the same hme requues some form of memory
management, which is covered in Chapters 8 and 9. In addition, if several
jobs are ready to run at the same time, the system inust choose among
them. This decision is CPU scheduling, which is discussed in Chapter 5.
Finally, multiple jobs running concurrently require that their ability to
affect one another be limited in all phases of the operating system,
including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

1.5 • Time-Sharing Systems

Multiprogrammed batched systems provide an environment where the
various system resource~ (for example, CPU, memory, peripheral devices)
are utilized effectively. There are some difficulties with a batch system
from the point of view of the programmer or user, however. Since the user
cannot interact with the job when it is executing, the user must set up the
control cards to handle all possible outcomes. In a multistep job,
subsequent steps may depend on the result of earlier ones. The running of
a program, for example, may depend on successful compilation. It can be
difficult to define completely what to do in all cases.

Another difficulty is that programs must be debugged statically, from
snapshot dumps. A programmer cannot modify a program as it executes to
study its behavior. A long turnaround time inhibits experimentation with a
program. (Conversely, this situation may instill a certain amount of
discipline into the writing and testing of programs.)

Time sharing (or multitasking) is a logical extension of
multiprogramming. Multiple jobs are executed by the CPU switching
between them, but the switches occur so frequently that the users may
interact with each program while it is running.

An interactive, or hands-on, computer system provides on-line
communication between the user and the system. The user gives
instructions to the operating system or to a program directly, and receives
art immediate response. Usually, a keyboard is used to provide input, and
a display screen (such as a cathode-ray tube (CRT), or monitor) is used to
provide output. When the operating system finishes the execution of one
command, it seeks the next "control statement" not from a card reader, but
rather from the user's keyboard. The user gives a command, waits for the
response, and decides on the next command, based on the result of the
previous one. The user can easily experiment, and can see results
immediately. Most systems have an interactive text editor for entering
programs, and- an interactive debugger for assisting in debugging
programs.

16 • Chapter 1: Introduction

If users are to be able to access both data and code conveniently, an
on-line file system must be available. A file is a collection of related
information defined by its creator. Commonly, files represent programs
(both source and object forms) and data. Data files may be numeric,
alphabetic, or alphanumeric. Files may be free-form, such as text files, or
may be rigidly formatted. In general, a file is a sequence of bits, bytes,
lines, or records whose meaning is defined by its creator and user. The
operating system implements the abstract concept of a file by managing
mass-storage devices, such as tapes and disks. Files are normally organized
into logical clusters, or directories, which makes them easier to use. Since
multiple users have access to files, it is desirabie to control by whom and
in what ways files may be accessed:

Batch systems are quite appropriate for executing large jobs that need ·
little interaction. The user can submit jobs and return later for the results;
it is not necessary to wait while the job is processed. Interactive jobs tend
to be composed of many short actions, where the results of the next
command may be unpredictable. The user submits the command and then
waits for the results. Accordingly, the response time should be quite short
-on the order of seconqs at .most. An interactive system is used when a
short response time is required.

Early computers were interactive· systems. That is, the entire system
was at the immediate disposal of the programmer/operator. This situation
allowed the programmer great flexibility and freedom in program testing
and development. But, as we saw, this arrangement resulted in substantial
idie time while the CPU waited for some action to be taken by the
programmer/operator. Because of the high cost of these early computers,
idle CPU time was undesirable. Batch operating systems were developed to
avoid this problem. Batch systems improved system utilization for the
owners of the computer systems.

Time-'sharfng systems were developed to provide interactive use of a
computer system at a reasonable cost. A time-shared operating system uses
CPU scheduling and multiprogramming to provide each user with a small
portion of a time-shared computer. Each user has at least one separate
program in memory. A program that is loaded into memory and is
executing is commonly referred to as a process. When a process executes, it
typically executes for only a short time before it either finishes or needs to
perform I/0. I/O may be interactive; that is, output is to a display for the
user and input is from a user keyboard. Since interactive I/O typically runs
at people speeds, it may take a long time to complete~ Input, for example,
may be bounded by the u~er' s typing speed; five characters per second is
fairly fast for people, but is very slow for computers. Rather than let the
CPU sit idle when this interactive input takes place, the operating system
will rapidly switch the CPU to the program of some other user.

A time-shared operating system allows the many users to share the
computer simultaneously. Since each actiori or command in a time-shared

1.6 Personal-Computer Systems • 17

stem tends to be short, only a little CPU.time is needed for each user. As :he system switches rapidly from one user to the next, each user is given
the impression that she has her own computer, whereas actually one
computer is bein9 shared ~mong many users. .

The idea of time shanng was d:emonstrated as early as 1960, but stnce
time-shared systems are more difficult and expensive to build (due to the
numerous 110 devices needed), they did not become common until the
early 1970s. As the popularity of time sharing has grown, researchers have
attempted to merge batch and time-shared systems. Many computer
systems that were designed as primarily batch systems have been modified
to create a time-sharing subsystem. For example, IBM's OS/360, a batch
system, was modified to support the Time-Sharing Option (TSO). At the
same time, time-sharing systems have often added a batch subsystem.
Today, most systems provide both batch processing and time sharing,
although their basic design and use tends to be one or the other type.

Time-sharing operating systems are even more complex than are
multiprogrammed operating systems. As in multiprogramming, several
jobs must be kept simultaneously in memory, which requires some form of
memory management .and protection (Chapter 8). So that a reasonable
response time can be obtained, jobs may have to be swapped in and out of
main memory to the disk that now serves as a backing store for main
memory. A common method for achieving this goal is virtual memory,
which is a technique that allows the execution of a job that may not be
completely in memory (Chapter 9). The main visible advantage of this
scheme is that programs can be larger than physical memory. Further, it
abstracts main memory into a large, uniform array of storage, separating
logical memory as viewed by the user from physical memory. This frees
programmers from concern over memory storage limitations. Time-sharing
systems must also provide an on-line file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management
must also be provided (Chapter 12). Also, time-sharing systems provide a
mechanism for concurrent execution, which requires sophisticated CPU
scheduling schemes (Chapter 5). To ensure orderly execution, the system
must provide mechanisms for job synchronization and communication
(Chapter 6), and must ensure that jobs do not get stuck in a deadlock,
forever waiting for each other (Chapter 7).

Multiprogramming and time sharing are the central themes of modern
operating systems, and are the central themes of this book.

1.6 • Personal-Computer Systems

As hardware costs have decreased, it has once again become feasible to
have a computer system dedicated to a single user. These types of
computer systems are usually referred to as personal computers, or just PCs.

18 • Chapter 1: Introduction

The 110 devices have certainly changed, with panels of switches and card
readers replaced with typewri~er-like keyboards and mice. Line printers
and card punches have succumbed to display screens and small, fast
printers. . .

Personal computers appeared in the 1970s. They are microcomputers
that are considerably smaller and less expensive than mainframe systems.
Until recently, the CPUs of these types of computer systems have been
lacking the features needed to protect an operating system from user
programs. Their operating systems therefore have been neither multiuser
nor multitasking. However, the goals of these operating systems have
changed with time; instead of tryirtg to maximize CPU and peripheral
utilization, the systems opt for user convenience and responsiveness.
These systems include both the mM PC family of computers running the
MS-DOS operating system; and the Apple Macintosh and its software. MS
oos has been extended by. Microsoft to include a window system, and IBM
has upgraded MS-DOS with the OS/2 multitasking system. The Apple
Macintosh operating system has been ported to more advanced hardware,
and now includes new features such as Virtual memory.

Operating systems for these computers have benefited from the
development of operating systems for mainframes in several ways.
Microcomputers were immediately able to adopt the technology developed
for larger operating systems. On the other hand, the hardware costs for
microcomputers are sufficiently low that individuals have sole use of the
computer, and CPU utilization is no longer a prime concern. Thus, some of
the design decisions that are made in operating systems for mainframes
may not be appropriate for smaller systems. For example, file protection
may not seem necessary on a personal machine. MS-DOS, the world's most
common operating system, provides no such protection.

Some people have argued that_ the development of cheap
microprocessors and cheap memory will make operating systems (and
courses that teach them) obsolete. We do not believe that this prediction is
true. Rather, the decrease in. hardware costs will allow relatively
sophisticated operating-system concepts (such as time sharing and virtual
memory) to be implemented on an even greater number of systems. Thus,
the decrease in the cost of computer hardware, such as microprocessors,
will increase our need to understand the concepts of operating systems.

For example, although file protection may not seem necessary for
isolated personal computers, these computers are often tied into other
computers over telephone lines or local-area networks. When other
computers and other users can access the fil~s on a personal computer, file
protection again becomes a necessary feature of an operating system. The
lack of such protection enables malicious programs to destroy data on
systems such as MS-DOS and the Macintosh operating system. These
programs may be self-replicating, and may spread rapidly via worm or virus

1950

no

batch

resident
monitors

1960 970
MULTICS

time
shared

monitors

multiuser

time
shared

no
software

resident
monitors

multiuser

20 • Chapter 1: Introduction

At the same time that features of large operating systems were being
scaled down to fit personal computers, more powerful, faster, and more
sophisticated hardware systems were being developed. The personal
workstation is a large personal computer, such as the Sun, HP/Apollo, or mM
RS/6000 computer. Many universities and businesses have large numbers of
workstations tied together with local-area networks. As the PC systems gain
more sophisticated hardware and software, and workstations become less
expensive, the line dividing the two breeds is becoming blurry. In the
future, the two may merge into one category.

1. 7 • Parallel Systems

Most systems to date are single-processor systems; that is, they have only
one main CPU. However, there is a trend toward multiprocessor systems.
Such systems have more than one processor in close communication,
sharing the computer bus, the clock, and sometimes memory and
peripheral devices. These systems are referred to as tightly coupled systems.

There are several reasons for building such systems. One advantage is
increased throughput. By increasing the number of processors, we would
hope to get more work done in a shorter penod of time. The speed-up
ratio with n processors is not n, however, but rather is less than n. When
multiple processors cooperate on a task, a certain amount of overhead is
incurred in keeping everything working correctly. This overhead, plus
contention for shared resources, lowers the expected gain from additional
processors. Similarly, a group of n programmers working closely together
does not result in n times the amount of work being accomplished.

Multiprocessors can also save money compared to multiple single
systems because the processors can share peripherals, cabinets, and power
supplies. If several programs are to operate on the same set of data, it is
cheaper to store those data on one disk and to have all the processors
share them, rather than to have many computers with local disks and
many copies of the data. _

Another reason for multiprocessor systems is that they increase
reliability. If functions can be distributed properly among several
processors, then the failure of one processor will not halt the system, but
rather will only slow it down. If we have 10 processors and one fails, then
each of the remaining nine processors must pick up a share of the work of
the failed processor. Thus, the entire system runs only 10 percent slower,
rather than failing altogether. This ability to continue providing service
prop,prtional to the level of nonfailed hardware is called graceful degradation.
Systems that are designed for graceful degradation are also called fail-soft.

Continued operation in the presence of failures requires a mechanism
to allow the failure to be detected, diagnosed, and corrected (if possible).
The Tandem system uses both hardware and software duplication to

1. 7 Parallel Systems • 21

ensure continued operation despite faults. The system consists of two
identical processors, each with its own local memory. The processors are
connected by a bus. One processor is the primary, and the other is the
backup. Two copies are kept of each process; one on the primary machine
and the other on the backup. At fixed checkpoints in the execution of the
system, the state information of each job (including a copy of the memory
image) is copied from the primary machine to the backup. If a failure is
detected, the backup copy is activated, and is restarted from the most
recent checkpoint. This solution is obviously an expensive one, since there
is considerable hardware duplication.

The most common multiple-processor systems now use the symmetric
multiprocessing model, in which each processor runs an identical copy of
the operating system, and these copies communicate with one another as
needed. Some systems use asymmetric multiprocessing, in which each
processor is assigned a specific task. A master processor controls the
system; the other processors either look to the master for instruction or
have predefined tasks. This scheme defines a master-slave relationship.
The master processor schedules and allocates work to the slave processors.

An example of the symmetric multiprocessing system is Encore's
version of UNIX for the Multimax computer, This computer can be
configured to employ dozens of processors, all running a copy of UNIX.
The benefit of this model is that many processes can run at once (N
processes if there are N CPUs) without causing a deterioration of
performance. However, we must carefully control I/O to ensure that data
reach the appropriate processor. Also, since the CPUs are separate, one
may be sitting idle while another is overloaded, resulting in inefficiencies.
To avoid these inefficiencies, the processors can share certain data
structures. A multiprocessor system of this form will allow jobs and
resources to be shared dynamically among the various processors, and can
lower the variance among the systems. However, such a system must be
written carefully, as we shall see in Chapter 6.

Asymmetric multiprocessing is more common in extremely large
systems, where one of the most time-consuming activities is simply
processing I/0. In older batch systems, small processors, located at some
distance from the main CPU, were used to run card readers and line
printers and to transfer these jobs to and from the main computer. These
locations are called remote job entry (RJE) sites. In a time-sharing system, a
main I/O activity is processing the I/O of characters between the terminals
and the computer. If the main CPU must be interrupted for every character
for every terminal, it may spend all its time simply processing characters.
So that this situation is avoided, most systems have a separate front-end
processor that handles all the terminal I/O. For example, a large IBM system
might use an IBM Series/1 minicomputer as a front-end. The front-end acts
as a buffer between the terminals and the main CPU, allowing the main CPU
to handle lines and blocks of characters, instead of individual characters.

22 • Chapter 1: Introduction

Such systems suffer from decreased reliability through increased
specialization.

It is important to recognize that the difference between symmetric and
asymmetric multiprocessing may be the result of either hardware or
software. Special hardware may exist to differentiate the multiple
processors, or the software may be written to allow only one master and
multiple slaves. For instance, Sun's operating system SunOS Version 4
provides asymmetric multiprocessing, whereas Version 5 (SolaJ?.s 2) is
symmetric.

As microprocessors become less expensive and more powerful,
additional operating-system functions are off-loaded to slave processors (or
back-ends). For example, it is fairly easy to add a microprocessor with its·
own memory to manage a disk system. The microprocessor could receive a
sequence of requests from the main CPU and implement its own disk queue
and scheduling algorithm. This arrangement relieves the main CPU of the
overhead of disk scheduling. The IBM PC contains a microprocessor in its
keyboard to convert the key strokes into codes to be sent to the CPU. In
fact, this use of microprocessors has become so common that it is no
longer considered multiprocessing.

1.8 • Distributed Systems

A recent trend in computer systems is to distribute computation among
several processors. In contrast to the tightly coupled systems discussed in
Section 1.7, the processors do not share memory or a clock. Instead, each
processor has its own local memory. The processors communicate with one
another through various communication lines, such as high-speed buses or
telephone lines. These systems are usually referred to as loosely coupled
systems, or distributed systems.

The processors in a distributed system may vary in size and function.
They may include small microprocessors, workstations, minicomputers,
and large general-purpose computer systems. These processors are referred
to by a number of different names, such as sites, nodes, computers, and so
on, depending on the context in which they are mentioned.

There are a variety of reasons for building distributed systems, the
major ones being these:

• Resource sharing. If a number of different sites (with different
capabilities) are connected to one another, then a user at one site may
be able to use the resources available at another. For example, a user at
site A may be using a laser printer available only at site B. Meanwhile,
a user at B may access a file that resides at A. In general, resource
sharing in a distributed system provides mechanisms for sharing files
at remote sites,· processing information in a distributed database,

1.9 Real-Time Systems • 23

printing files at remote sites, using remote specialized hardware
devices (such as a high-speed array processor), and performing other
operations.

• Computation speedup. If a particular computation can be partitioned
into a number of subcomputations that can run concurrently, then a
distributed system may allow us to distribute the computation among
the various sites- to run that computation concurrently. In addition,
if a particular site is currently overloaded with jobs, some of them may
be moved to other, lightly loaded, sites. This movement of jobs is
called load sharing.

• Reliability. If one site fails in a distributed system, the remaining sites
can potentially continue operating. If the system is composed of a
number of large autonomous installations (that is, general-purpose
computers), the failure of one of them should rtot affect the rest. If, on
the other hand, the system is composed of a number of small
machines, each of which is responsible for some crucial system
function (such as terminal character I/O or the file system), then a single
failure may effectively halt the operation of the whole system. In
general, if enough redundancy exists in the system (in both hardware
and data), the system can continue with its operation, even if some of
its sites have failed.

• Communication. There are many instances in which programs need to
exchange data with one another on one system. Window systems are
one example, since they frequently share data or transfer data between
displays. When a number of sites are connected to one another by a
communication network, the processes at different sites have the
opportunity to exchange information. Users may initiate file transfers
or communicate with one another via electronic mail. A user can send
mail to another user at the same site or at a different site.

Distributed systems are discussed in great detail in Chapter 15 through
Chapter 18.

1.9 • Real-Time Systems

Another form of a special-purpose operating system is the real-time system.
A real-time system is used when there are rigid time requirements on the
operation of a processor or the flow of data, and thus is often used as a
control device in a dedicated application. Sensors bring data to the
computer. The computer must analyze the data and possibly adjust
controls to modify the sensor inputs. Systems that control scientific
experiments, medical imaging systems, industrial control systems, and

24 • Chapter 1: Introduction

some display systems are real-time systems. Also included are some
automobile-engine fuel-injection systems, home-appliance controllers, and
weapon systems. A real-time operating system has well-defined, fixed
time constraints. Processing must be done within the defined constraints,
or the system will fail. For instance, it would not do for a robot arm to be
instructed to halt after it had smashed into the car it was building. A real
time system is considered to function correctly only if it returns the Correct
result within any time constraints. Contrast this requirement to a time
sharing system, where it is desirable (but not mandatory) to respond
quickly, or to a batch system, where there may be no time constraints at
all.

There are two flavors of real-time systems .. A hard real-time system
guarantees that critical tasks complete on time. This goal requires that all
delays in the system be bounded, from the retrieval of stored data to the
time it takes the operating system to finish any request made of it. Such
time constraints dictate the facilities that are available in hard real-time
systems. Secondary storage of any sort is usually limited or missing, with
data instead being stored in short-term memory, or in read-only memory
(ROM). ROM is a nonvolatile storage device that retains its content even in
the case of electric outage; most other types of memory are volatile. Most
advanced operating-system features are absent too, since they tend to
separate the user further from the hardware, and that separation results in
uncertainty as to the amount of time an operation will take. For instance,
virtual memory (discussed in Chapter 9) is almost never found oh real-time
systems. Therefore, hard real-time systems conflict with the operation of
time-sharing systems, and the two cannot be mixed. Since none of the
existing general-purpose operating sy!)tems support hard real-time
functionality, we do not concern ourselves with this type of system in this
text.

A less restrictive type of real-time system is a soft real-time system,
where a critical real-time task gets priority over other tasks, and retains
that priority until it completes. As in hard real-time systems, kemel delays
still need to be bound. A real-time task cannot be kept waiting indefinitely
for the kernel to run it. Soft real-time is an achievable goal that is
amenable to mixing with other types of systems. Soft real-time systems,
however, have more limited utility than do hard real-time systems. Given
their lack of deadline support, they cannot be used for industrial control
and robotics. There are several areas in which they are useful, however,
including multimedia, virtual reality, and advanced scientific projects such
as undersea exploration and planetary rovers. These systems need
advanced operating-system features that cannot be supported by hard
real-time systems. Because of the expanded uses for soft real-time
functionality, it is finding its way into most current operating systems,
including the two major versions of UNIX.

1.10 Summary • 25

In Chapter 5, we consider the scheduling facility needed to implement
soft real-time functionality in an operating system. In Chapter 9, we
describe the design of memory management for real-time computing.
Finally, in Chapter 20, we describe the real-time components of the Mach
operating system.

1.10 • Summary

Operating systems have developed over the past 40 years for two main
purposes. First, operating systems attempt to schedule computational
activities to ensure good performance of the computing system. Second,
they provide a convenient environment for the development and execution
of programs.

Initially, computer systems were used from the front console. Software
such as assemblers, loaders, linkers, and compilers improved the
convenience of programming the system, but also required substantial set
up time. To reduce the set-up time, facilities hired operators and batched
similar jobs.

Batch systems allowed automatic job sequencing by a resident monitor
and greatly improved the overall utilization of the computer. The
computer no longer had to wait for human operation. CPU utilization was
still low, however, because of the slow speed of the 110 devices relative to
that of the CPU. Off-line operation of slow devices provides a means to use
multiple reader-to-tape and tape-to-printer systems for one CPU. Spooling
allows the CPU to overlap the input of one job with the computation and
output of other jobs.

To improve the overall performance of the system, developers
introduced the concept of multiprogramming. With multiprogramming,
several jobs are kept in memory at one time; the CPU is switched back and
forth among them to increase CPU utilization and to decrease the total time
needed to execute the jobs.

Multiprogramming, which was developed to improve performance,
also allows time sharing. Time-shared operating systems allow many users
(from one to several hundred) to use a computer system interactively at the
same time.

Personal computer systems are microcomputers that are considerably
smaller and less expensive than are mainframe systems. Operating
systems for these computers have benefited from the development of
operating systems for mainframes in several ways. However, since
individuals have sole use of the computer, CPU utilization is no longer a
prime concern. Hence, some of the design decisions that are made in
operating systems for mainframes may not be appropriate for smaller
systems.

26 • Chapter 1: Introduction

Parallel systems have more than one CPU in close communication; the
cpus share the computer bus, and sometimes memory and peripheral
devices. Such systems provide increased throughput and enhanced
reliability.

A distributed system is a collection of processors that do not share
memory or a clock. Instead, each processor has its own local memory, and
the processors communicate with each other through various
communication lines, such as high-speed buses or telephone lines. A
distributed system provides the user with access to the various resources
located at remote sites.

A hard real-time system is often used as a control device in a dedicated
application. A hard real-time operating system has well-defined, fixed time
constraints. Processing must be done within the defined constraints, or the
system will fail. Soft real-time systems have less stringent timing
constraints, and do not support deadline scheduling.

We have shown the logical progression of operating-system
development, driven by inclusion of features in the CPU hardware that are
needed for advanced operating-system functionality. This trend can be
seen today in the evolution of personal computers, with inexpensive
hardware being improved enough to allow, in turn, improved
characteristics.

• Exercises

1.1 What are the three main purposes of an operating system?

1.2 List the four steps that are necessary to run a program on a
completely dedicated machine.

1.3 An extreme method of spooling, known as staging a tape, is to read
the entire contents of a magnetic tape onto disk before using it.
Discuss the main advantage of such a scheme.

1.4 In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in
machine as we have in a dedicated machine?
answer.

1.5 What is the main advantage of multiprogramming?

a time-shared
Explain your

1.6 What are the main differences between operating systems for
mainframe computers and personal computers?

Bibliographic Notes • 27

1. 7 Define the essential properties of the following types of operating

systems:

a. Batch

b. Interactive

c. Time-sharing

d. Real-time

e. Distributed

1.8 We have stressed the need for an operating system to make efficient
use of the computing hardware. When is it appropriate for the
operating system to forsake this principle and "waste" resources?
Why is such a system not really wasteful?

1.9 Under what circumstances would a user be better off using a time
sharing system rather than a personal computer or single-user
workstation?

1.10 Describe the differences between symmetric and asymmetric
multiprocessing. What are the advantages and disadvantages of
multiprocessor systems?

1.11 Why are distributed systems desirable?

1.12 What is the main difficulty a person must overcome in writing an
operating system for a real-time environment?

Bibliographic Notes

Discussions concerning the historical evolution of computer hardware and
software systems were presented by Rosen [1969], Denning [1971], and
Weizer [1981].

Off-line systems (satellite processing) were used by the IBM FORTRAN
Monitor system from the late 1950s to the middle of 1960. Spooling was
pioneered on the Atlas computer system at Manchester University [Kilburn
et al. 1961]. Spooling was also used on the Univac EXEC II system [Lynch
1972]. Spooling is now a standard feature of most systems, but it was not
an integral part of IBM's OS/360 operating system for the 360 family of
computers when OS/360 was introduced in the early sixties. Instead,
spooling was a special feature added by the Houston computation center
of the National Aeronautics and Space Administration (NASA). Hence, it is
known as the Houston Automatic Spooling Priority (HASP) system.

Time-sharing systems were proposed first by Strachey [1959]. The
earliest time-sharing systems were the Compatible Time-Sharing System

28 • Chapter 1: Introduction

(CTSS) developed at MIT [Corbato et al. 1962] and the SDC Q-32 system built
by the System Development Corporation [Schwartz et al. 1964, Schwartz
and Weissman 1967]. Other early, but more sophisticated, systems include
the MULTiplexed Information and Computing Services (MULTICS} system
developed at MIT [Corbato and Vyssotsky J965], the XDS-940 system
developed at the University of California at Berkeley (Lichtenberger and
Pirtle 1965], and the IBMTSS/360 system [Lett and Konigsford 1968].

Tabak [1990] discussed operating systems for multiprocessor hardware.
Forsdick et al. [1978] and Donnelley (1979] discussed operating systems for
computer networks. A survey of distributed operating systems was
offered by Tanenbaum and Van Renesse [1985]. Real time operating
systems are discussed by Stankovic and Ramamrithan [1989]. A special
issue on real-time operating systems was edited by Zhao [1989].

The MS-DOS and the IBM-PC family were described by Norton [1986], and .
Norton and Wilton [1988]. Apple provides an overview of the Apple
Macintosh hardware and software [Apple 1987]. Microsoft covers the OS/2
operating system [Microsoft 1989]. More OS/2 information can be found in
Letwin (1988] and Deitel and Kogan (1992]. Custer [1993] discussed the
structure of Microsoft Windows/NT.

There are numerous up-to-date general textbooks on operating
systems. These include Comer (1984], Maekawa et al. [1987], Milenkovic
[1987], Bic and Shaw [1988], Finkel [1988], Krakowiak [1988], Pinkert and
Wear [1989], Deitel [1990], Stallings [1992], and Tanenbaum [1992]. Useful
bibliographies were presented by Metzner [1982] and Brumfield (1986].

CHAPTER 2

COMPUTER-SYSTEM
STRUCTURES

We need to have a general knowledge of the structure of a computer
system before we can explore the details· of system operation. In this
chapter, several disparate parts of this structure are presented to round out
our background knowledge. This chapter is mostly concerned with
computer-system architecture, so you can skim or skip it if you already
understand the. concepts. Because an operating system is intimately tied to
the 110 mechanisms of a computer, 110 is discussed first. The following
sections discuss the data-storage structure.

The operating system must also ensure the correct operation of the
computer system. So that user program~ will not interfere with the proper
operation of the system, the hardware must provide appropriate
mechanisms to ensure correct behavior. Later in this chapter, we describe
the basic computer architecture that makes it possible to write a functional
operating system.

2.1 • Computer-System Operation

A modern, general-purpose computer system consists of a CPU and a
number of device controllers that are connected through a common bus
that provides access to $hared memory (Figure 2.1). Each device controller
is in charge of a specific type of device (for example, disk drives, audio
devices, and video displays). The CPU and the device controllers can
execute concurrently, competing for memory cycles. To ensure orderly
access to the shared memory, a memory controller is provi.ded whose
function is to synchronize. access to the memory.

29

2: Computer-System Structures

disk disk printer

CPU controller

Figure 2.1 A modern computer

For a computer to start running instance, when it
or rebooted - it needs to have an initial program to

or bootstrap program, tends to be simple. It
the system, from CPU registers to device controllers to

The bootstrap program must know how to load the t'Tr'""'"'"'

to it executing. To accomplish goal, the
locate the operating system kernel load it into memory.
system then starts executing the first process, such as "init",
some event to occur. The occurrence of an usually
interrupt from either the hardware or software. Hardware
interrupt at time by sending a signal to the CPU, usually
the system bus. Software may trigger an interrupt by
operation called a system call (also called a monitor call).

There are many different types of events that may trigger an
for example, the completion of an I/O operation, by
memory and a request for some operating
s~ch interrupt, a service routine provided that
With the interrupt.

When the CPU is interrupted, it stops what it is doing
transfers_ execution to a fixed location. The fixed location usually

startmg address where the service routine for the interrupt

-

bus

2.1 Computer-System Operation • · 31

The interrupt service routine executes, and upon completion, the CPU
resumes the interrupted computation. A time line of this operation is
shown in Figure 2.2.

Interrupts are an important part of a computer architecture. Each
computer design has its own interrupt mechanism, but several functions
a·re common. The interrupt must transfer control to the appropriate
interrupt service routine. The straightforward method for handling this
transfer would be to invoke a generic routine to examine the interrupt
information, and it, in turn, would call the interrupt-specific handler.
However, interrupts must be handled very quickly, and given that there
are a predefined number of possible interrupts, a table of pointers to
interrupt routines may be used instead. The interrupt routine is then called
indirectly through the table, with no intermediate routine needed.
Generally, the table of pointers is stored in low memory (the first 100 or so
locations). These locations hold the addresses of the interrupt service
routines for the various devices. This array, or interrupt vector, of
addresses is then indexed by a unique device number, given with the
interrupt request, to provide the address of the interrupt service routj.ne
for the interrupting device. Operating systems as different as M5-DOS and
UNIX dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device nqmber. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state, for instance, by modifying
register values, it must explicitly save the current state ~nd then restore it
before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation will
resume as though the interrupt had not occurred.

CPU user
process
executing

1/0 interrupt
processing 1

:u
I

1/0 idle 7
device transferring : IL.----1

1/0
request

transfer
done

:u
I

: L.l _ __,

1/0 transfer
request done

Figure 2.2 Interrupt time line for a single process doing output.

32 • Chapter 2: Computer-System Structures

Usually, interrupts are disabled while an interrupt is being processed,
delaying any incoming interrupts until the operating system is done with
the current one, after which interrupts are enabled. If they were not thus
disabled, the processing of the second interrupt. while the first was being
serviced would overwrite the first's data, and the first would be a lost
interrupt. Sophisticated interrupt architectures allow for one interrupt to be
processed during another. They often use a priority scheme in which
request types are assigned priorities according to their relative importance,
and interrupt processing information is stored separately for each priority.
A higher-priority interrupt will be taken even if a lower-priority interrupt
is active, but interrupts at the same or lower levels are masked, or
selectively disabled, to prevent lost int~rrupts or unnecessary ones.

Modern operating systems are interrupt driven. If there are no
processes to execute, no I/O devices to service, and no users to whom to
respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an
interrupt, or a trap. A trap (or an exception) is a software-generated
interrupt caused either by an error (for example, division by zero or invalid
memory access), or by a specific request from a user program that an
operating-system service be performed.

The interrupt-driven nature of an operating system defines that
system's general structure~ When an interrupt (or trap) occurs, the
hardware transfers control to the operating system. First, the operating
system preserves the state of the CPU by storing registers and the program
counter. Then, it determines which type of interrupt has occurred. This
determination may require polling, the querying of all I/O devices to detect
which requested service, or it may be a nC:ttural result of a vectored
interrupt system. For each type of interrupt, separate segments of code in
the operating system determine what action should be taken.

2.2 • 1/0 Structure

As was discussed in Section 2.1, a general-purpose computer system
consists of a CPU and a number of device controllers that are connected
through a common bus. Each device controller is in charge of a specific
type of device. Depending on the controller, there may be more than one
device attached to it. For instance the SCSI (Small Computer Systems
Interface) controller, found on the Macintosh and many small- to medium
sized computers, can have as many as seven devices attached to it. A
device controller maintains some local buffer storage and a set of special
purpose registers. The controller is responsible for moving data between
the peripheral device(s) it controls and its local buffer storage. The size of
the local buffer within a device controller varies from one controller to
another, depending on the particular device being . controlled. For

example, the of the buffer of a disk controller the same as or a
multiple of the size of the smallest addressable portion of a
which is usually 512 bytes.

2.2.1 I/O Interrupts
To start an I/O operation, the CPU loads the appropriate
device controller. The device controller, in turn, examines
these registers to determine what action to take. For example,
read request, the controller will start the transfer of data from
its local buffer. Once the transfer of data is complete, the
informs the CPU that it has finished its operation. It aLL.un•v·"'·'""u~"
communication by causing an interrupt.

This situation will occur, in general, as the result of a
requesting 110. Once the I/O is started, two courses of action
the simplest case, the 110 is started; then, at I/O completion,
returned to the user This is known as synchronous 110.
possibility (asynchronous IIO) is to return control to the user
without waiting for the I/O to complete. The I/O then can
other system operations occur (see Figure 2.3).

Waiting for I/O completion may be accomplished in one
Some computers have a special wait instruction that idles the
next interrupt. Machines that do not have such an instruction
wait loop:

Loop: jmp Loop

This very tight loop simply continues until an interrupt

kernel
I

•
'

driver

handler

time __ _..,..

(a)

time ----~o-

(b)

Figure 2.3 Two I/O methods. (a) synchronous. (b)

user

kernel

34 II Chapter 2: Computer~System Structures

control to another part of the operating system. Such a loop
need to poll any I/O devices which do not support the interrupt
instead they simply set a flag in one of their registers and
operating system to notice it. The wait instruction is probably """"'fc'~""'"'
a loop, since a wait loop a series of instruction
may cause significant contention for memory access.
caused by the I/O device transferring information and the CPU
instructions.

One major advantage of always waiting for I/O completion
most one I/O request is outstanding at a time. Thus,
interrupt occurs, the operating system knows exactly which
interrupting. On the other hand, this approach excludes sirrtur[an,em
processing.

An alternative to start the 110 and immediately to return
the user program. A system call (a request to the operating system)
needed to allow the user to wait for I/O completion, if desired.
still require the wait code that we needed before. We also need
to keep track of many I/O requests at the same time. For
operating system uses a table containing an entry for each I/O
device-status table (Figure 2.4). Each table entry indicates the
its address, and its state (not functioning, idle, or busy). If the
busy with a request, the type of request and other parameters
stored in the table entry for that device. Since it possible
processes to issue requests to the same device, we may have a

device: card reader 1
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: idle

Figure 2.4 Device-status table.

2.2 1/0 Structure • 35

of waiting requests. Thus, in addition to the 1/0 device table, an operating
system may have a request list for each device.

An 1/0 device interrupts when it needs service. When an interrupt
occurs, the operating system first determines which 110 device caused the
interrupt. It then indexes into the I/O device table to determine the status of
that device, and modifies the table entry to reflect the occurrence of the
interrupt. For most devices, an interrupt signals completion of an 110
request. If there is an additional request waiting for this device, the
operating system starts processing that request. .

Finally, control is returned from the 110 interrupt. If a process was
waiting for this request to complete (as recorded in the device-status table),
we may now return control to it. Otherwise, we return to whatever we
were doing before the 1/0 interrupt: to the execution of the user program
(the program started an 110 operation and that operation has now finished,
but the program has not yet waited for the operation to complete) or to the
wait loop (the program started two or more 110 operations and is waiting
for a particular one to finish, but this interrupt was from one of the
others). In a time-sharing system, the operating system could switch to
another ready-to-run process.

The schemes used by some input devices may vary from this one.
Many interactive systems allow users to type ahead, or to enter data before
the data are requested, on their terminal. In this case, interrupts may
occur, signaling the arrival of characters from the terminal, while the
device-status block indicates that no program has requested input from this
device. If typeahead is to be allowed, then a buffer must be provided to
store the typeahead characters until some program wants them. In general,
we may need a buffer for each input terminal.

The main advantage of asynchronous 110 is the increased system effi
ciency. While 110 is taking place, the system C'PU can be used for processing, or
even scheduling other 110. ·Because 110 can be quite slow compared to pro
cessor speed, the system makes much better use of its facilities. In the next
section, we shall see another mechanism for improving system performance.

2.2.2 DMA Structure

Consider a simple terminal input driver. When a line is to be read from the
terminal, the first character typed is sent to the computer. When that
character is received, the asynchronous communication (or serial port).
device to which the terminal line is connected will interrupt the CPU. When
the interrupt request from the terminal arrives, the CPU will be about to
execute some instruction. (If the CPU is in the middle of executing an
instruction, the interrupt is normally held pending until the instruction
execution is complete.) The address of this interrupted instruction is saved,

36 • Chapter 2: Computer-System Structures

and control is transferred to the interrupt service routine for the appropriate
device.

The interrupt service routine saves the contents of any CPU registers it
will need to use. It checks for any error conditions that might have
resulted from the last input operation. It then takes the character from the
device, and stores that character in a buffer. The interrupt routine must
also adjust pointer and counter variables, to be sure that the next input
character will be stored at the next location in the buffer. The interrupt
routine next sets a flag in memory indicating to the other parts of the
operating system that new input has been received. The other parts are
responsible for processing the data in the buffer, and for transferring the
characters to the program requesting input (see Section 2.5). Then, the
interrupt service routine restores the contents of any saved registers, and
transfers control back to the interrupted instruction.

If characters are being typed to a 9600-baud terminal, the terminal can
accept and transfer one character approximately every 1 millisecond, or
1000 microseconds. A well-written interrupt service routine to input
characters into a buffer may require 2 microseconds per character, leaving
998 microseconds out of every 1000 for CPU computation (and servicing of
other interrupts). Given this disparity, asynchronous 110 is usually assigned
a low interrupt priority, allowing other, more important interrupts to be
processed first, or even to preempt the current interrupt for another. A
high-speed device, however, such as a tape, disk, or communications
network, may be able to transmit information at close to memory speeds;
the CPU would need 2 microseconds to respond to each interrupt, with
interrupts arriving every 4 microseconds (for example). This would not
leave much time for process execution.

To solve this problem, direct memory access (DMA) is used for high
speed I/O devices. After setting up buffers, pointers, and counters for the
I/O device, the device controller transfers an entire block of data to or from
its own buffer storage to memory directly, with no intervention by the CPU.

Only one interrupt is generated per block, rather than the one interrupt
per byte (or word) generated for low-speed devices.

The basic operation of the CPU is the same. A user program, or the
operating system itself, may request data transfer. The operating system

·finds a buffer (an empty buffer for input, or a full buffer for output) from a
queue of buffers for the transfer. (A buffer is typically 128 to 4096 bytes,
depending on the device type.) The DMA controller then has its registers
set to the appropriate source and destination addresses, and transfer
length. This register setting is usually done by a device driver, which knows
exactly how this information is to be provided to the controller. The DMA

controller is then instructed (via control bits in a control register) to start
the I/O operation. Meanwhile, the CPU has been free to perform other tasks
since it gave the transfer information to the controller. The DMA controller
interrupts the CPU when the transfer has ~een completed.

2.2 110 Structure • 37

As an example of the utility of DMA, consider a typical IBM PC. The PC
supports interrupt-based JJO, as well as DMA channels. The backup
program, which is included with the MS-DOS PC operating system, uses
only interrupt-based I/O to copy data between a hard disk and a floppy
disk. Several companies have written similar programs that take
advantage of DMA data transfer, and the result is a several-fold increase in
backup speed.

2.3 • Storage Structure

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the
processor can access directly. It is an array of words or bytes, ranging in
size from hundreds of thousands to hundreds of millions. Each word has
its own address. Interaction is achieved through a sequence of load or
store instructions to specific memory addresses. The load instruction
moves a word from main memory to an internal register within the CPU,
while the store instruction mt>ves the content of a register to main
memory. Aside from explicit loads and stores, the CPU automatically loads
instructions from main memory for execution.

A typical instruction-execution cycle, as executed on a von Neumann
architecture system, will first fetch an instruction from memory and store it
in the instruction register. The instruction is then decoded and may cause
operands to be fetched from memory and stored in some internal register.
After the instruction on the operands has been executed, the result may be
stored back in memory. Notice that the memory unit sees only a stream of
memory addresses; it does not know how they are generated (the
instruction counter, indexing, indirection, literal addresses, and so on) or
what they are for (instructions or data). Accordingly, we can ignore how a
memory address is generated by a program. We are interested in only the
sequence of memory addresses generated by the running program.

Ideally, we would want the programs and data to reside in main
memory permanently. This arrangement is not possible for the following
two reasons:

1. Main memory is usually too small to store all needed programs and
data permanently.

2. Main memory is a volatile storage device that loses its contents when
power is turned off or lost. ~

Thus, most computer systems provide secondary storage as an extension of
main memory. The main requirement of secondary storage is thus to be
able to hold extremely large numbers of data permanently.

38 • Chapter 2: Computer-System Structures

The most common secondary-storage device is a magnetic disk, which
provides storage of both programs and data. Most programs (compilers,
assemblers, sort routines, editors, formatters, and so on) are stored on a
disk until loaded into memory. They then use the disk as both the source
and destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system,
as will be discussed in Chapter 12.

In a larger sense, however, the storage structure that we have
described- consisting of registers, main memory, and magnetic disks
is only one of many possible storage systems. There are also cache
memory, optical disks, magnetic tapes, and so on. Each storage system
provides the basic functions of storing a datum, and holding that datum
until it is retrieved at a later time. The main differences among the various
storage systems lie in speed, cost, size, and volatility. In Sections 2.3.1 to
2.3.4, we describe the important storage systems.

2.3.1 Main Memory
Main memory and the registers built into the processor itself are the only
storage that the CPU can access directly. (Consider that there are machine
instructions which take memory addresses as arguments, but none that
take disk addresses.) Therefore, any instructions in execution, and any
data being used by the instructions, must be in one of these direct-access
storage devices. If the data are not in memory, they must be moved there
before the CPU can operate on them.

In the case of 110, as mentioned in Section 2.1, each 110 controller
includes registers to hold commands and the data being transferred.
Usually, special I/O instructions allow data transfers between these registers
and system memory. To allow more convenient access to 110 devices, some
systems, including the IBM PC and Apple Macintosh, provide memory
mapped 1/0. In this case, ranges of memory addresses are set aside, and are
physically mapped to the device registers. Reads and writes to these
memory addresses cause the data to be transferred to and from the device
registers. This method is appropriate for devices with fast response times,
such as video controllers. In the IBM PC, each locatfon on the screen is
mapped to a memory location. Displaying text on the screen is almost as
easy as writing the text into the appropriate memory-mapped locations.

Memory-mapped 110 is also convenient for frequently used devices,
such as a serial port. So that a system can communicate with another
computer over a modem and telephone line, characters are read and
written to a one-byte location in memory. Note that polling is again
needed in this circumstance, with the computer looping, constantly
checking to see whether a character is available for reading. Interrupts for
signaling the availability of new input could be used instead, depending
on the hardware configuration. ·

2.3

Given that registers are built into the CPU, they are "'"'''-C:~>C>HJJ<I::
one cycle of the CPU dock. The CPU can decode an
the given operation on a register's contents all in the same
same cannot be said for main memory, which may be
bus and take several cycles to access. In this case, the orc)C€~SSI:U
needs to stall while waiting for the access to complete.
intolerable because of the frequency of memory accesses.
add fast memory between the CPU and main memory.
used to accommodate a speed differential is called a cache, as
Section 2.4.1.

2.3.2 Magnetic Disks
Magnetic disks provide the bulk of secondary storage for "'"""'-'
systems. Physically, disks are relatively simple (Figure
platte" has a flat circular shape, like a phonograph record.
are covered with a magnetic material, similar to magnetic
is recorded on the surfaces.

When the disk is in use, a drive motor spins it at high
60 revolutions per second). There a read-write head
above the surface the platter. The disk surface is
tracks, which are subdivided into sectors. We store

track t

platter
arm

rotation

Figure 2.5 Moving-head disk mechanism.

39

40 • Chapter 2: Computer-System Structures

recording it magnetically on the sector under the read -write head. There
may be hundreds of concentric tracks on a disk surface, containing
thousands of sectors. The platter itself may be between 1.8 inches and 14
inches wide. The larger sizes are common on large systems because of
their higher storage capacities and transfer rates. The smaller sizes are
.found on PCs, since they have lower cost.

A fixed-head disk has a separate head for each track. This arrangement
allows the computer to switch from track to track quickly, but it requires a
large number of heads, making the device extremely expensive. Much
more common, is only one head, which moves across the disk to access
different tracks. This moving-head disk, or simply hard disk, requires
hard~are to move the head, but only a single head is needed, resulting in
a much less expensive system. The disk platters, mounted on a spindle
and surrounded by heads driven by a motor, are known as head-disk
assemblies and come in a complete package.

Disks were originally designed for .file storage, so the primary design
criteria were cost, size, and speed. To provide additional storage capacity,
developers took several approaches. They made the primary gain by
improving the recording de~sity, allowing more bits to be put on a surface.
The density is reflected by the nttmber of tracks per inch, sectors per track,
and bits per sector. In addition, with separate heads on each side of the
platter, disk capacity can be doubled at minimal cost. We can extend this
approach by stacking several disks, each with two recording surfaces, on
one spindle. Since all the disks rotate together, only one drive motor is
needed, although each surface still needs its own read -write head. The
most common disks, used in systems from portable PCs· through
mainframes, have this configuration. These disks vary in data transfer rate
from 1· to 5 megabytes per second. The average access time, including the
time for a head to be positioned over the requested data, is from 10 to 40
milliseconds. The capacities range from 10 to 7500 megabytes.

Finally, the disk can be remov(lble, allowing different disks to be
mounted as needed. Removable· disk packs may consist of one or several
platters on one spindle. Generally, they are held in hard plastic cases to
prevent damage while they are not in the disk drive.

Disks are rigid metal or glass platters covered with magnetic recording
material. Each platter is divided into small sections, and each such section
may be changed by the disk head to be in a charged or not charged state.
Each· section represents a bit and is 0 or 1 depending on its charge state.
The smaller the changeable sections are, the more bits can be put on a
platter and thus the higher the density. The read-write heads are kept as
close as possible to the disk· surface to increase this density. Often, the
head floats or flies only microns from the disk surface, supported by a
cushion of air~ Because the head floats so close to the surface, platters must
be machined carefully to be flat.

2.3 Storage Structure • 41

Head crashes can be a problem. If the head contacts the disk surface
(due to a power failure, for example), the head will scrape the recording
medium off the disk, destroying the data that had been there. Usually,
the head touching the surface causes the removed medium to become
airborne and to come between the other heads and tl}eir platters, causing
more crashes. Under normal circumstances, a head crash results in the
entire disk failing and needing to be replaced.

Flop-py disks take a different approach. The disks are coated with a hard
surface, so the read -write head can sit directly on the disk surfa~e without
destroying the data. Thus, the disk itself is much less expensive to produce
and use. The floppy disk must rotate tnuch more slowly than a hard disk,
due to the resulting friction. Also, the coating (and the read -write head)
will wear with use, and need to be replaced eventually. Because they are
more rugged, floppy disks are removable. The disks are not permanently
mounted in a head-disk assembly. Instead, the disk is slipped manually
into a slot which contains a spindle to rotate it, and a head and motor to
access it. This arrangement keeps the cost of floppy disks low because one
drive can be used to access hundreds or thousands of disks.

Floppy disks usually have a much lower capadty than do hard disks
because they have much lower storage densities, have only . orte platter,
and spin slower. They hold from 100 kilobytes (a kilobyte is 1024 bytes) to
a few megabytes per disk. They come in many variations (single-sided,
double-si<ied, single-density, and double-density) and sizes (5 1/4 inch, 3
1/2 inch, and so on). Generally, they are formatted and used in the same
way as are hard disks, except that all floppy disks are removable and may
therefore be used conveniently to transfer data between computers.

A disk drive has a disk controller that determines the logical interaction
between the device and the computer. The controller takes instructions
from the CPU and orders the disk drive to carry out the instruction. Some
disk controllers have a built-in cache, which holds data recently read from
or written to the disk. If data are currently in the cache, the need for a disk
transfer is obviated.

2.3.3 Other Disk Types
There are many variations on magnetic disks among which we do not
distinguish, from an operating-system point of view. Generally, they are
treated as normal hard disks except at the device-driver level. There is the
drum, which has a head over each track. Previously, these fast devices
were used for backing store (see Chapters 8 and 9), but they ate now used
rarely due to the improved speed and price-performance ratio of standard
hard disks. An up-and-coming device is the optical disk, which uses lasers
to melt and fill holes on a plastic medium. These drives have been slower
but less costly and more rugged than magnetic hard disks in the past, but

42 • Chapter 2: Computer-System Structures

their performance is increasing. Because they are more rugged, they, like
floppy disks, have the added advantage of removability.

2.3.4 Magnetic Tapes
Magnetic tape was used as an early secondary-storage media. Although it
is relatively permanent, and can hold large numbers of data, magnetic tape
is quite slow in comparison to the access time of main memory. Even
more important, magnetic tape is limited to sequential access. Thus, it is
unsuitable for providing the random access needed for most secondary
storage requirements. Tapes are used mainly for backup, for storage of
infrequently used information, and as a medium for transferring
information from one system to another.

A tape is kept in a spool, and is wound or rewound past a read-write
head. Moving to the correct spot on a tape can take minutes rather than
milliseconds; once positioned, however, tape drives can write data at
densities and speeds approaching those of disk drives. Capacities vary
depending on -r-the length and width of the tape, and on the density at
which the head can read and write. A tape drive is usually named by its
width. Thus, there are 8-millimeter, 114-inch, and 1/2-inch. (also known as
9-track) tape drives. The 8-millimeter tape drives have the highest density,
due to the technology they use; they currently store 5 gigabytes of data (a
gigabyte is one billion bytes) on a 350-foot tape.

2.4 • Storage Hierarchy

The wide variety of storage systems in a computer system can be
organized in a hierarchy (Figure 2.6) according to their speed and their
cost. The higher levels are expensive, but are fast. As we move down the
hierarchy, the cost per bit decreases, whereas the access time increases.
This tradeoff is reasonable; if a given storage system were both faster and
less expensive than another - other properties being the same - then
there would be no reason to use the slower, more expensive memory. In
fact, many early storage devices, including paper tape and core memories,
are relegated to museums now that magnetic tape and semiconductor
memory have become faster and cheaper.

In addition to the speed and cost of the various storage systems, there
is also the issue of storage volatility. Volatile storage loses its contents

· when the power to the device is removed. In the absence of expensive
battery and generator backup systems, data must be written to nonvolatile
storage for safekeeping. In the hierarchy shown in Figure 2.6, the storage
system above disks is volatile, whereas the storage system below main
memory is nonvolatile. The design of a complete memory system attempts
to balance all these factors: It uses only as much expensive memory as

2.4

Figure 2.6 Storage-device hierarchy.

necessary, while providing as much inexpensive, nonvolatile,
possible. Caches can be installed to ameliorate
where there is a large or transfer-rate
components.

2.4.1 Caching

Caching an important of computer
and software. Information normally in some
as main memory). As it it copied into a faster
the cache, on a temporary When we need a
information, we first check whether it is in the cache.
information directly from the if it is not, we use
from the main storage system, putting a copy in
assumption that there is a high probability that it will be

Extending this view, internal programmable registers,
and accumulators, are a high-speed cache for

43

44 • Chapter 2: Computer-System Structures

programmer (or compiler) implements the register-allocation and register
replacement algorithms to decide which information to keep in registers
and which to keep in main memory. There are also caches that are
implemented totally in hardware. For instance, most systems have an
instruction cache to hold the next instructions expected to be executed.
Without this cache, the CPU would have to wait several cycles while an
instruction was fetched from main memory. We are not concerned with
these hardware-only caches in this text, since they are outside of the
control of the operating system.

Since caches have limited size, cache management is an important design
problem. Careful selection of the cache size and of a replacement policy
can result in 80 to 99 percent of all accesses being in the cache, resulting in
extremely high performance. Various replacement algorithms for
software-controlled caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary memory,
since data on secondary storage must be copied into main memory for use,
and data must be in main memory before being moved to secondary
storage for safekeeping. The file system itself, which must reside on
nonvolatile storage, may have several levels of storage. At the highest
level, ·we have the electronic (or RAM) disk storage, which is backed up by
the larger, but slower, magnetic-disk storage. The magnetic-disk storage,
in turn, is backed up by the larger, but slower, tape storage. Optical disks
are also efficient high-capacity but low-cost storage media. When
compared to magnetic tape, they have the drawback of higher cost, but
offer much greater speed and convenience. Transfers between these two
storage levels are generally requested explicitly, but some systems now
automatically archive a file that has not been used for a long time (for
example, 1 month), and then automatically fetch back the file to disk when
it is next referenced.

The movement of information between levels of a storage hierarchy
may be either explicit or implicit, depending on the hardware design and
the controlling operating-system software. For instance, data transfer from
cache to CPU and registers is usually a hardware function, with no
operating-system intervention. On the other hand, transfer of data from
disk to memory is usually controlled by the operating system.

2.4.2 Coherency and Consistency
In a hierarchical storage structure, the same datum may appear in different
storage systems. For example, consider an integer A located in file B that
is to be incremented by 1. Suppose that file B resides on magnetic disk.
The increment operation proceeds by first issuing an 110 operation to copy
the disk block on which A resides to main memory. This operation is
followed by a possible copying of A to the cache, and by copying A to an
internal register. Thus, the copy of A appears in several places. Once the

2.5 Hardware Protection • 45

increment takes place in the internal register, the value of A differs in the
various storage systems. The value of A becomes the same only after the
new value of A is written back to the magnetic disk.

In an environment where there is only one single process executing at
a time, this arrangement poses no difficulties, since an access to the integer
A will always be to the copy at the highest level of the hierarchy.
However, in a multitasking environment, where the CPU is switched back
and forth among various processes, extreme care must be taken to ensure
that if several processes wish to access A, then each of these processes will
obtain the most recently updated value of A.

The situation becomes more complicated in a multiprocessor
environment where, in addition to internal registers, the CPU also contains
a local cache. In such an environment, a copy of A may exist
simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one
cache is immediately reflected in all other caches where A resides. This
problem is called cache coherency, and is usually a hardware issue (handled
below the operating system level).

In a distributed environment, the situation becomes even more
complex. In such an environment, several copies (replicas) of the same file
can be kept on different computers that are distributed in space. Since the
various replicas may be accessed and updated concurrently, we must
ensure that when a replica is updated in one place, then all other replicas
are brought up to date as soon as possible. There is a variety of ways for
achieving this guarantee, as will be discussed in Chapter 17.

2.5 • Hardware Protection

Early computer systems were single-user programmer-operated systems.
When the programmers operated the computer from the console, they had
complete control over the system. As operating systems developed,
however, this control was given to the operating .system. Starting with the
resident monitor, the operating system began performing many of the
functions, especially I/0, for which the programmer had been responsible
previously.

In addition, to improve system utilization, the operating system began
to share system resources among several programs simultaneously. With
spooling, one program might have been executing while I/O occurred for
other processes; the disk simultaneously held data for many processes.·
Multiprogramming put several programs in memory at the same time.

This sharing created both improved utilization and increased problems.
When the system was run without sharing, an error in a program could
cause problems for only the one program that was running. With sharing,
many processes could .be adversely affected by a bug in one program.

46 • Chapter 2: Computer-System Structures

For example, consider the earliest resident monitor, providing nothing
more than automatic job sequencing (Section 1.3). Suppose a program gets
stuck in a loop reading input cards. The program will read through all its
data and, unless something stops it, will continue reading the cards of the
next job, and the next, and so on. This loop could prevent the correct

·operation of many jobs.
Even more subtle errors could occur in a multiprogramming system,

where one erroneous program might modify the program or data of
another program, or even the resident monitor itself. MS-DOS and
Macintosh os both allow this kind of error.

Without protection against these sorts of errors, either the computer
must execute only one process at a time, or all output must be suspect. A
properly designed operating system must ensure that an incorrect (or
malicious) program cannot cause other programs to execute incorrectly.

Many programming errors are detected by the hardware. These errors
are normally handled by the operating system. If a user program fails in
some way- such as an attempt either to execute an illegal instruction, or
to access memory that is not in the user's address space - then the
hardware will trap to the operating system. The trap transfers control
through the interrupt vector to the operating system just like an interrupt.
Whenever a program error occurs, the operating system must abnormally
terminate the program. This situation is handled by the same code as is a
user-requested abnormal termination. An appropriate error message is
given, and the memory of the program is dumped. In a batch system, the
memory dump may be printed, allowing the user to try to find the cause
of the error by examining the printed dump. In an interactive system, the
memory dump may be written to a file. The user may then examine it on
line, and perhaps correct and restart the program.

2.5.1 Dual-Mode Operation
To ensure proper operation, we must protect the operating system and all
other programs and their data from any malfunctioning program.
Protection is needed for any shared resource. The approach taken is to
provide hardware support to allow us to differentiate among various
modes of executions. At the very least, we need two separate modes of
operation: user mode and monitor mode (also called supervisor mode, system
mode, or privileged mode). A bit, called the mode bit, is added to the
hardware of the computer to indicate the current mode: monitor (0) or user
(1). With the mode bit, we are able to distinguish between an execution
that is done on behalf of the operating system, and one that is done on
behalf of the user. As we shall see, this architectural enhancement is
useful for many other aspects of system operation.

At system boot time, the hardware starts in monitor mode. The
operating system is then loaded, and starts user processes in user mode.

2.5 Hardware Protection • 47

Whenever a trap or interrupt occurs, the hardware switches from user
mode to monitor mode (that is, changes the state of the mode bit to be 0).
Thus, whenever the operating _system gains control of the computer, it is
in monitor mode. The system always switches to user mode (by setting the
mode bit to 1) before passing <;:ontrol to a user program.

The dual mode of operation provides us with the means for protecting
the operating system frorh errant users, and errant users from one another.
We accomplish this protection by designating some of the machine
instructions that may cause harm as privileged instructions. The hardware
allows privileged instructions to be executed only in monitor mode. If an
attempt is made to execute a privileged instruction in user mode, the
hardware does not execute the instruction, but rather treats the instruction
as illegal and traps to the operating system.

The lack of a hardware-supported dual mode can cause serious
shortcomings in an operating system. For instance, MS-DOS was written for
the Intel 8088 architecture, which has no mode bit, and therefore no dual
mode. A user program running awry can wipe out the operating system
by writing over it with data, and multiple programs are able to write to a
device at the same time, with p()ssibly disastrous results. More recent and
advanced versions of the Intel CPU, such as the 80486, do provide dual
mode operation. As a result, more recent operating systems, such as
Microsoft Windows/NT, and IBM OS/2, take advantage of this feature and
provide greater protection for the operating system.

2.5.2 1/0 Protection

A user program may disrupt the normal operation of the system by issuing
illegal 110 instructions, by a_ccessing memory locations within the operating
system itself, or by refusing to relinquish the CPU. Various mechanisms are
used to ensure that such disruptions cannot take place in the system.

To prevent a user from performing illegal 110, we define all 1/0

instructions to be privileged instructions. Thus, users cannot issue 110

instructions directly; they must do it through the operating system. For 1/0

protection to be complete, we must be sure that a user program can never
gain control of the computer in monitor mode. If it could, 110 protection
could be compromised.

Consider the computer executing in user mode. It will switch to
monitor mode whenever an interrupt or trap occurs, jumping to the
address determined from the interrupt vector. Suppose a user program, as.
part of its execution, stores a new address in the interrupt vector. This
new address could overwrite the previous address with an address in the
user program. Then, when a corresponding trap or interrupt occurred, the
hardware would switch to monitor mode, and would transfer control
through the (modified) interrupt vector to the user program! The user
program could gain control of the computer in monitor mode.

48 "",..,,. .. 2: Computer-System Structures

Protection
ensure correct operation, we must protect the interrupt

modification by a user program. In addition, we must
service routines in the operating system

a user program might overwrite instructions
routine with jumps to the user program, thus gaining

interrupt service routine that was executing in monitor
user did not gain unauthorized control of the computer,

interrupt service routines would probably disrupt the
the computer system and of its spooling and buffering.

We see then that we must provide memory protection
interrupt vector and the interrupt service routines of the

general, however, we want to protect the operating "'"~, ... ;;,.,
by user programs, and, in addition, to protect user

This protection must be provided by the
implemented in several ways, as we shall see in
outline one such possible implementation.

What is needed to separate each program's memory
determine the range of legal addresses that the program

to protect the memory outside that space. We can
protection by using two registers, usually a base and a limit,

Figure 2.7. The base register holds the smallest legal
and the limit register contains the size of the

the base register holds 300040 and limit register

2. 7 A base and a limit register define a logical

we

program can legally access all addresses from 300040
inclusive.

This protection is accomplished by the CPU hardware ._....,_._, .. lk'

address generated in user mode with the registers. Any
program executing in user mode to access monitor memory or
memory results in a trap to the monitor, which treats the
error (Figure 2.8). This scheme prevents the user
(accidentally or deliberately) modifying the code or data (.OTT'

the operating system or other users.
The base and limit registers can be loaded by only

system, which uses a special privileged instruction. Since
instructions can be executed only in monitor mode, and
operating system executes in monitor mode, only the operating
load the base and limit registers. This scheme allows the monitor
the value of the registers, but prevents user programs
registers' contents.

The operating system, executing monitor mode, is
access to both monitor and memory. This
operating system to load users' into
them out in case of errors, to ""'-''"'""'"' and modify
cails, and so on.

2.5.4 CPU Protection
The third piece of the protection puzzle is ensuring that
system maintains control. We must prevent a user program
stuck in an infinite loop, and never returning control to
system. To accomplish this goal, we can use a timer. A

address yes yes

no no

trap to operating c\/crorn

monitor-addressing error memory

Figure 2.8 Hardware address protection with base and limit

50 • Chapter 2: Computer-System Structures

interrupt the computer after a spedfied pei:iod. The period may be fixed
(for example, 1160 second) or variable (for example, from 1 millisecond to 1
second; in increments of 1 millisecond) .. A variable timer is generally
implemented by a fixed-rate clock and a counter. The operating system
sets the counter. Every time the clock ticks, the counter is decremented .

. When the counter reaches zero, an interrupt occurs. For instance, a 10-bit
counter with a 1-millisecond clock would allow interrupts at intervals from
1 millisecond to 1024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a
fatal error or give the program more time. Instructions that modify the
operation of the timer are clearly privileged.

Thus, the timer can be used to prevent a user program from running
too long. A simple technique is to initialize a counter with the amount of
time that a program is allowed to run. A program with a 7-minute time
limit, for example, would have its counter initialized to 420. Every second,
the timer interrupts and the counter is decremented by 1. As long as the
counter is positive, control is returned to the user program. When the
counter becomes negative, the operating system terminates the program
for exceeding its time limit.

A more common use of a timer is to implement time sharing. In the
most straightforward case, the timer could be set to interrupt every N
milliseconds where N is the time-slice each user is allowed to execute before
the next user gets control of the CPU. The operating system is invoked at
the end of each time-slice to perform variotis housekeeping tasks, such as
adding the value N to the record that specifies (for accounting purposes)
the amount of time the user program has executed thus far. The operating
system also resets registers, internal variables, and buffers, and changes
several other parameters to prepare fot the next program to run. (This
procedure is known as a context switch, and is explored in Chapter 4.)
Following a context switch, the next program continues with its execution
from the point at which it left off (when its previous time-slice ran out).

Another use of the timer is to compute the current time. A timer
interrupt signals the passage of some period, allowing the operating
system fo compute the current time in reference to some initial time. If we
have interrupts every 1 second, and we have had 1427 interrupts since we
were told it was 1:00 P.M., then we cari compute that the current time is
1:23:47 P.M. Some computers determine the Ctirrent time in this manner,
but the calculations must be done carefully for the time to be kept
accurately, since the interrupt-processing time (and other times when
interrupts are disabled) tends to cause the software clock to siow . down.
Most computers have a separate hardware time-of-day clock that is
independent of the operating system.

2.6 General-System Architecture • 51

2.6 • General-System Architecture

The desire to improve the utilization of the computer system led to the
development of multiprogramming and time sharing, where the resources
of the computer system are shared among many different programs and
processes. Sharing ·led directly to modifications of the basic computer
architecture, to allow the operating system to maintain control over the
computer system, and especially over 1/0. Control must be maintained if
we are to provide continuous, consistent, and correct operation.

To maintain control, developers introduced a dual mode of·execution
(user mode and monitor mode). This scheme supports the concept of
privileged instructions, which can be executed only in monitor mode. 1/0

instructions and instructions to modify the memory-management registers
or the timer are privileged instructions.

As you can imagine, several other instructions are also classified as
privileged. For instance, the halt instruction is privileged; a user program
should never be able to halt the computer. The instructions to turn the
interrupt system on and off are also privileged, since proper operation of
the timer and 1/0 depends on the ability to respond to interrupts correctly.
The instruction to change from user mode to monitor mode is privileged,
and on many machines any change to the mode bit is privileged.,

Because I/O instructions are privileged, they can be executed by only
the operating system. Then how does the user program perform 110? By
making 110 instructions privileged, we have prevented user programs from
doing any 110, either valid or invalid. The solution to this problem is that,
because only the monitor can do I/0, the user must ask the monitor ·to do
I/O on the user's behalf.

Such a request is known as a system call (also called a monitor call or
. operating system function call). A system call is invoked in a variety of ways,
depending on the functionality provided by the underlying processor. In
all forms, it is the method used by a process to request action by the
operating system. A system call usually takes the form of a trap to a
specific location in the interrupt vector. This trap can be executed by a
generic trap instruction, although some systems (like the Mips R2000
family) have a specific syscall instruction.

When a system call is executed, it is treated by the hardware as a
software interrupt. Control passes through the interrupt vector to a service
routine in the operating system, and the mode bit is set to monitor mode.
The system-call service routine is a part of the operating system. Th~
monitor examines the interrupting instruction to determine what system
call has occurred; a parameter indicates what type of service the user
program is requesting. Additional information needed for the request may
be passed in registers, on the stack, or in memory (with pointers to the
memory locations passed in registers). The monitor verifies: that the

52 II Chapter 2: Computer-System Structures

parameters are correct and legal, executes the request, and
to the instruction following the system call.

Thus, to do I/0, a user program executes a system call to
the operating system perform I/O on its behalf (Figure 2.9).
system, executing in monitor mode, checks that the request
the request is valid) does the I/O requested. The operating
returns to the user.

2. 7 11 Summary

Multiprogramming and time-sharing systems require the
and I/O operations on a single machine. Such an overlap requires
transfer between the CPU and the I/O devices be handled by one or
the following methods: (1) interrupt-initialized data transfer, (2) DMA
transfer.

For a computer to do its job of executing programs, the
be in main memory. Main memory is the only large storage area
processor can access directly. It is an array of words or bytes,

CD
trap to
monitor

r--t---- case n resident
monitor

pertorm 1/0

return
to user

user
program

Figure 2.9 Use of a system call to perform 110.

Exercises • 53

size from hundreds of thousands to hundreds of millions. Each word has
its own address. The main memory is a volatile storage device that loses its
contents when power is turned off or lost. Most computer systems
provide secondary storage as an extension of main memory. The main
requirement of secondary storage is to be able to hold extremely large
numbers of data permanently. The most common secondary-storage
device is a magnetic disk, which provides storage of both programs and
data. A magnetic disk is a nonvolatile storage device that also provides
random access. Magnetic tapes are used mainly for backup, for storage of
infrequently used information, and as a medium for transferring
information from one system to another.

The wide variety of storage systems in a computer system can be
organized in a hierarchy according to their speed and their cost. The
higher levels are expensive, but are fast. As we move down the hierarchy,
the cost per bit decreases, whereas the access time increases.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper
operation of the system, developers modified the hardware to create two
modes: user mode and monitor mode. Various instructions (such as 1/0

instructions and halt instructions) are privileged, and can be executed in
only monitor mode. The memory in which the operating system resides
must also be protected from modification by the user. A timer prevents
infinite loops. Once these changes (dual mode, privileged instructions,
memory protection, timer interrupt) have been made to the basic computer
architecture, it is possible to ensure the correct operation of the system.
Chapter 3 continues this discussion with details of the facilities ·that
operating systems provide.

• Exercises

2.1 Buffering is a method of overlapping the 1/0 of a job with that job's
own computation. The idea is quite simple. After data have been read
and the CPU is about to start operating on them, the input device is
instructed to begin the next input immediately. The CPU and input
device are then both busy. With luck, by the time that the CPU is
ready for the next data item, the input device will have finished
reading it. The CPU can then begin processing the newly read data,
while the input device starts to read the following data. Similarly,
the same process can be used for output. In this case, the CPU creates
data that are put into a buffer until an output device can accept them.

Compare the buffering scheme with the spooling scheme where
the CPU overlaps the input of one job with the computation and
output of other jobs.

'.
I

54 • Chapter 2: Computer-System Structures

2.2 Show how a desire for control cards leads naturally to the creation of
separate user and monitor modes of operation.

2.3 How does the distinction between monitor mode and user mode
function as a rudimentary form of protection (security) system?

2.4 What are the differences between a trap and an interrupt? What is
the use of each function?

2.5 For what types of operations is DMA useful? Why?

2.6 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Turn off interrupts.

e. Switch from user to monitor mode.

2. 7 Many computer systems do not provide dual-mode operation in
hardware. Consider whether it is possible to construct a secure
operating system for these computers. Give arguments both that it is
and that it is not possible.

2.8 Some early computers protected the operating system by placing it in
a memory partition that could not be modified by either the user job
or the operating system itself. Describe two difficulties that you think
could arise with such a scheme.

2.9 Protecting the operating system is crucial to ensuring that the
computer system operates correctly. Provision of this protection is the
reason behind dual-mode operation, memory protection, and the
timer. To allow maximum flexibility, however, we would also like to
place minimal· constraints on the user. The following is a list of
operations that are normally protected. What is the minimal set of
instructions that must be protected?

.a. Change to user mode.

b. Change to monitor mode.

c. Read from monitor memory.

d. Write into monitor memory.

e. Fetch an instruction from monitor memory.

f. Turn on timer interrupt.

g. Turn off timer interrupt.

Bibliographic Notes Iii 55

2.10 When are caches useful? What problems do they- solve? What
problems· do they cause-? If a cache can be made· as large as the
device it is caching for (for instance, a cache as large as a disk) why
not do so and eliminate the device?

2.11 Writing an operating system that can operate without interference
from malicious or undebugged user programs requires some
hardware assistance. Name three hardware aids for writing an
operating system, and describe how they may be used together to
protect the operating system.

Bibliographic Notes

A detailed description of I/O architectures such as channels and DMA on
large systems appears in Baer [1980]. Hennessy and Patterson [i990]
provide modern coverage of I/O systems and buses, and of system
architecture in general. Tanenbaum [1990] describes the architecture of
microcomputers, starting at a detailed hardware level.

General discussions. concerning multiprocessing are given by Jones and
Schwarz [1980]. Multiprocessor hardware is discussed by Satyanarayanan
[1980]. Performance of multiprocessor systems is presented by Maples
[1985], Sanguinetti [1986], Agrawal et al. [1986], and Bhuyan et al. [1989].
A survey of parallel computer architectures is presented by Duncan [1990].
. Discussions concerriing magnetic-disk technology are presented by
Freedman [1~83], and Harker et al. [1981]. Optical disks are covered by
Kerrville [i982], Fujitani [1984], O'Leary and Kitts [1985], Gait [1988], and
Olsen and. Kenly [1989]. Discussions of floppy disks are offered by
Pechura and Schoeffler [1983] and Sarisky [1983].

Cache memories, inCluding associative memory, are described and
analyzed by Smith [1982]. This paper also includes an extensive
bibliography on the subject. Hermessy and Patterson [1990] discuss the
hardware aspects of TLBs, caches, and MMUs.

General discussions concerning mass-storage technology are offered by
Chi [1982] and Hoagland [1985].

CHAPTER 3

OPERATING-SYSTEM
STRUCTURES

An opera~ng system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, being
orga~ed along many different lines. The d~sign of a new operating

. system is a major task. It is important that the goals of the system be well
defined before the design begins. The type of system desired is the
foundation for choices among various algorithms and strategies that will be
necessary.

There are several vantage points from which to view an operating
system. One is by examining the serviq~s it provides. Another is by
looking at the interface it makes available to users and programmers. A
third is by disassembling the system into its components and their
interconnections. In this chapter, we explore all three aspects of operating
systems, to show them from the viewpoints of users, programmers, and
operating-system designers. We consider what services an operating
system provides, how they are provided, and what the various
methodologies are for designing such systems.

3.1 • System Components

We can create a system as large and complex as an operating system only
by partitioning it into ·smaller pieces. Each of these pieces should be a
well-delineated portion. of the system, with carefully defined inputs,
outputs,· and function. ·Obviously, not all systems have the same
structure. However, many modern systems share the goal of supporting
the types of system components outlined in Sections 3.1.1 through 3. LS.

57

58 • Chapter 3: Operating-System Structures

3.1.1 Process Management
A progr~m does nothing unless its instructions are executed by a CPU. A
process can be thought of as a program in execution, but its definition will
broaden as we explore it further. Typically, a batch job is a process. A
time-shared user program is a process. A system task, such as spooling
output to a printer, also is a process. For now, you can consider a process
to be a job or a time-shared program, but the concept is actually more
general. As we shall see in Chapter 4, it is possible to provide system calls
that allow processes to create subprocesse~ to execute concurrently.

A process needs certain resources, including CPU time, memory, files,
and 110 devices, to accomplish its task. These resources are either given to
the process when it is created, or allocated to it while it is running. In
addition to the various physical and logical resources that a process obtains
when it is created, some initialization data (input) may be passed along.
For example, consider a process whose function is to display the status of a
file on the screen of a terminal. The process will be given as an input the
name of the file, and will execute the appropriate instructio:ns and system
calls to obtain the desired information and display it on the terminal.
When the process terminates, the operating system will reclaim any
reusable resources.

We emphasize that a program by itself is not a process; a program is a
passive entity, such as the contents of a file stored on disk, whereas a
process is an active entity, with a program counter specifying the· next
instruction to execute. The execution of a process must progress in a
sequential fashion. The CPU executes one instruction of the pro~ss after
another, until the process completes. Further, at any point in time; at most
one instruction is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are neverth~less
considered two separate execution sequences. It _is common to have a
program that spawns many processes as it runs.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes
(those that execute system code) and the rest of which are user processes
(those that execute user code). All these processes can potentially e~ecute
concurrently, by m1:1ltiplexing the CPU among them.

The operating \~ystem is responsible for the following activities in
connection with proc~ss management:

• The creation and deletion of both user and system processes

• The suspension and resumption of processes

• The provision of mechanisms for process synchronization

• The provision of mechanisms for process communicC:ltiOn

• The provision of mechanisms for deadlock handling

3.1 System Components • 59

Process-management techniques will be discussed 1n great detail in
Chapters 4 to 7.

3.1.2 Main-Memory Management
As discussed in Chapter 1, memory is central to the operation of a modern
computer system. Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data shared by the CPU
and 110 devices. The central processor reads instructions from main
memory during the instruction-fetch cycle, and both reads and writes data
from main memory during the data-fetch cycle. 110 implemented via DMA

also reads and writes data in main memory. Main memory is generally the
only storage device that the CPU is able to address directly. For example,
for the CPU to process data from disk, those data must first be transferred
to main memory by CPU-generated 110 calls. Equivalently, instructions
must be in memory for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses
and loaded into memory. As the program executes, it accesses program
instructions and data from memory by generating these absolute
addresses. Eventually, the program terminates, its memory space is
declared available, and the next program can be loaded and executed.

To improve both the utilization of CPU and the speed of the computer's
response to its users, we must keep several programs in memory. There
are many different memory-management schemes. These schemes reflect
various approaches to memory management, and the effectiveness o{ the
different algorithms depends on the particular situation. Selection of a
memory-management scheme for a specific system depends on many
factors - especially on the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in
connection with memory management:

• Keep track of which parts of memory are currently being used and by
whom

• Decide which processes are to be loaded into memory when memory
space becomes available

• Allocate and deallocate memory space as needed

Memory-management techniques will be discussed 1n great detail in ·
Chapters 8 and 9.

3.1.3 Secondary-Storage Management

The main purpose of a computer system is to execute programs. These
programs, with the data they access, must be in main memory (primary

60 • Chapter 3: Operating-System Structures

storage) during execution. Because main memory is too small to
accommodate all data and programs, and its data are lost when power is
lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principle on-line
storage medium, for both programs and data. Most programs - including

- compilers, assemblers, sort routines, editors, and formatters - are stored
on a disk until loaded into memory, and then use the disk as both the
source and destination of their processing. Hence, the proper management
of disk storage is of central importance to a computer system.

The operating system is responsible for the following activities in
connection with disk management:

• Free-space management

• Storage allocation

• Disk scheduling

Because secondary storage is used frequently, it must be used efficiently.
The entire speed of operation of a computer may hinge on the disk
subsystem and the algorithms which manipulate it. Techniques for
secondary-storage management will be discussed in detail in Chapter 12.

3.1.4 I/O System Management
One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, in UNIX, the
peculiarities of 110 devices are hidden from the bulk of the operating
system itself by the 110 system. The 110 system consists of

• A buffer-caching system

• A general device-driver interface

• Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to
which it is assigned.

We have already discussed in Chapter 2 how interrupt handlers and
device drivers are used in the construction of efficient 110 systems. In
Chapter 12, we shall discuss at great length how a particular device (the
disk) is managed effectively.

3.1.5 File Management
File management is one of the most visible components of an operating
system. Computers can store information on several different types of
physical media. Magnetic tape, magnetic disk, and optical disk are the
most common media. Each of these media has its own_ characteristics and

3.1 System Components • 61

physical organization. Each medium is controlled by a device, such as a
disk drive or tape drive, with its own unique characteristics. These
properties include speed, capacity, data transfer rate, and access method
(sequential or random access method). .

For convenient use of the computer system, the operating system
provides a uniform logical view of information storage. The operating
system abstracts from the physical properties of its storage devices to
define a logical storage unit, the file. The operating system maps files onto
physical media, and accesses these files via the storage devices. .

A file is a collection of related information defined by its creator.
Commonly, files represent programs (both source and object forms) and
data. Data files may be numeric, alphabetic, or alphanumeric. Files may be
free-form, such as text files, or may be formatted rigidly. A file consists of
a sequence of bits, bytes, lines, or records whose meanings are defined by
their creators. T-he concept of a file is an extremely general one.

The operating system .implements the abstract concept of a file by
managing mass storage media, such as tapes and disks, and the devices
which control them. Also, files are normally organized into directories to
ease their use. Finally, when multiple users have access to files, it may be
desirable to control by whom and in what ways files may be accessed.

The operating system is responsible for the following activities in
connection with file management:

• The creation and deletion of files

• The creation and deletion of directories

• The support of primitives for manipulating files and directories

• The mapping of files onto secondary storage

• The backup of files on stable (nonvolatile) storage media

. File-management techniques will be discussed in Chapters 10 and 11.

3.1.6 Protection System
If a system has multiple users and allows multiple concurrent processes,
the various processes must be protected from one another's activities. For
that purpose, mechanisms are provided to ensure that the files, memory
segments, CPU, and other resources can be operated on by only those
processes that have gained proper authorization from the operating
system.

For example, memory-addressing hardware ensures that a process can
execute only within its own address space. The timer ensures that no
process can gain control of the CPU without eventually relinquishing
control. Finally, users are not allowed to do their own 110, so that the
integrity of the various peripheral devices is protected.

62 • Chapter 3: Operating-System Structures

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specification of the controls to be
imposed, together with a means of enforcement.

Protection can improve reliability by detecting latent errors at the
·interfaces between component subsystems. Early detection of interface
errors can often prevent contamination of a healthy subsystem by a
subsystem that is malfunctioning. An unprotected resource cannot defend
against use (or misuse) by an unauthorized or incompetent user. A
protection-oriented system provides a means to distinguish between
authorized and unauthorized usage, as will be discussed in Chapter 13.

3.1.7 Networking

A distributed system is a collection of processors that do not share memory
or a clock. Instead, each processor has its own local memory, and the
processors communicate with one another through various communication
lines, such as high-speed buses or telephone lines. The processors in a
distributed system vary in size and function. They may include small
microprocessors, workstations, minicomputers, and large general-purpose
computer systems.

The processors iri the system are connected through a communication
network, which can be configured in a number of different ways. The
network may be fully or partially connected. The communication-network
design must consider routing and connection strategies, and the problems
of contention and security.

A distributed system collects physically separate, possibly
heterogeneous systems into a single coherent system, providing the user
with access to the various. resources that the system maintains. Access to a
shared resource allows computation speedup, increased data availability,
and enhanced reliability. Operating systems usually generalize network
access as a form of file access, with the deta:its of networking being
contained in the network interface's device driver.

Discussions concerning network and distributed systems are presented·
in Chapters 15 to 18.

3.1.8 Command-Interpreter System
One of the most important system programs for an operating system is the
command interpreter, which is the interface between the user and the
operating system. Some operating systems include the command
interpreter in the kernel. Other operating systems, such ·as MS-DOS and
UNIX, treat the . command interpreter as a special program that is running
when a job is initiated, or when a user first logs on (on time-sharing
systems). ·

3.2 Op.erating-System S~rvices • 63

Many commands are given to the operating system by control
statements. When a new job is started in a batch system, or when a user
logs on to a time-shared system, a program that reads and . interprets
control statements is executed C:)utomatically. This program is variously
called the control-card interpreter, the command-line interpreter, the shell (in
UNIX), and so on. Its function is quite simple: Get the next command
statement and execute it. · · ·

Operating systems are frequently differentiated in the area of
command interpretation, with a user-friendly interpreter making the
system more agreeaple to some users. An example of a user-friendly
interface is the Macintosh interpreter, a window and menu system that is
almost exclusively mouse-based. The user uses the mouse to point with
the cursor to images (or icons) on the screen that r~present programs, files,
and system functions. Depending on the cursor ·location,· clicking the··
mouse's button can invoke a program, select a file or directory (known as a
folder), or pull down a menu containing commands. More powerful,
complex, and difficult-to-learn interpreters are appreciated by other:, more
sophisticated users. On these interpreters, cotri:ptands are typed on a
keyboard and displayed on a screen or printing terminal, with the enter (or
return) key signaling that a command is complete and is ready to be
executed. The UNIX shells run in this mode.

The command statements themselves deal with process creation and
management, 110 handling, secondary-storage management, main memory
management, file-system access, protection, and networking.

3.2 • Operating-System Services

An operating system provides an environment for the execution of
programs. The operating system provides certain services to programs and
to the users of those programs. The specific services provided will, of
course, differ from one operating system to ·another, but there are some
common classes that we can identify. These operating-system services are
provided for the convenience of the ·programmer, to make the
programming task easier.

• Program execution: The system must be able to load a program into
memory and to run it. The program must be able to end its execution,
either normally or abnormally (indicating error).

• 110 operations: A running program may require 110. This 110 may
involve a file or an 110 device. For specific devices, special functions
may be desired (such as rewind a tape drive, or blank the screen on a
CRT). For efficiency and protection, users cannot control 110 devices
directly. therefore, the operating system must provide some means to
do 110.

64 • Chapter 3: Operating-System Structures

• File·syste~ manipulation: The file system is of particular interest. It
should be obvious that programs need to read and write files. They
also need to create and delete files by name.

• Communications: There are many circumstances in which one process
needs to exchange information with another process. There are two
major ways in which such communication can occur. The first takes
place between processes executing on the same computer; the second
takes place between processes executing on different computer systems
that are tied together by a computer network. Communications may
be implemented via shared memory, or by the technique of message
passing, in which packets of information are moved between processes
by the operating system.

• Error detection: The operating system constantly needs to be aware of
possible errors. Errors may occur. in the CPU and memory hardware
(such as a memory error or a power failure), in 110 devices (such as a
parity error on tape, a connection failure on a network, or lack of
paper in the printer), or in the user program (such as an arithmetic
overflow, an attempt to access an illegal memory location, or a too

·great use of CPU time). For each type of error, the operating system
should take· the appropriate . action to ensure correct and consistent
computing.

In addition, another set of operating-system functions exists not for
helping the user, but rather for ensuring the efficient operation of the
system itself. Systems with multiple users can gain efficiency by sharing
the computer resources among the users.

• Resource allocation: When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of them.
Many different types of resources are managed by the operating
system. Some (such as CPU cycles, main memory, and file storage) may
have special allocation code, whereas others (such as 110 devices) may
have much more general request and release code. For instance, in
determining how best to use the CPU, operating systems have CPU
scheduling routines that take into account the speed of the CPU, the
jobs that must be executed, the number of registers available, and
other factors. There might also be routines to allocate a tape drive for
use by a job. One such routine locates an unused tape drive and
marks an ·internal table to record the drive's new user. Another
routine is used to clear that table. These routines may also be used to
alloc(lte plotters, modems, and other peripheral devices.

• Accounting: We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be for
accounting (so that users can be billed) or simply for accumulating

3.3 System Calls • 65

usage statistics. Usage statisqcs may be a valuable tool for researchers
who wish to reconfigure the system to improve computing services.

• Protection: The owners of information stored in a multiuser computer
system may want to control its use. When several disjoint processes
execute concurrently, it should not be possible for one process to
interfere with the others, or with the operating system itself.
Protection involves ensuring that all access to system resources is
controlled. Security of the system from outsiders is also important.
Such security starts with each user having to authenticate himself or
herself to the system, usually by means of a password, to be allowed
access to the resources. It extends to defending external I/O devices,
including modems and network adapters, from invalid access attempts,
and to recording all such connections for detection of breakins. If a
system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

3.3 • System Calls

System calls provide the interface between a process and the operating
system. These calls are generally available as assembly-language
instructions, and are usually listed in the manuals used by assembly
language programmers.

Some systems may allow system calls to be made directly from a
higher-level language program, in which case the calls normally resemble
predefined function or subroutine calls. They may generate a call to a
special run-tim~ routine that makes the system call, or the system call may
be generated directly in-line.

Several languages - such as C, Bliss, BCPL, and PL/360 - have been
defined to replace assembly language for systems programming. These
languages allow system calls to be made directly. Some Pascal systems also
provide an ability to make system calls directly from a Pascal program to
the operating system. Most FORTRAN systems provide similar capabilities,
often by a set of library routines. .

As an example of how system calls are used, consider writing a simple
program to read data from one file and to copy them to another file. The
first input that the program ·will need is the names of the two files: the
input file and the output file. These names CCJ.n be specified in many ways,.
depending on the operating-system design. One approach is for the
program to ask the user for the names of the two files. In an interactive
system, this approach will require a sequence of system calls, first to write
a prompting message on the screen, and then to read from the J<eyboard
the characters that define the two files. Another approach, frequently used
for batch systems, is to specify the names of the files with control cards. In

66 • (:hapter 3: Operating-System Structures

this case, there must be a mechanism for passing these parameters from
the control cards to the executing program. On. mouse-based and icon
based systems, a menu of file names is usually displayed in a window.
The user can then use the mouse to select the source name, and a window
can be ·opened for the destination name to be specified.

Once the two file names are obtained, the program must open the
input file and create the output file. Each of these operations requires
another system call. There are also possible error conditions for each
operation. When the program tries to open the input file, it may find that
there is no file of that name or that the file is protected against access. In
these cases, the program should print a message on the console (another
sequence of system calls) and then terminate ,abnormally (another system
call).·· If the input file exists, then we must create a new output file .. We
may find that there is already an output file with the same name. This
situation may cause the program to abort (a system call), or we may delete
the e,qsting file (another system call) and create a new one (another system
call). Another option, in an interactive system, is to ask the user· (a
sequence of system calls to output the prompting message and to read the
respo_nse from the terminal) whether to replace the existing file or to abort.

Now that both files are set up, we enter a loop that reads from the
input file (a system call) and writes to the output file (another system call).
Each read and write must return status information regarding various
possible error conditions. On input, the program may find that the end of
the file has been reached, or that tpere was a hardware failure in the read
(such as a parity error). The write operation may encounter various errors,
depending on the output device (no more disk space, physical end of tape,
printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console (more system calls),
and finally terminate normally (the last system call). As we can see,
programs may make heavy use of the operating system. ·

Most users never see this level of detail, however. The run-time
support system for most programming languages provides a much simpler
interface. For example, a write statement in Pascal or FORTRAN probably is
compiled into a call to a run-time support routine that issues the necessary
system calls, checks for errors, and finally returns to the user program.
Thus, most of the details of the operating-system interface are hidden from
the programmer by the compiler and by. the run-time support package.

System calls occur in different ways, depending on the computer in
use. Often, more information is required than simply the identity of the
desired system call. The exact type and amount of information vary
?ccording to the particular operating system and call. For example, to get
Input, we may need to specify the file or device to use as the source, and
the address and length of the memory buffer into which the input should
be read. Of course, the device or file and length may be implicit in the call.

Three general methods are used to pass parameters
system. The simplest approach is to pass the parameters
some cases, however, there may be more parameters than
these cases, the parameters are generally stored in a block
memory, and the address of the block is passed as a
register (Figure 3.1). Parameters also can be placed, or
stack by the program, and popped off the stack by the r'\T'l,UT'':>

Some operating systems prefer the block or stack
do not limit the number or length of parameters being passed.

System calls can be roughly grouped into five major
control, file manipulation, device manipulation, information
communications. In Sections 3.3.1 to 3.3 we discuss briefly
system calls that may be provided by an operating system.
our description may seem somewhat shallow, as most these"'"~'.,-""
support, or are supported by, concepts and functions that are
later chapters. Figure 3.2 summarizes the types of
provided by an operating system.

3.3.1 Process and Job Control

A running program needs to be able to halt its
(end) or abnormally (abort). If a system call made to
currently running program abnormally, or if the program
problem and causes an error trap, a dump of memory
and an error message generated. The dump is written to disk
examined by a debugger to determine the cause
either normal or abnormal circumstances, the operating

register

user program

Figure 3.1 Passing of parameters as a table.

68 • Chapter 3: Operating-System Structures

• Process control

o end, abort ·

o load, execute

o create process, terminate process

o get process attributes, set process attributes

o wait for time

o wait event, signal event

o allocate and free memory

• File manipulation

o create file, delete file

o open, close

o read, write, reposition

o get file attributes, set file attributes

• Device manipulation

o request device, release device

o read, write, reposition

o get device attributes, set device attributes

o logically attach or detach devices

• Information maintenance

o get time or date, set time or date

o get system data, set system data

o get process, file, or device attributes

o set process, file, or device attributes

• Communications.

o create, delete communication connection

o send, receive messages

o transfer status information

o attach or detach remote devices

Figure 3.2 Types of. system calls.

3.3 System Calls • 69

transfer control to the command interpreter. The command interpreter
then reads the next command. In an interactive system, the command
interpreter simply continues with the next command; it is assumed that the
user will issue an appropriate command to respond to any error. In a batch
system, the command interpreter usually terminates the entire job and
continues with the next job. Some systems allow control cards to indicate
special recovery actions in case an error occurs. If the program discovers
an error in its input and wants to terminate abnormally, it may also want
to define an error level. More severe errors can be indicated bY. a higher
level error parameter. It is then possible to combine normal and abnormal
termination by defining a normal termination as error at level 0. The
command interpreter or a following program can use this error level to
determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a
mouse, or a batch command. An interesting question is where to return
control when the loaded program terminates. This question is related to
the problem of whether the existing program is lost, saved, or allowed to
continue execution concurrently with the new program.

If control returns to the existing program when the new program
terminates, we must save the memory image of the existing program; thus,
we have -effectively created a mechanism for one program to call another
program. If both programs continue concurrently, we have created a new
job or process to be multiprogrammed. Often, there is a system call
specifically for this purpose (create process or submit job). ·

· If we create a new job or process, or perhaps even a set of jobs or
processes, we should be able to control its execution. This control requires
the ability to determine and reset the attributes of a job or process,
including the job's priority, its maximum allowable execution time, and so
on (get process attributes and set process attributes). We may also want to
terminate a job or process that we created (terminate process) if we find
that it is incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them
to finish their execution. We may want to wait for a certain amount of time
(wait time); more probably, we may want to wait for a specific event to
occur (wait event). The jobs or processes should then signal when that
event has occurred (signal event). System calls of this type, dealing with
the coordination of concurrent processes, are discussed in great detail in
Chapter 6.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program trace lists each instruction as it is executed; it is
provided by fewer systems. Even microprocessors provide a CPU mode
known as single step, in which a trap is executed by the CPU after every

70 Chapter 3: Operating-System Structures

instruction. The trap is usually caught by a debugger, which is a
program designed to aid the programmer in finding and correcting

A time profile of a program is provided by many systems. It
the amount of time that the program executes at a particular
of locations. A time profile requires either a tracing facility or
interrupts. At every occurrence of the timer interrupt, the value
program counter is recorded. With sufficiently frequent timer
statistical picture of the time spent on various parts of the program can
obtained.

There are so many facets of and variations in process and job
that we shall use examples to clarify these concepts. The MS-DOS rYn,or:::.ft

system is an example of a single-tasking system, which has a rnrl'\rl'\

interpreter that is invoked when the computer is started (Figure
Because MS-DOS is single-tasking, it uses a simple method run a
program, and does not create a new process. It loads the
memory, writing over most of itself to give the program as much
as possible (Figure 3.3(b)). It then sets the instruction pointer to
instruction of the program. The program then runs and either an error
causes a trap, or the program executes a system call to terminate.
case, the error code saved in the system memory for later use.
this action, the small portion of the command interpreter that
overwritten resumes execution. Its first task is to reload
command interpreter from disk. Once this task
command interpreter makes the previous error code available to
or to the next program.

(a) (b)

Figure 3.3 MS-DOS execution. (a) At system startup. (b) Running a

-

Berkeley UNIX, on the other hand, is an example of a
system. When a user logs on to the system, a command 1nr.r:>rrYrt:>ta ...

a shell) of the user's choice is run. This shell is similar
comm(;l.nd interpreter (in fact, MS-DOS is modeled
accepts commands and executes programs that the
However, since UNIX is a multitasking system, the
may continue running while another program is executed
start a new process, the shell executes a fork system
selected program is loaded into memory via an exec system
program is then executed. Depending on the way the
issued, the shell then either waits for the process to finish,
process "in the background". In the latter case, the
requests another command. When a process is
background, it cannot receive input directly from the
shell · is expecting input also. I/O is therefore done
Meanwhile, the user is free to ask the shell to run other
monitor the progress of the running process, to
priority, and so on. When the process is done, it executes an
call to terminate, returning to the invoking process a
nonzero error code. This status or error code is then
or other programs. Processes are discussed in Chapter

3.3.2 File Manipulation
The file system will be discussed in more detail in
can identify several common system calls dealing with

Figure 3.4 UNIX running multiple programs.

-
71

72 • Chapter 3: Operating-System Structures

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file's attributes.
Once th~ file is created, we need to open it and to use it. We may also
read, write, or reposition (rewinding or skipping to the end of the file, for
example). Finally, we need to close the file, indicating that we are no
longer using it.

We may need these sa111e sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for
either files or directories, we need to be able to determine the values of
V(;lrious attributes, and perhaps to reset them if necessary. File attributes
include the file name, a file type, protection codes, accounting information,
and so on. At least two system calls, get file attribute and set file
attribute, ar~ required for this function. Some operating systems provide
many more calls.

3.3.3 Device Management

A progrqm, as it is running, may need additional resources to proceed.
Additional resources may be more memory, tape drives, access to files,
and so on. If the resources are available, they can be granted, and control
can be returned to the user program; otherwise, the program will have to
wait until sufficient resources are available.

Files can be thought of as (lbstract or virtual devices. Thus, many of
the syst~m calls for files are also needeq for devices. If there are multiple
p.sers of the system, however, we must first request the device, to ensure
exclusive use of it. After we are finished with the device, we must release
it. These functions are similar to the open and close system calls for files.

Once the device has been request~d (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In
fact, the similarity between vo device& and files is so great that many
operating systems, including UNTX and MS-DOS, merge the two into a
combined file-device structure. In this case, vo devices are identified by
spedal file names.

3.3.4 Information Maint~nance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For exa111ple, most
systems have a system call to return the current time and date. Other
system calls may return information about the system, such as the number
of current users, the version number of the operating system, the amount
of free memory or disk space, and so on.

In addition,. the operating system keeps information about all its
processes, an~ there a.re system calls to access this information. Generally,
there are also calls to reset the process information (get process attributes

3.3 System Ccills • 73

and set process attributes). In Section 4.1.3, we discuss what information is
normally kept.

3.3.5 Communication

There are two common models of communication .. In the message-passing
model, information is exchanged through an interprocess-:-communication
facility provided by the operating system. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same CPU, or a process on
another computer connected by a com~unications network. Each computer
in a network has a host name by which it is commonly known. Similarly,
each process has a process name, which is translated into an equivalent
identifier by which the operating system can refer to it. The get hostid,
and get processid system calls do this translation. These identifiers are
then passed to the general-purpose open and close calls provided by the
file system, or to specific open connection and close connection system
calls, depending on the system's model of communications. The. recipient
process usually must give its permission for communication to take place
with an accept connection call. Most processes that will be receiving
connections ate special-purpose daemons, which are system programs
provided fot that purpose. They execute a wait for connection call and are
awakened when a connection is made. The source of the communication,
kriown as the client, and the receiving daemon, known as a server, then
exchange messages by read message and write message system calls. The
close cortnection call termimites the communication. ·

In the shared-memory model, processes use map memory system calls to
gain access to regions of memory owned by other processes. Recall that,
normally, the operating system tries to prevent one process from accessing
another process' memory. Shared memory requires that two or. more
processes agree to remove this restriction. They may then exchange
information by reading and writing data in these shared areas. The form
of the data and the location are determined by these processes and are not
under the operating system's control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously.
Such mechanisms are discussed in Chapter 6.

Both of these methods are common in operating systems, and some
systems even implement both. Message passing is useful when smaller
numbers of data need. to be exchanged, because no conflicts need to be·
avoided. It is also . easier to implement than :ls shared memory for
intercomputer commurucation. Shared memory allows maximum speed
and convenience of communication, as it can be done at memory speeds
when within a computer. Problems exist, however, in the areas of ,
protection and synchronization. The two communications models are
contrasted in Figure 3.5.

Chapter 3: Operating-System St:rudures

System Programs

Another aspect of a modern system is the collection of
,..,..._,~u Figure 1.1, which depicted the logical computer

level hardware, of course. Next is the operating system,
.::u<:f"Plrn programs, and finally the application programs. System

a more convenient environment for program
execution. Some of them are simply user interfaces to
whereas others are considerably more complex. They can be

categories:

• manipulation: These programs create, delete, copy,
dump, list, and generally manipulate files and directories.

• Status information: Some programs simply ask the system for
time, amount of available memory or disk space, number of
similar status information. That information is then formatted,
printed to the terminal or other output device or file.

• File modification: Several text editors may be available to ""'0 "'"
0

modify the content of files stored on disk or tape.

• Programming-language support: Compilers,
interpreters for common programming languages (such as
COBOL, Pascal, BASIC, C, and LISP) are often provided to the user

1

(a) (b)

3.5 Communications models. (a) Message passing. (b)

3.4 System Programs • 75

the operating system. Many of these programs are now priced and
provided separately.

• Program loading and execution: Once a program is assembled or
compiled, it must be loaded into memory to be executed. The system
may provide absolute loaders, relocatable loaders, linkage editors., and
overlay loaders. Debugging systems for either higher-level languages
or machine language are needed also.

• Communications: These programs provide the mechanism for creating
virtual connections among processes, users, and different computer
systems. They allow users to send messages to each other's screens, to
send larger messages as electronic mail, or to tranSfer files from one
machine to another, and even to use other computers remotely as
though these machines were local (known as remote login).

• Application programs: Most operating systems are supplied with
programs that are useful to solve common problems, or to perform
common operations. Such programs include compiler compilers, text
formatters, plotting packages, database systems, spreadsheets,
statistical-analysis packages, and games.

Perhaps the most important system program for an operating system is
the command interpreter, the main function of which is to get and execute
the next user-specified command.

Many of the commands given at this level manipulate files: create,
delete, list, print, copy, execute, and so on. There are two general ways in
which these commands can be implemented. In one approach, the
command interpreter itself contains the code to execute the command. For
example, a command to delete a file may cause the command interpreter to
jump to a section of its code that sets up the parameters and makes the
appropriate system call. In this case, the number of commands that can be
given determines the size of the command interpreter, since each
command requires its own implementing code.

An alternative approach used by UNIX, among other operating systems,
implements most commands by special systems programs. In this case, the
command interpreter does not "understand" the command in any way; it
merely uses the command to identify a file to be loaded into memory and
executed. Thus, a command

delete G

would search for a file called delete, load the file into memory, and execute
it with the parameter G. The function associated with the delete command
would be defined completely by the code in the file delete. In this way,
programmers can add new commands to the system easily by creating new

76 • Chapter 3: Operating-System Structures

files of the proper name. The command-interpreter program, which can
now be quite small, does not have to be changed for new commands to be
added.

There are problems with this approach to the design of a command
interpreter. Notice first that, because the code to execute a command is a

. separate system program, the operating system must provide a mechanism
for passing parameters from the command interpreter to the system
program. This task can often be clumsy, because the command interpreter
and the system program may not both be in memory at the same time, and
the parameter list can be extensive. Also, it is slower to load a program
and to execute it than simply to jump to another section of code within the
current program.

Another problem is that the interpretation of the parameters is left up
to the programmer of the system program. Thus, parameters may be
provided inconsistently across programs that appear similar to the user,
but that were written at different times by different programmers.

The view of the operating system seen by most users is thus defined
bythe systems programs, rather than by the actual system calls. Consider
IBM PC compatibles. Running the same MS-DOS operating system, the user
could see a command-line-based command interpreter, or, could run the
Windows program to invoke a graphical, Apple Macintosh-like interface.
Both use the same set of system calls, but the calls look different and act in
different ways. Consequently, this user view may be substantially removed
from the actual ·system structure. The design of a useful and friendly user
interface is therefore not a direct function of the operating system. In this
book, we shall concentrate on the fundamental problems of providing ade
qu~te service to user programs. From the point of view of the operating sys
tem, we do not distinguish between user programs and systems programs.

3.5 • System Structure

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and to be modified easily.
A common approach is to partition the task into small components, rather

. than hav.e one monolithic system. Each of these modules should be a well
defined portion of the system, with carefully defined inputs, outputs, and
function. We have already discussed briefly the common components of
operating systems (Section 3.1). In this section, we discuss the way that
these components are interconnected and melded into a kernel.

'

3.5.1 Simple Structure
There are numerous commercial systems that do not have a well-defined
structure. Frequently, such operating systems started as small, simple,

and limited systems, and then grew beyond their
example of such a system is MS-DOS, the best-selling
operating system. MS-DOS was originally designed and
few people who had no idea that it would become so
written to provide the most functionality in the least space,
limited hardware on which it ran, so it was not divided
carefully. Figure 3.6 shows its current structure.

Although MS-DOS does have some structure, its interfaces
functionality are not well separated. For instance, applications
are able to access the basic I/O routines to write directly to
disk drives. Such freedom leaves MS-DOS vulnerable
malicious) programs, causing entire system crashes or disk erasures
user programs fail. Of course, MS-DOS is also limited by the on
which it runs. Because the Intel 8088 for which it was written no
dual mode and no hardware protection, the designers of MS-DOS no
choice but to leave the base hardware accessible.

Another example of limited structuring is the original UNIX

system. UNIX is another system that initially was limited
functionality. It consists of two separable parts: the kernel
programs. The kernel is further separated into a
device drivers, which have been added and expanded over
UNIX has evolved. We can view the UNIX operating
layered as shown in Figure 3.7. Everything below the
and above the physical hardware is the kernel. The kernel
system, CPU scheduling, memory management, and other
functions through system calls. Taken in sum, that

Fig·are 3.6 MS-DOS layer structure.

• Chapter 3: Operating-System Structures

Figure 3.7 UNIX system structure.

of functionality to be combined into one level. Systems use
kernel-supported system calls to provide useful functions/ as
compilation and file manipulation.

System calls define the programmer interface to UNIX; the
programs commonly available defines the user interface.
and user interfaces define the context that the kernel must
Several versions of UNIX have been developed in which the
partitioned further along functional boundaries. The AIX r.n.o:>ro::.

IBM's version of UNIX, separates the kernel into two
Carnegie Mellon University, reduces the kernel to a small
functions by moving all nonessentials into systems and even into
programs. What remains is a microkernel operating system
only a small set of necessary primitives.

3.5.2 Layered Approach
These new UNIX versions are designed to use more advanced
Given proper hardware support, operating systems may be
smaller, more appropriate pieces than those allowed by the
or UNIX. The operating system can then retain much greater
the computer and the applications that make use of that
Implementors have more freedom to make changes to the inner wc>rKm~~s
of the system. Familiar techniques are used to aid in the
modular operating systems. Under the top-down approach,
functionality and features can be determined and

-

3.5

components. Information hiding is also important,
to implement the low-level routines as they see fit,

external interface of the routine stays unchanged and
performs the advertised task.

The modularization of a system can be done in many
appealing is the layered approach, which consists of
operating system into a number of layers (levels), each
lower layers. The bottom layer (layer 0) is the hardware; the
N) is the user interface.

An operating-system layer is an implementation an
that is the encapsulation of data, and operations that can
data. A typical operating-system layer - say layer M
Figure 3.8. It consists of some data structures and a set of
be invoked by higher-level layers. Layer M, return,
operations on lower-level layers.

The main advantage of the layered approach is modularity.
are selected such that each uses functions (operations)
lower-level layers. This approach simplifies
verification. The first layer can be debugged without
rest of the system, because, by definition, it uses only
(which is assumed correct) to implement its functions.
is debugged, its correct functioning can be assumed while
is worked on, and so on. If an error found during
particular layer, we know that the error must be on that
layers below it are already debugged. Thus,
implementation of the system is simplified when the
down into layers.

new
operations

existing
operations

Figure 3.8 An operating-system layer.

79

80 • Chapter 3: Operating-System Structures

Each layer is implemented using only those operations provided by
lower-level layers. A layer does not need to know how these operations
are implemented; it needs to know only what these operations do. Hence,
each layer hides the existence of certain data structures, operations, and
hardware from higher-level layers.

The layer approach to design was first used in the THE operating
system at the Technische Hogeschool Eindhoven. The THE system was
defined in six layers, as shown in Figure 3.9. The bottom layer was the
hardware. The next layer implemented CPU scheduling. The next layer
implemented memory management; the memory-management scheme was
virtual memory (Chapter 9). Layer 3 contained the device driver for the
operator's console. Because it, as well as 110 buffering (level 4), were placed
above memory management, the device buffers were able to be placed in
virtual memory. The I/O buffering was also above the operator's console, so
that IIO error conditions could be output to the operator's console.

This approach can be used in many ways. For example, the Venus
system was also designed using a layered approach. The lower layers (0 to
4), dealing with CPU scheduling and memory management, were then put
into microcode. This decision provided the advantages of additional speed
of execution and a clearly defined interface between the microcoded layers
and the higher layers (Figure 3.10).

The major difficulty with the layered approach involves the appropriate
definition of the various layers. Because a layer can use only those layers
that are at a lower level, careful planning is necessary. For example, the
device driver for the backing store (disk space used by virtual-memory
algorithms) must be at a level lower than that of the memory-management
routines, because memory management requires the ability to use the
backing store.

Other requirements may not be so obvious. The backing-store driver
would normally be above the CPU scheduler, because the driver may need

layer 5: user programs

layer 4: buffering for input and output devices

layer 3: operator-console device driver

layer 2: memory management

layer 1: CPU scheduling
"

layer 0: hardware

Figure 3.9 THE layer structure.

3.5 System Structure • 81

layer 6: user programs

layer 5: device drivers and schedulers

layer 4: virtual memory

layer 3: 110 channel

layer 2: CPU scheduling

layer 1: instruction interpreter

layer 0: hardware

Figure 3.10 Venus layer structure.

to wait for I/O and the CPU can be rescheduled during this time. However,
on a large system, the CPU scheduler may have more information about all
the active processes than can fit in memory. Therefore, this information
may need to be swapped in and out of memory, requiring the backing
store driver routine to be below the CPU scheduler.

A final problem with layered ini.plementations is that they tend to be
less efficient than other type.s. For instance, for a user program to execute
an 110 operation, it executes a system call which is trapped to the 110 layer,
which calls the memory-management layer, through to the CPU scheduling
layer, and finally to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so ort. Each layer adds
overhead to the system call and the net result :ls a system call that takes
longer th~n one does on a rtonlayered system. .

These limitations have caused a small backlash against layering in
recent years. Fewer layers with more functionality are . being designed,
providing most of the advantages of modularized code while avoiding the
difficult problems of layer definition and interaction. OS/2, a direct
descendant of MS-bos, was created to overcome the limitations of MS-DOS.
OS/2 adds multitasking and dual-mode operation, as well as other new
features. Because of this added complexity and the more powerful
hardware for which OS/2 was designed, the system was implemented in a
more layered fashion. Contrast the MS-DOS . structure to that shown in
Figure 3.11. It should be clear that, from both the system-design and
implementation standpoints, OS/2 has the advantage. For instance, dl.rect
user access to low-level· facilities is not allowed, providing the operating
system with more control over the hardware and more knowledge of
which resources each user program is using.

82 Ill Chapter 3: Operating-System Structures

Figure 3.11 OS/2 layer structure.

3.6 • Virtual Machines

Conceptually, a computer system is made up of layers.
the lowest level in all such systems. The kernel running at
uses the hardware instructions to create a set of system calls
outer layers. The systems programs above the kernel are "~""'"l"Af"rn·"'
use either system calls or hardware instructions, and in some
programs do not differentiate between these two. Thus,
accessed differently, they both provide functionality that the nrr"\crr:clrn

use to create even more advanced functions. System programs,
treat the hardware and the system calls as though they both are
same level.

Some systems carry this scheme even a step further by
system programs to be called easily by the application
before, although the system programs are at a level higher
other routines, the application programs may view everything
in the hierarchy as though the latter were part of the machine

•

layered approach is taken to its logical conclusion in the
virtual machine. The VM operating system for IBM systems
example of the virtual-machine concept, because IBM pioneered
this area.

By using CPU scheduling (Chapter 5) and virtual-memory
(Chapter 9), an operating system can create the illusion
processes, each executing on its own processor with its own
memory. Of course, normally/ the process has additional
system calls and a file system, which are not provided
hardware. The virtual-machine approach, on the other
provide any additional function, but rather provides an
identical to the underlying bare hardware. Each process is
(virtual) copy of the underlying computer (Figure 3.12).

The resources of the physical computer are shared to
machines. CPU scheduling can be used to share the CPU and to
appearance that users have their own processor. Spooling and a
can provide virtual card readers and virtual line printers.
time-sharing terminal provides the function of the
operator's console.

A major difficulty with the virtual machine-approach
systems. Suppose that the physical machine has three
wants to support seven virtual machines. Clearly, it cannot

(a)

programming
interface

(b)

Figure 3.12 System models. (a) Nonvirtual machine. (b)

84 • Chapter 3: Operating-System Structures

drive to each virtual machine. Remember that the virtual-machine software
itself will need substantial disk space to provide virtual memory and
spooling. The solution is to provide virtual disks, which are identical in all
respects except size. These are termed minidisks in IBM's VM operating
system. The system implements each minidisk by allocating as many tracks
as the minidisk needs on the physical disks. Obviously, the sum of the
sizes of all minidisks must be less than the actual amount of physical disk
space available.

Users thus are given their own virtual machine. They can then run any
of the operating systems or software packages that are available on the
underlying machine. For the IBM VM system, a user normally runs CMS, a
single-user interactive operating system. The virtual-machine software is
concerned with multiprogramming multiple virtual machines onto a
physical machine, but does not need to consider any user-support
software. This arrangement may provide a useful partitioning of the
problem of designing a multiuser interactive system into two smaller
pieces.

Although the virtual machine concept is useful, it is difficult to
implement .. Much effort is required to provide an exact duplicate of the
underlying machine. Remember, for example, that the underlying
machine has two modes: user mode and monitor mode. The virtual
machine software can run in monitor mode, since it is the operating
system. The virtual machine itself can execute in only user mode. Just as
the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual
monitor mode, both of which run in a physical user mode. Those actions
that cause a transfer from user mode to monitor mode on a real machine
(such as a system call or an attempt to execute a privileged instruction)
must also cause a transfer from virtual user mode to virtual monitor mode
on a virtual machine.

This transfer can generally be done fairly easily. When a system call,
for example, is made by a program running on a virtual machine in virtual
user mode, it will cause a transfer to the virtual-machine monitor in the
real machine. The virtual user mode is also a physical user mode. When
the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect
of the system call. It can then restart the virtual machine, noting that it is
now in virtual monitor mode. If the virtual machine then tries, for
example, to read from its virtual card reader, it will execute a privileged 110
instruction. Because the virtual machine is running in physical user mode,
this instruction will trap to the virtual-machine monitor. The virtual
machine monitor must then simulate the effect of the I/O instruction. First,
it finds the spooled file that implements the virtual card reader. Then, it
translates the read of the virtual card reader into a read on the spooled
disk file, and transfers the next virtual "card image" into the virtual

3.6 Virtual Machines • 85

memory of the' virtual machine. Finally, it can restart the virtual machine.
The state of the virtual machine has been modified exactly as though the
vo instruction had been executed with a real card reader for a real machine
executing in a real monitor mode.

The major difference is, of course, time. Whereas the real I/O might
have taken 100 milliseconds, the virtual vo might take less time (because it
is spooled) or more (because it is interpreted). In addition, the CPU is being
multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM

works for IBM machines because normal instructions for the virtual
machines can execute directly on the hardware. Only the privileged
instructions (needed mainly for vo) must be simulated and hence execute
more slowly.

The virtual-machine concept has several advantages. Notice that in this
environment there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no security _problems. On the other hand, there is no direct
sharing of resources. To provide sharing, two approaches have been
implemented. First, it is possible to share a minidisk. This scheme is
modeled after a physical shared disk, but is implemented by software.
With this technique, files can be shared. Second, it is possible to define a
network of virtual machines, each of which can send information over the
virtual communications network. Again, the network is modeled after
physical communication networks, but is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating
systems research and development. Normally, changing an operating
system is a difficult task. Because operating systems are large and complex
programs, it is difficult to be sure that a change in one point will not cause
obscure bugs in some other part. This situation can be particularly
dangerous because of the power of the operating system. Because the
operating system executes in monitor mode, a wrong change in a pointer
could cause an error that would destroy the entire file system. Thus, 'it is
necessary to test all changes to the operating system carefully.

The operating system, however, runs on and controls the entire
machine. Therefore, the current system must be stopped and taken out of
use while changes are made and tested. This period is commonly called
system-development time. Since it makes the system unavailable to users,
system-development time is often scheduled late at night or on weekends, .
when system load is low .

.. A virtual-machine system can eliminate much of this problem. System
programmers are ·given their own virtual machine, and system
development is done on the virtual machine, instead of on a physical
machine. Normal system operation seldom needs to be disrupted for
system development.

86 • Chapter 3: Operating-System Structures

Virtual machines are coming back into fashion as a means of solving
system compatibility problems. For instance, there are thousands of
programs available for MS-DOS on Intel CPU-based systems. Computer
vendors like Sun Microsystems and Digital Equipment Corporation (DEC)
use other, faster processors, but would like their customers to be able to
run these MS-DOS programs. The solution is to create a virtual Intel
machine on top of the native processor. An MS-DOS program is run in this
environment, and its Intel instructions are translated into the native
instruction set. MS-DOS is also run in this virtual machine, so the program
can make its system calls as usual. The net result is a program which
appears to be running on an Intel-based system but is really executing on a
very different processor. If the processor is sufficiently fast, the MS-DOS
program will run quickly even though every instruction is being translated
into several native instructions for execution.

3.7 • System Design and Implementation

In this section, we discuss the problems of designing and implementing a
system. There are, of course, no complete solutions to the design
problems, but there are approaches that have been successful.

3.7.1 Design Goals
The first problem in designing a system is to define the goals and
specifications of the system. At the highest level, the design of the system
will be affected by the choice of hardware and type of system: batch, time
shared, single-user, multiuser, distributed, real-time, or general purpose.

Beyond this highest design level, the requirements may be much
harder to specify. The requirements can be divided into two basic groups:
user goals and system goals.

Users desire certain obvious properties in a system: The system should
be convenient to use, easy to learn, easy to use, reliable, safe, and fast. Of
course, these specifications are not particularly useful in the system design,
since there is no general agreement on how to achieve these goals.

A. similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The operating system
should be easy to design, implement, and maintain; it should be flexible,
reliable, error-free, and efficient. Again, these requirements are vague and
have no general solution.

There is no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems shows
that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for MS-DOS, a
single-user system for microcomputers, must have ·been substantially

3. 7 System Design and Implementation • 87

different from those for MVS, the large multiuser, multiaccess operating
system for IBM mainframes. .

The specification and design of an operating system is a highly creative
task. No mere textbook can solve that problem. There are, however,
general principles that h~lVe been suggested. Software engineering is the

. general field for these principles; certain ideas from this field are especially
applicable to operating systems.

3. 7.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism.
Mechanisms determine how to do something. In contrast, policies decide
what will be done. For example, a mechanism for ensuring CPU protection
is the timer construct (see Section 2.5). The decision of for how long the
timer is set for a particular user, on the other hand, is a policy decision.

The separation of policy and mechanism is important for flexibility.
Policies are likely to change from place to place or time to time. In the
worst case, each change in policy would require a change in the
underlying mechanism. A general mechanism would be more desirable. A
change in policy would then require redefinition of only certain parameters
of the system. For instance, if, in one computer system, a policy decision
is made that I/O-intensive programs should have priority over CPU-intensive
ones, then the opposite policy could be instituted easily on some other
computer system if the mechanism were properly separated and were
policy independent.

Microkernel:-based operating systems take the separation of mechanism
and policy to extreme, by implementing a basic set of primitive building
blocks. These blocks are almost policy-free, allowing more advanced
t'Il&hanisms and policies to be added via user-created kernel modules, or
user programs themselves. At the other extreme is a system such as the
Apple Macintosh operating system, in which both mechanism and policy
are encoded in the system to enforce a global look and feel to the system.
All applications have similar interfaces, because the interface itself is built
into the kernel.

Policy decisions are important for all resource allocation and scheduling
problems. Whenever it is necessary to decide whether or not to allocate a
resource, a policy decision must be made. Whenever the question is
"how" rather than "what", it is a mechanism that must be determined.

3.7.3 Implementation

Once an operating system is designed, it must be implemented.
Traditionally, operating systems have been written in assembly language.
However, that is generally no longer true. Operating systems can now be
written in higher-level languages.

88 • Chapter 3: Operating-System StrUctures

The first system that was not written in assembly language was
probably the Master Control Program (MCP) for Burroughs computers. MCP
was written in a variant of ALGOL. MULTICS, developed at MIT, was Written
mainly in PL/1. The Primos operating system for Prime computers is written
in a dialect of FORTRAN. The UNIX operating system, OS/2, and Windows/NT
are mainly written in C. Only some 900 lines of code of the original UNIX
were in assembly language, most of which constituted the scheduler and
device drivers.

The advantages of using a higher-level language, or at least a systems
implementation language, for implementing operating systems are the
saine as those accrued when the language is used for application.
prqgrams: The code can be written faster, is more compact, and is easier to
understand and debug. The major claimed disadvantages are reduced
speed and increased storage requirements. Although no compiler can
produce consistently more efficient code than can an expert assembly
language programmer, a compiler often can produce code at least as good
as that written by the average assembly-language programmer. In addition,
replacing the compiler with a better compiler will uniformly improve the
generated code for the entire operating system by simple recompilation.
Finally, an operating system is far easier to port- to move to some other
hardware- if it is written in a high-level language. For example, MS-I?OS
was written in Intel 8088 assembly language. Consequently, it is available
on only the Intel family of CPUs. The UNIX operating system, which is
written mostly in c, on the other hand, is available on a number of
different CPUs, including Intel 80X86, Motorola 680XO, SPARC, and Mips
RXOOO.

As with other systems, major performance improvements are more
likely to be the result of better data structures and algorithms than of
cleaner coding. In addition, although operating systems are large systems,
only a small amount of the code is critical to high performance; the
memory manager and the CPU scheduler are probably the most critical
routines. After the system is written and is working correctly, bottleneck
routines can be identified, and can be replaced with assembly-language
equivalents.

To. identify bottlenecks, we must be able to monitor the system
performance. Code must be added to compute and display measures of
system behavior. In a number of systems, the operating system does this
task by producing trace listings of system behavior. All interesting events
are logged with their time and important parameters, and are written to a
file. Later, an analysis program can process the log file to determine
system performance and to identify bottlenecks and inefficiencies. These
same traces could also be run as input for a simulation of a suggested
improved system. Traces also can be useful in finding errors :ln operating
system behavior.

3.8 System Generation • 89

An alternative possibility is to compute and display performance
measures in real time. This approach may allow the system operators to
become more familiar with system behavior and to modify system
operation in real time.

3.8 • System Generation

It is possible to design, code, and implement an operating system
specifically for one machine at one site. More commonly, however,
operating systems are designed to run on any of a class of machines at a
variety of sites with a variety of peripheral configurations. The system
must then be configured or generated for each specific computer site~ This
process is known as system generation (SYSGEN).

·The operating system is normally distributed on tape or disk. To
generate a system, we use a special program. The SYSGEN program reads
from a file or asks the operator for information concerning the specific
configuration of the hardware system:

• What CPU is to be used? What options (extended instruction sets,
floating-point arithmetic, and so on) are installed? For multiple CPU
systems, each CPU must be described.

• How much memory is available? Some systems will determine this
value themselves by referencing memory location after memory
location until an "illegal address" fault is generated. This procedure
defines the final legal address and hence the amount of available
memory.

• What devices are available? The system will need to know how to
address each device (the device number), the device interrupt number,
the device's type and model, and any special device characteristics.

• What operating-system options are desired, or what parameter values
are to be used? These options or values might include how many
buffers of which sizes should be used, what CPU-scheduling algorithm
is desired, what the maximum number of processes to be supported is,
and so on.

Once this information is defined, it can be used in several ways. At.
one extreme, it can be used to modify a copy of the source code of the
operating system. The · operating system would then be completely
compiled. Data declarations, initializations, and , constants, along with
conditional compilation, would produce an output object version of the
operating system that is tailored to the system described.

90 • Chapter 3: Operating-System Structures

At a slightly less tailored level, the system description could cause the
creation of tables and the selection of modules from a precompiled library.
These modules would be linked together to form the generated operating
system .. Selection would allow the library to contain the device drivers for
all supported 110 devices, but only those actually needed would be linked

. into the operating system. Because the system would not be recompiled,
system generation would be faster, but might result in a system with more
generality than was actually needed.

At the other extreme, it would be possible to construct a system that
was completely table driven. All the code would always be a part of the
system, and selection would occur at execution time, rather than at
compile or link time. System generation involves simply creating the
app!opriate tables to describe the system. •

The major differences among these approaches are the size and
generality of the generated system and the ease of modification as the
hardware configuration changes. Consider the cost of modifying the
system to support a newly acquired graphics terminal or another disk
drive. Balanced against that cost, of course, is the frequency (or
infrequency) of such changes.

After an operating system is generated, it must be made available for
use by the hardware. But how does the hardware know where the kernel
is, or how to load it? The procedure of starting a computer by loading the
kernel is known as booting the system. On most systems, there is a small
piece of code, stored in ROM, known as the bootstrap program or bootstrap
loader. This code is able to locate the kernel, load it into memory, and start
its execution. Some systems, like IBM PCs running MS-DOS, turn this into a
two-step process by having a very simple bootstrap loader load a more
complex boot program, which in turn loads the kernel. Booting a system
is further discussed in Section 12.3.2 and Chapter 19.

3.9 • Summary

Operating systems provide a number of services. At the lowest level,
system calls allow a running program to make requests from the operating
system directly. At a higher level, the command interpreter provides a
mechanism for a user to issue a request without writing a program.
Commands may come from cards (in a batch system) or directly from a
terminal (in an interactive or time-shared system). Systems programs
provide another mechanism for satisfying user requests.

The types of requests vary according to the level of the request. The
system-call level must provide the basic functions, such as process control
and file and device manipulation. Higher-level requests, satisfied by the
command interpreter or systems programs, are translated into a sequence
of system calls. System services can be classified into several categories:

Exercises • 91

program control, status requests, and 1/0 requests. Program errors can be
considered implicit requests for service.

Once the system services are defined, the structure of the operating
system can be developed. Various tables are needed to record the
information that defines the state of the computer system and the status of
the system's jobs.

The design of a new operating system is a major task. It is important
that the goals of the system be well defined before the design begins. The
type of system desired is the foundation for choices among various
algorithms and strategies that will be necessary.

Since an operating system is large, modularity is important. The design
of a system as a sequence of layers is considered an important design
technique. The virtual-machine concept takes the layered approach to heart
and treats the kernel of the operating system and the hardware as though
they were all hardware. Even other operating systems may be loaded on
top of this virtual machine.

Throughout the entire operating-system design cycle, we must be
careful to separate policy decisions from implementation details. This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems
implementation language or in a higher-level language. This feature
improves their implementation, maintenance, and portability. To create an
operating system for a particular machine configuration, we must perform
system generation.

• Exercises

3.1 What are the five major activities of an operating system in regard to
process management?

3.2 What are the three major activities of an operating system in regard
to memory management?

3.3 What are the three major activities of an operating system in regard
to secondary-storage management?

3.4 What are the five major activities of an operating system in regard to
file management?

3.5 What is the purpose of the command interpreter? Why is it usually·
separate from the kernel?

3.6 List five services provided by an operating system. Explain how each
provides convenience to the users. Explain also in which cases it
would be impossible for user-level programs to provide these
services.

92 • Chapter 3: Operating-System Structures

3.7 What is the purpose of system calls?

3.8 What is the purpose of system programs?

3.9 What is the main advantage of the layered approach to system
design?

3.10 What is the main advantage for an operating-system designer of
using a virtual-machine architecture? What is the main advantage for
a user?

3.11 Why is the separation of mechanism and policy a desirable property?

3.12 Consider the experimental Synthesis operating system, which has an
assembler incorporated within the kernel. To optimize system-call
performance, the kernel assembles routines within ·kernel space to
minimize the path the system call must take through the kernel. This
approach is the antithesis of the layered approach, in which the path
through the kernel is extended so that building the operating system
is made easier. Discuss the pros and cons of this approach to kernel
design and to system-performance optimization.

Bibliographic Notes

Command languages can be seen as special-purpose programming
languages. Brunt and Tuffs [1976] argued that a command language should
provide a rich set of functions; Frank [1976] argued for a more limited,
simpler command language. An excellent case study is the UNIX shell, as
described by Bourne [1978].

Dijkstra [1968] advocated the layered approach to operating-system
design. The THE system was described in [Dijkstra 1968]; the Venus system
was described in [Liskov 1972].

Brinch Hansen [1970] was an early proponent of the construction of an
operating system as a kernel (or nucleus) on which can be built more
complete systems. A computer architecture for supporting level-structured
operating systems was described by Bernstein and Siegel [1975].

The first operating system to provide a virtual machine was the CP/67
on an ffiM 360/67 and is described by Meyer and Seawright [1970]. CP/67

provided each user with a virtual 360 Model 65, including I/O devices. The
commercially available ffiM VM/370 operating system was derived from CP/67
and is described by Seawright and MacKinnon [1979], Holley et al. [1979],
and Creasy [1981]. Hallet al. [1980] promoted the use of virtual machines
for increasing operating-system portability. Jones [1978] suggested the use
of virtual machines to· enforce the isolation of processes for protection
purposes. General discussions concerning virtual machines have been

Bibliographic Notes • 93

presented by Hendricks and Hartmann [1979], MacKinnon [1979], and
Schultz [1988].

MS-DOS, Version 3.1, is described in [Microsoft 1986]. Windows/NT is
described by Custer [1993]. The Apple Macintosh operating system is
described in [Apple 1987]. Berkeley UNIX is described in [CSRG 1986]. The
standard AT&T UNIX system v is described in [AT&T 1986]. A good
description of OS/2 is given in [Iacobucci 1988]. Mach is introduced in
[Accetta et al. 1986], and AIX is presented in [Loucks and Sauer 1987]. The
experimental Synthesis operating system is discussed in [Massalin and Pu
1989]. .

~· -----' ------~---- -------------

PART TWO

PROCESS MANAGEMENT

A process can be thought of as a program in execution. A process will need
certain resources - such as CPU time, memory, files, and I/O devices- to
accomplish its task. These resources are allocated to the process either
when it is created, or while it is executing.

A process is the unit of work in most systems. Such a system consists
of a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes can
potentially execute concurrently.

The operating system is responsible for the following activities in
connection with process management: the creation and deletion of both
user and system processes; the scheduling of processes; and the provision
of mechanisms for synchronization, communication, and deadlock
handling for processes.

CHAPTER 4

PROCESSES

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system, and had access to
all of the system's resources. Current-day computer systems allow
multiple programs to be loaded into memory and to be executed
concurrently. This evolution required firmer control and more
comp~rtmentalization of the various programs. These needs resulted in
the notion of a process, which is a program in execution. A process is the
unit of work in a modern time-sharing system.

The more complex the operating system, the more it is expected to do
on behalf of its users. Although its main concern is the execution of user
programs, it also needs to take care of various system tasks that are better
left outside the kernel itself. A system. therefore consists of a collection of
processes: Operating-system processes executing system code; and user
processes ex~cuting user code. All these processes can potentially execute
concurrently, with the CPU (or CPUs) multiplexed among them. By
switching the CPU between processes, the operating system can make the
computer more productive.

4.1 • Process Concept

One hindrance to the· discussion of operating systems is the question of
what to call all the CPU activities. A batch system executes jobs, whereas a
time-shared system has user programs, or tasks. Even on a single-user
system, such as MS-DOS and Macintosh OS, a user may be able to run
several programs at one time: one interactive and several batch programs.

97

98 Chapter 4: Processes

Even if the user can execute only one program at a time, the
system may need to support its own internal programmed
as spooling. In many respects, all of these activities are similar, so we

of them "YI"/1'""""
The terms job and process are used almost interchangeably in

Although we personally prefer the term process, much of """~"'~'".,.."'""a-"'
theory and terminology was developed during a time
activity of operating systems was job processing. It would be
avoid the use of commonly accepted terms that include the word
as job scheduling) simply because the term process has superseded

4.1.1 The Process

Informally, a process is a program in execution. The execution of a
must progress in a sequential fashion. That is, at any time, at
instruction is executed on behalf of the process.

A process is more than the program code (sometimes known as
section). It also includes the current activity, as represented by the
the program counter and the contents of the processor's
generally also includes the process stack, containing temporary
as subroutine parametersf return addresses, and temporary
a data section containing global variables.

We emphasize that a program by itself is not a process; a
passive entity, such as the contents of a file stored on
process is an active entity, with a program counter specifying
instruction to execute and a set of associated resources.

Although two processes may be associated with the same
they are nevertheless considered two separate execution
instance, several users may be running copies of the mail program, or
same user may invoke many copies of the editor program. Each

1/0 or event completion

Figure 4.1 Diagram of process state.

4.1 Process Concept • 99

a separate process, and, although the text sections are equivalent, the data
sections will vary. It is also common to have a process that spawns many
processes as it runs. This issue will be further discussed in Section 4.4.

4.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of
the following states:

• New: The process is being created.

• Running: Instructions are being executed.

• Waiting: The process is waiting for some event to occur (such as an 110
completion or reception of a signal).

• Ready: The process is waiting to be assigned to a processor.

• Terminated: The process has finished execution.

These names are arbitrary, and vary between operating systems. The
states that they represent are found on all systems, however. Certain
operating systems also distinguish among more finely delineating process
states. It is important to realize that only one process can be running on
any processor at any instant. Many processes may be ready· and waiting,
however. The state diagram corresponding to these states is presented in
Figure 4.1.

4.1.3 Process Control Block
Each process is represented in the operating system by a process control
block (PCB)- also called a task control block. A PCB is shown in Figure 4.2.
It contains many pieces of information associated with a specific process,
including these:

• Process state: The state may be new, ready, running, waiting, halted,
and so on.

• Program counter: The counter indicates the address of the next
instruction to be executed for this process.

• CPU registers: The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information
must be saved when an interrupt occurs, to allow the process to be
continued correctly afterward (Figure 4.3).

100 II Chapter 4: Processes

Figure 4.2 Process control block.

• CPU scheduling information: This information includes a
priority, pointers to scheduling queues, and any other
parameters. (Chapter 5 describes process scheduling.)

• Memory-management information: This information may
value of the base and limit registers, the page tables, or the QO<""'""''"""'
tables depending on the memory system used by the operating '""""r._.,,n

(Chapter 8).

• Accounting information: This information includes the amount
and real time used, time limits, account numbers, job or
numbers, and so on.

• 110 status information: The information includes the list of IJO
(such as tape drives) allocated to this process, a list of open
so on.

The PCB simply serves as the repository for any information that
from process to process.

4.2 • Process Scheduling

The objective of multiprogramming is to have some process
times, to maximize CPU utilization. The objective of time
switch the CPU among processes so frequently that users can
each program while it is running. For a uniprocessor system,
never be more than one running process. If there are more processes,
rest will have to wait until the CPU is free and can be rescheduled.

executing

executing

. .

. . .
• .
•

.
•

. .

4.2 Process

interrupt or system call

idle interrupt or system call

Figure 4.3 Diagram showing CPU switch from process

1 Scheduling Queues
As processes enter the system, they are put into a job

• .
•

consists of all processes in the system. The processes are
main memory and are ready and waiting to execute are
called the ready queue. This queue generally stored as a
ready-queue header will contain pointers to the first
list. Each PCB has a pointer field that points to the
ready queue.

There are also other queues in the system. When a
it executes for awhile and eventually quits, is

for the occurrence of a particular event, such as the
request. In the case of an I/O request, such a request may
tape drive, or to a shared device, such as a disk.
processes in the system, the disk may be busy with the I/O
other process. The process therefore may have to wait the
of processes waiting for a particular I/O device is called a
device has its own device queue (Figure 4.4).

101

idle

Chapter 4: Processes

ready

queue

mag
tape

queue header

unit 0 ,.__...--; _ __,

mag
tape

unit 1

disk

unit 0

terminal

unit 0

Figure 4.4 The ready queue and various I/O device

A common representation for a discussion of process
queueing diagram, such as that in Figure 4.5. Each
represents a queue. Two types of queues are present: the r£~"'r"'
a set of device queues. The circles represent the resources
queues, and the arrows indicate the flow of processes in the

A new process is initially put in the ready queue. It
queue until it selected for execution (or dispatched) and
Once the ·process is allocated the CPU and is executing,
events could occur:

• The process could issue an I/O request, and then be placed an I/O

queue.

• The process could create a new subprocess and wait
termination.

• !he process could be removed forcibly from the CPU, as a an
mterrupt, and be put back in the ready queue.

Figure 4.5 Queueing-diagram representation of process

In the first two cases, the process eventually switches
state to the ready state, and is then put back in the
process continues this cycle until it terminates, at which time
from all queues and has its PCB and resources deallocated.

4.2.2 Schedulers
A process migrates between the various scheduling queues
lifetime. The operating system must select processes from
some fashion. The selection process is carried out by
scheduler.

In a batch system, there are often more processes
be executed immediately. These processes are spooled to a
device (typically a disk), where they are kept for later
term scheduler (or job scheduler) selects processes from this

103

them into memory for execution. The short-term scheduler (or CPU scn:eaz:ue1
selects from among the processes that are ready to
the CPU to one of them.

The primary distinction between these two schedulers
of their execution. The short-term scheduler must select a new nrloc~~ss
the CPU quite frequently. A process may execute
milliseconds before waiting for an I/O request. Often,
scheduler executes at least once every 100 milliseconds.
short duration of time between executions, the short-term

104 • Chapter 4: Processes

be very fast. If it takes 10 milliseconds to decide to execute a process for
100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler, on the other hand, executes much less
frequently. There may be minutes between the creation of new processes
in the system. The long-term scheduler controls the degree of
multiprogramming (the _number of processes in memory). If the degree of
multiprogramming is stable, then the average rate of process creation must
be equal to the average departure rate of processes leaving the system.
Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be !?elected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be describ~d as either 110 bound or CPU bound.
An IfO..,bound process is one that spends more of its time doing 110 than it
spends doing computations. A CPU-bound process, on the other hand, is
one that generates ·I/o requests infrequently, using more of its time doing
computation than an I/O-bound process uses. It is important that the .long
term. scheduler select a good. process mix of I/O-bound and CPU-bound
processes~ If all pro~esses are IIQ bound, the ready queue will almost
always be empty, and the short-term scheduler will have little to do. If all
processes are CPU bound, the I/0 waiting queue will almost always be
empty, devices will go unused, and again the system will be unbalanceQ..
The system with the best performance will have a combination of CPU
bound and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems often have no long-term scheduler, but
simply put every new process in memory for the short-term scheduler. The
stability of these systems ·depends ejther on a physical limitation (such as
the number of available terminals) or on the self-adjusting nature of
human users. If ·the performance declines to unacceptable levels, some
users will simply quit, and will do something else.

Some operating systems, such as time-sharing systems, may introduce
an adqitional, intermediate level of scheduling. This medium-term scheduler

·is diagrammed in Figure 4.6. The· key idea behind a medium-term
scheduler is that sometimes it can be advantageous to remove processes
from memory (and from active contention for the CPU), and thus to reduce

. the degree of multiprogramming. At some later time, the process can be
reintroduced into memory e~.nd its execution can be contiimed where it left
off. This scheme is called swapping. The process is swapped out and
swapped in later by the mediun:t-term scheduler. Swapping may be
necessary to improve the process mix, or because a change in memory
requirements has ()vercommitted available memory, requiring memory to
be freed up. Swapping is discussed in more detail in Chapter 8.

swap in swap out

Figure 4.6 Addition of medium-term scheduling to the

4.2.3 Context Switch

Switching the CPU to another process requires saving the
process and loading the saved state for the new process.
known as a context switch. Context-switch time is pure
the system does no useful work while switching. Its speed
machine to machine, depending on the memory speed,
registers which must be copied, and the existence of special
(such as a single instruction to load or store all registers).
speed ranges from 1 to 1000 microseconds.

Context-switch times are highly dependent on hardware
instance, some processors (such as the DECSYSTEM-20) provide
of registers. A context switch simply includes changing the
current register set. Of course, if there are more active
there are register sets, the system resorts to copying register
from memory, as before. Also, the more complex the nT\.o1"<>.t-•r~n-

the more work must be done during a context switch. we
Chapter 8, advanced memory-management techniques may
data to be switched with each context. For instance, the address ,.,.J,:n .. c:

the current process must be preserved as the space of the
prepared for use. How the address space preserved, and
work needed to do it, depend on the memory-management rru:~t-nnrt
operating system. we shall see in Section 4.5, context
become such a performance bottleneck that new structures
being used to avoid it whenever possible.

4.3 • Operation on Processes

The processes in the system can execute concurrently, and must
and deleted dynamically. Thus, the operating system must
mechanism for process creation and termination.

105

106 Chapter 4: Processes

3.1. Process Creation
process may create several new processes, via a create-process

call, during the course of execution. The creating process
process, whereas the new processes are called the ·children of that or,oct:>.ss
Each of these new processes may in turn create other processes,
tree of processes (Figure 4.7).

In general, a process will need certain resources (CPU time,
files, I/O devices) to accomplish its task. When a process
subprocess, the subprocess may be able to obtain its resources
from the operating system, or it may be constrained to a
resources of the parent process. The parent may have to
resources among its children, or it may be able to share some resources
(such as memory or files) among several of its children. Restricting a
process to a subset of the parent's resources prevents any
overloading the system by creating too many subprocesses.

In addition to the various physical and logical resources that
obtains when it is created, initialization data (input) may be v«<>ocu

by the parent process to the child process. For example,
process whose function is to display the status of a file, say
screen of a terminal. When it is created, it will get, as an input
parent process, the name of the file F1, and it will execute
datum to obtain the desired information. It may also get the name

Figure 4.7 A tree of processes on a typical UNIX <HT<OT<.>lrn

4.3 Operation on Processes • 107

output device.' Some operating systems pass resources to child processes.
On such a system, the new process may get two open files, Fl and the
terminal device, and may just need to transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms
of execution:

• The parent continues to execute concurrently with its children.

• The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new
process:

• The child process is a duplicate of the parent process.

• The child process has a program loaded into it.

To illustrate these different implementations, let us consider the UNIX
operating system. In UNIX, each process is identified by its process identifier,
which is a unique integer. A new process is created by the ~ork system
call. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily
with its child process. Both processes (the parent and the child) continue
execution at the instruction after the fork with one difference: The return
code for the fork is zero for the new (child) process, whereas the
(nonzero) process identifier of the child is returned to the parent.

Typically, the execve system call is used after a fork by one of the two
processes to replace the process' memory space with a new program: The
execve system call loads a binary file into memory (destroying the memory
image of the program containing the execve system call) and starts its
execution. In this manner, the two processes are able to communicate,
and then to go their separate ways. The parent can then create more
children, or, if it has nothing else to do while the child runs, it can issue a
wait system call to move itself off the ready queue until the termination of
the child.

The DEC VMS operating system, in contrast, creates a new process,
loads a specified program into that process, and starts it running. The
Microsoft Windows/NT operating system supports both models: the
parent's address space may be duplicated, or the parent may specify the
name of a program for the operating system to load into the address space
of the new process.

4.3.2 Process Termination
A process terminates when it finishes executing its last statement and asks
the operating system to delete it by using the exit system call. At that
point, the process may return data (output) to its parent process (via the

108 • Chapter 4: Processes

fork system call). All of the resources of the process, including physical
and virtual memory, open files, and 110 buffers, are deallocated by the
operating system.

There are additional circumstances when termination occurs. A
process can cause the termination of another process via an appropriate
system call (for example, abort). Usually, such a system call can be
invoked by only the parent of the process that is to be terminated.
Otherwise, users could arbitrarily kill each other's jobs. Note that a parent
needs to know the identities of its children. Thus, when one process
creates a new process, the identity of the newly created process is passed
to the parent.

A parent may terminate the execution of one of its children for a
variety of reasons, such as:

• The child has exceeded its usage of some of the resources it has been
allocated.

• The task assigned to the child is no longer required.

• The parent is exiting, and the operating system does not allow a child
to continue if its parent terminates.

To determine the first case, the parent must have a mechanism _to inspect
the state of its children.

Many systems, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This
phenomenon is referred to as cascading termination and is normally initiated
by the operating system.

To illustrate process execution and termination, let us consider again
the UNIX system. In UNIX, a process may terminate by using the exit system
call, and its parent process may wait for that event by using the wait
system call. The wait system call returns the process identifier of a
terminated child, so that the parent can tell which of the possibly many
children has terminated. If the parent terminates, however, all the children
are terminated by the operating system. Without a parent, UNIX does not

· know to 'whom to report the activities of a child.

4.4 • Cooperating Processes

The concurrent processes executing in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the
system. Clearly, any process that does not share any data (temporary or
persistent) with any other process is independent. On the other hand, a

4.4 Cooperating Processes • 109

process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares· data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows
process cooperation:

• Information sharing: Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to these types of resources.

• Computation speedup: If we want a particular task to run faster, we
must break it into subtasks, each of which will be executing in parallel
with the others. Notice that such a speedup can be achieved only if the
computer has multiple processing elements (such as CPUs or 110

channels).

• Modularity: We may want to construct the system in a modular
fashion, dividing the system functions into separate processes, as was
discussed in Chapter 3.

• Convenience: Even an individual user may have many tasks to work
on· at one time. For instance, a user may be editing, printing, and
compiling in parallel.

Concurrent execution that requires cooperation among the processes
requires mechanisms to allow processes to communicate with each other
(Section 4.6), and to synchronize their actions (Chapter 6).

To illustrate the concept of cooperating processes, let us consider the
producer-consumer problem, which is a common paradigm for
cooperating processes. A producer process produces information that is
consumed by a consumer process. For example, a print program produces
characters that are consumed by the printer driver. A compiler may
produce assembly code, which is consumed by an assembler. The
assembler, in turn, may produce object modules, which are consumed by
the loader.

To allow producer and consumer processes to run concurrently, we
must have available a buffer of items that can be filled by the producer and
emptied by the consumer. A producer can produce one item while the
consumer is consuming another item. The producer and consumer must be
synchronized, so that th~ consumer does not try to consume an item that.
has not yet been produced. In this situation, the consumer must wait until
an item is produced.

The unbounded-buffer producer-consumer problem places no practical
limit on the size of the buffer. The consumer may have to wait for new
items, but the producer can always produce new items. The bounded-buffer
producer-consumer problem assumes that there is a fixed buffer size. In

110 • Chapter 4: Processes

this case, the consumer must wait if the buffer is empty and the producer
must wait if the buffer is full.

The buffer may be either provided by the operating system through
the use of IPC (Section 4.6), or explicitly coded by the application
programmer with the use of shared memory. Let us illustrate a shared
.memory solution to the bounded-buffer problem. The producer and
consumer processes share the following variables:

var n;
type item = ... ,
var buffer: array [O .. n-1] of item;
in, out: o .. n-1;

with in, out initialized to the value 0. The shared buffer is implemented as
a circular array with two logical pointers: in and out. The variable in points
to the next free position in the buffer; out points to the first full position in
the buffer. The buffer is empty when in = out; the buffer is full when in +
1 mod n =out.

The code for the producer and consumer processes follows. The no-op
is a do-nothing instruction. Thus, while condition do no-op simply tests the
condition repetitively until it becomes false.

The producer process has a local variable nextp, in which the new item
to be produced is stored:

repeat

produce an item in nextp

while in+1 mod n = out do no-op;
buffer[in] := nextp;
in:= in+1 mod n;

until false;

The consumer process has a local variable nextc, in which the item to be
consumed is stored:

repeat
while in = out do no-op;
nextc := buffer[out];
out:= out+1 mod n;

consume the item in nextc

until false;

4.5 Threads • 111

This scheme allows at most n - 1 items in the buffer at the same time. We
leave it as an exercise for you to provide a solution where n items can be
in the buffer at the same time.

In Chapter 6, we shall discuss in great detail how synchronization
among cooperating processes can be implemented effectively in a shared
memory environment.

4.5 • Threads

Recall that a process .is defined by the resources it uses and by the location
at which it is executing. There are many instances, however, in which it
would be useful for resources to be shared and accessed concurrently. This
situation is similar to the case where a fork system call is invoked with a
new program counter, or thread of control, executing within the same
address space. This concept is so useful that several new operating
systems are providing a mechanism to support it through a thread facility.

4.5.1 Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU
utilization, and consists of a program counter, a register set, and a stack
space. It shares with peer threads its code section, data section,_ and
operating-system resources such as open files and signals, collectively
known as a task. A traditional or heavyweight process is equal to a task with
one thread. A task does nothing if no threads are in it, and a thread ·must
be in exactly one task. The extensive sharing makes CPU switching among
peer threads and the creation of threads inexpensive, compared with
context switches among heavyweight processes. Although a thread context
switch still requires a register set switch, no memory-management-related
work need be done.

Also, some systems implement user-level threads in user-level libraries,
rather than via system calls, so thread switching does not need to call the
operating system, and to cause an interrupt to the kernel. Switching
between user-level threads cah be done independently of the operating
system and, therefore, very quickly. Thus, blocking a thread and
switching to another thread is a reasonable solution to the problem_ of how
a server can handle many requests efficiently. User-level threads do have
disadvantages, however. For instance, if the kernel is single-threaded,_
then any user-level thread executing a system call will cause the entire task
to wait until the system. call returlls.

We can grasp the functionality of threads by comparing multiple
thread control with multiple-process control. With multiple processes,
each process operates independently of the others; each process has its

112 • Chapter 4: Processes

own program counter, stack pointer, and address space. This type of
organization is useful when the jobs performed by the processes are
unrelated. For instance, in single-CPU operating systems, a file server may
have to block while waiting for disk access. System performance would
improve if another server process could operate while the first one was
blocked, yet because they would have to occupy the same address space, it

·is not possible to create a second, independent server process.
Threads operate, in many respects, in the same manner as processes.

Threads can be in one of several states: ready, blocked, running, or
terminated. Like processes, threads share the CPU, and only one thread at
a time is active (running). A thread within a process executes sequentially,
and each thread has its own stack and program counter. Threads can
create child threads, and can block waiting for system calls to complete; if
one thread is blocked, another thread can run .. However, unlike
processes, threads are not independent of one andther. Because all
threads can access every address in the task, a thread can ·.read or write
over any other thread's stacks. This structure does not provide protection
between threads. Such protection, however, should not be necessary .
. Whereas processes may originate from different users, and may be hostile
to one another, only a single user can own an individual task with
multiple threads. The threads, in this case, probably would be designed to
assist one another, and therefore would not require mutual protection.
Figure 4.8 depicts a task with multiple threads.

Let us return to our example of the blocked file-server process in the
single-process model. In this scenario, no other server process can execute
until the first process is unblocked. By contrast, in the case ~f a task that
contains multiple threads, while one server thread is blocked and waiting,
a second thread in the same task could run. In this application, the
cooperation of multiple threads that are part of the· same job confers the
advantages of higher throughput and improved performance. Other
applications, such as the producer-consumer problem, require sharing a
common buffer and so also benefit froin this feature of thread· utilization:
The producer and consumer could be threads in a task. Little overhead is
needed to switch between them, and, on a multiprocessor system, they
could execute in parallel on two processors for maximum efficiency.

Threqds provide a mechanism that allows sequential processes to make
blocking system calls while also achieving parallelism. To illustrate the
advantage of this mechanism, we shall consider writing a file server in a
system where threads are not available. We have already seen that, in a
single-threaded file server, the server process must carry a request to
completion before acquiring riew work. If the request involves waiting for
disk access, the CPU is idle during the wait. Hence, the number of
requests per second that can be processed is much less than with parallel
execution. Without the option of multiple threads, a system designer
seeking to minimize the performance slowdown of ~ingle-threaded

4.5

task

Figure 4.8 Multiple threads within a

processes would need to mimic the parallel structure of Ullrea,as
use of heavyweight process. She could do so, but at the cost
nonsequential program structure.

The abstraction presented by a group of lightweight
multiple threads of control associated with several resources.
are many alternatives regarding threads; we mention a few
Threads can be supported by the kernel (as in the Mach
systems). In this case, a set of system calls similar to those
provided. Alternatively, they can be supported above the Ke:rne•I,
of library calls at the user level (as is done in Project Andrew

Why should an operating system support one
User-level threads do not involve the kernel, and
switch among than kernel-supported threads. However,
operating system cause the entire process to wait,
schedules only processes (having no knowledge of threads),
which is waiting gets no CPU time. Scheduling can also
Consider two processes, one with 1 thread (process a) and
100 threads (process b). Each process generally receives
of time slices, so the thread in process a runs 100 times as
in process b. On systems with kernel-supported threads,

threads is more time-consuming because the kernel (via an

114 • Chapter 4: Processes

must do the switch. Each . thread may be scheduled independently,
however, so process b could receive 100 times the CPU time that process a
receives. Additionally, process b could have 100 system calls in operation
concurrently, accomplishing far more than the same process would on a
system with only user-level thread support.

Because of the compromises involved in each of these two approaches
to threading, some systems use a hybrid approach in which both user-level
and kernel-supported threads are implemented. Solaris 2 is such a system
and is described below.

Threads are gaining in popularity because they have some of the
characteristics of heavyweight processes but can execute more efficiently.
There are many applications where this combination is useful. _fQ.L __
!!l!it£t!!.;J~, __ the.IJt-11?L ls_ern~Lis. __ ~~ually. single. tasking:_s>~Y--. .Q~ _ _!~sk ~ai!_~
~x~~U.~~K co~e _ !~_ !~~ __):<e!~=~~_:- ·a:·· time: _ ·:~ah~_--probl~_~s! __ -~~5!t ___ ~~
synchro.!}J;?:~fu>!!_gf__g~t~-~-~<:~~s (locking of· aata structures whil~_th~Y-~!~'
being modified) are avoided,---because--only··one·· process]~jill(iw~.-.t.Q_Qe'
aoirigtfie --moamcano~Macn;-ofi ____ H\e --other-- -hi:ina; -is multithreaded,
allowing-the-keirnel to service many requests simultaneously. In this case,
the threads themselves are synchronous: another thread in the same group

· may run only if the currently executing thread relinquishes control. Of
course, the current thread would relinquish control only when it was not
modifying shared data. On systems on which threads are asynchronous,
some explicit locking mechanism must be used, just as in systems where
multiple processes share data. Process synchronization is discussed in
Chapter 6.

4.5.2 Example: Solaris 2
An examination of the thread system in a current operating system should
help us to clarify many issues. For this purpose, we choose Solaris 2; a
version of UNIX, which until 1992 supported only traditional heavyweight
processes. It has been transformed into a modern operating system with
support for threads at the: kernel and user levels, symmetric
multiprocessing, and real-time scheduling.

Solaris 2 supports user-level threads, as described in Section 4.5.1.
They ·are supported by a library for their creation and scheduling, and the
kernel knows nothing of these threads. Solaris 2 expects potentially
thousands of user-level threads to be vying for CPU cycles.

Solaris 2 defines an intermediate level of threads as well. Between
user-level threads and kernel-level threads- are lightweight processes. Each
task (still called a "process" in Sunos nomenclature) contains at least one
LWP. These LWPs are manipulated by the thread library. The user-level
threads are multiplexed on the LWPs of the process, and only user~level

115

threads currently connected to LWPs accomplish work. The are ""' .. '"'"' ..
blocked or waiting for an LWP on which they can run.

All operations within the kernel are executed by standard
threads. There is a kernel-level thread for each LWP, and
kernel-level threads which run on the kernel's behalf
associated LWP (for instance, a thread to service disk requests).
thread system is depicted in Figure 4. 9. Kernel-level threads are
objects scheduled within the system (see Chapter 5). Some
threads are multiplexed on the processors in the system, whereas some are
tied to a specific processor. For instance, the kernel thread with
a device driver for a device connected to a specific processor
on that processor. By request, a thread can also be pinned to a nrc1cessc>r
Only that thread runs on the processor, with the processor CU.UJLUL"'

only that thread (see the rightmost thread in Figure 4. 9).
Consider this system in operation. Any one task

user-level threads. These user-level threads may be
switched among kernel-supported lightweight processes
intervention of the kernel. No context switch is needed one
thread to block and another to start running, so user-level
extremely efficient.

These user-level threads are supported by lightweight Pr<)CessE!S
LWP is connected to exactly one kernel-level thread,
level thread is independent of the kerneL There may be
task, but they are needed only when threads need to coJmnlmuc;ue

task 1 task 2 task 3

lightweight

kernel thread

Figure 4.9 Threads in Solaris 2.

116 • Chapter 4: Processes

the kernel. For instance, one LWP is needed for every thread that may
block concurrently in system calls. Consider five different file read
requests that could be occurring simultaneously. Then, five LWPs would be
needed, because they could all be waiting for JJO completion in the kernel.
If a task had only four LWPs, then the fifth request would have to wait for

·one of the LWPs to return from the kernel. Adding a sixth LWP would gain
us nothing if there were only enough work for five.

The kernel threads are scheduled by the kernel's scheduler and execute
on the CPU or CPUs in the system. If a kernel thread blocks (usually
waiting for an JJO operation to complete), the processor is free to run
another kernel thread. If the thread that blocked was running on behalf of
an LWP, the LWP blocks as well. Up the chain, the user-level thread
currently attached to the LWP also blocks. If the task containing that thread
has only one LWP, the whole task blocks until the I/O completes. This
behavior is the same as that of a process under an older version of the.
operating system.

With Solaris 2, a task no longer must block while waiting for 110 to
complete. The task may have multiple LWPs; if one blocks, the others can
continue to execute within the task.

We conclude this example by examining the resource needs of each of
these thread types.

• A kernel thread has only a small data structure and a stack. Switching
between kernel threads does not require changing memory access
information, and therefore is relatively fast.

• An LWP contains a process control block with register data, accounting
information, and memory information. Switching between LWPs
therefore requires quite a bit of work and is relatively slow.

• A user-level thread needs only a stack and a . program counter: no
kernel resources are required. The kernel is not involved in scheduling
these user-level threads; therefore, switching among them is fast.
There may be thousands of these user-level threads, but all the kernel
will ever see is the LWPs in the process that support these user-level
threads.

4.6 • Interprocess Communication

In Section 4.4, we showed how cooperating processes can communicate in
a shared-memory environment. The scheme requires that these processes
share a common buffer pool, and that the code for implementing the buffer
be explicitly written by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means

4.6 Interprocess Communication • 117

for cooperating processes to communicate with each other via an
interprocess-communication (IPC) facility.

IPC provides a mechanism to allow processes to communicate and to
synchronize their actions. Interprocess-communication is best provided by
a message system. Message systems cart be defined in many different
ways. Message-passing systems also have other advantages, as will be
shown in Chapter 16.

Note that the shared-memory and message-system communication
schemes are not mutually exclusive, and could be used simultaneously
within a single operating system or even a single process. ·

4.6.1 Basic Structure
The function of a message system is to allow processes to communicate
with each other without . the need to resort to shared variables. An IPC
facility provides at least the two operations: send(message) and
receive(message).

Messages sent by a process can be of either fixed or variable size. If
only fixed-sized messages can be sent, the physical implementation is
straightforward. This restriction, however, makes the task of programming
more difficult. On the other hand, variable-sized messages require a more
complex physical implementation, but the programming task becomes
simpler.

If processes P and Q want to communicate, they must send messages
to and receive messages from each other; a communication link must exist
between them. This link can be implemented in a variety of ways. We are
concerned here not with the link's physical implementation (such as
shared memory, hardware bus, or network, which are covered in Chapter
15), but rather with the issues of its logical implementation, such as its
logical properties. Some basic implementation questions are these:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of processes?

• What is the capacity of a link? That is, does the link have some buffer
space? If it does, how much?

• What is the size of messages? Can the link accommodate variable-sized .
or only fixed-sized messages?

• Is a link unidirectional or bidirectional? That is, if a link exists between
P and Q, can messages flow in only one direction (such as only from P
to Q) or in both directions?

118 • Chapter 4: Processes

The definition of unidirectional must be stated more carefully, since a
link may be associated with more than two processes. Thus, we say that a
link is unidirectional only if each process connected to the link can either
send or receive, but not both, and each .link has at least one receiver
process connected to it.

In addition, there are several methods for logically implementing a link
and the send/receive operations:

• Direct or indirect communication

• Symmetric or asymmetric communication

• Automatic or explicit buffering

• Send by copy or send by reference

• Fixed-sized or variable-sized messages

For the remainder of this section, we elaborate on these types of message
systems.

4.6.2 Naming
Processes that want to communicate must have a way to refer to each
other. They can use either direct communication or indirect communication, as
we shall discuss in the next two subsections.

4.6.2.1 Direct Communication

In the direct-communication discipline, each process that wants to
communicate must explicitly name the recipient or sender of the
communication. In this scheme, the send and receive primitives are
defined as follows:

send(P, message). Send a message to process P.
receive(Q, message). Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other's
identity to communicate.

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

• The link may be unidirectional, but is usually bidirectional.

4.6 Interprocess Communication • 119

To illustrate, let us present a solution to the producer-consumer
problem. To allow the producer and consumer processes to run
concurrently, we allow the producer to produce one item while the
consumer is consuming another item. When the producer finishes
generating an item, it sends that item to the consumer. ·The consumer gets
that item via the receive operation. If an item has not been produced yet,
the consumer process must wait until an item is produced. The producer
process is defined as

repeat

produce an item in nextp

send(consumer, nextp);
until false;

The consumer process is defined as

repeat
receive(producer, next c);

consume the item in nextc

until false;

This scheme exhibits a symmetry in addressing; that is, both the
sender and the receiver processes have to name each other to
communicate. A variant of this scheme employs asymmetry in addressing.
Only the sender names the recipient; the recipient is not required to name
the sender. In this scheme, the send and receive primitives are defined as
follows:

• send(P, message). Send a message to process P.

• receive(id, message). Receive a message from any process; the variable id
is set to the name of the process with which communication has taken
place.

The disadvantage in both of these schemes (symmetric and.
asymmetric) is the limited modularity of the resulting process definitions.
Changing the name of a process may necessitate examining all other
process definitions. All references to the old name must be found, so that
they can be modified to the new name. This situation is not desirable
from the viewpoint of separate compilation.

120 • Chapter 4: Processes

4.6.2.2 Indirect Communication

With indirect communication, the messages are sent to and received from
mailboxes (also referred to as ports). A mailbox can be viewed abstractly as
an object into which messages can be placed by processes and from which
messages can be removed. Each mailbox has a unique identification. In this
scheme, a process can communicate with some other process via a number
of different mailboxes. Two processes can communicate only if the
processes have a shared mailbox. The send and receive primitives are
defined as follows:

send(A, message). Send a message to mailbox A.
receive(A, message). Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if they have a
shared mailbox.

•. A link may be associated with more than two processes.

• Between each pair of communicating processes, there may be a
number of different links, each link corresponding to one mailbox.

• A link may be either unidirectional or bidirectional.

Now suppose that processes Pl' P2, and P3 all share mailbox A.
Process P 1 sends a message to A, while P 2 and P 3 each ~xecute a receive
from A. Which process will receive the message sent by P 1? This question
can be resolved in a variety of ways:

• Allow a link to be associated with at most two processes.

• Allow at most one process at a time to execute a receive operation.

• Allow the system to select arbitrarily which process will receive the
message (that is, either P2 or P3, but not both, will receive the
me~sage). The system may identify the receiver to the sender.

'

A mailbox ni.ay be owned either by a process or by the system. If the
mailbox is owned by a process (that is, the mailbox is attached to or
defined as part of the process), then we distinguish between the owner
(who can only receive messages through this mailbox) and the user of the
mailbox (who can only send messages to the mailbox). Since each mailbox
has a unique owner, there can be no confusion about who should receive a
message sent to this mailbox. When a process that owns a mailbox
terminates, the mailbox disappears. Any process that subsequently sends a

4.6 Interprocess Communication • 121

message to this mailbox must be notified that the mailbox. no longer exists
(via exception handling, described in Section 4.6.4).

There are various ways to designate the owner and users of a
particular·mailbox. One possibility is to allow a process to declare variables
of type mailbox. The process that declares a mailbox is that mailbox's
owner. Any other process that knows the name of this mailbox can use
this mailbox.

On the other hand, a mailbox that is owned by the operating system
has an existence of its own. It is independent, and is not attach~d to any
particular process. The operating system provides a mechanism that allows
a process:

• To create a new mailbox

• To send ~nd receive messages through the mailbox

• To destroy a mailbox·

The process that cr~ates a new mailbox is that mailbox's owner by default.
Initially, the owner is the only process that can receive messages through
this mailbox. However, the ownership and receive privilege may be passed
to other processes through appropriate system calls. · Of course, this
provision could result in multiple receivers for each mailbox. Processes
may also share a mailbox through the process-creation facility. For
example, if process P created mailbox A, and then created a new process
Q, P and Q may share mailbox A. Since all processes with access rights to
a mailbox may ultimately terminate, after some time a mailbox may no
longer be accessible by any process. In this case, the operating system
should reclaim whatever space was used for the mailbox. This task may
require some form of garbage collection (see Section 10.3.5), in which a
separate operation occurs to search for and deallocate memory that is no
longer in use.

4.6.3 Buffering

A link has some capacity. that determines the number of messages that can
reside in it temporarily. This property can be viewed as a queue of
messages attached to the link. Basically, there are three ways that such a
queue can be implemented:

• Zero capacity: The queue has maximum length 0; thus, the link cannot
have any messages. waiting in it. In this case, the sender must wait
until the recipient receives the message. The two processes must be
synchronized for a ·message transfer to take place. This
synchronization is called a rendezvous.

122 • Chapter 4: Processes

• Bounded capacity: The queue has finite length n; thus, at most n
messages can reside in it. If the queue is not full when a new message
is sent, the latter is placed in the queue (either the message is copied
or a pointer to the message is kept), and the sender can continue
execution without waiting. The link has a finite capacity, however. If
the link is full, the sender must be delayed qntil space is av(lilable in
the queue.

• Unbounded capacity: The queue has potentially infinite length; thus,
any number of messages can wait in it. The sender is never delayed.

The zero-capacity case is sometimes referred to as a message system with
no buffering; the other cases provide automatic buffering.

We note that, in the nonzero-capacity cases, a process does not know
whether a message has arrived at its destination after the send operation is
completed. If this information is crucial for the computation, the sender
must communicate explicitly with the receiver to find out whether the
latter received the message. For example, suppose process P sends a
message to process Q a,nd can continue its execution only after the
message is received. Process P executes the sequence

Process Qexecutes

send(Q ,message);
receive(Q, message);

receive(P, message);
send(P, "acknowledgment");

Such processes are said to communicate asynchronously.
There are special cases that do not fit directly into any of the categories

tha,t we have discussed:

• The process sending a message is never delayed. However, if the
receiver has not received the message before the sending process sends
another message, the first message is lost. The advantage of this
scheme is that large messages 4o not need to be copied more than
once. The main disadvantage is that the programming task becomes
more difficult. Processes need to synchronize explicitly, to ensure both
that messages are not lost and that the sender and receiver do not
manipulate the message buffer simultaneously.

• The process sending a message is delayed until it receives a reply.
This scheme was adopted in the Thoth operating system. In this
system, messages are of fixed size (eight words). A process P that
sends a message is blocked until the receiving process has received the

4.6 Interprocess Communication • 123

message and has sent back an eight-word reply by the reply(P,
message) primitive. The reply message overwrites the original message
buffer. The only difference between the send and reply primitives is
that a send· causes the sending process to be blocked, whereas the
reply allows both the sending process and the receiving process to
continue with their executions immediately.

This synchronous communication method can be expanded easily
into a full-featured remote procedure call (~c) system. An RPC system is
based on the realization that a subroutine or procedure call in .a single
processor system acts exactly like a message system in· which the
sender blocks until it receives a reply. The message is then like a
subroutine call, and the return message contains the value of the
subroutine computed. The next logical step, therefore, is for
concurrent processes to be able to call each other as subroutines using
RPC. In fact, we shall see in Chapter 16 that RPCs can be used between
processes running on separate computers to allow multiple computers
to work together in a mutually beneficial way.

4.6.4 Exception Conditions

A message system is particularly useful in a distributed environment,
where processes may reside at different sites (machines). In such an
environment, the probability that an error will occur during
communication (and processing) is much larger than in a single-machine
environment. In a single-machine environment, messages are usually
implemented in shared memory. If a failure occurs, the entire system fails.
In a distributed environment, however, messages are transferred by
communication lines, and the failure of one site (or link) does not
necessarily result in the failure of the entire system.

When a failure occurs in either a centralized or distributed system,
some error recovery (exception-condition handling) must take place. Let us
discuss briefly some of the exception conditions that a system· must handle
in the context of a message scheme.

4.6.4.1 Process Terminates

Either a sender or a receiver may terminate before a message is processed.
This situation will leave messages that will never be received or processes
waiting for messages that will. never be sent. We consider two cases here:

1. A receiver process P may wait for a message from a process Q that has
terminated. If no action is taken, P will be blocked forever. In this case,
the system may either terminate P or notify P that Q has terminated.

2. Process P may send a message to a process Q that has terminated. In
the automatic-buffering scheme, no harm is done; P simply continues

124 • Chapter 4: Processes

with its execution. If P needs to know that its message has been
processed by Q, it must program explicitly for an acknowledgment. In
the no-buffering case, P will be blocked forever. As in case 1, the
system may either terminate P or notify P that Q has terminated.

4.6.4.2 Lost Messages

A message from process P to process Q may become lost somewhere in the
communications network, due to a hardware or communication-line
failure. There are three basic methods for dealing with this event:

1. The operating system is responsible for detecting this event and for
resending the message.

2. The sending process is responsible for detecting this event and for
retransmitting the message, if it so wants.

3. The operating system is responsible for detecting this event; it then
notifies the sending process that the message has been lost. The
sending process can proceed as it chooses.

It is not always necessary to detect lost messages. In fact, some
network protocols specify that messages are unreliable, whereas some
guarantee reliability (see Chapter 15). The user must specify (that is, either
notify the system, or program this requirement itself) that such a detection
should take place.

How do we detect that a message is lost? The most common detection
method is to use timeouts. When a message is sent out, a reply message,
acknowledging reception· of the message, is always sent back. The
operating system or a process may then specify a time interval during
which it expects the acknowledgment message to arrive. If this time period
elapses before the acknowledgment arrives, the operating system (or
process) may assume that the message is lost, and the message is resent.
It is possible, however, that a message did not get lost, but simply took a
little longer than expected to travel through the network. In this case, we
may have multiple copies of the same message flowing through the
network. A mechanism must exist to distinguish between these various
types of messages. This problem is discussed in more detail in Chapter 16.

4.6.4.3 Scrambled Messages

The message may be delivered to its destination, but be scrambled on the
way (for example, because of noise in the communications channel). This
case is similar to the case of a lost message. Usually, the operating system will
retransmit the original message. Error checking codes (such as checksums,
parity, and CRC) are commonly used to detect this type of error.

4.6 Interprocess Communication • 125

4.6.5 An Example: Mach
As an example of a message-based operating system, consider the Mach
operating system, developed at Carnegie Mellon University. The Mach
kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most
communication in Mach, including most of the system calls and all
intertask information, is carried out by messages. Messages are sent to and
received from mailboxes, called ports in Mach.

Even system calls are made by messages. When each task 1s created,
two special mailboxes, the Kernel mailbox and the Notify mailbox, are also
created. The Kernel mailbox is used by the kernel to communicate with the
task. The kernel sends notification of event occurrences to the Notify port.
Only three system calls are needed for message transfer. The msg_send call
sends a message to a mc;tilbox. A message is received via msg_receive. RPCs
are executed via msg_rpc, which sends a message and waits for exactly one
return message from the sender.

The port.allocate system call creates a new mailbox and allocates space
for its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that
mailbox's owner. The owner also is given receive access to the mailbox.
Only one task at a time can either own or receive from a mailbox, but
these rights can be sent to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages
are sent to the mailbox, the messages are copied into the mailbox. All
messages have the same priority. Mach guarantees that multiple messages
from the same sender are queued in first-in, first-out (FIFO) order, but does
not guarantee an absolute ordering. For instance, messages sent from each
of two senders may be queued in any order.

The messages themselves consist of a fixed-length header, followed by
a variable-length data portion. The header includes the length of the
message and two mailbox names. When a message is sent, one mailbox
name is the mailbox to which the message is being sent. Commonly, the
sending thread expects a reply; the mailbox name of the sender is passed
on to the receiving task, which may use it as a "return address" to send
messages back.

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in
the message is important, since operating-system-defined objects- such
as the ownership or receive access rights, task states, and memory
segments - may be sent in messages.

The send and receive operations themselves are quite flexible. For
instance, when a message is sent to a mailbox, the mailbox may be full. If
the mailbox is not full, the message is copied to the mailbox and the

126 • Chapter 4: Processes

sending thread continues. If the mailbox is full, the sending thread has
four options:

1. Wait indefinitely until there is room in the mailbox.

2. Wait at most n milliseconds.

3. Do not wait at all, but return immediately.

4. Temporarily cache a message. One message can be given to the
operating system to keep even though the mailbox to which it is being
sent is full. When the message can actually be put in the mailbox, a
message is sent back to the sender; only one such message to a full
mailbox can be pending at any time for a given sending thread.

The last option is meant for server tasks, such as a line-printer driver.
After finishing a request, these tasks may need to send a one-time reply to
the task that had requested service, but must also continue with other
service requests, even if the reply mailbox for a client is full.

The receive operation must specify from which mailbox or mailbox set
to receive a message. A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for
the purposes of the task. Threads in a task can receive from only a
mailbox or mailbox set for which that task has receive access. A port_.status
system call returns the number of messages in a given mailbox. The
receive operation attempts to receive from (1) any mailbox in a mailbox set,
or (2) a specific (named) mailbox. If no message is waiting to be received,
the receiving thread may wait, wait at most n milliseconds, or not wait.

The Mach system was especially designed for distributed systems,
which we discuss in Chapters 15 through 18, but Mach is also suitable for
single-processor systems. The major problem with message systems has
generally been poor performance caused by copying the message first from
the sender to the mailbox, and then from. the mailer to the receiver. The
Mach message system attempts to avoid double copy operations by using
virtual-memory management techniques (Chapter 9). Essentially, Mach
maps the address space containing the sender's message into the receiver's
addres~ space. The message itself is never actually copied. This message
management technique provides a large performance boost, but works for
only intrasystem messages. The Mach operating system is discussed in
detail in Chapter 20.

4.7 • Summary

A process is a program in execution. As a process executes, it changes state.
The state of a process is defined by that process's current activity. Each
process may be in one of the following states: new, ready,. running, waiting,

Exercises • 127

or halted. Each process is represented in the operating system by its own
process control block (PCB).

A process, when it is not executing, is placed in some waiting queue.
There are two major classes of queues in an operating system: I/O request
queues and the ready queue. The ready queue contains all the processes
that are ready to execute and are waiting for the CPU. Each process is
represented by a PCB, and the PCBs can be linked together to form a ready
queue. Long-term (job) scheduling is the selection of processes to be
allowed to contend for the CPU. Normally, long-term scheduling is heavily
influenced by resource-allocation considerations, especially memory
management. Short-term (CPU) scheduling is the selection of one process
from the ready queue.

The processes in the system can execute concurrently. There are
several reasons for allowing concurrent execution: information sharing,
computation speedup~ modularity, and convenience. Concurrent
execution requires a mecharyism for process creation and deletion.

The processes executing in the operating system may be either
independent processes or cooperating processes. Cooperating processes
must have the means to communicate with each other. Principally, there
exist two complementary communication schemes: shared memory and
message systems. The shared-memory method requires communicating
processes to share some variables. The processes are expected to exchange
information through the use of these shared variables. In a shared
memory system, the responsibility for providing communication rests with
the application programmers; the operqting system needs to provide. only
the shared memory. The message-system method allows the processes to
exchange messages. The responsibility for providing communication then
rests with the operating system itself. These two schemes are not mutually
exclusive, and could be used simultaneously within a single operating
system.

Cooperating processes that directly share a logical address space can be
implemented as lightweight processes or threads. A thread is a basic. unit
of CPU utilization, and it shares with peer threads its code section, data
section, and operating-system resources, collectively known as a task. A
task does nothing if no threads are in it, and a thread must be in exactly
one task. The extensive sharing makes CPU switching among peer threads
and thread creation inexpensive, compared with context switches among
heavyweight processes.

• Exercises

4.1 Several popular microcomputer operating systems provide little or no
means of concurrent processing. Discuss the major complications that
concurrent processing adds to an operating system.

128 • Chapter 4: Processes

4.2 Describe the differences among short-term, medium-term, and long
term scheduiing.

4.3 A DECSYSTEM-20 compute'r has multiple register sets. Describe the
;1ctions of a context switch if the new context is already loaded into
one of the register sets. What else must happen if the new context is
in memory rather than a register set, and all the register sets are in
use?

4.4 What two advantages do threads have over multiple processes? What
major disadvantage do they have? Suggest one application that
would benefit from the use of threads, and one that would not.

4.5 What resources are used when a thread is created? How do they
differ from those used when a process is created?

4.6 Describe the actions taken by a kernel to cont~xt switch

a. Among threads.

b. Among processes.

4. 7 What are the differences between user-level threads and kernel
supported threads? Under what circumstances is one type "better"
than the other?

4.8 The correct producer-consumer algorithm presented in Section 4.4
allows only n - 1 buffers to be full at any time. Modify the algorithm
to allow all the buffers to be utilized fully.

4.9 Consider the interprocess-communication scheme where mailboxes
are used.

a. Suppose a process P wants to wait for two messages, one from
mailbox A and one from mailbox B. What sequence of send and
receive shotdd it execute?

b. What sequence of send and receive should P execute if P wants to
wait for one message either from mailbox A or from mailbox B (or
from both)?

c .. A receive operation makes a process wait until the mailbox is
nonempty. Either devise a scheme that allows a process to wait
until a mailbox is empty, or explain why such a scheme cannot
exist.

4.10 Consider an operating system that supports both the IPC and RPC

schemes. Give examples of problems that could be solved with each
type of scheme. Explain why each problem is best solved l:>y the
method that you specify.

Bibliographic Notes • 129

Bibliographic Notes

Doeppner [1987] discussed early work in implementing threads at the user
level. Thread performance issues were discussed in Anderson et al. [1989].
Anderson et al. [1991] continued this work by evaluating the performance
of user-level threads with kernel support. Marsh et al. [1991] disctJ.ssed
first-class user-level threads. Bershad et al. [1990] described· COlltbining
threads with RPC. Draves et al. [1991] discussed the use of continuations to
implement thread management and communication in operating systems,

The IBM OS/2 operating system i~~ multithreaded operating system that
runs on personal computers [Kogan and Rawson 1988]. The Synthesis
high-perfo,rmance kernel uses threads as well [Massalin and Pu 1989]. The
implementation of threads in Mach was described in Tevanian · et al.
[1987a]. Birrell [1989] discussed prpgramming with threads. Debugging
multithreaded applications continue~ to be a difficult problem that is under
investigation. Caswell and Black [1990] implemented a debugger in Mach.

Sun Microsystem' s Solaris 2 thread structure was described in Eykholt
et al. [1992]. The user-level threads were detailed in Stein and Shaw
[1992]. Peacock [1992] discussed the multithreading of the file system in
Solaris 2.

The subject of interprocess communicati()n was discussed by Brinch
Hansen [1970] with respect to the RC 400() system. The interprocess
communication facility in the Thoth operating system was discussed by
Cheriton et al. [1979]; the one for the Accent operating system was
discussed by Rashid and Robertson [1981]; the one for the Mach operating
system was discussed by Accetta et al. [1986]. Schlichting a:nd Schneider
[1982] discusseq asynchronous message-passing primitives. The IPC facility
implemented at the user level was described in Bershad et al. [1990).

Discussions concerning the implementation of RPCs were presented by
Birrell and Nelson [1984]. A design of a reliable RPC mechanism was
presented by Shrivastava and Panzieri [1982]. A survey of RPCs was
presented by Tay and Ananda [1990]. Stankovic [1982] and· Staunstrup
[1982] discussed the issues of procedure calls· versus message':"'passing
communication.

CHAPTER 5

CPU
SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce the basic
scheduling concepts and present several different CPU scheduling
algorithms. We also consider the problem of selecting an algorithm for a
particular system.

5.1 • Basic Concepts

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. For a uniprocessor system, there will
never be more than one running process. If there are more processes, the
rest will have to wait until the CPU is free and can be rescheduled.

The idea of multiprogramming is relatively simple. A process is
executed until it must wait, typically for the completion of some 1/0
request. In a simple computer system, the CPU would then just sit idle. All
this waiting time is wasted; no useful work is accomplished. With
multiprogramming, we try to use this time productively. Several processes .
are kept in memory at one time. When one process has to wait, the
operating system takes the CPU away from that process and gives the CPU
to another process. This· pattern continues. Every time one process has to
wait, another process may take over the use of the CPU.

Scheduling is a fundamental operating-system function. Almost all
computer resources are scheduled before use. The CPU is, of course, one of

131

111 Chapter 5: CPU Scheduling

primary computer resources. Thus, its scheduling
operating-system design.

CPU-I/0 Burst Cycle

success of CPU scheduling depends on the following observed
of processes: Process execution consists of a cycle of CPU

wait. Processes alternate back and forth between these two oLaLrc:o

execution begins with a CPU burst. That is followed by an 1/0 burst,
followed by another CPU burst, then another I/O burst,

Eventually, the last CPU burst will end with a system request to
execution, rather than with another I/O burst (Figure 1).

The durations of these CPU bursts have been measured.
vary greatly from process to process and computer to computer,
to have a frequency curve similar to that shown in Figure The curve
generally characterized as exponential or hyperexponential. There a

load
store
add CPU burst

store
read from file

1/0 burst

store
increment index CPU burst

write to file

1/0 burst

load
store
add CPU burst

store
read from

1/0 burst

•

Figure 5.1 Alternating sequence of CPU and I/O bursts.

-

160

140

120

100

80

60

40

20

0 8 16 24 32

burst duration (milliseconds)

Figure 5.2 Histogram of CPU-burst times.

number of short CPU bursts, and there is a
bursts. An I/O-bound program would typically have many
bursts. A CPU-bound program might have a few very CPU
distribution can be important in the selection
scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating
the processes in the ready queue to be executed.
carried out by the short-term scheduler (or CPU scheduler).
selects from among the processes in memory that are
allocates the CPU to one of them.

Note that the ready queue is not
queue. As we shall see when we consider
algorithms, a ready queue may be implemented as a HFO
queue, a tree, or simply an unordered linked
all the processes in the ready queue are lined up
run on the CPU. The records in the queues are
processes.

40

134 • Chapter 5: CPU Scheduling

5.1.3 Preemptive Scheduling
CPU scheduling decisions may · take place under the following four
circumstances:

1. When a process switches from the running state to the waiting state
(for example, I/O request, or invocation of wait for the termination of
one of the child processes)

2. When a process switches from the running state to the ready state (for
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, completion of IIO)

4. When a process terminates

For circumstances 1 and 4, there is no choice in terms of scheduling. A
new process (if one exists in the ready queue) must be selected for
execution. There is a choice, however, for circumstances 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
the scheduling scheme is nonpreemptive; otherwise, the scheduling scheme
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a. process, the process keeps the CPU until it releases the CPU
either by terminating or by switching to the waiting state. This scheduling
method is used by the Microsoft Windows environment. It is the only
method that can be used on certain hardware platforms, because it does
not require the special hardware (for example, a timer) needed for
preemptive scheduling.

Unfortunately, preemptive scheduling incurs a cost. Consider the case
of two processes sharing data. One may be in the midst of updating the
data when it is preempted and the second process is run. The second
process may try to read the data, which are currently in an inconsistent
state. New mechanisms thus are needed to coordinate access to shared
data; this topic is discussed in Chapter 6.

Preemption also has an effect on the design of the operating-system
kernel. D!-!ring the processing of a system call, the kernel may be busy
with an activity on behalf of a process. Such activities may involve
changing important kernel data (for instance, I/0 queues). What happens
if the process is preempted in the middle of these changes, and the kernel
(or the device driver) needs to read or modify the same structure? Chaos
ensues. Some operating systems, including most versions of UNIX, deal
with this problem by waiting either for a system call to complete, or for an
110 .block to take place, before doing a context switch. This scheme ensures
that the kernel structure is simple, since the kernel will not preempt a
process while the kernel data structures are in an inconsistent state.

5.2 Scheduling Criteria • 135

Unfortunately, this kernel execution model is a poor one for supporting
real-time computing and multiprocessing. These problems, and their
solutions, are described in Sections 5.4 and 5.5.

In the case of UNIX, there are still sections of code at risk. Because
interrupts can, by definition, occur at any time, and because interrupts
cannot always be ignored by the kernel, the sections of code affected by
interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times, since otherwise input might
be lost or output overwritten. So that these sections of code are not
accessed concurrently by several processes, they disable interrupts at entry
and reenable interrupts at exit.

5.1.4 Dispatcher

Another component involved in the CPU scheduling function is the
dispatcher. The dispatcher is the module that gives control of the CPU to the
process selected by the short-term scheduler. This function involves:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user program to restart that
program

The dispatcher should be as fast as possible, given that it is invoked
during every process switch. The time it takes for the dispatcher to stop
one process and start another running is known as the dispatch latency.

5.2 • Scheduling Criteria

Different CPU scheduling algorithms have different properties and may
favor one class of processes over another. In choosing which algorithm to
use in a particular situation; we must consider the properties of the various
algorithms.

Many criteria have been suggested for comparing CPU scheduling
algorithms. Which characteristics are used for comparison can make a
substantial difference in the determination of the best algorithm. Criteria
that are used include the following:

• CPU utilization. We want to keep the CPU as busy as possible. CPU
utilization may range from 0 to 100 percent. In a real system, it should
range from 40 percent (for a lightly loaded system) to 90 percent (for a
heavily used system).

I

136 • Chapter 5: CPU Scheduling

• Throughput. If the CPU is busy, then work is being done. One
measure of work is the number of processes that are completed per
time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, throughput might be 10
processes per second.

• Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The
interval from the time of submission to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent
waiting to get into memory, waiting in the ready queue, executing on
the CPU, and doing 110. ·

• Waiting time. The CPU scheduling algorithm does not affect the
amount of time during which a process executes or does 110; it affects
only the amount of time that a process spends waiting in the ready
queue. Waiting time is the sum of the periods spent waiting in the
ready queue.

• Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly
early, and can continue computing new results while previous results
are being output to the user. Thus, another measure is the time from
the submission of a request until the first response is produced. This
measure, called response time, is the amount of time it takes to start
responding, but not the time that it takes to output that response. The
turnaround time is generally limited by the speed of the output device.

It is desirable to maximize CPU utilization and throughput, and to
minimize turnaround time, waiting time, and response time. In most
cases, we optimize the average measure. However, there are
circumstances when it is desirable to optimize the minimum or maximum
values, rath~r than the average. For example, to guarantee that all users
get good service, we may want to minimize the maximum response time.

It has also been suggested that, for interactive systems (such as time
sharing systems), it is 1110re important to minimize the variance in the
response ·time than it is to minimize the average response time. A system
with reasonable and predictable response time may be considered more
desirable than is a system that is faster on the average, but is highly
variable. However, little work has been done on CPU scheduling algorithms
to minimize. V'l.riance.

· As we discuss various CPU scheduling algorithms, we want to illustrate
their operation. An accurate illustration should involve many processes,
each being a sequence of several hundred CPU bursts and 110 bursts. For
simplicity of illustration, we consider only one CPU burst (in milliseconds)

5.3 Scheduling Algorithms • 137

per process in our examples. Our measure of comparison is the average
waiting time. More elaborate evaluation mechanisms are discussed in
Section 5.6.

5.3 • Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CPU
scheduling algorithms. In this section, we describe several ·of these
algorithms.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU scheduling algorithm is the first-come, first-served
scheduling (FCFS) algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue,
its PCB is linked onto the tail of the queue. When the CPU is free, it is
allocated to the process at the head of the queue. The running process is
then removed from the queue. The code for FCFS scheduling is simple to
write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU-burst time given in milliseconds:

Process Burst Time

If the processes arrive in the order P 1, P2, P3, and are served in FCFS
order, we get the result shown in the following Gantt chart:

0 24 27 30

The waiting time is' 0 milliseconds for process P1, 24 milliseconds for
process P2, and 27 milliseconds for process P3. Thus, the average waiting
time is (0 + 24 + 27)/3 = 17 milliseconds. If the processes arrive in the
order P 2, P 3, P 1, however, the results will be as shown in the following
Gantt chart:

138 • Chapter 5: CPU Scheduling

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This
reduction is substantial. Thus, the average waiting time under a FCFS
policy is generally not minimal, ahd may vary substantially if the process
CPU-burst times vary greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many 1/0-botind
processes. As the processes flow around the system, the following
scenario may result. The CPU-bound process will get the CPU and hold it.
During this time, all the other processes will finish their 1/0 and move into
the ready queue, waiting for the CPU. While the processes wait in the
ready queue, the 1/0 devices are idle. Eventually, the CPU-bound process
finishes its CPU burst and moves to an 1/0 device. All the I/O-bound
processes, which have very short CPU bursts, execute quickly and move
back to the 1/0 queues. At this point, the CPU sits idle. The CPU-bound
process will then move back to the ready queue and be allocated the CPU.
Again, all the 1/0 processes end up waiting ih the ready queue until the
CPU-bound process is done. There is a convoy effect, as all the other
processes wait for the ohe big process to get off the CPU. This effect results
in lower CPU and device utilization than might be possible if the shorter
processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has
been allocated to a process, that process keeps the CPU until it releases the
CPU, either by terminating or by requesting 1/0. The FCFS algorithm is
particularly troublesome for time-sharing systems, where it is important
that each user get a share of the CPU at regular intervals. It would be
disastrous to allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest~job-first (SJF)
·algorithm. This algorithm associates with each process the length of the
latter's next CPU burst. When the CPU is available, it is assigned to the
process that has the smallest next CPU burst. If two processes have the
same length next CPU burst, FCFS scheduling is used to break the tie. Note
that a more appropriate term would be the shortest next CPU burst, because
the scheduling is done by examining the length of the next CPU-burst of a
process, rather than its total length. We use the term SJF because most
people and textbooks refer to this type of scheduling discipline as SJF.

As an example, consider the following set of processes, with the length
of the CPU burst time given in milliseconds:

5.3 Scheduling Algorithms • 139

Process Burst Time

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for
process P 2, 9 milliseconds for process P 3, and 0 milliseconds for process P 4.

Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If
we were using the FCFS scheduling, then the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. By moving a
short process before a long one the waiting time of the short process
decreases more than it increases the waiting time of the long process.
Consequently, the average waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the
next CPU request. For long-term (job) scheduling in a batch system, we can
use as the length the process time limit that a user specifies when he
submits the job. Thus, users are motivated to estimate the process time
limit accurately, since a lower value may mean faster response. (Too low a
value will cause a time-limit-exceeded error and require resubmission.) SJF
scheduling is used frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the
level of short-term CPU scheduling. There is no way to know the length of
the next CPU burst. One approach is to try to approximate SJF scheduling.
We may not know the length of the next CPU burst, but we may be able to
predict its value. We expect that the next CPU burst will be similar in length
to the previous ones. Thus, by computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted
CPU burst.

The next CPU burst is generally predicted as an exponential average of
the measured lengths of previous CPU bursts. Let tn be the length of the
nth CPU burst, and let 'T n+ l. be our predicted value for the next CPU burst.
Then, for a, 0 < a ::s; 1, define

Chapter 5: CPU Scheduling

formula defines an exponential average. The value of
recent information; T n stores the past history. The a

controls the relative weight of recent and past history in our
a = 0, then Tn+l = 'Tn' and recent history has no effect (current coJn.allUOrn
are assumed to be transient); if a = 1, then Tn+l tn' and only
recent CPU burst matters (history is assumed to be old and 1TTPI&•v;~

More commonly, a = 1/2, so recent history and past history are
weighted. Figure 5.3 shows an exponential average with a
initial T0 can be defined as a constant or as an overall system

To understand the behavior of the exponential average, we can
formula for Tn+l by substituting for Tn' to find

Since both a and (1 - a) are less than or equal to 1,
has less weight than its predecessor.

The SJF algorithm may be either preemptive or nonpreemptive.
arises when a new process arrives at the ready queue while a
process is executing. The new process may have a shorter next CPU
than what is left of the currently executing process. A
algorithm will preempt the currently executing process,

time ~~ro

6 4 6 4 13 13 13

"guess" (1) 10 8 6 6 5 9 11 12

Figure 5.3 Prediction of the length of the next CPU burst.

5.3 Scheduling Algorithms • 141

nonpreemptive · SJF algorithm will allow the Currently running process to
finish its CPU burst. Preemptive SJF scheduling is sometimes called shortest
remaining-time-first scheduling.

As an example, consider the following four processes, with the length
of the CPU-burst time given in milliseconds:

Process Arrival Time Burst Time

pl 0 8
Pz 1 4
p3 2 9
p4 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as
depicted in the following Gantt chart:

0 1 5 10 17 26

Process P 1 is started at time 0, since it is the only process in the queue.
Process P2 arrives at time 1. The remaining time for process P 1 (7
milliseconds) is larger than the time required by process P 2 (4
milliseconds), so process P 1 is preempted, and process P2 is scheduled.
The average waiting time for this example is ((10 -1) + (1 -1) + (17 -2) +
(5 -3))/4 = 26/4 = 6.5 milliseconds. A nonpreemptive SJF scheduling would
result in an average waiting time of 7.75 milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling
algorithm. A priority is associated with each process, and the CPU is
allocated to the process with the highest priority. Equal-priority processes
are scheduled in FCFS order.

An SJF algorithm is simply a priority algorithm where the priority (p) is
the inverse of the (predicted) next CPU burst. The larger the CPU burst, the
lower the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low
priority. Priorities are generally some fixed range of numbers, such as 0 to
7, or 0 to 4095. However, there is no general agreement on whether 0 is
the highest or lowest priority. Some systems use low numbers to represent
low priority; others use low numbers for high priority. This difference can
lead to confusion. In this text, we assume that low numbers represent
high priority.

142 • Chapter 5: CPU Scheduling

As an example, consider the following set of processes, assumed to
have arrived at time 0, in the order P1, P2, ... , P5, with the length of the
CPU-burst time given in milliseconds:

Process Burst Time Priority

pl 10 3
p2 1 1
p3 2 3
p4 1 4
Ps 5 2

Using priority scheduling, we would schedule these processes according to
the following Gantt chart:

0 1 6 16 18 19

The average waiting time is 8.2 millis~conds.
Priorities can be defined either internally or externally. Internally

defined priorities use some measurable quantity or quantities to compute
the priority of a process. For example, time limits, memory requirements,
the number of open files, and the ratio of average 110 burst to average CPU
burst have been used in computing priorities. External priorities are set by
criteria that are external to the operating system, such as the importance of
the process, the type and amount of funds being paid for computer use,
the department sponsoring the work, and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When
a process arrives at the ready queue, its priority is compared with the
priority of the currently running process. A preemptive priority scheduling
algorithm will preempt the CPU if the priority of the newly arrived process
is higher than is the priority of the currently running process. A
nonpreemptive priority scheduling algorithm will simply put the new
process p.t the head of the ready queue.

A major problem with priority scheduling algorithms is indefinite
blocking or starvation. A process that is ready to run but lacking the CPU can
be considered blocked, waiting for the CPU. A priority scheduling algorithm
can leave some low-priority processes waiting indefinitely for the CPU. In a
heavily loaded computer system, a steady stream of higher-priority
processes can prevent a low-pnority process from ever getting the CPU.
Generally, one of two things will happen. Either the process will
eventually be run (at 2 A.M. Sunday, when the system is finally lightly
loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut

5.3 Scheduling Algorithms • 143

down the IBM 7o94 at MIT in 1973, they found a low-priority process that had
been submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority
processes is aging. Aging is a technique of gradually increasing the priority
of processes that wait in the system for a long time. For example, if
priorities range from 0 (low) to 127 (high), we could increment the priority
of a waiting process by 1 every 15 minutes. Eventually, even a process
with an initial priority of 0 would have the highest priority in the system
and would be executed. In fact, it would take no more than 32 hours for a
priority 0 process to age to a priority 127 process.

5.3.4 Round-Robin Scheduling
The round-robin (RR) scheduling algorithm is designed especially for time
sharing systeins. It is similar to FCFS scheduling, but preemption is ad4ed
to switch between processes. A small unit of time, called a time quantum, or
time slice, is defined. A time quantum is generally from 10 to 100
rrrilliseconds. The ready queue is treated as a circular queue. The CPU
scheduler goes around the ready queue, allocating the CPU to each process
for a time interval of up to 1 time quantUm.

To implement RR scheduling, we keep the ready queue as a FIFO queue
of processes. New processes are added to the tail of the ready queue. The
CPU scheduler picks the first process from the ready queue, sets a timer to ·
interrupt after 1 time quantuin, and dispatches the process.

One of two things will then.' happen. The process may have a CPU burst
of less than 1 time quantum. In this case, the process itself will release the
c:Pu voluntarily. The scheduler will then proceed to the next process in the
ready queue. Otherwise, if the CPU burst of the currently running process
is longer than 1 time quantum, the timer will go off and will cause an
interrupt to the operating system. A context switch will be executed, and
the process will be put at the tail of the ready queue. The CPU scheduler
will then select the next process in the ready queue.

The average waiting time under the RR policy, however, is often quite
long. Consider the .following set of processes that arrive at time 0, with the
length of the CPU-burst time given in milliseconds:

Process Burst Time

If we use a time quantum of 4 milliseconds, then process P 1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the

m

I
:I :;
i

144 • Chapter 5: CPU Scheduling

queue, process P2. Since process P2 does not need 4 milliseconds, it quits
before its time quantum expires. The CPU is then given to the next process,
process P3. Once each process has received 1 tirhe quantum, the CPU is
returned to process P 1 for an additional time quantum. The resulting RR
schedule is ·

b 4 7 10 14 18 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR schedtilirtg algorithm, rio process is allocated the CPU for

more than 1 time quantum in a row. If a process'· CPU burst exceeds 1 time
quantum, that process is preempted and is put back in the ready queue. The
RR scheduling algorithm is preemptive.

If there are n processes in the ready queue and the time quantum is q,
then each process gets lin of the .cpu time in chunks of at most q time
units. Each process must wait :ho longer than (n - 1) x q time qnits until
its next time quantum. For example, if there are five processes, with a time
quantUm of 20 miiliseconds, then each process will get up to 20
milliseconds. every 100 milliseconds. .

The performance of the RR algorithm depends heavily· on the size of
the time quantum. At one extreme, if the tiine quantum is very large
(infinite), the RR policy is the same as the FCFS policy. If the time quantum
is very small (say 1 microsecond), the RR approach is called processor
sharing, and appears (in theory) to the users as though each of n processes
has its owri processor running at 1/n the speed of the real processor. This
approach was used in Control Data Corporation (coc) hardware to
implement 10 peripheral processors with only one set of hardware and 10
sets of registers. The hardware executes one instruction for orte set of
registers, then goes on to the next. This cycle continues, resulting in 10
slow processors rather than one fast one. (Actually, since the. processor
was much faster than memory and each instruction referenced memory,
the processors were not much slower than a single processor would have
been.)

In software, however, we need also to consider the effect of context
switching on the performance of RR scheduling. Let us assume that we
have only one process of 10 time units. If the quantum is 12 time units, the
process finishes in less than 1 time quantum, with no overhead. If the
quantum is 6 time units, however, the process requires 2 quanta, resulting
in a coritext switch. If the time quantum is 1 time unit, then nine context
switches will occur, slowing the execution of the process accordingly
(Figure 5.4).

5.3 Scheduling

process time = 1 0 quantum context
switches

12 0

0 10

6

' 9

0 2 3 4 5 6 7 8 9 10

5.4 Showing how a smaller time quantum increases context

Thus, we want the time quantum to be
context-switch time. If the context-switch time
of the time quantum, then about 10 percent of the CPU

in context switch.
Turnaround time also depends on the

we can see from Figure 5.5, the average turnaround
processes does not necessarily improve as the time-quantum
In general, the average turnaround time can be improved
finish their next CPU burst in a single time quantum.
three processes of 10 time units each and a quantum of 1

rc.-.·c><TO turnaround time is 29. If the time quantum 10,
average turnaround time drops to 20. If context-switch
the average turnaround time increases for a smaller time
more context switches will be required.

On other hand, if the time quantum is too
to FCFS policy. A rule of thumb is that 80

bursts should be shorter than the time quantum.

3.5 Multilevel Queue Scheduling
Another of scheduling algorithms has been created
which are easily classified into different groups.
common division is made between foreground (interactive)
background (batch) processes. These two types of
response-time requirements, and so might have

In addition, foreground processes may have
defined) over background processes.

A multilevel queue-scheduling algorithm partitions the
several separate queues (Figure 5.6). The processes

Ill Chapter 5: CPU Scheduling

12.5

12.0

(1) 11.5
E

:;:::;
"0 11.0 c
:J e
(\$

10.5 c ,_
:J -Q)
0) 10.0
t2
Q)

~ 9.5

9.0

1 2 3 4 5 6 7

time quantum

Figure 5.5 Showing how turnaround time varies with the

assigned to one queue, generally based on some property of
such as memory size, process priority, or process type. Each

6
3
1
7

own scheduling algorithm. For example, queues TTH<Tnr

for foreground and background processes. The foreground queue,..,.,Th-1"

scheduled by an RR algorithm, while the background queue
by an FCFS algorithm.

In addition, there must be scheduling between the
commonly implemented as a fixed-priority preemptive
example, the foreground queue may have absolute priority
background queue.

Let us look at an example of a multilevel queue scheduling
with five queues:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

highest priority ·

lowest priority

Figure 5.6 Multilevel queue scheduling.

Each queue has absolute priority over lower-priority
the batch queue, for example, could run unless
processes, interactive processes, and interactive editing nnJce·ss~:~s
empty. If an interactive editing process entered the
batch process was running, the batch process would be nr.os:>~Y'Irl•f"t:>t

Another possibility is to time slice between the queues.
gets a certain portion of the CPU time, which it can then
the various processes in its queue. For instance,
background queue example, the foreground queue can

the CPU time for RR scheduling among its
background queue receives 20 percent of the CPU to give to
a FCFS manner.

6 Multilevel Feedback Queue Scheduling

Normally, in a multilevel queue-scheduling algorithm,
permanently assigned to a queue on entry to the "''"0 r"''"'

move between queues. If there are separate
background processes, for example, processes do
queue to the other, since processes do not change
background nature. This setup has the advantage
overhead, but is inflexible.

Multilevel feedback queue scheduling, however, allows a
between queues. The idea is to separate processes with

characteristics. If a process uses too much CPU time, it will be
lower-priority queue. This scheme leaves I/O-bound and
vrcJC€~SSE:!S in the higher-priority queues. Similarly, a process

in a lower-priority queue may be moved to a higher-priority
This form of aging prevents starvation.

For example, consider a multilevel feedback queue
three queues, numbered from 0 to 2 (Figure 5.7). The
executes all processes in queue 0. Only when queue 0
execute processes in queue 1. Similarly, processes in queue 2
executed if queues 0 and 1 are empty. A process that arrives
will preempt a process in queue 2. A process in queue 1 will
preempted by a process arriving for queue 0.

A process entering the ready queue is put in queue 0. A
queue 0 given a time quantum of 8 milliseconds. If it does not
within this time, it is moved to the tail of queue 1. If queue 0
process at the head of queue 1 is given a quantum of 16
does not complete, it preempted and is put into queue 2.
queue 2 are run on an FCFS basis, only when queues 0 and 1 are

This scheduling algorithm gives highest priority to any
CPU burst of 8 milliseconds or less. Such a process will
finish its CPU burst, and go off to its next I/O burst.
more than but less than 24, milliseconds are also
although with lower priority than shorter processes.
automatically sink to queue 2 and are served in FCFS order
cycles left over from queues 0 and 1.

In a multilevel feedback queue scheduler
following parameters:

Figure 5.7 Multilevel feedback queues.

5.4 Multiple-Processor Scheduling • 149

• The number' of queues .

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a
higher-priority queue

• The method used to determine when to demote a process to a lower
priority queue

• The method used to determine which queue a process will enter when
that process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it also requires some means of
selecting values for all the parameters to define the best scheduler.
Although a multilevel feedback queue is the most general scheme, it is also
the most complex.

5.4 • Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU
in a system with a single processor. If multiple CPUs are available, the
scheduling problem is correspondingly more complex. Many possibilities
have been tried, and, as we saw with single-processor CPU scheduling,
there is no one best solution. In the following, we discuss briefly some of
the issues concerning multiprocessor scheduling. A complete coverage is
beyond the scope of this text.

The processors within a multiprocessor are identical (homogeneous) in
terms of their functionality. Any available processor can then be used to
run any processes in the queue. If the processors were different (a
heterogeneous system), only programs compiled for a given processor's
instruction set could be run on that processor. This is sometimes the case
with distributed systems, as we shall see in Chapters 15 though 18. There
are sometimes limitations on scheduling even within homogeneous
multiprocessors. Consider a system with an 110 device attached to a
private bus of one processor. Processes wishing to use that device must be
scheduled to run on that processor, otherwise the device would not be
available.

If several identical processors are available, then load sharing can occur.
It would be possible to provide a separate queue for each processor. In this
case, however, one processor could be idle, with an empty queue, while
another processor was very busy. To prevent this situation, we use a
common ready queue. All processes go into one queue and are scheduled
onto any available processor.

150 • Chapter 5: CPU Scheduling

In such a scheme, one of two scheduling approaches may be used. In
one approach, each processor is self-scheduling. Each processor examines
the common ready queue and selects a process to execute. As we shall see
in Chapter 6, if we have multiple processors trying to access and update a
common data structure, each processor must be programmed very

-carefully. We must ensure that two processors do not choose the same
process, and that processes are not lost from the queue. The other
approach avoids this problem by appointing one processor as scheduler for
the other processors, thus creating a master-slave structure.

Some systems carry this structure one step further, by having all
scheduling decisions, 1!0 processing, and other system activities handled by
one single processor - the master server. The other processors only
execute user code. This asymmetric multiprocessing is far simpler than
symmetric multiprocessing, because only one processor accesses the
system data structures, alleviating the need for data sharing.

5.5 • Real-Time Scheduling

In Chapter 1, we gave an overview of real-time operating systems· and
discussed their growing importance. Here, we continue the discussion by
describing the scheduling facility needed to support real-time computing
within a general-purpose computer system.

Real-time computing is divided into two types. Hard real-time systems
are required to complete a critical task within a guaranteed amount of
time. Generally, a process is submitted along with a statement of the
amount of time in which it needs to complete or perform 1!0. -·The
scheduler then either admits the process, guaranteeing that the process
will complete on time, or rejects the request as impossible. This is known
as resource reservation. Such a guarantee requires that the scheduler know
exactly how long each type of operating-system function takes to perform,
and therefore each operation must be guaranteed to take a maximum
amount of time. Such a guarantee is impossible in a system with secondary
storage or virtual memory, as we shall show in the next few chapters,
because these subsystems cause unavoidable and unforeseeable variation
in the amount of time to execute a particular process. Therefore, hard real
time systems are composed of special-purpose software running on
hardware dedicated to their critical process, and lack the full functionality
of modern computers and operating systems.

Soft real-time computing is less restrictive. It requires that critical
processes receive priority over less fortunate ones. Although adding soft
real-time functionality to a time-sharing system may cause an unfair
allocation of resources and may result in longer delays, or even starvation·,
for some processes, it is at least possible to achieve. The result is a

5.5 Real-Time Scheduling • 151

general-purpose system that can also support multimedia, high-speed
interactive graphics, and a variety of tasks that would not function
acceptably in an environment that does not support soft real-time
computing.

Implementing soft real-time functionality requires careful design of the
scheduler and related aspects of the operating system. First, the system
must have priority scheduling, and real-time processes must have the
highest priority. The priority of real-time processes must not degrade over
time, even though the priority of non-real-time processes may. Second,
the dispatch latency must be small. The smaller the latency, the faster a
real-time process can start executing once it is runable.

It is relatively simple to ensure that the former property holds. For
example, we can disallow process aging on real-time processes, thereby
guaranteeing that the priority of the various processes does not change.
However, ensuring the latter property is much more involved. The
problem is that many operating systems, including most versions of UNIX,

are forced to wait for either a system call to complete or for an 110 block to
take place before doing a context switch. The dispatch latency in such
systems can be long, since some system calls are complex and some 110

devices are slow.
To keep dispatch latency low, we need to allow system calis to be

preemptible. There are several ways to achieve this goal. One is to insert
preemption points in long-duration system calls, which check to see whether
a high-priority process needs to be run. If so, a context switch takes place
and, when the high-priority process terminates, the interrupted process
continues with the system call. Preemption points can be placed at only
"safe" locations in the kernel - only where kernel data structures are not
being modified. Even with preemption points dispatch latency can be
large, because only a few preemption points can be practically added to a
kernel.

Another method for dealing with preemption is to make the entire
kernel preemptible. So that correct operation is ensured, all kernel data
structures must be protected through the use of various synchronization
mechanisms that we discuss in Chapter 6. With this method, the kernel
can always be preemptible, because any kernel data being updated are
protected from modification by the high-priority process. This is the
method used in Solaris 2.

But what happens if the higher-priority process needs to read or
modify kernel data that are currently being accessed by another, lower
priority process? The high-priority process would be waiting for a lower
priority one to finish. T}:l.is situation is known as. priority inversion. In fact,
there could be a chain of processes, all accessing resources that the high
priority process needs. This problem can be solved via the priority
inheritance protocol, in which all these processes (the processes that are

152 • Chapter 5: CPU Scheduling

event response to event

1+--------- response interval ---------~

process made
interrupt available

processing

lo4----- dispatch latency -----1~

time

Figure 5.8 Dispatch latency.

real-time
process

execution

accessing resources that the high-priority process needs) inherit the high
priority until they are done with the resource in question. When they are
finished, their priority reverts to its natural value.

In Figure 5.8, we show the makeup of dispatch latency. The conflict
phase of dispatch latency has three components:

· 1. Preemption of any process running in the kernel

2. Low-priority processes releasing resources needed by the high-priority
process

3. Context switching from the current process to the high-priority process

As an example, in Solaris 2, the dispatch latency with preemption disabled
is over 100 milliseconds. However, the dispatch latency with preemption
enabled is usually reduced to 2 milliseconds.

5.6 • Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system? As
we saw in Section 5.3, there are many scheduling algorithms, each with its
own parameters. As a result, selecting an algorithm can be difficult.

5.6 Algorithm Evaluation • 153

The first problem is defining the criteria to be used in selecting an
algorithm. As we saw in Section 5.2, criteria are often defined in terms of
CPU utilization, response time, or throughput. To select an algorithm, we
must first define the relative importance of these measures. Our criteria
may include several measures, such as:

• Maximize CPU utilization under the constraint that the maximum
response time is 1 second

• Maximize throughput such that turnaround time is (on . average)
linearly proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
various algorithms under consideration. There are a number of different
evaluation methods, which we describe in Sections 5.6.1 through 5.6.4.

5.6.1 Deterministic modeling
One major class of evaluation methods is called analytic evaluation. Analytic
evaluation uses the algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload. ·

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of
each algorithm for that workload.

For example, assume that we have the workload shown. All five
processes arrive at time 0, in the order given, with the length of the· CPU
burst time given in milliseconds:

Process B'!.IrSt Time

pl 10
p2 29
p3 3
p4 7
P5 12

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the
minimum average waiting time?

For the FCFS algorithm, we would execute the processes as

0 10 39 42 49 61

154 • Chapter 5: CPU Scheduling

The waiting time is 0 milliseconds for process P1, 10 milliseconds for
process P 2, 39 milliseconds for process P 3, 42 milliseconds for process P 4,

and 49 milliseconds for process P5• Thus, the average waiting time is (0 +
10 + 39 + 42 + 49)/5 = 28 milliseconds. ·

With nonpreemptive SJF scheduling, we execute the processes as

0 3 10 20 32 61

The waiting time is 10 milliseconds for process P1, 32 milliseconds for
process P 2, 0 milliseconds for process P 3, 3 milliseconds for process P 4, and
20 milliseconds for process P5. Thus, the average waiting time is (10 + 32
+ 0 + 3 + 20)/5 = 13 milliseconds.

With the RR algorithm, we start process P2, but preempt it after 10
milliseconds, putting it in the back of the queue:

0 10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process P1, 32 milliseconds for
process P 2, 20 milliseconds for process P 3, 23 milliseconds for process P 4,

and 40 milliseconds for process P 5. Thus, the average waiting time is (0 +
32 + 20 + 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the SJF policy results in less than one-half the
average waiting time obtained with FCFS scheduling; the RR algorithm gives
us an intermediate value.

Deterministic modeling is simple and fast. It gives exact numbers,
allowing the algorithms to be compared. However, it requires exact
numbers for input, and its answers apply to only those cases. The main
uses of deterministic modeling are in describing scheduling algorithms and
providing examples. In cases where we may be running the same
programs over and over again and can measure the program's processing
requirements ex~ctly, we may be able to use deterministic modeling to
select a scheduling algorithm. Over a set of examples, deterministic
modeling may indicate trends that can then be analyzed and proved
separately. For example, it can be shown that, for the environment
described (all processes and their times available at time 0), the SJF policy
will always result in the minimum waiting time.

In general, however, deterministic modeling is too specific, and
requires too much exact knowledge, to be useful.

5.6 Algorithm Evaluation • 155

5.6.2 Queueing models
The processes that are run on many systems vary from day to day, so
there is no static set of processes (and times) to use for deterministic
modeling. What can be determined, however, is the distribution of CPU

and 110 bursts. These distributions may be measured and then
approximated or simply estimated. The result is a mathematical formula
describing the probability of a particular CPU burst. Commonly, this
distribution is exponential and is described by its mean. Similarly, the
distribution of times when processes arrive in the system (the arrival-time
distribution) must be given. From these two distributions, it is possible to
compute the average throughput, utilization, waiting time, and so on for
most algorithms.

The computer system is described as a network of servers. Each server
has a queue of waiting processes. The CPU is a server with its ready queue,
as is the 110 system with its device queues. Knowing arrival rates and
service rates, we can compute utilization, average queue length, average
wait time, and so on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the
process being serviced), let W be the average waiting time in the queue,
and let A be the average arrival rate for new processes in the queue (such
as three processes per second). Then, we expect that during the time W
that a process. waits, A x W new processes will arrive in the queue. If the
system is in a steady state, then the number of processes leaving the queue
must be equal to the number of processes that arrive. Thus,

n =A X W.

This equation is known as Little's formula. Little's formula is particularly
useful because it is valid for any scheduling algorithm and arrival
distribution.

We can use Little's formula to compute one of the three variables, if
we know the other two. For example, if we know that seven processes
arrive every second (on average), and that there are normally 14 processes
in the queue, then we can compute the average waiting time per process
as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of.
complicated algorithms or distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in unrealistic, but
mathematically tractable, ways. It is also generally necessary to make a
number of independent assumptions, which may not be accurate. Thus,
so that they will be able to compute an answer, queueing models are often

156 • Chapter 5: CPU Scheduling

only an approximation of a real system. As a result, the accuracy of the
computed results may be questionable.

5.6.3 Simulations
To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Simulations involve programming a model of the computer
system. Software data structures represent the major components of the
system. The simulator has a variable representing a clock; as this variable's
value is increased, the simulator modifies the system state to reflect the
activities of the devices, the processes, and the scheduler. As the
simulation executes, statistics that indicate algorithm performance are
gathered and printed.

The data to drive the simulation can be generated in several ways. The
most common method uses a random-number generator, which is
programmed to generate processes, CPU-burst times, arrivals, departures,
and so on, according to probability distributions. The distributions may be
defined mathematically (uniform, exponential, Poisson) or empirically. If
the· distribution is to be defined empirically, measurements of the actual
system under study are taken. The results are used to define the actual
distribution of events in the real system, and this distribution can then be
used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, due to
relationships between successive events in the real system. The frequency
distribution indicates only how many of each event occur; it does not
indicate anything about the order of their occurrence. To correct this
problem, we can use trace tapes. We create a trace tape by monitoring the
real system, recording the sequence of actual events (Figure 5.9). This
sequence is then used to drive the simulation. Trace tapes provide an
excellent way to compare two algorithms on exactly the same set of real
inputs. This method can produce accurate results for its inputs.

Simulations can be expensive, however, often requiring hours of
computer time. A more detailed simulation provides more accurate results,
but also requires more computer time. In addition, trace tapes can require
large amounts of storage space. Finally, the design, coding, and debugging
of the simulator can be a major task.

5.6.4 Implementation
Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, to put it in the
operating system, and to see how it works. This approach puts the actual
algorithm in the real system for evaluation under real operating conditions.
. The major difficulty is the cost of this approach. . The expense is
mcurred not only in coding the algorithm and modifying the operating

5.6 Algorithm

Figure 5.9 Evaluation of CPU schedulers by

system to support it as well as its required data structures,
reaction of the users to a constantly changing operating
are not interested in building a better operating system; they
to their processes executed and to use their
changing operating system does not help the users to get

The other difficulty with any algorithm evaluation
environment in which the algorithm is used will change.
will not only in the usual way, as new programs are

types of problems change, but also as a result of the
the If short processes are given priority, then users
larger processes into of smaller processes. If interactive
given priority over noninteractive processes, then users
interactive use.

example, researchers tried designing one
interactive and noninteractive processes automatically by
amount of terminal I/0. If a process did not input or output to
in a 1-second intervaL the process was classified as
moved to a lower-priority queue. This policy resulted in a
one programmer modified his programs to write an
the terminal at regular intervals of less than 1 second.
programs a high priority, even though the terminal output was

• 157

statistics
for FCFS

statistics
for SJF

statistics
forRR 14)

158 • Chapter 5: CPU Scheduling

The most flexible scheduling algorithms can be altered by the system
managers. During operating-system build time; boot time, or run time, the
variables used by the schedulers can be changed . to reflect the expected
future use of the system. The need for flexible scheduling is another
instance where the separation of mechanism from policy is useful. For
instance, if paychecks need to be processed and printed immediately, but
are normally done as a low-priority batch job, the batch queue could be
given a higher priority temporarily. Unfortunately, few operating systems
allow this type of tunable scheduling.

5.7 • Summary

CPU scheduling is the task of selecting a waiting process from the ready
queue and allocating the CPU to it. The CPU is allocated to the selected
process by the dispatcher.

First-come, first-served (FCFS) scheduling is the simplest scheduling
algorithm, but it can cause short processes to wait for very long processes.
Shortest-job-first (SJF) scheduling is provably optimal, providing the
shortest average waiting time. Implementing SJF scheduling is difficult
because predicting the length of the next CPU burst is difficult. The SJF

algorithm is a special case of the general priority scheduling algorithm,
which simply allocates the CPU to the highest-priority process. Both priority
and SJF scheduling may suffer from starvation. Aging is a technique to
prevent starvation.

Round-robin (RR) scheduling is more appropriate for a time-shared
system. RR scheduling allocates the CPU to the first process in the ready
queue for q time units, where q is the time quantum. After q time units,
the CPU is preempted and the process is put at the tail of the ready queue.
The major problem is the selection of the time quantum. If the quantum is
too large, RR scheduling degenerates to FCFS scheduling; if the quantum is
too small, scheduling overhead in the form of context-switch time becomes
excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive .
. The SJF- and priority algorithms may be either preemptive or
nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for
various classes of processes. The most common is a foreground interactive
queue, which uses RR scheduling, and a background batch queue, which
uses FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

The wide variety of scheduling algorithms demands that we have
methods to select among algorithms. Analytic methods use mathematical
analysis to determine the performance of an algorit~m. Simulation

Exercises • 159

methods determine performance by imitating the scheduling algorithm on
a "representative" sample of processes, and computing the resulting
performance.

• Exercises

5.1 A CPU scheduling algorithm determines an order for the execution of
its scheduled processes. Given n processes to be scheduled on one
processor, how many possible different schedules are there? Give a
formula in terms of n.

5.2 Define the difference between preemptive and nonpreemptive
scheduling. State why strict nonpreemptive scheduling is unlikely to
be used jn a computer center.

5.3 Consider the following set of processes, with the length of the cpu
burst time given in milliseconds:

Process Burst Time Priority

PI 10 3
p2 1 1
p3 2 3
p4 1 4
Ps 5 2

The processes are assumed to have arrived in the order PI, P2, P3, P4,
P5, all at time 0.

a. Draw four Gantt charts illustrating the execution of these
processes using FCFS, SJF, a nonpreemptive priority (Ci smaller
priority number implies a higher priority), and RR (quantum = 1)
scheduling.

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of the
scheduling algorithms in part a?

d. Which of the schedules in part a results in the minimal average
waiting time (over all processes)?

5.4 Suppose that the following processes arrive for execution at the times
indicated. Each process will run the listed amount of time·. In
answering the questions, use nonpreemptive scheduling and base all

160 • Chapter 5: CPU Scheduling

decisions on the information you have at the time the decision must
be made.

Process Arrival Time Burst Time

pl 0.0 8
p2 0.4 4
p3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P 1 at time 0 because we did not
know that two shorter processes would arrive soon. Compute
what the average turnaround time will be if the CPU is left idle for
the first 1 unit and then SJF scheduling is used. Remember that
processes P1 and P2 are waiting during this idle time, so their

· waiting time may increase. This algorithm could be known as
future-knowledge scheduling.

5.5 Consider a variant of the RR scheduling algorithm where the entries in
the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be the major advantages and disadvantages of this
scheme?

c. How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?

5.6 What advantage is there in having different time-quantum sizes on
different levels of a multilevel queueing system?

· 5.7 Consider the following preemptive priority-scheduling algorithm
based on dynamically changing priorities. Larger priority numbers
imply higher priority. When a process is waiting for the CPU (in the
ready queue, but not running), its priority changes at a rate a.; when
it is running, its priority changes at a rate (3. All processes are given a
priority of 0 when they enter the ready queue. The parameters a. and
(3 can be set to give many diff~rent scheduling algorithms.

a. What is the algorithm that results from (3 > a. > 0?

b. What is the algorithm that results from a. < (3 < 0?

Bibliographic Notes • 161

5.8 Many CPU scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to define the number of queues,
the scheduling algorithms for each queue, the criteria used to move
processes between queues, and so on.

These algorithms are thus really sets of algorithms (for example,
the set of RR algorithms for all time slices, and so on). One set of
algorithms may include another (for example, the FCFS algorithm is
the RR algorithm with an infinite time quantum). What (if any)·
relation holds between the following pairs of sets of algorithms?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

5.9 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor
time in the recent past. Why will this algorithm favor I/O-bound
programs and yet not permanently starve CPU-bound programs?

5.10 Explain the differences in the degree to which the following
scheduling algorithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

Bibliographic Notes

Lampson [1968] provided general discussions concerning scheduling.
More formal treatments of scheduling theory were contained in Kleinrock
[1975], Sauer and Chandy [1981], and Lazowska et al. [1984]. A unifying
approach to scheduling was presented by Ruschitzka and Fabry [1977].
Haldar and Subramanian [1991] discuss fairness in processor scheduling in
time-sharing systems.

Feedback queues were originally implemented on the CTSS system
described in Corbato et. al. [1962]. This queueing system was analyzed by
Schrage [1967]; variations on multilevel feedback queues were studied by
Coffman and Kleinrock [1968]. Additional studies were presented by
Coffman and Denning [1973] and Svobodova [1976]. A data structure for
manipulating priority queues was presented by Vuillemin [1978]. The

162 • Chapter 5: CPU Scheduling

preemptive priority-scheduling algorithm of Exercise 5. 9 was suggested by
Kleinrock [1975].

Anderson et al. [1989] discussed thread scheduling. Discussions
concerning multiprocessor scheduling were presented by Jones and
Schwarz [1980], Tucker and Gupta [1989], Zahorjan and McCann [1990],
·Feitelson and Rudolph [1990], and Leutenegger and Vernon [1990].

Discussions concerning scheduling in real-time systems were offered
by Liu and Layland [1973], Abbot [~984], Jensen et al. [1985], Hong et al.
[1989], and Khanna et al. [1992]. A special issue on real-time operating
systems was edited by Zhao [1989]. Eykholt et al. [1992] described the
real-time component of Solaris 2.

Fair share schedulers were covered by Henry [1984], Woodside [1986],
and Kay and Lauder [1988].

Discussions concerning scheduling policies used in the MVS operating
system were presented by Samson [1990]; the one for the OS/2 operating
system was presented by Iacobucci [1988]; the one for the UNIX V operating
system was presented by Bach [1987]; and the one for the Mach operating
system was presented by Black [1990]. ·

CHAPTER 6

PROCESS
SYNCHRONIZATION

A cooperating process is one that can affect or be affected by the other
processes executing in the system. Cooperating processes may either
directly share a logical address space (that is, both code and data), or be
allowed to share data only through files. The former case is achieved
through the use of lightweight processes or threads, which we discussed in
Section 4.5. Concurrent access to shared data may result in· data
inconsistency. In this chapter, we discuss various mechanisms to ensure
the orderly execution of cooperating processes that share a logical address
space, so that data consistency is maintained.

6.1 • Background

In Chapter 4, we developed a model of a system consisting of a number of
cooperating sequential processes, all running asynchronously and possibly
sharing data. We have illustrated this model with the bounded buffer
scheme, which is representative of operating systems.

Let us return to the shared-memory solution to the bounded-buffer·
problem that we presented in Section 4.4. As we pointed out, our solution
allows at most n - 1 items in the buffer at the same time. Suppose that we·
wanted to modify the algorithm to remedy this deficiency. One possibility
is to add an integer variable counter, initialized to 0. Counter is incremented
every time we add a new item to the buffer, and is decremented every
time we remove one item from the buffer. The code for the producer
process can be modified as follows:

163

164 • Chapter 6: Process Synchronization

repeat

produce an item in nextp

while counter = 1'f do no-op;
buffer[in] := nextp;
in := in+1 mod n;
counter : = counter + 1;

until false;

The code for the consumer process can be modified as follows:

repeat
while counter = 0 do no-op;
nextc := buffer[out];
out:= out+1 mod n;
counter : = counter - 1;

consume the item in nextc

until false; .

Although both the producer and consumer routines are correct
separately, they may not function correctly when executed concurrently.
As an illustration, suppose that the value of the variable counter is
currently 5, and that the producer and consumer processes execute the
statements "counter := counter + 1" and "counter := counter - 1"
concurrently. Following the execution of these two statements, the value of
the variable counter may be 4, 5, or 6! The only correct result is counter = 5,
which is generated correctly if the producer and consumer execute
separately.

We can show that the value of counter may be incorrect, as follows.
Note that the statement "counter := counter+1" may be implemented in
machine language (on a typical machine) as

register 1 : = counter;
register 1 : = register 1 + 1;
counter : = register 1

where register1 is a local CPU register. Similarly, the statement "counter :=
counter - 1" is implemented as follows:

register 2 : = counter
register 2 : = register 2 - 1;
counter : = register 2

6.2 The Critical-Section Problem • 165

where again register 2 is a local CPU register. Even though register 1 and
register2 may be the same physical registers (an accumulator, say),
remember that the contents of this register will be saved and restored by
the interrupt handler (Section 2.1).

The concurrent execution of the statements "counter := counter + 1"
and "counter := counter - 1" is equivalent to a sequential execution where
the lower-level statements presented previously are interleaved in some
arbitrary order (but the order within each high-level statement is
preserved). One such interleaving is

To= producer execute register 1 : = counter {register 1 = 5}
Tl: producer execute register 1 : = register 1 + 1 {register1 = 6}
T2: consumer execute register 2 : = counter {register 2 = 5}
T3: consumer execute register 2 : = register 2 - 1 {register 2 = 4}
T4: producer execute counter : = register 1 {counter = 6}
Ts= consumer execute counter : = register 2 {counter = 4}

Notice that we have arrived at the incorrect state "counter = 4," recording
that there are four full buffers, when, in fact, there are five full buffers. If
we reversed the order of the statements at T4 and T5, we would arrive at
the incorr~ct state "counter = 6."

. We would arrive at this incorrect state because we allowed both
processes to manipulate the variable counter concurrently. A situation like
this, where several processes access and manipulate the same data
concurrently, and the outcome of the execution depends on the particular
order in which the access takes place, is called a race condition. To guard
against the race condition above, we need to ensure that only one process
at a time can be manipulating the variable counter. To make such a
guarantee, we· require some form of synchronization of the processes.
Such situations occur frequently in operating systems as different parts of
the system manipulate resources and we want the changes not to interfere
with one another. A major portion of this chapter is concerned with the
issue of process synchronization and coordination.

6.2 • The Critical-Section Problem

Consider a system consisting of n processes { P 0' P 1, ... , P n _ 1}. Each
. process has a segment of code, called a critical section, in which the process
may be changing common variables, updating a table, writing a file, and
so on.· The important feature of the system is that, when one process is
executing in its critical section, no other process is to be allowed to execute
in its critical section. Thus, the execution of critical sections by the
processes is mutually exclusive in time. The critical-section problem is to
design a protocol that the processes can use to cooperate. Each process

166 • Chapter 6: Process Synchronization

must request permission to enter its critical section. The section of code
implementing this request is the entry section. The critical section may be
followed by an exit section, The remaining code is the remainder section.

A solution to the critical-section problem must satisfy the following
tJ:uee requirements:

1. Mutual Exclusion: If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress: If no process is executing in its critical section and there exist
some processes that wish to enter their critical sections, then only
those processes that are not executing in their remainder section can
participate in the decision of which will enter its critical section next,
and this selection cannot be postponed indefinitely.

3. Bounded Waiting: There must exist a bound on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However,
we can make no assumption concerning the relative speed of the n
processes.

In Sections 6.2.1 and 6.2.2, we work up to solutions to the critical
section problem that satisfy these three requirements. The solutions do
not rely on any assumptions concerning the hardware instructions or the
number of processors that the hardware supports. We do, however,

repeat

I entry section I

critical section

I exit section I
remainder section

until false;

Figure 6.1 General structure of a typical process Pi·

6.2 The Critical-Section Problem • 167

assume that the basic machine-language instructions (the primitive
instructions such as load, store, and test) are ,executed atomically. That is,
if two such instructions are executed concurrertly, the result is equivalent
to their sequential execution in some unknown order. Thus, if a load and a
store are executed concurrently, the load will get either the old value or
the new value, but not some combination of the two.

When presenting an algorithm, we define only the variables used for
synchronization pu,rposes, and describe only a typical process Pi whose
general structure is shown in Figure 6.1. The entry section and _exit section
are enclosed in boxes to highlight these important segments of code.

6.2.1 Two-Process Solutions
In this section, we restrict our attention to algorithms that are applicable to
only two processes at a time. The processes are numbered P0 and P1. For
convenience, when presenting Pi' we use Pj to denote the other process;
that is, j = 1 - i.

6.2.1.1 Algorithm 1

Our first approach is to let the processes share a common integer variable
turn initialized to 0 (or 1). If turn = i, then process Pi is allowed to execute
in its critical section. The structure of process Pi is shown in Figure 6.2.

This solution ensures that only one process at a time can be in its
critical section. However, it does not satisfy the progress requirement,
since it requires strict alternation of processes in the execution of the
critical section. For example, if turn = 0 and P 1 is ready to enter its critical
section, P1 cannot do so, even though P0 may be in its remainder section.

Jepeat

I while turn =F i do no-op; I
critical section

I turn := j; I

remainder section

until false;

Figure 6.2 The structure of process P. in algorithm 1.
. l

1~ • Chapter 6: Process Synchronization

6.2.1.2 Algorithm 2

The problem with algorithm 1 is that it does not retain sufficient
information about the state of each process; it remembers only which
process is allowed to enter that process' critical section. To remedy this
problem, we can replace the variable turn with the following array:

var flag: array [0 .. 1] of boolean;

The elements of the array are initialized to false. If flag[i] is true, this value
indicates that Pi is ready to enter the critical section. The structure of
process Pi is shown in Figure 6.3.

In this algorithm, process Pi first sets fiag[i] to be true, signaling that it
is ready to enter its critical section. Then, Pi checks to verify that process
Pj is not ~lso r~ady to e~ter_its critical ~ection. If Pj were ready, t~en Pi
would wa1t until Pj had md1cated that 1t no longer needed to be 1n the
critic~l section (that is, until flagUl wa~ false). At this point, Pi would enter
the critical section. On exiting the critical section, Pi would set its flag to
be false, allowing the other process (if it is waiting) to enter its critical
s'ection.

In this solution, the mutual-exclusion requirement is satisfied.
Unfortunately, the progress requirement is not met. To illustrate this
problem, we consider the following execution sequence:

T 0: P 0 sets flag[O] = true
T 1: P 1 sets flag[l] = true

Now P 0 and P 1 are looping forever in their respective while statements.

repeat

flag[i] := true;
while flagU] do no-op;

critical section

I flag[i] : = false; I

remainder section

until false;

Figure 6.3 The structure of process Pi in algorithm 2.

6.2 The Critical-Section Problem • 169

This algorithm is crucially dependent on the exact timing of the two
processes. The sequence could have been derived in · ah enVironment
where there are several processors executing concurrently, or where an
interrupt (such as a ,timer interrupt) occurs immediately after step T

0
is

executed, and the CPU is switched froin one process to another.
Note that switching the order of the instructions for setting fiag[i], and

testing the value of a fiagU], will not solve our problem. Rather, we will
have a situation where it is possible for both processes to be in the critical
section at the same time, violating the mutual-exclusion requirem~nt.

6.2.1.3 Algorithm 3

By combining the key ideas of algorithm 1 and algorithm 2, we obtain a
correct solution . to the critical-section problem, where all three
requirements are met. The processes share two variables:

var fiag: array [0 .. 1] of boolean;
turn: 0 .. 1;

Initially fiag[O] = fiag[l] =false, and the value of turn is immaterial (but is
either 0 or 1). The structure of process Pi is shown in Figure 6.4.

To enter the critical section, process Pi first sets fiag[i] to be true, and
then asserts that it is the other process' turn to enter if appropriate (turn =
j). If both processes try to enter at the same time, turn will be set to both i
and j at roughly the same time. Only one of these assignments will last;
the other will occur, but will be overwritten immediateiy. The eventual

repeat

fiag[i] : = true;
turn := j;
while (fltigU] and turn=j) do no-op;

critical section

I fiag[i] : = false; I
remainder section

until false;

Figure 6.4 The structure of process Pi in algorithm 3.

170 • Chapter 6: Process Synchronization

value of turn decides which of the two processes is allowed to enter its
critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved,

· 2. The progress requirement is satisfied,

3. The bounded-waiting requirement is met.

To prove property 1, we note that each Pi enters its critical section only
if either flag[j] = false or turn = i. Also note that, if both processes can be
executing in their critical sections at the same time, then flag[O] = flag[1] =
true . . These two observations imply that P 0 and P 1 could not have executed
successfully their while statements at about the same time, since the value
of turn can be either 0 or 1, but cannot be both. Hence, one. of the
processes - say P. - must have executed successfully the while
statement, whereas Pi had to execute at least one additional statement
("turn = j"). However, since, at that time, flag[j] = true, and turn = i, and
this condition will persist as long as Pj is in its critical section, the result
follows: Mutual exclusion is preserved.

To prove properties 2 and 3, we note that a process Pi can be
prevented from entering the critical section only if it is stuck ih the while
loop with the condition flag[j] = true and turn = j; this loop is the only
one. If P. is not ready to enter the critical section, then flag[j] = false, and Pi
can entef its critical section. If P. has set flag[j] = true and is also executing
in its while statement, then either turn = i or turn = j. If turn = i, then Pi
will enter the critical section. If turn = j, then Pj will enter the critical
section. However, once Pj exits its critical section, it will reset flag[j] to false,
allowing Pi to enter its cntical section. If Pj resets flag[j] to true, it must also
set turn = i. Thus, since Pi does not change the value of the variable turn
while executing the while statement, Pi will enter the critical section
(progress) after at most one entry by Pj (bounded waiting).

6.2.2 Multiple-Process Solutions

.We have. seen that algorithm 3 solves the critical-section problem for two
processes. Now let us develop an algorithm for solving the critical-section
problem for n processes. This algorithm is known as the bakery algorithm,
and it is based on a scheduling algorithm commonly used in bakeries, ice
cream stores, meat markets, motor-vehicle registries, and other locations
where order must be made out of chaos. This algorithm was developed for
a distributed environment, but at this point we are concerned with only
those aspects of the algorithm that pertain to a centralized environment.

On entering the store, each customer receives a number. The customer
with the lowest number is served next. Unfortunately, the bakery

6.2 The Critical-Section Problem • 171

algorithm cannot guarantee that two processes (customers) do not receive
the same number. In the case of a tie, the process with the lowest name is
served first. That is, if Pi and Pj receive the same number and if i < j, then
Pi is served first. Since process names are unique and totally ordered, our
algorithm is completely deterministic.

The common data structures are

var choosing: array [O .. n-1] of boolean;
number: array [O .. n-1] of integer;

Initially, these data structures are initialized to false and 0, respectively.
For convenience, we define the following notation:

• (a,b) < (c,d) if a < c or if a = c and b < d.

• max(aO' ... , an_1) is a number, k, such that k > ai fori = 0, ... , n-1.

The structure of process Pi is shown in Figure 6.5.
To prove that the bakery algorithm is correct, we need first to show

that, if Pi is in its critical section and P k (k =I= i) has already chosen its

repeat

choosing[i] := true;
number[i] := max(number[O], number[1], ... , number[n-1]) + 1;
choosing[i] :=false;
for j : = 0 to n -1

do begin
while choosingU] do no-op;
while numberU] =I= 0

and (numberU],j) < (number[i],i) do no-op;
end;

critical section

I number[i] := 0; I

remainder section

until false;

Figure 6.5 The structure of process Pi in the bakery algorithm.

172 • Chapter 6: Process Synchronization

number[k] =I= 0, then (number[i],i) < (number[k],k). The proof of this
algorithm is left to you in Exercise 6.2.

Given this result, it is now simple to show that mutual exclusion is
observed. Indeed, consider Pi in its critical section and Pk trying to e.nter
the Pk critical section. When process Pk executes the second while
statement for j = i, it S.nds that

• number[i] =I= 0

• (number[i],i) < (number[k],k).

Thus, it continues looping in the while statement until Pi leaves the Pi
critical section.

If we wish to show that the progress and bounded-waiting
requirements are preserved, and that the algorithm ensures fairness, it is
sufficient to observe that the processes enter their critical section on a
first-come, first-served basis.

6.3 • Synchronization Hardware

As with other aspects of software, features of the hardware can make the
programming task easier and improve system efficiency. In this section,
we present some simple hardware instructions that are available on many
systems, and show how they can be used effectively in solving the critical
section problem.

The critical-section problem could be solved simply in a uniprocessor en
vironment if we could disallow interrupts to occur while a shared variable is
being modified. In this manner, we could be sure that the current sequence of
instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable.

Unfortunately, this solution is .not feasible in a multiprocessor environ
ment. Disabling interrupts on a multiprocessor can be time-consuming, as the
message is passed to all the processors. This message passing delays entry
into each critical section, and system efficiency decreases. Also, consider the
effect on a system's dock, if the clock is kept updated by interrupts.

Many machines therefore provide special hardware instructions that
allow us either to test and modify the content of a word, or to swap the
contents of two words, atomically. We can use these special instructions to
solve the critical-section problem in a relatively simple manner. Rather
than discussing one specific instruction for one specific machine, let us
abstract the main concepts behind these types of instructions. The Test
and-Set instruction can be defined as follows:

6.3 Synchronization Hardware • 173

function Test-and-Set (var target: boolean): boolean;
begin

Test-and-Set : = target;
target : = true;

end;

The important characteristic is that this instruction is executed atomically
- that is, as one uninterruptible unit. Thus, if two Test-and-Set instructions
are executed simultaneously (each on a different CPU), they will be
executed sequentially in some arbitrary order.

If the machine supports the Test-and-Set instruction, then we can
implement mutual exclusion by declaring a Boolean variable lock, initialized
to false. The structure of process Pi is shown in Figure 6.6.

The Swap instruction swaps the contents of two words, atomically, and
is defined as follows:

procedure Swap (var a, b: boolean);
var temp: boolean;
begin

temp:= a;
a:= b;
b := temp;

end;

As in the case of the Test-and-Set instruction, the Swap instruction is also
executed atomically.

repeat

I while Test-and-Set(lock) do no-op; I
critical section

I lock : = false; j

remainder section

until fcilse;

Figure 6.6 Mutual-exclusion implementation with Test-and-Set.

174 • Chapter 6: Process Synchronization

If the machine supports the Swap instruction, then mutual exclusion
can be provided as follows. A global Boolean variable lock is declared and
is initialized to false. In addition, each process also has a local Boolean
variable key. The structure of process Pi is shown in Figure 6.7.

These algorithms do not satisfy the bounded-waiting requirement. We
·present an algorithm that uses the Test-and-Set instruction in Figure 6.8.
This algorithm satisfies all the critical-section requirements. The common
data structures are

var waiting: array [O .. n-1] of boolean
lock: boolean

These data structures are initialized to false.
To prove that the mutual-exclusion requirement is met, we note that

process Pi can enter its critical section only if either waiting[i] = false or key
= false. Key can become false only if the Test-and-Set is executed. The first
process to execute the Test-and-Set will find key = fa.lse; all others must
wait. The variable waiting[i} can become false only if another process leaves
its critical .section; only one waiting[i] is set to false, maintaining the
mutual-exclusion requirement.

To prove the progress requirement, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to false, or sets waiting[j] to false. Both allow a
process that is waiting to enter its critical section to proceed.

repeat

key:= true;
repeat

Swap(lock,key);
until key = false;

critical section

jlock : = false; j

remainder section

until false;

Figure 6. 7 Mutual-exclusion implementation with the Swap instruction.

var j: 0 .. n-1;
key: boolean;

repeat

waiting[i] : = true;
key:= true;

6.4 Semaphores • 175

while waiting[i] and key do key := Test-and-Set(lock);
waiting[i] : = false;

critical section

j := i+1 mod n;
while (j =I= i) and (not waitingU]) do j : = j+ 1 mod n;
if j = i then lock : = false

else waitingU1 : = false;

remainder section

until false;

Figure 6.8 Bounded-waiting mutual exclusion with Test-and-Set.

To prove bounded waiting, we note that, when a process leaves its
critical section, it scans the array waiting in the cyclic ordering (i + 1, i + 2,
... , n - 1, 0, ... , i - 1). It designates the first process in this ordering that
is in the entry section (waitingU] = true) as the next one to enter the critical
section. Any process waiting to enter its critical section will thus do so
within n - 1 turns. Unfortunately for hardware designers, implementing
atomic test-and-set instructions on multiprocessors is not a trivial task.
Such implementations are discussed in books on computer architecture.

6.4 • Semaphores

The solutions to the critical-section problem presented in Section 6.3· are
not easy to generalize to more complex problems. To overcome this
difficulty, we can use a synchronization tool, called a semaphore. A·
semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait and signal.
These operations were originally· termed P (for wait; from the Dutch
proberen, to test) and V (for signal; from verhogen, to increment). The
classical definitions of wait and signal are

176 • Chapter 6: Process Synchronization

wait(5): while 5 < 0 do no-op;
5 := 5- 1;

signal(5): 5 := 5 + 1;

Modifications to the integer value of the semaphore in the wait and
signal operations must be executed indivisibly. That is, when onES process
modifies the semaphore value, no other process can simultaneously modify
that same semaphore value. In addition, in the case of the wait(5), the
testing of the integer value of 5 (5 < 0), and its possible modification (5 :=
5 - 1), must also be executed without interruption. We shall see how
these operations can be implemented in Section 6.4.2; first, le{us see how
semaphores can be used.

6.4.1 Usage

We can use semaphores to deal with the n-process critical-section problem.
The n processes share a semaphore, mutex (standing for mutual exclusion),
initialized to 1. Each process Pi is organized as shown in Figure 6.9.

We can also use semaphores to solve various synchronization
problems. For example, consider two concurrently running processes: P 1
witha statement 51, and P2 with a statement 52. Suppose thatwe require
that 52 be executed only after 51 has completed. We can implement this
scheme readily by letting P1 and P2 share a common semaphore synch,
initialized to 0, and by inserting the statements

51;
signal(synch);

in process P1, and the statements

wait(synch);
52;

in process P 2. Because synch is initialized to 0, P 2 will execute 52 only after
P 1 has invoked signal(synch), which is after 51.

6.4.2 Implementation

The main disadvantage of the mutual-exclusion solutions of Section 6.2,
and of the semaphore definition given here, is that they all require busy
waiting. While a process is in its critical section, any other process that tries
to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CPU is shared among many processes. Busy waiting wastes

6.4 Semaphores • 177

repeat

I wait(mutex); j

critical section

signal(mutex);

remainder section

until false;

Figure 6.9 Mutual-exclusion implementation with semaphores.

CPU cycles that some other process might be able to use productively. This
type of semaphore is also called a· spinlock (because the process "spins"
while waiting for the lock). Spinlocks are useful in multiprocessor
systems, as shown in Chapter 20. The advantage of a spinlock is that no
context switch is required when a process must wait on a lock, and a
context switch may take considerable time. Thus, when locks are expected
to be held for short times, spinlocks are useful.

To overcome the need for busy waiting, we can modify the definition
of the wait and signal semaphore operations. When a process executes the
wait operation and finds that the semaphore value is not positive, it must
wait. However, rather than busy waiting, the process can block itself. The
block operation places a process into a waiting queue associated with the
semaphore, and the state of the process is switched to the waiting state.
Then, control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be
restarted when some other process executes a signal operation. The process
is restarted by a wakeup operation, which changes the process from the
waiting state to the ready state. The process is then placed in the ready
queue. (The CPU may or may not be switched from the running process to
the newly ready process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a
semaphore as a record:

type semaphore = record
value: integer;
L: list of process;

end;

178 • chapter 6: Process Synchronization

Each semaphore has an integer value and a list of proce~ses. When a
process must wait on a semaphore, it is added to the list of processes. A
signal operation removes orie process from the list of waiting processes,
and awakens that process.

The semaphore operations can now be defined as

wait(S): S.value := S.value - 1;
if S. value < .. 0

signal(S):

then begin
add this process to S.L;
block;

end;

S.value := S.value + 1;
if S.value $ 0

then begin
remove a process P from S.L;
wakeup(P);

end;

The block operation suspends the process that invokes it. The wakeup(P)
operation resumes the. execution of a blocked process P. These two
operations are provided by the operating system as basic system calls.

Note that, although under ~he classical defiriition_ of semaphores with
busy waiting the semaphore valu~ is nev~r negative, this implementation
may have negati,ve semaphore values . .If the semaphore value is negative,
its magnitude is the ntimbet of processes waiting on that semaphore. This
fad is a result of the switching of the order of the decrement and the test
in the implementation of the wait operation. . .

The list of waiting processes cari be easily implemented by a link field
in each process control block (PCB). Each semaphore contains an integer
value and a pointer to a list of · PCBs. One way to add and remove
processes ftom the list, which en~ures bounded waiting, wouid be to use a
first-in, first-out (FIFO) queue, where the semaphore corita:lns both head
and tail pointers to the queue. lJ:l general, however, the list may use any

. queueing strategy. Ccirred usage of semaphores does not depend on a
particular queueing strategy for the semaphore Jists.

The critical aspect ,of semaphores is that they are executed atomically.
We must guarantee that no tWo processes can execute wait and signal
operations on the same semaphore at the same time. This situation is a
critical-section problem, and _cari be solved in either of two ways.

In a uniprocessor environment (that is, where only one CPU exists), we
can simply inhibit interrupts during the time the wait and signal operations
are executing. This scheme works in a uniprocessor environment because,

6.4 Semaphores • 179

once interrupts are inhibited, instructions from different processes cannot
be interleaved. Only the currently running process executes, until
interrupts are reenabled and the scheduler can regain control.

In a multiprocessor environment, inhibiting interrupts does not work.
Instructions from different processes (running on different processors) may
be interleaved in some arbitrary way. If the hardware does not provide any
special instructions, we can employ any of the correct software solutions
for the critical-section problem (Section 6.2), where the critical sections
consist of the wait and signal procedures.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait and signal operations. Rather, we
have removed busy waiting from the entry to the critical sections of
applications programs. Furthermore, we have limited it to only the critical
sections of the wait and signal operations, and these sections are short (if
properly coded, they should be no more than about 10 instructions). Thus,
the critical section is almost never occupied, and busy waiting occurs rarely,
and then for only a short time. An entirely different situation exists with
applications programs whose critical sections may be long (hours) or may
be almost· always occupied. In this case, busy waiting is extremely
inefficient.

6.4.3 Deadlocks and Starvation
The implementation of a semaphore with a waiting queue .may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes. The event in
question is the execution of a signal operation. When such a state is
reached, these processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, P0
and P1, each accessing two semaphores, Sand Q, set to the value 1:

Po

wait(S);
wait(Q);

signal(S);
signal(Q);

pl

wait(Q);
wait(S);

signal(Q);
signal(S);

Suppose that P0 executes wait(S), and then P1 executes wait(Q). When P0
executes wait(Q), it must wait until P1 executes signal(Q). Similarly, when
P1 executes wait(S), it must wait until P 0 executes signal(S). Since these
signal operations cannot be executed, . P 0 and P 1 are deadlocked.

180 • Chapter 6: Process Synchronization

We say that a set of processes is in a deadlock state when every
process in the set is waiting for an event that can be caused only by
another process in the set. The events with which we are mainly
concerned here are resource acquisition and release-. However, other types
of events may result in deadlocks, as we shall show in Chapter 7. In that
·chapter, we shall describe various mechanisms for dealing with the
deadlock problem.

Another problem related to deadlocks is indefinite blocking or starvation,
a s~tuation where processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO order.

6.4.4 Binary Semaphores

The semaphore construct described in the previous sections is commonly
known as a counting semaphore, since its integer value can range over an
unrestricted domain. A binary semaphore is a semaphore with an integer
value that can range only between 0 and 1. A binary semaphore can be
simpler to implement than a counting semaphore, depending on the
underlying hardware architecture. We will now show how a counting
semaphore can be implemented using binary semaphores. .

Let 5 be a counting semaphore. To implement it in tenns of binary
semaphores we need the following data structures:

var 51: binary-semaphore;
52: binary-semaphore;
53: binary-semaphore;
C: integer;

Initially 51 = 53 = 1, 52 = 0, and the value of integer Cis set to-the initial
value of the counting semaphore 5.

The wait operation on the counting semaphore 5 can be implemented
as follows:

wait(53);
wait(51);
c := c- 1;
if c < 0
then begin

signal(51);
wait(S2);

end
else signal(S1);
signal(S3);

6.5 Classical Problems of Synchronization • 181

The signal operation. on the counting semaphore S can be impl~mented
as follows:

wait(51);
c := c + 1;
if C < 0 then signal(S2);
signal(51);

The 53 semaphore has no effect on signal(S), it merely serializes the
wait(S) operations.

6.5 • Classical Problems of Synchronization

In this section, we present a number of different synchronization problems
that are important mainly because they are examples for a large class of
concurrency-control problems. These problems are used for testing nearly
every newly proposed synchronization scheme. Semaphores are used for
synchronization in our solutions.

6.5.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly
used to illustrate the power of synchronization primitives. We present here
a general structure of this scheme, without committing ourselves to any
particular implementation. We assume that the pool consists of n buffers,
each capable of holding one item. The mutex semaphore provides mutual
exclusion for accesses to the buffer pool and is initialized to the value 1.
The empty and full semaphores count the number of empty and full

. buffers, respectively. (Semaphores with initial values other than 1 are
sometimes known as counting semaphores.) The semaphore empty is
initialized to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry
between the producer and the consumer. We can interpret this code as the
producer producing full buffers for the consumer, or as the consumer
producing empty buffers for the producer.

6.5.2 The Readers and Writers Problem

A data object (such as a file or record) is to be shared among several
concurrent processes. Some of these processes may want only to read the
content of the shared object, whereas others may want to update (that is,
to read and write) the shared object. We distinguish between these two
types of processes by referring to those processes that are interested in

