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PREFACE 

Operating sysfems are an essential part of a computer system. Similarly, a 
course on operating systems is an essential part of a computer-science 
education. This book is intended as a text for an introductory course in 
operating systems at the junior or senior undergraduate level, or first-year 
graduate level. It provides a clear description of the concepts that underlie 
operating systems. · 

This book does not concentrate on any particular operating system or 
hardware. Instead, it discusses fundamental concepts that are applicable to 
a variety of systems. We do, however, present a large number of 
examples that pertain to UNIX and other popular operating systems. In 
particular, we use Sun Microsystem's Solaris 2 operating system, a version 
of UNIX, which recently has been transformed into a modern operating 
system with support for threads at the kernel and user levels, symmetric 
multiprocessing, and real-time scheduling. Other examples used include 
Microsoft MS-DOS, Windows, and Windows/NT, IBM OS/2, the Apple 
Macintosh Operating System, and PEC VMS and TOPS-20, among others. 

Prerequisites 
As prerequisites, we assume that the reader is familiar with general 
computer organization and a high-level language, such as PASCAL. The 
hardware topics required for an understanding of operating systems are 
included in Chapter 2. We use pseudo-PASCAL notation for code examples, 
but the algorithms can be understood without a thorough knowledge of 
PASCAL. 

v 
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Content of this Book 
The text is organized in six major parts: 

• Overview (Chapters 1 to 3). These chapters explain what operating 
systems are, what they do, and how they are designed and constructed. 
They explain how the concept of an operating system has developed, 
what the common features of an operating system are, what an 
operating system does for the user, and what it does for the 
computer-system operator. The presentation is motivational, historical, 
and explanatory in nature. We have avoided a discussion of how 
things are done internally in these chapters. Therefore, they are 
suitable for individuals or lower-level classes who want to learn what 
an operating system is, without getting into the details of the internal 
algorithms. Additionally, Chapter 2 covers the hardware topics which 
are important to an understanding of operating systems. Readers 
well-versed in hardware topics, including 110, DMA, and hard disk 
operation, may chose to skim or· skip this chapter. 

• Process management (Chapters 4 to 7). The process concept and 
concurrency are at the very heart of modern operating systems. A 
process is the unit of work in a system. Such a system consists of a 
collection of concurrently executing processes, some of which are 
operating-system processes (those that execute system code), and the 
rest of which are user processes (those that execute user code). These 
chapters cover various methods for process scheduling, interprocess 
communication, process synchronization, and deadlock handling. Also 
included under this topic is a discussion of threads. 

• Storage management (Chapters 8 to 12). A process must be in main 
memory (at least partially) during execution. To improve both the 
utilization of CPU and the speed of its response to its users, the 
computer must keep several processes in memory. There are many 
different memory-management schemes. These schemes reflect 
various approaches to memory management, and the effectiveness of 
the different algorithms depends on the particular situation. Since main 
memory is usually too small to accommodate all data and programs 
and cannot store data permanently, the computer system must provide 
secondary storage to back up main memory. Most modern computer 
systems use disks as the primary on-line storage medium for 
information (both programs and data). The file system provides the 
mechanism for on-line storage of and access to both data and programs 
residing on the disks. These chapters deal with the classic internal 
algorithms and structures of storage management. They provide a firm 
practical understanding of the algorithms used - the properties, 
advantages, and disadvantages. 
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• Protection and security (Chapters 13 and 14). The various processes in 
an operating system must be protected from one another's activities. 
For that purpose, mechanisms exist that can be used to ensure that the 
files, memory segments, CPU, and other resources can be operated on 
by o:h.ly those processes that have gained proper authorization from the 
operating system. Protection i~ a mechanism for controlling the access 
of programs, processes, or users to the resources defined by a 
computer system. This mechanism must provide a means for 
specification of the controls to be imposed, together with some means 
of enforcement. Security protects the information stored in the system 
(both data and code), as well as the physical resources of the computer 
system, from unauthorized access, malicious destruction or alteration, 
and accidental introduction of inconsistency. 

• Distributed systems (Chapters 15 to 18). A distributed system is a 
collection of processors that do not share memory or a clock. Such a 
system provides the user with access to the various resources the 
system maintains. Access to a shared resource allows computation 
speedup and improved data availability and reliability. Such a system 
also provides the user with a distributed file system, which is a file
service system whose users, servers, and storage devices are dispersed 
among the various sites of a distributed system. A distributed system 
must provide various mechanisms for process synchronization and 
communication, for dealing with the deadlock problem and the variety 
of failures that are not encountered in a centralized system. 

• Case studies (Chapters 19 to 21). The various concepts described in 
this book can be drawn together by describing real operating systems. 
Two UNIX-based operating systems are covered in detail - Berkeley 
4.3BSD and Mach. These operating systems were chosen in part because 
UNIX at one time was almost small enough to understand and yet was 
not a toy operating system. Most of its internal algorithms were 
selected for simplicity, not for speed or sophistication. UNIX is readily 
available to computer-science departments, so many students have 
access to it. Mach provides an opportunity for us to study a modern 
operating system that provides compatibility with 4.3BSD but has a 
drastically different design and implementation. Chapter 21 briefly 
describes some of the most influential operating systems. 

• The Nachos System (Appendix). A good way to gain a deeper 
understanding of modern operating systems concepts is for the 
students to get their hands dirty - to take apart the code for an 
operating system, to see how it works at a low level, to build 
significant pieces ·of the operating system themselves, and to observe 
the impact of those changes. The Nachos instructional operating 
system, which is briefly described in the Appendix, provides the 
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opportunity to see how the basic concepts introduced in this text can 
be used to solve real-world problems. The Nachos system was 
developed by Professor Thomas Anderson from the University of 
California at Berkeley, to complement the third edition of this text, and 
it is freely available in the public domain via the Internet. Reviewers, 
who ha~"_used the . Nachos project at other universities, call it a 
practical and positive supplement. 

The Fourth Edition 
Many comments and suggestions were forwarded to us concerning our 
previous editions. These, together with our own observations, have 
prodded us to produce this fourth edition. Our basic procedure was to 
reorganize and rewrite the material in each chapter,. adding new 
information, examples, and diagrams where appropriate. We also brought 
older material up to date and removed material that was no longer of 
interest. Finally, we improved the exercises and updated the references. 

Substantive revisions were made in the following chapters: 

• Chapter 1. We have condensed some of the material related to older 
systems and have expanded our discussion of parallel, distributed, and 
real-time systems. 

• Chapter 2. We collected coverage of strictly-hardware topics from the 
other chapters and reorganized them here, making this material easier 
to skip if it is already understood, and easier to use as a reference. We 
also expanded discussion of IJO topics, caching, and protection. 

• Chapter 4. This chapter introduces the process concept. The material 
in this chapter appeared in parts of old Chapters 4 and 5. We moved 
the IPC material from old Chapter 5 to Chapter 4, since we believe that 
the material should be covered as part of the discussion on the process 
concept rather that as part of the process coordination chapter. We 
also expanded our discussion on threads considerably, and included 
Solaris 2 threads as an example. 

• Chapter 5. This chapter is a reorganized old Chapter 4. It now deals 
primarily with CPU scheduling issues. · 

• Chapter 6. This chapter is a reorganized old Chapter 5. We removed 
Eisenberg and McGuire's solution to the critical-section problem for n 
processes from the main text (it is now an exercise).· We also 
condensed the discussions concerning the critical region concept. We 
added new material on atomic transactions, including write-ahead 
logging and concurrency control schemes. Synchronization in Solaris 2 
is included as an example. 
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• Chapters 8 and 9. We have added new material on up-to-date 
computer architectures th~t support paging and segmentation for large 
address spaces. Segmentation and paging are illuminated by an OS/2 

example. 

• Chapters 10, 11, and 12. We have expanded the material and 
completely reorganized the presentation of the file-system concept and 
implementation. We now present the logical aspect of the file system 
in Chapter 10, the implementation issues in Chapter 11, and the 
underlying secondary storage system in Chapter 12. We also have 
added new material on swap space, stable storage, recovery, reliability 
and performance. 

• Chapters 13 and 14. We have separated old Chapter 11 into hyo 
chapters -one dealing with protection issues (Chapter 13), the other 
dealing with security issues (Chapter 14). In each of these chapters, 
we have reorganized the material, and have added new information. 
Major expansions include coverage of the Internet Worm and viruses. 

• Chapters 15 and 16. We have separated old Chapter 12 into two 
chapters - one dealing with network structures (Chapter 15), the 
other dealing with distributed system structure (Chapter 16). In each of 
these chapters, we have reorganized the material, and have added new 
information. Major expansions include coverage of network protocols 
and functionality, remote services, thread-management, and the Open 
Software Foundation's Distributed Computing Environment (DCE) 
thread package. 

• Chapter 17. This is old Chapter 14 on distributed file systems. We 
have brought the material up-to-date in this rapidly changing area. 

• Chapter 18. This is, old Chapter 13 on distributed coordination. We 
have brought the material up-to-date and added new sections on the 
two-phase commit protocol and concurrency control schemes. 

• Chapter 19. This chapter on UNIX has been updated to reflect the 
current state of BSD UNIX and its current implementation. 

• Chapter 20. This is old Chapter 16 on the Mach operating system. It 
has peen updated to describe components of Mach version 3. 

• Appendix. This is a new Appendix, which was was authored by 
Professor Thomas Anderson from UC Berkeley. This Appendix 
provides a brief tutorial introduction to the Nachos system. The 1 

Appendix presents the philosophy governing the Nachos environment/ 
as well as providing a general introduction to the Nachos operating 
system and the five project activities which accompany the software. 
The Appendix concludes with instructions fqr retrieving Nachos from 
the Internet via ftp. 
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Mailing List and Supplements 
We now provide an environment where users can communic~te among 
themselves anq with us. We have created a mailing list consisting of users 
of our book with the e-mail address - os-book@cs. utexas.edu. If you wish 
to be on the list, please send a message to avi@cs. utexas.edu indicating 
your name, affiliation, and e-mail address. , 

For information about the teaching supplements, which complement 
this book, mail may be sent to os4e@aw.com. 

Errata 
We have attempted to clean up every error in this new edition, but- as 
happens with operating systems - there will undoubtedly still be some 
obscure bugs. We would appreciate it if you, the reader, would notify us 
of any errors or omissions in the book. Also, if you would like to suggest 
improvements or to contribute exercises, we would be glad to hear from 
you. Any correspondence should be sent to A. Silberschatz, Department of 
Computer Sciences, The University of Texas. 
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PART ONE 

OVERVIEW 

An operating system is a program that acts as an intermediary between a 
user of a computer and the computer hardware. The purpose of an 
operating system'is to provide an environment in which a user can execute 
programs in a convenient and efficient manner. 

We trace the development of operating systems from the first hands-on 
systems to current multiprogrammed and time-shared systems. 
Understanding the reasons behind the development of operating systems 
gives us- an· appreciation for what an operating system does and how it 
does it. 

The operating system must ensure the correct operation of the 
computer system. To prevent user programs from interfering with the 
proper operation of the system, the hardware must provide appropriate 
mechanisms to ensure such proper behavior. We describe the basic 
computer architecture that makes it possible to write a correct operating 
system. 

The operating system provides certain services to programs and to the 
users of those programs in order to make the programming task easier. 
The specific se:J;Vices provided will, of course, differ from one operating 
system to another, but there are some common classes of services that we 
identify and explore. 





CHAPTER 1 

INTRODUCTION 

An operating system is a program that acts as an intermediary between a 
user of a computer and the computer hardware. The purpose of an 
operating system is to provide an environment in which a user can execute 
programs. The primary goal of an operating system is thus to make the 
computer system convenient to use. A secondary goal is to use the 
computer hardware. in an efficient manner. 

To understand what operating systems are, we must first understand 
how they· have developed. In this chapter, we trace the development of 
operating systems frpm the first hands-on systems to current 
multiprogrammed and time-shared systems. As we move through the 
various stages, we see how the components of operating systems evolved 
as natural solutions to problems in early computer systems. 
Understanding the reasons behind the development of operating systems 
gives us an appreciation for what tasks an operating system does and how 
it does them. 

1.1 • What Is an Operating System? 

An operating system is an important part of almost every computer 
.system. A computer system can be divided roughly into four components: 
the hardware, the operating system, the applications programs, and the users 
(Figure 1.1). 

The hardware - the central processing unit (CPU), memory, and 
input/output (I!O) devices - provides the basic computing resources. The 
applications programs- such as compilers, database systems, games, and 
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tasks. Since there may be many, possibly conflicting, requests for 
resources, the operating system must decide which requests are allocated 
resources to operate the computer system efficiently and fairly. 

A slightly different view of an operating system focuses on the need to 
control the various 1/0 devices and user programs. An operating system is 
a control program. A control program controls the execution of user 
programs to prevent errors and improper use of the computer. It is 
especially concerned with the operation and control of 1/0 devices. 

In general, however, there is no completely adequate definition of an 
operating system. Operating systems exist because they are a reasonable 
way to solve the problem of creating a usable computing system. The 
fundamental goal of computer systems is to execute user programs and to, 
make solving user problems easier. Toward this goal, computer hardware 
is constructed. Since bare hardware alone is not particularly easy to use, 
applications programs are developed. These various programs require 
certain common operations, such as those controlling the I/O devices. The 
common functions of controlling and allocating resources are then brought 
together into one piece of software: the operating system. 

There is also no universally accepted definition of ·what is part of the 
operating system and what is not. A simple viewpoint is that everything a 
vendor ships when you order "the operating system" should be 
considered. The memory requirements and features included, however, 
vary greatly across systems. Some take up less than 1 megabyte of space 
(a megabyte is one million bytes) and lack even a full-screen editor, while 
others require hundreds of megabytes of space and include spelling 
checkers and entire "window systems." A more common definition is that 
the operating system is the one program running at all times on the 
computer (usually called the kernel), with all else being applications 
programs. The latter is more common and is the one we generally follow. 

It is easier to define operating systems by what they do, rather than by 
what they are. The primary goal of an operating system is convenience for 
the user. Operating systems exist because they are supposed to make it 
easier to compute with one than without one. This view is particularly 
clear when you look at operating systems for small personal computers. 

A secondary goal is efficient operation of the computer system. This 
goal is particularly important for large, shared multiuser systems. These 
systems are typically expensive, so it is desirable to make them as efficient 
as possible. These two goals, convenience and efficiency, are sometimes 
contradictory. In the past, efficiency considerations were often more 
important than convenience. Thus, much of operating-system theory 
concentrates on optimal use of computing resources. 

To see what operating systems are and what operating systems do, let 
us consider how they have developed over the last 30 years. By tracing 
that evolution, we can identify the common elements of operating systems 
and see how and why these systems have developed as they have. 
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Operating systems and computer architecture have had a great deal of 
influence on each other. To facilitate the use of the hardware, operating 
systems were developed. As operating systems were designed and used, it 
became obvious that changes in the design of the hardware could simplify 
them. In this short historiCal review, notice how operating-system 
problems lead to the introduction of new hardware features. 

1.2 • Early Systems 

Early computers were (physically) enormously large machines run from a 
console. The programmer, who was also the operator of the computer 
system, would write a program, and then would operate the program 
directly from the operator's console. First, the program would be loaded 
manually into memory, from the front panel switch~s (one instruction at a 
time), from paper tape, or from punched cards. Then, the appropriate 
buttons would be pushed to set the starting address and to start the 
execution of the program. As the program ran, the programmer/operator 
could monitor its execution by the display lights on the console. If errors 
were discovered, the programmer could halt the program, examine the 
contents of memory and registers, and debug the program directly from 
the console. Output was printed,,,ar was punched onto paper tape or cards 
for later printing. 

As time went on, additional software and hardware were developed. 
Card readers, line printers, and magnetic tape became commonplace. 
Assemblers, loaders, and linkers were designed to ease the programming 
task. Libraries of common functions were created. Common functions 
could then be copied into a new program without having to be written 
again, providing software reusability. 

The routines that performed 110 were especially important. Each new 
1/0 device had its own characteristics, requiring careful programming. A 
special subroutine was written for each 1/0 device. Such a subroutine is 
called a device driver. A device driver knows how the buffers, flags, 
registers, control bits, and status bits for a particular device should be 
used. Each different type of device has its own driver. A simple task, such 
as reading a character from a paper-tape reader, might involve complex 
sequences of device-specific operations. Rather than writing the necessary 
code every time, the device driver was simply used from the library. 

Later, compilers for FORTRAN, COBOL, and other languages appeared, 
making the programming task much easier, but the operation of the 
computer more complex. To prepare a FORTRAN program for execution, for 
example, the programmer would first need to load the FORTRAN compiler 
into the computer. The compiler was normally kept on magnetic tape, so 
the proper tape would need to be mounted on a tape drive. The program 
would be read through the card reader and written onto another tape. The 
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FORTRAN compiler produced assembly-language output, which then needed 
to be assembled. This procedure required mounting another tape with the 
assembler. The output of the assembler would need to be linked to 
supporting library routines. Finally, the binary object form of the program 
would be ready to execute. It could be loaded into memory and debugged 
from the console, as before. 

Notice that there could be a significant amount of set-up time involved 
in the running of a job. Each job consisted of many separate steps: loading 
the FORTRAN compiler tape, running the compiler, unloading the compiler 
tape, loading the assembler tape, running the assembler, unloading the 
assembler tape, loading the object program, and running the object 
program. If an error occurred during any step, you might have to start 
over at the beginning. Each job step might involve the loading and 
unloading of magnetic tapes, paper tapes, and punch cards. 

1.3 • Simple Batch Systems 

The job set-~p time was a real problem. While tapes were being mounted 
or the programmer was operating the console, the CPU sat idle. Remember 
that, in the early days, few computers were available, and they were 
expensive (they cost millions of dollars). In addition, there were the 
operational costs of power, cooling, programmers, and so on. Thus, 
compu.ter time was extremely valuable, and owners wanted their 
computers to be used as much as possible. They needed high utilization to 
get as much as they could from their investments. 

1.3.1 Resident Monitor 
The solution was two-fold. First, a professional computer operator was 
hired. The programmer no longer operated the machine. As soon as one 
job was finished, the operator could start. the next. Since the operator had 
more experience with mounting tapes than a programmer, set-up time was 
reduced. The user provided whatever cards or tapes were needed, as well 
as a short description of how the job was to be run. Of course, the 
operator could not debug an incorrect program at the console, since the 
operator would not understand the program. Therefore, in the case of 
program error, a dump of memory and registers was taken, and the 
programmer had to debug from the dump. Dumping the memory and 
registers allowed the operator to continue immediately with the next job, 
but left the programmer with~ much more difficult debugging problem. 

The second major time savings involved reducing set-up time. Jobs 
with similar needs were batched together and run through the computer as 
a group. For instan(:e, suppose the operator received one FORTRAN job, one 
COBOL job, and another FORTRAN job. If she ran them in that order, she 
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would have to set up for FORTRAN (load the compiler tapes, and so on),

then set up for COBOL, and then set up for FORTRAN again, If she ran the
two FORTRAN programs as a batch, however, she could set up only once for

FORTRAN, saving operator time.

These Changes, making the operator distinct from the user and
batching similar jobs, improved utilization quite a bit. Programmers would

leave their programs with the operator. The operator would sort them into
batches with similar requirements and, as the computer became availabie,

would run each batch. The output from each job would be sent back to the

appropriate programmer.

But there were still problems. For example, when a job stopped, the

operator would have to notice that fact by observing the console,

determine why the program stopped (normal or abnormal termination),
take a dump if necessary, and then load the appropriate device with the

next job and restart the Computer. During this transition from one job to
the next, the CPU sat idle.

To overcome this idle time, peopie developed automatic job sequencing;
with this technique, the first rudimentary operating systems were created‘

What was desired was a procedure for automatically transferring control
from one job to the next. A small program, called a resident monitor, was

created for this purpose (Figure 1.2.). The resicient monitor is always
(resident) in memory.

Wihen the computer was turned on, the resident monitor was invoked,
and it would transfer control to a program. When the program terminated,

monitor

Figure 1.2 Memory layout for a resident monitor.
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it would return control to the resident monitor, which would then go on to 
the next program. Thus, the resident monitor would automatically 
sequence from one progra~ to anoth~r and from o~e jol? to. another. 

But how would the resident monitor know which program to execute? 
Previously, the operator had been given a short description of what 
programs were to be run on. what data. So that th~s information co~ld ~e 
provided directly to the monitor, control cards were Introduced. The Idea Is 
quite simple. In addition to the program or data for a job, the programmer 
included special cards (control cards) containing directives to the resident 
monitor indicating the program to run. For example, a normal user 
program might require one of three programs to run: the FORTRAN compiler 
(FTN), the assembler (ASM), or the user's program (RUN). We could use a 
separate control card for each of these: 

$FTN- Execute the FORTRAN compiler. 
$ASM- Execute the assembler. 
$RUN- Execute the user program. 

These cards tell the resident monitor which programs to run. 
We can use two additional control cards to define the boundaries of 

each job: 

$JOB - First card of a job. 
$END- Last card of a job. 

These two cards might be useful for accounting for the machine resources 
used by the programmer. Parameters can be used to define the job name, 
account number to be charged, and so on. Other control cards can be 
defined for other functions, such as asking the operator to load or unload a 
tape. 

One problem with control cards is how to distinguish them from data 
or program cards. The usual solution is to identify them by a special 
character or pattern on the card. Several systems used the dollar-sign 
character ($) in the first column to identify a control card. Others used a 
different code. IBM's Job Control Language (JCL) used slash marks(//) in the 
first two columns. Figure 1.3 shows a sample card-deck setup for a simple 
batch system. 

A resident monitor thus has several identifiable parts. One is the 
control-card interpreter that . is responsible for reading and carrying out the 
instructions on the cards at the point of execution. The control-card 
interpreter at intervals invokes a loader to load systems programs and 
applications programs into memory. Thus, a loader is a part of the resident 
monitor. Both the control-card interpreter and the loader need to perform 
IIO, so the resident monitor has a set of device drivers for the system's 110 

devices. Often, the system and applications programs are linked to these 
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Figure 1.3 Card deck for a simple batch system.

same device drivers, providing continuity in their operatien, as well as

saving memory space and programming time.
These batch systems work fairly Well. The resident monitor provicfies

automatic: job sequencing as indicated by the Control cards. When a

control card indicates that a program is to be run, the moniter loads the

program into memory and transfers control be it. yWh.en the program
completes, it transfers control back to the monitor, which reads the next

control card, loads the appropriate program, and so on. This cycle is
repeated until all control cards are interpreted for the job. Then, the
monitor automatically Continues with the next job.

A batch operating system, thus, normally reads a stream of separate
jobs (from a card reader, for example), each with its own control Cards that

predefine what the job does. When the job is complete, its output is

usually printed (on a line printer, for example). The definitive feature of a

batch system is the lack of interaction between the user and they job while

that job is executing. The job is prepared and submitted. At some later

time (perhaps minutes, hours, or days), the output appears. The delay
between job submission and job Completion (called turnaround time) may

result from the amount of computing needed, or from deiays before the
operating system starts to process the job.

1.3.2 Overlapjped CPU and I/O Opehratioznhs

The switch to batch systems with automatic job sequencing was made ta

improve performance. The problem, quite simply, is that humans are

extremely slow (relative to the computer, of course). Consequently, it is
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desirable to replace human operation by operating-system software. 
Automatic job sequencing eliminates the need for human set-up time and 
job sequencing. 

Even with automatic job sequencing, however, the CPU is often idle. 
The problem is the speed of the mechanical I/O devices, which are 
intrinsically slower than electronic devices. Even a slow CPU works in the 
microsecond range, with millions of instructions executed per second. A 
fast card reader, on the other hand, might read 1200 cards per minute (17 
cards per second). Thus, the difference in speed between the CPU and its 
IJO devices may be three orders of magnitude or more. Over time, of 
course, improvements in technology resulted in faster IJO devices. 
Unfortunately, CPU speeds increased even faster, so that the problem was 
not only unresolved, but also exacerbated. 

1.3.2.1 Off-line processing 

One common solution was to replace the very slow card readers (input 
devices) and line printers (output devices) with magnetic-tape units. The 
majority of computer systems in the late 1950s and early 1960s were batch 
systems reading from card readers and writing to line printers or card 
punches. Rather than have the CPU read directly from cards, however, the 
cards were first copied onto a magnetic tape via a separate device. When 
the tape was sufficiently full, it was taken down and carried over to the 
computer. When a card was needed for input to a program, the equivalent 
record was read from the tape. Shnilarly, output was written to the tape 
and the contents of the tape would be printed later. The card readers and 
line printers were operated off-line, rather than by the main computer 
(Figure 1.4). 

The main advantage of off-line operation was that the main computer 
was no longer constrained by the speed of the card readers and ·line 
printers, but was limited by only the speed of the much faster magnetic 

card reader line printer 

(a) 

card reader tape drives 

(b) 

Figure 1.4 Operation of 110 devices. (a) On-line. (b) Off-line. 
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tape units. This technique of using magnetic tape for all I/O could be 
applied with any similar equipment (card readers, card punches, plotters, 
paper tape, printers). . 

The real gain in off-line operation comes from the possibility of using 
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU 
can process input twice as fast as the reader can read cards, then two 
readers working simultaneously can produce enough tape to keep the CPU 
busy. On the other hand, there is now a longer delay in getting a 
particular job run. It must first be read onto tape. Then, there is a delay 
until enough other jobs are read onto the tape to "fill" it. The tape must 
then be rewound, unloaded, hand-carried to the CPU, and mounted on a 
free tape drive. This process is not unreasonable for batch systems, of 
course. Many similar jobs can be hatched onto a tape before it is taken to 
the computer. 

1.3.2.2 Spooling 

Although off-line preparation of jobs continued for some time, it was 
quickly replaced in most systems. Disk systems became widely available 
and greatly improved on off-line operation. The problem with tape systems 
was that the card reader could not write onto one end of the tape while 
the CPU read from the other. The entire tape had to be written before it 
was rewound and read, because tapes are by nature sequential-access devices. 
Disk systems eliminated this problem by being random-access devices. 
Because the head is moved from one area of the disk to another, a disk can 
switch rapidly from the area on the disk being used by the card reader to 
store new cards, to the position needed by the CPU to read the "next" card. 

In a disk system, cards are read directly from the card reader onto the 
disk. The location of card images is recorded in a table kept by the 
operating system. When a job is executed, the operating system satisfies its 
requests for card-reader input by reading from the disk. Similarly, when 
the job requests the printer to output a line, that line is copied into a 
system buffer and is written to the disk. When the job is completed, the 
output is actually printed. 

This form of processing is called spooling (Figure 1.5). The name is an 
acronym for simultaneous peripheral operation on-line. Spooling, in 
essence, uses the disk as a very large buffer, for reading as far ahead as 
possible on input devices and for storing output files until the output 
devices are able to accept them. 

Spooling is also used for processing data at remote sites. The CPU 
sends the data via communications paths to a remote printer (or accepts an 
entire input job from a remote card reader). The remote processing is 
done at its own speed with no CPU intervention. The CPU just needs to be 
notified when the processing is completed, so that it can spool the next 
batch of data. r 
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Figure 1 .5 Spooling.

Spoofing overlaps the 1/0 of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job

While printing the output of {it different job. During this time, still another

job (or jobs) may be executed, reading their “Cars:is” from fiisk and
“printing” their output lines onto the disk.

Spoofing has a direct beneficial effect on the performance of the

system. For the cost of some disk space and a few tables, the computation
of one job can overlap with the 1/0 of other jobs. Thus, spoofing cam keep

both the CPU and the 1/0 deviceslwotking at much higher rates.

194 I Multiprogrammed Batched Systems

Spooling providesan important data structure: a job pool. Spoofing will
generally result in several jobs that have already been read waiting on
disk, ready to run. A pool of jobs on disk allows the operating system to
select which job to run next, in order to increase CPU utilization. When jobs

come in directly on cards or even on magnetic tape, it is not possible to

run jobs in a different order. Jobs must be run sequentially, on a first»

come, first-served basis. However, when several jobs are on a direct»

access device, such as a disk, job scheduling becomes possible. We discuss

gob and CPU scheduling in greater detail in Chapter 5; a. few important

aspects are covered here.

The most important aspect of job scheduling is the ability to

multiprogram, Off-line operation and spoofing for overlapped I/Q have their
limitations. A single user cannot, in general, keep either the CPU or the 1/0

devices busy at all times. Multiprogramming increases CPU utilization by

organizing jobs so that the CPU always has something to execute.
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The idea is as ·follows. The operating system keeps several jobs in 
memory at a time (Figure 1.6). This set of jobs is a subset of the jobs kept 
in the job pool (since the number of jobs that can be kept simultaneously 
in memory is usually much smaller than the number of jobs that can be in 
the job pool.) The operating system picks and begins to execute one of the 
jobs in the memory. Eventually, the job may have to wait for some task, 
such as a tape to be mounted, a command to be typed on a keyboard, or 
an 110 operation to complete. In a nonmultiprogrammed system, the CPU 
would sit idle. In a multiprogramming system, the operating system 
simply switches to and executes another job. When that job needs to wait, 
the CPU is switched to another job, and so on. Eventually, the first job 
finishes waiting and gets the CPU back. As long as there is always some job 
to execute, the CPU will never be idle. 

This idea is quite common in other life situations. A lawyer does not 
have only one client at a time. Rather, several clients may be in the process 
of being served at the same time. While one case is waiting to go to trial or 
to have papers typed, the lawyer can wo.rk on another case. With enough 
clients, a lawyer need never be idle. (Idle lawyers tend to become 
politicians, so there is a certain social value in keeping lawyers bu~y.) 

Multiprogramming is the first instance where the operating system 
must make decisions for the users. Multiprogrammed operating systems 
are therefore fairly sophisticated. All the jobs that enter the system are 
kept in the job pool. This pool consists of all processes residing on mass 
storage awaiting allocation of main memory. If several jobs are ready to be 
brought into memory, and there is not enough room for all of them, then 
the system must choose among them. This decision is job scheduling, which 

0 

512K 

Figure 1.6 Memory layout for a multiprogramming system. 
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is discussed in Chapter 5. When the operating system selects a job from 
the job pool, it loads it into me~ory for .execution. Having several 
programs in memory at the same hme requues some form of memory 
management, which is covered in Chapters 8 and 9. In addition, if several 
jobs are ready to run at the same time, the system inust choose among 
them. This decision is CPU scheduling, which is discussed in Chapter 5. 
Finally, multiple jobs running concurrently require that their ability to 
affect one another be limited in all phases of the operating system, 
including process scheduling, disk storage, and memory management. 
These considerations are discussed throughout the text. 

1.5 • Time-Sharing Systems 

Multiprogrammed batched systems provide an environment where the 
various system resource~ (for example, CPU, memory, peripheral devices) 
are utilized effectively. There are some difficulties with a batch system 
from the point of view of the programmer or user, however. Since the user 
cannot interact with the job when it is executing, the user must set up the 
control cards to handle all possible outcomes. In a multistep job, 
subsequent steps may depend on the result of earlier ones. The running of 
a program, for example, may depend on successful compilation. It can be 
difficult to define completely what to do in all cases. 

Another difficulty is that programs must be debugged statically, from 
snapshot dumps. A programmer cannot modify a program as it executes to 
study its behavior. A long turnaround time inhibits experimentation with a 
program. (Conversely, this situation may instill a certain amount of 
discipline into the writing and testing of programs.) 

Time sharing (or multitasking) is a logical extension of 
multiprogramming. Multiple jobs are executed by the CPU switching 
between them, but the switches occur so frequently that the users may 
interact with each program while it is running. 

An interactive, or hands-on, computer system provides on-line 
communication between the user and the system. The user gives 
instructions to the operating system or to a program directly, and receives 
art immediate response. Usually, a keyboard is used to provide input, and 
a display screen (such as a cathode-ray tube (CRT), or monitor) is used to 
provide output. When the operating system finishes the execution of one 
command, it seeks the next "control statement" not from a card reader, but 
rather from the user's keyboard. The user gives a command, waits for the 
response, and decides on the next command, based on the result of the 
previous one. The user can easily experiment, and can see results 
immediately. Most systems have an interactive text editor for entering 
programs, and- an interactive debugger for assisting in debugging 
programs. 
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If users are to be able to access both data and code conveniently, an 
on-line file system must be available. A file is a collection of related 
information defined by its creator. Commonly, files represent programs 
(both source and object forms) and data. Data files may be numeric, 
alphabetic, or alphanumeric. Files may be free-form, such as text files, or 
may be rigidly formatted. In general, a file is a sequence of bits, bytes, 
lines, or records whose meaning is defined by its creator and user. The 
operating system implements the abstract concept of a file by managing 
mass-storage devices, such as tapes and disks. Files are normally organized 
into logical clusters, or directories, which makes them easier to use. Since 
multiple users have access to files, it is desirabie to control by whom and 
in what ways files may be accessed: 

Batch systems are quite appropriate for executing large jobs that need · 
little interaction. The user can submit jobs and return later for the results; 
it is not necessary to wait while the job is processed. Interactive jobs tend 
to be composed of many short actions, where the results of the next 
command may be unpredictable. The user submits the command and then 
waits for the results. Accordingly, the response time should be quite short 
-on the order of seconqs at .most. An interactive system is used when a 
short response time is required. 

Early computers were interactive· systems. That is, the entire system 
was at the immediate disposal of the programmer/operator. This situation 
allowed the programmer great flexibility and freedom in program testing 
and development. But, as we saw, this arrangement resulted in substantial 
idie time while the CPU waited for some action to be taken by the 
programmer/operator. Because of the high cost of these early computers, 
idle CPU time was undesirable. Batch operating systems were developed to 
avoid this problem. Batch systems improved system utilization for the 
owners of the computer systems. 

Time-'sharfng systems were developed to provide interactive use of a 
computer system at a reasonable cost. A time-shared operating system uses 
CPU scheduling and multiprogramming to provide each user with a small 
portion of a time-shared computer. Each user has at least one separate 
program in memory. A program that is loaded into memory and is 
executing is commonly referred to as a process. When a process executes, it 
typically executes for only a short time before it either finishes or needs to 
perform I/0. I/O may be interactive; that is, output is to a display for the 
user and input is from a user keyboard. Since interactive I/O typically runs 
at people speeds, it may take a long time to complete~ Input, for example, 
may be bounded by the u~er' s typing speed; five characters per second is 
fairly fast for people, but is very slow for computers. Rather than let the 
CPU sit idle when this interactive input takes place, the operating system 
will rapidly switch the CPU to the program of some other user. 

A time-shared operating system allows the many users to share the 
computer simultaneously. Since each actiori or command in a time-shared 



1.6 Personal-Computer Systems • 17 

stem tends to be short, only a little CPU.time is needed for each user. As :he system switches rapidly from one user to the next, each user is given 
the impression that she has her own computer, whereas actually one 
computer is bein9 shared ~mong many users. . 

The idea of time shanng was d:emonstrated as early as 1960, but stnce 
time-shared systems are more difficult and expensive to build (due to the 
numerous 110 devices needed), they did not become common until the 
early 1970s. As the popularity of time sharing has grown, researchers have 
attempted to merge batch and time-shared systems. Many computer 
systems that were designed as primarily batch systems have been modified 
to create a time-sharing subsystem. For example, IBM's OS/360, a batch 
system, was modified to support the Time-Sharing Option (TSO). At the 
same time, time-sharing systems have often added a batch subsystem. 
Today, most systems provide both batch processing and time sharing, 
although their basic design and use tends to be one or the other type. 

Time-sharing operating systems are even more complex than are 
multiprogrammed operating systems. As in multiprogramming, several 
jobs must be kept simultaneously in memory, which requires some form of 
memory management .and protection (Chapter 8). So that a reasonable 
response time can be obtained, jobs may have to be swapped in and out of 
main memory to the disk that now serves as a backing store for main 
memory. A common method for achieving this goal is virtual memory, 
which is a technique that allows the execution of a job that may not be 
completely in memory (Chapter 9). The main visible advantage of this 
scheme is that programs can be larger than physical memory. Further, it 
abstracts main memory into a large, uniform array of storage, separating 
logical memory as viewed by the user from physical memory. This frees 
programmers from concern over memory storage limitations. Time-sharing 
systems must also provide an on-line file system (Chapters 10 and 11). 
The file system resides on a collection of disks; hence, disk management 
must also be provided (Chapter 12). Also, time-sharing systems provide a 
mechanism for concurrent execution, which requires sophisticated CPU 
scheduling schemes (Chapter 5). To ensure orderly execution, the system 
must provide mechanisms for job synchronization and communication 
(Chapter 6), and must ensure that jobs do not get stuck in a deadlock, 
forever waiting for each other (Chapter 7). 

Multiprogramming and time sharing are the central themes of modern 
operating systems, and are the central themes of this book. 

1.6 • Personal-Computer Systems 

As hardware costs have decreased, it has once again become feasible to 
have a computer system dedicated to a single user. These types of 
computer systems are usually referred to as personal computers, or just PCs. 
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The 110 devices have certainly changed, with panels of switches and card 
readers replaced with typewri~er-like keyboards and mice. Line printers 
and card punches have succumbed to display screens and small, fast 
printers. . . 

Personal computers appeared in the 1970s. They are microcomputers 
that are considerably smaller and less expensive than mainframe systems. 
Until recently, the CPUs of these types of computer systems have been 
lacking the features needed to protect an operating system from user 
programs. Their operating systems therefore have been neither multiuser 
nor multitasking. However, the goals of these operating systems have 
changed with time; instead of tryirtg to maximize CPU and peripheral 
utilization, the systems opt for user convenience and responsiveness. 
These systems include both the mM PC family of computers running the 
MS-DOS operating system; and the Apple Macintosh and its software. MS
oos has been extended by. Microsoft to include a window system, and IBM 
has upgraded MS-DOS with the OS/2 multitasking system. The Apple 
Macintosh operating system has been ported to more advanced hardware, 
and now includes new features such as Virtual memory. 

Operating systems for these computers have benefited from the 
development of operating systems for mainframes in several ways. 
Microcomputers were immediately able to adopt the technology developed 
for larger operating systems. On the other hand, the hardware costs for 
microcomputers are sufficiently low that individuals have sole use of the 
computer, and CPU utilization is no longer a prime concern. Thus, some of 
the design decisions that are made in operating systems for mainframes 
may not be appropriate for smaller systems. For example, file protection 
may not seem necessary on a personal machine. MS-DOS, the world's most 
common operating system, provides no such protection. 

Some people have argued that_ the development of cheap 
microprocessors and cheap memory will make operating systems (and 
courses that teach them) obsolete. We do not believe that this prediction is 
true. Rather, the decrease in. hardware costs will allow relatively 
sophisticated operating-system concepts (such as time sharing and virtual 
memory) to be implemented on an even greater number of systems. Thus, 
the decrease in the cost of computer hardware, such as microprocessors, 
will increase our need to understand the concepts of operating systems. 

For example, although file protection may not seem necessary for 
isolated personal computers, these computers are often tied into other 
computers over telephone lines or local-area networks. When other 
computers and other users can access the fil~s on a personal computer, file 
protection again becomes a necessary feature of an operating system. The 
lack of such protection enables malicious programs to destroy data on 
systems such as MS-DOS and the Macintosh operating system. These 
programs may be self-replicating, and may spread rapidly via worm or virus 
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At the same time that features of large operating systems were being 
scaled down to fit personal computers, more powerful, faster, and more 
sophisticated hardware systems were being developed. The personal 
workstation is a large personal computer, such as the Sun, HP/Apollo, or mM 
RS/6000 computer. Many universities and businesses have large numbers of 
workstations tied together with local-area networks. As the PC systems gain 
more sophisticated hardware and software, and workstations become less 
expensive, the line dividing the two breeds is becoming blurry. In the 
future, the two may merge into one category. 

1. 7 • Parallel Systems 

Most systems to date are single-processor systems; that is, they have only 
one main CPU. However, there is a trend toward multiprocessor systems. 
Such systems have more than one processor in close communication, 
sharing the computer bus, the clock, and sometimes memory and 
peripheral devices. These systems are referred to as tightly coupled systems. 

There are several reasons for building such systems. One advantage is 
increased throughput. By increasing the number of processors, we would 
hope to get more work done in a shorter penod of time. The speed-up 
ratio with n processors is not n, however, but rather is less than n. When 
multiple processors cooperate on a task, a certain amount of overhead is 
incurred in keeping everything working correctly. This overhead, plus 
contention for shared resources, lowers the expected gain from additional 
processors. Similarly, a group of n programmers working closely together 
does not result in n times the amount of work being accomplished. 

Multiprocessors can also save money compared to multiple single 
systems because the processors can share peripherals, cabinets, and power 
supplies. If several programs are to operate on the same set of data, it is 
cheaper to store those data on one disk and to have all the processors 
share them, rather than to have many computers with local disks and 
many copies of the data. _ 

Another reason for multiprocessor systems is that they increase 
reliability. If functions can be distributed properly among several 
processors, then the failure of one processor will not halt the system, but 
rather will only slow it down. If we have 10 processors and one fails, then 
each of the remaining nine processors must pick up a share of the work of 
the failed processor. Thus, the entire system runs only 10 percent slower, 
rather than failing altogether. This ability to continue providing service 
prop,prtional to the level of nonfailed hardware is called graceful degradation. 
Systems that are designed for graceful degradation are also called fail-soft. 

Continued operation in the presence of failures requires a mechanism 
to allow the failure to be detected, diagnosed, and corrected (if possible). 
The Tandem system uses both hardware and software duplication to 
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ensure continued operation despite faults. The system consists of two 
identical processors, each with its own local memory. The processors are 
connected by a bus. One processor is the primary, and the other is the 
backup. Two copies are kept of each process; one on the primary machine 
and the other on the backup. At fixed checkpoints in the execution of the 
system, the state information of each job (including a copy of the memory 
image) is copied from the primary machine to the backup. If a failure is 
detected, the backup copy is activated, and is restarted from the most 
recent checkpoint. This solution is obviously an expensive one, since there 
is considerable hardware duplication. 

The most common multiple-processor systems now use the symmetric 
multiprocessing model, in which each processor runs an identical copy of 
the operating system, and these copies communicate with one another as 
needed. Some systems use asymmetric multiprocessing, in which each 
processor is assigned a specific task. A master processor controls the 
system; the other processors either look to the master for instruction or 
have predefined tasks. This scheme defines a master-slave relationship. 
The master processor schedules and allocates work to the slave processors. 

An example of the symmetric multiprocessing system is Encore's 
version of UNIX for the Multimax computer, This computer can be 
configured to employ dozens of processors, all running a copy of UNIX. 
The benefit of this model is that many processes can run at once (N 
processes if there are N CPUs) without causing a deterioration of 
performance. However, we must carefully control I/O to ensure that data 
reach the appropriate processor. Also, since the CPUs are separate, one 
may be sitting idle while another is overloaded, resulting in inefficiencies. 
To avoid these inefficiencies, the processors can share certain data 
structures. A multiprocessor system of this form will allow jobs and 
resources to be shared dynamically among the various processors, and can 
lower the variance among the systems. However, such a system must be 
written carefully, as we shall see in Chapter 6. 

Asymmetric multiprocessing is more common in extremely large 
systems, where one of the most time-consuming activities is simply 
processing I/0. In older batch systems, small processors, located at some 
distance from the main CPU, were used to run card readers and line 
printers and to transfer these jobs to and from the main computer. These 
locations are called remote job entry (RJE) sites. In a time-sharing system, a 
main I/O activity is processing the I/O of characters between the terminals 
and the computer. If the main CPU must be interrupted for every character 
for every terminal, it may spend all its time simply processing characters. 
So that this situation is avoided, most systems have a separate front-end 
processor that handles all the terminal I/O. For example, a large IBM system 
might use an IBM Series/1 minicomputer as a front-end. The front-end acts 
as a buffer between the terminals and the main CPU, allowing the main CPU 
to handle lines and blocks of characters, instead of individual characters. 
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Such systems suffer from decreased reliability through increased 
specialization. 

It is important to recognize that the difference between symmetric and 
asymmetric multiprocessing may be the result of either hardware or 
software. Special hardware may exist to differentiate the multiple 
processors, or the software may be written to allow only one master and 
multiple slaves. For instance, Sun's operating system SunOS Version 4 
provides asymmetric multiprocessing, whereas Version 5 (SolaJ?.s 2) is 
symmetric. 

As microprocessors become less expensive and more powerful, 
additional operating-system functions are off-loaded to slave processors (or 
back-ends). For example, it is fairly easy to add a microprocessor with its· 
own memory to manage a disk system. The microprocessor could receive a 
sequence of requests from the main CPU and implement its own disk queue 
and scheduling algorithm. This arrangement relieves the main CPU of the 
overhead of disk scheduling. The IBM PC contains a microprocessor in its 
keyboard to convert the key strokes into codes to be sent to the CPU. In 
fact, this use of microprocessors has become so common that it is no 
longer considered multiprocessing. 

1.8 • Distributed Systems 

A recent trend in computer systems is to distribute computation among 
several processors. In contrast to the tightly coupled systems discussed in 
Section 1.7, the processors do not share memory or a clock. Instead, each 
processor has its own local memory. The processors communicate with one 
another through various communication lines, such as high-speed buses or 
telephone lines. These systems are usually referred to as loosely coupled 
systems, or distributed systems. 

The processors in a distributed system may vary in size and function. 
They may include small microprocessors, workstations, minicomputers, 
and large general-purpose computer systems. These processors are referred 
to by a number of different names, such as sites, nodes, computers, and so 
on, depending on the context in which they are mentioned. 

There are a variety of reasons for building distributed systems, the 
major ones being these: 

• Resource sharing. If a number of different sites (with different 
capabilities) are connected to one another, then a user at one site may 
be able to use the resources available at another. For example, a user at 
site A may be using a laser printer available only at site B. Meanwhile, 
a user at B may access a file that resides at A. In general, resource 
sharing in a distributed system provides mechanisms for sharing files 
at remote sites,· processing information in a distributed database, 
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printing files at remote sites, using remote specialized hardware 
devices (such as a high-speed array processor), and performing other 
operations. 

• Computation speedup. If a particular computation can be partitioned 
into a number of subcomputations that can run concurrently, then a 
distributed system may allow us to distribute the computation among 
the various sites- to run that computation concurrently. In addition, 
if a particular site is currently overloaded with jobs, some of them may 
be moved to other, lightly loaded, sites. This movement of jobs is 
called load sharing. 

• Reliability. If one site fails in a distributed system, the remaining sites 
can potentially continue operating. If the system is composed of a 
number of large autonomous installations (that is, general-purpose 
computers), the failure of one of them should rtot affect the rest. If, on 
the other hand, the system is composed of a number of small 
machines, each of which is responsible for some crucial system 
function (such as terminal character I/O or the file system), then a single 
failure may effectively halt the operation of the whole system. In 
general, if enough redundancy exists in the system (in both hardware 
and data), the system can continue with its operation, even if some of 
its sites have failed. 

• Communication. There are many instances in which programs need to 
exchange data with one another on one system. Window systems are 
one example, since they frequently share data or transfer data between 
displays. When a number of sites are connected to one another by a 
communication network, the processes at different sites have the 
opportunity to exchange information. Users may initiate file transfers 
or communicate with one another via electronic mail. A user can send 
mail to another user at the same site or at a different site. 

Distributed systems are discussed in great detail in Chapter 15 through 
Chapter 18. 

1.9 • Real-Time Systems 

Another form of a special-purpose operating system is the real-time system. 
A real-time system is used when there are rigid time requirements on the 
operation of a processor or the flow of data, and thus is often used as a 
control device in a dedicated application. Sensors bring data to the 
computer. The computer must analyze the data and possibly adjust 
controls to modify the sensor inputs. Systems that control scientific 
experiments, medical imaging systems, industrial control systems, and 
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some display systems are real-time systems. Also included are some 
automobile-engine fuel-injection systems, home-appliance controllers, and 
weapon systems. A real-time operating system has well-defined, fixed 
time constraints. Processing must be done within the defined constraints, 
or the system will fail. For instance, it would not do for a robot arm to be 
instructed to halt after it had smashed into the car it was building. A real
time system is considered to function correctly only if it returns the Correct 
result within any time constraints. Contrast this requirement to a time
sharing system, where it is desirable (but not mandatory) to respond 
quickly, or to a batch system, where there may be no time constraints at 
all. 

There are two flavors of real-time systems .. A hard real-time system 
guarantees that critical tasks complete on time. This goal requires that all 
delays in the system be bounded, from the retrieval of stored data to the 
time it takes the operating system to finish any request made of it. Such 
time constraints dictate the facilities that are available in hard real-time 
systems. Secondary storage of any sort is usually limited or missing, with 
data instead being stored in short-term memory, or in read-only memory 
(ROM). ROM is a nonvolatile storage device that retains its content even in 
the case of electric outage; most other types of memory are volatile. Most 
advanced operating-system features are absent too, since they tend to 
separate the user further from the hardware, and that separation results in 
uncertainty as to the amount of time an operation will take. For instance, 
virtual memory (discussed in Chapter 9) is almost never found oh real-time 
systems. Therefore, hard real-time systems conflict with the operation of 
time-sharing systems, and the two cannot be mixed. Since none of the 
existing general-purpose operating sy!)tems support hard real-time 
functionality, we do not concern ourselves with this type of system in this 
text. 

A less restrictive type of real-time system is a soft real-time system, 
where a critical real-time task gets priority over other tasks, and retains 
that priority until it completes. As in hard real-time systems, kemel delays 
still need to be bound. A real-time task cannot be kept waiting indefinitely 
for the kernel to run it. Soft real-time is an achievable goal that is 
amenable to mixing with other types of systems. Soft real-time systems, 
however, have more limited utility than do hard real-time systems. Given 
their lack of deadline support, they cannot be used for industrial control 
and robotics. There are several areas in which they are useful, however, 
including multimedia, virtual reality, and advanced scientific projects such 
as undersea exploration and planetary rovers. These systems need 
advanced operating-system features that cannot be supported by hard 
real-time systems. Because of the expanded uses for soft real-time 
functionality, it is finding its way into most current operating systems, 
including the two major versions of UNIX. 
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In Chapter 5, we consider the scheduling facility needed to implement 
soft real-time functionality in an operating system. In Chapter 9, we 
describe the design of memory management for real-time computing. 
Finally, in Chapter 20, we describe the real-time components of the Mach 
operating system. 

1.10 • Summary 

Operating systems have developed over the past 40 years for two main 
purposes. First, operating systems attempt to schedule computational 
activities to ensure good performance of the computing system. Second, 
they provide a convenient environment for the development and execution 
of programs. 

Initially, computer systems were used from the front console. Software 
such as assemblers, loaders, linkers, and compilers improved the 
convenience of programming the system, but also required substantial set
up time. To reduce the set-up time, facilities hired operators and batched 
similar jobs. 

Batch systems allowed automatic job sequencing by a resident monitor 
and greatly improved the overall utilization of the computer. The 
computer no longer had to wait for human operation. CPU utilization was 
still low, however, because of the slow speed of the 110 devices relative to 
that of the CPU. Off-line operation of slow devices provides a means to use 
multiple reader-to-tape and tape-to-printer systems for one CPU. Spooling 
allows the CPU to overlap the input of one job with the computation and 
output of other jobs. 

To improve the overall performance of the system, developers 
introduced the concept of multiprogramming. With multiprogramming, 
several jobs are kept in memory at one time; the CPU is switched back and 
forth among them to increase CPU utilization and to decrease the total time 
needed to execute the jobs. 

Multiprogramming, which was developed to improve performance, 
also allows time sharing. Time-shared operating systems allow many users 
(from one to several hundred) to use a computer system interactively at the 
same time. 

Personal computer systems are microcomputers that are considerably 
smaller and less expensive than are mainframe systems. Operating 
systems for these computers have benefited from the development of 
operating systems for mainframes in several ways. However, since 
individuals have sole use of the computer, CPU utilization is no longer a 
prime concern. Hence, some of the design decisions that are made in 
operating systems for mainframes may not be appropriate for smaller 
systems. 
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Parallel systems have more than one CPU in close communication; the 
cpus share the computer bus, and sometimes memory and peripheral 
devices. Such systems provide increased throughput and enhanced 
reliability. 

A distributed system is a collection of processors that do not share 
memory or a clock. Instead, each processor has its own local memory, and 
the processors communicate with each other through various 
communication lines, such as high-speed buses or telephone lines. A 
distributed system provides the user with access to the various resources 
located at remote sites. 

A hard real-time system is often used as a control device in a dedicated 
application. A hard real-time operating system has well-defined, fixed time 
constraints. Processing must be done within the defined constraints, or the 
system will fail. Soft real-time systems have less stringent timing 
constraints, and do not support deadline scheduling. 

We have shown the logical progression of operating-system 
development, driven by inclusion of features in the CPU hardware that are 
needed for advanced operating-system functionality. This trend can be 
seen today in the evolution of personal computers, with inexpensive 
hardware being improved enough to allow, in turn, improved 
characteristics. 

• Exercises 

1.1 What are the three main purposes of an operating system? 

1.2 List the four steps that are necessary to run a program on a 
completely dedicated machine. 

1.3 An extreme method of spooling, known as staging a tape, is to read 
the entire contents of a magnetic tape onto disk before using it. 
Discuss the main advantage of such a scheme. 

1.4 In a multiprogramming and time-sharing environment, several users 
share the system simultaneously. This situation can result in various 
security problems. 

a. What are two such problems? 

b. Can we ensure the same degree of security in 
machine as we have in a dedicated machine? 
answer. 

1.5 What is the main advantage of multiprogramming? 

a time-shared 
Explain your 

1.6 What are the main differences between operating systems for 
mainframe computers and personal computers? 
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1. 7 Define the essential properties of the following types of operating 

systems: 

a. Batch 

b. Interactive 

c. Time-sharing 

d. Real-time 

e. Distributed 

1.8 We have stressed the need for an operating system to make efficient 
use of the computing hardware. When is it appropriate for the 
operating system to forsake this principle and "waste" resources? 
Why is such a system not really wasteful? 

1.9 Under what circumstances would a user be better off using a time
sharing system rather than a personal computer or single-user 
workstation? 

1.10 Describe the differences between symmetric and asymmetric 
multiprocessing. What are the advantages and disadvantages of 
multiprocessor systems? 

1.11 Why are distributed systems desirable? 

1.12 What is the main difficulty a person must overcome in writing an 
operating system for a real-time environment? 
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CHAPTER 2 

COMPUTER-SYSTEM 
STRUCTURES 

We need to have a general knowledge of the structure of a computer 
system before we can explore the details· of system operation. In this 
chapter, several disparate parts of this structure are presented to round out 
our background knowledge. This chapter is mostly concerned with 
computer-system architecture, so you can skim or skip it if you already 
understand the. concepts. Because an operating system is intimately tied to 
the 110 mechanisms of a computer, 110 is discussed first. The following 
sections discuss the data-storage structure. 

The operating system must also ensure the correct operation of the 
computer system. So that user program~ will not interfere with the proper 
operation of the system, the hardware must provide appropriate 
mechanisms to ensure correct behavior. Later in this chapter, we describe 
the basic computer architecture that makes it possible to write a functional 
operating system. 

2.1 • Computer-System Operation 

A modern, general-purpose computer system consists of a CPU and a 
number of device controllers that are connected through a common bus 
that provides access to $hared memory (Figure 2.1). Each device controller 
is in charge of a specific type of device (for example, disk drives, audio 
devices, and video displays). The CPU and the device controllers can 
execute concurrently, competing for memory cycles. To ensure orderly 
access to the shared memory, a memory controller is provi.ded whose 
function is to synchronize. access to the memory. 

29 
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disk disk printer 

CPU controller 

Figure 2.1 A modern computer 

For a computer to start running instance, when it 
or rebooted - it needs to have an initial program to 

or bootstrap program, tends to be simple. It 
the system, from CPU registers to device controllers to 

The bootstrap program must know how to load the t'Tr'""'"'"' 

to it executing. To accomplish goal, the 
locate the operating system kernel load it into memory. 
system then starts executing the first process, such as "init", 
some event to occur. The occurrence of an usually 
interrupt from either the hardware or software. Hardware 
interrupt at time by sending a signal to the CPU, usually 
the system bus. Software may trigger an interrupt by 
operation called a system call (also called a monitor call). 

There are many different types of events that may trigger an 
for example, the completion of an I/O operation, by 
memory and a request for some operating 
s~ch interrupt, a service routine provided that 
With the interrupt. 

When the CPU is interrupted, it stops what it is doing 
transfers_ execution to a fixed location. The fixed location usually 

startmg address where the service routine for the interrupt 

-

bus 
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The interrupt service routine executes, and upon completion, the CPU 
resumes the interrupted computation. A time line of this operation is 
shown in Figure 2.2. 

Interrupts are an important part of a computer architecture. Each 
computer design has its own interrupt mechanism, but several functions 
a·re common. The interrupt must transfer control to the appropriate 
interrupt service routine. The straightforward method for handling this 
transfer would be to invoke a generic routine to examine the interrupt 
information, and it, in turn, would call the interrupt-specific handler. 
However, interrupts must be handled very quickly, and given that there 
are a predefined number of possible interrupts, a table of pointers to 
interrupt routines may be used instead. The interrupt routine is then called 
indirectly through the table, with no intermediate routine needed. 
Generally, the table of pointers is stored in low memory (the first 100 or so 
locations). These locations hold the addresses of the interrupt service 
routines for the various devices. This array, or interrupt vector, of 
addresses is then indexed by a unique device number, given with the 
interrupt request, to provide the address of the interrupt service routj.ne 
for the interrupting device. Operating systems as different as M5-DOS and 
UNIX dispatch interrupts in this manner. 

The interrupt architecture must also save the address of the interrupted 
instruction. Many old designs simply stored the interrupt address in a 
fixed location or in a location indexed by the device nqmber. More recent 
architectures store the return address on the system stack. If the interrupt 
routine needs to modify the processor state, for instance, by modifying 
register values, it must explicitly save the current state ~nd then restore it 
before returning. After the interrupt is serviced, the saved return address 
is loaded into the program counter, and the interrupted computation will 
resume as though the interrupt had not occurred. 

CPU user 
process 
executing 

1/0 interrupt 
processing 1 

:u 
I 

1/0 idle 7 
device transferring : IL.----1 

1/0 
request 

transfer 
done 

:u 
I 

: L.l _ __, 

1/0 transfer 
request done 

Figure 2.2 Interrupt time line for a single process doing output. 
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Usually, interrupts are disabled while an interrupt is being processed, 
delaying any incoming interrupts until the operating system is done with 
the current one, after which interrupts are enabled. If they were not thus 
disabled, the processing of the second interrupt. while the first was being 
serviced would overwrite the first's data, and the first would be a lost 
interrupt. Sophisticated interrupt architectures allow for one interrupt to be 
processed during another. They often use a priority scheme in which 
request types are assigned priorities according to their relative importance, 
and interrupt processing information is stored separately for each priority. 
A higher-priority interrupt will be taken even if a lower-priority interrupt 
is active, but interrupts at the same or lower levels are masked, or 
selectively disabled, to prevent lost int~rrupts or unnecessary ones. 

Modern operating systems are interrupt driven. If there are no 
processes to execute, no I/O devices to service, and no users to whom to 
respond, an operating system will sit quietly, waiting for something to 
happen. Events are almost always signaled by the occurrence of an 
interrupt, or a trap. A trap (or an exception) is a software-generated 
interrupt caused either by an error (for example, division by zero or invalid 
memory access), or by a specific request from a user program that an 
operating-system service be performed. 

The interrupt-driven nature of an operating system defines that 
system's general structure~ When an interrupt (or trap) occurs, the 
hardware transfers control to the operating system. First, the operating 
system preserves the state of the CPU by storing registers and the program 
counter. Then, it determines which type of interrupt has occurred. This 
determination may require polling, the querying of all I/O devices to detect 
which requested service, or it may be a nC:ttural result of a vectored 
interrupt system. For each type of interrupt, separate segments of code in 
the operating system determine what action should be taken. 

2.2 • 1/0 Structure 

As was discussed in Section 2.1, a general-purpose computer system 
consists of a CPU and a number of device controllers that are connected 
through a common bus. Each device controller is in charge of a specific 
type of device. Depending on the controller, there may be more than one 
device attached to it. For instance the SCSI (Small Computer Systems 
Interface) controller, found on the Macintosh and many small- to medium
sized computers, can have as many as seven devices attached to it. A 
device controller maintains some local buffer storage and a set of special
purpose registers. The controller is responsible for moving data between 
the peripheral device(s) it controls and its local buffer storage. The size of 
the local buffer within a device controller varies from one controller to 
another, depending on the particular device being . controlled. For 



example, the of the buffer of a disk controller the same as or a 
multiple of the size of the smallest addressable portion of a 
which is usually 512 bytes. 

2.2.1 I/O Interrupts 
To start an I/O operation, the CPU loads the appropriate 
device controller. The device controller, in turn, examines 
these registers to determine what action to take. For example, 
read request, the controller will start the transfer of data from 
its local buffer. Once the transfer of data is complete, the 
informs the CPU that it has finished its operation. It aLL.un•v·"'·'""u~" 
communication by causing an interrupt. 

This situation will occur, in general, as the result of a 
requesting 110. Once the I/O is started, two courses of action 
the simplest case, the 110 is started; then, at I/O completion, 
returned to the user This is known as synchronous 110. 
possibility (asynchronous IIO) is to return control to the user 
without waiting for the I/O to complete. The I/O then can 
other system operations occur (see Figure 2.3). 

Waiting for I/O completion may be accomplished in one 
Some computers have a special wait instruction that idles the 
next interrupt. Machines that do not have such an instruction 
wait loop: 

Loop: jmp Loop 

This very tight loop simply continues until an interrupt 

kernel 
I 

• 
' 

driver 

handler 

time __ _..,.. 

(a) 

time ----~o-

(b) 

Figure 2.3 Two I/O methods. (a) synchronous. (b) 

user 

kernel 
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control to another part of the operating system. Such a loop 
need to poll any I/O devices which do not support the interrupt 
instead they simply set a flag in one of their registers and 
operating system to notice it. The wait instruction is probably """"'fc'~""'"' 
a loop, since a wait loop a series of instruction 
may cause significant contention for memory access. 
caused by the I/O device transferring information and the CPU 
instructions. 

One major advantage of always waiting for I/O completion 
most one I/O request is outstanding at a time. Thus, 
interrupt occurs, the operating system knows exactly which 
interrupting. On the other hand, this approach excludes sirrtur[an,em 
processing. 

An alternative to start the 110 and immediately to return 
the user program. A system call (a request to the operating system) 
needed to allow the user to wait for I/O completion, if desired. 
still require the wait code that we needed before. We also need 
to keep track of many I/O requests at the same time. For 
operating system uses a table containing an entry for each I/O 
device-status table (Figure 2.4). Each table entry indicates the 
its address, and its state (not functioning, idle, or busy). If the 
busy with a request, the type of request and other parameters 
stored in the table entry for that device. Since it possible 
processes to issue requests to the same device, we may have a 

device: card reader 1 
status: idle 

device: disk unit 1 
status: idle 

device: disk unit 2 
status: idle 

Figure 2.4 Device-status table. 
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of waiting requests. Thus, in addition to the 1/0 device table, an operating 
system may have a request list for each device. 

An 1/0 device interrupts when it needs service. When an interrupt 
occurs, the operating system first determines which 110 device caused the 
interrupt. It then indexes into the I/O device table to determine the status of 
that device, and modifies the table entry to reflect the occurrence of the 
interrupt. For most devices, an interrupt signals completion of an 110 
request. If there is an additional request waiting for this device, the 
operating system starts processing that request. . 

Finally, control is returned from the 110 interrupt. If a process was 
waiting for this request to complete (as recorded in the device-status table), 
we may now return control to it. Otherwise, we return to whatever we 
were doing before the 1/0 interrupt: to the execution of the user program 
(the program started an 110 operation and that operation has now finished, 
but the program has not yet waited for the operation to complete) or to the 
wait loop (the program started two or more 110 operations and is waiting 
for a particular one to finish, but this interrupt was from one of the 
others). In a time-sharing system, the operating system could switch to 
another ready-to-run process. 

The schemes used by some input devices may vary from this one. 
Many interactive systems allow users to type ahead, or to enter data before 
the data are requested, on their terminal. In this case, interrupts may 
occur, signaling the arrival of characters from the terminal, while the 
device-status block indicates that no program has requested input from this 
device. If typeahead is to be allowed, then a buffer must be provided to 
store the typeahead characters until some program wants them. In general, 
we may need a buffer for each input terminal. 

The main advantage of asynchronous 110 is the increased system effi
ciency. While 110 is taking place, the system C'PU can be used for processing, or 
even scheduling other 110. ·Because 110 can be quite slow compared to pro
cessor speed, the system makes much better use of its facilities. In the next 
section, we shall see another mechanism for improving system performance. 

2.2.2 DMA Structure 

Consider a simple terminal input driver. When a line is to be read from the 
terminal, the first character typed is sent to the computer. When that 
character is received, the asynchronous communication (or serial port). 
device to which the terminal line is connected will interrupt the CPU. When 
the interrupt request from the terminal arrives, the CPU will be about to 
execute some instruction. (If the CPU is in the middle of executing an 
instruction, the interrupt is normally held pending until the instruction 
execution is complete.) The address of this interrupted instruction is saved, 
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and control is transferred to the interrupt service routine for the appropriate 
device. 

The interrupt service routine saves the contents of any CPU registers it 
will need to use. It checks for any error conditions that might have 
resulted from the last input operation. It then takes the character from the 
device, and stores that character in a buffer. The interrupt routine must 
also adjust pointer and counter variables, to be sure that the next input 
character will be stored at the next location in the buffer. The interrupt 
routine next sets a flag in memory indicating to the other parts of the 
operating system that new input has been received. The other parts are 
responsible for processing the data in the buffer, and for transferring the 
characters to the program requesting input (see Section 2.5). Then, the 
interrupt service routine restores the contents of any saved registers, and 
transfers control back to the interrupted instruction. 

If characters are being typed to a 9600-baud terminal, the terminal can 
accept and transfer one character approximately every 1 millisecond, or 
1000 microseconds. A well-written interrupt service routine to input 
characters into a buffer may require 2 microseconds per character, leaving 
998 microseconds out of every 1000 for CPU computation (and servicing of 
other interrupts). Given this disparity, asynchronous 110 is usually assigned 
a low interrupt priority, allowing other, more important interrupts to be 
processed first, or even to preempt the current interrupt for another. A 
high-speed device, however, such as a tape, disk, or communications 
network, may be able to transmit information at close to memory speeds; 
the CPU would need 2 microseconds to respond to each interrupt, with 
interrupts arriving every 4 microseconds (for example). This would not 
leave much time for process execution. 

To solve this problem, direct memory access (DMA) is used for high
speed I/O devices. After setting up buffers, pointers, and counters for the 
I/O device, the device controller transfers an entire block of data to or from 
its own buffer storage to memory directly, with no intervention by the CPU. 

Only one interrupt is generated per block, rather than the one interrupt 
per byte (or word) generated for low-speed devices. 

The basic operation of the CPU is the same. A user program, or the 
operating system itself, may request data transfer. The operating system 

·finds a buffer (an empty buffer for input, or a full buffer for output) from a 
queue of buffers for the transfer. (A buffer is typically 128 to 4096 bytes, 
depending on the device type.) The DMA controller then has its registers 
set to the appropriate source and destination addresses, and transfer 
length. This register setting is usually done by a device driver, which knows 
exactly how this information is to be provided to the controller. The DMA 

controller is then instructed (via control bits in a control register) to start 
the I/O operation. Meanwhile, the CPU has been free to perform other tasks 
since it gave the transfer information to the controller. The DMA controller 
interrupts the CPU when the transfer has ~een completed. 
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As an example of the utility of DMA, consider a typical IBM PC. The PC 
supports interrupt-based JJO, as well as DMA channels. The backup 
program, which is included with the MS-DOS PC operating system, uses 
only interrupt-based I/O to copy data between a hard disk and a floppy 
disk. Several companies have written similar programs that take 
advantage of DMA data transfer, and the result is a several-fold increase in 
backup speed. 

2.3 • Storage Structure 

For a computer to do its job of executing programs, the programs must be 
in main memory. Main memory is the only large storage area that the 
processor can access directly. It is an array of words or bytes, ranging in 
size from hundreds of thousands to hundreds of millions. Each word has 
its own address. Interaction is achieved through a sequence of load or 
store instructions to specific memory addresses. The load instruction 
moves a word from main memory to an internal register within the CPU, 
while the store instruction mt>ves the content of a register to main 
memory. Aside from explicit loads and stores, the CPU automatically loads 
instructions from main memory for execution. 

A typical instruction-execution cycle, as executed on a von Neumann 
architecture system, will first fetch an instruction from memory and store it 
in the instruction register. The instruction is then decoded and may cause 
operands to be fetched from memory and stored in some internal register. 
After the instruction on the operands has been executed, the result may be 
stored back in memory. Notice that the memory unit sees only a stream of 
memory addresses; it does not know how they are generated (the 
instruction counter, indexing, indirection, literal addresses, and so on) or 
what they are for (instructions or data). Accordingly, we can ignore how a 
memory address is generated by a program. We are interested in only the 
sequence of memory addresses generated by the running program. 

Ideally, we would want the programs and data to reside in main 
memory permanently. This arrangement is not possible for the following 
two reasons: 

1. Main memory is usually too small to store all needed programs and 
data permanently. 

2. Main memory is a volatile storage device that loses its contents when 
power is turned off or lost. ~ 

Thus, most computer systems provide secondary storage as an extension of 
main memory. The main requirement of secondary storage is thus to be 
able to hold extremely large numbers of data permanently. 
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The most common secondary-storage device is a magnetic disk, which 
provides storage of both programs and data. Most programs (compilers, 
assemblers, sort routines, editors, formatters, and so on) are stored on a 
disk until loaded into memory. They then use the disk as both the source 
and destination of the information for their processing. Hence, the proper 
management of disk storage is of central importance to a computer system, 
as will be discussed in Chapter 12. 

In a larger sense, however, the storage structure that we have 
described- consisting of registers, main memory, and magnetic disks
is only one of many possible storage systems. There are also cache 
memory, optical disks, magnetic tapes, and so on. Each storage system 
provides the basic functions of storing a datum, and holding that datum 
until it is retrieved at a later time. The main differences among the various 
storage systems lie in speed, cost, size, and volatility. In Sections 2.3.1 to 
2.3.4, we describe the important storage systems. 

2.3.1 Main Memory 
Main memory and the registers built into the processor itself are the only 
storage that the CPU can access directly. (Consider that there are machine 
instructions which take memory addresses as arguments, but none that 
take disk addresses.) Therefore, any instructions in execution, and any 
data being used by the instructions, must be in one of these direct-access 
storage devices. If the data are not in memory, they must be moved there 
before the CPU can operate on them. 

In the case of 110, as mentioned in Section 2.1, each 110 controller 
includes registers to hold commands and the data being transferred. 
Usually, special I/O instructions allow data transfers between these registers 
and system memory. To allow more convenient access to 110 devices, some 
systems, including the IBM PC and Apple Macintosh, provide memory
mapped 1/0. In this case, ranges of memory addresses are set aside, and are 
physically mapped to the device registers. Reads and writes to these 
memory addresses cause the data to be transferred to and from the device 
registers. This method is appropriate for devices with fast response times, 
such as video controllers. In the IBM PC, each locatfon on the screen is 
mapped to a memory location. Displaying text on the screen is almost as 
easy as writing the text into the appropriate memory-mapped locations. 

Memory-mapped 110 is also convenient for frequently used devices, 
such as a serial port. So that a system can communicate with another 
computer over a modem and telephone line, characters are read and 
written to a one-byte location in memory. Note that polling is again 
needed in this circumstance, with the computer looping, constantly 
checking to see whether a character is available for reading. Interrupts for 
signaling the availability of new input could be used instead, depending 
on the hardware configuration. · 
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Given that registers are built into the CPU, they are "'"'''-C:~>C>HJJ<I:: 
one cycle of the CPU dock. The CPU can decode an 
the given operation on a register's contents all in the same 
same cannot be said for main memory, which may be 
bus and take several cycles to access. In this case, the orc)C€~SSI:U 
needs to stall while waiting for the access to complete. 
intolerable because of the frequency of memory accesses. 
add fast memory between the CPU and main memory. 
used to accommodate a speed differential is called a cache, as 
Section 2.4.1. 

2.3.2 Magnetic Disks 
Magnetic disks provide the bulk of secondary storage for ..... "'"""'-' 
systems. Physically, disks are relatively simple (Figure 
platte" has a flat circular shape, like a phonograph record. 
are covered with a magnetic material, similar to magnetic 
is recorded on the surfaces. 

When the disk is in use, a drive motor spins it at high 
60 revolutions per second). There a read-write head 
above the surface the platter. The disk surface is 
tracks, which are subdivided into sectors. We store 
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Figure 2.5 Moving-head disk mechanism. 
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recording it magnetically on the sector under the read -write head. There 
may be hundreds of concentric tracks on a disk surface, containing 
thousands of sectors. The platter itself may be between 1.8 inches and 14 
inches wide. The larger sizes are common on large systems because of 
their higher storage capacities and transfer rates. The smaller sizes are 
.found on PCs, since they have lower cost. 

A fixed-head disk has a separate head for each track. This arrangement 
allows the computer to switch from track to track quickly, but it requires a 
large number of heads, making the device extremely expensive. Much 
more common, is only one head, which moves across the disk to access 
different tracks. This moving-head disk, or simply hard disk, requires 
hard~are to move the head, but only a single head is needed, resulting in 
a much less expensive system. The disk platters, mounted on a spindle 
and surrounded by heads driven by a motor, are known as head-disk 
assemblies and come in a complete package. 

Disks were originally designed for .file storage, so the primary design 
criteria were cost, size, and speed. To provide additional storage capacity, 
developers took several approaches. They made the primary gain by 
improving the recording de~sity, allowing more bits to be put on a surface. 
The density is reflected by the nttmber of tracks per inch, sectors per track, 
and bits per sector. In addition, with separate heads on each side of the 
platter, disk capacity can be doubled at minimal cost. We can extend this 
approach by stacking several disks, each with two recording surfaces, on 
one spindle. Since all the disks rotate together, only one drive motor is 
needed, although each surface still needs its own read -write head. The 
most common disks, used in systems from portable PCs· through 
mainframes, have this configuration. These disks vary in data transfer rate 
from 1· to 5 megabytes per second. The average access time, including the 
time for a head to be positioned over the requested data, is from 10 to 40 
milliseconds. The capacities range from 10 to 7500 megabytes. 

Finally, the disk can be remov(lble, allowing different disks to be 
mounted as needed. Removable· disk packs may consist of one or several 
platters on one spindle. Generally, they are held in hard plastic cases to 
prevent damage while they are not in the disk drive. 

Disks are rigid metal or glass platters covered with magnetic recording 
material. Each platter is divided into small sections, and each such section 
may be changed by the disk head to be in a charged or not charged state. 
Each· section represents a bit and is 0 or 1 depending on its charge state. 
The smaller the changeable sections are, the more bits can be put on a 
platter and thus the higher the density. The read-write heads are kept as 
close as possible to the disk· surface to increase this density. Often, the 
head floats or flies only microns from the disk surface, supported by a 
cushion of air~ Because the head floats so close to the surface, platters must 
be machined carefully to be flat. 
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Head crashes can be a problem. If the head contacts the disk surface 
(due to a power failure, for example), the head will scrape the recording 
medium off the disk, destroying the data that had been there. Usually, 
the head touching the surface causes the removed medium to become 
airborne and to come between the other heads and tl}eir platters, causing 
more crashes. Under normal circumstances, a head crash results in the 
entire disk failing and needing to be replaced. 

Flop-py disks take a different approach. The disks are coated with a hard 
surface, so the read -write head can sit directly on the disk surfa~e without 
destroying the data. Thus, the disk itself is much less expensive to produce 
and use. The floppy disk must rotate tnuch more slowly than a hard disk, 
due to the resulting friction. Also, the coating (and the read -write head) 
will wear with use, and need to be replaced eventually. Because they are 
more rugged, floppy disks are removable. The disks are not permanently 
mounted in a head-disk assembly. Instead, the disk is slipped manually 
into a slot which contains a spindle to rotate it, and a head and motor to 
access it. This arrangement keeps the cost of floppy disks low because one 
drive can be used to access hundreds or thousands of disks. 

Floppy disks usually have a much lower capadty than do hard disks 
because they have much lower storage densities, have only . orte platter, 
and spin slower. They hold from 100 kilobytes (a kilobyte is 1024 bytes) to 
a few megabytes per disk. They come in many variations (single-sided, 
double-si<ied, single-density, and double-density) and sizes (5 1/4 inch, 3 
1/2 inch, and so on). Generally, they are formatted and used in the same 
way as are hard disks, except that all floppy disks are removable and may 
therefore be used conveniently to transfer data between computers. 

A disk drive has a disk controller that determines the logical interaction 
between the device and the computer. The controller takes instructions 
from the CPU and orders the disk drive to carry out the instruction. Some 
disk controllers have a built-in cache, which holds data recently read from 
or written to the disk. If data are currently in the cache, the need for a disk 
transfer is obviated. 

2.3.3 Other Disk Types 
There are many variations on magnetic disks among which we do not 
distinguish, from an operating-system point of view. Generally, they are 
treated as normal hard disks except at the device-driver level. There is the 
drum, which has a head over each track. Previously, these fast devices 
were used for backing store (see Chapters 8 and 9), but they ate now used 
rarely due to the improved speed and price-performance ratio of standard 
hard disks. An up-and-coming device is the optical disk, which uses lasers 
to melt and fill holes on a plastic medium. These drives have been slower 
but less costly and more rugged than magnetic hard disks in the past, but 
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their performance is increasing. Because they are more rugged, they, like 
floppy disks, have the added advantage of removability. 

2.3.4 Magnetic Tapes 
Magnetic tape was used as an early secondary-storage media. Although it 
is relatively permanent, and can hold large numbers of data, magnetic tape 
is quite slow in comparison to the access time of main memory. Even 
more important, magnetic tape is limited to sequential access. Thus, it is 
unsuitable for providing the random access needed for most secondary
storage requirements. Tapes are used mainly for backup, for storage of 
infrequently used information, and as a medium for transferring 
information from one system to another. 

A tape is kept in a spool, and is wound or rewound past a read-write 
head. Moving to the correct spot on a tape can take minutes rather than 
milliseconds; once positioned, however, tape drives can write data at 
densities and speeds approaching those of disk drives. Capacities vary 
depending on -r-the length and width of the tape, and on the density at 
which the head can read and write. A tape drive is usually named by its 
width. Thus, there are 8-millimeter, 114-inch, and 1/2-inch. (also known as 
9-track) tape drives. The 8-millimeter tape drives have the highest density, 
due to the technology they use; they currently store 5 gigabytes of data (a 
gigabyte is one billion bytes) on a 350-foot tape. 

2.4 • Storage Hierarchy 

The wide variety of storage systems in a computer system can be 
organized in a hierarchy (Figure 2.6) according to their speed and their 
cost. The higher levels are expensive, but are fast. As we move down the 
hierarchy, the cost per bit decreases, whereas the access time increases. 
This tradeoff is reasonable; if a given storage system were both faster and 
less expensive than another - other properties being the same - then 
there would be no reason to use the slower, more expensive memory. In 
fact, many early storage devices, including paper tape and core memories, 
are relegated to museums now that magnetic tape and semiconductor 
memory have become faster and cheaper. 

In addition to the speed and cost of the various storage systems, there 
is also the issue of storage volatility. Volatile storage loses its contents 

· when the power to the device is removed. In the absence of expensive 
battery and generator backup systems, data must be written to nonvolatile 
storage for safekeeping. In the hierarchy shown in Figure 2.6, the storage 
system above disks is volatile, whereas the storage system below main 
memory is nonvolatile. The design of a complete memory system attempts 
to balance all these factors: It uses only as much expensive memory as 
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Figure 2.6 Storage-device hierarchy. 

necessary, while providing as much inexpensive, nonvolatile, 
possible. Caches can be installed to ameliorate 
where there is a large or transfer-rate 
components. 

2.4.1 Caching 

Caching an important of computer 
and software. Information normally in some 
as main memory). As it it copied into a faster 
the cache, on a temporary When we need a 
information, we first check whether it is in the cache. 
information directly from the if it is not, we use 
from the main storage system, putting a copy in 
assumption that there is a high probability that it will be 

Extending this view, internal programmable registers, 
and accumulators, are a high-speed cache for 
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programmer (or compiler) implements the register-allocation and register
replacement algorithms to decide which information to keep in registers 
and which to keep in main memory. There are also caches that are 
implemented totally in hardware. For instance, most systems have an 
instruction cache to hold the next instructions expected to be executed. 
Without this cache, the CPU would have to wait several cycles while an 
instruction was fetched from main memory. We are not concerned with 
these hardware-only caches in this text, since they are outside of the 
control of the operating system. 

Since caches have limited size, cache management is an important design 
problem. Careful selection of the cache size and of a replacement policy 
can result in 80 to 99 percent of all accesses being in the cache, resulting in 
extremely high performance. Various replacement algorithms for 
software-controlled caches are discussed in Chapter 9. 

Main memory can be viewed as a fast cache for secondary memory, 
since data on secondary storage must be copied into main memory for use, 
and data must be in main memory before being moved to secondary 
storage for safekeeping. The file system itself, which must reside on 
nonvolatile storage, may have several levels of storage. At the highest 
level, ·we have the electronic (or RAM) disk storage, which is backed up by 
the larger, but slower, magnetic-disk storage. The magnetic-disk storage, 
in turn, is backed up by the larger, but slower, tape storage. Optical disks 
are also efficient high-capacity but low-cost storage media. When 
compared to magnetic tape, they have the drawback of higher cost, but 
offer much greater speed and convenience. Transfers between these two 
storage levels are generally requested explicitly, but some systems now 
automatically archive a file that has not been used for a long time (for 
example, 1 month), and then automatically fetch back the file to disk when 
it is next referenced. 

The movement of information between levels of a storage hierarchy 
may be either explicit or implicit, depending on the hardware design and 
the controlling operating-system software. For instance, data transfer from 
cache to CPU and registers is usually a hardware function, with no 
operating-system intervention. On the other hand, transfer of data from 
disk to memory is usually controlled by the operating system. 

2.4.2 Coherency and Consistency 
In a hierarchical storage structure, the same datum may appear in different 
storage systems. For example, consider an integer A located in file B that 
is to be incremented by 1. Suppose that file B resides on magnetic disk. 
The increment operation proceeds by first issuing an 110 operation to copy 
the disk block on which A resides to main memory. This operation is 
followed by a possible copying of A to the cache, and by copying A to an 
internal register. Thus, the copy of A appears in several places. Once the 
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increment takes place in the internal register, the value of A differs in the 
various storage systems. The value of A becomes the same only after the 
new value of A is written back to the magnetic disk. 

In an environment where there is only one single process executing at 
a time, this arrangement poses no difficulties, since an access to the integer 
A will always be to the copy at the highest level of the hierarchy. 
However, in a multitasking environment, where the CPU is switched back 
and forth among various processes, extreme care must be taken to ensure 
that if several processes wish to access A, then each of these processes will 
obtain the most recently updated value of A. 

The situation becomes more complicated in a multiprocessor 
environment where, in addition to internal registers, the CPU also contains 
a local cache. In such an environment, a copy of A may exist 
simultaneously in several caches. Since the various CPUs can all execute 
concurrently, we must make sure that an update to the value of A in one 
cache is immediately reflected in all other caches where A resides. This 
problem is called cache coherency, and is usually a hardware issue (handled 
below the operating system level). 

In a distributed environment, the situation becomes even more 
complex. In such an environment, several copies (replicas) of the same file 
can be kept on different computers that are distributed in space. Since the 
various replicas may be accessed and updated concurrently, we must 
ensure that when a replica is updated in one place, then all other replicas 
are brought up to date as soon as possible. There is a variety of ways for 
achieving this guarantee, as will be discussed in Chapter 17. 

2.5 • Hardware Protection 

Early computer systems were single-user programmer-operated systems. 
When the programmers operated the computer from the console, they had 
complete control over the system. As operating systems developed, 
however, this control was given to the operating .system. Starting with the 
resident monitor, the operating system began performing many of the 
functions, especially I/0, for which the programmer had been responsible 
previously. 

In addition, to improve system utilization, the operating system began 
to share system resources among several programs simultaneously. With 
spooling, one program might have been executing while I/O occurred for 
other processes; the disk simultaneously held data for many processes.· 
Multiprogramming put several programs in memory at the same time. 

This sharing created both improved utilization and increased problems. 
When the system was run without sharing, an error in a program could 
cause problems for only the one program that was running. With sharing, 
many processes could .be adversely affected by a bug in one program. 
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For example, consider the earliest resident monitor, providing nothing 
more than automatic job sequencing (Section 1.3). Suppose a program gets 
stuck in a loop reading input cards. The program will read through all its 
data and, unless something stops it, will continue reading the cards of the 
next job, and the next, and so on. This loop could prevent the correct 

·operation of many jobs. 
Even more subtle errors could occur in a multiprogramming system, 

where one erroneous program might modify the program or data of 
another program, or even the resident monitor itself. MS-DOS and 
Macintosh os both allow this kind of error. 

Without protection against these sorts of errors, either the computer 
must execute only one process at a time, or all output must be suspect. A 
properly designed operating system must ensure that an incorrect (or 
malicious) program cannot cause other programs to execute incorrectly. 

Many programming errors are detected by the hardware. These errors 
are normally handled by the operating system. If a user program fails in 
some way- such as an attempt either to execute an illegal instruction, or 
to access memory that is not in the user's address space - then the 
hardware will trap to the operating system. The trap transfers control 
through the interrupt vector to the operating system just like an interrupt. 
Whenever a program error occurs, the operating system must abnormally 
terminate the program. This situation is handled by the same code as is a 
user-requested abnormal termination. An appropriate error message is 
given, and the memory of the program is dumped. In a batch system, the 
memory dump may be printed, allowing the user to try to find the cause 
of the error by examining the printed dump. In an interactive system, the 
memory dump may be written to a file. The user may then examine it on
line, and perhaps correct and restart the program. 

2.5.1 Dual-Mode Operation 
To ensure proper operation, we must protect the operating system and all 
other programs and their data from any malfunctioning program. 
Protection is needed for any shared resource. The approach taken is to 
provide hardware support to allow us to differentiate among various 
modes of executions. At the very least, we need two separate modes of 
operation: user mode and monitor mode (also called supervisor mode, system 
mode, or privileged mode). A bit, called the mode bit, is added to the 
hardware of the computer to indicate the current mode: monitor (0) or user 
(1). With the mode bit, we are able to distinguish between an execution 
that is done on behalf of the operating system, and one that is done on 
behalf of the user. As we shall see, this architectural enhancement is 
useful for many other aspects of system operation. 

At system boot time, the hardware starts in monitor mode. The 
operating system is then loaded, and starts user processes in user mode. 
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Whenever a trap or interrupt occurs, the hardware switches from user 
mode to monitor mode (that is, changes the state of the mode bit to be 0). 
Thus, whenever the operating _system gains control of the computer, it is 
in monitor mode. The system always switches to user mode (by setting the 
mode bit to 1) before passing <;:ontrol to a user program. 

The dual mode of operation provides us with the means for protecting 
the operating system frorh errant users, and errant users from one another. 
We accomplish this protection by designating some of the machine 
instructions that may cause harm as privileged instructions. The hardware 
allows privileged instructions to be executed only in monitor mode. If an 
attempt is made to execute a privileged instruction in user mode, the 
hardware does not execute the instruction, but rather treats the instruction 
as illegal and traps to the operating system. 

The lack of a hardware-supported dual mode can cause serious 
shortcomings in an operating system. For instance, MS-DOS was written for 
the Intel 8088 architecture, which has no mode bit, and therefore no dual 
mode. A user program running awry can wipe out the operating system 
by writing over it with data, and multiple programs are able to write to a 
device at the same time, with p()ssibly disastrous results. More recent and 
advanced versions of the Intel CPU, such as the 80486, do provide dual
mode operation. As a result, more recent operating systems, such as 
Microsoft Windows/NT, and IBM OS/2, take advantage of this feature and 
provide greater protection for the operating system. 

2.5.2 1/0 Protection 

A user program may disrupt the normal operation of the system by issuing 
illegal 110 instructions, by a_ccessing memory locations within the operating 
system itself, or by refusing to relinquish the CPU. Various mechanisms are 
used to ensure that such disruptions cannot take place in the system. 

To prevent a user from performing illegal 110, we define all 1/0 

instructions to be privileged instructions. Thus, users cannot issue 110 

instructions directly; they must do it through the operating system. For 1/0 

protection to be complete, we must be sure that a user program can never 
gain control of the computer in monitor mode. If it could, 110 protection 
could be compromised. 

Consider the computer executing in user mode. It will switch to 
monitor mode whenever an interrupt or trap occurs, jumping to the 
address determined from the interrupt vector. Suppose a user program, as. 
part of its execution, stores a new address in the interrupt vector. This 
new address could overwrite the previous address with an address in the 
user program. Then, when a corresponding trap or interrupt occurred, the 
hardware would switch to monitor mode, and would transfer control 
through the (modified) interrupt vector to the user program! The user 
program could gain control of the computer in monitor mode. 
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Protection 
ensure correct operation, we must protect the interrupt 

modification by a user program. In addition, we must 
service routines in the operating system 

a user program might overwrite instructions 
routine with jumps to the user program, thus gaining 

interrupt service routine that was executing in monitor 
user did not gain unauthorized control of the computer, 

interrupt service routines would probably disrupt the 
the computer system and of its spooling and buffering. 

We see then that we must provide memory protection 
interrupt vector and the interrupt service routines of the 

general, however, we want to protect the operating "'"~, ... ;;,., 
by user programs, and, in addition, to protect user 

This protection must be provided by the 
implemented in several ways, as we shall see in 
outline one such possible implementation. 

What is needed to separate each program's memory 
determine the range of legal addresses that the program 

to protect the memory outside that space. We can 
protection by using two registers, usually a base and a limit, 

Figure 2.7. The base register holds the smallest legal 
and the limit register contains the size of the 

the base register holds 300040 and limit register 

2. 7 A base and a limit register define a logical 

we 



program can legally access all addresses from 300040 
inclusive. 

This protection is accomplished by the CPU hardware ._....,_._, .. lk' ...... 

address generated in user mode with the registers. Any 
program executing in user mode to access monitor memory or 
memory results in a trap to the monitor, which treats the 
error (Figure 2.8). This scheme prevents the user 
(accidentally or deliberately) modifying the code or data (.OTT' ....... 

the operating system or other users. 
The base and limit registers can be loaded by only 

system, which uses a special privileged instruction. Since 
instructions can be executed only in monitor mode, and 
operating system executes in monitor mode, only the operating 
load the base and limit registers. This scheme allows the monitor 
the value of the registers, but prevents user programs 
registers' contents. 

The operating system, executing monitor mode, is 
access to both monitor and memory. This 
operating system to load users' into 
them out in case of errors, to ""'-''"'""'"' and modify 
cails, and so on. 

2.5.4 CPU Protection 
The third piece of the protection puzzle is ensuring that 
system maintains control. We must prevent a user program 
stuck in an infinite loop, and never returning control to 
system. To accomplish this goal, we can use a timer. A 

address yes yes 

no no 

trap to operating c\/crorn 

monitor-addressing error memory 

Figure 2.8 Hardware address protection with base and limit 



50 • Chapter 2: Computer-System Structures 

interrupt the computer after a spedfied pei:iod. The period may be fixed 
(for example, 1160 second) or variable (for example, from 1 millisecond to 1 
second; in increments of 1 millisecond) .. A variable timer is generally 
implemented by a fixed-rate clock and a counter. The operating system 
sets the counter. Every time the clock ticks, the counter is decremented . 

. When the counter reaches zero, an interrupt occurs. For instance, a 10-bit 
counter with a 1-millisecond clock would allow interrupts at intervals from 
1 millisecond to 1024 milliseconds, in steps of 1 millisecond. 

Before turning over control to the user, the operating system ensures 
that the timer is set to interrupt. If the timer interrupts, control transfers 
automatically to the operating system, which may treat the interrupt as a 
fatal error or give the program more time. Instructions that modify the 
operation of the timer are clearly privileged. 

Thus, the timer can be used to prevent a user program from running 
too long. A simple technique is to initialize a counter with the amount of 
time that a program is allowed to run. A program with a 7-minute time 
limit, for example, would have its counter initialized to 420. Every second, 
the timer interrupts and the counter is decremented by 1. As long as the 
counter is positive, control is returned to the user program. When the 
counter becomes negative, the operating system terminates the program 
for exceeding its time limit. 

A more common use of a timer is to implement time sharing. In the 
most straightforward case, the timer could be set to interrupt every N 
milliseconds where N is the time-slice each user is allowed to execute before 
the next user gets control of the CPU. The operating system is invoked at 
the end of each time-slice to perform variotis housekeeping tasks, such as 
adding the value N to the record that specifies (for accounting purposes) 
the amount of time the user program has executed thus far. The operating 
system also resets registers, internal variables, and buffers, and changes 
several other parameters to prepare fot the next program to run. (This 
procedure is known as a context switch, and is explored in Chapter 4.) 
Following a context switch, the next program continues with its execution 
from the point at which it left off (when its previous time-slice ran out). 

Another use of the timer is to compute the current time. A timer 
interrupt signals the passage of some period, allowing the operating 
system fo compute the current time in reference to some initial time. If we 
have interrupts every 1 second, and we have had 1427 interrupts since we 
were told it was 1:00 P.M., then we cari compute that the current time is 
1:23:47 P.M. Some computers determine the Ctirrent time in this manner, 
but the calculations must be done carefully for the time to be kept 
accurately, since the interrupt-processing time (and other times when 
interrupts are disabled) tends to cause the software clock to siow . down. 
Most computers have a separate hardware time-of-day clock that is 
independent of the operating system. 
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2.6 • General-System Architecture 

The desire to improve the utilization of the computer system led to the 
development of multiprogramming and time sharing, where the resources 
of the computer system are shared among many different programs and 
processes. Sharing ·led directly to modifications of the basic computer 
architecture, to allow the operating system to maintain control over the 
computer system, and especially over 1/0. Control must be maintained if 
we are to provide continuous, consistent, and correct operation. 

To maintain control, developers introduced a dual mode of·execution 
(user mode and monitor mode). This scheme supports the concept of 
privileged instructions, which can be executed only in monitor mode. 1/0 

instructions and instructions to modify the memory-management registers 
or the timer are privileged instructions. 

As you can imagine, several other instructions are also classified as 
privileged. For instance, the halt instruction is privileged; a user program 
should never be able to halt the computer. The instructions to turn the 
interrupt system on and off are also privileged, since proper operation of 
the timer and 1/0 depends on the ability to respond to interrupts correctly. 
The instruction to change from user mode to monitor mode is privileged, 
and on many machines any change to the mode bit is privileged., 

Because I/O instructions are privileged, they can be executed by only 
the operating system. Then how does the user program perform 110? By 
making 110 instructions privileged, we have prevented user programs from 
doing any 110, either valid or invalid. The solution to this problem is that, 
because only the monitor can do I/0, the user must ask the monitor ·to do 
I/O on the user's behalf. 

Such a request is known as a system call (also called a monitor call or 
. operating system function call). A system call is invoked in a variety of ways, 
depending on the functionality provided by the underlying processor. In 
all forms, it is the method used by a process to request action by the 
operating system. A system call usually takes the form of a trap to a 
specific location in the interrupt vector. This trap can be executed by a 
generic trap instruction, although some systems (like the Mips R2000 
family) have a specific syscall instruction. 

When a system call is executed, it is treated by the hardware as a 
software interrupt. Control passes through the interrupt vector to a service 
routine in the operating system, and the mode bit is set to monitor mode. 
The system-call service routine is a part of the operating system. Th~ 
monitor examines the interrupting instruction to determine what system 
call has occurred; a parameter indicates what type of service the user 
program is requesting. Additional information needed for the request may 
be passed in registers, on the stack, or in memory (with pointers to the 
memory locations passed in registers). The monitor verifies: that the 
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parameters are correct and legal, executes the request, and 
to the instruction following the system call. 

Thus, to do I/0, a user program executes a system call to 
the operating system perform I/O on its behalf (Figure 2.9). 
system, executing in monitor mode, checks that the request 
the request is valid) does the I/O requested. The operating 
returns to the user. 

2. 7 11 Summary 

Multiprogramming and time-sharing systems require the 
and I/O operations on a single machine. Such an overlap requires 
transfer between the CPU and the I/O devices be handled by one or 
the following methods: (1) interrupt-initialized data transfer, (2) DMA 
transfer. 

For a computer to do its job of executing programs, the 
be in main memory. Main memory is the only large storage area 
processor can access directly. It is an array of words or bytes, 

CD 
trap to 
monitor 

r--t---- case n resident 
monitor 

pertorm 1/0 

return 
to user 

user 
program 

Figure 2.9 Use of a system call to perform 110. 
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size from hundreds of thousands to hundreds of millions. Each word has 
its own address. The main memory is a volatile storage device that loses its 
contents when power is turned off or lost. Most computer systems 
provide secondary storage as an extension of main memory. The main 
requirement of secondary storage is to be able to hold extremely large 
numbers of data permanently. The most common secondary-storage 
device is a magnetic disk, which provides storage of both programs and 
data. A magnetic disk is a nonvolatile storage device that also provides 
random access. Magnetic tapes are used mainly for backup, for storage of 
infrequently used information, and as a medium for transferring 
information from one system to another. 

The wide variety of storage systems in a computer system can be 
organized in a hierarchy according to their speed and their cost. The 
higher levels are expensive, but are fast. As we move down the hierarchy, 
the cost per bit decreases, whereas the access time increases. 

The operating system must ensure correct operation of the computer 
system. To prevent user programs from interfering with the proper 
operation of the system, developers modified the hardware to create two 
modes: user mode and monitor mode. Various instructions (such as 1/0 

instructions and halt instructions) are privileged, and can be executed in 
only monitor mode. The memory in which the operating system resides 
must also be protected from modification by the user. A timer prevents 
infinite loops. Once these changes (dual mode, privileged instructions, 
memory protection, timer interrupt) have been made to the basic computer 
architecture, it is possible to ensure the correct operation of the system. 
Chapter 3 continues this discussion with details of the facilities ·that 
operating systems provide. 

• Exercises 

2.1 Buffering is a method of overlapping the 1/0 of a job with that job's 
own computation. The idea is quite simple. After data have been read 
and the CPU is about to start operating on them, the input device is 
instructed to begin the next input immediately. The CPU and input 
device are then both busy. With luck, by the time that the CPU is 
ready for the next data item, the input device will have finished 
reading it. The CPU can then begin processing the newly read data, 
while the input device starts to read the following data. Similarly, 
the same process can be used for output. In this case, the CPU creates 
data that are put into a buffer until an output device can accept them. 

Compare the buffering scheme with the spooling scheme where 
the CPU overlaps the input of one job with the computation and 
output of other jobs. 
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2.2 Show how a desire for control cards leads naturally to the creation of 
separate user and monitor modes of operation. 

2.3 How does the distinction between monitor mode and user mode 
function as a rudimentary form of protection (security) system? 

2.4 What are the differences between a trap and an interrupt? What is 
the use of each function? 

2.5 For what types of operations is DMA useful? Why? 

2.6 Which of the following instructions should be privileged? 

a. Set value of timer. 

b. Read the clock. 

c. Clear memory. 

d. Turn off interrupts. 

e. Switch from user to monitor mode. 

2. 7 Many computer systems do not provide dual-mode operation in 
hardware. Consider whether it is possible to construct a secure 
operating system for these computers. Give arguments both that it is 
and that it is not possible. 

2.8 Some early computers protected the operating system by placing it in 
a memory partition that could not be modified by either the user job 
or the operating system itself. Describe two difficulties that you think 
could arise with such a scheme. 

2.9 Protecting the operating system is crucial to ensuring that the 
computer system operates correctly. Provision of this protection is the 
reason behind dual-mode operation, memory protection, and the 
timer. To allow maximum flexibility, however, we would also like to 
place minimal· constraints on the user. The following is a list of 
operations that are normally protected. What is the minimal set of 
instructions that must be protected? 

.a. Change to user mode. 

b. Change to monitor mode. 

c. Read from monitor memory. 

d. Write into monitor memory. 

e. Fetch an instruction from monitor memory. 

f. Turn on timer interrupt. 

g. Turn off timer interrupt. 
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2.10 When are caches useful? What problems do they- solve? What 
problems· do they cause-? If a cache can be made· as large as the 
device it is caching for (for instance, a cache as large as a disk) why 
not do so and eliminate the device? 

2.11 Writing an operating system that can operate without interference 
from malicious or undebugged user programs requires some 
hardware assistance. Name three hardware aids for writing an 
operating system, and describe how they may be used together to 
protect the operating system. 
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CHAPTER 3 

OPERATING-SYSTEM 
STRUCTURES 

An opera~ng system provides the environment within which programs are 
executed. Internally, operating systems vary greatly in their makeup, being 
orga~ed along many different lines. The d~sign of a new operating 

. system is a major task. It is important that the goals of the system be well 
defined before the design begins. The type of system desired is the 
foundation for choices among various algorithms and strategies that will be 
necessary. 

There are several vantage points from which to view an operating 
system. One is by examining the serviq~s it provides. Another is by 
looking at the interface it makes available to users and programmers. A 
third is by disassembling the system into its components and their 
interconnections. In this chapter, we explore all three aspects of operating 
systems, to show them from the viewpoints of users, programmers, and 
operating-system designers. We consider what services an operating 
system provides, how they are provided, and what the various 
methodologies are for designing such systems. 

3.1 • System Components 

We can create a system as large and complex as an operating system only 
by partitioning it into ·smaller pieces. Each of these pieces should be a 
well-delineated portion. of the system, with carefully defined inputs, 
outputs,· and function. ·Obviously, not all systems have the same 
structure. However, many modern systems share the goal of supporting 
the types of system components outlined in Sections 3.1.1 through 3. LS. 

57 
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3.1.1 Process Management 
A progr~m does nothing unless its instructions are executed by a CPU. A 
process can be thought of as a program in execution, but its definition will 
broaden as we explore it further. Typically, a batch job is a process. A 
time-shared user program is a process. A system task, such as spooling 
output to a printer, also is a process. For now, you can consider a process 
to be a job or a time-shared program, but the concept is actually more 
general. As we shall see in Chapter 4, it is possible to provide system calls 
that allow processes to create subprocesse~ to execute concurrently. 

A process needs certain resources, including CPU time, memory, files, 
and 110 devices, to accomplish its task. These resources are either given to 
the process when it is created, or allocated to it while it is running. In 
addition to the various physical and logical resources that a process obtains 
when it is created, some initialization data (input) may be passed along. 
For example, consider a process whose function is to display the status of a 
file on the screen of a terminal. The process will be given as an input the 
name of the file, and will execute the appropriate instructio:ns and system 
calls to obtain the desired information and display it on the terminal. 
When the process terminates, the operating system will reclaim any 
reusable resources. 

We emphasize that a program by itself is not a process; a program is a 
passive entity, such as the contents of a file stored on disk, whereas a 
process is an active entity, with a program counter specifying the· next 
instruction to execute. The execution of a process must progress in a 
sequential fashion. The CPU executes one instruction of the pro~ss after 
another, until the process completes. Further, at any point in time; at most 
one instruction is executed on behalf of the process. Thus, although two 
processes may be associated with the same program, they are neverth~less 
considered two separate execution sequences. It _is common to have a 
program that spawns many processes as it runs. 

A process is the unit of work in a system. Such a system consists of a 
collection of processes, some of which are operating-system processes 
(those that execute system code) and the rest of which are user processes 
(those that execute user code). All these processes can potentially e~ecute 
concurrently, by m1:1ltiplexing the CPU among them. 

The operating \~ystem is responsible for the following activities in 
connection with proc~ss management: 

• The creation and deletion of both user and system processes 

• The suspension and resumption of processes 

• The provision of mechanisms for process synchronization 

• The provision of mechanisms for process communicC:ltiOn 

• The provision of mechanisms for deadlock handling 
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Process-management techniques will be discussed 1n great detail in 
Chapters 4 to 7. 

3.1.2 Main-Memory Management 
As discussed in Chapter 1, memory is central to the operation of a modern 
computer system. Memory is a large array of words or bytes, each with its 
own address. It is a repository of quickly accessible data shared by the CPU 
and 110 devices. The central processor reads instructions from main 
memory during the instruction-fetch cycle, and both reads and writes data 
from main memory during the data-fetch cycle. 110 implemented via DMA 

also reads and writes data in main memory. Main memory is generally the 
only storage device that the CPU is able to address directly. For example, 
for the CPU to process data from disk, those data must first be transferred 
to main memory by CPU-generated 110 calls. Equivalently, instructions 
must be in memory for the CPU to execute them. 

For a program to be executed, it must be mapped to absolute addresses 
and loaded into memory. As the program executes, it accesses program 
instructions and data from memory by generating these absolute 
addresses. Eventually, the program terminates, its memory space is 
declared available, and the next program can be loaded and executed. 

To improve both the utilization of CPU and the speed of the computer's 
response to its users, we must keep several programs in memory. There 
are many different memory-management schemes. These schemes reflect 
various approaches to memory management, and the effectiveness o{ the 
different algorithms depends on the particular situation. Selection of a 
memory-management scheme for a specific system depends on many 
factors - especially on the hardware design of the system. Each algorithm 
requires its own hardware support. 

The operating system is responsible for the following activities in 
connection with memory management: 

• Keep track of which parts of memory are currently being used and by 
whom 

• Decide which processes are to be loaded into memory when memory 
space becomes available 

• Allocate and deallocate memory space as needed 

Memory-management techniques will be discussed 1n great detail in · 
Chapters 8 and 9. 

3.1.3 Secondary-Storage Management 

The main purpose of a computer system is to execute programs. These 
programs, with the data they access, must be in main memory (primary 
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storage) during execution. Because main memory is too small to 
accommodate all data and programs, and its data are lost when power is 
lost, the computer system must provide secondary storage to back up main 
memory. Most modern computer systems use disks as the principle on-line 
storage medium, for both programs and data. Most programs - including 

- compilers, assemblers, sort routines, editors, and formatters - are stored 
on a disk until loaded into memory, and then use the disk as both the 
source and destination of their processing. Hence, the proper management 
of disk storage is of central importance to a computer system. 

The operating system is responsible for the following activities in 
connection with disk management: 

• Free-space management 

• Storage allocation 

• Disk scheduling 

Because secondary storage is used frequently, it must be used efficiently. 
The entire speed of operation of a computer may hinge on the disk 
subsystem and the algorithms which manipulate it. Techniques for 
secondary-storage management will be discussed in detail in Chapter 12. 

3.1.4 I/O System Management 
One of the purposes of an operating system is to hide the peculiarities of 
specific hardware devices from the user. For example, in UNIX, the 
peculiarities of 110 devices are hidden from the bulk of the operating 
system itself by the 110 system. The 110 system consists of 

• A buffer-caching system 

• A general device-driver interface 

• Drivers for specific hardware devices 

Only the device driver knows the peculiarities of the specific device to 
which it is assigned. 

We have already discussed in Chapter 2 how interrupt handlers and 
device drivers are used in the construction of efficient 110 systems. In 
Chapter 12, we shall discuss at great length how a particular device (the 
disk) is managed effectively. 

3.1.5 File Management 
File management is one of the most visible components of an operating 
system. Computers can store information on several different types of 
physical media. Magnetic tape, magnetic disk, and optical disk are the 
most common media. Each of these media has its own_ characteristics and 
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physical organization. Each medium is controlled by a device, such as a 
disk drive or tape drive, with its own unique characteristics. These 
properties include speed, capacity, data transfer rate, and access method 
(sequential or random access method). . 

For convenient use of the computer system, the operating system 
provides a uniform logical view of information storage. The operating 
system abstracts from the physical properties of its storage devices to 
define a logical storage unit, the file. The operating system maps files onto 
physical media, and accesses these files via the storage devices. . 

A file is a collection of related information defined by its creator. 
Commonly, files represent programs (both source and object forms) and 
data. Data files may be numeric, alphabetic, or alphanumeric. Files may be 
free-form, such as text files, or may be formatted rigidly. A file consists of 
a sequence of bits, bytes, lines, or records whose meanings are defined by 
their creators. T-he concept of a file is an extremely general one. 

The operating system .implements the abstract concept of a file by 
managing mass storage media, such as tapes and disks, and the devices 
which control them. Also, files are normally organized into directories to 
ease their use. Finally, when multiple users have access to files, it may be 
desirable to control by whom and in what ways files may be accessed. 

The operating system is responsible for the following activities in 
connection with file management: 

• The creation and deletion of files 

• The creation and deletion of directories 

• The support of primitives for manipulating files and directories 

• The mapping of files onto secondary storage 

• The backup of files on stable (nonvolatile) storage media 

. File-management techniques will be discussed in Chapters 10 and 11. 

3.1.6 Protection System 
If a system has multiple users and allows multiple concurrent processes, 
the various processes must be protected from one another's activities. For 
that purpose, mechanisms are provided to ensure that the files, memory 
segments, CPU, and other resources can be operated on by only those 
processes that have gained proper authorization from the operating 
system. 

For example, memory-addressing hardware ensures that a process can 
execute only within its own address space. The timer ensures that no 
process can gain control of the CPU without eventually relinquishing 
control. Finally, users are not allowed to do their own 110, so that the 
integrity of the various peripheral devices is protected. 
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Protection refers to a mechanism for controlling the access of programs, 
processes, or users to the resources defined by a computer system. This 
mechanism must provide a means for specification of the controls to be 
imposed, together with a means of enforcement. 

Protection can improve reliability by detecting latent errors at the 
·interfaces between component subsystems. Early detection of interface 
errors can often prevent contamination of a healthy subsystem by a 
subsystem that is malfunctioning. An unprotected resource cannot defend 
against use (or misuse) by an unauthorized or incompetent user. A 
protection-oriented system provides a means to distinguish between 
authorized and unauthorized usage, as will be discussed in Chapter 13. 

3.1.7 Networking 

A distributed system is a collection of processors that do not share memory 
or a clock. Instead, each processor has its own local memory, and the 
processors communicate with one another through various communication 
lines, such as high-speed buses or telephone lines. The processors in a 
distributed system vary in size and function. They may include small 
microprocessors, workstations, minicomputers, and large general-purpose 
computer systems. 

The processors iri the system are connected through a communication 
network, which can be configured in a number of different ways. The 
network may be fully or partially connected. The communication-network 
design must consider routing and connection strategies, and the problems 
of contention and security. 

A distributed system collects physically separate, possibly 
heterogeneous systems into a single coherent system, providing the user 
with access to the various. resources that the system maintains. Access to a 
shared resource allows computation speedup, increased data availability, 
and enhanced reliability. Operating systems usually generalize network 
access as a form of file access, with the deta:its of networking being 
contained in the network interface's device driver. 

Discussions concerning network and distributed systems are presented· 
in Chapters 15 to 18. 

3.1.8 Command-Interpreter System 
One of the most important system programs for an operating system is the 
command interpreter, which is the interface between the user and the 
operating system. Some operating systems include the command 
interpreter in the kernel. Other operating systems, such ·as MS-DOS and 
UNIX, treat the . command interpreter as a special program that is running 
when a job is initiated, or when a user first logs on (on time-sharing 
systems). · 
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Many commands are given to the operating system by control 
statements. When a new job is started in a batch system, or when a user 
logs on to a time-shared system, a program that reads and . interprets 
control statements is executed C:)utomatically. This program is variously 
called the control-card interpreter, the command-line interpreter, the shell (in 
UNIX), and so on. Its function is quite simple: Get the next command 
statement and execute it. · · · 

Operating systems are frequently differentiated in the area of 
command interpretation, with a user-friendly interpreter making the 
system more agreeaple to some users. An example of a user-friendly 
interface is the Macintosh interpreter, a window and menu system that is 
almost exclusively mouse-based. The user uses the mouse to point with 
the cursor to images (or icons) on the screen that r~present programs, files, 
and system functions. Depending on the cursor ·location,· clicking the·· 
mouse's button can invoke a program, select a file or directory (known as a 
folder), or pull down a menu containing commands. More powerful, 
complex, and difficult-to-learn interpreters are appreciated by other:, more 
sophisticated users. On these interpreters, cotri:ptands are typed on a 
keyboard and displayed on a screen or printing terminal, with the enter (or 
return) key signaling that a command is complete and is ready to be 
executed. The UNIX shells run in this mode. 

The command statements themselves deal with process creation and 
management, 110 handling, secondary-storage management, main memory 
management, file-system access, protection, and networking. 

3.2 • Operating-System Services 

An operating system provides an environment for the execution of 
programs. The operating system provides certain services to programs and 
to the users of those programs. The specific services provided will, of 
course, differ from one operating system to ·another, but there are some 
common classes that we can identify. These operating-system services are 
provided for the convenience of the ·programmer, to make the 
programming task easier. 

• Program execution: The system must be able to load a program into 
memory and to run it. The program must be able to end its execution, 
either normally or abnormally (indicating error). 

• 110 operations: A running program may require 110. This 110 may 
involve a file or an 110 device. For specific devices, special functions 
may be desired (such as rewind a tape drive, or blank the screen on a 
CRT). For efficiency and protection, users cannot control 110 devices 
directly. therefore, the operating system must provide some means to 
do 110. 
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• File·syste~ manipulation: The file system is of particular interest. It 
should be obvious that programs need to read and write files. They 
also need to create and delete files by name. 

• Communications: There are many circumstances in which one process 
needs to exchange information with another process. There are two 
major ways in which such communication can occur. The first takes 
place between processes executing on the same computer; the second 
takes place between processes executing on different computer systems 
that are tied together by a computer network. Communications may 
be implemented via shared memory, or by the technique of message 
passing, in which packets of information are moved between processes 
by the operating system. 

• Error detection: The operating system constantly needs to be aware of 
possible errors. Errors may occur. in the CPU and memory hardware 
(such as a memory error or a power failure), in 110 devices (such as a 
parity error on tape, a connection failure on a network, or lack of 
paper in the printer), or in the user program (such as an arithmetic 
overflow, an attempt to access an illegal memory location, or a too 

·great use of CPU time). For each type of error, the operating system 
should take· the appropriate . action to ensure correct and consistent 
computing. 

In addition, another set of operating-system functions exists not for 
helping the user, but rather for ensuring the efficient operation of the 
system itself. Systems with multiple users can gain efficiency by sharing 
the computer resources among the users. 

• Resource allocation: When there are multiple users or multiple jobs 
running at the same time, resources must be allocated to each of them. 
Many different types of resources are managed by the operating 
system. Some (such as CPU cycles, main memory, and file storage) may 
have special allocation code, whereas others (such as 110 devices) may 
have much more general request and release code. For instance, in 
determining how best to use the CPU, operating systems have CPU
scheduling routines that take into account the speed of the CPU, the 
jobs that must be executed, the number of registers available, and 
other factors. There might also be routines to allocate a tape drive for 
use by a job. One such routine locates an unused tape drive and 
marks an ·internal table to record the drive's new user. Another 
routine is used to clear that table. These routines may also be used to 
alloc(lte plotters, modems, and other peripheral devices. 

• Accounting: We want to keep track of which users use how much and 
what kinds of computer resources. This record keeping may be for 
accounting (so that users can be billed) or simply for accumulating 
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usage statistics. Usage statisqcs may be a valuable tool for researchers 
who wish to reconfigure the system to improve computing services. 

• Protection: The owners of information stored in a multiuser computer 
system may want to control its use. When several disjoint processes 
execute concurrently, it should not be possible for one process to 
interfere with the others, or with the operating system itself. 
Protection involves ensuring that all access to system resources is 
controlled. Security of the system from outsiders is also important. 
Such security starts with each user having to authenticate himself or 
herself to the system, usually by means of a password, to be allowed 
access to the resources. It extends to defending external I/O devices, 
including modems and network adapters, from invalid access attempts, 
and to recording all such connections for detection of breakins. If a 
system is to be protected and secure, precautions must be instituted 
throughout it. A chain is only as strong as its weakest link. 

3.3 • System Calls 

System calls provide the interface between a process and the operating 
system. These calls are generally available as assembly-language 
instructions, and are usually listed in the manuals used by assembly
language programmers. 

Some systems may allow system calls to be made directly from a 
higher-level language program, in which case the calls normally resemble 
predefined function or subroutine calls. They may generate a call to a 
special run-tim~ routine that makes the system call, or the system call may 
be generated directly in-line. 

Several languages - such as C, Bliss, BCPL, and PL/360 - have been 
defined to replace assembly language for systems programming. These 
languages allow system calls to be made directly. Some Pascal systems also 
provide an ability to make system calls directly from a Pascal program to 
the operating system. Most FORTRAN systems provide similar capabilities, 
often by a set of library routines. . 

As an example of how system calls are used, consider writing a simple 
program to read data from one file and to copy them to another file. The 
first input that the program ·will need is the names of the two files: the 
input file and the output file. These names CCJ.n be specified in many ways,. 
depending on the operating-system design. One approach is for the 
program to ask the user for the names of the two files. In an interactive 
system, this approach will require a sequence of system calls, first to write 
a prompting message on the screen, and then to read from the J<eyboard 
the characters that define the two files. Another approach, frequently used 
for batch systems, is to specify the names of the files with control cards. In 
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this case, there must be a mechanism for passing these parameters from 
the control cards to the executing program. On. mouse-based and icon
based systems, a menu of file names is usually displayed in a window. 
The user can then use the mouse to select the source name, and a window 
can be ·opened for the destination name to be specified. 

Once the two file names are obtained, the program must open the 
input file and create the output file. Each of these operations requires 
another system call. There are also possible error conditions for each 
operation. When the program tries to open the input file, it may find that 
there is no file of that name or that the file is protected against access. In 
these cases, the program should print a message on the console (another 
sequence of system calls) and then terminate ,abnormally (another system 
call).·· If the input file exists, then we must create a new output file .. We 
may find that there is already an output file with the same name. This 
situation may cause the program to abort (a system call), or we may delete 
the e,qsting file (another system call) and create a new one (another system 
call). Another option, in an interactive system, is to ask the user· (a 
sequence of system calls to output the prompting message and to read the 
respo_nse from the terminal) whether to replace the existing file or to abort. 

Now that both files are set up, we enter a loop that reads from the 
input file (a system call) and writes to the output file (another system call). 
Each read and write must return status information regarding various 
possible error conditions. On input, the program may find that the end of 
the file has been reached, or that tpere was a hardware failure in the read 
(such as a parity error). The write operation may encounter various errors, 
depending on the output device (no more disk space, physical end of tape, 
printer out of paper, and so on). 

Finally, after the entire file is copied, the program may close both files 
(another system call), write a message to the console (more system calls), 
and finally terminate normally (the last system call). As we can see, 
programs may make heavy use of the operating system. · 

Most users never see this level of detail, however. The run-time 
support system for most programming languages provides a much simpler 
interface. For example, a write statement in Pascal or FORTRAN probably is 
compiled into a call to a run-time support routine that issues the necessary 
system calls, checks for errors, and finally returns to the user program. 
Thus, most of the details of the operating-system interface are hidden from 
the programmer by the compiler and by. the run-time support package. 

System calls occur in different ways, depending on the computer in 
use. Often, more information is required than simply the identity of the 
desired system call. The exact type and amount of information vary 
?ccording to the particular operating system and call. For example, to get 
Input, we may need to specify the file or device to use as the source, and 
the address and length of the memory buffer into which the input should 
be read. Of course, the device or file and length may be implicit in the call. 



Three general methods are used to pass parameters 
system. The simplest approach is to pass the parameters 
some cases, however, there may be more parameters than 
these cases, the parameters are generally stored in a block 
memory, and the address of the block is passed as a 
register (Figure 3.1). Parameters also can be placed, or 
stack by the program, and popped off the stack by the r'\T'l,UT'':> 

Some operating systems prefer the block or stack 
do not limit the number or length of parameters being passed. 

System calls can be roughly grouped into five major 
control, file manipulation, device manipulation, information 
communications. In Sections 3.3.1 to 3.3 we discuss briefly 
system calls that may be provided by an operating system. 
our description may seem somewhat shallow, as most these"'"~'.,-"" 
support, or are supported by, concepts and functions that are 
later chapters. Figure 3.2 summarizes the types of 
provided by an operating system. 

3.3.1 Process and Job Control 

A running program needs to be able to halt its 
(end) or abnormally (abort). If a system call made to 
currently running program abnormally, or if the program 
problem and causes an error trap, a dump of memory 
and an error message generated. The dump is written to disk 
examined by a debugger to determine the cause 
either normal or abnormal circumstances, the operating 

register 

user program 

Figure 3.1 Passing of parameters as a table. 
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• Process control 

o end, abort · 

o load, execute 

o create process, terminate process 

o get process attributes, set process attributes 

o wait for time 

o wait event, signal event 

o allocate and free memory 

• File manipulation 

o create file, delete file 

o open, close 

o read, write, reposition 

o get file attributes, set file attributes 

• Device manipulation 

o request device, release device 

o read, write, reposition 

o get device attributes, set device attributes 

o logically attach or detach devices 

• Information maintenance 

o get time or date, set time or date 

o get system data, set system data 

o get process, file, or device attributes 

o set process, file, or device attributes 

• Communications. 

o create, delete communication connection 

o send, receive messages 

o transfer status information 

o attach or detach remote devices 

Figure 3.2 Types of. system calls. 
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transfer control to the command interpreter. The command interpreter 
then reads the next command. In an interactive system, the command 
interpreter simply continues with the next command; it is assumed that the 
user will issue an appropriate command to respond to any error. In a batch 
system, the command interpreter usually terminates the entire job and 
continues with the next job. Some systems allow control cards to indicate 
special recovery actions in case an error occurs. If the program discovers 
an error in its input and wants to terminate abnormally, it may also want 
to define an error level. More severe errors can be indicated bY. a higher
level error parameter. It is then possible to combine normal and abnormal 
termination by defining a normal termination as error at level 0. The 
command interpreter or a following program can use this error level to 
determine the next action automatically. 

A process or job executing one program may want to load and execute 
another program. This feature allows the command interpreter to execute a 
program as directed by, for example, a user command, the click of a 
mouse, or a batch command. An interesting question is where to return 
control when the loaded program terminates. This question is related to 
the problem of whether the existing program is lost, saved, or allowed to 
continue execution concurrently with the new program. 

If control returns to the existing program when the new program 
terminates, we must save the memory image of the existing program; thus, 
we have -effectively created a mechanism for one program to call another 
program. If both programs continue concurrently, we have created a new 
job or process to be multiprogrammed. Often, there is a system call 
specifically for this purpose (create process or submit job). · 

· If we create a new job or process, or perhaps even a set of jobs or 
processes, we should be able to control its execution. This control requires 
the ability to determine and reset the attributes of a job or process, 
including the job's priority, its maximum allowable execution time, and so 
on (get process attributes and set process attributes). We may also want to 
terminate a job or process that we created (terminate process) if we find 
that it is incorrect or is no longer needed. 

Having created new jobs or processes, we may need to wait for them 
to finish their execution. We may want to wait for a certain amount of time 
(wait time); more probably, we may want to wait for a specific event to 
occur (wait event). The jobs or processes should then signal when that 
event has occurred (signal event). System calls of this type, dealing with 
the coordination of concurrent processes, are discussed in great detail in 
Chapter 6. 

Another set of system calls is helpful in debugging a program. Many 
systems provide system calls to dump memory. This provision is useful for 
debugging. A program trace lists each instruction as it is executed; it is 
provided by fewer systems. Even microprocessors provide a CPU mode 
known as single step, in which a trap is executed by the CPU after every 
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instruction. The trap is usually caught by a debugger, which is a 
program designed to aid the programmer in finding and correcting 

A time profile of a program is provided by many systems. It 
the amount of time that the program executes at a particular 
of locations. A time profile requires either a tracing facility or 
interrupts. At every occurrence of the timer interrupt, the value 
program counter is recorded. With sufficiently frequent timer 
statistical picture of the time spent on various parts of the program can 
obtained. 

There are so many facets of and variations in process and job 
that we shall use examples to clarify these concepts. The MS-DOS rYn,or:::.ft 

system is an example of a single-tasking system, which has a rnrl'\rl'\ 

interpreter that is invoked when the computer is started (Figure 
Because MS-DOS is single-tasking, it uses a simple method run a 
program, and does not create a new process. It loads the 
memory, writing over most of itself to give the program as much 
as possible (Figure 3.3(b)). It then sets the instruction pointer to 
instruction of the program. The program then runs and either an error 
causes a trap, or the program executes a system call to terminate. 
case, the error code saved in the system memory for later use. 
this action, the small portion of the command interpreter that 
overwritten resumes execution. Its first task is to reload 
command interpreter from disk. Once this task 
command interpreter makes the previous error code available to 
or to the next program. 

(a) (b) 

Figure 3.3 MS-DOS execution. (a) At system startup. (b) Running a 

-



Berkeley UNIX, on the other hand, is an example of a 
system. When a user logs on to the system, a command 1nr.r:>rrYrt:>ta ... 

a shell) of the user's choice is run. This shell is similar 
comm(;l.nd interpreter (in fact, MS-DOS is modeled 
accepts commands and executes programs that the 
However, since UNIX is a multitasking system, the 
may continue running while another program is executed 
start a new process, the shell executes a fork system 
selected program is loaded into memory via an exec system 
program is then executed. Depending on the way the 
issued, the shell then either waits for the process to finish, 
process "in the background". In the latter case, the 
requests another command. When a process is 
background, it cannot receive input directly from the 
shell · is expecting input also. I/O is therefore done 
Meanwhile, the user is free to ask the shell to run other 
monitor the progress of the running process, to 
priority, and so on. When the process is done, it executes an 
call to terminate, returning to the invoking process a 
nonzero error code. This status or error code is then 
or other programs. Processes are discussed in Chapter 

3.3.2 File Manipulation 
The file system will be discussed in more detail in 
can identify several common system calls dealing with 

Figure 3.4 UNIX running multiple programs. 

-
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We first need to be able to create and delete files. Either system call 
requires the name of the file and perhaps some of the file's attributes. 
Once th~ file is created, we need to open it and to use it. We may also 
read, write, or reposition (rewinding or skipping to the end of the file, for 
example). Finally, we need to close the file, indicating that we are no 
longer using it. 

We may need these sa111e sets of operations for directories if we have a 
directory structure for organizing files in the file system. In addition, for 
either files or directories, we need to be able to determine the values of 
V(;lrious attributes, and perhaps to reset them if necessary. File attributes 
include the file name, a file type, protection codes, accounting information, 
and so on. At least two system calls, get file attribute and set file 
attribute, ar~ required for this function. Some operating systems provide 
many more calls. 

3.3.3 Device Management 

A progrqm, as it is running, may need additional resources to proceed. 
Additional resources may be more memory, tape drives, access to files, 
and so on. If the resources are available, they can be granted, and control 
can be returned to the user program; otherwise, the program will have to 
wait until sufficient resources are available. 

Files can be thought of as (lbstract or virtual devices. Thus, many of 
the syst~m calls for files are also needeq for devices. If there are multiple 
p.sers of the system, however, we must first request the device, to ensure 
exclusive use of it. After we are finished with the device, we must release 
it. These functions are similar to the open and close system calls for files. 

Once the device has been request~d (and allocated to us), we can read, 
write, and (possibly) reposition the device, just as we can with files. In 
fact, the similarity between vo device& and files is so great that many 
operating systems, including UNTX and MS-DOS, merge the two into a 
combined file-device structure. In this case, vo devices are identified by 
spedal file names. 

3.3.4 Information Maint~nance 

Many system calls exist simply for the purpose of transferring information 
between the user program and the operating system. For exa111ple, most 
systems have a system call to return the current time and date. Other 
system calls may return information about the system, such as the number 
of current users, the version number of the operating system, the amount 
of free memory or disk space, and so on. 

In addition,. the operating system keeps information about all its 
processes, an~ there a.re system calls to access this information. Generally, 
there are also calls to reset the process information (get process attributes 
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and set process attributes). In Section 4.1.3, we discuss what information is 
normally kept. 

3.3.5 Communication 

There are two common models of communication .. In the message-passing 
model, information is exchanged through an interprocess-:-communication 
facility provided by the operating system. Before communication can take 
place, a connection must be opened. The name of the other communicator 
must be known, be it another process on the same CPU, or a process on 
another computer connected by a com~unications network. Each computer 
in a network has a host name by which it is commonly known. Similarly, 
each process has a process name, which is translated into an equivalent 
identifier by which the operating system can refer to it. The get hostid, 
and get processid system calls do this translation. These identifiers are 
then passed to the general-purpose open and close calls provided by the 
file system, or to specific open connection and close connection system 
calls, depending on the system's model of communications. The. recipient 
process usually must give its permission for communication to take place 
with an accept connection call. Most processes that will be receiving 
connections ate special-purpose daemons, which are system programs 
provided fot that purpose. They execute a wait for connection call and are 
awakened when a connection is made. The source of the communication, 
kriown as the client, and the receiving daemon, known as a server, then 
exchange messages by read message and write message system calls. The 
close cortnection call termimites the communication. · 

In the shared-memory model, processes use map memory system calls to 
gain access to regions of memory owned by other processes. Recall that, 
normally, the operating system tries to prevent one process from accessing 
another process' memory. Shared memory requires that two or. more 
processes agree to remove this restriction. They may then exchange 
information by reading and writing data in these shared areas. The form 
of the data and the location are determined by these processes and are not 
under the operating system's control. The processes are also responsible 
for ensuring that they are not writing to the same location simultaneously. 
Such mechanisms are discussed in Chapter 6. 

Both of these methods are common in operating systems, and some 
systems even implement both. Message passing is useful when smaller 
numbers of data need. to be exchanged, because no conflicts need to be· 
avoided. It is also . easier to implement than :ls shared memory for 
intercomputer commurucation. Shared memory allows maximum speed 
and convenience of communication, as it can be done at memory speeds 
when within a computer. Problems exist, however, in the areas of , 
protection and synchronization. The two communications models are 
contrasted in Figure 3.5. 
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System Programs 

Another aspect of a modern system is the collection of 
,..,..._,~ ... .u Figure 1.1, which depicted the logical computer 

level hardware, of course. Next is the operating system, 
.::u<:f"Plrn programs, and finally the application programs. System 

a more convenient environment for program 
execution. Some of them are simply user interfaces to 
whereas others are considerably more complex. They can be 

categories: 

• manipulation: These programs create, delete, copy, 
dump, list, and generally manipulate files and directories. 

• Status information: Some programs simply ask the system for 
time, amount of available memory or disk space, number of 
similar status information. That information is then formatted, 
printed to the terminal or other output device or file. 

• File modification: Several text editors may be available to ""'0 "'"
0 

modify the content of files stored on disk or tape. 

• Programming-language support: Compilers, 
interpreters for common programming languages (such as 
COBOL, Pascal, BASIC, C, and LISP) are often provided to the user 

1 

(a) (b) 

3.5 Communications models. (a) Message passing. (b) 
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the operating system. Many of these programs are now priced and 
provided separately. 

• Program loading and execution: Once a program is assembled or 
compiled, it must be loaded into memory to be executed. The system 
may provide absolute loaders, relocatable loaders, linkage editors., and 
overlay loaders. Debugging systems for either higher-level languages 
or machine language are needed also. 

• Communications: These programs provide the mechanism for creating 
virtual connections among processes, users, and different computer 
systems. They allow users to send messages to each other's screens, to 
send larger messages as electronic mail, or to tranSfer files from one 
machine to another, and even to use other computers remotely as 
though these machines were local (known as remote login). 

• Application programs: Most operating systems are supplied with 
programs that are useful to solve common problems, or to perform 
common operations. Such programs include compiler compilers, text 
formatters, plotting packages, database systems, spreadsheets, 
statistical-analysis packages, and games. 

Perhaps the most important system program for an operating system is 
the command interpreter, the main function of which is to get and execute 
the next user-specified command. 

Many of the commands given at this level manipulate files: create, 
delete, list, print, copy, execute, and so on. There are two general ways in 
which these commands can be implemented. In one approach, the 
command interpreter itself contains the code to execute the command. For 
example, a command to delete a file may cause the command interpreter to 
jump to a section of its code that sets up the parameters and makes the 
appropriate system call. In this case, the number of commands that can be 
given determines the size of the command interpreter, since each 
command requires its own implementing code. 

An alternative approach used by UNIX, among other operating systems, 
implements most commands by special systems programs. In this case, the 
command interpreter does not "understand" the command in any way; it 
merely uses the command to identify a file to be loaded into memory and 
executed. Thus, a command 

delete G 

would search for a file called delete, load the file into memory, and execute 
it with the parameter G. The function associated with the delete command 
would be defined completely by the code in the file delete. In this way, 
programmers can add new commands to the system easily by creating new 
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files of the proper name. The command-interpreter program, which can 
now be quite small, does not have to be changed for new commands to be 
added. 

There are problems with this approach to the design of a command 
interpreter. Notice first that, because the code to execute a command is a 

. separate system program, the operating system must provide a mechanism 
for passing parameters from the command interpreter to the system 
program. This task can often be clumsy, because the command interpreter 
and the system program may not both be in memory at the same time, and 
the parameter list can be extensive. Also, it is slower to load a program 
and to execute it than simply to jump to another section of code within the 
current program. 

Another problem is that the interpretation of the parameters is left up 
to the programmer of the system program. Thus, parameters may be 
provided inconsistently across programs that appear similar to the user, 
but that were written at different times by different programmers. 

The view of the operating system seen by most users is thus defined 
bythe systems programs, rather than by the actual system calls. Consider 
IBM PC compatibles. Running the same MS-DOS operating system, the user 
could see a command-line-based command interpreter, or, could run the 
Windows program to invoke a graphical, Apple Macintosh-like interface. 
Both use the same set of system calls, but the calls look different and act in 
different ways. Consequently, this user view may be substantially removed 
from the actual ·system structure. The design of a useful and friendly user 
interface is therefore not a direct function of the operating system. In this 
book, we shall concentrate on the fundamental problems of providing ade
qu~te service to user programs. From the point of view of the operating sys
tem, we do not distinguish between user programs and systems programs. 

3.5 • System Structure 

A system as large and complex as a modern operating system must be 
engineered carefully if it is to function properly and to be modified easily. 
A common approach is to partition the task into small components, rather 

. than hav.e one monolithic system. Each of these modules should be a well
defined portion of the system, with carefully defined inputs, outputs, and 
function. We have already discussed briefly the common components of 
operating systems (Section 3.1). In this section, we discuss the way that 
these components are interconnected and melded into a kernel. 

' 

3.5.1 Simple Structure 
There are numerous commercial systems that do not have a well-defined 
structure. Frequently, such operating systems started as small, simple, 



and limited systems, and then grew beyond their 
example of such a system is MS-DOS, the best-selling 
operating system. MS-DOS was originally designed and 
few people who had no idea that it would become so 
written to provide the most functionality in the least space, 
limited hardware on which it ran, so it was not divided 
carefully. Figure 3.6 shows its current structure. 

Although MS-DOS does have some structure, its interfaces 
functionality are not well separated. For instance, applications 
are able to access the basic I/O routines to write directly to 
disk drives. Such freedom leaves MS-DOS vulnerable 
malicious) programs, causing entire system crashes or disk erasures 
user programs fail. Of course, MS-DOS is also limited by the on 
which it runs. Because the Intel 8088 for which it was written no 
dual mode and no hardware protection, the designers of MS-DOS no 
choice but to leave the base hardware accessible. 

Another example of limited structuring is the original UNIX 

system. UNIX is another system that initially was limited 
functionality. It consists of two separable parts: the kernel 
programs. The kernel is further separated into a 
device drivers, which have been added and expanded over 
UNIX has evolved. We can view the UNIX operating 
layered as shown in Figure 3.7. Everything below the 
and above the physical hardware is the kernel. The kernel 
system, CPU scheduling, memory management, and other 
functions through system calls. Taken in sum, that 

Fig·are 3.6 MS-DOS layer structure. 
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Figure 3.7 UNIX system structure. 

of functionality to be combined into one level. Systems use 
kernel-supported system calls to provide useful functions/ as 
compilation and file manipulation. 

System calls define the programmer interface to UNIX; the 
programs commonly available defines the user interface. 
and user interfaces define the context that the kernel must 
Several versions of UNIX have been developed in which the 
partitioned further along functional boundaries. The AIX r.n.o:>ro::. 

IBM's version of UNIX, separates the kernel into two 
Carnegie Mellon University, reduces the kernel to a small 
functions by moving all nonessentials into systems and even into 
programs. What remains is a microkernel operating system 
only a small set of necessary primitives. 

3.5.2 Layered Approach 
These new UNIX versions are designed to use more advanced 
Given proper hardware support, operating systems may be 
smaller, more appropriate pieces than those allowed by the 
or UNIX. The operating system can then retain much greater 
the computer and the applications that make use of that 
Implementors have more freedom to make changes to the inner wc>rKm~~s 
of the system. Familiar techniques are used to aid in the 
modular operating systems. Under the top-down approach, 
functionality and features can be determined and 

-
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components. Information hiding is also important, 
to implement the low-level routines as they see fit, 

external interface of the routine stays unchanged and 
performs the advertised task. 

The modularization of a system can be done in many 
appealing is the layered approach, which consists of 
operating system into a number of layers (levels), each 
lower layers. The bottom layer (layer 0) is the hardware; the 
N) is the user interface. 

An operating-system layer is an implementation an 
that is the encapsulation of data, and operations that can 
data. A typical operating-system layer - say layer M 
Figure 3.8. It consists of some data structures and a set of 
be invoked by higher-level layers. Layer M, return, 
operations on lower-level layers. 

The main advantage of the layered approach is modularity. 
are selected such that each uses functions (operations) 
lower-level layers. This approach simplifies 
verification. The first layer can be debugged without 
rest of the system, because, by definition, it uses only 
(which is assumed correct) to implement its functions. 
is debugged, its correct functioning can be assumed while 
is worked on, and so on. If an error found during 
particular layer, we know that the error must be on that 
layers below it are already debugged. Thus, 
implementation of the system is simplified when the 
down into layers. 

new 
operations 

existing 
operations 

Figure 3.8 An operating-system layer. 
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Each layer is implemented using only those operations provided by 
lower-level layers. A layer does not need to know how these operations 
are implemented; it needs to know only what these operations do. Hence, 
each layer hides the existence of certain data structures, operations, and 
hardware from higher-level layers. 

The layer approach to design was first used in the THE operating 
system at the Technische Hogeschool Eindhoven. The THE system was 
defined in six layers, as shown in Figure 3.9. The bottom layer was the 
hardware. The next layer implemented CPU scheduling. The next layer 
implemented memory management; the memory-management scheme was 
virtual memory (Chapter 9). Layer 3 contained the device driver for the 
operator's console. Because it, as well as 110 buffering (level 4), were placed 
above memory management, the device buffers were able to be placed in 
virtual memory. The I/O buffering was also above the operator's console, so 
that IIO error conditions could be output to the operator's console. 

This approach can be used in many ways. For example, the Venus 
system was also designed using a layered approach. The lower layers (0 to 
4), dealing with CPU scheduling and memory management, were then put 
into microcode. This decision provided the advantages of additional speed 
of execution and a clearly defined interface between the microcoded layers 
and the higher layers (Figure 3.10). 

The major difficulty with the layered approach involves the appropriate 
definition of the various layers. Because a layer can use only those layers 
that are at a lower level, careful planning is necessary. For example, the 
device driver for the backing store (disk space used by virtual-memory 
algorithms) must be at a level lower than that of the memory-management 
routines, because memory management requires the ability to use the 
backing store. 

Other requirements may not be so obvious. The backing-store driver 
would normally be above the CPU scheduler, because the driver may need 

layer 5: user programs 

layer 4: buffering for input and output devices 

layer 3: operator-console device driver 

layer 2: memory management 

layer 1: CPU scheduling 
" 

layer 0: hardware 

Figure 3.9 THE layer structure. 
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layer 6: user programs 

layer 5: device drivers and schedulers 

layer 4: virtual memory 

layer 3: 110 channel 

layer 2: CPU scheduling 

layer 1: instruction interpreter 

layer 0: hardware 

Figure 3.10 Venus layer structure. 

to wait for I/O and the CPU can be rescheduled during this time. However, 
on a large system, the CPU scheduler may have more information about all 
the active processes than can fit in memory. Therefore, this information 
may need to be swapped in and out of memory, requiring the backing
store driver routine to be below the CPU scheduler. 

A final problem with layered ini.plementations is that they tend to be 
less efficient than other type.s. For instance, for a user program to execute 
an 110 operation, it executes a system call which is trapped to the 110 layer, 
which calls the memory-management layer, through to the CPU scheduling 
layer, and finally to the hardware. At each layer, the parameters may be 
modified, data may need to be passed, and so ort. Each layer adds 
overhead to the system call and the net result :ls a system call that takes 
longer th~n one does on a rtonlayered system. . 

These limitations have caused a small backlash against layering in 
recent years. Fewer layers with more functionality are . being designed, 
providing most of the advantages of modularized code while avoiding the 
difficult problems of layer definition and interaction. OS/2, a direct 
descendant of MS-bos, was created to overcome the limitations of MS-DOS. 
OS/2 adds multitasking and dual-mode operation, as well as other new 
features. Because of this added complexity and the more powerful 
hardware for which OS/2 was designed, the system was implemented in a 
more layered fashion. Contrast the MS-DOS . structure to that shown in 
Figure 3.11. It should be clear that, from both the system-design and 
implementation standpoints, OS/2 has the advantage. For instance, dl.rect 
user access to low-level· facilities is not allowed, providing the operating 
system with more control over the hardware and more knowledge of 
which resources each user program is using. 
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Figure 3.11 OS/2 layer structure. 

3.6 • Virtual Machines 

Conceptually, a computer system is made up of layers. 
the lowest level in all such systems. The kernel running at 
uses the hardware instructions to create a set of system calls 
outer layers. The systems programs above the kernel are "~""'"l"Af"rn·"' 
use either system calls or hardware instructions, and in some 
programs do not differentiate between these two. Thus, 
accessed differently, they both provide functionality that the nrr"\crr:clrn 

use to create even more advanced functions. System programs, 
treat the hardware and the system calls as though they both are 
same level. 

Some systems carry this scheme even a step further by 
system programs to be called easily by the application 
before, although the system programs are at a level higher 
other routines, the application programs may view everything 
in the hierarchy as though the latter were part of the machine 

• 



layered approach is taken to its logical conclusion in the 
virtual machine. The VM operating system for IBM systems 
example of the virtual-machine concept, because IBM pioneered 
this area. 

By using CPU scheduling (Chapter 5) and virtual-memory 
(Chapter 9), an operating system can create the illusion 
processes, each executing on its own processor with its own 
memory. Of course, normally/ the process has additional 
system calls and a file system, which are not provided 
hardware. The virtual-machine approach, on the other 
provide any additional function, but rather provides an 
identical to the underlying bare hardware. Each process is 
(virtual) copy of the underlying computer (Figure 3.12). 

The resources of the physical computer are shared to 
machines. CPU scheduling can be used to share the CPU and to 
appearance that users have their own processor. Spooling and a 
can provide virtual card readers and virtual line printers. 
time-sharing terminal provides the function of the 
operator's console. 

A major difficulty with the virtual machine-approach 
systems. Suppose that the physical machine has three 
wants to support seven virtual machines. Clearly, it cannot 

(a) 

programming 
interface 

(b) 

Figure 3.12 System models. (a) Nonvirtual machine. (b) 
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drive to each virtual machine. Remember that the virtual-machine software 
itself will need substantial disk space to provide virtual memory and 
spooling. The solution is to provide virtual disks, which are identical in all 
respects except size. These are termed minidisks in IBM's VM operating 
system. The system implements each minidisk by allocating as many tracks 
as the minidisk needs on the physical disks. Obviously, the sum of the 
sizes of all minidisks must be less than the actual amount of physical disk 
space available. 

Users thus are given their own virtual machine. They can then run any 
of the operating systems or software packages that are available on the 
underlying machine. For the IBM VM system, a user normally runs CMS, a 
single-user interactive operating system. The virtual-machine software is 
concerned with multiprogramming multiple virtual machines onto a 
physical machine, but does not need to consider any user-support 
software. This arrangement may provide a useful partitioning of the 
problem of designing a multiuser interactive system into two smaller 
pieces. 

Although the virtual machine concept is useful, it is difficult to 
implement .. Much effort is required to provide an exact duplicate of the 
underlying machine. Remember, for example, that the underlying 
machine has two modes: user mode and monitor mode. The virtual
machine software can run in monitor mode, since it is the operating 
system. The virtual machine itself can execute in only user mode. Just as 
the physical machine has two modes, however, so must the virtual 
machine. Consequently, we must have a virtual user mode and a virtual 
monitor mode, both of which run in a physical user mode. Those actions 
that cause a transfer from user mode to monitor mode on a real machine 
(such as a system call or an attempt to execute a privileged instruction) 
must also cause a transfer from virtual user mode to virtual monitor mode 
on a virtual machine. 

This transfer can generally be done fairly easily. When a system call, 
for example, is made by a program running on a virtual machine in virtual 
user mode, it will cause a transfer to the virtual-machine monitor in the 
real machine. The virtual user mode is also a physical user mode. When 
the virtual-machine monitor gains control, it can change the register 
contents and program counter for the virtual machine to simulate the effect 
of the system call. It can then restart the virtual machine, noting that it is 
now in virtual monitor mode. If the virtual machine then tries, for 
example, to read from its virtual card reader, it will execute a privileged 110 
instruction. Because the virtual machine is running in physical user mode, 
this instruction will trap to the virtual-machine monitor. The virtual
machine monitor must then simulate the effect of the I/O instruction. First, 
it finds the spooled file that implements the virtual card reader. Then, it 
translates the read of the virtual card reader into a read on the spooled 
disk file, and transfers the next virtual "card image" into the virtual 
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memory of the' virtual machine. Finally, it can restart the virtual machine. 
The state of the virtual machine has been modified exactly as though the 
vo instruction had been executed with a real card reader for a real machine 
executing in a real monitor mode. 

The major difference is, of course, time. Whereas the real I/O might 
have taken 100 milliseconds, the virtual vo might take less time (because it 
is spooled) or more (because it is interpreted). In addition, the CPU is being 
multiprogrammed among many virtual machines, further slowing down 
the virtual machines in unpredictable ways. In the extreme case, it may be 
necessary to simulate all instructions to provide a true virtual machine. VM 

works for IBM machines because normal instructions for the virtual 
machines can execute directly on the hardware. Only the privileged 
instructions (needed mainly for vo) must be simulated and hence execute 
more slowly. 

The virtual-machine concept has several advantages. Notice that in this 
environment there is complete protection of the various system resources. 
Each virtual machine is completely isolated from all other virtual machines, 
so there are no security _problems. On the other hand, there is no direct 
sharing of resources. To provide sharing, two approaches have been 
implemented. First, it is possible to share a minidisk. This scheme is 
modeled after a physical shared disk, but is implemented by software. 
With this technique, files can be shared. Second, it is possible to define a 
network of virtual machines, each of which can send information over the 
virtual communications network. Again, the network is modeled after 
physical communication networks, but is implemented in software. 

Such a virtual-machine system is a perfect vehicle for operating
systems research and development. Normally, changing an operating 
system is a difficult task. Because operating systems are large and complex 
programs, it is difficult to be sure that a change in one point will not cause 
obscure bugs in some other part. This situation can be particularly 
dangerous because of the power of the operating system. Because the 
operating system executes in monitor mode, a wrong change in a pointer 
could cause an error that would destroy the entire file system. Thus, 'it is 
necessary to test all changes to the operating system carefully. 

The operating system, however, runs on and controls the entire 
machine. Therefore, the current system must be stopped and taken out of 
use while changes are made and tested. This period is commonly called 
system-development time. Since it makes the system unavailable to users, 
system-development time is often scheduled late at night or on weekends, . 
when system load is low . 

.. A virtual-machine system can eliminate much of this problem. System 
programmers are ·given their own virtual machine, and system 
development is done on the virtual machine, instead of on a physical 
machine. Normal system operation seldom needs to be disrupted for 
system development. 



86 • Chapter 3: Operating-System Structures 

Virtual machines are coming back into fashion as a means of solving 
system compatibility problems. For instance, there are thousands of 
programs available for MS-DOS on Intel CPU-based systems. Computer 
vendors like Sun Microsystems and Digital Equipment Corporation (DEC) 
use other, faster processors, but would like their customers to be able to 
run these MS-DOS programs. The solution is to create a virtual Intel 
machine on top of the native processor. An MS-DOS program is run in this 
environment, and its Intel instructions are translated into the native 
instruction set. MS-DOS is also run in this virtual machine, so the program 
can make its system calls as usual. The net result is a program which 
appears to be running on an Intel-based system but is really executing on a 
very different processor. If the processor is sufficiently fast, the MS-DOS 
program will run quickly even though every instruction is being translated 
into several native instructions for execution. 

3.7 • System Design and Implementation 

In this section, we discuss the problems of designing and implementing a 
system. There are, of course, no complete solutions to the design 
problems, but there are approaches that have been successful. 

3.7.1 Design Goals 
The first problem in designing a system is to define the goals and 
specifications of the system. At the highest level, the design of the system 
will be affected by the choice of hardware and type of system: batch, time
shared, single-user, multiuser, distributed, real-time, or general purpose. 

Beyond this highest design level, the requirements may be much 
harder to specify. The requirements can be divided into two basic groups: 
user goals and system goals. 

Users desire certain obvious properties in a system: The system should 
be convenient to use, easy to learn, easy to use, reliable, safe, and fast. Of 
course, these specifications are not particularly useful in the system design, 
since there is no general agreement on how to achieve these goals. 

A. similar set of requirements can be defined by those people who must 
design, create, maintain, and operate the system: The operating system 
should be easy to design, implement, and maintain; it should be flexible, 
reliable, error-free, and efficient. Again, these requirements are vague and 
have no general solution. 

There is no unique solution to the problem of defining the 
requirements for an operating system. The wide range of systems shows 
that different requirements can result in a large variety of solutions for 
different environments. For example, the requirements for MS-DOS, a 
single-user system for microcomputers, must have ·been substantially 
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different from those for MVS, the large multiuser, multiaccess operating 
system for IBM mainframes. . 

The specification and design of an operating system is a highly creative 
task. No mere textbook can solve that problem. There are, however, 
general principles that h~lVe been suggested. Software engineering is the 

. general field for these principles; certain ideas from this field are especially 
applicable to operating systems. 

3. 7.2 Mechanisms and Policies 

One important principle is the separation of policy from mechanism. 
Mechanisms determine how to do something. In contrast, policies decide 
what will be done. For example, a mechanism for ensuring CPU protection 
is the timer construct (see Section 2.5). The decision of for how long the 
timer is set for a particular user, on the other hand, is a policy decision. 

The separation of policy and mechanism is important for flexibility. 
Policies are likely to change from place to place or time to time. In the 
worst case, each change in policy would require a change in the 
underlying mechanism. A general mechanism would be more desirable. A 
change in policy would then require redefinition of only certain parameters 
of the system. For instance, if, in one computer system, a policy decision 
is made that I/O-intensive programs should have priority over CPU-intensive 
ones, then the opposite policy could be instituted easily on some other 
computer system if the mechanism were properly separated and were 
policy independent. 

Microkernel:-based operating systems take the separation of mechanism 
and policy to extreme, by implementing a basic set of primitive building 
blocks. These blocks are almost policy-free, allowing more advanced 
t'Il&hanisms and policies to be added via user-created kernel modules, or 
user programs themselves. At the other extreme is a system such as the 
Apple Macintosh operating system, in which both mechanism and policy 
are encoded in the system to enforce a global look and feel to the system. 
All applications have similar interfaces, because the interface itself is built 
into the kernel. 

Policy decisions are important for all resource allocation and scheduling 
problems. Whenever it is necessary to decide whether or not to allocate a 
resource, a policy decision must be made. Whenever the question is 
"how" rather than "what", it is a mechanism that must be determined. 

3.7.3 Implementation 

Once an operating system is designed, it must be implemented. 
Traditionally, operating systems have been written in assembly language. 
However, that is generally no longer true. Operating systems can now be 
written in higher-level languages. 
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The first system that was not written in assembly language was 
probably the Master Control Program (MCP) for Burroughs computers. MCP 
was written in a variant of ALGOL. MULTICS, developed at MIT, was Written 
mainly in PL/1. The Primos operating system for Prime computers is written 
in a dialect of FORTRAN. The UNIX operating system, OS/2, and Windows/NT 
are mainly written in C. Only some 900 lines of code of the original UNIX 
were in assembly language, most of which constituted the scheduler and 
device drivers. 

The advantages of using a higher-level language, or at least a systems
implementation language, for implementing operating systems are the 
saine as those accrued when the language is used for application. 
prqgrams: The code can be written faster, is more compact, and is easier to 
understand and debug. The major claimed disadvantages are reduced 
speed and increased storage requirements. Although no compiler can 
produce consistently more efficient code than can an expert assembly
language programmer, a compiler often can produce code at least as good 
as that written by the average assembly-language programmer. In addition, 
replacing the compiler with a better compiler will uniformly improve the 
generated code for the entire operating system by simple recompilation. 
Finally, an operating system is far easier to port- to move to some other 
hardware- if it is written in a high-level language. For example, MS-I?OS 
was written in Intel 8088 assembly language. Consequently, it is available 
on only the Intel family of CPUs. The UNIX operating system, which is 
written mostly in c, on the other hand, is available on a number of 
different CPUs, including Intel 80X86, Motorola 680XO, SPARC, and Mips 
RXOOO. 

As with other systems, major performance improvements are more 
likely to be the result of better data structures and algorithms than of 
cleaner coding. In addition, although operating systems are large systems, 
only a small amount of the code is critical to high performance; the 
memory manager and the CPU scheduler are probably the most critical 
routines. After the system is written and is working correctly, bottleneck 
routines can be identified, and can be replaced with assembly-language 
equivalents. 

To. identify bottlenecks, we must be able to monitor the system 
performance. Code must be added to compute and display measures of 
system behavior. In a number of systems, the operating system does this 
task by producing trace listings of system behavior. All interesting events 
are logged with their time and important parameters, and are written to a 
file. Later, an analysis program can process the log file to determine 
system performance and to identify bottlenecks and inefficiencies. These 
same traces could also be run as input for a simulation of a suggested 
improved system. Traces also can be useful in finding errors :ln operating
system behavior. 
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An alternative possibility is to compute and display performance 
measures in real time. This approach may allow the system operators to 
become more familiar with system behavior and to modify system 
operation in real time. 

3.8 • System Generation 

It is possible to design, code, and implement an operating system 
specifically for one machine at one site. More commonly, however, 
operating systems are designed to run on any of a class of machines at a 
variety of sites with a variety of peripheral configurations. The system 
must then be configured or generated for each specific computer site~ This 
process is known as system generation (SYSGEN). 

·The operating system is normally distributed on tape or disk. To 
generate a system, we use a special program. The SYSGEN program reads 
from a file or asks the operator for information concerning the specific 
configuration of the hardware system: 

• What CPU is to be used? What options (extended instruction sets, 
floating-point arithmetic, and so on) are installed? For multiple CPU 
systems, each CPU must be described. 

• How much memory is available? Some systems will determine this 
value themselves by referencing memory location after memory 
location until an "illegal address" fault is generated. This procedure 
defines the final legal address and hence the amount of available 
memory. 

• What devices are available? The system will need to know how to 
address each device (the device number), the device interrupt number, 
the device's type and model, and any special device characteristics. 

• What operating-system options are desired, or what parameter values 
are to be used? These options or values might include how many 
buffers of which sizes should be used, what CPU-scheduling algorithm 
is desired, what the maximum number of processes to be supported is, 
and so on. 

Once this information is defined, it can be used in several ways. At. 
one extreme, it can be used to modify a copy of the source code of the 
operating system. The · operating system would then be completely 
compiled. Data declarations, initializations, and , constants, along with 
conditional compilation, would produce an output object version of the 
operating system that is tailored to the system described. 
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At a slightly less tailored level, the system description could cause the 
creation of tables and the selection of modules from a precompiled library. 
These modules would be linked together to form the generated operating 
system .. Selection would allow the library to contain the device drivers for 
all supported 110 devices, but only those actually needed would be linked 

. into the operating system. Because the system would not be recompiled, 
system generation would be faster, but might result in a system with more 
generality than was actually needed. 

At the other extreme, it would be possible to construct a system that 
was completely table driven. All the code would always be a part of the 
system, and selection would occur at execution time, rather than at 
compile or link time. System generation involves simply creating the 
app!opriate tables to describe the system. • 

The major differences among these approaches are the size and 
generality of the generated system and the ease of modification as the 
hardware configuration changes. Consider the cost of modifying the 
system to support a newly acquired graphics terminal or another disk 
drive. Balanced against that cost, of course, is the frequency (or 
infrequency) of such changes. 

After an operating system is generated, it must be made available for 
use by the hardware. But how does the hardware know where the kernel 
is, or how to load it? The procedure of starting a computer by loading the 
kernel is known as booting the system. On most systems, there is a small 
piece of code, stored in ROM, known as the bootstrap program or bootstrap 
loader. This code is able to locate the kernel, load it into memory, and start 
its execution. Some systems, like IBM PCs running MS-DOS, turn this into a 
two-step process by having a very simple bootstrap loader load a more 
complex boot program, which in turn loads the kernel. Booting a system 
is further discussed in Section 12.3.2 and Chapter 19. 

3.9 • Summary 

Operating systems provide a number of services. At the lowest level, 
system calls allow a running program to make requests from the operating 
system directly. At a higher level, the command interpreter provides a 
mechanism for a user to issue a request without writing a program. 
Commands may come from cards (in a batch system) or directly from a 
terminal (in an interactive or time-shared system). Systems programs 
provide another mechanism for satisfying user requests. 

The types of requests vary according to the level of the request. The 
system-call level must provide the basic functions, such as process control 
and file and device manipulation. Higher-level requests, satisfied by the 
command interpreter or systems programs, are translated into a sequence 
of system calls. System services can be classified into several categories: 
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program control, status requests, and 1/0 requests. Program errors can be 
considered implicit requests for service. 

Once the system services are defined, the structure of the operating 
system can be developed. Various tables are needed to record the 
information that defines the state of the computer system and the status of 
the system's jobs. 

The design of a new operating system is a major task. It is important 
that the goals of the system be well defined before the design begins. The 
type of system desired is the foundation for choices among various 
algorithms and strategies that will be necessary. 

Since an operating system is large, modularity is important. The design 
of a system as a sequence of layers is considered an important design 
technique. The virtual-machine concept takes the layered approach to heart 
and treats the kernel of the operating system and the hardware as though 
they were all hardware. Even other operating systems may be loaded on 
top of this virtual machine. 

Throughout the entire operating-system design cycle, we must be 
careful to separate policy decisions from implementation details. This 
separation allows maximum flexibility if policy decisions are to be changed 
later. 

Operating systems are now almost always written in a systems
implementation language or in a higher-level language. This feature 
improves their implementation, maintenance, and portability. To create an 
operating system for a particular machine configuration, we must perform 
system generation. 

• Exercises 

3.1 What are the five major activities of an operating system in regard to 
process management? 

3.2 What are the three major activities of an operating system in regard 
to memory management? 

3.3 What are the three major activities of an operating system in regard 
to secondary-storage management? 

3.4 What are the five major activities of an operating system in regard to 
file management? 

3.5 What is the purpose of the command interpreter? Why is it usually· 
separate from the kernel? 

3.6 List five services provided by an operating system. Explain how each 
provides convenience to the users. Explain also in which cases it 
would be impossible for user-level programs to provide these 
services. 
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3.7 What is the purpose of system calls? 

3.8 What is the purpose of system programs? 

3.9 What is the main advantage of the layered approach to system 
design? 

3.10 What is the main advantage for an operating-system designer of 
using a virtual-machine architecture? What is the main advantage for 
a user? 

3.11 Why is the separation of mechanism and policy a desirable property? 

3.12 Consider the experimental Synthesis operating system, which has an 
assembler incorporated within the kernel. To optimize system-call 
performance, the kernel assembles routines within ·kernel space to 
minimize the path the system call must take through the kernel. This 
approach is the antithesis of the layered approach, in which the path 
through the kernel is extended so that building the operating system 
is made easier. Discuss the pros and cons of this approach to kernel 
design and to system-performance optimization. 
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PART TWO 

PROCESS MANAGEMENT 

A process can be thought of as a program in execution. A process will need 
certain resources - such as CPU time, memory, files, and I/O devices- to 
accomplish its task. These resources are allocated to the process either 
when it is created, or while it is executing. 

A process is the unit of work in most systems. Such a system consists 
of a collection of processes: Operating-system processes execute system 
code, and user processes execute user code. All these processes can 
potentially execute concurrently. 

The operating system is responsible for the following activities in 
connection with process management: the creation and deletion of both 
user and system processes; the scheduling of processes; and the provision 
of mechanisms for synchronization, communication, and deadlock 
handling for processes. 





CHAPTER 4 

PROCESSES 

Early computer systems allowed only one program to be executed at a 
time. This program had complete control of the system, and had access to 
all of the system's resources. Current-day computer systems allow 
multiple programs to be loaded into memory and to be executed 
concurrently. This evolution required firmer control and more 
comp~rtmentalization of the various programs. These needs resulted in 
the notion of a process, which is a program in execution. A process is the 
unit of work in a modern time-sharing system. 

The more complex the operating system, the more it is expected to do 
on behalf of its users. Although its main concern is the execution of user 
programs, it also needs to take care of various system tasks that are better 
left outside the kernel itself. A system. therefore consists of a collection of 
processes: Operating-system processes executing system code; and user 
processes ex~cuting user code. All these processes can potentially execute 
concurrently, with the CPU (or CPUs) multiplexed among them. By 
switching the CPU between processes, the operating system can make the 
computer more productive. 

4.1 • Process Concept 

One hindrance to the· discussion of operating systems is the question of 
what to call all the CPU activities. A batch system executes jobs, whereas a 
time-shared system has user programs, or tasks. Even on a single-user 
system, such as MS-DOS and Macintosh OS, a user may be able to run 
several programs at one time: one interactive and several batch programs. 
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Even if the user can execute only one program at a time, the 
system may need to support its own internal programmed 
as spooling. In many respects, all of these activities are similar, so we 

of them "YI"/1'"""" 
The terms job and process are used almost interchangeably in 

Although we personally prefer the term process, much of """~"'~'".,.."'""a-"' 
theory and terminology was developed during a time 
activity of operating systems was job processing. It would be 
avoid the use of commonly accepted terms that include the word 
as job scheduling) simply because the term process has superseded 

4.1.1 The Process 

Informally, a process is a program in execution. The execution of a 
must progress in a sequential fashion. That is, at any time, at 
instruction is executed on behalf of the process. 

A process is more than the program code (sometimes known as 
section). It also includes the current activity, as represented by the 
the program counter and the contents of the processor's 
generally also includes the process stack, containing temporary 
as subroutine parametersf return addresses, and temporary 
a data section containing global variables. 

We emphasize that a program by itself is not a process; a 
passive entity, such as the contents of a file stored on 
process is an active entity, with a program counter specifying 
instruction to execute and a set of associated resources. 

Although two processes may be associated with the same 
they are nevertheless considered two separate execution 
instance, several users may be running copies of the mail program, or 
same user may invoke many copies of the editor program. Each 

1/0 or event completion 

Figure 4.1 Diagram of process state. 
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a separate process, and, although the text sections are equivalent, the data 
sections will vary. It is also common to have a process that spawns many 
processes as it runs. This issue will be further discussed in Section 4.4. 

4.1.2 Process State 

As a process executes, it changes state. The state of a process is defined in 
part by the current activity of that process. Each process may be in one of 
the following states: 

• New: The process is being created. 

• Running: Instructions are being executed. 

• Waiting: The process is waiting for some event to occur (such as an 110 
completion or reception of a signal). 

• Ready: The process is waiting to be assigned to a processor. 

• Terminated: The process has finished execution. 

These names are arbitrary, and vary between operating systems. The 
states that they represent are found on all systems, however. Certain 
operating systems also distinguish among more finely delineating process 
states. It is important to realize that only one process can be running on 
any processor at any instant. Many processes may be ready· and waiting, 
however. The state diagram corresponding to these states is presented in 
Figure 4.1. 

4.1.3 Process Control Block 
Each process is represented in the operating system by a process control 
block (PCB)- also called a task control block. A PCB is shown in Figure 4.2. 
It contains many pieces of information associated with a specific process, 
including these: 

• Process state: The state may be new, ready, running, waiting, halted, 
and so on. 

• Program counter: The counter indicates the address of the next 
instruction to be executed for this process. 

• CPU registers: The registers vary in number and type, depending on 
the computer architecture. They include accumulators, index registers, 
stack pointers, and general-purpose registers, plus any condition-code 
information. Along with the program counter, this state information 
must be saved when an interrupt occurs, to allow the process to be 
continued correctly afterward (Figure 4.3). 



100 II Chapter 4: Processes 

Figure 4.2 Process control block. 

• CPU scheduling information: This information includes a 
priority, pointers to scheduling queues, and any other 
parameters. (Chapter 5 describes process scheduling.) 

• Memory-management information: This information may 
value of the base and limit registers, the page tables, or the QO<""'""''"""' 
tables depending on the memory system used by the operating '""""r._.,,n 

(Chapter 8). 

• Accounting information: This information includes the amount 
and real time used, time limits, account numbers, job or 
numbers, and so on. 

• 110 status information: The information includes the list of IJO 
(such as tape drives) allocated to this process, a list of open 
so on. 

The PCB simply serves as the repository for any information that 
from process to process. 

4.2 • Process Scheduling 

The objective of multiprogramming is to have some process 
times, to maximize CPU utilization. The objective of time 
switch the CPU among processes so frequently that users can 
each program while it is running. For a uniprocessor system, 
never be more than one running process. If there are more processes, 
rest will have to wait until the CPU is free and can be rescheduled. 
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Figure 4.3 Diagram showing CPU switch from process 

1 Scheduling Queues 
As processes enter the system, they are put into a job 

• . 
• 

consists of all processes in the system. The processes are 
main memory and are ready and waiting to execute are 
called the ready queue. This queue generally stored as a 
ready-queue header will contain pointers to the first 
list. Each PCB has a pointer field that points to the 
ready queue. 

There are also other queues in the system. When a 
it executes for awhile and eventually quits, is 

for the occurrence of a particular event, such as the 
request. In the case of an I/O request, such a request may 
tape drive, or to a shared device, such as a disk. 
processes in the system, the disk may be busy with the I/O 
other process. The process therefore may have to wait the 
of processes waiting for a particular I/O device is called a 
device has its own device queue (Figure 4.4). 
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Figure 4.4 The ready queue and various I/O device 

A common representation for a discussion of process 
queueing diagram, such as that in Figure 4.5. Each 
represents a queue. Two types of queues are present: the r£~"'r"' 
a set of device queues. The circles represent the resources 
queues, and the arrows indicate the flow of processes in the 

A new process is initially put in the ready queue. It 
queue until it selected for execution (or dispatched) and 
Once the ·process is allocated the CPU and is executing, 
events could occur: 

• The process could issue an I/O request, and then be placed an I/O 

queue. 

• The process could create a new subprocess and wait 
termination. 

• !he process could be removed forcibly from the CPU, as a an 
mterrupt, and be put back in the ready queue. 



Figure 4.5 Queueing-diagram representation of process 

In the first two cases, the process eventually switches 
state to the ready state, and is then put back in the 
process continues this cycle until it terminates, at which time 
from all queues and has its PCB and resources deallocated. 

4.2.2 Schedulers 
A process migrates between the various scheduling queues 
lifetime. The operating system must select processes from 
some fashion. The selection process is carried out by 
scheduler. 

In a batch system, there are often more processes 
be executed immediately. These processes are spooled to a 
device (typically a disk), where they are kept for later 
term scheduler (or job scheduler) selects processes from this 
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them into memory for execution. The short-term scheduler (or CPU scn:eaz:ue1 
selects from among the processes that are ready to 
the CPU to one of them. 

The primary distinction between these two schedulers 
of their execution. The short-term scheduler must select a new nrloc~~ss 
the CPU quite frequently. A process may execute 
milliseconds before waiting for an I/O request. Often, 
scheduler executes at least once every 100 milliseconds. 
short duration of time between executions, the short-term 
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be very fast. If it takes 10 milliseconds to decide to execute a process for 
100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used 
(wasted) simply for scheduling the work. 

The long-term scheduler, on the other hand, executes much less 
frequently. There may be minutes between the creation of new processes 
in the system. The long-term scheduler controls the degree of 
multiprogramming (the _number of processes in memory). If the degree of 
multiprogramming is stable, then the average rate of process creation must 
be equal to the average departure rate of processes leaving the system. 
Thus, the long-term scheduler may need to be invoked only when a 
process leaves the system. Because of the longer interval between 
executions, the long-term scheduler can afford to take more time to decide 
which process should be !?elected for execution. 

It is important that the long-term scheduler make a careful selection. In 
general, most processes can be describ~d as either 110 bound or CPU bound. 
An IfO..,bound process is one that spends more of its time doing 110 than it 
spends doing computations. A CPU-bound process, on the other hand, is 
one that generates ·I/o requests infrequently, using more of its time doing 
computation than an I/O-bound process uses. It is important that the .long
term. scheduler select a good. process mix of I/O-bound and CPU-bound 
processes~ If all pro~esses are IIQ bound, the ready queue will almost 
always be empty, and the short-term scheduler will have little to do. If all 
processes are CPU bound, the I/0 waiting queue will almost always be 
empty, devices will go unused, and again the system will be unbalanceQ.. 
The system with the best performance will have a combination of CPU
bound and I/O-bound processes. 

On some systems, the long-term scheduler may be absent or minimal. 
For example, time-sharing systems often have no long-term scheduler, but 
simply put every new process in memory for the short-term scheduler. The 
stability of these systems ·depends ejther on a physical limitation (such as 
the number of available terminals) or on the self-adjusting nature of 
human users. If ·the performance declines to unacceptable levels, some 
users will simply quit, and will do something else. 

Some operating systems, such as time-sharing systems, may introduce 
an adqitional, intermediate level of scheduling. This medium-term scheduler 

·is diagrammed in Figure 4.6. The· key idea behind a medium-term 
scheduler is that sometimes it can be advantageous to remove processes 
from memory (and from active contention for the CPU), and thus to reduce 

. the degree of multiprogramming. At some later time, the process can be 
reintroduced into memory e~.nd its execution can be contiimed where it left 
off. This scheme is called swapping. The process is swapped out and 
swapped in later by the mediun:t-term scheduler. Swapping may be 
necessary to improve the process mix, or because a change in memory 
requirements has ()vercommitted available memory, requiring memory to 
be freed up. Swapping is discussed in more detail in Chapter 8. 
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Figure 4.6 Addition of medium-term scheduling to the 

4.2.3 Context Switch 

Switching the CPU to another process requires saving the 
process and loading the saved state for the new process. 
known as a context switch. Context-switch time is pure 
the system does no useful work while switching. Its speed 
machine to machine, depending on the memory speed, 
registers which must be copied, and the existence of special 
(such as a single instruction to load or store all registers). 
speed ranges from 1 to 1000 microseconds. 

Context-switch times are highly dependent on hardware 
instance, some processors (such as the DECSYSTEM-20) provide 
of registers. A context switch simply includes changing the 
current register set. Of course, if there are more active 
there are register sets, the system resorts to copying register 
from memory, as before. Also, the more complex the nT\.o1"<>.t-•r~n-

the more work must be done during a context switch. we 
Chapter 8, advanced memory-management techniques may 
data to be switched with each context. For instance, the address ,.,.J,:n .. c: 

the current process must be preserved as the space of the 
prepared for use. How the address space preserved, and 
work needed to do it, depend on the memory-management rru:~t-nnrt 
operating system. we shall see in Section 4.5, context 
become such a performance bottleneck that new structures 
being used to avoid it whenever possible. 

4.3 • Operation on Processes 

The processes in the system can execute concurrently, and must 
and deleted dynamically. Thus, the operating system must 
mechanism for process creation and termination. 

105 
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3.1. Process Creation 
process may create several new processes, via a create-process 

call, during the course of execution. The creating process 
process, whereas the new processes are called the ·children of that or,oct:>.ss 
Each of these new processes may in turn create other processes, 
tree of processes (Figure 4.7). 

In general, a process will need certain resources (CPU time, 
files, I/O devices) to accomplish its task. When a process 
subprocess, the subprocess may be able to obtain its resources 
from the operating system, or it may be constrained to a 
resources of the parent process. The parent may have to 
resources among its children, or it may be able to share some resources 
(such as memory or files) among several of its children. Restricting a 
process to a subset of the parent's resources prevents any 
overloading the system by creating too many subprocesses. 

In addition to the various physical and logical resources that 
obtains when it is created, initialization data (input) may be v«<>ocu 

by the parent process to the child process. For example, 
process whose function is to display the status of a file, say 
screen of a terminal. When it is created, it will get, as an input 
parent process, the name of the file F1, and it will execute 
datum to obtain the desired information. It may also get the name 

Figure 4.7 A tree of processes on a typical UNIX <HT<OT<.>lrn 
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output device.' Some operating systems pass resources to child processes. 
On such a system, the new process may get two open files, Fl and the 
terminal device, and may just need to transfer the datum between the two. 

When a process creates a new process, two possibilities exist in terms 
of execution: 

• The parent continues to execute concurrently with its children. 

• The parent waits until some or all of its children have terminated. 

There are also two possibilities in terms of the address space of the new 
process: 

• The child process is a duplicate of the parent process. 

• The child process has a program loaded into it. 

To illustrate these different implementations, let us consider the UNIX 
operating system. In UNIX, each process is identified by its process identifier, 
which is a unique integer. A new process is created by the ~ork system 
call. The new process consists of a copy of the address space of the original 
process. This mechanism allows the parent process to communicate easily 
with its child process. Both processes (the parent and the child) continue 
execution at the instruction after the fork with one difference: The return 
code for the fork is zero for the new (child) process, whereas the 
(nonzero) process identifier of the child is returned to the parent. 

Typically, the execve system call is used after a fork by one of the two 
processes to replace the process' memory space with a new program: The 
execve system call loads a binary file into memory (destroying the memory 
image of the program containing the execve system call) and starts its 
execution. In this manner, the two processes are able to communicate, 
and then to go their separate ways. The parent can then create more 
children, or, if it has nothing else to do while the child runs, it can issue a 
wait system call to move itself off the ready queue until the termination of 
the child. 

The DEC VMS operating system, in contrast, creates a new process, 
loads a specified program into that process, and starts it running. The 
Microsoft Windows/NT operating system supports both models: the 
parent's address space may be duplicated, or the parent may specify the 
name of a program for the operating system to load into the address space 
of the new process. 

4.3.2 Process Termination 
A process terminates when it finishes executing its last statement and asks 
the operating system to delete it by using the exit system call. At that 
point, the process may return data (output) to its parent process (via the 
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fork system call). All of the resources of the process, including physical 
and virtual memory, open files, and 110 buffers, are deallocated by the 
operating system. 

There are additional circumstances when termination occurs. A 
process can cause the termination of another process via an appropriate 
system call (for example, abort). Usually, such a system call can be 
invoked by only the parent of the process that is to be terminated. 
Otherwise, users could arbitrarily kill each other's jobs. Note that a parent 
needs to know the identities of its children. Thus, when one process 
creates a new process, the identity of the newly created process is passed 
to the parent. 

A parent may terminate the execution of one of its children for a 
variety of reasons, such as: 

• The child has exceeded its usage of some of the resources it has been 
allocated. 

• The task assigned to the child is no longer required. 

• The parent is exiting, and the operating system does not allow a child 
to continue if its parent terminates. 

To determine the first case, the parent must have a mechanism _to inspect 
the state of its children. 

Many systems, including VMS, do not allow a child to exist if its parent 
has terminated. In such systems, if a process terminates (either normally or 
abnormally), then all its children must also be terminated. This 
phenomenon is referred to as cascading termination and is normally initiated 
by the operating system. 

To illustrate process execution and termination, let us consider again 
the UNIX system. In UNIX, a process may terminate by using the exit system 
call, and its parent process may wait for that event by using the wait 
system call. The wait system call returns the process identifier of a 
terminated child, so that the parent can tell which of the possibly many 
children has terminated. If the parent terminates, however, all the children 
are terminated by the operating system. Without a parent, UNIX does not 

· know to 'whom to report the activities of a child. 

4.4 • Cooperating Processes 

The concurrent processes executing in the operating system may be either 
independent processes or cooperating processes. A process is independent 
if it cannot affect or be affected by the other processes executing in the 
system. Clearly, any process that does not share any data (temporary or 
persistent) with any other process is independent. On the other hand, a 
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process is cooperating if it can affect or be affected by the other processes 
executing in the system. Clearly, any process that shares· data with other 
processes is a cooperating process. 

There are several reasons for providing an environment that allows 
process cooperation: 

• Information sharing: Since several users may be interested in the same 
piece of information (for instance, a shared file), we must provide an 
environment to allow concurrent access to these types of resources. 

• Computation speedup: If we want a particular task to run faster, we 
must break it into subtasks, each of which will be executing in parallel 
with the others. Notice that such a speedup can be achieved only if the 
computer has multiple processing elements (such as CPUs or 110 

channels). 

• Modularity: We may want to construct the system in a modular 
fashion, dividing the system functions into separate processes, as was 
discussed in Chapter 3. 

• Convenience: Even an individual user may have many tasks to work 
on· at one time. For instance, a user may be editing, printing, and 
compiling in parallel. 

Concurrent execution that requires cooperation among the processes 
requires mechanisms to allow processes to communicate with each other 
(Section 4.6), and to synchronize their actions (Chapter 6). 

To illustrate the concept of cooperating processes, let us consider the 
producer-consumer problem, which is a common paradigm for 
cooperating processes. A producer process produces information that is 
consumed by a consumer process. For example, a print program produces 
characters that are consumed by the printer driver. A compiler may 
produce assembly code, which is consumed by an assembler. The 
assembler, in turn, may produce object modules, which are consumed by 
the loader. 

To allow producer and consumer processes to run concurrently, we 
must have available a buffer of items that can be filled by the producer and 
emptied by the consumer. A producer can produce one item while the 
consumer is consuming another item. The producer and consumer must be 
synchronized, so that th~ consumer does not try to consume an item that. 
has not yet been produced. In this situation, the consumer must wait until 
an item is produced. 

The unbounded-buffer producer-consumer problem places no practical 
limit on the size of the buffer. The consumer may have to wait for new 
items, but the producer can always produce new items. The bounded-buffer 
producer-consumer problem assumes that there is a fixed buffer size. In 
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this case, the consumer must wait if the buffer is empty and the producer 
must wait if the buffer is full. 

The buffer may be either provided by the operating system through 
the use of IPC (Section 4.6), or explicitly coded by the application 
programmer with the use of shared memory. Let us illustrate a shared
.memory solution to the bounded-buffer problem. The producer and 
consumer processes share the following variables: 

var n; 
type item = ... , 
var buffer: array [O .. n-1] of item; 
in, out: o .. n-1; 

with in, out initialized to the value 0. The shared buffer is implemented as 
a circular array with two logical pointers: in and out. The variable in points 
to the next free position in the buffer; out points to the first full position in 
the buffer. The buffer is empty when in = out; the buffer is full when in + 
1 mod n =out. 

The code for the producer and consumer processes follows. The no-op 
is a do-nothing instruction. Thus, while condition do no-op simply tests the 
condition repetitively until it becomes false. 

The producer process has a local variable nextp, in which the new item 
to be produced is stored: 

repeat 

produce an item in nextp 

while in+1 mod n = out do no-op; 
buffer[in] := nextp; 
in:= in+1 mod n; 

until false; 

The consumer process has a local variable nextc, in which the item to be 
consumed is stored: 

repeat 
while in = out do no-op; 
nextc := buffer[out]; 
out:= out+1 mod n; 

consume the item in nextc 

until false; 
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This scheme allows at most n - 1 items in the buffer at the same time. We 
leave it as an exercise for you to provide a solution where n items can be 
in the buffer at the same time. 

In Chapter 6, we shall discuss in great detail how synchronization 
among cooperating processes can be implemented effectively in a shared
memory environment. 

4.5 • Threads 

Recall that a process .is defined by the resources it uses and by the location 
at which it is executing. There are many instances, however, in which it 
would be useful for resources to be shared and accessed concurrently. This 
situation is similar to the case where a fork system call is invoked with a 
new program counter, or thread of control, executing within the same 
address space. This concept is so useful that several new operating 
systems are providing a mechanism to support it through a thread facility. 

4.5.1 Thread Structure 

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU 
utilization, and consists of a program counter, a register set, and a stack 
space. It shares with peer threads its code section, data section,_ and 
operating-system resources such as open files and signals, collectively 
known as a task. A traditional or heavyweight process is equal to a task with 
one thread. A task does nothing if no threads are in it, and a thread ·must 
be in exactly one task. The extensive sharing makes CPU switching among 
peer threads and the creation of threads inexpensive, compared with 
context switches among heavyweight processes. Although a thread context 
switch still requires a register set switch, no memory-management-related 
work need be done. 

Also, some systems implement user-level threads in user-level libraries, 
rather than via system calls, so thread switching does not need to call the 
operating system, and to cause an interrupt to the kernel. Switching 
between user-level threads cah be done independently of the operating 
system and, therefore, very quickly. Thus, blocking a thread and 
switching to another thread is a reasonable solution to the problem_ of how 
a server can handle many requests efficiently. User-level threads do have 
disadvantages, however. For instance, if the kernel is single-threaded,_ 
then any user-level thread executing a system call will cause the entire task 
to wait until the system. call returlls. 

We can grasp the functionality of threads by comparing multiple
thread control with multiple-process control. With multiple processes, 
each process operates independently of the others; each process has its 
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own program counter, stack pointer, and address space. This type of 
organization is useful when the jobs performed by the processes are 
unrelated. For instance, in single-CPU operating systems, a file server may 
have to block while waiting for disk access. System performance would 
improve if another server process could operate while the first one was 
blocked, yet because they would have to occupy the same address space, it 

·is not possible to create a second, independent server process. 
Threads operate, in many respects, in the same manner as processes. 

Threads can be in one of several states: ready, blocked, running, or 
terminated. Like processes, threads share the CPU, and only one thread at 
a time is active (running). A thread within a process executes sequentially, 
and each thread has its own stack and program counter. Threads can 
create child threads, and can block waiting for system calls to complete; if 
one thread is blocked, another thread can run .. However, unlike 
processes, threads are not independent of one andther. Because all 
threads can access every address in the task, a thread can ·.read or write 
over any other thread's stacks. This structure does not provide protection 
between threads. Such protection, however, should not be necessary . 
. Whereas processes may originate from different users, and may be hostile 
to one another, only a single user can own an individual task with 
multiple threads. The threads, in this case, probably would be designed to 
assist one another, and therefore would not require mutual protection. 
Figure 4.8 depicts a task with multiple threads. 

Let us return to our example of the blocked file-server process in the 
single-process model. In this scenario, no other server process can execute 
until the first process is unblocked. By contrast, in the case ~f a task that 
contains multiple threads, while one server thread is blocked and waiting, 
a second thread in the same task could run. In this application, the 
cooperation of multiple threads that are part of the· same job confers the 
advantages of higher throughput and improved performance. Other 
applications, such as the producer-consumer problem, require sharing a 
common buffer and so also benefit froin this feature of thread· utilization: 
The producer and consumer could be threads in a task. Little overhead is 
needed to switch between them, and, on a multiprocessor system, they 
could execute in parallel on two processors for maximum efficiency. 

Threqds provide a mechanism that allows sequential processes to make 
blocking system calls while also achieving parallelism. To illustrate the 
advantage of this mechanism, we shall consider writing a file server in a 
system where threads are not available. We have already seen that, in a 
single-threaded file server, the server process must carry a request to 
completion before acquiring riew work. If the request involves waiting for 
disk access, the CPU is idle during the wait. Hence, the number of 
requests per second that can be processed is much less than with parallel 
execution. Without the option of multiple threads, a system designer 
seeking to minimize the performance slowdown of ~ingle-threaded 
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task 

Figure 4.8 Multiple threads within a 

processes would need to mimic the parallel structure of Ullrea,as 
use of heavyweight process. She could do so, but at the cost 
nonsequential program structure. 

The abstraction presented by a group of lightweight 
multiple threads of control associated with several resources. 
are many alternatives regarding threads; we mention a few 
Threads can be supported by the kernel (as in the Mach 
systems). In this case, a set of system calls similar to those 
provided. Alternatively, they can be supported above the Ke:rne•I, 
of library calls at the user level (as is done in Project Andrew 

Why should an operating system support one 
User-level threads do not involve the kernel, and 
switch among than kernel-supported threads. However, 
operating system cause the entire process to wait, 
schedules only processes (having no knowledge of threads), 
which is waiting gets no CPU time. Scheduling can also 
Consider two processes, one with 1 thread (process a) and 
100 threads (process b). Each process generally receives 
of time slices, so the thread in process a runs 100 times as 
in process b. On systems with kernel-supported threads, 

threads is more time-consuming because the kernel (via an 
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must do the switch. Each . thread may be scheduled independently, 
however, so process b could receive 100 times the CPU time that process a 
receives. Additionally, process b could have 100 system calls in operation 
concurrently, accomplishing far more than the same process would on a 
system with only user-level thread support. 

Because of the compromises involved in each of these two approaches 
to threading, some systems use a hybrid approach in which both user-level 
and kernel-supported threads are implemented. Solaris 2 is such a system 
and is described below. 

Threads are gaining in popularity because they have some of the 
characteristics of heavyweight processes but can execute more efficiently. 
There are many applications where this combination is useful. _fQ.L __ 
!!l!it£t!!.;J~, __ the.IJt-11?L ls_ern~Lis. __ ~~ually. single. tasking:_s>~Y--. .Q~ _ _!~sk ~ai!_~ 
~x~~U.~~K co~e _ !~_ !~~ __ ):<e!~=~~_:- ·a:·· time: _ ·:~ah~_--probl~_~s! __ -~~5!t ___ ~~ 
synchro.!}J;?:~fu>!!_gf__g~t~-~-~<:~~s (locking of· aata structures whil~_th~Y-~!~' 
being modified) are avoided,---because--only··one·· process]~jill(iw~.-.t.Q_Qe' 
aoirigtfie --moamcano~Macn;-ofi ____ H\e --other-- -hi:ina; -is multithreaded, 
allowing-the-keirnel to service many requests simultaneously. In this case, 
the threads themselves are synchronous: another thread in the same group 

· may run only if the currently executing thread relinquishes control. Of 
course, the current thread would relinquish control only when it was not 
modifying shared data. On systems on which threads are asynchronous, 
some explicit locking mechanism must be used, just as in systems where 
multiple processes share data. Process synchronization is discussed in 
Chapter 6. 

4.5.2 Example: Solaris 2 
An examination of the thread system in a current operating system should 
help us to clarify many issues. For this purpose, we choose Solaris 2; a 
version of UNIX, which until 1992 supported only traditional heavyweight 
processes. It has been transformed into a modern operating system with 
support for threads at the: kernel and user levels, symmetric 
multiprocessing, and real-time scheduling. 

Solaris 2 supports user-level threads, as described in Section 4.5.1. 
They ·are supported by a library for their creation and scheduling, and the 
kernel knows nothing of these threads. Solaris 2 expects potentially 
thousands of user-level threads to be vying for CPU cycles. 

Solaris 2 defines an intermediate level of threads as well. Between 
user-level threads and kernel-level threads- are lightweight processes. Each 
task (still called a "process" in Sunos nomenclature) contains at least one 
LWP. These LWPs are manipulated by the thread library. The user-level 
threads are multiplexed on the LWPs of the process, and only user~level 
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threads currently connected to LWPs accomplish work. The are ""' .. '"'"' .. 
blocked or waiting for an LWP on which they can run. 

All operations within the kernel are executed by standard 
threads. There is a kernel-level thread for each LWP, and 
kernel-level threads which run on the kernel's behalf 
associated LWP (for instance, a thread to service disk requests). 
thread system is depicted in Figure 4. 9. Kernel-level threads are 
objects scheduled within the system (see Chapter 5). Some 
threads are multiplexed on the processors in the system, whereas some are 
tied to a specific processor. For instance, the kernel thread with 
a device driver for a device connected to a specific processor 
on that processor. By request, a thread can also be pinned to a nrc1cessc>r 
Only that thread runs on the processor, with the processor CU.UJLUL"' 

only that thread (see the rightmost thread in Figure 4. 9). 
Consider this system in operation. Any one task 

user-level threads. These user-level threads may be 
switched among kernel-supported lightweight processes 
intervention of the kernel. No context switch is needed one 
thread to block and another to start running, so user-level 
extremely efficient. 

These user-level threads are supported by lightweight Pr<)CessE!S 
LWP is connected to exactly one kernel-level thread, 
level thread is independent of the kerneL There may be 
task, but they are needed only when threads need to coJmnlmuc;ue 

task 1 task 2 task 3 

lightweight 

kernel thread 

Figure 4.9 Threads in Solaris 2. 
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the kernel. For instance, one LWP is needed for every thread that may 
block concurrently in system calls. Consider five different file read 
requests that could be occurring simultaneously. Then, five LWPs would be 
needed, because they could all be waiting for JJO completion in the kernel. 
If a task had only four LWPs, then the fifth request would have to wait for 

·one of the LWPs to return from the kernel. Adding a sixth LWP would gain 
us nothing if there were only enough work for five. 

The kernel threads are scheduled by the kernel's scheduler and execute 
on the CPU or CPUs in the system. If a kernel thread blocks (usually 
waiting for an JJO operation to complete), the processor is free to run 
another kernel thread. If the thread that blocked was running on behalf of 
an LWP, the LWP blocks as well. Up the chain, the user-level thread 
currently attached to the LWP also blocks. If the task containing that thread 
has only one LWP, the whole task blocks until the I/O completes. This 
behavior is the same as that of a process under an older version of the. 
operating system. 

With Solaris 2, a task no longer must block while waiting for 110 to 
complete. The task may have multiple LWPs; if one blocks, the others can 
continue to execute within the task. 

We conclude this example by examining the resource needs of each of 
these thread types. 

• A kernel thread has only a small data structure and a stack. Switching 
between kernel threads does not require changing memory access 
information, and therefore is relatively fast. 

• An LWP contains a process control block with register data, accounting 
information, and memory information. Switching between LWPs 
therefore requires quite a bit of work and is relatively slow. 

• A user-level thread needs only a stack and a . program counter: no 
kernel resources are required. The kernel is not involved in scheduling 
these user-level threads; therefore, switching among them is fast. 
There may be thousands of these user-level threads, but all the kernel 
will ever see is the LWPs in the process that support these user-level 
threads. 

4.6 • Interprocess Communication 

In Section 4.4, we showed how cooperating processes can communicate in 
a shared-memory environment. The scheme requires that these processes 
share a common buffer pool, and that the code for implementing the buffer 
be explicitly written by the application programmer. Another way to 
achieve the same effect is for the operating system to provide the means 
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for cooperating processes to communicate with each other via an 
interprocess-communication (IPC) facility. 

IPC provides a mechanism to allow processes to communicate and to 
synchronize their actions. Interprocess-communication is best provided by 
a message system. Message systems cart be defined in many different 
ways. Message-passing systems also have other advantages, as will be 
shown in Chapter 16. 

Note that the shared-memory and message-system communication 
schemes are not mutually exclusive, and could be used simultaneously 
within a single operating system or even a single process. · 

4.6.1 Basic Structure 
The function of a message system is to allow processes to communicate 
with each other without . the need to resort to shared variables. An IPC 
facility provides at least the two operations: send(message) and 
receive( message). 

Messages sent by a process can be of either fixed or variable size. If 
only fixed-sized messages can be sent, the physical implementation is 
straightforward. This restriction, however, makes the task of programming 
more difficult. On the other hand, variable-sized messages require a more 
complex physical implementation, but the programming task becomes 
simpler. 

If processes P and Q want to communicate, they must send messages 
to and receive messages from each other; a communication link must exist 
between them. This link can be implemented in a variety of ways. We are 
concerned here not with the link's physical implementation (such as 
shared memory, hardware bus, or network, which are covered in Chapter 
15), but rather with the issues of its logical implementation, such as its 
logical properties. Some basic implementation questions are these: 

• How are links established? 

• Can a link be associated with more than two processes? 

• How many links can there be between every pair of processes? 

• What is the capacity of a link? That is, does the link have some buffer 
space? If it does, how much? 

• What is the size of messages? Can the link accommodate variable-sized . 
or only fixed-sized messages? 

• Is a link unidirectional or bidirectional? That is, if a link exists between 
P and Q, can messages flow in only one direction (such as only from P 
to Q) or in both directions? 
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The definition of unidirectional must be stated more carefully, since a 
link may be associated with more than two processes. Thus, we say that a 
link is unidirectional only if each process connected to the link can either 
send or receive, but not both, and each .link has at least one receiver 
process connected to it. 

In addition, there are several methods for logically implementing a link 
and the send/receive operations: 

• Direct or indirect communication 

• Symmetric or asymmetric communication 

• Automatic or explicit buffering 

• Send by copy or send by reference 

• Fixed-sized or variable-sized messages 

For the remainder of this section, we elaborate on these types of message 
systems. 

4.6.2 Naming 
Processes that want to communicate must have a way to refer to each 
other. They can use either direct communication or indirect communication, as 
we shall discuss in the next two subsections. 

4.6.2.1 Direct Communication 

In the direct-communication discipline, each process that wants to 
communicate must explicitly name the recipient or sender of the 
communication. In this scheme, the send and receive primitives are 
defined as follows: 

send(P, message). Send a message to process P. 
receive(Q, message). Receive a message from process Q. 

A communication link in this scheme has the following properties: 

• A link is established automatically between every pair of processes that 
want to communicate. The processes need to know only each other's 
identity to communicate. 

• A link is associated with exactly two processes. 

• Between each pair of processes, there exists exactly one link. 

• The link may be unidirectional, but is usually bidirectional. 
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To illustrate, let us present a solution to the producer-consumer 
problem. To allow the producer and consumer processes to run 
concurrently, we allow the producer to produce one item while the 
consumer is consuming another item. When the producer finishes 
generating an item, it sends that item to the consumer. ·The consumer gets 
that item via the receive operation. If an item has not been produced yet, 
the consumer process must wait until an item is produced. The producer 
process is defined as 

repeat 

produce an item in nextp 

send( consumer, nextp ); 
until false; 

The consumer process is defined as 

repeat 
receive( producer, next c); 

consume the item in nextc 

until false; 

This scheme exhibits a symmetry in addressing; that is, both the 
sender and the receiver processes have to name each other to 
communicate. A variant of this scheme employs asymmetry in addressing. 
Only the sender names the recipient; the recipient is not required to name 
the sender. In this scheme, the send and receive primitives are defined as 
follows: 

• send(P, message). Send a message to process P. 

• receive(id, message). Receive a message from any process; the variable id 
is set to the name of the process with which communication has taken 
place. 

The disadvantage in both of these schemes (symmetric and. 
asymmetric) is the limited modularity of the resulting process definitions. 
Changing the name of a process may necessitate examining all other 
process definitions. All references to the old name must be found, so that 
they can be modified to the new name. This situation is not desirable 
from the viewpoint of separate compilation. 
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4.6.2.2 Indirect Communication 

With indirect communication, the messages are sent to and received from 
mailboxes (also referred to as ports). A mailbox can be viewed abstractly as 
an object into which messages can be placed by processes and from which 
messages can be removed. Each mailbox has a unique identification. In this 
scheme, a process can communicate with some other process via a number 
of different mailboxes. Two processes can communicate only if the 
processes have a shared mailbox. The send and receive primitives are 
defined as follows: 

send(A, message). Send a message to mailbox A. 
receive( A, message). Receive a message from mailbox A. 

In this scheme, a communication link has the following properties: 

• A link is established between a pair of processes only if they have a 
shared mailbox. 

•. A link may be associated with more than two processes. 

• Between each pair of communicating processes, there may be a 
number of different links, each link corresponding to one mailbox. 

• A link may be either unidirectional or bidirectional. 

Now suppose that processes Pl' P2, and P3 all share mailbox A. 
Process P 1 sends a message to A, while P 2 and P 3 each ~xecute a receive 
from A. Which process will receive the message sent by P 1? This question 
can be resolved in a variety of ways: 

• Allow a link to be associated with at most two processes. 

• Allow at most one process at a time to execute a receive operation. 

• Allow the system to select arbitrarily which process will receive the 
message (that is, either P2 or P3, but not both, will receive the 
me~sage). The system may identify the receiver to the sender. 

' 

A mailbox ni.ay be owned either by a process or by the system. If the 
mailbox is owned by a process (that is, the mailbox is attached to or 
defined as part of the process), then we distinguish between the owner 
(who can only receive messages through this mailbox) and the user of the 
mailbox (who can only send messages to the mailbox). Since each mailbox 
has a unique owner, there can be no confusion about who should receive a 
message sent to this mailbox. When a process that owns a mailbox 
terminates, the mailbox disappears. Any process that subsequently sends a 
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message to this mailbox must be notified that the mailbox. no longer exists 
(via exception handling, described in Section 4.6.4). 

There are various ways to designate the owner and users of a 
particular·mailbox. One possibility is to allow a process to declare variables 
of type mailbox. The process that declares a mailbox is that mailbox's 
owner. Any other process that knows the name of this mailbox can use 
this mailbox. 

On the other hand, a mailbox that is owned by the operating system 
has an existence of its own. It is independent, and is not attach~d to any 
particular process. The operating system provides a mechanism that allows 
a process: 

• To create a new mailbox 

• To send ~nd receive messages through the mailbox 

• To destroy a mailbox· 

The process that cr~ates a new mailbox is that mailbox's owner by default. 
Initially, the owner is the only process that can receive messages through 
this mailbox. However, the ownership and receive privilege may be passed 
to other processes through appropriate system calls. · Of course, this 
provision could result in multiple receivers for each mailbox. Processes 
may also share a mailbox through the process-creation facility. For 
example, if process P created mailbox A, and then created a new process 
Q, P and Q may share mailbox A. Since all processes with access rights to 
a mailbox may ultimately terminate, after some time a mailbox may no 
longer be accessible by any process. In this case, the operating system 
should reclaim whatever space was used for the mailbox. This task may 
require some form of garbage collection (see Section 10.3.5), in which a 
separate operation occurs to search for and deallocate memory that is no 
longer in use. 

4.6.3 Buffering 

A link has some capacity. that determines the number of messages that can 
reside in it temporarily. This property can be viewed as a queue of 
messages attached to the link. Basically, there are three ways that such a 
queue can be implemented: 

• Zero capacity: The queue has maximum length 0; thus, the link cannot 
have any messages. waiting in it. In this case, the sender must wait 
until the recipient receives the message. The two processes must be 
synchronized for a ·message transfer to take place. This 
synchronization is called a rendezvous. 
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• Bounded capacity: The queue has finite length n; thus, at most n 
messages can reside in it. If the queue is not full when a new message 
is sent, the latter is placed in the queue (either the message is copied 
or a pointer to the message is kept), and the sender can continue 
execution without waiting. The link has a finite capacity, however. If 
the link is full, the sender must be delayed qntil space is av(lilable in 
the queue. 

• Unbounded capacity: The queue has potentially infinite length; thus, 
any number of messages can wait in it. The sender is never delayed. 

The zero-capacity case is sometimes referred to as a message system with 
no buffering; the other cases provide automatic buffering. 

We note that, in the nonzero-capacity cases, a process does not know 
whether a message has arrived at its destination after the send operation is 
completed. If this information is crucial for the computation, the sender 
must communicate explicitly with the receiver to find out whether the 
latter received the message. For example, suppose process P sends a 
message to process Q a,nd can continue its execution only after the 
message is received. Process P executes the sequence 

Process Qexecutes 

send(Q ,message); 
receive(Q, message); 

receive(P, message); 
send(P, "acknowledgment"); 

Such processes are said to communicate asynchronously. 
There are special cases that do not fit directly into any of the categories 

tha,t we have discussed: 

• The process sending a message is never delayed. However, if the 
receiver has not received the message before the sending process sends 
another message, the first message is lost. The advantage of this 
scheme is that large messages 4o not need to be copied more than 
once. The main disadvantage is that the programming task becomes 
more difficult. Processes need to synchronize explicitly, to ensure both 
that messages are not lost and that the sender and receiver do not 
manipulate the message buffer simultaneously. 

• The process sending a message is delayed until it receives a reply. 
This scheme was adopted in the Thoth operating system. In this 
system, messages are of fixed size (eight words). A process P that 
sends a message is blocked until the receiving process has received the 
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message and has sent back an eight-word reply by the reply(P, 
message) primitive. The reply message overwrites the original message 
buffer. The only difference between the send and reply primitives is 
that a send· causes the sending process to be blocked, whereas the 
reply allows both the sending process and the receiving process to 
continue with their executions immediately. 

This synchronous communication method can be expanded easily 
into a full-featured remote procedure call (~c) system. An RPC system is 
based on the realization that a subroutine or procedure call in .a single
processor system acts exactly like a message system in· which the 
sender blocks until it receives a reply. The message is then like a 
subroutine call, and the return message contains the value of the 
subroutine computed. The next logical step, therefore, is for 
concurrent processes to be able to call each other as subroutines using 
RPC. In fact, we shall see in Chapter 16 that RPCs can be used between 
processes running on separate computers to allow multiple computers 
to work together in a mutually beneficial way. 

4.6.4 Exception Conditions 

A message system is particularly useful in a distributed environment, 
where processes may reside at different sites (machines). In such an 
environment, the probability that an error will occur during 
communication (and processing) is much larger than in a single-machine 
environment. In a single-machine environment, messages are usually 
implemented in shared memory. If a failure occurs, the entire system fails. 
In a distributed environment, however, messages are transferred by 
communication lines, and the failure of one site (or link) does not 
necessarily result in the failure of the entire system. 

When a failure occurs in either a centralized or distributed system, 
some error recovery (exception-condition handling) must take place. Let us 
discuss briefly some of the exception conditions that a system· must handle 
in the context of a message scheme. 

4.6.4.1 Process Terminates 

Either a sender or a receiver may terminate before a message is processed. 
This situation will leave messages that will never be received or processes 
waiting for messages that will. never be sent. We consider two cases here: 

1. A receiver process P may wait for a message from a process Q that has 
terminated. If no action is taken, P will be blocked forever. In this case, 
the system may either terminate P or notify P that Q has terminated. 

2. Process P may send a message to a process Q that has terminated. In 
the automatic-buffering scheme, no harm is done; P simply continues 
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with its execution. If P needs to know that its message has been 
processed by Q, it must program explicitly for an acknowledgment. In 
the no-buffering case, P will be blocked forever. As in case 1, the 
system may either terminate P or notify P that Q has terminated. 

4.6.4.2 Lost Messages 

A message from process P to process Q may become lost somewhere in the 
communications network, due to a hardware or communication-line 
failure. There are three basic methods for dealing with this event: 

1. The operating system is responsible for detecting this event and for 
resending the message. 

2. The sending process is responsible for detecting this event and for 
retransmitting the message, if it so wants. 

3. The operating system is responsible for detecting this event; it then 
notifies the sending process that the message has been lost. The 
sending process can proceed as it chooses. 

It is not always necessary to detect lost messages. In fact, some 
network protocols specify that messages are unreliable, whereas some 
guarantee reliability (see Chapter 15). The user must specify (that is, either 
notify the system, or program this requirement itself) that such a detection 
should take place. 

How do we detect that a message is lost? The most common detection 
method is to use timeouts. When a message is sent out, a reply message, 
acknowledging reception· of the message, is always sent back. The 
operating system or a process may then specify a time interval during 
which it expects the acknowledgment message to arrive. If this time period 
elapses before the acknowledgment arrives, the operating system (or 
process) may assume that the message is lost, and the message is resent. 
It is possible, however, that a message did not get lost, but simply took a 
little longer than expected to travel through the network. In this case, we 
may have multiple copies of the same message flowing through the 
network. A mechanism must exist to distinguish between these various 
types of messages. This problem is discussed in more detail in Chapter 16. 

4.6.4.3 Scrambled Messages 

The message may be delivered to its destination, but be scrambled on the 
way (for example, because of noise in the communications channel). This 
case is similar to the case of a lost message. Usually, the operating system will 
retransmit the original message. Error checking codes (such as checksums, 
parity, and CRC) are commonly used to detect this type of error. 
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4.6.5 An Example: Mach 
As an example of a message-based operating system, consider the Mach 
operating system, developed at Carnegie Mellon University. The Mach 
kernel supports the creation and destruction of multiple tasks, which are 
similar to processes but have multiple threads of control. Most 
communication in Mach, including most of the system calls and all 
intertask information, is carried out by messages. Messages are sent to and 
received from mailboxes, called ports in Mach. 

Even system calls are made by messages. When each task 1s created, 
two special mailboxes, the Kernel mailbox and the Notify mailbox, are also 
created. The Kernel mailbox is used by the kernel to communicate with the 
task. The kernel sends notification of event occurrences to the Notify port. 
Only three system calls are needed for message transfer. The msg_send call 
sends a message to a mc;tilbox. A message is received via msg_receive. RPCs 
are executed via msg_rpc, which sends a message and waits for exactly one 
return message from the sender. 

The port.allocate system call creates a new mailbox and allocates space 
for its queue of messages. The maximum size of the message queue 
defaults to eight messages. The task that creates the mailbox is that 
mailbox's owner. The owner also is given receive access to the mailbox. 
Only one task at a time can either own or receive from a mailbox, but 
these rights can be sent to other tasks if desired. 

The mailbox has an initially empty queue of messages. As messages 
are sent to the mailbox, the messages are copied into the mailbox. All 
messages have the same priority. Mach guarantees that multiple messages 
from the same sender are queued in first-in, first-out (FIFO) order, but does 
not guarantee an absolute ordering. For instance, messages sent from each 
of two senders may be queued in any order. 

The messages themselves consist of a fixed-length header, followed by 
a variable-length data portion. The header includes the length of the 
message and two mailbox names. When a message is sent, one mailbox 
name is the mailbox to which the message is being sent. Commonly, the 
sending thread expects a reply; the mailbox name of the sender is passed 
on to the receiving task, which may use it as a "return address" to send 
messages back. 

The variable part of a message is a list of typed data items. Each entry 
in the list has a type, size, and value. The type of the objects specified in 
the message is important, since operating-system-defined objects- such
as the ownership or receive access rights, task states, and memory 
segments - may be sent in messages. 

The send and receive operations themselves are quite flexible. For 
instance, when a message is sent to a mailbox, the mailbox may be full. If 
the mailbox is not full, the message is copied to the mailbox and the 
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sending thread continues. If the mailbox is full, the sending thread has 
four options: 

1. Wait indefinitely until there is room in the mailbox. 

2. Wait at most n milliseconds. 

3. Do not wait at all, but return immediately. 

4. Temporarily cache a message. One message can be given to the 
operating system to keep even though the mailbox to which it is being 
sent is full. When the message can actually be put in the mailbox, a 
message is sent back to the sender; only one such message to a full 
mailbox can be pending at any time for a given sending thread. 

The last option is meant for server tasks, such as a line-printer driver. 
After finishing a request, these tasks may need to send a one-time reply to 
the task that had requested service, but must also continue with other 
service requests, even if the reply mailbox for a client is full. 

The receive operation must specify from which mailbox or mailbox set 
to receive a message. A mailbox set is a collection of mailboxes, as declared 
by the task, which can be grouped together and treated as one mailbox for 
the purposes of the task. Threads in a task can receive from only a 
mailbox or mailbox set for which that task has receive access. A port_.status 
system call returns the number of messages in a given mailbox. The 
receive operation attempts to receive from (1) any mailbox in a mailbox set, 
or (2) a specific (named) mailbox. If no message is waiting to be received, 
the receiving thread may wait, wait at most n milliseconds, or not wait. 

The Mach system was especially designed for distributed systems, 
which we discuss in Chapters 15 through 18, but Mach is also suitable for 
single-processor systems. The major problem with message systems has 
generally been poor performance caused by copying the message first from 
the sender to the mailbox, and then from. the mailer to the receiver. The 
Mach message system attempts to avoid double copy operations by using 
virtual-memory management techniques (Chapter 9). Essentially, Mach 
maps the address space containing the sender's message into the receiver's 
addres~ space. The message itself is never actually copied. This message
management technique provides a large performance boost, but works for 
only intrasystem messages. The Mach operating system is discussed in 
detail in Chapter 20. 

4.7 • Summary 

A process is a program in execution. As a process executes, it changes state. 
The state of a process is defined by that process's current activity. Each 
process may be in one of the following states: new, ready,. running, waiting, 
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or halted. Each process is represented in the operating system by its own 
process control block (PCB). 

A process, when it is not executing, is placed in some waiting queue. 
There are two major classes of queues in an operating system: I/O request 
queues and the ready queue. The ready queue contains all the processes 
that are ready to execute and are waiting for the CPU. Each process is 
represented by a PCB, and the PCBs can be linked together to form a ready 
queue. Long-term (job) scheduling is the selection of processes to be 
allowed to contend for the CPU. Normally, long-term scheduling is heavily 
influenced by resource-allocation considerations, especially memory 
management. Short-term (CPU) scheduling is the selection of one process 
from the ready queue. 

The processes in the system can execute concurrently. There are 
several reasons for allowing concurrent execution: information sharing, 
computation speedup~ modularity, and convenience. Concurrent 
execution requires a mecharyism for process creation and deletion. 

The processes executing in the operating system may be either 
independent processes or cooperating processes. Cooperating processes 
must have the means to communicate with each other. Principally, there 
exist two complementary communication schemes: shared memory and 
message systems. The shared-memory method requires communicating 
processes to share some variables. The processes are expected to exchange 
information through the use of these shared variables. In a shared
memory system, the responsibility for providing communication rests with 
the application programmers; the operqting system needs to provide. only 
the shared memory. The message-system method allows the processes to 
exchange messages. The responsibility for providing communication then 
rests with the operating system itself. These two schemes are not mutually 
exclusive, and could be used simultaneously within a single operating 
system. 

Cooperating processes that directly share a logical address space can be 
implemented as lightweight processes or threads. A thread is a basic. unit 
of CPU utilization, and it shares with peer threads its code section, data 
section, and operating-system resources, collectively known as a task. A 
task does nothing if no threads are in it, and a thread must be in exactly 
one task. The extensive sharing makes CPU switching among peer threads 
and thread creation inexpensive, compared with context switches among 
heavyweight processes. 

• Exercises 

4.1 Several popular microcomputer operating systems provide little or no 
means of concurrent processing. Discuss the major complications that 
concurrent processing adds to an operating system. 
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4.2 Describe the differences among short-term, medium-term, and long
term scheduiing. 

4.3 A DECSYSTEM-20 compute'r has multiple register sets. Describe the 
;1ctions of a context switch if the new context is already loaded into 
one of the register sets. What else must happen if the new context is 
in memory rather than a register set, and all the register sets are in 
use? 

4.4 What two advantages do threads have over multiple processes? What 
major disadvantage do they have? Suggest one application that 
would benefit from the use of threads, and one that would not. 

4.5 What resources are used when a thread is created? How do they 
differ from those used when a process is created? 

4.6 Describe the actions taken by a kernel to cont~xt switch 

a. Among threads. 

b. Among processes. 

4. 7 What are the differences between user-level threads and kernel
supported threads? Under what circumstances is one type "better" 
than the other? 

4.8 The correct producer-consumer algorithm presented in Section 4.4 
allows only n - 1 buffers to be full at any time. Modify the algorithm 
to allow all the buffers to be utilized fully. 

4.9 Consider the interprocess-communication scheme where mailboxes 
are used. 

a. Suppose a process P wants to wait for two messages, one from 
mailbox A and one from mailbox B. What sequence of send and 
receive shotdd it execute? 

b. What sequence of send and receive should P execute if P wants to 
wait for one message either from mailbox A or from mailbox B (or 
from both)? 

c .. A receive operation makes a process wait until the mailbox is 
nonempty. Either devise a scheme that allows a process to wait 
until a mailbox is empty, or explain why such a scheme cannot 
exist. 

4.10 Consider an operating system that supports both the IPC and RPC 

schemes. Give examples of problems that could be solved with each 
type of scheme. Explain why each problem is best solved l:>y the 
method that you specify. 
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The IBM OS/2 operating system i~~ multithreaded operating system that 
runs on personal computers [Kogan and Rawson 1988]. The Synthesis 
high-perfo,rmance kernel uses threads as well [Massalin and Pu 1989]. The 
implementation of threads in Mach was described in Tevanian · et al. 
[1987a]. Birrell [1989] discussed prpgramming with threads. Debugging 
multithreaded applications continue~ to be a difficult problem that is under 
investigation. Caswell and Black [1990] implemented a debugger in Mach. 

Sun Microsystem' s Solaris 2 thread structure was described in Eykholt 
et al. [1992]. The user-level threads were detailed in Stein and Shaw 
[1992]. Peacock [1992] discussed the multithreading of the file system in 
Solaris 2. 

The subject of interprocess communicati()n was discussed by Brinch 
Hansen [1970] with respect to the RC 400() system. The interprocess 
communication facility in the Thoth operating system was discussed by 
Cheriton et al. [1979]; the one for the Accent operating system was 
discussed by Rashid and Robertson [1981]; the one for the Mach operating 
system was discussed by Accetta et al. [1986]. Schlichting a:nd Schneider 
[1982] discusseq asynchronous message-passing primitives. The IPC facility 
implemented at the user level was described in Bershad et al. [1990). 

Discussions concerning the implementation of RPCs were presented by 
Birrell and Nelson [1984]. A design of a reliable RPC mechanism was 
presented by Shrivastava and Panzieri [1982]. A survey of RPCs was 
presented by Tay and Ananda [1990]. Stankovic [1982] and· Staunstrup 
[1982] discussed the issues of procedure calls· versus message':"'passing 
communication. 





CHAPTER 5 

CPU 
SCHEDULING 

CPU scheduling is the basis of multiprogrammed operating systems. By 
switching the CPU among processes, the operating system can make the 
computer more productive. In this chapter, we introduce the basic 
scheduling concepts and present several different CPU scheduling 
algorithms. We also consider the problem of selecting an algorithm for a 
particular system. 

5.1 • Basic Concepts 

The objective of multiprogramming is to have some process running at all 
times, to maximize CPU utilization. For a uniprocessor system, there will 
never be more than one running process. If there are more processes, the 
rest will have to wait until the CPU is free and can be rescheduled. 

The idea of multiprogramming is relatively simple. A process is 
executed until it must wait, typically for the completion of some 1/0 
request. In a simple computer system, the CPU would then just sit idle. All 
this waiting time is wasted; no useful work is accomplished. With 
multiprogramming, we try to use this time productively. Several processes . 
are kept in memory at one time. When one process has to wait, the 
operating system takes the CPU away from that process and gives the CPU 
to another process. This· pattern continues. Every time one process has to 
wait, another process may take over the use of the CPU. 

Scheduling is a fundamental operating-system function. Almost all 
computer resources are scheduled before use. The CPU is, of course, one of 
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primary computer resources. Thus, its scheduling 
operating-system design. 

CPU-I/0 Burst Cycle 

success of CPU scheduling depends on the following observed 
of processes: Process execution consists of a cycle of CPU 

wait. Processes alternate back and forth between these two oLaLrc:o 

execution begins with a CPU burst. That is followed by an 1/0 burst, 
followed by another CPU burst, then another I/O burst, 

Eventually, the last CPU burst will end with a system request to 
execution, rather than with another I/O burst (Figure 1). 

The durations of these CPU bursts have been measured. 
vary greatly from process to process and computer to computer, 
to have a frequency curve similar to that shown in Figure The curve 
generally characterized as exponential or hyperexponential. There a 
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Figure 5.1 Alternating sequence of CPU and I/O bursts. 
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Figure 5.2 Histogram of CPU-burst times. 

number of short CPU bursts, and there is a 
bursts. An I/O-bound program would typically have many 
bursts. A CPU-bound program might have a few very CPU 
distribution can be important in the selection 
scheduling algorithm. 

5.1.2 CPU Scheduler 

Whenever the CPU becomes idle, the operating 
the processes in the ready queue to be executed. 
carried out by the short-term scheduler (or CPU scheduler). 
selects from among the processes in memory that are 
allocates the CPU to one of them. 

Note that the ready queue is not 
queue. As we shall see when we consider 
algorithms, a ready queue may be implemented as a HFO 
queue, a tree, or simply an unordered linked 
all the processes in the ready queue are lined up 
run on the CPU. The records in the queues are 
processes. 
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5.1.3 Preemptive Scheduling 
CPU scheduling decisions may · take place under the following four 
circumstances: 

1. When a process switches from the running state to the waiting state 
(for example, I/O request, or invocation of wait for the termination of 
one of the child processes) 

2. When a process switches from the running state to the ready state (for 
example, when an interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for 
example, completion of IIO) 

4. When a process terminates 

For circumstances 1 and 4, there is no choice in terms of scheduling. A 
new process (if one exists in the ready queue) must be selected for 
execution. There is a choice, however, for circumstances 2 and 3. 

When scheduling takes place only under circumstances 1 and 4, we say 
the scheduling scheme is nonpreemptive; otherwise, the scheduling scheme 
is preemptive. Under nonpreemptive scheduling, once the CPU has been 
allocated to a. process, the process keeps the CPU until it releases the CPU 
either by terminating or by switching to the waiting state. This scheduling 
method is used by the Microsoft Windows environment. It is the only 
method that can be used on certain hardware platforms, because it does 
not require the special hardware (for example, a timer) needed for 
preemptive scheduling. 

Unfortunately, preemptive scheduling incurs a cost. Consider the case 
of two processes sharing data. One may be in the midst of updating the 
data when it is preempted and the second process is run. The second 
process may try to read the data, which are currently in an inconsistent 
state. New mechanisms thus are needed to coordinate access to shared 
data; this topic is discussed in Chapter 6. 

Preemption also has an effect on the design of the operating-system 
kernel. D!-!ring the processing of a system call, the kernel may be busy 
with an activity on behalf of a process. Such activities may involve 
changing important kernel data (for instance, I/0 queues). What happens 
if the process is preempted in the middle of these changes, and the kernel 
(or the device driver) needs to read or modify the same structure? Chaos 
ensues. Some operating systems, including most versions of UNIX, deal 
with this problem by waiting either for a system call to complete, or for an 
110 .block to take place, before doing a context switch. This scheme ensures 
that the kernel structure is simple, since the kernel will not preempt a 
process while the kernel data structures are in an inconsistent state. 



5.2 Scheduling Criteria • 135 

Unfortunately, this kernel execution model is a poor one for supporting 
real-time computing and multiprocessing. These problems, and their 
solutions, are described in Sections 5.4 and 5.5. 

In the case of UNIX, there are still sections of code at risk. Because 
interrupts can, by definition, occur at any time, and because interrupts 
cannot always be ignored by the kernel, the sections of code affected by 
interrupts must be guarded from simultaneous use. The operating system 
needs to accept interrupts at almost all times, since otherwise input might 
be lost or output overwritten. So that these sections of code are not 
accessed concurrently by several processes, they disable interrupts at entry 
and reenable interrupts at exit. 

5.1.4 Dispatcher 

Another component involved in the CPU scheduling function is the 
dispatcher. The dispatcher is the module that gives control of the CPU to the 
process selected by the short-term scheduler. This function involves: 

• Switching context 

• Switching to user mode 

• Jumping to the proper location in the user program to restart that 
program 

The dispatcher should be as fast as possible, given that it is invoked 
during every process switch. The time it takes for the dispatcher to stop 
one process and start another running is known as the dispatch latency. 

5.2 • Scheduling Criteria 

Different CPU scheduling algorithms have different properties and may 
favor one class of processes over another. In choosing which algorithm to 
use in a particular situation; we must consider the properties of the various 
algorithms. 

Many criteria have been suggested for comparing CPU scheduling 
algorithms. Which characteristics are used for comparison can make a 
substantial difference in the determination of the best algorithm. Criteria 
that are used include the following: 

• CPU utilization. We want to keep the CPU as busy as possible. CPU 
utilization may range from 0 to 100 percent. In a real system, it should 
range from 40 percent (for a lightly loaded system) to 90 percent (for a 
heavily used system). 

I 
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• Throughput. If the CPU is busy, then work is being done. One 
measure of work is the number of processes that are completed per 
time unit, called throughput. For long processes, this rate may be one 
process per hour; for short transactions, throughput might be 10 
processes per second. 

• Turnaround time. From the point of view of a particular process, the 
important criterion is how long it takes to execute that process. The 
interval from the time of submission to the time of completion is the 
turnaround time. Turnaround time is the sum of the periods spent 
waiting to get into memory, waiting in the ready queue, executing on 
the CPU, and doing 110. · 

• Waiting time. The CPU scheduling algorithm does not affect the 
amount of time during which a process executes or does 110; it affects 
only the amount of time that a process spends waiting in the ready 
queue. Waiting time is the sum of the periods spent waiting in the 
ready queue. 

• Response time. In an interactive system, turnaround time may not be 
the best criterion. Often, a process can produce some output fairly 
early, and can continue computing new results while previous results 
are being output to the user. Thus, another measure is the time from 
the submission of a request until the first response is produced. This 
measure, called response time, is the amount of time it takes to start 
responding, but not the time that it takes to output that response. The 
turnaround time is generally limited by the speed of the output device. 

It is desirable to maximize CPU utilization and throughput, and to 
minimize turnaround time, waiting time, and response time. In most 
cases, we optimize the average measure. However, there are 
circumstances when it is desirable to optimize the minimum or maximum 
values, rath~r than the average. For example, to guarantee that all users 
get good service, we may want to minimize the maximum response time. 

It has also been suggested that, for interactive systems (such as time
sharing systems), it is 1110re important to minimize the variance in the 
response ·time than it is to minimize the average response time. A system 
with reasonable and predictable response time may be considered more 
desirable than is a system that is faster on the average, but is highly 
variable. However, little work has been done on CPU scheduling algorithms 
to minimize. V'l.riance. 

· As we discuss various CPU scheduling algorithms, we want to illustrate 
their operation. An accurate illustration should involve many processes, 
each being a sequence of several hundred CPU bursts and 110 bursts. For 
simplicity of illustration, we consider only one CPU burst (in milliseconds) 
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per process in our examples. Our measure of comparison is the average 
waiting time. More elaborate evaluation mechanisms are discussed in 
Section 5.6. 

5.3 • Scheduling Algorithms 

CPU scheduling deals with the problem of deciding which of the processes 
in the ready queue is to be allocated the CPU. There are many different CPU 
scheduling algorithms. In this section, we describe several ·of these 
algorithms. 

5.3.1 First-Come, First-Served Scheduling 

By far the simplest CPU scheduling algorithm is the first-come, first-served 
scheduling (FCFS) algorithm. With this scheme, the process that requests the 
CPU first is allocated the CPU first. The implementation of the FCFS policy is 
easily managed with a FIFO queue. When a process enters the ready queue, 
its PCB is linked onto the tail of the queue. When the CPU is free, it is 
allocated to the process at the head of the queue. The running process is 
then removed from the queue. The code for FCFS scheduling is simple to 
write and understand. 

The average waiting time under the FCFS policy, however, is often quite 
long. Consider the following set of processes that arrive at time 0, with the 
length of the CPU-burst time given in milliseconds: 

Process Burst Time 

If the processes arrive in the order P 1, P2, P3, and are served in FCFS 
order, we get the result shown in the following Gantt chart: 

0 24 27 30 

The waiting time is' 0 milliseconds for process P1, 24 milliseconds for 
process P2, and 27 milliseconds for process P3. Thus, the average waiting 
time is (0 + 24 + 27)/3 = 17 milliseconds. If the processes arrive in the 
order P 2, P 3, P 1, however, the results will be as shown in the following 
Gantt chart: 
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0 3 6 30 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This 
reduction is substantial. Thus, the average waiting time under a FCFS 
policy is generally not minimal, ahd may vary substantially if the process 
CPU-burst times vary greatly. 

In addition, consider the performance of FCFS scheduling in a dynamic 
situation. Assume we have one CPU-bound process and many 1/0-botind 
processes. As the processes flow around the system, the following 
scenario may result. The CPU-bound process will get the CPU and hold it. 
During this time, all the other processes will finish their 1/0 and move into 
the ready queue, waiting for the CPU. While the processes wait in the 
ready queue, the 1/0 devices are idle. Eventually, the CPU-bound process 
finishes its CPU burst and moves to an 1/0 device. All the I/O-bound 
processes, which have very short CPU bursts, execute quickly and move 
back to the 1/0 queues. At this point, the CPU sits idle. The CPU-bound 
process will then move back to the ready queue and be allocated the CPU. 
Again, all the 1/0 processes end up waiting ih the ready queue until the 
CPU-bound process is done. There is a convoy effect, as all the other 
processes wait for the ohe big process to get off the CPU. This effect results 
in lower CPU and device utilization than might be possible if the shorter 
processes were allowed to go first. 

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has 
been allocated to a process, that process keeps the CPU until it releases the 
CPU, either by terminating or by requesting 1/0. The FCFS algorithm is 
particularly troublesome for time-sharing systems, where it is important 
that each user get a share of the CPU at regular intervals. It would be 
disastrous to allow one process to keep the CPU for an extended period. 

5.3.2 Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest~job-first (SJF) 
·algorithm. This algorithm associates with each process the length of the 
latter's next CPU burst. When the CPU is available, it is assigned to the 
process that has the smallest next CPU burst. If two processes have the 
same length next CPU burst, FCFS scheduling is used to break the tie. Note 
that a more appropriate term would be the shortest next CPU burst, because 
the scheduling is done by examining the length of the next CPU-burst of a 
process, rather than its total length. We use the term SJF because most 
people and textbooks refer to this type of scheduling discipline as SJF. 

As an example, consider the following set of processes, with the length 
of the CPU burst time given in milliseconds: 
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Process Burst Time 

Using SJF scheduling, we would schedule these processes according to the 
following Gantt chart: 

0 3 9 16 24 

The waiting time is 3 milliseconds for process P1, 16 milliseconds for 
process P 2, 9 milliseconds for process P 3, and 0 milliseconds for process P 4. 

Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If 
we were using the FCFS scheduling, then the average waiting time would 
be 10.25 milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the 
minimum average waiting time for a given set of processes. By moving a 
short process before a long one the waiting time of the short process 
decreases more than it increases the waiting time of the long process. 
Consequently, the average waiting time decreases. 

The real difficulty with the SJF algorithm is knowing the length of the 
next CPU request. For long-term (job) scheduling in a batch system, we can 
use as the length the process time limit that a user specifies when he 
submits the job. Thus, users are motivated to estimate the process time 
limit accurately, since a lower value may mean faster response. (Too low a 
value will cause a time-limit-exceeded error and require resubmission.) SJF 
scheduling is used frequently in long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be implemented at the 
level of short-term CPU scheduling. There is no way to know the length of 
the next CPU burst. One approach is to try to approximate SJF scheduling. 
We may not know the length of the next CPU burst, but we may be able to 
predict its value. We expect that the next CPU burst will be similar in length 
to the previous ones. Thus, by computing an approximation of the length 
of the next CPU burst, we can pick the process with the shortest predicted 
CPU burst. 

The next CPU burst is generally predicted as an exponential average of 
the measured lengths of previous CPU bursts. Let tn be the length of the 
nth CPU burst, and let 'T n+ l. be our predicted value for the next CPU burst. 
Then, for a, 0 < a ::s; 1, define 
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formula defines an exponential average. The value of 
recent information; T n stores the past history. The a 

controls the relative weight of recent and past history in our 
a = 0, then Tn+l = 'Tn' and recent history has no effect (current coJn.allUOrn 
are assumed to be transient); if a = 1, then Tn+l tn' and only 
recent CPU burst matters (history is assumed to be old and 1TTPI&•v;~ 

More commonly, a = 1/2, so recent history and past history are 
weighted. Figure 5.3 shows an exponential average with a 
initial T0 can be defined as a constant or as an overall system 

To understand the behavior of the exponential average, we can 
formula for Tn+l by substituting for Tn' to find 

Since both a and (1 - a) are less than or equal to 1, 
has less weight than its predecessor. 

The SJF algorithm may be either preemptive or nonpreemptive. 
arises when a new process arrives at the ready queue while a 
process is executing. The new process may have a shorter next CPU 
than what is left of the currently executing process. A 
algorithm will preempt the currently executing process, 

time ~~ro 

6 4 6 4 13 13 13 

"guess" (1) 10 8 6 6 5 9 11 12 

Figure 5.3 Prediction of the length of the next CPU burst. 
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nonpreemptive · SJF algorithm will allow the Currently running process to 
finish its CPU burst. Preemptive SJF scheduling is sometimes called shortest
remaining-time-first scheduling. 

As an example, consider the following four processes, with the length 
of the CPU-burst time given in milliseconds: 

Process Arrival Time Burst Time 

pl 0 8 
Pz 1 4 
p3 2 9 
p4 3 5 

If the processes arrive at the ready queue at the times shown and need the 
indicated burst times, then the resulting preemptive SJF schedule is as 
depicted in the following Gantt chart: 

0 1 5 10 17 26 

Process P 1 is started at time 0, since it is the only process in the queue. 
Process P2 arrives at time 1. The remaining time for process P 1 (7 
milliseconds) is larger than the time required by process P 2 ( 4 
milliseconds), so process P 1 is preempted, and process P2 is scheduled. 
The average waiting time for this example is ((10 -1) + (1 -1) + (17 -2) + 
(5 -3))/4 = 26/4 = 6.5 milliseconds. A nonpreemptive SJF scheduling would 
result in an average waiting time of 7.75 milliseconds. 

5.3.3 Priority Scheduling 

The SJF algorithm is a special case of the general priority scheduling 
algorithm. A priority is associated with each process, and the CPU is 
allocated to the process with the highest priority. Equal-priority processes 
are scheduled in FCFS order. 

An SJF algorithm is simply a priority algorithm where the priority (p) is 
the inverse of the (predicted) next CPU burst. The larger the CPU burst, the 
lower the priority, and vice versa. 

Note that we discuss scheduling in terms of high priority and low 
priority. Priorities are generally some fixed range of numbers, such as 0 to 
7, or 0 to 4095. However, there is no general agreement on whether 0 is 
the highest or lowest priority. Some systems use low numbers to represent 
low priority; others use low numbers for high priority. This difference can 
lead to confusion. In this text, we assume that low numbers represent 
high priority. 
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As an example, consider the following set of processes, assumed to 
have arrived at time 0, in the order P1, P2, ... , P5, with the length of the 
CPU-burst time given in milliseconds: 

Process Burst Time Priority 

pl 10 3 
p2 1 1 
p3 2 3 
p4 1 4 
Ps 5 2 

Using priority scheduling, we would schedule these processes according to 
the following Gantt chart: 

0 1 6 16 18 19 

The average waiting time is 8.2 millis~conds. 
Priorities can be defined either internally or externally. Internally 

defined priorities use some measurable quantity or quantities to compute 
the priority of a process. For example, time limits, memory requirements, 
the number of open files, and the ratio of average 110 burst to average CPU 
burst have been used in computing priorities. External priorities are set by 
criteria that are external to the operating system, such as the importance of 
the process, the type and amount of funds being paid for computer use, 
the department sponsoring the work, and other, often political, factors. 

Priority scheduling can be either preemptive or nonpreemptive. When 
a process arrives at the ready queue, its priority is compared with the 
priority of the currently running process. A preemptive priority scheduling 
algorithm will preempt the CPU if the priority of the newly arrived process 
is higher than is the priority of the currently running process. A 
nonpreemptive priority scheduling algorithm will simply put the new 
process p.t the head of the ready queue. 

A major problem with priority scheduling algorithms is indefinite 
blocking or starvation. A process that is ready to run but lacking the CPU can 
be considered blocked, waiting for the CPU. A priority scheduling algorithm 
can leave some low-priority processes waiting indefinitely for the CPU. In a 
heavily loaded computer system, a steady stream of higher-priority 
processes can prevent a low-pnority process from ever getting the CPU. 
Generally, one of two things will happen. Either the process will 
eventually be run (at 2 A.M. Sunday, when the system is finally lightly 
loaded), or the computer system will eventually crash and lose all 
unfinished low-priority processes. (Rumor has it that, when they shut 
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down the IBM 7o94 at MIT in 1973, they found a low-priority process that had 
been submitted in 1967 and had not yet been run.) 

A solution to the problem of indefinite blockage of low-priority 
processes is aging. Aging is a technique of gradually increasing the priority 
of processes that wait in the system for a long time. For example, if 
priorities range from 0 (low) to 127 (high), we could increment the priority 
of a waiting process by 1 every 15 minutes. Eventually, even a process 
with an initial priority of 0 would have the highest priority in the system 
and would be executed. In fact, it would take no more than 32 hours for a 
priority 0 process to age to a priority 127 process. 

5.3.4 Round-Robin Scheduling 
The round-robin (RR) scheduling algorithm is designed especially for time
sharing systeins. It is similar to FCFS scheduling, but preemption is ad4ed 
to switch between processes. A small unit of time, called a time quantum, or 
time slice, is defined. A time quantum is generally from 10 to 100 
rrrilliseconds. The ready queue is treated as a circular queue. The CPU 
scheduler goes around the ready queue, allocating the CPU to each process 
for a time interval of up to 1 time quantUm. 

To implement RR scheduling, we keep the ready queue as a FIFO queue 
of processes. New processes are added to the tail of the ready queue. The 
CPU scheduler picks the first process from the ready queue, sets a timer to · 
interrupt after 1 time quantuin, and dispatches the process. 

One of two things will then.' happen. The process may have a CPU burst 
of less than 1 time quantum. In this case, the process itself will release the 
c:Pu voluntarily. The scheduler will then proceed to the next process in the 
ready queue. Otherwise, if the CPU burst of the currently running process 
is longer than 1 time quantum, the timer will go off and will cause an 
interrupt to the operating system. A context switch will be executed, and 
the process will be put at the tail of the ready queue. The CPU scheduler 
will then select the next process in the ready queue. 

The average waiting time under the RR policy, however, is often quite 
long. Consider the .following set of processes that arrive at time 0, with the 
length of the CPU-burst time given in milliseconds: 

Process Burst Time 

If we use a time quantum of 4 milliseconds, then process P 1 gets the first 4 
milliseconds. Since it requires another 20 milliseconds, it is preempted after 
the first time quantum, and the CPU is given to the next process in the 

m 
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queue, process P2. Since process P2 does not need 4 milliseconds, it quits 
before its time quantum expires. The CPU is then given to the next process, 
process P3. Once each process has received 1 tirhe quantum, the CPU is 
returned to process P 1 for an additional time quantum. The resulting RR 
schedule is · 

b 4 7 10 14 18 22 26 30 

The average waiting time is 17/3 = 5.66 milliseconds. 
In the RR schedtilirtg algorithm, rio process is allocated the CPU for 

more than 1 time quantum in a row. If a process'· CPU burst exceeds 1 time 
quantum, that process is preempted and is put back in the ready queue. The 
RR scheduling algorithm is preemptive. 

If there are n processes in the ready queue and the time quantum is q, 
then each process gets lin of the .cpu time in chunks of at most q time 
units. Each process must wait :ho longer than (n - 1) x q time qnits until 
its next time quantum. For example, if there are five processes, with a time 
quantUm of 20 miiliseconds, then each process will get up to 20 
milliseconds. every 100 milliseconds. . 

The performance of the RR algorithm depends heavily· on the size of 
the time quantum. At one extreme, if the tiine quantum is very large 
(infinite), the RR policy is the same as the FCFS policy. If the time quantum 
is very small (say 1 microsecond), the RR approach is called processor 
sharing, and appears (in theory) to the users as though each of n processes 
has its owri processor running at 1/n the speed of the real processor. This 
approach was used in Control Data Corporation (coc) hardware to 
implement 10 peripheral processors with only one set of hardware and 10 
sets of registers. The hardware executes one instruction for orte set of 
registers, then goes on to the next. This cycle continues, resulting in 10 
slow processors rather than one fast one. (Actually, since the. processor 
was much faster than memory and each instruction referenced memory, 
the processors were not much slower than a single processor would have 
been.) 

In software, however, we need also to consider the effect of context 
switching on the performance of RR scheduling. Let us assume that we 
have only one process of 10 time units. If the quantum is 12 time units, the 
process finishes in less than 1 time quantum, with no overhead. If the 
quantum is 6 time units, however, the process requires 2 quanta, resulting 
in a coritext switch. If the time quantum is 1 time unit, then nine context 
switches will occur, slowing the execution of the process accordingly 
(Figure 5.4). 
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5.4 Showing how a smaller time quantum increases context 

Thus, we want the time quantum to be 
context-switch time. If the context-switch time 
of the time quantum, then about 10 percent of the CPU 

in context switch. 
Turnaround time also depends on the 

we can see from Figure 5.5, the average turnaround 
processes does not necessarily improve as the time-quantum 
In general, the average turnaround time can be improved 
finish their next CPU burst in a single time quantum. 
three processes of 10 time units each and a quantum of 1 

rc.-.·c><TO turnaround time is 29. If the time quantum 10, 
average turnaround time drops to 20. If context-switch 
the average turnaround time increases for a smaller time 
more context switches will be required. 

On other hand, if the time quantum is too 
to FCFS policy. A rule of thumb is that 80 

bursts should be shorter than the time quantum. 

3.5 Multilevel Queue Scheduling 
Another of scheduling algorithms has been created 
which are easily classified into different groups. 
common division is made between foreground (interactive) 
background (batch) processes. These two types of 
response-time requirements, and so might have 

In addition, foreground processes may have 
defined) over background processes. 

A multilevel queue-scheduling algorithm partitions the 
several separate queues (Figure 5.6). The processes 
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Figure 5.5 Showing how turnaround time varies with the 

assigned to one queue, generally based on some property of 
such as memory size, process priority, or process type. Each 

6 
3 
1 
7 

own scheduling algorithm. For example, queues TTH<Tnr 

for foreground and background processes. The foreground queue ....,..,.,Th-1" 

scheduled by an RR algorithm, while the background queue 
by an FCFS algorithm. 

In addition, there must be scheduling between the 
commonly implemented as a fixed-priority preemptive 
example, the foreground queue may have absolute priority 
background queue. 

Let us look at an example of a multilevel queue scheduling 
with five queues: 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 

5. Student processes 



highest priority · 

lowest priority 

Figure 5.6 Multilevel queue scheduling. 

Each queue has absolute priority over lower-priority 
the batch queue, for example, could run unless 
processes, interactive processes, and interactive editing nnJce·ss~:~s 
empty. If an interactive editing process entered the 
batch process was running, the batch process would be nr.os:>~Y'Irl•f"t:>t 

Another possibility is to time slice between the queues. 
gets a certain portion of the CPU time, which it can then 
the various processes in its queue. For instance, 
background queue example, the foreground queue can 

the CPU time for RR scheduling among its 
background queue receives 20 percent of the CPU to give to 
a FCFS manner. 

6 Multilevel Feedback Queue Scheduling 

Normally, in a multilevel queue-scheduling algorithm, 
permanently assigned to a queue on entry to the "''"0 r"''"' 

move between queues. If there are separate 
background processes, for example, processes do 
queue to the other, since processes do not change 
background nature. This setup has the advantage 
overhead, but is inflexible. 

Multilevel feedback queue scheduling, however, allows a 
between queues. The idea is to separate processes with 



characteristics. If a process uses too much CPU time, it will be 
lower-priority queue. This scheme leaves I/O-bound and 
vrcJC€~SSE:!S in the higher-priority queues. Similarly, a process 

in a lower-priority queue may be moved to a higher-priority 
This form of aging prevents starvation. 

For example, consider a multilevel feedback queue 
three queues, numbered from 0 to 2 (Figure 5.7). The 
executes all processes in queue 0. Only when queue 0 
execute processes in queue 1. Similarly, processes in queue 2 
executed if queues 0 and 1 are empty. A process that arrives 
will preempt a process in queue 2. A process in queue 1 will 
preempted by a process arriving for queue 0. 

A process entering the ready queue is put in queue 0. A 
queue 0 given a time quantum of 8 milliseconds. If it does not 
within this time, it is moved to the tail of queue 1. If queue 0 
process at the head of queue 1 is given a quantum of 16 
does not complete, it preempted and is put into queue 2. 
queue 2 are run on an FCFS basis, only when queues 0 and 1 are 

This scheduling algorithm gives highest priority to any 
CPU burst of 8 milliseconds or less. Such a process will 
finish its CPU burst, and go off to its next I/O burst. 
more than but less than 24, milliseconds are also 
although with lower priority than shorter processes. 
automatically sink to queue 2 and are served in FCFS order 
cycles left over from queues 0 and 1. 

In a multilevel feedback queue scheduler 
following parameters: 

Figure 5.7 Multilevel feedback queues. 
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• The number' of queues . 

• The scheduling algorithm for each queue 

• The method used to determine when to upgrade a process to a 
higher-priority queue 

• The method used to determine when to demote a process to a lower
priority queue 

• The method used to determine which queue a process will enter when 
that process needs service 

The definition of a multilevel feedback queue scheduler makes it the most 
general CPU scheduling algorithm. It can be configured to match a specific 
system under design. Unfortunately, it also requires some means of 
selecting values for all the parameters to define the best scheduler. 
Although a multilevel feedback queue is the most general scheme, it is also 
the most complex. 

5.4 • Multiple-Processor Scheduling 

Our discussion thus far has focused on the problems of scheduling the CPU 
in a system with a single processor. If multiple CPUs are available, the 
scheduling problem is correspondingly more complex. Many possibilities 
have been tried, and, as we saw with single-processor CPU scheduling, 
there is no one best solution. In the following, we discuss briefly some of 
the issues concerning multiprocessor scheduling. A complete coverage is 
beyond the scope of this text. 

The processors within a multiprocessor are identical (homogeneous) in 
terms of their functionality. Any available processor can then be used to 
run any processes in the queue. If the processors were different (a 
heterogeneous system), only programs compiled for a given processor's 
instruction set could be run on that processor. This is sometimes the case 
with distributed systems, as we shall see in Chapters 15 though 18. There 
are sometimes limitations on scheduling even within homogeneous 
multiprocessors. Consider a system with an 110 device attached to a 
private bus of one processor. Processes wishing to use that device must be 
scheduled to run on that processor, otherwise the device would not be 
available. 

If several identical processors are available, then load sharing can occur. 
It would be possible to provide a separate queue for each processor. In this 
case, however, one processor could be idle, with an empty queue, while 
another processor was very busy. To prevent this situation, we use a 
common ready queue. All processes go into one queue and are scheduled 
onto any available processor. 
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In such a scheme, one of two scheduling approaches may be used. In 
one approach, each processor is self-scheduling. Each processor examines 
the common ready queue and selects a process to execute. As we shall see 
in Chapter 6, if we have multiple processors trying to access and update a 
common data structure, each processor must be programmed very 

-carefully. We must ensure that two processors do not choose the same 
process, and that processes are not lost from the queue. The other 
approach avoids this problem by appointing one processor as scheduler for 
the other processors, thus creating a master-slave structure. 

Some systems carry this structure one step further, by having all 
scheduling decisions, 1!0 processing, and other system activities handled by 
one single processor - the master server. The other processors only 
execute user code. This asymmetric multiprocessing is far simpler than 
symmetric multiprocessing, because only one processor accesses the 
system data structures, alleviating the need for data sharing. 

5.5 • Real-Time Scheduling 

In Chapter 1, we gave an overview of real-time operating systems· and 
discussed their growing importance. Here, we continue the discussion by 
describing the scheduling facility needed to support real-time computing 
within a general-purpose computer system. 

Real-time computing is divided into two types. Hard real-time systems 
are required to complete a critical task within a guaranteed amount of 
time. Generally, a process is submitted along with a statement of the 
amount of time in which it needs to complete or perform 1!0. -·The 
scheduler then either admits the process, guaranteeing that the process 
will complete on time, or rejects the request as impossible. This is known 
as resource reservation. Such a guarantee requires that the scheduler know 
exactly how long each type of operating-system function takes to perform, 
and therefore each operation must be guaranteed to take a maximum 
amount of time. Such a guarantee is impossible in a system with secondary 
storage or virtual memory, as we shall show in the next few chapters, 
because these subsystems cause unavoidable and unforeseeable variation 
in the amount of time to execute a particular process. Therefore, hard real
time systems are composed of special-purpose software running on 
hardware dedicated to their critical process, and lack the full functionality 
of modern computers and operating systems. 

Soft real-time computing is less restrictive. It requires that critical 
processes receive priority over less fortunate ones. Although adding soft 
real-time functionality to a time-sharing system may cause an unfair 
allocation of resources and may result in longer delays, or even starvation·, 
for some processes, it is at least possible to achieve. The result is a 
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general-purpose system that can also support multimedia, high-speed 
interactive graphics, and a variety of tasks that would not function 
acceptably in an environment that does not support soft real-time 
computing. 

Implementing soft real-time functionality requires careful design of the 
scheduler and related aspects of the operating system. First, the system 
must have priority scheduling, and real-time processes must have the 
highest priority. The priority of real-time processes must not degrade over 
time, even though the priority of non-real-time processes may. Second, 
the dispatch latency must be small. The smaller the latency, the faster a 
real-time process can start executing once it is runable. 

It is relatively simple to ensure that the former property holds. For 
example, we can disallow process aging on real-time processes, thereby 
guaranteeing that the priority of the various processes does not change. 
However, ensuring the latter property is much more involved. The 
problem is that many operating systems, including most versions of UNIX, 

are forced to wait for either a system call to complete or for an 110 block to 
take place before doing a context switch. The dispatch latency in such 
systems can be long, since some system calls are complex and some 110 

devices are slow. 
To keep dispatch latency low, we need to allow system calis to be 

preemptible. There are several ways to achieve this goal. One is to insert 
preemption points in long-duration system calls, which check to see whether 
a high-priority process needs to be run. If so, a context switch takes place 
and, when the high-priority process terminates, the interrupted process 
continues with the system call. Preemption points can be placed at only 
"safe" locations in the kernel - only where kernel data structures are not 
being modified. Even with preemption points dispatch latency can be 
large, because only a few preemption points can be practically added to a 
kernel. 

Another method for dealing with preemption is to make the entire 
kernel preemptible. So that correct operation is ensured, all kernel data 
structures must be protected through the use of various synchronization 
mechanisms that we discuss in Chapter 6. With this method, the kernel 
can always be preemptible, because any kernel data being updated are 
protected from modification by the high-priority process. This is the 
method used in Solaris 2. 

But what happens if the higher-priority process needs to read or 
modify kernel data that are currently being accessed by another, lower
priority process? The high-priority process would be waiting for a lower
priority one to finish. T}:l.is situation is known as. priority inversion. In fact, 
there could be a chain of processes, all accessing resources that the high
priority process needs. This problem can be solved via the priority
inheritance protocol, in which all these processes (the processes that are 
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accessing resources that the high-priority process needs) inherit the high 
priority until they are done with the resource in question. When they are 
finished, their priority reverts to its natural value. 

In Figure 5.8, we show the makeup of dispatch latency. The conflict 
phase of dispatch latency has three components: 

· 1. Preemption of any process running in the kernel 

2. Low-priority processes releasing resources needed by the high-priority 
process 

3. Context switching from the current process to the high-priority process 

As an example, in Solaris 2, the dispatch latency with preemption disabled 
is over 100 milliseconds. However, the dispatch latency with preemption 
enabled is usually reduced to 2 milliseconds. 

5.6 • Algorithm Evaluation 

How do we select a CPU scheduling algorithm for a particular system? As 
we saw in Section 5.3, there are many scheduling algorithms, each with its 
own parameters. As a result, selecting an algorithm can be difficult. 
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The first problem is defining the criteria to be used in selecting an 
algorithm. As we saw in Section 5.2, criteria are often defined in terms of 
CPU utilization, response time, or throughput. To select an algorithm, we 
must first define the relative importance of these measures. Our criteria 
may include several measures, such as: 

• Maximize CPU utilization under the constraint that the maximum 
response time is 1 second 

• Maximize throughput such that turnaround time is (on . average) 
linearly proportional to total execution time 

Once the selection criteria have been defined, we want to evaluate the 
various algorithms under consideration. There are a number of different 
evaluation methods, which we describe in Sections 5.6.1 through 5.6.4. 

5.6.1 Deterministic modeling 
One major class of evaluation methods is called analytic evaluation. Analytic 
evaluation uses the algorithm and the system workload to produce a 
formula or number that evaluates the performance of the algorithm for that 
workload. · 

One type of analytic evaluation is deterministic modeling. This method 
takes a particular predetermined workload and defines the performance of 
each algorithm for that workload. 

For example, assume that we have the workload shown. All five 
processes arrive at time 0, in the order given, with the length of the· CPU
burst time given in milliseconds: 

Process B'!.IrSt Time 

pl 10 
p2 29 
p3 3 
p4 7 
P5 12 

Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling 
algorithms for this set of processes. Which algorithm would give the 
minimum average waiting time? 

For the FCFS algorithm, we would execute the processes as 

0 10 39 42 49 61 
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The waiting time is 0 milliseconds for process P1, 10 milliseconds for 
process P 2, 39 milliseconds for process P 3, 42 milliseconds for process P 4, 

and 49 milliseconds for process P5• Thus, the average waiting time is (0 + 
10 + 39 + 42 + 49)/5 = 28 milliseconds. · 

With nonpreemptive SJF scheduling, we execute the processes as 

0 3 10 20 32 61 

The waiting time is 10 milliseconds for process P1, 32 milliseconds for 
process P 2, 0 milliseconds for process P 3, 3 milliseconds for process P 4, and 
20 milliseconds for process P5. Thus, the average waiting time is (10 + 32 
+ 0 + 3 + 20)/5 = 13 milliseconds. 

With the RR algorithm, we start process P2, but preempt it after 10 
milliseconds, putting it in the back of the queue: 

0 10 20 23 30 40 50 52 61 

The waiting time is 0 milliseconds for process P1, 32 milliseconds for 
process P 2, 20 milliseconds for process P 3, 23 milliseconds for process P 4, 

and 40 milliseconds for process P 5. Thus, the average waiting time is (0 + 
32 + 20 + 23 + 40)/5 = 23 milliseconds. 

We see that, in this case, the SJF policy results in less than one-half the 
average waiting time obtained with FCFS scheduling; the RR algorithm gives 
us an intermediate value. 

Deterministic modeling is simple and fast. It gives exact numbers, 
allowing the algorithms to be compared. However, it requires exact 
numbers for input, and its answers apply to only those cases. The main 
uses of deterministic modeling are in describing scheduling algorithms and 
providing examples. In cases where we may be running the same 
programs over and over again and can measure the program's processing 
requirements ex~ctly, we may be able to use deterministic modeling to 
select a scheduling algorithm. Over a set of examples, deterministic 
modeling may indicate trends that can then be analyzed and proved 
separately. For example, it can be shown that, for the environment 
described (all processes and their times available at time 0), the SJF policy 
will always result in the minimum waiting time. 

In general, however, deterministic modeling is too specific, and 
requires too much exact knowledge, to be useful. 
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5.6.2 Queueing models 
The processes that are run on many systems vary from day to day, so 
there is no static set of processes (and times) to use for deterministic 
modeling. What can be determined, however, is the distribution of CPU 

and 110 bursts. These distributions may be measured and then 
approximated or simply estimated. The result is a mathematical formula 
describing the probability of a particular CPU burst. Commonly, this 
distribution is exponential and is described by its mean. Similarly, the 
distribution of times when processes arrive in the system (the arrival-time 
distribution) must be given. From these two distributions, it is possible to 
compute the average throughput, utilization, waiting time, and so on for 
most algorithms. 

The computer system is described as a network of servers. Each server 
has a queue of waiting processes. The CPU is a server with its ready queue, 
as is the 110 system with its device queues. Knowing arrival rates and 
service rates, we can compute utilization, average queue length, average 
wait time, and so on. This area of study is called queueing-network analysis. 

As an example, let n be the average queue length (excluding the 
process being serviced), let W be the average waiting time in the queue, 
and let A be the average arrival rate for new processes in the queue (such 
as three processes per second). Then, we expect that during the time W 
that a process. waits, A x W new processes will arrive in the queue. If the 
system is in a steady state, then the number of processes leaving the queue 
must be equal to the number of processes that arrive. Thus, 

n =A X W. 

This equation is known as Little's formula. Little's formula is particularly 
useful because it is valid for any scheduling algorithm and arrival 
distribution. 

We can use Little's formula to compute one of the three variables, if 
we know the other two. For example, if we know that seven processes 
arrive every second (on average), and that there are normally 14 processes 
in the queue, then we can compute the average waiting time per process 
as 2 seconds. 

Queueing analysis can be useful in comparing scheduling algorithms, 
but it also has limitations. At the moment, the classes of algorithms and 
distributions that can be handled are fairly limited. The mathematics of. 
complicated algorithms or distributions can be difficult to work with. Thus, 
arrival and service distributions are often defined in unrealistic, but 
mathematically tractable, ways. It is also generally necessary to make a 
number of independent assumptions, which may not be accurate. Thus, 
so that they will be able to compute an answer, queueing models are often 
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only an approximation of a real system. As a result, the accuracy of the 
computed results may be questionable. 

5.6.3 Simulations 
To get a more accurate evaluation of scheduling algorithms, we can use 
simulations. Simulations involve programming a model of the computer 
system. Software data structures represent the major components of the 
system. The simulator has a variable representing a clock; as this variable's 
value is increased, the simulator modifies the system state to reflect the 
activities of the devices, the processes, and the scheduler. As the 
simulation executes, statistics that indicate algorithm performance are 
gathered and printed. 

The data to drive the simulation can be generated in several ways. The 
most common method uses a random-number generator, which is 
programmed to generate processes, CPU-burst times, arrivals, departures, 
and so on, according to probability distributions. The distributions may be 
defined mathematically (uniform, exponential, Poisson) or empirically. If 
the· distribution is to be defined empirically, measurements of the actual 
system under study are taken. The results are used to define the actual 
distribution of events in the real system, and this distribution can then be 
used to drive the simulation. 

A distribution-driven simulation may be inaccurate, however, due to 
relationships between successive events in the real system. The frequency 
distribution indicates only how many of each event occur; it does not 
indicate anything about the order of their occurrence. To correct this 
problem, we can use trace tapes. We create a trace tape by monitoring the 
real system, recording the sequence of actual events (Figure 5.9). This 
sequence is then used to drive the simulation. Trace tapes provide an 
excellent way to compare two algorithms on exactly the same set of real 
inputs. This method can produce accurate results for its inputs. 

Simulations can be expensive, however, often requiring hours of 
computer time. A more detailed simulation provides more accurate results, 
but also requires more computer time. In addition, trace tapes can require 
large amounts of storage space. Finally, the design, coding, and debugging 
of the simulator can be a major task. 

5.6.4 Implementation 
Even a simulation is of limited accuracy. The only completely accurate way 
to evaluate a scheduling algorithm is to code it up, to put it in the 
operating system, and to see how it works. This approach puts the actual 
algorithm in the real system for evaluation under real operating conditions. 
. The major difficulty is the cost of this approach. . The expense is 
mcurred not only in coding the algorithm and modifying the operating 
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Figure 5.9 Evaluation of CPU schedulers by 

system to support it as well as its required data structures, 
reaction of the users to a constantly changing operating 
are not interested in building a better operating system; they 
to their processes executed and to use their 
changing operating system does not help the users to get 

The other difficulty with any algorithm evaluation 
environment in which the algorithm is used will change. 
will not only in the usual way, as new programs are 

types of problems change, but also as a result of the 
the If short processes are given priority, then users 
larger processes into of smaller processes. If interactive 
given priority over noninteractive processes, then users 
interactive use. 

example, researchers tried designing one 
interactive and noninteractive processes automatically by 
amount of terminal I/0. If a process did not input or output to 
in a 1-second intervaL the process was classified as 
moved to a lower-priority queue. This policy resulted in a 
one programmer modified his programs to write an 
the terminal at regular intervals of less than 1 second. 
programs a high priority, even though the terminal output was 
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The most flexible scheduling algorithms can be altered by the system 
managers. During operating-system build time; boot time, or run time, the 
variables used by the schedulers can be changed . to reflect the expected 
future use of the system. The need for flexible scheduling is another 
instance where the separation of mechanism from policy is useful. For 
instance, if paychecks need to be processed and printed immediately, but 
are normally done as a low-priority batch job, the batch queue could be 
given a higher priority temporarily. Unfortunately, few operating systems 
allow this type of tunable scheduling. 

5.7 • Summary 

CPU scheduling is the task of selecting a waiting process from the ready 
queue and allocating the CPU to it. The CPU is allocated to the selected 
process by the dispatcher. 

First-come, first-served (FCFS) scheduling is the simplest scheduling 
algorithm, but it can cause short processes to wait for very long processes. 
Shortest-job-first (SJF) scheduling is provably optimal, providing the 
shortest average waiting time. Implementing SJF scheduling is difficult 
because predicting the length of the next CPU burst is difficult. The SJF 

algorithm is a special case of the general priority scheduling algorithm, 
which simply allocates the CPU to the highest-priority process. Both priority 
and SJF scheduling may suffer from starvation. Aging is a technique to 
prevent starvation. 

Round-robin (RR) scheduling is more appropriate for a time-shared 
system. RR scheduling allocates the CPU to the first process in the ready 
queue for q time units, where q is the time quantum. After q time units, 
the CPU is preempted and the process is put at the tail of the ready queue. 
The major problem is the selection of the time quantum. If the quantum is 
too large, RR scheduling degenerates to FCFS scheduling; if the quantum is 
too small, scheduling overhead in the form of context-switch time becomes 
excessive. 

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive . 
. The SJF- and priority algorithms may be either preemptive or 
nonpreemptive. 

Multilevel queue algorithms allow different algorithms to be used for 
various classes of processes. The most common is a foreground interactive 
queue, which uses RR scheduling, and a background batch queue, which 
uses FCFS scheduling. Multilevel feedback queues allow processes to move 
from one queue to another. 

The wide variety of scheduling algorithms demands that we have 
methods to select among algorithms. Analytic methods use mathematical 
analysis to determine the performance of an algorit~m. Simulation 
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methods determine performance by imitating the scheduling algorithm on 
a "representative" sample of processes, and computing the resulting 
performance. 

• Exercises 

5.1 A CPU scheduling algorithm determines an order for the execution of 
its scheduled processes. Given n processes to be scheduled on one 
processor, how many possible different schedules are there? Give a 
formula in terms of n. 

5.2 Define the difference between preemptive and nonpreemptive 
scheduling. State why strict nonpreemptive scheduling is unlikely to 
be used jn a computer center. 

5.3 Consider the following set of processes, with the length of the cpu
burst time given in milliseconds: 

Process Burst Time Priority 

PI 10 3 
p2 1 1 
p3 2 3 
p4 1 4 
Ps 5 2 

The processes are assumed to have arrived in the order PI, P2, P3, P4, 
P5, all at time 0. 

a. Draw four Gantt charts illustrating the execution of these 
processes using FCFS, SJF, a nonpreemptive priority (Ci smaller 
priority number implies a higher priority), and RR (quantum = 1) 
scheduling. 

b. What is the turnaround time of each process for each of the 
scheduling algorithms in part a? 

c. What is the waiting time of each process for each of the 
scheduling algorithms in part a? 

d. Which of the schedules in part a results in the minimal average 
waiting time (over all processes)? 

5.4 Suppose that the following processes arrive for execution at the times 
indicated. Each process will run the listed amount of time·. In 
answering the questions, use nonpreemptive scheduling and base all 
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decisions on the information you have at the time the decision must 
be made. 

Process Arrival Time Burst Time 

pl 0.0 8 
p2 0.4 4 
p3 1.0 1 

a. What is the average turnaround time for these processes with the 
FCFS scheduling algorithm? 

b. What is the average turnaround time for these processes with the 
SJF scheduling algorithm? 

c. The SJF algorithm is supposed to improve performance, but notice 
that we chose to run process P 1 at time 0 because we did not 
know that two shorter processes would arrive soon. Compute 
what the average turnaround time will be if the CPU is left idle for 
the first 1 unit and then SJF scheduling is used. Remember that 
processes P1 and P2 are waiting during this idle time, so their 

· waiting time may increase. This algorithm could be known as 
future-knowledge scheduling. 

5.5 Consider a variant of the RR scheduling algorithm where the entries in 
the ready queue are pointers to the PCBs. 

a. What would be the effect of putting two pointers to the same 
process in the ready queue? 

b. What would be the major advantages and disadvantages of this 
scheme? 

c. How would you modify the basic RR algorithm to achieve the 
same effect without the duplicate pointers? 

5.6 What advantage is there in having different time-quantum sizes on 
different levels of a multilevel queueing system? 

· 5.7 Consider the following preemptive priority-scheduling algorithm 
based on dynamically changing priorities. Larger priority numbers 
imply higher priority. When a process is waiting for the CPU (in the 
ready queue, but not running), its priority changes at a rate a.; when 
it is running, its priority changes at a rate (3. All processes are given a 
priority of 0 when they enter the ready queue. The parameters a. and 
(3 can be set to give many diff~rent scheduling algorithms. 

a. What is the algorithm that results from (3 > a. > 0? 

b. What is the algorithm that results from a. < (3 < 0? 
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5.8 Many CPU scheduling algorithms are parameterized. For example, the 
RR algorithm requires a parameter to indicate the time slice. Multilevel 
feedback queues require parameters to define the number of queues, 
the scheduling algorithms for each queue, the criteria used to move 
processes between queues, and so on. 

These algorithms are thus really sets of algorithms (for example, 
the set of RR algorithms for all time slices, and so on). One set of 
algorithms may include another (for example, the FCFS algorithm is 
the RR algorithm with an infinite time quantum). What (if any)· 
relation holds between the following pairs of sets of algorithms? 

a. Priority and SJF 

b. Multilevel feedback queues and FCFS 

c. Priority and FCFS 

d. RR and SJF 

5.9 Suppose that a scheduling algorithm (at the level of short-term CPU 
scheduling) favors those processes that have used the least processor 
time in the recent past. Why will this algorithm favor I/O-bound 
programs and yet not permanently starve CPU-bound programs? 

5.10 Explain the differences in the degree to which the following 
scheduling algorithms discriminate in favor of short processes: 

a. FCFS 

b. RR 

c. Multilevel feedback queues 
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CHAPTER 6 

PROCESS 
SYNCHRONIZATION 

A cooperating process is one that can affect or be affected by the other 
processes executing in the system. Cooperating processes may either 
directly share a logical address space (that is, both code and data), or be 
allowed to share data only through files. The former case is achieved 
through the use of lightweight processes or threads, which we discussed in 
Section 4.5. Concurrent access to shared data may result in· data 
inconsistency. In this chapter, we discuss various mechanisms to ensure 
the orderly execution of cooperating processes that share a logical address 
space, so that data consistency is maintained. 

6.1 • Background 

In Chapter 4, we developed a model of a system consisting of a number of 
cooperating sequential processes, all running asynchronously and possibly 
sharing data. We have illustrated this model with the bounded buffer 
scheme, which is representative of operating systems. 

Let us return to the shared-memory solution to the bounded-buffer· 
problem that we presented in Section 4.4. As we pointed out, our solution 
allows at most n - 1 items in the buffer at the same time. Suppose that we· 
wanted to modify the algorithm to remedy this deficiency. One possibility 
is to add an integer variable counter, initialized to 0. Counter is incremented 
every time we add a new item to the buffer, and is decremented every 
time we remove one item from the buffer. The code for the producer 
process can be modified as follows: 

163 
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repeat 

produce an item in nextp 

while counter = 1'f do no-op; 
buffer[in] := nextp; 
in := in+1 mod n; 
counter : = counter + 1; 

until false; 

The code for the consumer process can be modified as follows: 

repeat 
while counter = 0 do no-op; 
nextc := buffer[out]; 
out:= out+1 mod n; 
counter : = counter - 1; 

consume the item in nextc 

until false; . 

Although both the producer and consumer routines are correct 
separately, they may not function correctly when executed concurrently. 
As an illustration, suppose that the value of the variable counter is 
currently 5, and that the producer and consumer processes execute the 
statements "counter := counter + 1" and "counter := counter - 1" 
concurrently. Following the execution of these two statements, the value of 
the variable counter may be 4, 5, or 6! The only correct result is counter = 5, 
which is generated correctly if the producer and consumer execute 
separately. 

We can show that the value of counter may be incorrect, as follows. 
Note that the statement "counter := counter+1" may be implemented in 
machine language (on a typical machine) as 

register 1 : = counter; 
register 1 : = register 1 + 1; 
counter : = register 1 

where register1 is a local CPU register. Similarly, the statement "counter := 
counter - 1" is implemented as follows: 

register 2 : = counter 
register 2 : = register 2 - 1; 
counter : = register 2 
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where again register 2 is a local CPU register. Even though register 1 and 
register2 may be the same physical registers (an accumulator, say), 
remember that the contents of this register will be saved and restored by 
the interrupt handler (Section 2.1). 

The concurrent execution of the statements "counter := counter + 1" 
and "counter := counter - 1" is equivalent to a sequential execution where 
the lower-level statements presented previously are interleaved in some 
arbitrary order (but the order within each high-level statement is 
preserved). One such interleaving is 

To= producer execute register 1 : = counter {register 1 = 5} 
Tl: producer execute register 1 : = register 1 + 1 {register1 = 6} 
T2: consumer execute register 2 : = counter {register 2 = 5} 
T3: consumer execute register 2 : = register 2 - 1 {register 2 = 4} 
T4: producer execute counter : = register 1 {counter = 6} 
Ts= consumer execute counter : = register 2 {counter = 4} 

Notice that we have arrived at the incorrect state "counter = 4," recording 
that there are four full buffers, when, in fact, there are five full buffers. If 
we reversed the order of the statements at T4 and T5, we would arrive at 
the incorr~ct state "counter = 6." 

. We would arrive at this incorrect state because we allowed both 
processes to manipulate the variable counter concurrently. A situation like 
this, where several processes access and manipulate the same data 
concurrently, and the outcome of the execution depends on the particular 
order in which the access takes place, is called a race condition. To guard 
against the race condition above, we need to ensure that only one process 
at a time can be manipulating the variable counter. To make such a 
guarantee, we· require some form of synchronization of the processes. 
Such situations occur frequently in operating systems as different parts of 
the system manipulate resources and we want the changes not to interfere 
with one another. A major portion of this chapter is concerned with the 
issue of process synchronization and coordination. 

6.2 • The Critical-Section Problem 

Consider a system consisting of n processes { P 0' P 1, ... , P n _ 1}. Each 
. process has a segment of code, called a critical section, in which the process 
may be changing common variables, updating a table, writing a file, and 
so on.· The important feature of the system is that, when one process is 
executing in its critical section, no other process is to be allowed to execute 
in its critical section. Thus, the execution of critical sections by the 
processes is mutually exclusive in time. The critical-section problem is to 
design a protocol that the processes can use to cooperate. Each process 
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must request permission to enter its critical section. The section of code 
implementing this request is the entry section. The critical section may be 
followed by an exit section, The remaining code is the remainder section. 

A solution to the critical-section problem must satisfy the following 
tJ:uee requirements: 

1. Mutual Exclusion: If process Pi is executing in its critical section, then 
no other processes can be executing in their critical sections. 

2. Progress: If no process is executing in its critical section and there exist 
some processes that wish to enter their critical sections, then only 
those processes that are not executing in their remainder section can 
participate in the decision of which will enter its critical section next, 
and this selection cannot be postponed indefinitely. 

3. Bounded Waiting: There must exist a bound on the number of times 
that other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before that 
request is granted. 

We assume that each process is executing at a nonzero speed. However, 
we can make no assumption concerning the relative speed of the n 
processes. 

In Sections 6.2.1 and 6.2.2, we work up to solutions to the critical
section problem that satisfy these three requirements. The solutions do 
not rely on any assumptions concerning the hardware instructions or the 
number of processors that the hardware supports. We do, however, 

repeat 

I entry section I 

critical section 

I exit section I 
remainder section 

until false; 

Figure 6.1 General structure of a typical process Pi· 
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assume that the basic machine-language instructions (the primitive 
instructions such as load, store, and test) are ,executed atomically. That is, 
if two such instructions are executed concurrertly, the result is equivalent 
to their sequential execution in some unknown order. Thus, if a load and a 
store are executed concurrently, the load will get either the old value or 
the new value, but not some combination of the two. 

When presenting an algorithm, we define only the variables used for 
synchronization pu,rposes, and describe only a typical process Pi whose 
general structure is shown in Figure 6.1. The entry section and _exit section 
are enclosed in boxes to highlight these important segments of code. 

6.2.1 Two-Process Solutions 
In this section, we restrict our attention to algorithms that are applicable to 
only two processes at a time. The processes are numbered P0 and P1. For 
convenience, when presenting Pi' we use Pj to denote the other process; 
that is, j = 1 - i. 

6.2.1.1 Algorithm 1 

Our first approach is to let the processes share a common integer variable 
turn initialized to 0 (or 1). If turn = i, then process Pi is allowed to execute 
in its critical section. The structure of process Pi is shown in Figure 6.2. 

This solution ensures that only one process at a time can be in its 
critical section. However, it does not satisfy the progress requirement, 
since it requires strict alternation of processes in the execution of the 
critical section. For example, if turn = 0 and P 1 is ready to enter its critical 
section, P1 cannot do so, even though P0 may be in its remainder section. 

Jepeat 

I while turn =F i do no-op; I 
critical section 

I turn := j; I 

remainder section 

until false; 

Figure 6.2 The structure of process P. in algorithm 1. 
. l 
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6.2.1.2 Algorithm 2 

The problem with algorithm 1 is that it does not retain sufficient 
information about the state of each process; it remembers only which 
process is allowed to enter that process' critical section. To remedy this 
problem, we can replace the variable turn with the following array: 

var flag: array [0 .. 1] of boolean; 

The elements of the array are initialized to false. If flag[i] is true, this value 
indicates that Pi is ready to enter the critical section. The structure of 
process Pi is shown in Figure 6.3. 

In this algorithm, process Pi first sets fiag[i] to be true, signaling that it 
is ready to enter its critical section. Then, Pi checks to verify that process 
Pj is not ~lso r~ady to e~ter_its critical ~ection. If Pj were ready, t~en Pi 
would wa1t until Pj had md1cated that 1t no longer needed to be 1n the 
critic~l section (that is, until flagUl wa~ false). At this point, Pi would enter 
the critical section. On exiting the critical section, Pi would set its flag to 
be false, allowing the other process (if it is waiting) to enter its critical 
s'ection. 

In this solution, the mutual-exclusion requirement is satisfied. 
Unfortunately, the progress requirement is not met. To illustrate this 
problem, we consider the following execution sequence: 

T 0: P 0 sets flag[O] = true 
T 1: P 1 sets flag[l] = true 

Now P 0 and P 1 are looping forever in their respective while statements. 

repeat 

flag[i] := true; 
while flagU] do no-op; 

critical section 

I flag[i] : = false; I 

remainder section 

until false; 

Figure 6.3 The structure of process Pi in algorithm 2. 
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This algorithm is crucially dependent on the exact timing of the two 
processes. The sequence could have been derived in · ah enVironment 
where there are several processors executing concurrently, or where an 
interrupt (such as a ,timer interrupt) occurs immediately after step T

0 
is 

executed, and the CPU is switched froin one process to another. 
Note that switching the order of the instructions for setting fiag[i], and 

testing the value of a fiagU], will not solve our problem. Rather, we will 
have a situation where it is possible for both processes to be in the critical 
section at the same time, violating the mutual-exclusion requirem~nt. 

6.2.1.3 Algorithm 3 

By combining the key ideas of algorithm 1 and algorithm 2, we obtain a 
correct solution . to the critical-section problem, where all three 
requirements are met. The processes share two variables: 

var fiag: array [0 .. 1] of boolean; 
turn: 0 .. 1; 

Initially fiag[O] = fiag[l] =false, and the value of turn is immaterial (but is 
either 0 or 1). The structure of process Pi is shown in Figure 6.4. 

To enter the critical section, process Pi first sets fiag[i] to be true, and 
then asserts that it is the other process' turn to enter if appropriate (turn = 
j). If both processes try to enter at the same time, turn will be set to both i 
and j at roughly the same time. Only one of these assignments will last; 
the other will occur, but will be overwritten immediateiy. The eventual 

repeat 

fiag[i] : = true; 
turn := j; 
while (fltigU] and turn=j) do no-op; 

critical section 

I fiag[ i] : = false; I 
remainder section 

until false; 

Figure 6.4 The structure of process Pi in algorithm 3. 
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value of turn decides which of the two processes is allowed to enter its 
critical section first. 

We now prove that this solution is correct. We need to show that: 

1. Mutual exclusion is preserved, 

· 2. The progress requirement is satisfied, 

3. The bounded-waiting requirement is met. 

To prove property 1, we note that each Pi enters its critical section only 
if either flag[j] = false or turn = i. Also note that, if both processes can be 
executing in their critical sections at the same time, then flag[O] = flag[1] = 
true . . These two observations imply that P 0 and P 1 could not have executed 
successfully their while statements at about the same time, since the value 
of turn can be either 0 or 1, but cannot be both. Hence, one. of the 
processes - say P. - must have executed successfully the while 
statement, whereas Pi had to execute at least one additional statement 
("turn = j"). However, since, at that time, flag[j] = true, and turn = i, and 
this condition will persist as long as Pj is in its critical section, the result 
follows: Mutual exclusion is preserved. 

To prove properties 2 and 3, we note that a process Pi can be 
prevented from entering the critical section only if it is stuck ih the while 
loop with the condition flag[j] = true and turn = j; this loop is the only 
one. If P. is not ready to enter the critical section, then flag[j] = false, and Pi 
can entef its critical section. If P. has set flag[j] = true and is also executing 
in its while statement, then either turn = i or turn = j. If turn = i, then Pi 
will enter the critical section. If turn = j, then Pj will enter the critical 
section. However, once Pj exits its critical section, it will reset flag[j] to false, 
allowing Pi to enter its cntical section. If Pj resets flag[j] to true, it must also 
set turn = i. Thus, since Pi does not change the value of the variable turn 
while executing the while statement, Pi will enter the critical section 
(progress) after at most one entry by Pj (bounded waiting). 

6.2.2 Multiple-Process Solutions 

.We have. seen that algorithm 3 solves the critical-section problem for two 
processes. Now let us develop an algorithm for solving the critical-section 
problem for n processes. This algorithm is known as the bakery algorithm, 
and it is based on a scheduling algorithm commonly used in bakeries, ice
cream stores, meat markets, motor-vehicle registries, and other locations 
where order must be made out of chaos. This algorithm was developed for 
a distributed environment, but at this point we are concerned with only 
those aspects of the algorithm that pertain to a centralized environment. 

On entering the store, each customer receives a number. The customer 
with the lowest number is served next. Unfortunately, the bakery 
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algorithm cannot guarantee that two processes (customers) do not receive 
the same number. In the case of a tie, the process with the lowest name is 
served first. That is, if Pi and Pj receive the same number and if i < j, then 
Pi is served first. Since process names are unique and totally ordered, our 
algorithm is completely deterministic. 

The common data structures are 

var choosing: array [O .. n-1] of boolean; 
number: array [O .. n-1] of integer; 

Initially, these data structures are initialized to false and 0, respectively. 
For convenience, we define the following notation: 

• (a,b) < (c,d) if a < c or if a = c and b < d. 

• max(aO' ... , an_1) is a number, k, such that k > ai fori = 0, ... , n-1. 

The structure of process Pi is shown in Figure 6.5. 
To prove that the bakery algorithm is correct, we need first to show 

that, if Pi is in its critical section and P k (k =I= i) has already chosen its 

repeat 

choosing[i] := true; 
number[i] := max(number[O], number[1], ... , number[n-1]) + 1; 
choosing[i] :=false; 
for j : = 0 to n -1 

do begin 
while choosingU] do no-op; 
while numberU] =I= 0 

and (numberU],j) < (number[i],i) do no-op; 
end; 

critical section 

I number[i] := 0; I 

remainder section 

until false; 

Figure 6.5 The structure of process Pi in the bakery algorithm. 
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number[k] =I= 0, then (number[i],i) < (number[k],k). The proof of this 
algorithm is left to you in Exercise 6.2. 

Given this result, it is now simple to show that mutual exclusion is 
observed. Indeed, consider Pi in its critical section and Pk trying to e.nter 
the Pk critical section. When process Pk executes the second while 
statement for j = i, it S.nds that 

• number[i] =I= 0 

• (number[i],i) < (number[k],k). 

Thus, it continues looping in the while statement until Pi leaves the Pi 
critical section. 

If we wish to show that the progress and bounded-waiting 
requirements are preserved, and that the algorithm ensures fairness, it is 
sufficient to observe that the processes enter their critical section on a 
first-come, first-served basis. 

6.3 • Synchronization Hardware 

As with other aspects of software, features of the hardware can make the 
programming task easier and improve system efficiency. In this section, 
we present some simple hardware instructions that are available on many 
systems, and show how they can be used effectively in solving the critical
section problem. 

The critical-section problem could be solved simply in a uniprocessor en
vironment if we could disallow interrupts to occur while a shared variable is 
being modified. In this manner, we could be sure that the current sequence of 
instructions would be allowed to execute in order without preemption. No 
other instructions would be run, so no unexpected modifications could be 
made to the shared variable. 

Unfortunately, this solution is .not feasible in a multiprocessor environ
ment. Disabling interrupts on a multiprocessor can be time-consuming, as the 
message is passed to all the processors. This message passing delays entry 
into each critical section, and system efficiency decreases. Also, consider the 
effect on a system's dock, if the clock is kept updated by interrupts. 

Many machines therefore provide special hardware instructions that 
allow us either to test and modify the content of a word, or to swap the 
contents of two words, atomically. We can use these special instructions to 
solve the critical-section problem in a relatively simple manner. Rather 
than discussing one specific instruction for one specific machine, let us 
abstract the main concepts behind these types of instructions. The Test
and-Set instruction can be defined as follows: 
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function Test-and-Set (var target: boolean): boolean; 
begin 

Test-and-Set : = target; 
target : = true; 

end; 

The important characteristic is that this instruction is executed atomically 
- that is, as one uninterruptible unit. Thus, if two Test-and-Set instructions 
are executed simultaneously (each on a different CPU), they will be 
executed sequentially in some arbitrary order. 

If the machine supports the Test-and-Set instruction, then we can 
implement mutual exclusion by declaring a Boolean variable lock, initialized 
to false. The structure of process Pi is shown in Figure 6.6. 

The Swap instruction swaps the contents of two words, atomically, and 
is defined as follows: 

procedure Swap (var a, b: boolean); 
var temp: boolean; 
begin 

temp:= a; 
a:= b; 
b := temp; 

end; 

As in the case of the Test-and-Set instruction, the Swap instruction is also 
executed atomically. 

repeat 

I while Test-and-Set(lock) do no-op; I 
critical section 

I lock : = false; j 

remainder section 

until fcilse; 

Figure 6.6 Mutual-exclusion implementation with Test-and-Set. 
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If the machine supports the Swap instruction, then mutual exclusion 
can be provided as follows. A global Boolean variable lock is declared and 
is initialized to false. In addition, each process also has a local Boolean 
variable key. The structure of process Pi is shown in Figure 6.7. 

These algorithms do not satisfy the bounded-waiting requirement. We 
·present an algorithm that uses the Test-and-Set instruction in Figure 6.8. 
This algorithm satisfies all the critical-section requirements. The common 
data structures are 

var waiting: array [O .. n-1] of boolean 
lock: boolean 

These data structures are initialized to false. 
To prove that the mutual-exclusion requirement is met, we note that 

process Pi can enter its critical section only if either waiting[i] = false or key 
= false. Key can become false only if the Test-and-Set is executed. The first 
process to execute the Test-and-Set will find key = fa.lse; all others must 
wait. The variable waiting[i} can become false only if another process leaves 
its critical .section; only one waiting[i] is set to false, maintaining the 
mutual-exclusion requirement. 

To prove the progress requirement, we note that the arguments 
presented for mutual exclusion also apply here, since a process exiting the 
critical section either sets lock to false, or sets waiting[j] to false. Both allow a 
process that is waiting to enter its critical section to proceed. 

repeat 

key:= true; 
repeat 

Swap(lock,key); 
until key = false; 

critical section 

jlock : = false; j 

remainder section 

until false; 

Figure 6. 7 Mutual-exclusion implementation with the Swap instruction. 



var j: 0 .. n-1; 
key: boolean; 

repeat 

waiting[i] : = true; 
key:= true; 
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while waiting[i] and key do key := Test-and-Set(lock); 
waiting[i] : = false; 

critical section 

j := i+1 mod n; 
while (j =I= i) and (not waitingU]) do j : = j+ 1 mod n; 
if j = i then lock : = false 

else waitingU1 : = false; 

remainder section 

until false; 

Figure 6.8 Bounded-waiting mutual exclusion with Test-and-Set. 

To prove bounded waiting, we note that, when a process leaves its 
critical section, it scans the array waiting in the cyclic ordering (i + 1, i + 2, 
... , n - 1, 0, ... , i - 1). It designates the first process in this ordering that 
is in the entry section (waitingU] = true) as the next one to enter the critical 
section. Any process waiting to enter its critical section will thus do so 
within n - 1 turns. Unfortunately for hardware designers, implementing 
atomic test-and-set instructions on multiprocessors is not a trivial task. 
Such implementations are discussed in books on computer architecture. 

6.4 • Semaphores 

The solutions to the critical-section problem presented in Section 6.3· are 
not easy to generalize to more complex problems. To overcome this 
difficulty, we can use a synchronization tool, called a semaphore. A· 
semaphore S is an integer variable that, apart from initialization, is 
accessed only through two standard atomic operations: wait and signal. 
These operations were originally· termed P (for wait; from the Dutch 
proberen, to test) and V (for signal; from verhogen, to increment). The 
classical definitions of wait and signal are 
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wait(5): while 5 < 0 do no-op; 
5 := 5- 1; 

signal(5): 5 := 5 + 1; 

Modifications to the integer value of the semaphore in the wait and 
signal operations must be executed indivisibly. That is, when onES process 
modifies the semaphore value, no other process can simultaneously modify 
that same semaphore value. In addition, in the case of the wait(5), the 
testing of the integer value of 5 (5 < 0), and its possible modification (5 := 
5 - 1), must also be executed without interruption. We shall see how 
these operations can be implemented in Section 6.4.2; first, le{us see how 
semaphores can be used. 

6.4.1 Usage 

We can use semaphores to deal with the n-process critical-section problem. 
The n processes share a semaphore, mutex (standing for mutual exclusion), 
initialized to 1. Each process Pi is organized as shown in Figure 6.9. 

We can also use semaphores to solve various synchronization 
problems. For example, consider two concurrently running processes: P 1 
witha statement 51, and P2 with a statement 52. Suppose thatwe require 
that 52 be executed only after 51 has completed. We can implement this 
scheme readily by letting P1 and P2 share a common semaphore synch, 
initialized to 0, and by inserting the statements 

51; 
signal(synch); 

in process P1, and the statements 

wait(synch); 
52; 

in process P 2. Because synch is initialized to 0, P 2 will execute 52 only after 
P 1 has invoked signal(synch), which is after 51. 

6.4.2 Implementation 

The main disadvantage of the mutual-exclusion solutions of Section 6.2, 
and of the semaphore definition given here, is that they all require busy 
waiting. While a process is in its critical section, any other process that tries 
to enter its critical section must loop continuously in the entry code. This 
continual looping is clearly a problem in a real multiprogramming system, 
where a single CPU is shared among many processes. Busy waiting wastes 
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repeat 

I wait(mutex); j 

critical section 

signal(mutex); 

remainder section 

until false; 

Figure 6.9 Mutual-exclusion implementation with semaphores. 

CPU cycles that some other process might be able to use productively. This 
type of semaphore is also called a· spinlock (because the process "spins" 
while waiting for the lock). Spinlocks are useful in multiprocessor 
systems, as shown in Chapter 20. The advantage of a spinlock is that no 
context switch is required when a process must wait on a lock, and a 
context switch may take considerable time. Thus, when locks are expected 
to be held for short times, spinlocks are useful. 

To overcome the need for busy waiting, we can modify the definition 
of the wait and signal semaphore operations. When a process executes the 
wait operation and finds that the semaphore value is not positive, it must 
wait. However, rather than busy waiting, the process can block itself. The 
block operation places a process into a waiting queue associated with the 
semaphore, and the state of the process is switched to the waiting state. 
Then, control is transferred to the CPU scheduler, which selects another 
process to execute. 

A process that is blocked, waiting on a semaphore S, should be 
restarted when some other process executes a signal operation. The process 
is restarted by a wakeup operation, which changes the process from the 
waiting state to the ready state. The process is then placed in the ready 
queue. (The CPU may or may not be switched from the running process to 
the newly ready process, depending on the CPU-scheduling algorithm.) 

To implement semaphores under this definition, we define a 
semaphore as a record: 

type semaphore = record 
value: integer; 
L: list of process; 

end; 
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Each semaphore has an integer value and a list of proce~ses. When a 
process must wait on a semaphore, it is added to the list of processes. A 
signal operation removes orie process from the list of waiting processes, 
and awakens that process. 

The semaphore operations can now be defined as 

wait(S): S.value := S.value - 1; 
if S. value < .. 0 

signal(S): 

then begin 
add this process to S.L; 
block; 

end; 

S.value := S.value + 1; 
if S.value $ 0 

then begin 
remove a process P from S.L; 
wakeup(P); 

end; 

The block operation suspends the process that invokes it. The wakeup(P) 
operation resumes the. execution of a blocked process P. These two 
operations are provided by the operating system as basic system calls. 

Note that, although under ~he classical defiriition_ of semaphores with 
busy waiting the semaphore valu~ is nev~r negative, this implementation 
may have negati,ve semaphore values . .If the semaphore value is negative, 
its magnitude is the ntimbet of processes waiting on that semaphore. This 
fad is a result of the switching of the order of the decrement and the test 
in the implementation of the wait operation. . . 

The list of waiting processes cari be easily implemented by a link field 
in each process control block (PCB). Each semaphore contains an integer 
value and a pointer to a list of · PCBs. One way to add and remove 
processes ftom the list, which en~ures bounded waiting, wouid be to use a 
first-in, first-out (FIFO) queue, where the semaphore corita:lns both head 
and tail pointers to the queue. lJ:l general, however, the list may use any 

. queueing strategy. Ccirred usage of semaphores does not depend on a 
particular queueing strategy for the semaphore Jists. 

The critical aspect ,of semaphores is that they are executed atomically. 
We must guarantee that no tWo processes can execute wait and signal 
operations on the same semaphore at the same time. This situation is a 
critical-section problem, and _cari be solved in either of two ways. 

In a uniprocessor environment (that is, where only one CPU exists), we 
can simply inhibit interrupts during the time the wait and signal operations 
are executing. This scheme works in a uniprocessor environment because, 
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once interrupts are inhibited, instructions from different processes cannot 
be interleaved. Only the currently running process executes, until 
interrupts are reenabled and the scheduler can regain control. 

In a multiprocessor environment, inhibiting interrupts does not work. 
Instructions from different processes (running on different processors) may 
be interleaved in some arbitrary way. If the hardware does not provide any 
special instructions, we can employ any of the correct software solutions 
for the critical-section problem (Section 6.2), where the critical sections 
consist of the wait and signal procedures. 

It is important to admit that we have not completely eliminated busy 
waiting with this definition of the wait and signal operations. Rather, we 
have removed busy waiting from the entry to the critical sections of 
applications programs. Furthermore, we have limited it to only the critical 
sections of the wait and signal operations, and these sections are short (if 
properly coded, they should be no more than about 10 instructions). Thus, 
the critical section is almost never occupied, and busy waiting occurs rarely, 
and then for only a short time. An entirely different situation exists with 
applications programs whose critical sections may be long (hours) or may 
be almost· always occupied. In this case, busy waiting is extremely 
inefficient. 

6.4.3 Deadlocks and Starvation 
The implementation of a semaphore with a waiting queue .may result in a 
situation where two or more processes are waiting indefinitely for an event 
that can be caused by only one of the waiting processes. The event in 
question is the execution of a signal operation. When such a state is 
reached, these processes are said to be deadlocked. 

To illustrate this, we consider a system consisting of two processes, P0 
and P1, each accessing two semaphores, Sand Q, set to the value 1: 

Po 

wait(S); 
wait(Q); 

signal(S); 
signal(Q); 

pl 

wait(Q); 
wait(S); 

signal(Q); 
signal(S); 

Suppose that P0 executes wait(S), and then P1 executes wait(Q). When P0 
executes wait(Q), it must wait until P1 executes signal(Q). Similarly, when 
P1 executes wait(S), it must wait until P 0 executes signal(S). Since these 
signal operations cannot be executed, . P 0 and P 1 are deadlocked. 
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We say that a set of processes is in a deadlock state when every 
process in the set is waiting for an event that can be caused only by 
another process in the set. The events with which we are mainly 
concerned here are resource acquisition and release-. However, other types 
of events may result in deadlocks, as we shall show in Chapter 7. In that 
·chapter, we shall describe various mechanisms for dealing with the 
deadlock problem. 

Another problem related to deadlocks is indefinite blocking or starvation, 
a s~tuation where processes wait indefinitely within the semaphore. 
Indefinite blocking may occur if we add and remove processes from the list 
associated with a semaphore in LIFO order. 

6.4.4 Binary Semaphores 

The semaphore construct described in the previous sections is commonly 
known as a counting semaphore, since its integer value can range over an 
unrestricted domain. A binary semaphore is a semaphore with an integer 
value that can range only between 0 and 1. A binary semaphore can be 
simpler to implement than a counting semaphore, depending on the 
underlying hardware architecture. We will now show how a counting 
semaphore can be implemented using binary semaphores. . 

Let 5 be a counting semaphore. To implement it in tenns of binary 
semaphores we need the following data structures: 

var 51: binary-semaphore; 
52: binary-semaphore; 
53: binary-semaphore; 
C: integer; 

Initially 51 = 53 = 1, 52 = 0, and the value of integer Cis set to-the initial 
value of the counting semaphore 5. 

The wait operation on the counting semaphore 5 can be implemented 
as follows: 

wait( 53); 
wait( 51); 
c := c- 1; 
if c < 0 
then begin 

signal( 51); 
wait(S2); 

end 
else signal(S1); 
signal(S3); 
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The signal operation. on the counting semaphore S can be impl~mented 
as follows: 

wait( 51); 
c := c + 1; 
if C < 0 then signal(S2); 
signal( 51); 

The 53 semaphore has no effect on signal(S), it merely serializes the 
wait(S) operations. 

6.5 • Classical Problems of Synchronization 

In this section, we present a number of different synchronization problems 
that are important mainly because they are examples for a large class of 
concurrency-control problems. These problems are used for testing nearly 
every newly proposed synchronization scheme. Semaphores are used for 
synchronization in our solutions. 

6.5.1 The Bounded-Buffer Problem 

The bounded-buffer problem was introduced in Section 6.1; it is commonly 
used to illustrate the power of synchronization primitives. We present here 
a general structure of this scheme, without committing ourselves to any 
particular implementation. We assume that the pool consists of n buffers, 
each capable of holding one item. The mutex semaphore provides mutual 
exclusion for accesses to the buffer pool and is initialized to the value 1. 
The empty and full semaphores count the number of empty and full 

. buffers, respectively. (Semaphores with initial values other than 1 are 
sometimes known as counting semaphores.) The semaphore empty is 
initialized to the value n; the semaphore full is initialized to the value 0. 

The code for the producer process is shown in Figure 6.10; the code for 
the consumer process is shown in Figure 6.11. Note the symmetry 
between the producer and the consumer. We can interpret this code as the 
producer producing full buffers for the consumer, or as the consumer 
producing empty buffers for the producer. 

6.5.2 The Readers and Writers Problem 

A data object (such as a file or record) is to be shared among several 
concurrent processes. Some of these processes may want only to read the 
content of the shared object, whereas others may want to update (that is, 
to read and write) the shared object. We distinguish between these two 
types of processes by referring to those processes that are interested in 


