
Apple 1035
U.S. Pat. 9,189,437

United States Patent [19]

Balkanski et al.

||||||l|l||||||||||ll|||||l|l||||||l|||||||||||||||||||||||||lll||||||l|||l
USOO5l96946A

Patent Number: 5,196,946

Date of Patent: Mar. 23, 1993

[11]

[45]

:54

[751

; [731

[21]

[221

[511
[52]

[58]

[561

SYSTEM FOR COMPRESSION AND
DECOMPRESSION OF VIDEO DATA USING
DISCRETE COSINE TRANSFORM AND

CODING TECHNIQUES

Inventors: Alexandre Balkanski, San Francisco;
Steve Purcell, Mountain View; James
Kirkpatrick, San Jose, all of Calif.

C-Cube Microsystems, San Jose,
Calif.

Appl. No.: 494,242

Filed: Mar. 14, 1990

Int. c1.s H04N 1/415

U.S. Cl. 358/433; 358/427;
382/56

Field of Search 353/133, 135, 426, 427,
358/432, 433, 443, 310; 382/56; 364/725, 726,

727, 723.01, 826

Assignee:

References Cited

U.S. PATENT DOCUMENTS

4,704,628 11/1987 Chen et al. 358/135
4,847,677 7/1989 Music et al. 358/135
4,858,026 8/1989 Richards 358/135
4,910,609 3/1990 Nicholas et al. 358/433

Primary Examiner—Leo H. Boudreau

102-1

Assistant Examiner—Barry Stellrecht
Attorney. Agent, or Firm—-Skjerven, Morrill,
'MacPherson, Franklin & Friel

[57] ABSTRACT

A digital video compression system and an apparatus
implementing this system- are disclosed. Specifically,
matrices of pixels in the RGB signal format are con-
verted into YUV representation, including a step of
selectively sampling the chrominance components. The
signals are then subjected to a discrete cosine transform
(DCT). A circuitry implementing the DCT in a pipe-
lined architecture is provided. A quantization step elim-
inates DCT coefficients having amplitude below a set of

preset thresholds. The video signal is further com-
pressed by coding the elements of the quantized matri-
ces in a zig-zag manner. This representation is further
compressed by Huffman codes. Decompression of the
signal is substantially the reverse of compression steps.
The inverse discrete cosine transform (IDCT) may be

implemented by the DCT circuit. Circuits for imple-
menting RGB to YUV conversion, DCT, quantization,
coding and their decompression counterparts are dis-
closed. The circuits may be implemeneted in the form
an integrated circuit chip.

6 Claims, 94 Drawing Sheets

VIDEO BUS
CNTL.

BLOCK
MEMORY

13 UNIT

16

 DATA U0

ADDR

—> VIDEO CLOCK

——’ GND

--~ VCC

ROW/COLUMN

SELECT ,

ROW/COLUMN
SEPERATE

Apple 1035

U.S. Pat. 9,189,437

U.S. Patent Mar. 23, 1993 Sheet 1 of 94 5,196,946

.._1__-....a.__..___.———._..———__—1_ __—-.__———_j__:_..—_——._.

~-_.w_u__..p6."..mmaom0»EV.

oo>T...xoo._oomo_>fl
-8.

:2:2on<55
m»<mm._mm.6m._mm>mOs_m=2.zsS._oo§omSetonzs5._oo;>omS«-8.

..:zomamowns33_.

U.S. Patent Mar. 23, 1993 Sheet 2 of 94 5,196,946

Tmt.
0:

8

mgggxa_mo<uEm:z_.50:“gang
N6:

N....G_u_
<—3mmooom.5mmooomo

..—

 >mo_2m__2
out3P

v_o<.+ommNv.o<n_-z:O:

8.

8.

mtmS.mm~:z<:om-_m<._.m~:z<:o.>.:.>

78.

N.0_n_

649,6

9ocmm>aimI
195

«-8.

oo<>¢<omom:2moimmzmw50>mobqmmzmommmmoo<4..0z>m>mos_ms_mptumwoz>m.._<zmm»xm
u

m8.
:_2m20$.

3m

.73.,£4.
mM

«.8.

now>D>32m0..9.._.0D0:2050»mom
>:>

ENEN
mom

U.S. Patent

Mar. 23, 1993 Sheet 4 of 94 5,196,946f.HetaP3U

ma.G_n_rm...u_“_m.G_n_0...>9.
E.zo:moo<um>Ezo:mn_o<..m:

ju.
Ezonmoo<:m>

_B
E.zonmoo<:>>>

_mom
Ezoumoo<:25

_mom
Ezoumoo<n>>>

_«om_n=ss_<m

Tm.0_u_0.00...6528
new

No

m._.Z0w._.<._...a.
Sm

Ezouzoamm
m

 88

U.S. Patent Mar. 23, 1993 Sheet 5 of 94 5,196,946

2 5
.n 9 — DATA
o (5 £5
8 w "1

ml '1'
>. >

U.

3
2
<
n:

_ §_..___§___§ _-g-,_-g________
<

ADDR_ALlAS|NG_LOGlC *

‘E’
co

3 ‘2
c u.
('0

64

W__..<¢GEmozmnomwoz<mzoEz_n_mo5.51,1mmohmn=2.nEBo4<»zo~_mo:x5_ ~-<¢._o_"_..<¢.o_n_ooooooooM_oooooooox._<¢magmaO...>9.0OOOOOOO5M,..oOoooOoo_.m_25>E5._.on_oooooo.oo_w_8:»:8ooooooo0V,m__a_ooooooo0Usooooooo00x: V....8F.8o_oo(3 .§<m=83mw<s__m_ooooooooM,Hoooooooox.B22.,oooooooo_W._oooooooo_“TIEIIoooooooo_I..oooooooo_339.326.oooooooo.26.m._oooooooo .c39m_ Exa:myExax Ex3..3:P_mo<n_mm:n_s_<m
o .S._

U

U.S. Patent Mar. 23, 1993 Sheet 7 of 94 5,196,946

“.'
<
V

9
m

goooooooo 200000000 8
7 8 E
3500000999,‘ 00000000 8

gooooogooe OOOOOOOO gx m
<

¢ggo¢g¢oo§ oooooomoggV m
b 9

§OOOOOOOOp- 0000000°% :
x 8 DIE
fiooooooooé 00000000P]g
7? |- .— Z

coooooooog goooooooomfi?<’ N E3‘
Aoocooooom ooooooooog
8 0 ‘
x I 8

(mx(Ux—-—$V(flx

TRANSFORM SPACE

64

W_...-m....w_¢Em-mv.o_¢wm....o_¢D_Tue.9".9.m¢:w_¢0»>9.59____________2.___._mm._o>osv_._onv“._ddH._d.oH.._d.oH40.0.»._O..uH._ddH._qo»_am»am.». aamxyam»<._.<oBoM"§dmHaamxadmx.o:
;o¢..>.52.Wi82.II >>OmDII m._.<m$.26¢>_26¢>26¢>_26¢><55:12._mm._o>o:x._o..~mmm:o>o:x._o:mm .

.w._d.uH._d.oH._doH._0dH._dUH._ddH.50.»n_mam»aam»aamxflan»<55Bom_am»am.»admxam»Im»<¢_nmowBmmn»£9.E3S¢z_mH26¢:>_26¢a>26¢:>_26¢:>W?wm._O>O|v.._O|Nmmmu_O>O|¥._OlNmPH__________.._.____.mm._._o>o:v:oJ.S._26._¢<.EoBo:E.
U.

64

w,H_mH«.3...o_¢H5:___._____.________Hdo»do»do»do»do»do»do»H4_aamnaamamama26¢:_mHyam:ado:26¢:26¢:HM_PS226¢:>_W..._ 26¢»:.&_26¢:>_26¢:>26¢»_2. >>OmI>HHmm._o>o:x.._ou~mmm._o>o:x._ou~mH M_do»do»do»do»do»do»do»__m_.¢o..qzmaqozMadaddz_W_modzddzddzddz__I 26¢::I1_t_26¢»>_26¢>H26¢>_26¢>.H__m_mm._o>o..x._on~mmm_._o>o:x._on~m_P_H___._____________Hs__
U

6

M__6_._H_Mum?GE_-Hm,j__._____________j_._dd.:Jddd40.0.:.303.dd:40.0.:40.0.:H_Hdmfi§dmH26¢»26¢»_M_2 26¢»26¢»26¢»aamjm_>>o¢....>_m_nmofi. >>Om2I..a.26¢:>_>>Om..>26¢>_26¢..>_._mm:o>oJ_._oa~mmm._o>oux._ou~m__l..IIIlI||I||||I|u|||l.l|V.n_Mada-MadaMadaaqua.W_Madamqdzmadzm_q.dz__.|__26¢a>_jII 25¢DIIZ_26¢>_26¢>26¢>_26¢>_m_wm._o>oux._o:~.o.mm._o>ouv_._oumm_mm.“________________nS”__
U

5,196,946

<r
Q
Q‘

52'
ll.

426¢»26¢»admx26¢»_m26¢»26¢»§dmHHdmfl“mnmov26¢n>_mnI 26¢2z.._s26¢>_26¢>26¢>_26¢>_mm._0>OIv_._OINmmm.6>ox._omm_M_|..||...I.l_1.,mafia.mafiamafiamafiamafiamafiamafiamafia_3.Jm-.mam.»-26¢...”Wadfinadmnxmam.»26¢Hzanyaamu»_
_

26¢u>.£8.- 26¢:u.._t <26¢>_26¢>26¢>_26¢>_umuu.mw._O>0Iv.._0lNm.mm._o>oux._ou~..,.:
a

P_________._.___.ks._
U

649

%,2~-o¢.w_"_woedz“ma1wow.9".9.0:0...>9.1I__________________mm._o>oSo2.._d.ud._dd.3.._qq2._qq2._aq240.0.340.0.:M_admx26222am»2am»<2252.m2Hum»265265_gdma_,3BWMH»e_26m2mi:W._>>om:>_>>omu>.som:>_.som:><225.2.2._mm2o>ouv_._ou~.... 2mm._o>o.v_._o:mm
_

3_||||l:|.lII|.|||VM,_.._duH._ddH._ddH._duH._.OdHAdd.»._ddHM._29.22»am» .262»262»<22B2M_2am»2am»2am»aam»__somu>>>omu><.,<mfim._z__26¢226m2W.__som:>_>>omu>>>om..>_>>omn>E_wm._O>0lv_._0lNm.mm._o>onx._oumm._.___________._____wm._o>o:x._o:...%._>>o._.._<22Saunas

64

9,_%_J,«.9..0_u__5_____._____._____
.

M26¢»26¢»26¢»mam»_.m26¢»§dmH§dmHEda»_
3

m>>O¢_m>26¢n>_m1 26¢:u: 26¢2uus26¢>_26¢>26¢>_26¢>_mm._o>ouv_._ou~mmm._o>o:x._o..~m”

3

Wv_........_ddH.__ddH._d.oH._d.oH._doH._ddH._dd.H_
2

uaama§dm.:fidmd§dm..4_M26¢:26¢:26¢:26¢:_26¢m>26¢m>_I304.2II 26¢3Im26¢>26¢>26¢>_26¢>u
e

t ommm._o>ouv:on~mm.¢._o>o:x._o:~m_.__________.____1
U

U.S. Patent Mar. 23, 1993 Sheet 14 of 94 5,196,946

EEEE
mm:o>onv:o:$

 H9»H9.»H9»H3»m_:EE_a.som:>_>>om.>_3om:>_>>O..._I>_>>om:>_.som«>__som:>__som:>¢Em_~mm83o.mw._o>o:x._on$E35._z_____.___..______26.:<55Bo.:E.

9.manor.op>9.
B8

.._.._____._..___.mm._o>o..x._o_uqfl_umafiamafiamafiamafiamafiamafiamafia.H9.»H9.»Ha;Ha»Ha».Ha;Ha»H.o.§m=§:<._">>omu>_>>om:>_>>om:>_>>omu>_>>OmI>_>>omu>_3om:>_;omn>.mm~%.a.m.=o._E35%.
__

.mm._o>o.x._o

 m..99..%__1,__5..H«.9..9”.HW.n..._..._.____..__H:0._89._mHazfimam»mam»azfiman»man»azfiHW._H9H9HunHunH3»H9.»H9.»H9.»_H>>om:>_>>om:>_>>omu>_>>omn>_z6m»>_.somu>_.som:>_.somu>H3_mm._o>ouv_._o:3_mHHM_Roe_MHmax96»ma»cam»96»96»canH_HagHw._HH3»Hm...»HunH3.»HunHad»_mH>>omu>_.somu>H26¢?_§om:>_26m..>H.50.";__som..>_3omu>Hm_mm:o>o..x._oJ.m_PH____.____.___..___Hs”__
U

6

4..9..%..1__5,_H
_

_«.9.9"._m__.._..___.____.__Hm_E9._a"azuxmam»dam»dam»mam»azu»azfi"“26¢»:_Box»:_39...»:_>>OmI:_30:1:_>>Om-..D_26m»:.305.H3_mm:o>o:v:o....o_W,__M._88_M_mam»azfiazfiazfimam»azuxcanum“mo<._m_mo<n_m_mo<._m_uo<n_m_moém_mo<n_m_mo<._m_moém“m_mm:o>o..v:oax._Pu____.______.___._u3__
U

5,196,946

«.9.0_n_

Sheet 17 of 94

O
V

>>omu>_>>omn>_>>Om_I>_.som:>_3om:>__som:>_.somu>__som:>mm:o>oux._o:$

Mar 23, 1993

D
In
C:
V .

‘O
<-
o
<-

mo<....m_mo<n_w_mo<n_m_mo<._m_mo<n_m_mo<._m_mo<n_m_mo<n.mmm._o>oux._oa$ U.S. Patent

U.S. Patent Mar. 23, 1993 Sheet 18 of 94 5,196,946

mF<m

..

..<29Bo.
J

>>OmI:>>om..:_>>OmI:tsomus_>>O...._..:_>>OmI:_30ml:tsomnn<..<o.._.Dn_Z_
_.

._d.oH._d.uH48»dd».60».._d.oHdo»
<»<o.69

aam»aam»yam»yam»mam»aam»am»am»
EmNFz<:o_2oE.mEm

>>omn>_>>om:>_>>o..._..>_>>omu>_>>omu>_>>om:>_>>om:>_>>omu><.Eo.5n_z_mm._o>oux._ou$_____.__.___.___.>>O._u_<.EoBomums.

_wm._o>o:x._oJ..mm._o>ouv_._ou...

 U.S. Patent Mar. 23, 1993 Sheet 19 of 94 5,196,946~.m...9“.

a3
3

3
3

3
3

3
3

3
3

3
3

33
3

>>o:a>_>>omu>_>>om:>_>>om:>_>>omu>_>>oma>_>>om:>__somn>mm._o>onx._oJ.oT._ddH40.0.»4.00.»._ddH._ddH_._ddH._ddH>>o..._:>_>>OmI>_>>om:>_>>om:>_>>omn>_>>om..>_>>om..>_>>omu>mm:o>ouv_._o:$______.___..____
3

3

3

3

3

3

3

3

 U.S. Patent Mar. 23, 1993 Sheet 20 of 94 5,196,946<._.<Dn_O._.<._.<opom

FIG. 5A-1

j

—

508a

504b

j

-

a

WM.-85..vi!E..96..220..vi!E.8<o._
a

 1.mm.wmmmm.9._.mM8.mmN:z<:c20¢".

64

9,_%.._1,u... _5E.Sono_Ra.mmiomm..<.._U7o_mm_mm.0x22E1H
oY

W._mL _s_mm<55mo»w.cmm<p<opom

35

n.,H_
W.

LTm

1/r

U.S. Patent

6

Ml.--I..--|-II------II--
6,_.u.

m,.TN»w.m<»<o5m5,_1/5.3no»aM
..8H.6:Manama%5mI<noNu

4

M,_IIIIIII.mH.mohmnflflfifljuEfifi_5m.m_mo»m2-mafia-._-uEEu__§_mo2CCddmj2I349:.I314'5IIIM“I55.. 5ow_B<o._inMIIBii!8<o.=somFig‘I!Unauw.

3

HM_-IinmMwmM:8<o._Ix._mLII!ail~o<o.=so..._mi!ill..039_nfi—nI.vM7M_wwmmM"8<o._I5mvi!ail5<O.=sOmvi!ail...mmH2I4%_.a<SIv:mml!E8<o.=sompl!EltJAIU- ,bCumDITw0mHm.W3mmmmmmIw3_ae..........
U

649

%,iMpoo".0mm:.m_omm..m..MW..fl.w,_M.ADA..TPO0duETanllu3«WATuTu..F
__..5M_ oxazfi..E.m_.n_Hr

,...._

M
S3mAuMtHeLlvaPS”U

U.S. Patent Mar. 23, 1993 Sheet 24 of 94 5,196,946

IIEEEEIEEEEIEEEIEEEE
507c

LOAD 6 REG

503c

IEEEEJIEEEEIEEEEIEIEEI 1
506b :a

LOAD 5 REG
502

ID

LU

¥

°?
m

‘Q

9
u.

Q‘
m

“'3

S2
LL

'7
cu

‘Q

9
LL

505b

IEEEEIIEEEIEEEEIIEEE

LOAD 4 REG

- l§§§§llIII|IIIIIIIIl

. |§§§§IIII|II|lIIII|l
I

E
 IIIIIIIEEEEIIIIIIIIII

llllllléégéllllllllll
E
I

518d

-513::

IFROM1BLKSTU
FIG.5B-1

1 IIIIIIIIIIIIIIIIIIII

IEEIEIEEIEIEEEEIIEIE
IEEEHIIEEIIIEEIIIEEI
IEEEEIHEEIEIEIIHEEE

IIEIEEIIEEEIEEEEIEEEE
E@I|ElElIlEllIEEllIllll

IIEIEHIIBEIEEEEIEEEE

518a

U.S. Patent Mar. 23, 1993 Sheet 25 of 94 5,196,946

I|E~JE‘Jll°3IE‘JE3E~JIEE~JEI-‘3II-!E!~‘1§
507d

LOAD 2 REG ff _
503d

EIEEIEEEEIIEEIEEEI
506d

502d .
IIEIIIIIIIIIIIIIIII

IIIEEEIEEEEIIEEEIEEEE
505d

LOAD 2: REG _‘
501d '

Ilaeaainnnnlaaaainnnn
II .-9 IIIIIIIIIIIIEEEEIIIII ('5

Ilaaaalnnnnlaaaalnnnn =~
IIIIIIIIIIIIEEEEIIIII

3 \ V .
II:~::~::IIIIIIIIIII:-::;:_I_:_IIIIInII
lllIIIIIIIll%%§%lIIlI

3 3 I|i°:FIEI|lllIlllIE‘lEIlIllllI||l
"’ 9 IIIIIIIIIIIIEEEEIIIII
IIEEEEIEEIIEEEEIEEEE

508c 5

LOAD 7 REG
504c :1

U.S. Patent Mar. 23, 1993 Sheet 26 of 94 5,196,946

IEEEEIIIIIIEEEEIIIII
Il||IIIlIlIIIEE‘lI|lIIl| llIIIEI ° °

IIIIIIIIIIIIIIIIIIII

|||||l|%’%§§|lIlII|lI|
Innunnlaaaannunnlaaa:
IIIIIIIIIIIEIIIIIIIIIIIIIIIE

Ellllllééééllllllllll
IIIIIIIIIEEIIII mas

 Iununnnaaaaunnn new

EIIIIIIEEEEII IIII
IIIIIIIIIIIEEIIIIIDIIIIIEEII
IIIIIIIIIIIEEEEIII IIIEEEEIlll

IIIIIIIEEEEIIII I
Ilaaaalaaaalasaauaaaa

2-]

i

CD

 LOAD 3 REG ff

504d 2

U.S. Patent Mar. 23, 1993 Sheet 27 of 94 5,196,946

 LOAD

LOAD 4 REG

#5 aaaanaaaalasaalaaaa

IIlIl%’lIIlllIIlllII'
9 Iaaaalaaaalaaaalaaaa

IIIIEIIIIIIIIIIIIIII =
IEIEEIEEEEISEEEIEEEEI

L°A° 0 Ilififilfifififilfififiilfififii
“°“°”"*E §%IIIIIIIlIIIIIIIII

,: I III!
. .— SEED- IllllliiiélllllIa

. » i _ _ -
5 llllllséaélllll "

illllllllllllll
I
I

 LOAD

mmoane

OD

 I-O U II110

518c

FR0Moum.zEn15§:E~n&! -¢tn

TOPDATll
I.JI.lIAUlZI;Z'P3Ifll6)I (5

IL

OTDAT‘

OPDATA

CNL (ta

CNLU

CNL(

'9

aaaalaaaalaaaa
iaaalaaaalaaaa

Iiaaalaaiinaaaa

mum E IIIIEEEIEEEEIEEII
°°MP'*ESS IBEEEIEEEEIEEEEIEEEE

Ilflliliilfliiliiii
DECOMPRESS CONTROL FOR DCT INPUT

519

s‘

x‘

x‘fit

E; g:
i

I !
3%
= a
: :
9 :

II n
I!
I%
II :
II a
II I

IIIn IIHI

98X

U.S. Patent Mar. 23, 1993 Sheet 23 of 94 5,196,946

Iaaaauaaaanaaaalaaag
llIIlIlIIIllIlIlIll%

iaaaalaaaalaaaalaaaa
‘I

" LOAD 15 REG

LOAD 14
lIIlllIIIIlIIIlIl§I
aaaauaaaauaaaauaaaa
IIIIIIIIIIIIIIIIEII

_I:a:~::~::~:|a:~:e~:.=:Ia'.~:'.~::|:~:asa:~:
‘IIIIIIIIIIIIIIIIEIII cg
Iiiiiiilifiiiliiiiliifii fi=’_
Illlllllllllllilllll
IEEEEIEEEEIEIEEIEEEE

lllllllllllllillllll
Iaaaalaaaalagaalaaaa
llllllllllllilllllll
I:aaaa|aaa:|ga-aauaaaa
IlIIIIIIIIl%IIIIIlII

_ IEEEEIEEIEIEEEEIEEEE
% IIIIIIIIIEIIIIIIIIII
IEEEEIEEEEIEEEEIEEEE
llllllllalllllllllll

U.S. Patent Mar. 23, 1993 Sheet 29 of 94 5,196,946

8° JIIIIIEIEIIIIIIIEIEI

EIIIIIIEEIIIIIIIIEEI
I

AJDP IIIII§§§§IIIIII§%§§
anus aaaalaaaalaaaalaaaa

508d m 1
LOAD 3 REG ,_ 3 3

5°“ i E

IEi“JIi°lI’i‘lE‘Ji“li“JI§i‘lIi‘3I§E‘J§‘JE‘J

507d 5
LOAD 2 REG '1‘ 3

503d *' i 5

Ifilfiilfiiifililiilfiii
1 X

506' an ii §aLOAD 1 Res '_ 3 E
502 I

505d 5

LOAD z REG "
510d " . »

i E

Fflllllllllllliiiillllllll
IIlIlIlllI~3§§EIIIIllIll

8 E;:'1_E IIIIIIEEEEIIIII

":§§§iI!!!!I§§§§I!E!!

514D

FIG.5C-3

 504a,b51Oa,b

2

511a
 LOAD 15

U.S. Patent Mar. 23, 1993 Sheet 30 of 94 5,196,946

 |aaaa|::::|aaaa|::::
lllllliiiiilllllliiii

aIIIIIii‘Jil“JIIIIIIiL“£iL“J3393 9??“Illllamllllllaaa
IIIIIIEEEIIIIIIIEEEE

a IIIIIEEIIIIIIIIQEI
E IIIIIIIIH --' ‘

IIlI°mlllllI??’§E3 may as
Illlulaaaallllilagua

lllliiifillllllisifii

A-90* iii: 5— IIIISEEEIIIIII“ "
IIIIIIEIEIIIIIIIEIEE

IIIIIII Illllllfifilii! --
IIIIII. §§§IIIIII§§E§

FIG.5C-4

SELECTIONOFDCTSTORAGE
 Mill

649,691’5

)mm
MW.M1dm.

an.msiennaa..%_._._m.%93>MN...”0E_mEmuflWwmmm_DD<
&u.M

ox.Eo._8=._

tHe4...aP.3U

U.S. Patent Mar. 23, 1993 Sheet 32 of 94 5,196,946

O-PLANE A A __
16x32_SRAM 9', 3

add[4:0] dout[15:0] I _% EO 3

616 5'" 526 3

clk 509
W N '5'

E-PLANE ° ,3 Ii‘
16x32_SRAM . % -—» 33

add[4:0] dout[1 51)] "5 627§
din[15:0]

 KEY TO

F|G_ 5A_2 FIGURE 6A

DCT MEMORY F955‘

U.S. Patent Mar. 23, 1993 Sheet 33 of 94 5,196,946

1 2
xo(4) xo(5)

e o

3 XO(6) X0(7)
9

XO(2) XO(3)° xo(o) xo(1)

e o e o

46x1(o) x1(1) 5 x1(2) x1(3) x1(4) x1(5)
o e o e o e

8 x2(o) x2(1) 9 x2(2) x2(3) 1° x2(4) x2(5)
e o e o e o

12 x3(o) x3(1) 13 x3(2) x3(3) 14 x3(4) x3(s)
o e o e o e

16 x4(o) x4(1) 17 x4(2) x4(3) 18 x4(4) x4(5)
e o e o 9 e 0

2° x5(o) x5(1) 21xs(2) x5(3) 22 x5(4) x5(5)
o e o e o e

24 X6(O) xe(1) 25 xa(2) xe(3) 2 xs(4).‘xe(s)
e o e o e 0

28 x7(o) x7(1) 29 x7(2) x7(3)
o e o e

DCT MEMORY HORIZONTAL WRITE PATTERN

O
6 7

X1(6) x1(7)

o (D

11 X2(6) X2(7)
8 O

1

X3(6) X3(7)

O

19 X4(6) X4(7)
B O

200
X5(6) X5(7)

O (D

2

xx01
(D

xs(s) xe(7)
e O

3 3
1 X7(6) x7(7)

o

0 X7(4) X7(5)
O 6 (D

FIG. 6B

U.S. Patent Mar. 23, 1993 Sheet 34 of 94 5,196,946

DCT MEMORY VERTICAL WRITE PATTERN

FIG. 6C

5,196,946

9HNmofim"mwfimW£2
HHHI

M. 2.3+m-mm----.%m-.._..maHM.sE:HHHH...H3HmH..3...2,4nmK.oHanM1-..Has
.I=252

mBofiooH34.e.1.1.mmt-AI31H..H..9”.E6:H<5u¢=..,u_u_. .S.0...>9._..<hCE222
U.

.MG<._.m_.

700a

5,196,946

8%
a

4mm.9eon.M_
63

w._um_
;__

3_m.85_r,Hfin'u.85R».5EKR5Q“#2wasvlmsfi_...mH"munNEEm19......z.2.z..m.mmmmmmHP.Hmww.&u.<~..w_.._ax.‘_
U

64

0,,mm.9".
6

9o.F..m>um>>
1

9u-u ...nC-§x...o>§x+§xu..>5Eémumwmfimnmumwmnmcifimoomo>25.mnM.Exn»>§x+§xum>E-mmuoNom-o~uo..._mN+NN.I.Nn_m>...;>uo~Ex.§x...o>§x+Exu~>$-En..~m~--umn_m~+.~uE._.oow>-~.>>uuN§x.§xum>Ex+§xu_>M...00oooooI0.4.ETD!.m.ma:moon2._.i.§x%oo/!oAmvxExH.“aI. ..axo ~e2‘\\.axmmmmanmoom3.msEcmoomm.>I4‘IOO\\I

U.S. Patent Mar 23,1993

§ :7

STAGE 8 D
STAGE 7-»; - 5;

STAGE 6—>E . E

'3‘

:7)’
o
O
N

STAGE 5-»; . . 3

STAGE 4-—>§ I I

STAGE 3-->§ - -

STAGE 2-»; - -

X X

U.S. Patent Mar. 23, 1993 Sheet 38 of 94 5,196,946

 KEYTOFIGURE7c FIG.7’c-1FIG.7c-2 FIG.7c-3FIG.7c-4

U.S. Patent Mar. 23, 1993 Sheet 39 of 94 5,196,946

EIIIIIII
IIIIIII

IIIIIII
IIIIIII

I-IIIIIII
EIIIIIII
IIIIIII
IIIIIII
IIIIIII
IIIIIII

IIIIIII
ICIIIIIII

‘Q I

9 V‘

E: X
K N

___________': -_...- _- __ __EL

FIG.7C-2 724t724b728t728b730729:72%734t734b736t724b

U.S. Patent Mar. 23, 1993 Sheet 40 of 94 5,196,946

is on an 2 5 ~9 53 3 «"3 $9 1':

Z623

" 25212423 FIG.7C-3

U.S. Patent Mar. 23, 1993 I Sheet 41 of 94 5,196,946

' ;z

' an

I

r»

I IIIEBBIII
' N

(L

I

r~

, n.

Ix

_ H

| 3" R} fl KQ 1-
; ‘ 1 1: I T T11 ¢: 11 1 T:

FIG.7C-4

U.S. Patent Mar. 23, 1993 Sheet 42 of 94 5,196,946

 illllllilifiilll

IIIIIIIIIEEEEIIII
EIIIIIIIIIEHEEIIII

GWMUX IIIIIIIIIIIIIIIII
Illlliiiillllllll

IIIIHHHEIIIIIIIII
Illliiifilllllllll

SCALE1' Illlfilfillllllllll
IIIIEIIIIIIIIIIII
llllfiilillllllllll

IIIIIIIIIIIIIIIII
' GIEEEEIIIIIIIIIIII

IEEEEIIIIIIIIIIII
SCALEE ‘ .‘
SCALE1 ‘ ‘

E
8

721t D

KEYTOFIGURE7 FIG.7D-1FIG.7D-2FIG.7D-3

709

BOTT2ADDE
FIG.7D-1

704 ADDEHCOEF

IEIEEIIIIIIIIIIII
IIIEIIIIIIIIIIIII

E lfiafifillllllllllll
IEEIEIIIIIIIIIIII
IEEEIIIIIIIIIIIII

jlllllllllllllllll
Ifiifiiifiififiiifiiifil
Glliiiiiiiiliiiiil
IEIHHEIEEBEEEEEEI

702t TOP1ADD

U.S. Patent Mar. 23, 1993 Sheet 43 of 94 5,196,946

IIIIIIIIIIIIIIIEI
SCALEZ ‘ ‘ ‘
SCALE1 “ " “

II
8

733b

4ADDER
IIIIIIIIIIIIHIIII
IIIIIIIIIIIIEEII

Illlllllllllliill
@|IIIIIIII==.:a=|III

o IIIIIIIIIIEEEIIII

SCALE1 ‘ ‘ ‘ ‘°‘ IIIIIIIIIEEEEIIII
IIIIIIIIIIEEEIIII
IIIIIIIIIIEEEIIII

°‘ Illllllllfiéfifillll

IIIIIIIIIHEEEIIII
llllllllliafiillll

m EIIIIIIIIIEEIEIIII
2 IIIIIIIIIEEEEIIII

EIIIIIIIIIEEEEIIII
EIIIIIIIIIEEEEIIII_I

§ IIIIIIIIIEEEIIII
Ellllllllliafifillll

fl EIIIIIIIIIEEEEIIII
§ 2 IIIIIIIIIEEEEIIII
N H

SEI-2 I _

732

723t723b725731t TOP2ADDEBOTT3ADDEOEF2 FIG.7D-2

721b

722b

U.S. Patent Mar. 23, 1993 Sheet 44 of 94 5,196,946

9- %
5 o

o ,

Lu E.’ A AA
¢“%3 "m3! 353

; Ei 5:: §:E§§_.::
. 8 N cum

&&1-1-

m * *

mg; 50 29:2
1:" |.I.|< V‘ ID1-
Eml-U _, Q -1 -:1...I

89593“ 3:‘
mam D §§§
m - c>¢Da
U-'9 “-3 ['5 com
D3 m < moxx M
203 U’ mm NQCD G.

1-5 EEE9: 2 a-an N
F03 8‘ ~%% 6'

SELQ Sv-Q--E E

Sfl1&Q’“Q

SELZ &&&&-

IEEEHHHEEEEEEEEI

SCALE1IIIIIIIIIIIIIEEEE
,: IIIIIIIIIIIIIEHHE
8 IIIIIIIIIIIIIEEEI

" IIIIIIIIIIIIEEEE
IIIIIIIIIIIIIEEII
IIIIIIIIIIIIIIIHH

IIIIIIIIIIIIIIHII

735-
SADDER

 TOP3ADDE

mu.0_..._m~.mNuon_Ex.Exuo>§x+§xn§n~-m~umn_~>>-2sum~§x..~.xu~>§x+§xum>..~.~NuE§>.tsu-Ex.§xum>Ex+€xu~>m~-.NuE._.on__§>-2snmN$x.§xnm>§x+§xu.>

U.S. Patent Mar. 23, 1993 Sheet 45 of 94 5,196,946

ax..¢3.moom..ax.2.
.§x

STAGE 7->5

VSTAGE 6——>E

STAGE 5-»;

STAGE 4->§

STAGE 3'-‘>" '

STAGE 2->;

U.S. Patent Mar. 23, 1993 Sheet 45 of 94 5,196,946

715t-720t (‘I
1-

FIG.7F-1
IIIIEEEE

IIIEEEE

III
EIII
III

.9:
rx

3-’T‘
rs

.9
N?
rx

Ki?
IN

.0
an
o
rx

35o
rx

:3
r~

5rs
.9
to
o
N
F
to
:3
vs

.1:?
o
rx

O‘
?
o
Ix

KEYTOFIGURE7F "91:.
vs

9.u.

U.S. Patent Mar. 23, 1993 Sheet 47 of 94 5,196,946

3 ' :

IIIIIII

IIIIIII
IIIIIII
-IIIII-I
IIIIIII
EIIIIIII

I

2 I- 3

IIIIIII
-IIIIIII
IIIIIII
EIIIIIII
IIIIIII
-IIIII-I
IIIIIII
C9=‘ II-I-II
~ :
" 13.:

734t734b736t736b

FIG.7F-2 715b-719b724:7241;728t728b729t7291:730

U.S. Patent Mar. 23, 1993 Sheet 48 of 94 5,196,946

“EEEIIIIIII
3IIIIIIIIII

1"

~IIIIIIIIII
N“’ IIIIIIIIII

IF N C‘) V‘ In (D N1- 1- 1- 1- 1- 1- 1-:r~¢na>s°-
I

Z3Z7

FIG.7F-3

U.S. Patent Mar. 23, 1993 Sheet 49 of 94 5,196,946

I as as as asID ID V‘ N
I at uur Ne up

X X X| X

I

g N

E

Q.
I

N

N
1—

_ N

‘'° F3 F5I Q’

. v:,- E ..
L_N_ __ _.N _- _- .. __.. _ __ ._ .. _

FIG.7F-4

U.S. Patent Mar. 23, 1993 Sheet 50 of 94 5,196,946

lllllliiillllllll

IIIIEEEIIIIIIIIII
IIIIIIIEIIIIIIIIII

SCALE1 ‘ “' Illlffififfillllllllll
Illlfiiillllllllll
IIIIIIEIIIIIIIIII

IIIIEEEIIIIIIIIII
" filliiiiillllllllllll

IEEEEIIIIIIIIIIII

I§§E%E§IIIII||IIIII
.: IEIEIIIIIIIIIIIII
° —I::=:|I||||IIII|I

l§%EE:3|IIIIlIlIlII
Iifififillllllllllll
IIIIIIIIIIIIIIIII

%|aaaaa.°:a:-::-:a:~:aa:~::~;1|

liiiiiififiififififiil

_709

BOTT2ADDE

704 1ADDERCOEF
§3'U

FIG.7G-1

toO9-’rnQ

702
TOP1ADDERB

U.S. Patent Mar. 23, 1993 Sheet 51 of 94 5,196,946

GAIEGMUX

EHDALE1 ° °Illllllllllllfill
,: IIIIIIIIIIIIEIEII
2 IIIIIIIIIIIIIIIII

 IIIIIIIIIIIIEIEII
@IIIII|III=:~=.«=II|I

8 IIIIIIIIIEEEEIIII

3 SCALE1 9 - - 9"5 Illllllllfifififillll
5 IIIIIIIIIEEEEIIII
IIIIIIIIIEIEIIIII

°‘ ll|IIlIlI%§E’.:=3lllI
IIIIIIIIIEIEEIIII
IIIIIIIIIEEEIIII—-j-—.——.ju-T-———————:————-.—:-:—-—jj.——:j—-—-———j

_l Elllllllllaaiallll
w H

2 lllllllllfiaiillll

IIIIIIIIIEEEEIIII
Elllllllllaaiallll
IIIIIIIIIEIEEIIII

I!

Einnllllllaaaaullu

..l

‘g III:I HIIEEIIEI H

732733b 4ADDER

725731i‘

723t723b TOP2ADDEBOTT FIG.7G-2

721b

722b

U.S. Patent Mar. 23, 1993 Sheet 52 of 94 5,196,946

a.

2 %
O

3 8 ~
0 Q5 5g '5' A AA

.25 E 8:: 1‘; 3g
:'?:".0- Ito. " 8
L112 o oo
00 N cum ‘"5 3
0° 88

CCNSELO Q“&" COZSELQ Qs-Q-—

E §§§

I-QQ Q an cu
E)‘; '_ ‘go :¢§§
=-— W‘ 2 2;-
wnfl d D ‘

O0 QQF
°*5 3 222
‘u’:"‘."’ 8 53°
Lufi < I.l.I gm
09: U) I0 X ('5
910% <2 Em $2: '

p—< ago: 0 G

(5
SELQ Qv-&-Q __

I.l.

Ifiliifiififiifiifififil

SCALEQ -1 x1 S
SCALE1 “- “- “A

IIIIIIIIIIIIIEEEE
IIIIIIIIIIIIIIEIH

scALr-:ra ,- ,- ,o ;.e
SCA|.E1 ~‘ ~‘ ~‘ ~‘

735b BOT|'5ADDER
IIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIEEE

Tlllllllllllliifiil

IIIIIIIIIIIIEIEII

TOP3ADDER

U.S. Patent Mar. 23, 1993 ' Sheet 53 of 94 5,196,946

LOAD1>]I'Z—CI‘j—

5 \ / 3
8 $5; 3
LOADO

5

8

E 5: E !
Q Q Q '

/ \ |

BANK% BANKO :
% !I—II I I—I -

BANKO EEIIJII EIIFEEEI I
5'5’ II-I ’ I-II 8 1

“-1:--I$—nI 5 |
"" .9 I

§ II-III é i
LOAD2D}.-n-_— .

.0 3 no 1§ IIII ‘S '
I

!
I

!
I

16

805b

KEYTOFIGURE8A FIG8A-1

U.S. Patent Mar. 23, 1993 Sheet 54 of 94 5,196,946

FIG.8A-2 TOQUANTIZER108
91-

.9
In

33

£
6

.0
0')

B

LOAD9 >}IiZT—I‘Zj

\ / 3
N -

fé co

m LOAD8
2-3 E ‘J E
E :6 °

TOBLOCK_STORAGE103 IEVEN0-0I2IIIIIIIIIIII IIIIII

US. Patent Mar. 23, 1993 Sheet 55 of 94 5,196,946

§ TODCTROW
5 co_ STORAGE 105 4,
8 3 §

go, 59 S9

F u 7- 1’ . 1-m
% '6

I-I‘g I-I

I
I

I
I

I
I

I
I

| LOAD7To vjnjln LOAD7BOT
I
I

I
I

I
I

I
I
I

I
I
I

q- .9

8 3 3
Q Q

LOADBTO '>II—:4 >II_‘< LOADSBOT

§ \ / 2%
co § co _

LOADSTOP El‘.-$4 LOADSBOT

§ V §
® 8 w

l__OAD4TOP5-‘ __4LOAD4BOT
= .2

O
Q8 801

ROW/COLUMNSEPAHATOR107

nc'r106

733::

FIG.8A-3

106-1->107 I

U.S. Patent Mar. 23, 1993 Sheet 56 of 94 5,196,946

'EIiIiIifiifilIiIl§fiilAIlllllafifiiillllllfifiiil
!

llI||%%%%lI|ll1%%%%|
I- IIIIIIIEEEEIIIIIIEEEEI

||I?\é||I\|l|i1%I||l
I|E§§§E\‘;~§§E==3:‘~§iE¢=3E§EE|E=3E§E§E§|

Illiléllllllliléllll
.1. ¢eao~ aawoew‘°""“"’°* I|E§E§E§l§E‘3E‘i‘;‘3lEEE“3E°3l‘;‘3§EfiE‘3|

LOAD5 REG 3" E :1 !
\\\\ \\ \ \\L°"°‘”°‘

Iiéllllllliéllllll
IIE%%%lE§§E|E%%E|EEEE\
lJE%%%iEE§§|§%%§lEEEE|
jlllllltlllllllllllllll
jllllllilllllllllllllll
Iliiiliiiiiliiiiliiiil
IIEEWEHEIHHEEIEEEEI

DCTMETOPMU
809

0

"P
m
an

'2
u.

°.'
m
an

92
u.

an
an

<2‘
u.

.9
>-
Lu
x

FIG8B1 FIG8B4

804

FIG.8B-1 803

802

 738t738b801

U.S. Patent Mar. 23, 1993 Sheet 57 of 94 5,196,946

-7-55571 I” “ “|“ “‘E‘§“ “i“JL“J|H"‘H‘i|‘_-_-_" H H I
m

‘t LOAD11REG'_
E
Iliiiiiifii EEEEIWEES

m 1

T‘

Q

IIEEEEIIEEEEIEEEEIWEEHI
Q

9 LOAD9 RE I_
Q

I|EiiiiEJlEiEiE‘1Ei|EiE‘1E}Ei|il§‘W|%
cu

,. LOAD8 REG
,_ I-
N

IIEEEEIEEEIIEEEE WW
an

O I-
(D

IIEJWEIIEEEE EEEEIEEEI %

ca %
N LOAD2 RE 3I-

3 E
Ilfifiiifi EEEEIEEJEEI

m ..

O >
G

IIEWEIEEEE EEEEIEEEEI

'0 I--

3 E

@IlIIII fiifiillllllfiifiil
5 \‘ v-1- \SEL1 ‘ I9"-

COMPRESSCONTROLFORSEPAHATOFIF|G_83.2

U.S. Patent Mar. 23, 1993 Sheet 58 of 94 5,196,946

‘T’
m
G

‘-2
ll.

(3 SEL1

£2 sew
In sen

5 3 saw
3 no seu

5 5%%.f? IlIIII|IIII|IIII @595!
° 55”“ IlIIII|IIIIlE§5§E|!!!!|
03 SEL1 '__E__ N

co co _.

II!I_I_I!II!I_§§§ii!

U.S. Patent Mar. 23, 1993 Sheet 59 of 94 5,196,946

FIG.8B-4

U.S. Patent Mar. 23, 1993 Sheet 60 of 94 5,196,946

FIG.8B-5

U.S. Patent Mar. 23, 1993 Sheet 61 of 94 5,196,946

FIG.8B-6

b‘, s‘.° ¢

\‘

U.S. Patent Mar. 23, 1993 Sheet 62 of 94 5,196,946

 Illlllfiifiililififiil
Iillllifiiiillllllfifilil

lI||It%%%II|l!%%%%|l|I|lli%%%E|IlI||%%§%l
:.;

[g I

I
I

x \\\‘\‘\‘ \\¢.\I|E§EEl§E=3E‘3fi EEEEIEEEEI

IIIIIEIIIIIIIIIEIIII

9|] :
LOAD5 REG I

Iléilllllllléilllllll
IlE§§§|§§E§i§§E%lEEEE|

..I$E§%%|§EE§|%E%§1EE§El
jlllllflllllllllllllll
jlillllllllllllllilllll
IEEEIEIEEEEIEEEEIEEEEI
IIEIEWEEEIHEEEIEEEEI

METOPMU
 809

TODCT
804

r-

803

FIG.8C-1 DECOMPFIESSCONTROLFOFISEPAHATOR 302

KEYTOFIGURE8C FIG.8C-1FIG.8C-2FIG.BC-3 FIG.8C-4FIG.8C-5FIG.8C-6

U.S. Patent Mar. 23, 1993 Sheet 63 of 94 5,196,946

LOAD11 | || ||1' I I I I

l|||llI|||1||||l|||||
IIIIIIIIIIIIIIIIIIIIII

Il||||\||||l||lIl|||||i
IIIIIIIIIIIIIIIIIIIIII

||||||%l|||||||I\|||||
IlIIII|IIIIlIIII|IIII|

. |4I|||l||||l||||fi|I|||
IIEEEEVEEEEIEEEEIEEEEI

IIIIIIIIIIIIEIIIIIIIIJ
IIEEEEIEEEEIEEEEIEEEI

IIIIIIEIIIEIIIIIIIIIEI
§ IlEE‘JEiEi|EiiE‘?‘.'i~ilE1"r‘2E‘i'E".-|E1EE1|*

Illlllillélilllllllél
I|E§EE1IEEE‘i|EEEEilIEEI3

IIIIIIIEIIIIIIIIIEIII
%I|IIII§fiiifi|IIIIlEiIfi\%

______ 8 -353 l _ r‘°\ _ |Ea'E|9

8C2
808

FIG

807

1
I

805

U.S. Patent Mar. 23, 1993 Sheet 64 of 94 5,196,946

%1|I|In|I|I\asa:IIII|a
Lu \‘

_. ii’

“3 SEL1III|I|||II1|lI||IIIIl
IIIIIIIIIIIIIIIIIIIIII

SE seua
In SEL1

Illllllllllllllllllllfi
Il|!I|I|l|l!ll!I!l

FIG.8C-3 DECOMPTOBKSTOR
817

U.S. Patent Mar. 23, 1993 Sheet 65 of 94 5,196,946

FIG.8C-4

IIIIIII
IIIIIII
IIIIIII

«9999999
99999999

U.S. Patent Mar. 23, 1993 Sheet 66 of 94 5,196,946

FIG.8C-5

U.S. Patent Mar. 23, 1993 Sheet 67 of 94 5,196,946

FIG.BC-6

U.S. Patent Mar. 23, 1993 Sheet 68 of 94 5,196,946

s I

3 % :1: BARREL
3 ..' '7 ”’ SHIFTER

'9: § " w 9
5. " rs 8 3’

’< a
E

‘.3.

'32

,. 5‘

8|

é

3 XIII! ‘°°‘6‘°'at

gu HOLD HOLD
3; ADDRESS
3 GENERATOR

I .

E PRESET
P_ADD[7:0]

§ REG-CONF 3

FIG.9-1

U.S. Patent Mar. 23, 1993 Sheet 69 of 94 5,196,946

omcomppm]

S

NuDAImn&m

KEYTOFIGURE9

115 _

NURBAR

NUDATA[15:0]

°.
Q
A
9
N1-

V.c

AoKv._.DONNO—..mU_u—
n8.

52%ms.

64o,,69J,5

 82on__2ooz_a
.509.500coopmx8=<mm25mx8seem25n

4

m52E289.28Wmoo<mn_o<oomoz_oM82Ii%as.329SF.n|||l.I....|mnmm»z:oomoo<—<ammFz:oomn_o<n...N2:mommmw<mo»w<_owmm_o<mo»m..Om._.ZOo0z>m<._.<n_ WII3.._.._<_._M82Has
gl

m<mm
mmaoomauzooa.<m.s

0..Emma

<uomm..zoF<m:u_.._zoo22«N2«N2
AtmvAouvwv

22.R2AOKVDEZOO. mon<...Eo<
m:wmmuzo:<m:.o_n_zoo

U.S. Patent

U.S. Patent Mar. 23, 1993 Sheet 71 of 94 5,196,946

Ou=n__20m..._mo:

_.w..b_u._

3:._Om._.ZO0In=..NZ['10 OHSI.EzouzamNI OHBZ._oEzoo..n_N92:_

.0<N0_NOh

w<~w_~20E
8:Ezo..m:<.5.

649.691.,5

m>o<onA9_.vmoo<o<mm

M.m.91.

amom.
_E.

3m

3,A9..=vSo<»<o
2

amom.M.zcmmaom

U.S. Patent

<N_..0_u_
mmmEao<

Sm. TL._=omoo<

.o5:

EuF.
ozm._E_:m .ozm._z:m.So<»<nEmoou._.m<n_ODmom_.mmo._.m.:.zomz=._o<_zm._.<._.mmomF

Sm.

m.5QO=EMQOU
Sm.

mm9.m<._.<oz_
AD”——v<»<o2<mm

ozm._uoooBu...v_o<._o..xo<o<mm
So

>.rn_2w40u=n._.n.:o_._mmooopmmwm

U.S. Patent Mar. 23, 1993 Sheet 73 of 94 5,196,946

NOT TO/FROM

USED NUBUS INTERFACE UNIT

’ ‘ 1405

Q I

E 2/\2 '
33 g L; L; DECODER_ . I
n: 1: D a HOLD ‘ 1

.- 1251 1252 l
I

INPUT HOLD AC-LEVEL '
ORDER

CONTROL CONTROL CONTROL I

-II.._'—-- '

DECODER

, MAIN BLOCK
DATA .

COUNTER; Cofi%§O
1.BLOCK 1. ______ .. -

ADDRESS
I

GENERATOR 2_Dc/Ac '
3.v/u/v I

E =
TABLEADDR cone 3

““""_‘To1=1='rcu ‘*"1=noM
CONTROL

REGISTERS

FIG. 1 2B

U.S. Patent Mar. 23, 1993 Sheet 74 of 94 5,196,946

CLK RESET;

1253

AC LEVEL

REGISTER

I CONTROL

1256

DC LEVEL

GENERATOR
a. REGISTER

E1 D ocPR I5IcTIoN)

12

1258

TABLE

DATA I F|FO_DATA
BUFFER WRITE

H CONTROL

1259

:I=II=oDATA FIFODATA DIR PUSH I:'~:L';Fs?I
IN OUT CONT_ ENABLE

/7 To DATA_BUS 533:: 3 5 0%
“=5-‘I'—‘ II I: 0:25
“'22! "- ”’ fie:

(Dc) (3 n.
ULIJ F Z

E 3

FIG. 12B-2 5

U.S. Patent Mar. 23, 1993 Sheet 75 of 94 5,196,946

FIG. 13A-1

DIR B

com - ' E
* FFCTL

LK FRD
T

PWRREQLO 5 Ir: PWRREQLO spec
POPL D I. POPLO SCODER

CRDREQLO I.CRDREQLO WELD
UPRDREQLO D I. UPRDREQLO oE|_o

PUSHLO ll PUSHLO CRDACLKO

“F¥S£R:<---- | ‘:

m E'.-2E'-'..-.-'.':E!l

—

CJRLO CIRLO I

PS<13:0> |

1303 i
IIIIIIII .

PS<13:0> !
TESTCOD , .
TESTPEC

DIR FFFLjGS I: I
KEY TO I: j :.' ‘

FIGURE 13A g 3
< I“ O I
('5 I
"ECO '

G IE 1309 D
n. :3 3 D 3 ffmd '
2 0- '-'- U- “- 000;u: 0 I 3 << I

0.0

25

U.S. Patent Mar.23, 1993 Sheet 76 of 94 5,196,946

WRPC<13:0>

PS<1 3:O>

pm FFRWCTR
ENABLE

NS<13:0>

VDPC<13:0>

PS<13:O>

DIR FFRWCTR
ENABLE

NS<13:0>

 1 303

CCADDR<13:O> CDADDFl<11:0>

I

! 1304 g
I ‘ D<13:0>

CLK
CLKLO REGI14
I Q10<13:0> Q<13:0>

CLK D<13:0>
CLKLO REGI14
Q10<13:0> Q<13:0>

-—-I

I-——— ——I

| |
I C’) on <-

' V V V '

| I: c: n:
3 8 3I I
<

I I: E E I
l I E u- o I
I LL IL 0
I

FFWRADDR FFRDADDR CADDR DADDR NUADDR NUADDR
<13:O> <13:0> <13:O> <‘|1:0> <‘|420> <9:1>

CONT

SDEC FFTADDR

SCODER

FFRD

FFTADDR<13:0> FFWR

: 1310

I I
I E 3

i :3 §_5 FIG. 13A-2‘‘ v
E
LL

U.S. Patent Mar. 23, 1993 Sheet 77 of 94 5,196,946

i as

i er“. 5.Q‘ A

I Q ~;; FIG. 13A-3 5 3
' ' 2';

I A 1313 '
2

| 1303 V ‘
I — ADDR|N<14:10> ~ Aopn ADDR DATA

: ADDROUT<14210> WBAR CONFDECODE
RBAR

HDFF TESTCOD TESTDEC|?_. _j__
: 1316

I:__

,__.._i‘:'* __L'

RDFF NUD<13:0>
CONT TH12X2

FFDO FFDI

 <11:O> ’<11:O>

1317 I I 1318
0A 2A
<9. [.9
1-: <:

E v E v
|.I-. LL '
|.L

6

M,gown.8.2:6,TlvT|v_.o.,.mm9.5ammficfim£8.

\\v_

TuimmuTIvT|u||I||IL§,.2\\IIUIIIIIIIlj
4\’\uI\I)MmmmmmmM

n

mu.mm.M.W.m.H0mmYYc-..u...LB1.mMmo..flo..fim.fim..m..w..mfimwmwmmommwmom3.moT.Il£m2\lv_«.82mmm..mTIvT|I|$m2|||:v_1.F.«mm«mm?n...m_.III8m2I|v_$1.... T11.......mH..........................-H.....n...._......----.Mm.............--Nm,HmC)55Om"SmnvmnlAKmnfi\W7HM...m.mY(CD.D.HmM%.m.a.uuu.nu:u.uuu....0..vmu0n..u.0uuuuuuuuuuuuuuuouum.aMm.r0..........30-.fi..fi.........................--PAmmwm..................Lmm..................-.mm..,._mm3.R%a01
S.S

U

643,/091,5Mar. 23, 1993 Sheet 79 of 94tHmaP.QMnu

T3..0_n_ .

..A....:vz_mmooo

"53.m.Ezoo._.__x
I._AuivmoofizooEmmmm..3Io._o_._mmooomoaogozmmooomoommmmaouI.acmmmmnoo

_

23“.x._o_>I.2.Emma._oE.zoo:z1Agave.
o_wo.

_<Exo<mo. z_xo<
Ezoo

2Eo<moA2vz_a<.50xo<é~m~vz_o<E-
IAc”5vz_o<

83

64

9:llanllunllnullulnullnnllutlluuluulunulluuuuI%,_n1..5..n.II5..auIllfl«.30.".mmIllulDD.4W2mung".0»>9.W__9. .M23... I.|.wSoxmmooo._ _a5352.a-_
e

h$”m_vzEmaoosEmozmzII_Aoumwv<._.<ouzOI.Am.v<p<Ezoov.._oO._.IImA0”_.vmmDOomn_O.rIam.vmmooomoo._.Aoumv._.zDvn.u.%0nfi__”__II1no”$...v._.:oo.nno.5vSoo<x._o:z"3.:.5.mE..3macIi_2.33IImA95vz_o<I_mo:-1

E200A

mmoxo<s:._“ll.
mEzoo..
C

Pmoo<S.5oxo<
U

64

.9,EM“-MEMF3..9“.«.3dz5,83Emzwv>Es%

.3u_I._.=._..._Quiz4:2...v._._P_:cmzzu9._.=._u_mOU._._:u.mOW34;M45".u._.5.._18._m_.._u8._m_.._M_zEm>v_zEm>x._o:z%.Umm>:..mm>zx._o_>E<.5_>._.E<.5_>m..:Em:z3 hzooA._.zO0m<m>>m,Em2Fzoo._.__v_m<mm3..«WanIMoévA.u.:vmwS.._AoE:vmoo<u_zooEmmmmA.a.v<»<9_zoo

4|-ne

t_
a

PA:$vmoo<:z.

5I-i...-....--I-I--I-i.--....--l--....-i.--
U

5,196,946

é

\/Ex85E<3.9“.mum.EEm...:.m.5u.

_ 898....
ax

M,xx.R93223.~..2.o.o.e.~.ou_Ex'1.MasEn.asw\/ExEE3__Ea\/ExE

__Rm.:22
8xBm\/ExNEH".E

1..

n...__x am.23u..m....ou_.2Eam.am.E.8.MI.wax23£2:m$mT_:Sun.EE>;gm.EH./_,
8.:89

U.S. Patent

E
X

(D

6M,

69_|...u|Ia..l|..:|l:n...l.i|.i:ul.iuII...nl|-ulunllulluul.
9_19j

5

>

1_
M_.m_.m_a_%.

n

3__+antum..G...._
w

1.

3,_S2
2.....

M_

_vmm..9".m-m..:.o_u_t__+..uEBB2...:or.m_mm_mm:w_u_m..82o._.>mx
P

3_U_

6499691,5M

msax

M_+wbaoouu+an
Ex

maux
.,,_,

MExtEx
Hma

PSun
S”U

64

9,_6_
9

1,_
5

"_+§....8Nu-N3.2.5.”.
__N..

M_

.m_:2
M_%.

_Tau
.

1«cm.
W

9_3_
m.

Mj_+$500mum+vu. %
.

Lln

m_Dan_

SH_n--...--...--..--...--...--..--I--..--...--.ni...
U

 U.S. Patent Mar. 23, 1993 Sheet 86 of 94 5,196,946van.6."._
~+Qemmoonm-an

.5

ENAEwfio1dawn§::.auWEN_
H+Qemmouun+an

ENEN

_+wbaoonn-an

Ex

64

9;uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu--II
6fl

9

1.H
5

3S?.....§x.Ex.E..M....Ex.2....8?.m._nooaoswom=65_E”HE”QHmm”32an_$7+5..nE“M_5..+ExuEsM,_W3?+3..nEau1ABA+8?HHS.»m.om._..9".M_ 59Egg_om.manor. _9.>9.
M_

m_/73.
PHS”_

U

Mar. 23, 1993 Sheet 88 of 94 5,196,946f.Hm3PS”U

8:.uE.E_.-§aoo::.~-8:.u8:H+vxemoonm-nN

SE-n5..S..-.1.EuEa-EuuE_.Eu-S?u8:.

8:-uE_
E_.-§a8E_.~+8:.H8:H+vbaoonn+~n

SE.n5:Eu-8?nSE

S?uEuasugoEa+EauEuEa+S?u8?

SEuE»Eu+§ou8.»

Sm._«.9:.9".

_+NN_Sm.w

64

9,_
6

9.J,_5_

m_ad.m"§a.nEn“E..-G: ..=ats_EéuEna.mS.nEn_ifE?as.am...-Exu5..m_“Ex-E..u:3.....,uS.-5:nas
M_

a

P

QM..................III.U_................--...

U.S. Patent Mar. 23, 1993 Sheet 90 of 94 5,196,946

«.0»_..G_u_

8.?uEa2:-§.m.§:E-S:u8?a+wxflmmooum..~n

8:-n.9A5.nF:5..-Eaoofinn-E»n.9En-Eaoofifi..83HSt

8?.uE:2:-398:5+8:u8?a+wxammooun+~n

 ~+vbaoonnmuwu

B.

SE..1.38EH0-§a8E...m-8.0uSHE~+wxemooun-nn

 A8?nEu“So.uE...E:-Eaoofiaa+:3uEu5..-§.8o§£+83H8.0

8:-H2:Eu-§.§Eu~+S?n8:.—+unhwOONN+NN

_+§=.a.oo~sN+eu.9.:

U.S. Patent Mar. 23, 1993 Sheet 91 of 94 5,196,946

._m:moomEmN‘. 2.2.9".Sxefimz

Eamoouxm>uesEx-§xu9ix+5xu¢>_¢~H_~m...._m>.m>>umNExmixmiMmWx+%uWx.u.m>_.Mm+wwum.n__Bom>-EnRQM.Awvm»%H.._..K»_ ».N+—NCCAtx
on.

.4.

OO-O0.’!max

_ emmoon8....
_

an
_§woo~comm

CC
_SE

CC.._cox.N:5o.>_q444s.ll."gmvmamamm99993.._._._3.._.—._

6M

6,«.8.6.".«N+«N2_9"1., SE3$3.."5MfifimWEE”._._
Exatémoom-Es.

M.mw.amS3mp,uM4|.nGLl3Ps”U

6

Ms_tum..0_u_Ex-Exu9Ex+ExuS,%_Mfi,,fiWMmwéwfi»mfifi»-u --mx-mnufl1“W-mwumm.._.on__as-esuanEx-8.xum>ix+as.u_>an..NuE--A.4§0O-O6.x8...MHM4{9. m0’>0m"Ecwoomm ,%$.00.«NE—I3Ecmoomo M_-_“Vim”M_aw’o_C.PMt_am_m._mP.9qnflu
S”U

,4.“

InNu"M,Nmm.atwwmnmm, .~-m£5mm.mmawmmu-Pu_.29.>mxAVO-OOm.XA‘!2n’mEx000MN>mmanEx0-00ExmmKIM..a’>«EMfixIOO2.¢>mm-00MACX.1NEm44mma.s %a8%BLP3Lmv.9%&:43
U

5,196,946
1

SYSTEM FOR COMPRESSION AND
DECOMPRESSION OF VIDEO DATA USING

DISCRETE COSINE TRANSFORM AND CODING

TECHNIQUES

BACKGROUND OF THE INVENTION

This invention relates to the compression and decom-
pression of data and in particular to the reduction in the
amount of data necessary to be stored for use in repro-
ducing a high quality video picture.

DESCRIPTION OF THE PRIOR ART

In order to store images and video on a computer, the
images and video must be captured and digitized. Image
capture can be performed by a wide range of input
devices including scanners and video digitizers.

A digitized image is a large two-dimensional array of
picture elements, or pixels. The quality of the image is a
function of its resolution, which is measured in the num-
ber of horizontal and vertical pixels. For example, a
standard display of 640 by 480 has 640 pixels across
(horizontally) and 480 from top to bottom (vertically).
However, the resolution of an image is usually referred
to in dots per inch (dpi). Dots per inch are quite literally
the number of dots per inch of print capable of being
used to make up an image measured both horizontally
and vertically on, for example, either a monitor or a
print medium. As more pixels are packed into smaller
display area and more pixels are displayed on the
screen, the detail of the image increases—as well as the
amount of memory required to store the image.

A black and white image is an array of pixels that are
either black or white, on or off. Each pixel requires only
one bit of information. A black and white image is often
referred to as a bi-level image. A gray scale image is one
such that each pixel is usually represented using 8 bits of
information. The number of shades of gray that can thus
be represented is therefore equal to the number of per-
mutations achievable on the 8 bits, given that each bit is
either on or off, equal to 23 or 256 shades of gray. In a
color image, the number of possible colors that can be
displayed is determined by the number of shades ofeach
of the primary colors, Red, Green and Blue, and all
their possible combinations. A color image is repre-
sented in full color with 24 bits per pixel. This means
that each of the primary colors is assigned 8 bits, result-
ing in 23><23><23 or 16.7 million colors possible in a single
pixel. _

In other words, a black and white image, also re-
ferred to as a bi-level image, is a two dimensional array
of pixels, each of 1 bit. A continuous-tone image can be
a gray scale or a color image. A gray scale image is an
image where each pixel is allocated 8-bits of information
thereby displaying 256 shades of gray. A color image
can be 8-bits per pixel, corresponding to 256 colors or
24—bits per pixel corresponding to 16.7 million colors. A
24-bit color image, often called a true-color image, can
be represented in one of several coordinate systems, the
Red, Green and Blue (RGB) component system being
the most common.

The foremost problem with processing images and
video in computers is the formidable storage, communi-
cation, and retrieval requirements.

A typical True Color (full color) video frame consists
of over 300,000 pixels (the number of pixels on a 640 by
480 display), where each pixel is defined by one of 16.7
million colors (24-bit); requiring approximately a mil-

l0

15

20

25

30

35

45

55

65

2

lion bytes of memory. To achieve motion in, for exam-
ple, an NTSC video application, one needs 30 frames
per second or two gigabytes of memory to store one
minute of video. Similarly, a full color standard still

frame image (8.5 by 11 inches) that is scarmed into a
computer at 300 dpi requires in excess of 25 Megabytes
of memory. Clearly these requirements are outside the
realm of existing storage capabilities.

Furthermore, the rate at which the data need to be
retrieved in order to display motion vastly exceeds the
efiective transfer rate of existing storage devices. Re-

trieving full color video for motion sequences as de-
scribed above (30M bytes/sec) from current hard disk
drives, assuming an effective disk transfer rate of about
1 Mbyte per second, is 30 times too slow; from a CD-
ROM, assuming an effective transfer rate of 150 kbytes
per second, is about 200 times too slow.

Therefore, image compression techniques aimed at
reducing the size of the data sets while retaining high
levels of image quality have been developed.

Because images exhibit a high level of pixel to pixel
correlation, mathematical techniques operating upon
the spatial Fourier transform of an image allow a signifi-
cant reduction of the amount of data that is required to

represent an image; such reduction is achieved by elimi-
nating information to which the eye is not very sensi-
tive. For example, the human eye is significantly more
sensitive to black and white detail than to color detail,

so that much color information in a picture may be
eliminated without degrading the picture quality.

There are two means ofimage compression: lossy and
lossless. Lossless image compression allows the mathe-
matically exact restoration of the image data. Lossless
compression can reduce the image data set by about
one-half. Lossy compression does not preserve all infor-
mation but it can reduce the amount of data by a factor

of about thirty (30) without affecting image quality
detectable by the human eye.

In order to achieve high compression ratios and still
maintain a high image quality, computationally inten-
sive algorithms must be relied upon. And further, it is
required to run these algorithms in real time for many
applications.

In fact, a large spectrum of applications requires the
following:

(i) the real-time threshold of 1/30th of a second, in
order to process frames in a motion sequence; and

(ii) the human interactive threshold of under one (1)
second, that can elapse between tasks without disrupt-
ing the workflow.

Since the processor capable of compressing a 1
Mbyte file in l/30th of a second is also the processor

‘ capable of compressing a 25 Mbyte t'ile—-a single color
still frame image—in less than a second, such a proces-
sor will make a broad range of image compression appli-
cations feasible.

Such a processor will also find application in high
resolution printing. Since having such a processor in the
printing device will allow compressed data to be sent
from a computer to a printer without requiring the
bandwidth needed for sending non-compressed data,

the compressed data so sent may reside in an economi-
cally reasonable amount of local memory inside the
printer, and printing may be accomplished by decom-
pressing the data in the processor within a reasonable
amount of time.

5,196,946
3

Numerous techniques have been proposed to reduce
the amount of data required to be stored in order to‘
reproduce a high quality picture particularly for use
with video displays. Because of the high cost of mem-
ory, the ability to store a given quality picture with
minimal data is not only important but also greatly
enhances the utility of computer systems utilizing video
displays. Among the work done in this area is work by
Dr. Wen Chen as disclosed in U.S. Pat. Nos. 4,302,775,
4,385,363, 4,394,774, 4,410,916, 4,698,672 and 4,704,628.
One technique for the storage of data for use in repro-
ducing a video image is to transform the data into the
frequency domain and store only that information in the
frequency domain which, when the inverse transform is
taken, allows an acceptable quality reproduction of the
space varying signals to reproduce the video picture.
Dr. Herbert Lohscheller’s work as described in Euro-

pean Patent Office Application No. 0283715 also de-
scribes an algorithm for providing data compression.

Dr. Chen’s U.S. Pat. No. 4,704,628 alluded to in the
above described data transmission/receiving system
uses intraframe and interframe transform coding. In
intraframe and interframe transform coding, rather than
providing the actual transform coefficients as output,
the output encoded data are block-to-block difference
values (intraframe) and frame-to-frame difference val-
ues (interframe). While coding differences rather than
actual coefficients reduce the bandwidth necessary for
transmission, large amounts of memory for storage of
prior blocks and prior frames are required during the

- compression and decompression processes. Such sys-
tems are expensive and difficult to implement, espe-
cially on an integrated circuit implementation where
“real estate” is a premier concern.

U.S. Pat. No. 4,385,363 describes a discrete cosine

transform processor for 16 pixel by 16 pixel blocks. The
5-stage pipeline implementation disclosed in the ’363
patent is not readily usable for operation with 8 pixel by
8 pixel blocks. Furthermore, Chen’s algorithm requires
global shuffling at stages 1, 4 and 5.

Despite the prior art efforts, the information which
must be stored to reproduce a video picture is still quite
enormous. Therefore, substantial memory is required
particularly if a computer system is to be used to gener-
ate a plurality of video images in sequence to replicate
either changes in images or data. Furthermore, the prior
art has also failed to provide a processor capable of
processing video pictures in real time.

SUMMARY OF THE INVENTION

The present invention provides a data compression/-
decompression system capable of significant data com-
pression of video or still images such that the com-
pressed images may be stored in the mass storage media
commonly found in conventional computers.

The present invention also provides
(i) a data compression/decompression system which

will operate at real time speed, i.e. able to compress at
least thirty frames of true color video per second, and to
compress a full-color standard still frame (8.5”X 11" at
300 dpi) within one second;

(ii) a system adhering to an external standard so as to

10

20

25

30

35

40

45

55

60

allow compatibility with other computation or video »
equipment;

(iii) a data compression/decompression system capa-
ble ofbeing implemented in an integrated circuit chip so
as to achieve the economic and portability advantages
of such implementation.

65

4
In accordance with this invention, a data compres-

sion/decompression system using a discrete cosine
transform is provided to generate a frequency domain
representation of the spatial domain waveforms which
represent the video image. The discrete cosine trans-
form may be performed by finite impulse response
(FIR) digital filters in a filter bank. In this case, the
inverse transform isobtained by passing the stored fre-
quency domain signals through FIR digital filters to
reproduce in the spatial domain the waveforms com-
prising the video picture. Thus, the advantage of sim-
plicity in hardware implementation ofFIR digital filters
is realized. The filter bank according to this invention
possesses the advantages of linear complexity and local
communication. This system also provides Huffman
coding of the transform domain data to effectuate large
data compression ratios. This system may be imple-
mented as an integrated circuit and may communicate
with a host computer using an industry standard bus
provided in the data compression/decompression sys-
tem according to the present invention. Accordingly,
by combining in hardware a novel discrete cosine trans-
form algorithm, quantization and coding steps, minimal
data are required to be stored in real time for subsequent
reproduction of a high quality replica of an original
image.

This invention will be more fully understood in con-
junction with the following detailed description taken
together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1-1 and 1-2 form FIG. 1 which shows a block

diagram of an embodiment of the present invention.
FIG. 2 shows a schematic diagram of the video bus

controller unit 102 of the embodiment shown in FIG. 1.
FIGS. 3-1 and 3-2 form FIG. 3 which shows a block

diagram of the block memory unit 103 of the embodi-
ment shown in FIG. 1.

FIGS. 441-1 and 4a-2 form FIG. 4a which shows a

data flow diagram of the Discrete Cosine Transform
(DCT) units, consisting of the units 103-107 of the em-'
bodiment shown in FIG. 1.

FIGS. 4b-1 and 4b-4 form FIG. 4b which shows the
schedule of 4:l:1 data flow in the DCT units under

compression condition.
FIGS. 4c-1 and 4c-2 form FIG. 4c which shows the

schedule of 4:2:2 data flow in the DCT units under

compression condition.
FIGS. 4d-1 to 4:14 form FIG. M which shows the

schedule of 4:l:l data flow in the DCT units under

decompression condition.
FIGS. 4e-1 and 4e-2 form FIG. 4e which shows the

schedule of 4:2:2 data flow in the DCT units under

decompression condition.
FIGS. 5a-1 and 5a-4 form FIG. 5a which shows a

schematic diagram of the DCT input select unit 104 of
the embodiment shown in FIG. 1.

FIGS. 5b-1 to Sb-3 form FIG. Sb which shows the

schedule of control signals of the DCT input select unit
104 under compression condition, according to the
clock phases.

FIGS. Sc-1 to 5c-4 form FIG. Sc which shows the

schedule of control signals of the DCT input select unit
104 under decompression condition, according to the
clock phases.

FIGS. 6a-1 and 6a-2 form FIG. 6a which shows a

schematic diagram of the DCT row storage unit 105 of
the embodiment shown in FIG. 1.

5,196,946
5

FIG. 6b shows a horizontal write pattern of the mem-
ory arrays 609 and 610 in the DCT row storage unit 105
of FIG. 6a.

FIG. 6:: shows a vertical write pattern of the memory
arrays 609 and 610 in the DCT row storage unit 105 of 5
FIG. 6a.

FIGS. 7a-1 and 7a-2 form FIG. 7a which shows a

schematic diagram of the DCT/IDCT processor unit
106 of the embodiment shown in FIG. 1.

FIG. 7b shows a flow diagram of the DCT computa-
tional algorithm used under compression condition in
the DCT/IDCT processor unit 105 of FIG. 7a.

FIGS. 7c-1 to 7c-4 form FIG. 7c which shows the

; data flow schedule of the DCT computational algo-
rithm used under compression condition in the
DCT/IDCT processor unit 105 of FIG. 7a.

FIGS. 7d-1 to 7d-3 form FIG. 7d which shows the

schedule of control signals of the DCT/IDCT proces-
sor unit 105 shown in FIG. 7a under compression condi-
tion.

FIG. 7e shows a flow diagram of the DCT computa-
tional algorithm used under decompression condition in
the DCT/IDCT processor unit 105 of FIG. 7a.

FIGS. 7f-1 to 7f-4 form FIG. 7fwhich shows the data

20

flow schedule of the DCT/IDCT processor unit 105 of 25
FIG. 7a under decompression condition.

FIGS. 7g-1 to 7g-3 form FIG. 7g which shows the
schedule of control signals of the DCT/IDCT proces-
sor unit shown in FIG. 7a under decompression condi-
tion.

FIGS. 8a-1 to 8a-3 form FIG. 8a which shows a

schematic diagram of the DCT row/column separator
unit 107 in the embodiment shown in FIG. 1.

FIGS. 8b-1 to 8b-6 form FIG. 8b which shows the

schedule of control signals of the DCT row/column
separator unit 107 under decompression condition.

FIGS. 8c-1 to 8c-6 form FIG. 8c which shows the

schedule of control signals of the DCT row/column
separator unit 107 shown in FIG. 7a under decompres-
sion condition.

FIGS. 9-1 and 9-2 form FIG. 9 which shows a sche-

matic diagram of the quantizer unit 108 in the embodi-
ment shown in FIG. 1.

FIG. 10 shows a schematic diagram of the zig-zag
unit 109 in the embodiment shown in FIG. 1.

FIG. 11 shows a schematic diagram of the zero pack-
/unpack unit 110 in the embodiment shown in FIG. 1.

FIG. 12a shows a schematic diagram of the coder
unit 11a of the coder/decoder unit 111 in the embodi-
ment shown in FIG. 1.

FIGS. 12b-1 and 12b-2 form FIG. 12b which shows a

block diagram of the decoder unit lllb ofthe coder/de-
coder unit 111 in the embodiment shown in FIG. 1.

FIGS. 13a-1 to 13a-2 form FIG. 13a which shows a

schematic diagram of the FIFO/Huffman code control-
ler unit 112 shown in the embodiment shown in FIG. 1.

FIG. 13b shows the memory maps of the FIFO Mem-
I ory 114 of the preferred embodiment in FIG. 1, under

compression and decompression conditions.
FIGS. 14-1 to 14-3 form FIG. 14 which shows a

schematic diagram of the host bus interface unit 113 in
the embodiment shown in FIG. 1.

FIG. 15a shows a filter tree used to perform a 16-
point discrete Fouriertransform (DFT).

FIGS. 15b-1 to 15b-4 form FIG. 15b which shows the

system functions of the filter tree shown in FIG. 15a.
FIGS. 15c-1 to 15c-4 form FIG. 15c which shows the

steps of derivation from the system functions of the

30

45

65

6

filter tree in FIG. 15a to a flow diagram representation

of the algebraic operations of the FIR digital filter bank.
FIGS. 15d-1 and 15d-2 form FIG. 15d which shows

the flow diagram resulting from the derivation shown in
FIG. 15c.

FIGS. 15e-1 and 15e-2 form FIG. l5e which shows

the flow diagram of the inverse discrete cosine trans-
form, as a result of reversing the algebraic operations of
the flow diagram of FIG. 15d.

FIG. 16 shows a scheme by which the speed of data

compression and decompression achieved by the pres-
ent invention may be used to provide image reproduc-

tion sending only compressed data over the communi-
cation channel.

DETAILED DESCRIPTION

Data compression for image processing may be
achieved by (i) using a coding technique efficient in the
number of bits required to represent a given image, (ii)
by eliminating redundancy, and (iii) by eliminating por-
tions of data deemed unnecessary to achieve a certain

quality level of image reproduction. The first two ap-
proaches involve no loss of information, while the third
approach is “lossy”. The amount of information loss
acceptable is dependent upon the intended application
of the data. For reproduction of image data for viewing
by humans, significant amounts of data may be elimi-
nated before noticeable degradation of image quality
results.

According to the present invention, data compression
is achieved by use of Huffman coding (a coding tech-

nique) and by elimination of portions of data deemed
unnecessary for acceptable image reproduction. Be-
cause sensitivities of human vision to spatial variations

in color and image intensity have been studied exten-
sively in cognitive science, these characteristics of
human vision are available for data compression of

images intended for human viewing. In order to reduce
data based on spatial variations, it is more convenient to
represent and operate on the image represented in the
frequency domain.

This invention performs data compression of the
input discrete spatial signals in the frequency domain.
The present method transforms the discrete spatial sig-
nals into their frequency domain representations by a
Discrete Cosine Transform (DCT). The discrete spatial

signal can be restored by an inverse discrete cosine
transform (IDCI‘).

Theory

A discrete spatial signal can be represented as a se-
quence of signal sample values written as:

x[n] where n=0,1, . . ., N—l

x[n] denotes a signal represented by N signal sample
values at N points in space. The N-point DCT of this
spatial signal is defined as

Xlk] =

N—l

y;,n§Ox{n1cos(-1"Vk(n+l))wherek=o,i,...,1v_1

5,196,946
7

—continued

--L-fork=0
‘F2’
lforkaeo

where 71; =

Recognizing that cos a = §(e"-7“ + of”) (l)
and

. . . 2

C17? !<(1N—u+l) = emkc-J7'{r k=(n—l) = (1% lc(n—§)’ ()

a method of computing the DCT of x[n] is derived and
illustrated in the following:

F1. The discrete spatial signal x[n] is shifted by Q
sample in the increasing in direction and mirrored about
n=N to form to form the resulting signal ‘x[n], writtenas:

‘V x[n-H l'orn=i,3/2,5/2,...,N—§

4"]: x[2N—n-H rorn=N+£.N+3/2,...,21v—;

F2. A 2N-point discrete Fourier Transform (DFT) is
applied to the signal'i[n]. The transformed representa-
tion of"i[n] is written as:

2N— _-*' k
‘.l"[k]= 2 ix[n]e ’7V "fork=O,1,...,2N——l71

F3. Because of relations (1) and (2), the DCT of x[n],
i.e., X[k], is readily obtained by setting X[k] to zero for
k§N (truncation), or '

1/Wfio] k=0

X[k]= ?1'k]' k=l,2,...,N—l
o N§k§2N—1

Furthermore, the frequency domain representation of
'i;'[n], i.e. 3f[k], has the following properties

Ifikl = -'lXT2n — kl. and 3r"[—k1 = Ytki (3), (4)
(real, odd symmetry)

and

3riN1 = 0 (5)

Therefore, as will be shown below, despite truncation in
step F3 the inverse transformation can be obtained
using the information of (3), (4) and (5).

The inverse transfo_nnation, hence, follows the steps:
11. The sequence X[k] is reconstructed from X[k] by

a mirroring X[k] about k= N, and scaling appropriately,i.e.

‘H1401 for k=0

3-W: xpq k=1,2,...,N-10 k=N

—-X[2N-k] k=n+l,...,ZN—l

8

(using relations (3), (4) and (5)).
12. The 2N-point inverse discrete Fourier transform

(IDFT) is then applied to X[k].

_.l__ 2N_1 ‘kn
ZN 2 fine 5° forn=§,3/2,...,2N—-i31”] = k=O ’

13. Finally, x[n] may be obtained by setting"3:'[n] to
10 zero for n§N and shifting the signal by Q sample in the

decreasing :1 direction, i.e.

x[n]
"H[m+}] form=O,...,N—l
0 forN-§M§2N—l.

Filter Implementation

The Discrete Cosine Transform (DCT) and its in-
verse outlined in steps Fl-—F3 and 11-13 steps discussed
in the theory section above can be realized by a set of
finite impulse response (FIR) digital filters. As dis-
cussed in the theory section above, DCT, and similarly
IDCT, may be obtained through the use of a D171" or an
inverse DFT at steps F2 and I2 respectively.

Because DFT, and similarly its inverse, can be seen as
a system of linear equations of the form:

20

25

30

7 = 1(DFT)

xm = 7 2§Vx[nlw"" , ZN (inverse)

35 . ‘
the transform can be seen as being accomplished by a
bank of filters, one filter for each value of k (forward

DFT) or n (inverse DFT). The system function (2-
transform ofa f1lter’s unit sample response) of each filter
may be generally written as,

(a) H;,(Z) in the forward DFT, for the kth filter,

_ —' kn (Pl)
H;,(z) .—. 21$ *2": is45 n=l

_ -‘25’?'r" 1- z2"—1
= Z l‘ -'—T’

1 — ze—’7V ‘H
50

or equivalently,

' k 2N—l 1k= 2"‘: ‘ 1r (1 — ze)
55 [=0

Igék

The last formulation (Pl) specifically points out that
the 2N— 1 zeroes of the kth filter lie on the unit circle of

50 the Z-plane, separated 7r/N radially, except for l=k
which is not a zero of the filter.

(b) Similarly, the system function G,.(Z) for the in-
verse DFT in the nth filter,

65 (P)1r 2

-1- ms“ zkJN7<7 .G.<z>= ZN

5,196,946
9

-continued

Again, it can be seen that the zeros of the nth filter in the
inverse DFT transform lie on the unit circle separated
by 1r/N radially, except for l;’:n. The structure of equa-
tions P1 and P2 suggests that both forward and inverse
DI-‘Ts may be implemented by the same filter banks
with proper scaling (noting that P1 and P2 has identical
zeroes for any k=n).

The representation of P1 suggests a “recursive” im-
plementation of the FIR filter, i.e. the FIR filter may be
formed by cascading 2N—1 single-point filters, each
having a zero at a different integral multiple of

10

15

.‘iv’‘-.. .‘i’v"—
For example, we may rewrite the kth (forward) or nth
(inverse) filter as

20

%'kPk(z) = z‘ie 17’ (z — R’) for the forward DFT 25I=;Ek

01‘

l
2N

30
1>,,(z) ‘Ir (:1 — R) for the inverse

Igén

DFT

where R’ is the 1"‘ zero,

g‘1k 35e (for forward DFT

-6"In (for inverse DFI)

R

= e

Furthermore, we may write

Pk(z)=Pmk(z)(z-R”')

where P,,.k(z) denotes a FIR filter having 2N-2 zeroes
spaced 1r/N apart, except for l=k,m. Here, Pk(z) is
represented as a cascade of a 2N—2 point filter P,,.k(z)
and a single point filter having a zero at R'".

In the same way, Pk(z) may also be decomposed into
a cascade of a 2N—3 point FIR filter P,,,.k(z) and a
2-point filter having zeros at R“ and R". P,,.,,k(z) may
itself be implemented by cascading lower order FIR
filters.

A l6-point DPT may be implemented by the FIR
filter tree 1500 shown in FIG. 15a by selectively group-
ing FIR filters.

The grouping of filters shown in FIG. 15a is designed
to the number of intermediate results neces-
sary to complete the DFT. A filter is characterized by
its system fimction, and referred to as an N-th order
filter if the leading term of the polynomial representing 60
the system function is of power N. As shown in FIG.
15b, the two filters 1501 and 1502 in the first filter level
are 8th order filters, i.e. the leading term of the power
series representing the system function is a multiple of
z‘. The four filters 1503-1506 in the second level of 65

filters are 4th order filters, and the eight filters
1507-1514 in the third level of filters are 2nd order

filters. In general, a N-point DFI‘ may be implemented

45

55

10

by this method using (1+log2N) levels of filters with
the kth level of filters having 2" filters, each being of
order N/2k"1, and such that the impulse response of
each filter possesses either odd or even symmetry.
Under this grouping scheme, the number of arithmetic
operations are minimized because many filter coeffici-
ents are zero, and many multiplications are trivial (in-
volving 1, -1, or a limited number of constants cos
7rl/N, where l is an integer). These properties lend to
simplicity of circuit implementation. Furthermore, as
will be.shown in the following, computation at each
level of filters involves only output data of the previous
level, and, treating each filter as a node in a tree struc-
ture, specifically each child node depends only on out-
put data of the immediate parent node. Therefore, no
communication is required between data output of fil-
ters not in a “parent-child” relationship. This property
results in “local connectivity” essential for area effi-
ciency in an integrated circuit implementation. This
filter tree 1500 has the following properties:

(i) all branches have the same number of zeros; and
(ii) all stages have the same number of zeros. These

properties provide the advantages of locally connected
filters (“local connectivity”) and a maximum number of
filters from which data must be supplied (“fan out”) of
two. The property of local connectivity, defined below,

communication overhead. Minimum fan out

of two allows a compact implementation in integrated
circuits requiring high space efficiency.

In FIG. 150, each rectangular box represents a filter
having the zeroes W’, for the values of 1 shown inside
the box. W is eJ""‘/N or e-f'"'/N dependent upon
whether DCT or IDCT is computed. Recalling that, in
order to obtain DCT from DFT, at steps F3 and 13, the
DFT results for 1:: N (forward) or n§N are set to zero.
Hence, only the portions of this filter tree that yield
DFT results for k<N (forward) and n<N (inverse)
need be implemented. The required DFT results are
each marked in FIG. 15a with a “check”.

The system functions for the forward transform fil-
ters are shown in FIG. 15b. Because of the symmetry in

the input sequence and in the system function of the
FIR filters, tracking carefully the intermediate values
and eliminating duplicate computation of the same
value, the flow graph of FIG. 15c is obtained. FIG. 15c
illustrates these tracking steps by following the compu-
tation of the first three stages in the filter tree 1500
shown in FIG. 15a. Recall that at step Fl, the input

sequence X[n] is mirrored about n=N to obtain the
input sequence x[n] to the 16-point DFT. Therefore x[n]
is x[0], x[l], x[2] . . . x[7], x[7], x[6], . . . , x[O]. This
sequence is used to compute the 8-point DCT. As
shown in FIG. 15c, the filter 1501 has system function

H(Z)=Z3+ 1; hence, the first eight output data a[O] . . .
a[7] are each the sum of two samples of the input se-
quence, each sample being 8 unit “delays” apart, e.g.
a[O] =x[0] +x[7]; a[l] =x[l] +x[6] etc. (These delays are
not delays in time, but a distance in space since x[n] is a
spatial sequence.) Because of the symmetry of the input
sequence x[n], a[O] . . . a[7] are symmetrical about n= 3;.
Therefore, when implementing this filter 1501, only the
first four values a[O] . . . a[3] need actually be computed,
a[4] . . . a[7] having values corresponding respectively
to a[3] . . . a[l]. Computation of a[O] . . . a[3] is provided
in the first four values of stage 2 shown in FIG. 15d.
The operations to implement filter 1501 are shown in
FIG. 15c.

5,196,946
11

The same procedure is followed for filter 1502. Filter
1502, however, possesses odd symmetry, i.e.
b[0]=—-b[7]; b[l]=—b[9] etc. For most implementa-
tions, including the embodiment described below, the
algebraic sign of an intermediate value may be provided
at a later stage when the value is used for a subsequent
operation. Thus, in filter 1502, as in filter 1501, only the
first four values b[0] . . . b [3] need actually be com-
puted, since b[4] . . . b[7] may be obtained by a sign
inversion of the values b[3] . . . b[0] respectively at a
subsequent operation. The operations to implement
1502 are shown in FIG. 15c. Hence, the bottom four

values at stage 2 shown in FIG. 15d are provided for
computation of values b[0] . . . b[3].

Accordingly, by mechanically tracking the values
computed at the previous stages, and noting the symme-
try of each filter, the operations required to implement
filters 1503-1514 are determined in the same manner as

described above for filter 1501 and 1502, the result of

10

12

-continued
x(0) = y1+ .v8; 1:0) = y2 + y7;x(2) = y3 + 16;
x(3) =y4 +.v5;x(4) =y4 -y5;x(5) =y3 —y6;
1(6) = .v2 - y7; x(7) = M — y8-

The quality of possible hardware implementations of
a computation algorithm may be measured in two di-
mensions: (i) computational complexity and (ii) commu-
nication requirements. According to the present inven-
tion, the computational complexity of the DCT, mea-
sured by the number of multiplication steps needed to
accomplish the DCT, taking into consideration of the
throughput rate, is of order N (i.e. linear), where N is
the number of points in the DCT. As discussed above,
the tree structure of the filter bank results in a maximum

fan out of two, which allows all communication to be
“local” (i.e. data flows from the root filters—in other
words, highest order filters—and no communication is
required between filters not having parent-child rela-

the derivation is the flow diagram shown‘ in FIG. 15d. 20 tionship in the tree structure as dcscfibed above in con-
Finally, because of the symmetry of the output in

filters 1507-1514, and the symmetry in filters
1515-1530, the required output data X[O] . . . X[7] are
obtained by multiplying g[0], h[0], i[0] . . . o[O] by

:1 = X(0) + X(4); s2 = X(0) — 1(4);
:3 -_- x(2) — X(6); s4 = x(2) + X(6);
55 = X(3) — X(5): 56 = X(3) + X(5);
s7 -_- x(1) — X0); :8 = X(1) + x(7).

respectively.
The inverse transform flow diagram FIG. 152 is ob-

tained by reversing the algebraic operations of the for-
ward transform flow diagram in FIG. 15d.

Thus, intermediate results s1—s7 at stage 2 in FIG. 15e
are given by reversing the algebraic operations for ob-
taining x(0)—x(7) at stage 8 of FIG. 15a’. That is, ignor-
ing for the moment a factor Q.

:1 = X(0) + X(4); 52 = X(O) — X(4);
:3 = X(2) — X(6); 34 = X(2) + X(6);
55 = X(3) - X(5); 5'5 = X(3) + X(5);
57 = X(l) — X(7); :8 = X(l) + X(7).

(In general, the scale factors, such as the 5 above,
may be ignored because they are recaptured by output
scaling). The same process is repeated by reversing the
intermediate results s1—s7 at stage 6 of FIG. 15d to
derive intermediate results p1—p7 at stage 4 of FIG. 15a.
The intermediate results z1-27, y1-y7 are similarly de-
rived and additional intermediate results are then de-

rived until the final values x(0)—x(7) are derived. The
processissummarizedbelow:

pl=sl;p2=r2;p3=2r3cos-if, «-34;

p4=s4;ps=2sscos-3;-'-—s6;p6=ss;

p7=‘2:7oos-'3?-—:s;ps=sa;

zl=pl+p4;z2=p2+p3;z3=p2—p3;
u=m—ma=w—mm=fl—m
z7=p5+p7;z8=p6+p8;
yl=zl;y2=z2;y3=z3;y4=z4;

zs;ye=2z6eosl’-—z7;ys=2zsoos-”—— 44

y7 = z7;y8 = 28;

25

30

35

45

55

65

junction with FIG. 15a).

Overview of An Embodiment of the Present Invention

An embodiment of the present invention implements
the “baseline” algorithm of the JPEG standard. A con-
cise description of the JPEG standard is attached as
Appendix A. FIG. 1 shows the functional block dia-
gram of this embodiment of the present invention. This
embodiment is implemented in integrated circuit form;
however, the use of other technologies to implement
this architecture, such as by discrete components, or by
software in a computer is also feasible.

The operation of this embodiment during data com-
pression (i.e. to reduce the amount of data required to
represent a given image) is first functionally described
in conjunction with FIG. 1.

FIG. 1 shows, in schematic block diagram form, a
data compression/decompression system in accordance
with this invention.

The embodiment in FIG. 1 interfaces with external

equipment generating the video input data via the
Video Bus Interface unit 102. Because the present in-
vention provides compression and decompression
(playback) of video signals in real-time, synchronization
circuits 102-1 and 113-2 are provided for receiving and
providing respectively synchronization signals from
and to the external video equipment (not shown).

Video Bus Interface unit (VBIU) 102 accepts 24 bits
of input video signal every two clock periods via the
data I/O lines 102-2. The VBIU 102 also provides a
13-bit address on address lines 102-3 for use with an

external memory buffer, at the user's option which
provides temporary storage of input (compression) or
output (decompression) data in “natural” horizontal
line-by-line video data format used by many in video
equipment. During compression, the horizontal line-by-
line video data is read in as 8X8 pixel blocks for input
to VBIU via I/O bus 102-2 according to addresses gen-
erated by VBIU 102 on bus 102-3. During decompres-
sion, the horizontal line-by-line video data is made
available to external video equipment by writing the
8X 8 pixel blocks output from VBIU 102 on bus 102-2
into proper address locations for horizontal line-by-line
output. Again, the address generator inside VBIU 102
provides the proper addresses.

VBIU 102 accepts four external video data formats:
color format (RGB) and three luminance-chrominance
(YUV) formats. The YUV formats are designated YUV

5,196,946
13

4:4:4, YUV 4:2:2, and YUV 4:l:1. The ratios indicate

the ratios of the relative sampling frequencies in the
luminance and the two chrominance components. In
the RGB format, each pixel is represented by three
intensities corresponding to the pixel’s intensity in each
of the primary colors red, green, and blue. In the YUV
representations, three numbers Y, U and V represent
respectively the luminance index (Y component) and
two chrominance indices (U and V components) of the
pixel. In the JPEG standard, groups of 64 pixels, each
expressedas an 8x 8 matrix, are compressed or decom-
pressed at a time. The 64 pixels in the RGB and YUV
4:4:4 formats occupy on the physical display an 8X8
area in the horizontal and vertical directions. Because
human vision is less sensitive towards colors than inten-

sity, it is adequate in some applications to provide in the
U and V components of the YUV 4:2:2 and YUV 4:121

formats, U and V type data expressed as horizontally
averaged values over areas of 16 pixels by 8 pixels and
32 pixels by 8 pixels respectively. An 8 X 8 matrix in the
spatial domain is called a “pixel” matrix, and the coun-
terpart 8X8 matrix in the transform domain is called a
“frequency” matrix.

Although RGB and YUV 4:4:4 formats are accepted
as input, they are immediately reduced to representa-
tions in YUV 4:2:2 format. RGB data is first trans-

formed to YUV 4:4:4 format by a series of arithmetic
operations on the RGB data. YUV 424:4 data are con-
verted into YUV 4:2:2 data in the VBIU 102 by averag-
ing neighboring pixels in the U, V components. This
operation immediately reduces the amount of data to be
processed by one-third. As a result, the circuit in this
embodiment of the present invention needs only to
process YUV 4:2:2 and YUV 4:l:1 formats. As men-
tioned hereinabove, the JPEG standard implements a
“lossy” compression algorithm; the video information
lost due to translation of the RGB and YUV 4:4-:4 for-

mats to the YUV 4:2:2 format is not considered signifi-
cant for purposes under the JPEG standard. In the
decompression mode, the YUV 4:4:-1» format is restored
by providing the average value in place of the sample
value discarded in the compression operation. RGB
format is restored from the YUV 4:4:4 format by a series
of arithmetic operation on the YUV 4:424 data to be
described below.

As a result of the processing in the VBIU unit 102,
video data are supplied to the block memory unit 103, at
16 bits (two values) per clock period. The block mem-
ory unit 103 is a buffer for the incoming stream of 16-bit

20

25

30

45

video data to be sorted into 8X8 blocks (matrices) of 50
the same pixel type (Y, U or V). This buffering step is
also essential because the discrete cosine transform

(DCT) algorithm implemented herein is a 2-dimensional
transform, requiring the video signal data to pass
through the DCT/IDCT processor unit 106 twice, one
for each spatial direction (horizontal and vertical). In-
termediate data are obtained after the video input data

pass through DCT/IDCT processor unit 106 once.
Consequently, DCT/IDCT processor unit 106 must

' multiplex between video input data and the intermedi-
ate results after the first-pass DCT operation. To mim-
mine the number of registers needed inside the DCT
unit 106, and also to simplify the control signals within
the DCT unit 106, the sequence in which the elements
of the pixel matrix is processed is significant.

The sequencing of the input data, and of the interme-
diate data after first-pass of the 2-dimensional DCT, for
DCT/IDCT processor unit 106 is performed by the

65

14

DCT input select unit 104. DCT input select unit 104
alternatively selects, in predetermined order, either two
8-bit words from the block memory unit 103 or two
16-bit words from the DCT row storage unit 105. The
DCT row storage unit 105 contains the intermediate
results after the first pass of the data through the the
2-dimensional DCT. The data selected by DCT input
select unit 104 is processed by the DCT/IDCT proces-
sor unit 106. The results are either, in the case of data

which completed the 2-dimensional DCT, forwarded to
the quantizer unit 108, or, in the case of first-pass DCT
data, recycled via DCT row storage unit 105 for the
second pass of the 2-dimensional DCT. This separation
of data to supply either DCT row storage unit 105 or
quantizer unit 108 is achieved in the DCT row/column
separator unit 107. The result of the DCT operation
yields two 16-bit data every clock period. A double-
buffering scheme in the DCT row/column separator
107 provides a continuous stream i.e. 16 bits each clock
cycle of 16-bit output data from DCT row/column
separator unit 107 into the quantizer unit 108.

The output data from the 2-dimensional DCT is orga-
nized as an 8 by 8 matrix, called a “frequency” matrix,
corresponding to the spatial frequency coefficients of
the original 8 by 8 pixel matrix. Each pixel matrix has a
corresponding frequency matrix in the transform (fre-
quency) domain as a result of the 2-dimensional DCT
operation. According to its position in the frequency
matrix, each element is multiplied in the quantizer 108
by a corresponding quantization constant taken from
the YUV quantization table 108-1. Quantization con-
stants are obtained from an international standard body,
i.e. JPEG; or, alternatively, obtained from a customized
image processing function supplied by a host computer
to be applied on the present set of data. The quantizer
unit 108 contains a 16-bit by 16-bit multiplier for multi-
plying the 16-bit input from the row/column separator
unit 107 to the 16-bit quantization constant from the
YUV quantization table 108-1. The result is a 32-bit
value with bit 31 as the most significant bit and bit 0 as
the least significant bit. In this embodiment, to meet the
dual goals of allowing a reasonable dynamic range, and
of minimizing the number of significant bits for simpler
hardware implementation, only 8 bits in the mid-range
are preserved. Therefore, a 1 is added at position bit 15
in order to round up the number represented by bits 31
through 16. The eight most significant bits, and the
sixteen least significant bits of this 32-bit multiplication

result are then discarded. The net result is an 8-bit value
which is passed to the zig-zag unit 109, to be described
below. Because the quantization step tends to set the
higher frequency components of the frequency matrix
to zero, the quantization unit 108 acts as a low-pass
digital filter. Because of the DCT algorithm, the lower
frequency coefficients of the luminance (Y) or chromi-
nance (U, V) in the original image are represented in the
lower elements of the respective frequency matrices, i.e.

element A,-,- represents higher frequency coefficients of
the original image than element A,,.,., in both horizontal
and vertical directions, if i>m and j>n.

The zig-zag unit 109 thus receives an 8-bit datum
every clock period. Each datum is a quantized element
of the 8 by 8 frequency matrix. As the data come in,
they are individually written into a location of a 64-
location memory array each location representing an
element of the frequency matrix. As soon as the mem-
ory array is filled, it is read out in a manner correspond-
ing to reading an 8 by 8 matrix in a zig-zag manner

5,196,946
15

starting from the 00 position (i.e., in the order: A00, Am,
A01. A02. A11, A20, A30, A21, A12. A03. etC-)- 36031158-
the quantization steps tend to zero higher frequency
coefficients, this method of reading the 8 by 8 frequency
matrix is most likely to result in long runs of zeroed
frequency coefficients, providing a convenient means of
compressing the data sequence by representing a long
run of zeroes as a run length rather than individual
values of zero. The rim length is encoded in the zero
packer/unpacker unit of 110.

Because of double-buffering in the zig-zag unit 109
providing for accumulation of the current 64 8-bit val-
ues and simultaneous reading out of the prior 64 8-bit
values in run-length format, a continuous stream of 8-bit
data is made available to the zero packer/unpacker unit
110. This data stream is packed into a format of the
pattern: DC-AC-RL-AORL . . . , which represents in
order the sequence: a DC coefficient, an AC coefficient,
a run of zeroes, an AC coefficient, a run of zeroes, etc.
(Element Aooof matrix A is the DC coefficient, all other
entries are referred to as AC coefficients). This data
stream is then stored in a first-in, first-out (FIFO) mem-
ory array 114 for the next step of encoding into a com-
pressed data representation. The compressed data rep-
resentation in this instance is Huffman codes. This mem-

ory array 114 provides temporary storage, which con-
tent is to be retrieved by the coder/decoder unit 111
under direction of a host computer through the host
interface 113. In addition to storage of data to be en-
coded, the FIFO memory 114 also contains the transla-
tion look-up tables for the encoding. The temporary
storage in FIFO memory 114 is necessary because,
unlike the previous signal processing step on the incom-
ing video signal (which is provided to the VBIU 102
continuously and which must be processed in real time)
by functional units 102 through 110, the coding step is
performed under the control of an external host com-
puter, which interacts with this embodiment of the
present invention asynchronously through the host bus
interface 113.

Writing and reading out of the FIFO memory 114 is
controlled by the FIFO/Huffman code bus controller
unit 112. In addition to controlling reading and writing
of zero-packed video data into FIFO memory 114, the
FIFO/Huffman code bus controller 112 accesses the

FIFO memory 114 for Huffman code translation tables
during compression, and Huffman decoding tables dur-
ing decompression. The use of Huffman code is to con-
form to the JPEG standard of data compression. Other
coding schemes may be used at the expense of compati-
bility with other data compression devices using the
JPEG standard.

The FIFO/Huffman code bus controller unit 112

services requests of access to the FIFO memory 114
from the zero packer/unpacker unit 110, and from co-
der/decoder unit 111. Data are transferred into and out

ofFIFO memory 114 via an internal bus 116. Because of
the need to service in real time a synchronous continu-
ous stream of video signals coming in through the
VBIU 102 during compression, or the corresponding
outgoing synchronous stream during decompression,
the zero packer/unpacker unit 110 is always given high-
est priority into the FIFO memory 114 over requests
from the coder/decoder unit 111 and the host com-

puter.
Besides requesting the FIFO/Huffman code bus con-

troller unit 112 to read the zero-packed data from the
FIFO memory 114, the coder/decoder unit 111 also

5

10

I5

20

25

30

35

45

50

55

60

65

16

translates the zero-packed data into Huffman codes by
looking up the Huffman code table retrieved from
FIFO memory 114. The Huffman-coded data is then
sent through the host interface 113 to a host computer
(not shown) for storage in mass storage media. The host
computer may communicate directly with various mod-
ules of the system, including the quantizer 108 and the
DCT block memory 103, through the host bus 115
(FIG. 6a). This host bus 115 implements a subset of the
nubus standard to be discussed at a later section in con-

junction with the host bus interface 113. This host bus
115 is not to be confused with internal bus 116. Internal
bus 116 is under the control of the FIFO/Huffman code

bus controller unit 112. Internal bus 116 provides access
to data stored in the FIFO memory 114.

The architecture of the present embodiment is of the
type which may be described as a heavily “pipe-lined”
processor. One prominent feature of such processor is
that a functional block at any given time is operating on
a set of data related to the set of data operated on by
another functional block by a fixed "latency" relation-
ship, i.e. delay in time. To provide synchronization
among functional blocks, a set of configuration registers
are provided. Besides maintaining proper latency
among functional blocks, these configuration registers
also contain other configuration information.

Decompression of the video signal is accomplished
substantially in the reverse manner of compression.

Structure and Operation of the Video Bus Controller
Unit

The Video Bus Controller Unit 102 provides the
external interface to as video input device, such as a
video camera with digitized output or to a video dis-
play. The Video Bus Controller Unit 102 further pro-
vides conversion of RGB or YUV 4:4z4 formats to

YUV 4:222 format suitable for processing with this em-
bodiment of the present invention during compression,
and provides RGB or YUV 424:4 formats when re-
quired for output during decompression. Hence, this
embodiment of the present invention allows interface to ‘
a wide variety of video equipment.

FIG. 2 is a block diagram of the video bus controller
unit (VBIU) 102 of the embodiment discussed above.
As mentioned before, RGB or YUV 4-:4:4 video signals
come into the embodiment as 64 24-bit values, repre-
senting an 8-pixel by 8-pixel area of the digitized image.
Each pixel is represented by three components, the
value of each component being represented by eight (8)
bits. In the RGB format each component represents the
intensity of one of three primary colors. In the YUV
format, the Y component represent an index of lumi-
nance and the U and V components represent two indi-
ces of chrominance. Dependent upon the mode se-
lected, the incoming video signals in RGB or YUV 4:4:4
formats are reduced by the VBIU 102 to 64 16-bit val-
ues: 4:424 YUV video data and RGB data are reduced to

4:2:2 YUV data. Incoming 4:2:2 and 4:l:l YUV data are
not reduced. The process of reducing RGB data to 4:4:4
YUV data follows the formulae:

Y = 0.32535’ + 0.5794G + 0.09543 (luminance) El
U = (0.8378B - Y)/2.03 (chrominance) E2

V= (l.088R — Y)/1.14 (ehrominance) E3

In order to perform the 4:424 Y U V to 4:222 YUV format
conversion, successive values of the U and V type data

5,196,946
17

are averaged (see below), so that effectively the U and
V data are sampled at half the frequency as the Y data.

During compression mode, the 24-bit external video
data representing each pixel comes into the VBIU 102
via the data I/O bus 102-2. The 24-bit video data are

latched into register 201, the latched video data are
either transmitted by multiplexor 203, or sampled by the
RGB/YUV converter circuit 202.

During compression mode, the RGB/YUV con-
verter circuit 202 converts 24-bit RGB data into 24-bit

YUV 4:4:4 data. The output data of RGB/YUV con-
verter circuit 202 is forwarded to multiplexor 203. De-

pendent upon the data format chosen, multiplexor 203
; selects either raw input data (any of 4:4:4, 4:2:2, or 4:l:1

YUV formats), or YUV 4:4:4 format data (converted
from RGB format) from the RGB/YUV converter
circuit 202.

The input pixel data formats under compression
mode are as follows: in RGB and YUV 4:4:4 formats,

pixel data are written at the data 1/0 bus 102-2 at 24 bits
per two clock periods, in the sequence (R,G,B) (R,G,B)
. . . or (Y,U,V) (Y,U,V) . . . , i.e. 8 bits for each of the
data types Y, U or V in YUV format, and R, G, or B in
RGB format; in 4:2:2 YUV format, pixel data are writ-
ten in 16 bits per two clock periods, in the sequence
(Y,U) (Y,V) (Y,U) . . . ; and, in the 4:1:l YUV format
data are written in 12 bits per two clock periods, in the
sequence (Y, LSB’s U), (Y, MSB’s U) (Y, LSB’s V) (Y,
MSB’s V) (Y, LSB’s U) . . . [MSB and LSB are respec-
tively “most significant bits” and “least significant
bits”]. '

The output data from multiplexor 203 is forwarded to
the YUV/DCT converter unit 204, which converts the

24-bit input video data into 16-bit format for block
memory unit 103. The 16-bit block storage format re-
quires that each 16-bit datum be one of (Y,Y), (U,U),
(V,V), i.e. two 8-bit data of the same type is packed in
a 16-bit datum.

Therefore, the (Y,U,V) . . . (Y,U,V) format for the
YUV 4:4:4 format data is repacked from 24-bit data

sequence YOUOVO, YlUlVl, Y2U2V2, Y3U3V3, . . .
Y7U7V7 to 16-bit data sequence YOYI, U01U23, Y2Y3,
V0lV23, Y4Y5, etc., where Umn denotes the 8-bit aver-
age of U", and U, 8-bit data. Because each element of
the U, V matrices under YUV 4:2:2 representation is an
average value, in the horizontal direction of two neigh-
boring pixels, the 64—value 8X 8 matrix is assembled
from an area of 16 pixel by 8 pixel in the video image.
The YUV 4:2:2 representation, as discussed above, may
have originated from input data either YUV 4:4:4,
RGB, or YUV 4:2:2 formats.

The (Y,U), (Y,V), (Y,U), (Y,V) . . . format for the
YUV 4:2:2 format is repacked from 16-bit data sequence
YOUO, YIVO, Y2U2, Y3V2, . . . Y7V6 to YOY1, UOU2,
Y2Y3, VOV2 etc.

Similarly, the (Y, LSB’s U), (Y, MSB’s U), (Y, LSB’s
V), (Y, MSB’s V)... format for YUV 4:l:1 format is
repacked from 12-bit data sequence YOUOL, YIUOH,
Y2VOL, Y3VOH, Y4U4L, etc. to 16-bit data sequence
YOY1, Y2Y3, Y4Y5, UOU4, Y6Y7, VOV4 (for pixels in
the even lines of the image) or from 12-bit data sequence
YOVOL, YIVOH, Y2UOL, Y3UOI-I, Y4V4L . . . to 16-bit

data sequence YOYl, YZY3, Y4Y5, VOV4, Y6Y7, UOU4
(for pixels in the odd lines of the image).

During decompression, data from the block memory
unit 103 are read by VBIU 102 as 16-bit words. The

‘ block memory format data are translated into the 24-bits
RGB, YUV 4:424, or 16-bit 4:2:2, or 12-bit 4:l:1 formats

20

30

45

65

18

as required. The translation from the 16-bit representa-
tion to the various YUV representations is performed
by DCT/YUV converter 205. If RGB data is the speci-
fied output format, the DCT/YUV converter 205 out-
puts 24-bit YUV 424:4 format data for the RGB/YUV
converter 202 to convert into RGB format.

Either the output data of the RGB/YUV converter
202, or the output data of the DCT/YUV converter 205
are selected by multiplexor 208 for output onto data I/O
bus 102-2.

Clock circuits in sync. generator 102-1 generate the
display timing signals Hsync and Vsync (horizontal
synchronization signal and vertical synchronization
signal, respectively) if required by the external display.
The external memory address generator 207 provides
the addresses on address bus 102-3 for loading the video
data into an external display’s buffer memory, if re-
quired. This external memory provides conversion of
horizontal line-by-line “natural” video data into 8X8
blocks of pixel data for input during compression, and
conversion of 8X8 blocks output pixel data into hori-
zontal line-by-line output pixel data during decompres-
sion using addresses provided by the external memory
address generator 207. Hence, the external memory
address generator 207 provides compatibility with a
wide variety of video equipment.

Structure and Operation of Block Memory Unit

The block memory unit (BMU) 103 assembles the
stream of Y U and V interleaved pixel data into 8X8
blocks of pixel data of the same type (Y, U, or V).

In addition, BMU 103 acts as a data buffer between
the video bus interface unit (VBIU) 102 and the DCT

input select unit 104 during data compression and, be-
tween VBIU 102 and DCT row/column separator unit
107 during decompression operations.

During data compression, VBIU 102 will output
pixels every clock period in the sequence YUYV — —
— YUYV -- — — , if a 4:2:2 format is required (each Y,
U, V is a 16-bit datum containing information of two

pixels); orinasequenceofY'XYX———-YUYV——-
— , if a 4:l:1 format is used. (“—” indicates no output
data from VBIU 102 and “X” indicates output data are
of the “don’t-care” type.) Since DCT input select unit
104 requires all 64 pixels (8X8 matrix) in a block to be
available during its two-pass operation, BMU 103 must
be able to accumulate a full matrix of 64 pixels of the
same kind from VBIU 102 before output data can be

made available to DCT input select unit 104.
During data decompression, a reverse operation takes

place. The DCT row/column separator 107 outputs 64
pixels of the same kind serially to BMU 103; the pixels
are temporarily stored in BMU 103 until four complete
matrices of Y type pixels and one complete matrix each
of U and V type pixels have been accumulated so that
VBIU 102 may reconstitute the required video data for
output to an external display device.

FIG. 3 shows a block diagram of BMU 103. BMU
103 consists of two parts: the control circuit 300a, and a
memory core 300b. The memory core 300b is divided
into three regions: Y_ region 311, U- region 312, and
V_ region 313. Each region stores one specific type of
pixel data and may contain several 64-value blocks. In
this embodiment, Y- region 311 has a capacity of five
blocks and contains Y pixels only. The U_ region 312
has a capacity ofmore than one block, but less than two
blocks and contains U type pixels only. Similarly, the
V_ region has a capacity of more than one block, but

5,196,946
19

less than two blocks and contains V type pixels only.
This arrangement is optimized for 4:1:1 format decom-
pression, with extra storage in each of Y, U, or V type
data to allow memory write while allowing a continu-
ous output data stream to VBIU 102. Because data are
transferred into and out of the block memory unit 103 at
a rate of two values every clock period, a memory
structure is constructed using address aliasing (de-
scribed below) which allows successive read and write
operations to the same address. Since data must be out-
put to VBIU 102 in interleaved pixel format, and since
data arrive from the DCT units 104—107 in matrices

each of elements of the same pixel type (Y, U or V),
there are instances when elements of the next U or V

matrix arrive before the corresponding elements in the
U or V matrix being currently output are provided to
VBIU 102. During such time periods, the elements of
the next U or V matrix is allocated memory locations
not overlapping the current matrix being output.
Hence, the physical memory allocated for U, V blocks 20
must necessarily be greater than one block to allow for
such situations. In practice, an extra one-quarter of a
block is found to be sufficient for the data formats YUV
422:2 and YUV 4:l:l handled in this embodiment. The

starting addresses of the regions 311, 312 and 313 are
designated 0, 256 and 320 respectively. While the data
transaction between BMU 103 and VBIU 102 is in units

of pixels, the transaction between BMU 103 and DCT
input select 104 or DCT row/column separator 107 is in
units of 64-value blocks.

Memory Access Modes in the Block Memory Unit

Another aspect of this embodiment is the aliasing of
the memory core addresses in the memory core 300b.
Aliasing is the practice of having more than one logical
address pointing to the same physical memory location.
Although aliasing of memory core addresses is not nec-
essary for the practice of the present invention, address
aliasing reduces the physical size of memory core 300b 40
and saves significant chip area by allowing sharing of
physical memory locations by two 64—value blocks.
This sharing is discussed in detail next.

During compression or decompression operations,
data flow from respectively the VBIU 102, through
BMU 103 to DCT input select unit 104, or from DCT

.,row/column separator 107, through BMU 103, to
VBIU 102. Some parts of a block might have been read
and will not be accessed again, while other parts of the
block remain to be read. Therefore, the physical loca-
tions in the memory core 300b which contain the parts
of a block that have been read may be written over
before the entire block is completely read. The manage-
ment of the address mapping to allow reuse of memory
locations in this manner is known as address-aliasing or
“in-line” memory. In this embodiment, address aliasing
logic 310 performs such mapping. A set of six registers
304 to 309 generates the logical address of a datum
which is mapped into a physical address by address
aliasing logic 310. Accordingly, YW address counter
304, UW address counter 305 and VW address counter

306 provide the logical addresses for a write operation
in regions Y__ region 311, U- region 312, and V_ re-
gion 313 respectively. Similarly, YR address counter
307, UR address counter 308 and VR address 309 pro-
vide the read logical addresses for a read operation in
Y- region 311, U. region 312, and V__ region 313
respectively.

20

The address generation logic 300a in BMU 103
mainly consists of a state counter 301, a region counter
302 and the six address counters 304 through 309 de-

scribed above. Depending upon the format chosen and
the mode of operation, the memory core access will
follow the pattern:
A. 4:2:2 compression sequence-YUYVRRRR

YUYVRRRR ‘

B. 4:1:l compression sequence--YXYXRRRR
YUYVRRRR

C. 4:2:2 decompression sequence——WWWWYUYV
WWWWYUYV

D. 4:1:l decompression sequence-—WWWWYUYV
WWWWYUYV

where the Y, U or V in compression sequence indicates
a Y, U or V data is written from the VBIU 102 into
BMU 103. The “R” in the compression sequence indi-
cates a datum is to be read from BMU 103 to DCT input
select unit 104. The Y, U or V in the decompression
mode indicates a Y, U or V datum is to be read from
BMU 103 into VBIU 102. The "W” in a decompression

sequence indicates that a datum is to be written from
DCT row/column separator 107 into BMU 103. Be-
cause the sequences repeat themselves every 16 clock

25 periods, a 4-bit state counter 301 is sufficient to se-

30

35

45

65

quence the operation of the BMU 103.
The region counter 302 is used to indicate which

region, among Y_ region 311, U_ region 312, and V_
region 313, the read or write operation is to take place.
The region counter 302 output sequences in blocks for
the several modes of operation are as follows:
4:2:2 compression: YYUV YYUV
421:1 compression: YY-—YYUV
4:2:2 decompression: YYUVYYUV
4:l:l decompression:

Data Flow in the Discrete Cosine Transform Units

The Discrete Cosine Transform (DCT) function in
the embodiment described above in conjunction with
FIG. 1 involves five functional units: the block memory

unit 103, the DCT input select unit 104, the DCT row
storage unit 105, the DCT/IDCT processor 106, and
the DCT row/column separator 107. The DCT func-
tion is performed in two passes, first in the row direc-
tion and then in the column direction.

FIG. 4a shows a data flow diagram of the DCT units.
The input video image in a 64-value pixel matrix is first
processed two values at a time in the DCT/IDCT pro-
cessor 106, row by row, shown as the horizontal rows
row0—row7 in FIG. 4a. The row-processed data are
serially stored temporarily into the DCT row storage
unit 105, again the values at a time. The row processed
data are then fed into the DCT/IDCT processor 106 for
processing in the column direction col10-co17 in the
second pass ofthe 2-dimensional DCT. The DCT row/-
column separator 107 streams the row-processed data
into the DCT row storage unit 105, and the data after
the second pass (i.e., representation in transform space)
into the quantizer unit 108.

FIG. 4b shows the data flow schedule of the 4:l:1

data input into the DCT units 103-107 (FIG. 1) under
compression mode. In FIG. 4b, the time axis runs from
left to right, with each timing mark denoting four clock
periods. In the vertical direction, this diagram in FIG.
4b is separated into upper and lower portions, respec-
tively labelled “input data" and “DCT data.” The input
data portion shows the input data stream under the 4:1:l
format, and the DCT data portion shows the sequence

5,196,946
21

in which data are selected from block memory unit 103

to be processed by the DCT/IDCT processor unit 106.
As described above in conjunction with VBIU 102,

under the 4:l:l YUV data format, the Y data come into
the DCT units 103-107 at 8 bits per two clock periods,
and the U, V data come in at 4 bits per two clock peri-
ods, with “don’t-care” type data being sent by VBIU
102 50% of the time. Hence, for a 64-value 8 pixels by

8 pixels matrix, the U and V matrices each requires 512
clock periods to receive; during the same period of 10
time, four 64-value Y matrices are received at DCT
units 103-107. This 512-clock period of input data is
shown in the top portion of FIG. 4b.

Under compression mode, as described above, the
input data are assembled into 8X 8 matrices of like-type
pixels in the block memory unit 103. The DCT input
select unit 104 selects alternatively DCT row storage
unit 105 and the block memory unit 103 for input data
into the DCT/IDCT processor unit 106. The input data
sequence into the DCT/IDCT processor 106 is shown
in the lower portion of FIG. 4b, marked “DCT data.”

In FIG. 4b, first-pass YUV data (from block memory
unit 103) coming into the DCT/IDCT processor unit
106 are designated Y__.row, U__row, and V_row, the
second-pass data (from DCT row storage unit 105)
coming into the DCT/IDCT processor 105 are desig-
nated Y.col, U_col, and V_col. Between the time
marked 401b and the time marked 403b, the processor

unit 106 processes fu'st-pass and second-pass data alter-
nately. The first-pass and second-pass data during this
period from 4011: to 4-03b are data from a previous 64—
value pixel matrix due to the lag time between the input
data and the data being processed at DCT units
103-107. Because of the buffering mechanism described
above in the block memory unit 103, pixel data coming
in between the times marked 401b and 40% in FIG. 4b
are stored in the block memory unit 103, while the pixel
data stored in the last 512 clock periods are processed in
the DCT units 104-107. The data from the last 512

clock periods are processed beginning at time marked
404b, and completes after the first 128 clock periods
(identical to time period marked between 4011: and
403b) of the next 512 clock periods.

The time period between marks 403b and 4-04!) is
“idle” in the DCT/IDCT processor 106 because the
pipelines in DCT/IDCT 34 processor unit 106 are opti-
mized for YUV 4:2:2 data. Since the YUV 4:l:l type

data contain only half as much U and V information as
contained in YUV 4:2:2 type data, during some clock

periods the DCT/IDCT processor unit 106 must wait
until a full matrix of 64 values is accumulated in block

memory unit 103. In practice, no special mechanism is
provided in the DCT/IDCT processor unit 106 for
waiting on the input data. The output data of
DCT/IDCT processor unit 106 during this period are
simply discarded by the zero packer/unpacker unit 110
according to its control sequence. The control struc-
tures for DCT input unit 104 and DCT row/column
separator units 107 will be discussed in detail below.

FIG. 4c shows the data flow schedule for YUV 4:2:2

type data under compression mode. Under this input
data format, as discussed above, an 8-bit U or V type
value is received at the DCT units 103-107 every two

clock periods; so that it requires 256 clock periods to
receive both 64 8-bit U and V matrices. During this

256-cycle period, two 64-value Y are received at DCT
units 103-107. This 256-clock period is shown in FIG.
4c. There are not idle cycles under the YUV 4:2:2 type

25

45

55

22

data. Again, because of the buffering scheme in the
block memory unit 103, the DCT/IDCT processor 106
processes the data from the last 256-clock period, while
the current incoming data are being buffered at the
block memory unit 103.

Under decompression, the basic input data pattern to
the DCT units 103-107 are: a) under YUV 4:l:l format,
two 64 16-bit values" Y matrices, followed by the U and
V matrices of 64 16-bit values each, and then two 64
16-bit values Y matrices; b) under YUV 4:2:2 format,
two 64 16-bit values Y matrices, followed by the first U
and V matrices of 64 l6-bit values each, and then two 64
16-bit values matrices, followed by the second U and V
matrices.

FIG. 4d shows the data flow schedule for the YUV
4:l:l data format under decompression mode.

Since the decompression operation is substantially
the reverse of the compression operation, the input data
stream for decompression comes from the quantizer
unit 108. The DCT input select unit 104, hence, alter-
nately selects input data between DCT row storage unit
105 and the quantizer unit 108. Since the data stream
must synchronize with timing of the external display,
idle periods analogous to the period between the times
marked 403b and 4-04b in FIG. 4b are present. An exam-

ple of an idle period under YUV 4:l:l format is the
period between 404d and 405d in FIG. 4d. Instead of
_row and _col designation under compression mode,
FIG. 4d uses ._lst and _2nd designation to highlight

that the data being processed in the DCT/IDCT units
103-107 are values in the transform (frequency) domain.

Similarly, FIG. 4e shows the data flow schedule for
the YUV 4:2:2 data format under decompression.

Again, because the design in the DCT/IDCT processor
106 is optimized for YUV 4:2:2 data, there are no idle
cycles for data in this input format.

Structure and Operation of the DCT Input Select Unit

The implementation of the DCT input select unit 104
is next described in conjunction with FIGS. 5a, 5b and
5c.

The DCT Input Select Unit directs two streams of
pixel data into the DCT/IDCT processor unit 106. The
first stream of pixel data is the first-pass pixel data from
either DCT block memory unit 103 or quantizer 108,

dependent upon whether compression or decompres-
sion is required. This first stream of pixel data is desig-
nated for the first-pass of DCT or IDCT. The second
stream of pixel data is streamed from the DCT row
storage unit 105; the second stream of pixel data repre-
sents intermediate results of the first-pass DCT or
IDCT. This second stream of pixel data needs to be
further processed in a second-pass of the DCT or
IDCT. By having the same DCT/IDCT processor unit
106 to perform the two passes ofDCT or IDCT, utiliza-
tion of resource is The DCT Input Select

Unit 104 provides continuous input data stream into the
DCT/IDCT processor unit 106 without idle cycle
under YUV 4:2:2 format.

FIG. 5a is a schematic diagram of the DCT input
select unit 104. As discussed above, the DCT input
select unit 104 takes input data alternately from the

quantizer unit 108 and DCT row storage unit 105 dur-
ing decompression. During compression, input data to
the DCT input select unit 104 are taken alternately from
the block memory unit 103 and the DCT row storage
unit 105.

5,196,946
23

During compression, when input data are taken from
the block memory unit 103, two streams of 8-bit input
data are presented on the 518a and 5l8b data busses. As
shown in FIG. 5a, these two streams of data are then
latched successively into one pair of the four pairs of
latches (top-bot): 501c and 505e, 502c and 506C, 503c and
507c, 504c and 508c by the control signals blk.load4,
blk_load5, blk_load6, and blk_load7 respectively.
Each pair of latches consists of a top latch and a bottom
(“bot”) latch. The control signal (e.g. blk__load7) asso-
ciated with a latch pair loads both the top and bottom
latches. Latches 501c to 508c temporarily store data so
that this can be properly sequenced into the DCT unit
106.

A set of four 2-to-l 8-bit multiplexors 512c, S13c, Slate
and 515c (called block multiplexors) each selects either
the top or bottom output datum from one of the four
pairs of latches 50lc—505c, 502c—506c, 503c—50’7c and
504c—508c, for input to another set of four 2:1 multiplex-
ors 516a, 516b, 516C, and 516d (called block/quantizer
multiplexors). The output datum selected by the block
multiplexors from the pairs of latches 50lc-505c and
502c-506c are denoted “block top data”, and the output
data selected from the pair of latches 503c—507c and
504c—508c are denoted “block bot data”. The block/q-
uantizer multiplexors 516a-d are 16-bit wide, and select
between the output data of block multiplexors 512c to
515c, and the quantizer multiplexors 511a and 511b, in a
manner to be discussed below.

During compression, the block/quantizer multiplex-
ors 516a—d are set to select the output data of the block
multiplexors 512c to 515c, since there is no output from
the quantizer 108. The output data of the block/quan-
tizer multiplexors 516a and 516:: are denoted “block/q-
uantizer top data”; being selected between block top
data and quantizer top data (selected by multiplexer
511a, discussed below); the output data of the block/q-
uantizer multiplexors 516b and 516d are denoted
“block/quantizer bot data", being selected between
block bot data and quantizer bot data (selected by multi-
plexor 511b, discussed below). Since the block multi-
plexors 512c-515c are each 8-bit wide, eight zero bits

_ are appended to the least significant bits of each output
datum of the block multiplexors 512c-515c to form a
16-bit word at the block/quantizer multiplexors 5l6a—d.
The most significant bit of this 16-bit word is inverted to
offset the resulting value by —-2’5, to obtain a value in
the appropriate range suitable for subsequent computa-
tion.

Two streams of input data, each l6-bit wide, are
taken from the DCT row storage unit 105. The data
flow path of the DCT row data in DCT row storage
unit 105 to the DCT/IDCT processor unit 106 is very
similar to the data flow path of the input data from the
block memory storage unit 103 to the DCT/IDCT
processor unit 106 described above. Four pairs of
latches (top-bot): 50ld—505d, 502d-506d, 503d—507d,
and 504d—508d are controlled by control signals row_
loado, row_loadl, row...load2, and row_load3 respec-
tively. A set of four 4:1 multiplexors 512d, 513d, 514:!
and 515d (called DCT row multiplexors) selects the
output data (called DCT row top data) of two latches
from the two pairs controlled by signals row_load0 and
row_.loadl (i.e. the two pairs 50ld—505a' and
502d—506d), and the output data (called DCT row bot
data) of two latches from the two pairs controlled by
signals row__load2 and row_load3 (i.e. the two pairs
503d—507d, and 504d—508a').

5

20

45

55

60

24

During decompression, as discussed above, data into
the DCT/IDCT processor unit 106 (FIG. 1) are taken
alternately from the the DCT row storage unit 105 and
the quantizer 108. Hence, during decompression, the
block/quantizer multiplexors (5l6a-d) are set to select
from the quantizer multiplexors (511a—b), rather than
the block multiplexors.

A single stream of 16-bit data flows from the quan-
tizer unit 108 (FIG. 1) on bus 519. A 16-bit datum can be
latched into any one of 16 latches assigned in two banks:
501a-508a (bank 0), or 501b—508b (bank 1), each latch is
controlled by one of the control signals load0—load15. A
set of four 4:1 multiplexors: 509a (called quantizer bank
0 top multiplexor), 510a (called quantizer bank 0 bot
multiplexor), 50% (called quantizer bank 1 top multi-
plexor), and 5101: (called quantizer bank 1 bot multi-
plexor) selects four data items, each from a separate
group of four latches in response to signals to be de-
scribed later. Quantizer bank 0 top multiplexor 509a
selects one output datum from the latches 501a, 502a,
505a, and 506a. Quantizer bank 0 bot multiplexor 510a
selects one output datum from the latches 503a, 504a,
507a and 508a. Quantizer bank 1 top multiplexor 50917
selects one output datum from the latches 510b, 502b,
505b, and 50Gb. Quantizer bank 1 bot multiplexor 51%
selects one output datum from the latches 503b, 504b,
507b, and 508b.

A set of two 2:1 multiplexors 511a and Sub (quan-
tizer multiplexors) then selects a quantizer top data item
and a quantizer bot data item respectively. Quantizer
top data item is selected from the output data items of
the quantizer bank 0 and bank 1 top data items (output
data of multiplexors 5090 and 50%); and likewise, quan-
tizer bot data item is selected from the output data items
of the quantizer bank 0 and bank 1 top data items (out-
put data of multiplexors 510a and Slob). The quantizer
top and bot data items are provided at the block-quan-
tizer multiplexors 516a—516d, which are set to select the
quantizer top and bot data items (output data of multi-
plexors 511a and Sub) during decompression.

Finally, a set of four 2:1 multiplexors 5l7a—d selects
between the DCT row top and bot data (output data of
multiplexors 5l2d—515d) and the block/quantizer top
and bot data (output data of multiplexors 516a-516d) to
provide the input data into the DCT/IDCT processor
unit 106 (FIG. 1). Multiplexor 517:1 selects between one
set of block/quantizer multiplexor top data 516a and
DCT row storage top data 514:! to provide “A” register
top data 517a; mult_iplexor 517c selects from the other
set of block/quantizer multiplexor top data 516c and
row storage top data 512d to provide “B” register top
data. The two sets of quantizer multiplexor top data
5l6b and 516:! and DCT storage bot data 515d and 513d
provide the “A” register bot data 517b, and “B” register
bot data 517d, respectively.

Operation of DCT Input Select Unit During
Compression

Having described the structure of DCT input select
unit 104, the operation of the DCT input select unit 104
is next discussed.

FIG. 5b shows the control signal and data flow of the
DCT input select unit 104 during compression mode.
The DCT input select unit 104 can be viewed as having
sixteen internal states sequenced by the sixteen succes-
sive clock periods. FIG. 5b shows sixteen clock periods,
corresponding to one cycle through the sixteen internal
states. For compression mode, the internal states of the

5,196,946
25

DCT units 104-107 for clock periods 0 through 7 are
identical to the internal states of the DCT units 104-107

for clock periods 8 through 15. FIG. 5b shows the oper-
ations of the DCT input select unit 104 (FIG. 1) with
respect to one row of data from the DCT row storage
unit 105 and one row of input data from the block mem-
ory unit 103.

The first four clock periods illustrated (i.e. clock
periods 0, 1, 2 and 3) are the loading phase of data on
busses 518c and 518d into the latches 501d—508d from

the DCT row storage unit 105. These first four clock
periods are also the processing phase of the data from
the block memory unit 103 loaded into latches
501c-508c in the last four clock periods. The processing
of the block memory data stored in latches 501c-508c
will be described below using an example, in conjunc-
tion with discussion of clock periods 8 through 11, after
the loading of block memory data from block memory

unit 103 is discussed in conjunction with clock periods 2
4 through 7.

During the first four clock periods (0-3), a row of
data from DCT row storage unit 105 is loaded in the
order Y(0), Y(1) . . . Y(7) in pairs of two into latch pairs
501d-505a’, 502d—506d, 503d-507d and 504d-508d by
successive assertion of control signals row_load0
through row..load3.

In the next four clock periods 4 through 7, the DCT
input select unit 104 (FIG. 1) forwards to the
DCT/IDCT processor 106 the data loaded from the
DCT row storage unit 105 in the last four clock periods
0-3, and at the same time, loads data from the block
memory unit 103. The multiplexors 517a through 517d
are set to select DCT row storage data in latches
501d—508d. The DCT row storage multiplexors 512d
through 515d are activated in the next four clock peri-
ods to select, at clock period 4 and 5 elements Y(2) and
Y(5) to appear as output data of multiplexors 517a and
517b respectively (“A” register top and bot multiplex-
ors), and Y(1) and Y(6) to appear as output data of 517c
and 517d (“B” register top and bot multiplexors) respec-
tively. At clock periods 6 and 7, Y(3) and Y(4) appear as
the output data of multiplexors 517a and 517b respec-
tively, and Y(0) and Y(7) appear as output data ofmulti-
plexors 517:: and 517d respectively. During this time,
multiplexors 517a through 517d are selecting DCT row
storage data in latches 501d—508d.

During clock periods 4 through 7, a row of block
memory data x(0) x(1) . . . x(7) are latched into latches
50lc through 508c by control signals blk_load4 through
b1k_.load7 in the same manner as the latching of DCT
row storage data into latches 501d—508a' during clock
periods 0 through 3.

During the next four clock periods 8 through 11, the
DCT input select unit 104 is successively in the same
states as it is during clock periods 0 through 3; namely,
loading from DCT row storage unit 105 and forwarding
to DCT/IDCT processor unit 106 the data X(0) . . . x(7)
loaded in latches 501c-508:: from block memory unit
103 during the last four clock periods 4-7.

In clock periods 8 through 11, multiplexors 517a
through 517d select data from the block/quantizer mul-
tiplexors 516a through 516d, which in turn are set to
select data from the block memory multiplexors 512c
through 515c. The block memory multiplexors 512c
through 515c are set such that during clock periods 8
through 9, 11(2) and x(5) are available at multiplexors
517a and 517b, respectively; and during the same clock

0

26

periods 8 through 9, x(1) and x(6) are available at multi-
plexors 517c and 517d respectively.

Operation of DCT Input Select Unit During
Decompression

The operation of DCT input select unit 104 duririg
decompression mode is next discussed in conjunction
with FIG. 5c. '

FIG. 5c shows the control and data flow of the DCT

input select unit 104 during decompression mode. As
mentioned above, the DCT input select unit 104 may be
viewed as having 16 internal states. As shown in FIG.
5c, during the 16 clock periods 0 to 15, two rows of data
from DCT row storage unit 105 (clock periods 0-3 and
8-11) and two columns of data from the quantizer unit
108 are forwarded as input data to the DCT/IDCT
processor unit 106 (clock periods 0-15).

As shown in FIG. Sc, a continuous stream of 16-bit

data is provided by the quantizer unit 108 to the DCT
input select unit 104 at one datum per clock period. A
double-buffering scheme provides that when latches in
bank 0 (latches 501a through 5080) are being loaded, the
data in bank 1 (latches 501b through 508b) are being
selected for input to the DCT/IDCT processor unit
106. The latches are loaded, beginning at 501a through
508a in bank 0 by control signals load0 through load7
respectively (at clock periods 0 through 7), and then
switching over to bank 1 to load latches 501b through
508b by control signals load8 through load15 respec-
tively (clock periods 8 through 15). During clock peri-
ods 8 through 11, while bank 1 is being loaded, the data
in bank 0 x(0) . . . x(7) (loaded during clock periods 0
through 7) are being selected for input into the
DCT/IDCT processor unit 106. The order of selection
is shown in FIG. 5c in the sequence (top-bot): x(1)-x(7)
in clock period 8, x(3)—x(5) in clock period 9, x(2)—x(6)
for clock period 10, and x(0)-x(4) in clock period 11.
The same top data appear in both DCT “A” register top
data and DCT “B” register top data. The bot data for
the bot registers of “A” and “B” are the same as well.
During clock periods 0 through 3 in the four clock
periods following clock period 15 shown in FIG. Sc
(analogous to clock periods 0 through 3 shown), the
new data in latches 501b through 508b are selected in
similar order for input to the DCT/IDCT processor
unit 106.

Loading and processing of the data from the DCT
row storage unit 105 follow the same pattern as in the
compression mode: i.e. four clock periods during which
the latch pairs in 501:! through 508d are loaded by con-
trol signals row..load0 through row_load3 respec-
tively at one pair of two 16-bit data per clock period.
(The latches pairs are 50ld—505d, 502d-506d,

5034-507d and 504d—508d). For example, during clock
periods 0 through 3, the latches are loaded with a row
of 16-bit data Y(0) . . . Y(7) from DCT row storage. In
the next four clock periods, 4 through 7, 16-bit data Y(0)
. . . Y(7) in the latches 501d through 508d are provided
as input to DCT/IDCT processor unit 106 in the se-
quence (“A” register top, “A" register bot, “B” register
top, “B” register bot): (Y(1), Y(7), Y(1), Y(7)), at clock
Period 4. (Y(3). Y(5). Y(3), Y(5)) at clock period 5.
(Y(2), Y(5). Y(2). Y(0) at C1001‘ Period 6. and (Y(0).
Y(4), Y(0), Y(4)) at clock period 7.

Analogous loading and processing phases are pro-
vided at clock periods 8 through 15. Data in the latches
501:1 through 508:! (DCT row storage data) are alter-
nately selected every 4 clock periods with the data from

5,196,946
27

the quantizer unit 108 for input to DCT/IDCT proces-
sor unit 106. For example, during clock periods 0~
through 3, and 8 through 11, data from the quantizer
unit 108 is provided for input to DCT/IDCT processor
unit 106 and during clock periods 4 through 7, and 12
through 15, DCT row storage data are provided for
input to DCT/IDCT processor unit 106.

Structure and Operation of the DCT Row Storage Unit

The structure and operation of DCT row storage unit
105 (FIG. 1) is next described in conjunction with
FIGS. 6a-c.

FIG. 6a is a schematic diagram of the DCT row
storage unit 105.

The storage in DCT row storage unit 105 is imple-
mented by two 32 X l6-bit static random access memory
(SRAM) arrays 609 and 610, organized as “even” and
“odd” planes. 2:1 multiplexors 611 and 612 forward to
DCT input select unit 104 the output data read respec-
tively from the odd and even planes of the memory
arrays 609 and 610.

Configuration register 608 contains configuration
information, such as latency values (for either compres-
sion or decompression) to synchronize output from the
DCT row/column separator into DCT row storage
105, so that, according to the configuration information
in the configuration register 608, the address generator
607 generates a sequence of addresses for the SRAM
arrays 610 and 609.

The memory arrays 609 and 610 can be read or writ-
ten by a host computer via the bus 115 (FIG. 6a). 2:1
multiplexors 605, 606 select the input address provided
by the host computer on bus 613 when the host com-
puter requests access to SRAM arrays 609 and 610.

Incoming data from the DCT row/column separator
unit 107 arrive at DCT row storage unit 105 on two
16-bit buses 618 and 619. As described above, a host

computer may also write into the SRAM arrays 609 and
610. The data from the host computer are latched into
the SRAM arrays 609 and 610 from the 16-bit BUS 615.
Alternatively, a set of 2:1 multiplexors 601-604 multi-
plex the data from DCT/IDCT processor unit 106 on
buses 618, 619 to be written into either SRAM array 609
or 610 according to the memory access schemes to be
described below.

Two 16-bit outgoing data words are placed on busses
616 and 617, transmitting to output data from the
SRAM arrays 610 and 609, respectively. 2:1 multiplex-
ors 611 and 612 select the data on busses 616 or 617 to

place on buses 626 and 627, two 16-bit data words per
clock period, in the order required by the DCT/IDCT
algorithms implemented in the DCT/IDCT processor
unit 106, already described in conjunction with DCT
input select unit 104.

Alternatively, output data from the SRAM arrays
609 and 610 on busses 616 and 617 may be output on bus
614 under direction of a host computer (not shown).
The host computer (not shown) would be connected
onto host bus 115 as described in the IEEE standard

attached hereto as Appendix B.

In-Line Memory of the DCT Row Storage Unit

Because two 16-bit values are written into or read

from DCT row storage unit 105 per clock period, and
because of the order in which DCT or IDCT first-pass
data is accessed, an efficient scheme of reading and
writing the SRAM arrays 609 and 610 is provided, such
that the same memory locations may be written into

10

20

25

30

35

45

55

60

65

28

with a row of data in the incoming SX8 matrix after a
column of data is read from the last 8 X 8 matrix. In this

manner, an “in-line" memory access scheme imple-
mented, which requires 50% less storage than a compa-
rable double-buffering scheme.

In order to achieve the “in-line” memory advantage,

the SRAM arrays 609 and 610 are written and read
under the “horizontal” and “vertical” access pattern
alternately. Memory maps (called “write patterns”) are
shown in FIG. 6b and 6c for the horizontal and vertical

access patterns respectively.
FIG. 6b shows the content of the SRAM arrays 609

and 610 with an 8 X 8 first pass result matrix written. For
example, even and odd portions of logical memory
location 0, 0e and 00, contain elements respectively
X0(0) and X0(1) of row X0; 0e and 00 correspond to
address 0 in the E-plane (SRAM array 609) and O-plane
(SRAM array 610) respectively. Because of their inde-
pendent input and output capabilities, an E-plane datum
and an O-plane datum may be accessed simultaneously
during the same clock period. There are 32 memory
locations in each of the E-plane and O-plane of the
SRAM arrays 609 and 610; the “e” addresses are found
in the E-plane, and the “o” addresses are found in the
O-plane. Thus a total of 64 data words can be stored in
the even and odd plane taken together.

During compression, the use of the words “row” and
“column” refer to the rows and columns of the pixel
matrix, while during decompression, “rows” and “col-
umns” refer to the “rows” and “columns” of the fre-

quency matrix.
During any clock period, either two 16-bit data arrive

from DCT row/column separator unit 107 on busses
618 and 619 (input mode), or two 16-bit data go to the
DCT input select unit 104 via busses 626 and 627 (out-
put mode). The period of horizontal access pattern
consists of 64 clock periods, during which there are
eight (8) cycles each of four clock periods of read mem-
ory access followed by four clock periods of write
memory access. In the horizontal access pattern, during
compression, the outgoing data are provided to DCT‘
input select unit 104 column by column “horizontally,”
and the incoming data are written into the SRAM ar-
rays 609 and 610 row by row “horizontally.” During
decompression, the outgoing data are provided to DCT
input select unit 104 row by row horizontally, and the
incoming data are written column by column horizon-
tally.

The following description is based on the data flow
during compression only. During decompression, the
incoming data into the DCT row storage unit 105 are
columns of a matrix and the outgoing data into DCT

input select unit 104 are rows ofa matrix, but the princi-
ples of horizontal and vertical accesses are the same.

FIG. 6b shows a 8X8 matrix X with rows X0-X7

completely written horizontally into the SRAM arrays
609 and 610. FIG. 6b is the map of SRAM arrays 609
and 610 at the instant in time after the last two 16-bit

data from the previous matrix are read, and the last two
16-bit data of the current matrix X 017(6) and X7(7) are
written into the SRAM arrays 609 and 610.

Because the second pass of the 2-dimensional DCT
requires data to be read in pairs, and in column order,
i.e. in the order X0(0)—X1(0), X2(0)—X3(0), . . .
X6(0)—-X7(0), X0(1)-X1(l) . . . X6(7)—X7(7). after a
column (for example, X0(0), X1(0) . . . X7(0)), is read,
the memory locations 0e, 40, 8e, 12o, . . ., 280 previously
occupied by the column X0(0) . . . X7(0) are now avail-

5,196,946
29

able for storage of the incoming row y0 with elements
Y0(0) . . . Y0(7).

After the first column X0(0) . . . X7(0) is read and
replaced by row Y0(0) . . . Y0(7), the second column
X0(1) . . . X7(1) is read and replaced by row Y1(0) . . .
Y1(7). This process is repeated until all of matrix X is
read and replaced by all of matrix Y, as shown in FIG.
6c. Since during this period, data are read and written
“vertically,” this access pattern is called vertical access
pattern.

The output of matrix Y will be column by column to
DCT input select unit 104. Because these columns are
located “horizontally” in the SRAM array 609 and 610,

;' the writing of the next incoming matrix row by row will
be horizontally also, i.e., to constitute the horizontal
access pattern.

In order to allow data to be written vertically and
accessed horizontally, or vice versa, each row’s first
element, e.g., X0(0), X1(0) etc. must be alternately writ-
ten in the E-plane and 0-plane, as shown in FIGS. 6b
and 6c, since adjacent 16-bit data in the same column
must be accessed in pairs at the same time.

In this manner, an “in-line” memory is implemented
resulting in a 50% saving of storage space over a double
buffering scheme.

Structure and Operation of the DCT/IDCT Processor
Unit

Input data for the DCT/IDCT processor unit 106 are
selected by the multiplexors 517a through 517:! in the
DCT input select unit 104. The input data to the
DCT/IDCT processor 106 are four 16-bit words
latched by the latches 701! and 70lb (FIG. 7a). The
DCT/IDCT processor unit 106 calculates the discrete
cosine transform or DCT during compression mode,
and calculates the inverse discrete cosine transform

IDCT during decompression mode.
According to the present invention, the DCT and

IDCT algorithms are implemented as two eight-stage
pipelines, in accordance with the flow diagrams in
FIGS. 7b and 7e. During compression the flow diagram
in FIG. 7b is the same as FIG. 15d, except for the last
multiplication step involving g[0], h[0] . . . i[0] (FIG.
15a’). Because the quantization step involves a multipli-
cation, the last multiplication of the DCT is deferred to
be performed with the quantization step in the quantizer
108, i.e., the quantization coefficient actually employed
is the product of the default JPEG standard quantiza-
tion coefficient and the two deferred DCT multipli-
cands, one from each pass through the DCT/IDCT
processor unit 106. During IDCT, multiplicands are
premultiplied in the dequantization step. This deferment
or premultiplication is possible because during DCT, all
elements in a column have the same scale factor, and

during IDCT all elements in a row have the same scale
factor. By deferring these multiplication steps until the
quantization step, two multiplies per pixel are saved. In
the flow diagrams of FIGS. 7b and 7e, input data flows
from left to right. A circle indicates a latch or register,
and a line joining a left circle with a right circle indi-
cates an arithmetic operation performed as a datum
flow from the left latch (previous stage) to the right
latch (next stage). A constant placed on a line joining a
left latch to a right latch indicates that the value of the
datum at the left latch is scaled (multiplied) by the con-
stant as the datum tlows to the right latch; otherwise, if

' no constant appears on the joining line, the datum on
the left latch is not scaled. For example, in FIG. 7b, r3

20

30

65

30

in stage 6 is derived by having p3 scaled by 2 cos (pi/4),
and r2 is derived by having p2 scaled by l (unsealed). A
latch having more than one line converging on it, and
each line originating from the left, indicates summation
at the right latch of the values in each originating left
latch, and according to the sign shown on the line. For
example, in FIG. 7b, y5 is the sum of x(3) and —x(4).

As shown in FIG. 7b, for the forward transform

(DCT) algorithm, between stages 1 and 2 is a shuffle-
and-add network, with each datum at stage 2 involving
exactly two values from stage 1. Between the stages 2
and 3 are scaling operations involving either constants 1
or 2 cos (pi/4). Stage 4 is either an unscaled stage 3 or
a shuflle-and-add requiring a value at stage 2 and a
value at stage 3. Between stages 4 and 5 is another shuf-
fle-and-add network, and again each datum at stage 5 is
the result of exactly two data items at stage 4. Stage 6 is
a scaled version of stage 5, involving scaling constants 2
cos (pi/4), 2 cos (pi/8), 2 cos (3pi/8) and 1. Stage 7 data
are composed of scaled stage 6 data and summations
requiring reference to stage 5 data. Finally, between
stage 8 and stage 7 is another shuffle-and-add network,
each datum at stage 8 is the result of summation of two
data items at stage 7.

According to the present invention as shown in FIG.
7e, the algorithm for the inverse transform (IDCT)
follows closely an 8-stage flow network as in the for-
ward transform, except that scaling between stages 2
and 3 involves additionally the constants 2 cos (pi/8)
and 2 cos (3pi/8), and the shuffle-and-add results at
stages 4 and 7 involve values from their respective im-
mediately previous stage, rather than requiring refer-
ence to two stages. Hence, with accommodation for the
differences noted in the above, it is feasible to imple-
ment the forward and inverse algorithms with the same
8-stage processor.

Because no shuffle-and-add in the data flow involves

more than two values from the previous stage, these
algorithms may be implemented in two 8-stage pipelines
with cross-over points where shuffle-and-add opera-
tions are required. ,

FIG. 7a shows the hardware implementation of the
flow diagrams in FIGS. 15d and 15e derived above in
the discussion of filter implementation. The two 8-stage
pipelines shown in FIG. 7a implement, during compres-
sion, the filter tree ofFIG. 15b in the following manner:

operations between stages 1 and 2 implement the first
level filters 1501 and 1502; operations between stages
2-8 implement the second level filters 1503-1506; and,
between stages 5-8 implement the third level filters
1507-1514. As explained above, the operation ofeach of
the filters 1515-1530 corresponds to the last multiplica-
tion step in each pixel. This last multiplication step is
performed inside the quantizer 108 (FIG. 1).

The DCT/IDCT processor unit 106 is implemented
by two data paths 700a and 700b, shown respectively in
the upper and lower portions of FIG. 7a. Data may be
transferred from one data path to the other via multi-
plexors such as 709, 711:, 7222, 722b, 731t, or 733t. Ad-
ders 735i and 735b also combine input data from one
data path with input data in the other data path. Control
signals in the data path are data-independent, providing
proper sequencing of data in accordance with the DCT
or IDCT algorithms shown in FIGS. 7b and 7e. All
operations in the DCT/IDCT processor 106 shown in
FIG. 7a involve 16-bit data. Adders in the DCT/IDCT

processor unit 106 perform both additions and subtrac-
tions.

5,196,946
31

The two pairs of 16-bit input data are fust latched
into latches 701t (“A” register) and 701b (“B” Register).
The adders 7022‘ and 702b combine the respective 16-bit
data in the A and B registers. The “A” and “B" latches
each holds two 16-bit data words. The A and B registers
are the stage 1 latches shown in FIGS. 7b and 7e. The
results of the additions in adders 702! and 702b are

latched respectively into the latches 7032 and 703b
(stage 2 latches). The datum in latch 703t is simulta-
neously latched by latch 707t, and multiplied by multi-
plier 706 with a constant stored in latch 705, which is
selected by multiplexor 704. The constant in latch 705 is
either 1, 2 cos (pi/4), 2 cos (3pi/8) or 2 cos (pi/8). The
result of the multiplication is latched into latch 7081 (a
stage 3 latch).

Alternatively, the datum in latch 703! may be latched
by latch 7071 to be then selected by multiplexor 709 for
transferring the datum into data path 700b. 2:1 Multi-
plexor 709 may alternatively select the datum in latch
708! for the transfer. The datum in 703b is delayed by
latch 707b before being latched into 708b (a stage 3
latch). This datum in 708b may either be added in adder
710 to the datum selected from the data path 700a by
multiplexor 709 and then latched into latch 7l2b
through multiplexor 711b or be passed into data path
7000 through 2:1 multiplexor 711! and be latched by
latch 712t (a stage 4 latch), or be directly latched into
7l2b (a stage 4 latch) through multiplexor 711b.

The datum in latch 708t may be selected by multi-
plexer 711t to be latched into latch 712:, or as indicated
above, passed into data path 700b through multiplexor
709. The data in latches 712t and 7l2b may each pass
over to the opposite data path, 700b and 7000 respec-
tively, selected by 2:1 multiplexers 7132 and 713b into
latches 7141 or 714b respectively. Alternatively, the
data in latches 712! and 7l2b may be latched in their
respective data path 700a and 700b into latches 714! or
714b through multiplexors 713t and 713b.

A series of latches, 7152 through 720: in data path
700a, and 715b to 719b in data path 700b, are provided
for temporary storage. Data in these latches are ad-
vanced one latch every clock cycle, with the content of
latches 720i and 71% discarded, as data in 719: and 718b
advance into latches 720t and 719b. In data path 700a,
the 5:1 multiplexor 721! may select any one of the data
in the latches 715t through 718t, or from 7141, as an
input operand ofadder 723t. 5:1 multiplexor 722! selects
a datum in any one of 714t, 716t through 7181 or 7202? as
an input operand into adder 723b in data path 700b.
Similarly, in data path 700b, 3:1 multiplexor 722b selects
from latches 716b, 717b, and 719b an input operand into
adder 723! in data path 7000. 5:1 multiplexor 72lb se-
lects one datum from the latches 715b through 719b, as
an input operand to adder 723b.

The results of the summations in adders 723! and 723b

are latched into latches 72At and 724b (stage 5 latches)
respectively. The datum in latch 724t may be multiplied
by multiplier 727 to a constant in latch 726, which is
selected by 4:1 multiplexor 725, from among the con-
stants 1, 2 cos (pi/8), 2 cos(3pi/8), or 2 cos(pi/4). Alter-
natively, the datum in latch 724: may be latched into
latch 730 after a delay at latch 7281. The result of the
multiplication is stored in latch 729t (a stage 6 latch).
The 2:1 multiplexor 731t may channel either the datum
in latch 729t or in latch 730 as an input operand of adder
732 in data path 700b. The datum in latch 729t can also
be passed to latch 734t (a stage 7 latch) through 2:1
multiplexor 733t.

20

30

40

45

65

32

The datum in latch 724b is passed to latch 728b,
which is then either passed to adder 732 through 2:1
multiplexor 731b, to be added to the datum selected by
2:1 multiplexor 73lt, or passed to latch 729b (a stage 6
latch). The datum in latch 72% may be passed to data
path 700a by 2:1 multiplexor 733t, or passed as operand
to adder 732 through 2:1 multiplexor 731b, to be added
to the datum selected by 2:1 multiplexor 731:, or be

passed to latch 734b (stage 7 latch) through 2:1 multi-
plexor 733b.

Adders 735: and 735b each add the data in latches

734! and 734b, and deliver the results of the summation
to latches 736! and 736b (both stage 8 latches) respec-

tively. The data in latches 7361 and 736b leave the
DCT/IDCT processor 106 through latches 738! and
738b respectively, after one clock delay at latches 737t
and 737b respectively.

Multipliers 706 and 727 each require two clock peri-
ods to complete a multiplication. Each multiplier is
provided an internal latch for storage ofan intermediate
result at the end of the first clock period, so that the

input multiplicand need only be stable during the first
clock period at the input terminals of the multiplier.
Both during compression and decompression, every
four clock periods a new row or a column of data (eight
values) are supplied to the DCT/IDCT Processor Unit
106 two values at a time. Hence, the control signals
inside the DCT/IDCT Processor Unit 106 repeats
every four clock periods.

Operation of DCT/IDCT Processor Unit During
Compression

Having described the structure of the DCT/IDCT
processor unit 106, the algorithms implemented are next
described in conjunction with FIGS. 7b, 7c and 7d for
compression mode, and in conjunction with FIGS. 7e,
7fand 7g for decompression mode.

The DCT/IDCT processor unit 106 calculates a
1-dimensional discrete cosine transform for one row

(eight values) of pixel data during compression, and
calculates a 1-dimensional inverse discrete cosine trans-

form for one column (eight values) of pixel data during
decompression.

FIG. 7b is a flow diagram representation of the DCT
algorithm for a row of input data during compression
mode. FIG. 7c shows the implementation of the DCT
algorithm shown in FIG. 7b in accordance with the
present invention. FIG. 7d shows the timing of the
control signals for implementing the algorithm as illus-
trated in FIG. 7b.

The input data entering the DCT/IDCT processor
106 (FIG. 1) are either selected from the block memory
unit 103, or from DCT row storage unit 105; the se-
quence in which a row of data from either source is
presented to the DCT/IDCT processor 106 is described
above in conjunction with the description ofDCT input
select unit 104.

Accordingly, at clock period 0, elements x(2) and x(5)
are latched into latch 701i, and elements x(1) and x(6)
are latched into latch 702b.

At the next clock period 1, the results of the sum
y3=x(2)+x(5), and the difierence y7=x(l)—x(6), are
latched into latches 7031 and 703b respectively.

At clock period 2, elements x(3) and x(4), x(0) and
x(7) are latched into latches 701! and 701b respectively.
At the same time, data y3 and y7 are advanced to
latches 707! and 707b, and y3 and y7 are replaced at

33

latches 703: and 703b by the difference y6=x(2)—-.7c(5)
and the sum y2=x(l)+x(6) respectively.

At clock period 3, data y3 and y7 are advanced to
latches 708: and 708b as data w3 and w7 respectively.
At the same time, data y6 and y2 are advanced to
latches 707: and 707b. Latches 703: and 703b now con-

tains respectively, the sum y4=x(3)+x(4), and the dif-
ference y8 =x(0) —x(7), resulting from operations at
adders 702: and 702b respectively.

At clock period 4, data y4 and y8 advance to latches
707: and 707b, while latches 703: and 703b now contain
the difference y5 =x(3)—x(4), and the sum

yl =x(0)+x(7). Multiplier 706 multiplies constant 2
cos(pi/4) to datum y6 to form datum w6 to be latched
by latch 708:, and datum y2 advances to latch 708b as
w2. Datum w3 advances to latch 712: and is renamed
23. At the same time, the difference z7=w7—y6 is
latched into 7121:.

It should be noted that the data is continuously being

brought into the DCT/IDCT processor unit 106. Al-
though FIG. 7c, and likewise FIG. 7]} shows no data for
clock periods 4-16 residing in latches 701: and 701b, it
is so shown for clear presentation to the reader. In fact,
a new row or column (eight values) is brought into the
DCT/IDCT processor 105 every four clock cycles.
These rows or columns are alternatively selected from

either DCT row storage unit 105 or block memory unit
103. For example, if the data brought into DCT/IDCT
processor unit 106 during clock periods 0-3 are selected
from block memory unit 103, the data brought into
DCT/IDCT processor unit 106 during clock period 4-7
is from the DCT row storage unit 105. In other words,
the pipelines are always filled.

At clock period 5, data y5 and yl advance to 707: and
707b; data y4 and y8 advance to latches 708: and 708b to
become w4 and WS respectively; data 23 and 27 advance
to latches 714: and 714b respectively; and, data w6 and
w2 advance to latches 712: and 712b respectively to
become 26 and 22.

.At clock period 6, data 23 and 27 advance to latches
715: and 715b respectively; data 26 and 22 advance to
latches 714: and 714b respectively; datum w4 advance
to latch 712t and becomes 24, and 28 = w8 —y5 is latched
into 712b as a result of subtraction at adder 710. At the
same time, datum yl is latched at latch 708b as wl,
datum y5 has completed multiplication at multiplier 706
with the constant 2 cos(pi/4) and latched at latch 708:.

At clock period 7, all data advance to the next latch
in their respective data paths, to result in data 24, 26 and
23 in latches 714:, 715: and 716: respectively, and 28, 22
and 27 in latches 714b, 715b, and 716b respectively. The
data WS and wl advance to latches 712: and 712b as data
25 and 21 respectively.

At clock period 8, all data advance one latch in their
respective data path, so that data 21 through 28 are each
stored in one of the temporary latches 714: through 720:
in the 700:: data path, or 714b through 719b in the data
path 700b.

At clock period 9, multiplexors 721: and 722b select
data 25 and 27 to input of adder 723:; the result of the
sum p7=z5 +27 is latched into latch 724:. At the same
time, multiplexors 722: and 721b select data 26 and 28
for adder 723b; the result of the sum p8 =z6+z8 is
latched into latch 7241:.

At clock period 10, while data p7 and p8 advance to
latches 728: and 728b respectively, multiplexors 721:,
721b, 722: and 722b select 21, 22, 23 and 24 for adders

20

25

30

45

5,196,946
34

723: and 723b, such that the results p3 =z2—z3,

p4=zl -24 are latched into 724: and 724b respectively.
At clock period 11, the results of adders 723: and

723b, respectively, p5 =27 -25 and p6=z8 -26, are
latched into latches 724: and 724-b. At the same time, p3

and p4 are advanced to latches 728: and 72815 respec-
tively. P3 is present at the input terminals of multiplier
727. Datum p7 has, in clock period 9, been present at the
input terminals of multiplier 727, has now completed
the multiplication at multiplier 727 with constant 2
cos(pi/8) to yield r7, which is latched at latch 729:. A
copy of datum p7 is advanced to latch 730, while datum
p8 is advanced to latch 729b as r8.

At clock period 12, results of adders 723: and 723b:
respectively, pl =21 +24 and p2=z2+z3 are latched
into latches 724: and 72417. Data p5 and p6 are advanced
to 728: and 728b respectively. Datum p1 is also present
at the inputs of multiplier 727. Datum p3 is advanced to
latch 730, while p3 has completed the multiplication at
multiplier 727 with constant 2 cos (pi/4) to yield r3,
which is latched into latch 729:. The datum p4 is ad-
vanced to latch 729b as r4. At the same time, datum r7
is advanced to 734: as s7. The result of adder 732, corre-

sponding to s8=r8—p7, is latched at latch 734b. Z5, 24
and 26 are advanced one latch to the J latches 718:, 719:
and 720: while 21 and 28 are advanced one latch to the
K latches 718b, 719b while 22 is lost (no latch is avail-
able to receive 22 when it is shifted out of latch 719b).

At clock period 13, Data p1 and p2 are advanced to
728: and 728b respectively. Datum pl is present at the
inputs of multiplier 727 at clock period 12. Datum p5 is
advanced to latch 730, while p5, which is present during
the clock period 11 at the inputs of multiplier 727, has
also completed a multiplication by constant 2 cos
(3pi/8) at multiplier 727, to yield datum r5, which is
latched into latch 729:. Datum p6 is advanced to latch
729b as r6. Datum r3 is advanced through multiplexor
733: to latch 734: as s3. The result at adder 732,

s4=r4—p3 is latched into latch 734b. The first DCT
output data X(1)=s7+s8 and X(7)=s8 —s7 are provided
by adders 735: and 735b, respectively, and are latched
into latches 736: and 736b respectively. 25 and 24 are
shifted to latches 719: and 720:, respectively, and 21 is
shifted to latch 719b while 28 is shifted out of latch 71%
and lost.

At clock period 14, datum p1 in 728: is advanced into '
latch 730, datum pl is advanced to latch 729: through
multiplier 727 as rl, datum p2 is advanced to latch 729b
as r2, and datum r5 is advanced from latch 729: to latch
734: as s5. Latch 734b holds adder 732’s result

s6=r6-p5. DCT outputs X(2)==s3+s4 and
X(6)=s4-—s3 are latched into latches 736: and 736b,
respectively. The results of X(1) and X(7) of clock per-
iod 13 are advanced to latches 737: and 737b respec-

tively.
At clock period 15, data rl and r2 are advanced to

latch 734: and 73417 as s1 and s2 respectively. DCT

output data X(3)=s5+.s6 and X(5)=s6—s5 are com-
puted by adders 735: and 735b, respectively, and are
available at latches 736: and 736b, respectively. The

prior results X(2), X(6), X(l) and X(7) are advanced to
latches 737:, 737b, 738: and 7381: respectively.

At clock period 16, the last results of this row
X(0)=sl +52 and X(4)=sl —s2 are computed by adders
735: and 735b, respectively, and latched into latches
736: and 736b respectively. The output X(1) and X(7)
are available at the input of the DCT row/column sepa-
rator unit 107, for either storage in the DCT row stor-

5,196,946
35

age unit 105, or to be forwarded to the quantizer unit
108, dependent respectively on whether X(0) . . . X(7)
are first-pass DCT output (row data) or second-pass
DCT output (column data). DCT output X(3), X(5),
X(2) and X(6) are respectively advanced to latches 737:,
737b, 738:, and 738b.

At the next 3 clock periods, the pairs X(2)—X(6),
X(3)—X(5), and X(0)-X(4) are successively available as
output data of the DCT/IDCT processor unit 106 for
input into DCT row/column separator unit 107.

FIG. 7d shows the control signals for the multiplexer
and address of FIG. 7a during the 16 clock periods.
Each control signal is repeated every four clock cycles.

Operation of DCT/IDCT Processor During
Decompression

The operation of DCT/IDCT processor unit 106 in
the decompression mode is next described in conjunc-
tion with FIGS. 70, 7e and 7_f.'

At clock period 0, data X(l) and X(7) are presented at
the top and bottom latches, respectively, of each of “A”
and “B” registers (latches 701: and 70lb). Data X(l) and
X(7) are selected by DCT input select unit 104 from
either the quantizer unit 108 or the DCT row storage
unit 105, as discussed above.

At clock period 1, data X(3) and X(5) are respectively
presented at both top and bottom latches of latches 701:
and 701b. At the same time, latches 703: and 703b latch

respectively y8 =X(l)—X(7) and y2 =X(1)+X(7).
At clock period 2, data X(2) and X(6) are respectively

presented at both top and bottom latches of latches 701:
and 701b in the same manner as input data from the last
two clock periods 0-1. The results y8 and y2 have ad-
vanced to latches 707: and 707b, and latches 703: and
703b latch the result y6=X(3) —X(5) and
y4=X(3)+X(5) respectively from adders 702: and 702b.

At clock period 3, the input data at both the top and
bottom latches of latches 701: and 701b are respectively
X(0) and X(4).
y3=X(2) +X(6) are latched at latches 703: and 703b. At
the same time, y8, which was present at the inputs of
multiplier 706 at clock period 1 is scaled by multiplier
706 with the constant 2 cos (pi/8) as w8 and latched into
latch 708:, while y2 is advanced to and stored in latch
708b as w2. Y6 is transferred to latch 707: after serving

as input to multiplier 706 during clock period 3. Y4 is
transferred to latch 707b.

At clock period 4, w2 is advanced to latch 712: as 22,
and adder 710 subtracts w2 from w8 to form 28 which
is latched into latch 712b. The datum y4 is advanced to
latch 708b as w4, and datum y6 which is present at the

inputs of multiplier 706 at clock period 2, is scaled by
multiplier 706 with the constant 2 cos (3pi/8) to yield
w6 latched into latch 708:. Data y7 and y3 are advanced
to latches 707: and 707b respectively. The latches 703:
and 703b contain respectively the results
)6 =X(0)—X(4) and yl =X(0)+X(4). Y5 is now input to
multiplier,706.

At clock period 5, 22 and 28 are advanced to latches
714: and 714b, while w4 has crossed over to data path
700a via 2:1 multiplexor 711: and is latched at latch 712:
as 24. Adder 710 subtract w4 from w6, the result being
latched as 26 at latch 712b. At the same time, datum y7
is scaled by 2 cos(pi/4) to become datum w7 and then
advanced to latch 708:. Y3 is advanced to and stored in

latch 708b as WB and y5 and yl are advanced to latches
707: and 707b respectively.

36

At clock period 6, y5 (scaled by unity) and y1 are
advanced to latches 708: and 708b respectively as WS
and wl. Datum w3 crosses over to data path 700a and
is latched as 23 at latch 712:, and adder 710 subtracts w3
from w7 to yield 27 latched at latch 712b. Z6 is trans-
ferred from latch 712b through multiplexer 713: to latch
714:. 2.4 is transferred from latch 712: through multi-
plexor 713b to latch 714b. Z2 is advanced from latch
714: to latch 715: while 28 is advanced from latch 714b
to latch 715b.

At clock period 7, WS and wl are advanced to latches
712: and 712b as 25 and 21 respectively, and data 23, 27,
26, 24, 22 and 28 are advanced to latches 714:, 714b,
715:, 715b, 716: and 716b, respectively.

At clock period 8, 25, 21, 23, 27, 26, 24, 22, and 28 are
advanced to latches 714:, 714b, 715:, 715b, 716:, 716b,

717: and 717b, respectively.
At clock period 9, 25, 21, 23, 27, 26, 24, 22, and 28 are

advanced to latches 715:, 715b, 716:, 716b, 717:, 717b,
718: and 718b. At the sa.me time, multiplexors 721: and
722b select data 22 and 24, respectively, into adder 723:
to yield the resultp4=22-24 which is latched into latch
724:. Likewise, multiplexors 722: and 72lb select data
25 and 27, respectively, into adder 723b to yield the
result 125 =25—z7, which is then loaded into latch 724b.

At clock period 10, multiplexors 721: and 722b select
data 25 and 27, respectively, into adder 723: to yield the
result p7-=25+z7, which is loaded into latch 724:. At
the same time, multiplexors 722: and 72lb select data 26

30 and 28, respectively, into adder 723b to yield the result

Results y7=X(2)—X(6) and 40

45

p8=z6+28, which is then loaded into latch 724b.
Data p4 and p5 from latches 724:, 724b are advanced

to latch 728: and 728b respectively. The data 25, 23, 26
and 22 in latches 715:—718: are advanced one latch to

716:-719:, respectively. Similarly, data 21, 27, 24 and 28
are advanced to 716b-719b, respectively.

At clock period 11, the results of adders 723: and
723b p6=z8 -26 and p3 =21 —-23 are latched at latches
724: and 724b, the operands 28, 26, 21 and 23 being
selected by 722b, 721:, 72lb and 722:, respectively. Data
p7 and p8 are advanced to latches 728: and 728b respec-
tively. At the same time, p4, having been presented as
input to multiplier 727 at clock period 9, is scaled by
multiplier 727 with a constant 2 cos (pi/4) and latched
as r4 at latch 729:, and p5 is advanced from latch 728b
to latch 729b as r5. The data in latches 716:-719:, and
716b—719b are each advanced one latch to 717:—720:

and 717b—720b, respectively. Datum 28 in latch 719b is
discarded. .

At clock period 12, p7 and p8 are advanced to latches
729: and 729b respectively as r7 and r8. Data p6 and p3
are advanced to latches 728: and 728b respectively.
Datum r5 is advanced to latch 734: via multiplexor 733:
as s5; r4 crosses over to data path 7(X)b, and is subtracted
r8 by adder 732 to yield s4 and is latched at latch 734b.
At the same time, data 21 and 23 are selected by multi-

plexors 722b and 721:, respectively, into adder 723: to
yield result pl =21 +23 which is latched into latch 7241.
Likewise, data 22 and 24 are selected by multiplexors
722: and 721b, respectively, into adder 723b to yield
result p2=z2+24 which is latched into latch 724b.

At clock period 13, data p1 and p2 are advanced to
latches 728: and 728b respectively. Datum p6, which
served as input to multiplier 727 during clock period 11,
is scaled by multiplier 727 with a constant 2 cos (pi/4)
and latched as r6 at latch 729:, and datum p3 is ad-
vanced from latch 728b to latch 729b as r3. Data r7 and

r8 are advanced to latches 734: and 7341: respectively as

5,196,946
37

s7 and s8. Adders 735t and 735b operated on s5 and s4,
which are respectively in latches 734:‘ and 734b in clock
period 12, to yield respectively IDCT results
x(2)=s4+s5 and x(5) =55-s4, and latched into latches
736: and 7361: respectively.

At clock period 14, data pl and p2 are advanced to
latches 7291 and 72% as r1 and r2. Datum r6 crosses

over to data path 700b through multiplexer 731:, and is
then subtracted r2 by the adder 732 to yield the result
s6, which is latched by latch 734b. Datum r3 crosses
over to data path 700a through multiplexer 733i and is
latched by latch 7342 as s3. IDCT results x(1)=s7+s8
and x(6)=s7—s8 are computed by adder 735! and 73517
respectively and are latched into latches 7362 and 736b
respectively. The previous results x(2) and x(5) are
advanced to latches 737t and 737b respectively.

At clock period 15, r1 and r2 are advanced to latches
734i and 734b respectively as s1 and s2. IDCT results
x(3)=s3+s6 and x(4)=s3 -36 are computed by adders
7351 and 735b respectively and are latched at latches
736t and 736b. The prior results x(1), x(6), x(2), x(5) are
advanced to latches 7371, 737b, 7382 and 738b.

At clock period 16, IDCT results x(0)=sl +52 and
x(7) =sl -52 are computed by adders 735! and 735b
respectively and are latched into latches 736i and 736b.
IDCT results x(2) and x(5) latches 738t and 738b respec-
tively are latched into the DCT row/column separator
unit 107. X(2) and x(5) are then channeled by the DCT
row/column separator to the block memory unit 103, or
DCT row storage unit 105 dependent upon whether the
IDCT results are first-pass or second pass-results.

IDCT output pairs x(1)—x(6), x(3)-x(4) and x(0)-x(7)
are available at the DCT row/column separator unit
107 at the next 3 clock periods.

FIG. 7g shows the control signals for the adders and
multiplexers of the DCT/IDCT Processor 106 during
decompression. Again these control signals are repeated
every four clock cycles.

Structure and Operaton of the DCT Row/Column
Separator Unit 107

The DCT Row/Column Separator separates the

output of the DCT/IDCT Processor 106 into two
streams of the data, both during compression and de-
compression. One stream ofdata represents the interme-
diate first-pass result of the DCT or the IDCT. The
other stream of data represents the final results of the
2-pass DCT or IDCT. The intermediate first-pass re-
sults of the DCT or IDCT are streamed into DCT Row

storage unit 105 for temporary storage and are staged
for the second pass of the 2-pass DCT or IDCT. The
other stream containing the final results of the 2-pass
DCT or IDCT is streamed to the quantizer 108 or DCT
block memory 103, dependent upon whether compres-

‘ sion or decompression is performed. The DCT Row/-
Column Separator is optimized for 4:2:2 data format
such that a 16-bit datum is forwarded to the quantizer
108 or DCT block memory 103 every clock period, and
a row or column (eight values) of intermediate result is
provided in four clock periods every eight clock peri-
eds.

The structure and operation of the DCT rew/column
separator unit'(DRCS) 107 are next described in con-
junction with FIGS. 8a, 8b and 8c.

FIG. 8a shows a schematic diagram for DRCS 107.
As shown, two 16-bit data come into the DRCS unit
107 every clock period via latches 738! and 738b in the
DCT/IDCT processor unit 106. Hence, a row or col-

20

45

38

umn of data are supplied by the DCT/IDCT processor
unit 106 every four clock cycles. The incoming data are
channeled to one of three latch pair groups: the DCT
row storage latch pairs (8012; 801b to 8041, 804b), the
first quantizer latch pairs (805t, 80517 to 8082, 808b) or
the second quantizer latch pairs (8l1t, 81lb to 8142,
8l8b). Each of these latch pairs are made up of two
16-bit latches. For example, latch pair 801 is made up of
latches 8011 and 801b.

The DCT row storage latch pairs 8011, 801b to 804t,
80412 hold results of the first-pass DCT or IDCT; hence,
the contents of these latches will be forwarded to DCT

row storage unit 105 for the second-pass of the 2-dimen-
sional DCT or IDCT. Multiplexors 809! and 80% select
the contents of two latches, from among latches
801t-804t and 801b—804b respectively, for output to the
DCT row storage unit 105.

On the other hand, the data channeled into the first

and second quantizer latch pairs (805t and 805b to 808t
and 808b, 811! and Sub to 8142 and 814b) are forwarded

to the quantizer unit 108 during compression, or for-
warded te the block memory unit 103 during decom-

pression, since such data have completed the 2-dimen-
sional DCT or IDCT. 4:1 multiplexers 810! and 8l0b
select two 16-bit data contained in the latches 805t—808t

and 805b—808b. Similarly 4:1 multiplexers 81st and 815b
select two 16-bit data contained in latches 811t-814t and
811b-81417. The four 16-bit data selected by the four 4:1

multiplexers 810t, 810b, 815: and 815b are again selected
by 4:1 multiplexer 816 for output to quantizer unit 108.

During compression, the first and second quantizer
latch pairs (805t and 805b to 80st and 808b, 811i and
Sub to 814! and 8141)) form a double-buffer scheme to
provide a continuous output 16-bit data stream to the
quantizer 108. As the first quantizer latch pairs (805t,
805b to 808t, 808b) are loaded, the second quantizer

latch pairs (8112, 811b to 8l4t, 81417) are read for output
to quantizer unit 108. 4:1 multiplexers 810t and 8l0b
select the two 16-bit data contained in the latches
805t-808! and 805b—808b. Similarly 4:1 multiplexers
815t and 815b select two 16-bit data contained in latches
811t—814t and 811b—814b. The four 16-bit data selected

by the four 4:1 multiplexers 810t, 810b, 815! and 815b
are again selected by 4:1 multiplexer 816 for output to
quantizer unit 108.

During decompression, however, the second quan-
tizer latch pairs (81lt and 811b to 814i and 8l4b) are not
used. The incoming data stream from the DCT/IDCT
processor unit 106_is latched into the first quantizer
latch pairs (8051, 805b to 808i, 808b). 4:1 multiplexers
817i and 817b select two 16-bit data per clock period for

output to the block memory unit 103. Since only the
first 12 bits ofeach of these selected datum is considered

significant, the 4 least significant bits are discarded from
each selected datum. Therefore, two 12-bit data are
forwarded to block memory unit 103 every clock per-
iod.

Operation of DCT Row/Column Separator Unit
During Compression

FIG. 8b illustrates the data flow for DCT row/-

column separator unit 107 (FIG. 1) during compression.
At clock periods 0-3, the first-pass DCT pairs of

16-bit data X(1)-X(7). X(2)—X(5), X(3)—X(5), X(0)—X(4)
are successively made available from latches 738! and
738b in the DCT/IDCT processor unit 106, at the rate
of two 16-bit data per clock period. As shown in FIG.
8b, during clock periods 1-4, a pair of data is separately

5,196,946
39

latched as they are made available at latches 738: and
738b at the end of each clock period into two latches‘
among latches 8011-804: and 801b-804b. Therefore,
X(2) and X(1), X(6) and X(7), X(0) and X(3) and X(4)
and X(5) are, as a result, stored in latch pairs 801: and
801b, 802: and 802b, 803: and 803b, and 804: and 804b,
respectively by the end of clock period 4.

Also, during clock periods 0-7, data loaded into latch
pairs 811:, 811b to 814:, 81417 previously are output from
the second quantizer latch pairs 811:, 811b to 814:, 814b
at the rate of an 16-bit datum per clock period. These
data were loaded into latch pairs 811-814 in the clock
periods 12-15 of the last 16-clock period cycle and
clock period 0 of the current 16 clock period cycle. The
loading and output of the quantizer latch pairs 8051‘,
805b to 808:, 8081; and 811t, 811b to 814:, 814b are dis-
cussed below.

During clock periods 4-7, the first-pass data in latch
pairs 801:, 801b to 8042, 804b loaded in clock periods
1-4 are output to the DCT row storage unit 103, at the 20
rate of two 16-bit data per clock period, in order of
X(0)-X(1). X(2)-X(3). XL4)-X(5). and X(5)-X(7)~ At
the same time, second-pass 16-bit data pairs Y(1)-Y(7),
Y(2)-Y(6), Y(3)-Y(5), and Y(0)-Y(4) are made available
at latches 738: and 738b of the DCT/IDCT processor
unit 106 for transfer to the row/column separator 107 at
the rate of one pair of two data every clock period.
These data are latched successively and in order into
the first quantizer latch pairs 8051, 805b to 808:, 808b
during clock periods 5-8.

During clock periods 8-11, the data Z(0) to 2(7)
arriving from DCT/IDCT processor unit 106 are again
first-pass DCT data. These data Z(0)—Z(7) arrive in the
identical order as the X(0)-X(7) data during clock peri-
ods 0-3 and as the Y(0)-Y(7) data during clock period
4-7. The second-pass data Y(0)-Y(7) which arrived
during clock periods 4-7 and latched into latch pairs
805:, 805b to 808:, 808b during clock periods 5-8 are
now individually selected for output to quantizer unit
108 by multiplexors 810:, 810b and multiplexor 816, at
the rate of a 16-bit datum per clock period, and in order
Y(0), Y(1), . . . Y(7) beginning with clock period 8. The
read out of Y(0)—Y(7) will continue until clock period
15, when Y(7) is provided as an output datum to quan-
tizer 108.

During clock periods 12-15, the data W(0) to W(7)
arriving from DCT/IDCT processor unit 106 are se-
cond-pass data. These data W(0)—W(7) are channeled to
the second quantizer latch pairs 811:, 811b to 814:, 814b
during clock periods 13 to 16, and are latched individu-
ally in the order as described above for the data Y(0-
)—Y(7). During clock periods 12 to 15, the data
Z(0)—Z(7) received during clock periods 8-11 and
latched into latch pairs 8011, 801b to 804:, 8041: during
clock periods 9-12 are output to the DCT row storage
unit 105 in the same order as described for X(0)-X(7)
during clock periods 4-7. The W(0)-W(7) data are se-
lected by rnultiplexors 815:, 815b, and 816 in the next
eight clock periods (clock periods 0-7 in the next 16-
cloclt period cycle corresponding to clock periods 16 to
23 in FIG. 8b.

Because of the DCT/IDCT Processor 106 provides
alternately one row/column of first-pass and second-
pass data, the latches 801: and 801b to 804: and 8041:,
805: and 805b to 8081 and 808b, and 811: and 811b to

814: and 814b form two pipelines providing a continu-
_ ous 16-bit output stream to the quantizer 108, and a

row/column of output data to the DCT row storage

40

unit 105 every eight clock cycles. There is no idle per-
iod under 4:2:2 input data format condition in the DCT
Row/Column Separator Unit 107.

Operation of DCT Row/Column Separator Unit
During Decompression

FIG. 8c shows the data flow for DCT row/column
separator unit 107 during decompression.

During clock periods O-3, 16-bit first-pass IDCT data
pairs are made available at latches 738: and 738b of the
DCT/IDCT processor unit 106, in the order X(2)-X(5),
X(1)—X(6), X(3)-X(4) and X(0)-X(7), at the rate of two
16-bit data per clock period. Each datum is latched into
one of the latches 801:-804: and 801b-804b, such that

X(0) and X(1), X(2) and X(3), X(4) and X(5), X(6) and
X(7) are latched into latch pairs 8012, 801b, to 8041, 804b
as a result during clock periods 1-4. During clock peri-
ods 0-3, second-pass IDCT data latched into the DCT
row/column separator unit 107 during the four clock
periods beginning at clock period 13 of the last 16-clock
period cycle and ending at clock period 0 of the present
16-clock period cycle is output to block memory unit
103 at two 12-bit data per clock period by 421 multiplex-
ors 817: and 817b, having the lower four bits of the
16-bit IDCT data truncated as previously discussed.
The loading and transferring of second-pass IDCT data
is discussed below with respect to clock periods 4-11.

During clock periods 4-7, the first-pass IDCT data in
latch pairs 801: and 801b to 804: and 804b are forwarded
to the DCT row storage unit 105, two 16-bit data per
clock period, selected in order of latch pairs 801:, 801b
to 804:, 8041:. At the same time, 16-bit second-pass
IDCT data are made available at latches 738t and 738b

in the DCT/IDCT processor unit 106, two 16-bit data
per clock period, in the order, Y(2)-Y(5), Y(1)-Y(6),
Y(3)—Y(4) and Y(0)-Y(7). These 16-bit data pairs are
successively latched in order into latch pairs 805t and
805b to 808: and 808b during clock period 5-8.

During clock periods 8-11, first-pass IDCT data
Z(0)—Z(7) are made available at latches 738: and 738b,
and in order discussed for X(0)-X(7) during clock peri-
ods 0-3. The data Z(0)—Z(7) are latched into the latch

pairs 801-804 in the same order as discussed for
X(0)-X(7). At the same time, second-pass IDCT data
Y(0)-Y(7) latched during the clock periods 5-8 are
output at 4:1 multiplexors 817: and 817b at two 12-bit
data per clock period, in the order Y(0)—Y(1), Y(2-
)-Y(3). Y(4)—Y(5). and Y(6)-Y(7)-

During clock periods 12-15, first-pass IDCT data
Z(0)—Z(7) are output to DCT row storage unit 105 in
the order discussed for X(0)-X(7) during clock periods
4-7. At the same time, second-pass IDCT data
W(0)-W(7) arrives from DCT/IDCT processor 106 in

. the same manner discussed for Y(0)-Y(7) during clock
periods 4-7. The data W(0)—W(7) will be output to
block memory unit 103 in the next four clock periods
(clock periods 0-3 in the next 16-clock period cycle), in
the same manner as discussed for Y(0)-Y(7) during

clock periods 8-11. Because the DCT/IDCT processor
106 provides alternately one row/column of first-pass
and second-pass data, the latches 801: and 801b to 804:
and 804b, and 805: and 805b to 808: and 808b form two

pipelines providing a continuous 12-bit output stream to
DCT block storage 103, and a row/column of output
data to the DCT row storage unit 105 every eight clock
cycles. Under 4:2:2 output data format condition, there
is no idle period in the DCT Row/Column Separator
Unit 107.

5,196,946
41

Structure and Operation of Quantizer Unit 108

The structure and operation of the quantizer unit 108
are next described in conjunction with FIG. 9.

The quantizer unit 108 performs a multiplication to
each element of the Frequency Matrix. This is a digital
signal processing step which scales the various fre-
quency components of the Frequency Matrix for fur-
ther compression.

FIG. 9 shows a schematic diagram of the quantizer
unit 108.

During compression, a stream of 16-bit data arrive
from the DCT row/column separator unit 107 via bus

: 918. Data can also be loaded under control of a host

computer from the bus 926 which is part of the host bus
115. 2:1 multiplexor 904 selects a 16-bit datum per clock
period from one of the busses 918 and 926, and place the
datum on data bus 927.

During decompression mode, 8-bit data arrives from
the zig-zag unit 109 via bus 919. Each 8-bit datum is
shifted and scaled by barrel shifter 907 so as to form a
16-bit datum for decompression.

Dependent upon whether compression or decom-
pression is performed, 2:1 multiplexor 908 selects either
the output datum of the barrel shifter (during decom-
pression) or from bus 927 (during compression). The
16-bit datum thus selected by multiplexer 908 and out-

put on bus 920 is latched into register 911, which stores
the datum as an input operand to multiplier 912. The
other input operand to multiplier 912 is stored in regis-
ter 910, which contains the quantization (compression)
or dequantization (decompression) coefficients read
from YU_table 108-1, discussed in the following.

Address generator 902 generates addresses for re-
trieving the quantization or dequantization coefficients
from the YU_table 108-1, according to the data type
(Y, U or V), and the position of the input datum in the
8X8 frequency matrix. Synchronization is achieved by
synchronizing the DC term (element 0) in the frequency
matrix with the external datasync signal. The configura-
tion register 901 provides the information of the data
format being received at the VBIU 102, to provide
proper synchronization with each incoming datum.

The YU_table 108-1 is a 64Xl6x2 static random

access memory (SRAM). That is, two 64-value quanti-
zation or dequantization matrices are contained in this
SRAM array 108-1, with each element being 16-bit
wide. During compression, the YU-table 108-1 contains
64 16-bit quantization coefficients for Y (luminance)
type data, and 64 common 16-bit quantization coeffici-
ents for UV (chrominance) type data. Similarly, during
decompression, YU-table 108-1 contains 64 16-bit de-
quantization coefficients for Y type data and 64 16-bit
dequantization coefficients for U or V type data. Each
quantization or dequantization coefficient is applied
specifically to one element in the frequency matrix and
U,V type data (chrominance) share the same sets of
quantization or dequantization coefficients. The YU_
table 108-1 can be accessed for read/write directly by a

host computer via the bus 935 which is also part of the
host bus 115. In this embodiment, the content of YU_.
table 108-1 is loaded by the host computer before the
start of compression or decompression operations. If
non-volatile memory components such as electrically

programmable read only memory (EPROM) are pro-
vided, permanent copies of these tables may be made
available. Read Only Memory (ROM) maybe also be
used if the tables are fixed. Allowing the host computer

10

20

25

30

35

45

S5

65

42

to load quantization or dequantization constants pro-
vides flexibility for the host computer to adjust quanti-
zation and dequantization parameters. Other digital
signal processing objectives may also be achieved by
combining quantization and other filter functions in the
quantization constants. However, non-volatile or per-
manent copies of quantization tables are suitable for
every day (turn-key) operation, since the start-up proce-
dure will thereby be greatly simplified. When the host
bus access the YU_table 108-1, the external address bus
925 contains the 7-bit address (addressing any of the 128
entries in the two 64-coefficient tables for Y and U or V

type data), and data bus 935 contains the 16-bit quanti-
zation or dequantization coefficients. 2:1 multiplexer
903 selects whether the memory access is by an inter-
nally generated address (generated by address genera-
tor 902) or by an externally provided address on bus 925
(also part of bus 115), at the request of the host com-
puter.

The quantization or dequantization coefficient is read
into the register 906. 2:1 multiplexor 909 selects
whether the entire 16 bits is provided to the multiplier
operand register 910, or have the datum’s most signifi-
cant bit (bit 15) and the two least significant bits (bits 0
and 1) set to 0. The bits 15 to 13 of the dequantization
coefficients (during dequantization) are also supplied to
the barrel shifter 907 to provide scaling of the operand
coming in from bus 919. By encoding a scaling factor in
the dequantization coefficient the dynamic range of
quantized data is expanded, just as in any floating point
number representation.

Multiplier 912 multiplies the operands in operand
registers 910 and 911 and, after discarding the most
significant bit, retains the sixteen next most significant
bits of the 32-bit result in register 913 beginning at bit
30. This sixteen bits representation is determined empir-
ically to be sufficient to substantially represent the dy-
namic range of the multiplication results. In this em-
bodiment, multiplier 912 is implemented as a 2-stage
pipelined multiplier, so that a 16-bit multiplication oper-
ation takes two clock periods but results are made avail-
able at every clock period.

The 16-bit datum in result register 913 can be sampled
by the host computer via the host bus 923. Thirteen bits
of the 16-bit result in the result register 913 are provided
to the round and limiter unit 914 to further restrict the

range of quantizer output value. Alternatively, during
decompression, the entire 16-bit result of result register
913 is provided on bus 922 after being amplified by bus
driver 916.

Dining decompression, the data_.sync signal indicat-
ing the beginning of a pixel matrix is provided by VBIU
102. During compression, the external video data
source provices the data_.sync signal. Quantization and
dequantization coefficients are loaded into YU_table
108-1 before the start ofquantization and dequantization
operations. An interval sync counter inside configura-
tion register 901 provides sequencing of the memory
accesses into YU_table 108-1 to ensure synchronization
between the datLsync signal with the quantizer 108
operation. The timing of the accesses depends upon the
input data formats, as extensively discussed above with
respect to the DCT units 103-107.

During compression, the data coming in on bus 918
and the corresponding quantizer coefficients read from
YU_table 108-1 are synchronously loaded into registers
911 and 910 as operands for multiplier 912. Two clock
periods later, the bits 30 to 15 of the results from the

5,196,946
43

multiplication operation are available and are latched
by result registers 913.

Round and limiter 914 then adds 1 to bit 15 (bit 31

being the most significant bit) of the datum in result
register 913 for rounding purpose. If the resulting
datum of this rounding operation is not all “l”s or “0"s
in bits 31 through 24, then the maximum or minimum
representable value is exceeds. Bits 23 to 16 are then set
to hexadecimal 7F or 81, corresponding to decimal 127-
or -127, dependent upon bit 30, which indicates
whether the datum is positive or negative. Otherwise,
the result is within the allowed dynamic range. Bits 23
to 16 is output by the round and limiter 914 as an 8-bit
result, which is latched by register 915 for forwarding
to zig-zag unit 109.

Alternatively, during decompression, the 16-bit result
in register 913 is provided in toto to the DCT input
select unit 104 for IDCT on bus 922.

During decompression, the VBIU 102 provides the
data-sync synchronization signal in sync unit 102-1
(FIG. 1). Data come in as an 8-bit stream, one datum per
clock period, on bus 919 from zig-zag unit 109. To
perform the proper scaling for dequantization, barrel
shifter 907 first appends four zeroes to the datum re-
ceived from zig-zag unit 109, and then sign-extends four
bits the most significant bit to produce an intermediate
16-bit result. (This is equivalent to multiplying the
datum received from the zig-zag unit 109 by 16). In
accordance to the scaling factor encoded in the de-
quantization coefficient, as discussed earlier in this sec-
tion, this 16-bit intermediate result is then shifted by the
number of bits indicated by bits 15 to 13 of the 16-bit
dequantization coefficient corresponding to the datum

‘ received from the zig-zag unit 109. The shifted result
from the barrel shifter 907 is loaded into register 911, as

an operand to the 16x16 bit multiplication.
The 16-bit dequantization constant is read from the

YU_table 108-1 into register 906. The first three bits 15
to 13 are used to direct the number of bits to shift the
16-bit intermediate result in the barrel shifter 907 as

previously discussed. The thirteen bits 12 through 0 of
the dequantization coefficient form the bits 14 to 2 of
the operand in register 910 to be multiplied to the datum
in register 911. The other bits of the multiplier, i.e., bits
15, 1 and 0, are set to zero.

Just as in the compression case, the sixteen bits 30 to
15 of the 32-bit results of the multiplication operation
involving the contents in registers 910 and 911 are
loaded into register 913. Unlike compression, however,
the 16-bit content of register 913 is supplied to the DCT
input select unit 104 on bus 922 through buffer 916,
without modification by the round and limiter unit 914.

Structure and Operation of the Zig-Zag Unit

The function and operation of zig-zag unit 109 are
next described in conjunction with FIG. 10.

The Zig-Zag unit 109 rearranges the order of the
elements in the Frequency Matrix into a format stumble
for data compression using the rim-length representa-
tion explained below.

FIG. 10 is a schematic diagram of zig-zag unit 109.
During compression, the zig-zag unit 109 accumulates
the output in sequential order (i.e. row by row) from the
quantizer unit 108 until one full 64—element matrix is
accumulated, and then output 8-bit elements of the fre-

quency matrix in a “zig-zag” order, i.e. Am, A01, A10,
A02, A1 1, A20, A30, etc. This order is suitable for gather-
ing long runs of zero elements of the frequency matrix

10

20

25

30

35

40

45

5'5

60

65

44

created by the quantization process, since many higher
frequency AC elements in the frequency matrix are set
to zero by quantization.

During decompression, the incoming 8-bit data are in
“zig-zag” order, and the zig-zag unit 109 reorders this
8-bit data stream in sequential order (row by row) for
IDCT.

The storage in the zig-zag unit 109 is comprised of
two banks of 64x8 SRAM arrays 1000 and 1001, so

arranged to set up a double-buffer scheme. This double-
buffering scheme allows a continuous output stream of
data to be forwarded to the coder/decoder unit 111, so

as not to require idle cycles during processing of 4:2:2
type input data. As one bank of 64 X 8-bit SRAM is used
to accumulate the incoming 8-bit elements of the cur-
rent frequency matrix, the other bank of 64X 8 SRAM
is used for output of a previously accumulated fre-
quency matrix to zero packer/unpacker unit 110 during
compression or to the quantizer unit 108 during decom-
pression.

The SRAM arrays 1000 and 1001 can be accessed
from a host computer on bus 115. Various parts of bus
115 are represented as busses 1021, 1022 and 1023 in
FIG. 10. The host computer accesses the SRAM arrays
1000 or 1001 by providing an 8-bit address in two parts
on busses 1023 and 1022:bus 1023 is 5-bit wide and bus
1022 is 3-bit wide.

During initialization, the host computer also loads
two latency values, one each into configuration regis-
ters 1019 and 1018 to provide the synchronization infor-
mation necessary to direct the zig-zag unit 109 to begin
both sequential and zig-zag operations after the number
of clock periods specified by each latency values elap-
ses. Observation or test data read from or to be written

into the SRAM arrays 1000 and 1001 are transmitted on
bus 1021.

The address into each of SRAM banks 1000 and 1001

are generated by counters 1010 and 1011. 7-bit counter
1010 generates sequential addresses, and 6-bit counter
1011 generates “zig-zag” addresses. The sequential and
zig-zag addresses are stored in registers 1013 and 1012
respectively. Bit 6 of register 1012 is used as a control
signal for toggling between the two banks of SRAM
arrays 1000 and 1001 for input and output under the
double-bufiering scheme.

During decompression, 8-bit data come in from zero
packer/unpacker unit 110 on bus 1004. During com-
pression, 8-bit data come in from quantizer unit 108 on
bus 1005. 2:1 multiplexer 1003 selects the incoming data
according to whether compression or decompression is
performed. As previously discussed, data may also
come from the external host computer; therefore, 2:]
multiplexor 1006 selects between internal data (from
busses 1005 or 1004 through multiplexer 1003) or data
from the host computer on bus 1021.

The zig-zag unit 109 outputs 8-bit data on bus 1024
via 2:1 multiplexer 1002, which alternatively selects
between the output data of the SRAM arrays 1000 and
1001 in accordance with the double-buffering scheme,
to the zero packer/unpacker unit 110 during compres-
sion and to the quantizer unit 108 during decompres-
sion.

During compression, 8-bit incoming data from the
quantizer 108 arrive on bus 1005 and is each written into
the memory address stored in register 1013, which
points to a location in the SRAM array which is se-
lected as the input buffer (in the following discussion,

5,196,946
45‘

for the sake of convenience, we will assume SRAM
array 1000 is selected for input.)

During this clock period, SRAM 1001 is in the output
mode, register 1012 contains the current address for
output generated by “zig-zag” counter 1011. The out-
put datum of SRAM array 1001 residing in the address
specified in register 1012 is selected by 2:1 multiplexor
1002 to be output on bus 1024.

At the end of the clock period, the next access ad-
dress for sequential input is loaded into register 1013
through multiplexors 1014 and 1017. Counter 1010 also
generates a new next address on bus 1025 for use in the
next clock period. Multiplexer 1014 selects between the
address generated by counter 1010 and the initialization
address provided by the external host computer. Multi-
plexer 1017 selects between the next sequential address
or the current sequential address. The current sequen-
tial address is selected when a “halt” signal is received
to synchronize with the data format (e.g. inactive video
time).

At the end of every clock period, the next “zig-zag”
address is loaded into register 1012 through multiplex-
ers 1016 and 1015 while a new next zig-zag address is
generated by the zig-zag counter 1011 on bus 1026.
Multiplexor 1015 selects between the address generated
by counter 1011 and the initialization address provided
by the host computer. Multiplexor 1016 selects between
the next zig-zag address or the next zig-zag address. The
current zig-zag address is selected when a halt signal is
received to synchronize with the data format (e.g. inac-
tive video time).

The operation of zig-zag unit 109 during decompres-
sion is similar to compression, except that the sequential
access during decompression is a read access, and the
zig-zag access is a write -access, opposite to the com-
pression process. The output data stream of the sequen-
tial access is selected by multiplexor 1002 for output to
the quantizer unit 108.

Structure and Operation of the Zero-packer/unpacker
Unit

The structure and operation of the zero packer/un-
packer (ZPZU) 110 (FIG. 1) are next described in con-
junction with FIG. 11.

The ZPZU 110 consists functionally of a zero packer
and a zero unpacker. The main function of the zero
packer is to compress consecutive values of zero into a
representation of a rim length. The advantage of using
run length data is the tremendous reduction of storage
space requirement resulting from the fact that many
values in the frequency matrix are reduced to zero dur-
ing the quantization process. The zero unpacker pro-
vides the reverse operation of the zero packer.

A block-diagram of the ZPZU unit 110 is shown in
FIG. 11. As shown, the ZPZU 110 consists of a state
counter 1103, a run counter 1102, the ZP control logic
1101, a ZUP control logic 1104 and a multiplexer 1105.
The state counter 1103 contains state information such

as the mode of operation, e.g., compression or decom-
pression, and the position of the current element in the
frequency matrix. A datum from the zig-zag unit 109 is
first examined by ZP control 1101 for zero value and
passed to the FIFO/Huffman code bus controller unit
112 through the multiplexor 1105 for storage in FIFO
means 114 if the datum is non-zero. Alternatively, if a

A value ofzero is encountered, the run counter 1102 keeps
a count of the zero values which follow the first zero

detected and output the length of zeroes to the FIFO/-

10

I5

20

25

30

35

45

55

65

46
Huffman code bus controller unit 112 for storage in

FIFO Memory 114. The number ofzeros in a run length
is dependent upon the image information contained in
the pixel matrix. If the pixel matrix corresponds to an
area where very little intensity and color fluctuations
occur in the sixty-four pixels contained, longer run-
lengths of zeros are_ expected over an area where such
fluctuations are greater.

During decompression, data arrive from the FIFO/-
Huffman code bus controller unit 112 via the ZUP (zero

unpacker) unit 1104 and then forwarded to the zig-zag
unit 109. If a run length is read during the decompres-

sion phase, the run length is unpacked to a string of
zeroes which length corresponds to the rim length read
and the output string of zeroes is forwarded to the zig-
zag unit 109.

There are four types of data that the zero packer/un-
packer unit 110 will handle, i.e. DC, AC, RUN and
EOB, together with the pixel type (Y, U or V) the
information is encoded into four bits. During compres-
sion, as ZP_control 1101 received the first element of
any frequency matrix from zig-zag unit 109, which will
be encoded as a DC datum with an 8-bit value passed
directly to the FIFO/Huffman code bus controller unit
112 for storage in FIFO Memory 114 regardless of
whether its value is zero or not. Thereafter, if a non-

zero element in the frequency matrix is received by
ZP_control 1101 it would be encoded as an AC datum

with an 8-bit value and passed to the FIFO/Huffman
code bus controller unit 112 for storage in FIFO Mem-
ory 114. However, if a zero-value element of the fre-
quency matrix is received, the run length counter 1102
will be initiated to count the number of zero elements

following, until the next non-zero element of the fre-
quency matrix is encountered. The count of zeroes is
forwarded to the FIFO/Huffman code bus controller

unit 112 for storage in FIFO Memory 114 in a run
length (RUN) representation. If there is not another
non-zero element in the remainder of the frequency
matrix, instead of the run length, an BOB (end of block)

code is output to the FIFO/Huffman code bus control-
ler unit 112. After every rim length or EOB code is

output, the run counter 1102 is reset for receiving the
next burst of zeroes.

During decompression, the ZUP control unit 1104
examines a stream of encoded data from the FIFO/-
Huffman code bus controller unit 112, which retrieves

the data from FIFO Memory 114. As a DC or AC
datum is encountered by the ZUP control unit 1104, the
least significant 8 bits of data will be passed to the zig-
zag unit 109. However, if a run length datum is encoun-
tered, the value of the run length count will be loaded
into the run length counter 1102, zeroes will be output
to the zig-zag unit 109 as the counter is decremenlaed
until it reaches zero. If an EOB datum is encountered,

the ZUP control unit 1104 will automatically insert
zeroes at its output until the the 64th element, corre-
sponding to the last element of the frequency matrix, is
output.

Structure and Operation of the Coder/Decoder Unit

The structure and operation of the coder/decoder
unit 111 (FIG. 1) are next described in conjunction with
FIGS. 12a and 12b.

The coder unit 1110 directs encoding of the data in
rim-length representation into Huffman codes. The
decoder unit lllb provides the reverse operation.

5,196,946
47

During compression, in order to achieve a high com-
pression ratio of the DCT data coming from the zero
packer/unpacker unit 110 the coder unit Illa of the
coder/decoder unit 111 provides the translation ofzero-
packed DCT data in the FIFO memory 114 into a vari-
able length Huffman code representation. The coder
unit Illa provides the Huffman coded DCT data to
Host Bus Interface Unit (HBIU) 113, which in turn
transmits the Huffman encoded data to an external host

computer.
During decompression, the decoder unit lllb of the

coder/decoder unit 111 receives Huffman—coded data

from the HBIU 113, and provides the translation of the
variable length Huffman-coded data into zero-packed
representation for the decompression operation.

The Coder Unit

FIG. 12a is a schematic diagram for the coder unit
Illa (FIG. 1).

During compression, read control unit 1203 asserts a
“pop-request” signal to the FIFO/Huffman code bus.
controller unit 112 to request the next datum for Huff-
man coding. Data storage unit 1201 then receives from
internal bus 116 (FIG. 1) the datum “popped” into data
storage unit 1201 for temporary storage, after receiving
a “pop-acknowledge” signal from the FIFO/Huffman
code bus controller unit 112. Since the coder unit Illa

must yield priority of the internal bus 116 to the zero
packer/unpacker unit 110, as will be discussed below in
conjunction with the FIFO/Huffman code bus control-
ler unit 112, the pop request will remain asserted until a
“pop-acknowledge” signal is received from FIFO/-
Huffman code bus controller unit 112 indicating the
data is ready to be latched into data storage 1201 at the
data bus 116.

The encoding of data is according to the data type
received: encoding types are DC, runlength and AC
pair, or EOB. In order to retrieve the Huffman encod-
ing from the FIFO/Huffman code bus controller unit
112, the address unit 1210 provides a 14-bit address
consisting of a 2-bit type code (encoding the informa-
tion of Y or C, AC or DC) and a 12-bit offset into one
of the four tables (Y_DC, Y_AC, C__DC and C_AC)
according to the encoding scheme. The encoding
scheme is discussed in section 7.3.5 et seq. of the JPEG
standard, attached hereto as Appendix A. The inter-
ested reader is referred to Appendix A for the details of
the encoding scheme. The 2-bit type code indicates
whether the data type is luminance or chrominance (Y
or C), and whether the current datum is an AC term or
a DC term in the frequency matrix. According to the
2-bit data type code, one of the four tables (Y_DC,
Y..AC, C_DC, and C_AC) is searched for the Huff-
man code. The difference of the previous DC value in
the last frequency matrix and the DC value in the cur-
rent frequency matrix is used to encode the DC value
Huffman code (this method of coding the difference of
successive DC values is known as “linear predictor"
coding). The organization of the Huffman code tables
within FIFO memory 114 will be discussed below in
conjunction with the FIFO/Huffman code bus control-
ler unit 112. The “run length" unit 1204 extracts the run
length value from the zero-packed representation re-
ceived from the Zero packer/unpacker unit 110 and
combine the next AC value received by the “ACgroup”
unit 1206 to form a runlength-AC value combination to
be used as a logical address for looking up the Huffman
code table.

45

55

65

48

The Huffman code returned by the FIFO/Huffman
code bus controller unit 112 on internal bus 116, and
retrieved from the Huffman tables in FIFO Memory

114, is received by the Data storage unit 1201. The
code-length unit 1207 examines the returned Huffman
code to determine the number of bits used to represent
the current datum. Since the Huffman code is of vari-

able length, the Huffman-coded data are concatenated
with previous Huffman-coded data and accumulated at
the “shift-length” unit 1209 until a 16-bit datum is
formed. The “DCfas ” unit 1205 contains the last DC

value, so that the difference between the last DC value
and the current DC value may be readily determined to
facilitate the encoding of the DC difference value under
the linear predictor method.

Whenever a 16-bit datum is formed, coder 111a halts

and requests the host bus interface unit 113 to latch the
16-bit datum from the coderdataout unit 1208. Coder
Illa remains in the halt state until the datum is latched

and acknowledged by the host bus interface unit 113.
Internal control signals for the coder unit 111a of the

coder/decoder unit 111 is provided by the “statema-
chine” unit 1M2.

The Decoder Unit

Each structure of the decoder unit lllb of the co-

der/decoder unit 111 (FIG. 1) is shown in block dia-
gram form in FIG. 12b.

The decoding scheme is according to a standard es-
tablished by JPEG, and may be found in section 7.3.5 et
seq. in Appendix A hereto. The following description
outlines the decoding process. The interested reader is
referred to Appendix A for a detail explanation.

During decompression, 2-bit data from the Host Bus
Interface Unit (HBIU) 113 (FIG. 1) come into the de-
coder unit at the input control unit 1250. The “run” bit
from the HBIU 113 requests decoding and signals the
readiness of a 2-bit datum or bus 1405.

Each 2-bit datum received is sent to the decoder main

block 1255, which controls the decoding process. The
decoded datum is of variable length, consist of either a
“level” datum, a runlength-AC group, or EOB Huff-
man codes. A level datum is an index encoding a range
of amplitude rather than the exact amplitude. the DC
value is a fixed length “leve ” datum. The runlength-
AC group consists of an AC group portion and a run
length portion. The AC group portion of the runlength-
AC group contains a 3-bit group number, which is de-
coded in the level generator 1254 for the bit length of
the significant level datum from HBIU 113 to follow.

If the first bit or both bits of the 2-bit datum from

HBIU 113 is “level” data, i.e. significant index of the
AC/DC value, the decoding is postponed until two bits
of Huffman code is received. That is, if the first bit of
the 2-bit datum is "level" and the second bit of the 2-bit

datum is Huffman code, then the next 2-bit datum will
be read, and decode will proceed using the second bit of
the first 2-bit datum, and the first bit of the second 2-bit
datum. Decoding is accomplished by looking up the
Huffman decode table in FIFO memory 114 using the
FIFO/Huffman code bus controller unit 112. The table

address generator 1261 provides to the FIFO/Huffman
code bus controller unit 112 the 12-bit address into the

FIFO memory 114 for the next entry in the decoding
table to look up. The returned Huffman decode table
entry is stored in the table data buffer 1259. If the datum
looked up indicates that further decoding is necessary
(i.e. having the “code...done”'bit set “0”), the 10-bit

5,196,946
49

“next address” portion of the 12-bit datum is combined
with the next 2-bit datum input from the I-IBIU 113 to
generate the 12-bit address for the next Huffman decode
table entry.

When the “code..done” bit is set “l”, it indicates the
current datum contains a 5-bit runlength and 3-bit AC

group number. The Huffman decode table entry also
contains a “code_odd” bit which is used by the AC_.
level order control 1252 to determine the bit order in

the next 2-bit input datum to derive the level data. The
AC group number is used to determine the bit-length
and magnitude of the level data previously received in
the AC._level register control 1253. The level genera-
tor 1254 the takes the level datum and provides the fully
decoded datum, which is forwarded to be written in the
FIFO memory 114, through the FIFO write control
unit 1258, which interface with the FIFO/Huffman
code controller unit 112. The write request is signalled
to the FIFO/Huffman code controller unit 112.by as-

serting the signal “pus ”, which is acknowledged by

the FIFO/Huffman code controller unit 112 by assert-
ing the signal “FIFO push enable” after the datum is
written.

The data counter 1260 keeps a count of the data de-
coded to keep track of the datum type and position
presently being decoded, i.e. whether the current datum
being decoded is an AC or a DC value, the position in
the frequency matrix which level is currently being
computed, and whether the current block is of Y, U or
V pixel type. The runlength register 1286 is used to
generate the zero-packed representation of the rim
length derived from the Huffman decode table. Because
the DC level encodes a difference between the previous
DC value with the current DC value, the DC_level

generator 1257 derives the actual level by adding the
difference value to the stored previous DC value to
derive current datum. The derived DC value is then

updated and stored in DC_level generator 1257 for
computing the next DC value.

The decoded DC, AC or runlength data are written
into the FIFO memory 114 through the FIFO data
write control 1258. Since the zero packer/unpacker unit
110 must be given priority on the bus 116 (FIG. 1), data
access by the decoder unit lllb must halt until the zero
packer/unpacker unit 110 relinquishes its read access on
bus 116. Decoder main block 1255 generates a hold
signal to the HBIU to hold transfer of the 2-bit datum
until the read/write access to the FIFO/Huffman code

controller 112 is granted.

Structure and Operation of the FIFO/Huffman Code
Bus Controller Unit

’ The structure and operation of the FIFO/Huffman
code controller unit 112, together with an ofi-chip
FIFO memory array 114 are next described in conjunc-
tion with FIGS. 13a and 13b.

The FIFO/Huffman code bus controller unit

(FIFOC) 112, shown in FIG. 13a, interfaces with the
Coder/decoder unit 111, the zero packer/unpacker unit
110, and host bus interface unit 113. The FIFOC 112

provides the interface to the ofl‘-chip first-in-first-out
(FIFO) memory implemented in a 16KX 12 SRAM
array 114 (FIG. 1). ~

The implementation of the FIFO Memory 114 off-

20

25

30

60

chip is a design choice involving engineering trade—off 65
between complexity of control and efficient use of on-
chip silicon real estate. Another embodiment of the
present invention includes an on-chip SRAM array to

50

implement the FIFO Memory 114. By moving the
FIFO Memory 114 on-chip, the control of data flow
may be greatly simplified by using a dual port SRAM
array as the FIFO memory. This dual port SRAM ar-
rangement allows independent accesses by the zero
packer/unpacker unit 110 and the coder/decoder unit
111, instead of sharing a common internal bus 116.

During compression, the off-chip SRAM array 114
contains the memory buffer for temporary storage for
the 2-dimensional DCT data from the zero packer/un-

packer unit 110. In addition, the tables ofHufiman code
which are used to encode the data into further com-

pressed representation of Huffman code are also stored
in this SRAM array 114.

During decompression, the off-chip SRAM array 114
contains the memory buffer for temporary storage of
the decoded data ready for the unpack operation in the
zero packer/unpacker unit 110. In addition, the tables
used for decoding Huffman coded DCT data are also
stored in the SRAM array 114.

The memory maps for the SRAM array 114 are
shown in FIG. 13b; the memory map for compression is
shown on the left, and the memory map for decompres-
sion is shown on the right. In this embodiment, during
compression, address locations (hexadecimal)
0000-OFFF (13S0a), 1000—lFFF (135la), 2000—2lFF
(1352a), and 2200-23FF (1353a) are respectively re-
served for Huffman code tables: the AC values of the

luminance (Y) matrix, the AC values of the chromi-
nance matrices, the DC values of the luminance matrix,

and the DC values of the chrominance (U or V) matri-
ces. As a result, the rest of SRAM array 114-—a 7K>< 12
memory array 1354a——is allocated as a FIFO memory
buffer 1354a for the zero-packed representation datum.

During decompression, addresses 0000—O3FF
(1352b), 0400—07FF (1350b), 0800-OBFF (l353b),
0C00—0FFF are reserved for tables used in decoding
Huffman codes: for DC values of the luminance (Y)
matrix, the AC values of the luminance matrix, the DC
values of the chrominance (U or V) matrices, and the
AC values of the chrominance matrices, respectively.

Since the space allocated for tables are much smaller
during decompression, a l2K>< 12 area 1354b is avail-
able as the FIFO memory buffer 1354b.

FIG. 13a is a schematic diagram of the FIFOC unit
112. The SRAM array 114 may be directly accessed for
read or write by a host computer via busses 1313 and
1319 (for addresses and data respectively), which are
each a part of the host bus 115. The read or write re-
quest from the host computer is decoded in configura-
tion decoder l307. Address converter 1306 maps the

logical address supplied by the host computer on bus
1313 to the physical addresses of the SRAM array 114.
Together with the bits 9:1 of bus 1313, a host computer
may -load the Huffman coding and decoding tables
1350a-1353a or l350b—1353b or the FIFO memory
buffers 1354a or 1354b.

During compression, 12-bit data arrive from the zero
packer/unpacker unit 110 on bus 116. During decom-
pression, 12-bit data arrive from the coder/decoder unit
111 on bus 1319. Bus 1319 is also a part of host bus 115.

Since the FIFO memory 114 is organized as a first-in-
first-out memory, to facilitate access, register 1304 con-
tains the memory address for the next datum readable
from the FIFO memory buffer 1354a or 135412, and

register 1305 contains the memory address for the next
memory location available for write in the FIFO mem-
ory buffers 1354a or 1354b. The next read and write

5,196,946
51

addresses are respectively generated by address count-
ers 1302 and 1303. Each counter is incremented after a‘

read (counter 1302) or write (counter 1303) is com-
pleted.

Logic unit 1301 provides the control signals for
SRAM memory array 114 and the operations of the
FIFOC unit 112. Up-down counter 1308 contains read
and write address limits of the FIFO memory buffers
1354a or 1354b. FIFO memory tag unit 1309 provides
status signals indicating whether the FIFO memory
buffer is empty, full, quarter-full, half-full or three-quar-
ters full.

Address decode unit 1310 interfaces with the off-chip
SRAM array 114, and supplies the read and write ad-
dresses into the FIFO memory 114. A 12-bit datum read
is returned from SRAM array 114 on bus 1318, and a
12-bit datum to be written is supplied to the SRAM
array 114 on bus 1317. Busses 1317 and 1318 together
form the internal bus 116 shown in FIG. 1.

Upon initialization, the host computer loads the Huff-
man code or decode tables 1350a—1353a or

13S0b—1353b, dependent upon whether the operation is
compression or decompression, and loads configuration
information into configuration decode unit 1307 to syn-
chronize the FIFOC unit 112 with the rest of the chip.

During compression, 12-bit data arrive from zero
packer/unpacker unit 110 and are written sequentially
into the SRAM array 114. The FIFO memory buffer
1354a fills as the incoming data are latched from bus
1319. Since a request from the zero packer/unpaclter
unit 110 has the highest priority, data on bus 116 from
the zero packer zero unpacker unit 110 are automati-
cally given priority to access SRAM array (FIFO
Memory) 114 over coder/decoder 111, so as to avoid
loss of incoming data.

Data in the FIFO memory buffer 1354a decrease as

they are read by coder 111a of the coder/decoder unit
111, which requests read by asserting the “pop-request”
signal. The coder 1110 also request reads from the Huff-
man code tables according to the value of the datum
read by providing the read address on the bus 1315. The
code/decoder unit 111 then encodes the datum in Huff-

man code for storage by an external computer in a mass
storage medium.

During decompression, 12-bit decoded data arrive
from the decoder lllb of the coder/decoder unit 111 to

be stored in the FIFO memory buffer 1354b by asserting

a “push” request. The decoder 111b also requests read-
ing of the Huffman decode tables by providing an ad-
dress on bus 1314. The entry read from the Huffman
decode table allows the decoder 111b to decode a com-

pressed Huffman-coded datum provided by an external
host computer.

Structure and Operation of the Host Bus Interface Unit '

The structure and operation of the host bus interface
unit (HBIU) 113 are next described in conjunction with
FIG. 14.

FIG. 14 shows a block diagram of the HBIU 113. The
main functions of the host bus interface are imple-

mented by the three blocks: nucontrol block 1401, data-
path block 1402, and nustatus block 1403.

The nucontrol block 1401 provides control signals for
interfacing with a host computer and with the co-
der/decoder unit 111. The control signals follow the
NuBus industry standard (see below). The datapath
block 1402 provides the interface to two 32-bit busses
1404 (output) and 1408 (input), a 2-bit output bus 1405

52

to the decoder unit 111b, a 16-bit input bus 1211 to the
coder imit 111a, and a 16-bit bi-directional configura-
tion bus 1406 for interface with the various units
102-112 shown in FIG. 1 for synchronization and con-

trol purposes, for loading the Huffman code/decode
tables into FIFO memory 104, and for the loading the

quantization/dequantization coefficients into the quan-
tizer unit 108. The datapath block 1402 also provides
handshaking signals for these bus transactions.

The nustatus block 1403 monitors the status of the

FIFO memory 114, and provides a 14-bit output of
status flags in bus 1412, which is part of the output bus
1406. The nustatus block 1403 also provides the register

addresses for loading configuration registers through-
out the chip, such as configuration register 608 in the
DCT row storage unit 105. Global configuration values
are provided on 5-bit bus 1407. These configuration
values contain information such as compression or de-

compression, 4:l:1 or 4:222 data format mode etc.
The host bus interface unit 113 implements the

“NuBus” communication standard for communicating

with a host computer. This standard is described in
ANSI/IEEE standard 1196-1987, which is attached as

Appendix B.
Internally, the HBIU 113 interfaces with the co-

der/decoder unit 111. During compression mode, the
coder 111a sends the variable length I-Iuffman-coded
data sixteen bits at a time, and the HBIU 113 forwards
a Huffman-coded 32-bit datum (comprising two 16-bit
data from coder 111a) on bus 1404 to the host computer.
The coder 111a asserts status signal “coderreq" 1413

when a 16-bit segment of Huffman code forming a 16-
bit datum is ready on bus 1211 to be latched, unless
“coderhold” on line 1411 is asserted by the HBIU 113.

Coder 111a expects the data to be latched in the same
clock period as “coderreq" is asserted. Therefore, the
coder 111a resets the data count automatically at the

end of the clock period. When “coderhold” is asserted
by the HBIU 113, it signals that the external host com-
puter has not latched the last 32-bit datum from HBIU
113. Coder 111a will halt encoding until its 16-bit datum
is latched after the next opportunity to assert the coder-

req signal. Meanwhile, data output of zero packer/um
packer unit 110 accumulate in FIFO Memory 114.

During decompression mode, Huffman-coded com-
pressed data are sent from the host computer thirty two
hits at a time on bus 1408. The datapath 1402 sends the

thirty two bits received from the host computer 2 bits at
a time to the decoder unit 111b on bus 1405. The “run”

bit 1409 signals the decoder unit 111b that a 2-bit datum
is ready on bus 1405. The 2-bit datum stays on bus 1405
unit until the decoder 111b latches the 2-bit datum and

signals the latching by asserting “decoderhold” hit 1414
indicating readiness for the next 2-bit datum.

During initialization, the dequantization or quantiza-
tion coefiicients are loaded into the YU_table 108-1 of

the quantizer unit 108 (FIG. 941), and the Huffman code
or or decode tables are loaded into SRAM array 114.

The “con ” hit 1415 request the FIFOC unit 112 for
access to the external SRAM array 114. The addresses
and data are generated at the datapath unit 1402.

Furthermore, through the system of configuration
registers accessible from the HBIU 113, a host com-
puter may monitor, diagnose or test control and status
registers throughout the chip, random access memory
arrays throughout the chip, and the external SRAM
array 114. .

53

An Application of the Present Invention

One application of the present invention is found in
the implementation of local memories of displays or

tamounts of image

_ 5,196,946 54

discussed in conjunction with FIG. 1. This advantage is
especially beneficial to applications involving large

data, which must be made available
with certain time limits, such as applications in high

P1’im9Y5- A Vid°° di5P13Y d¢Vi°¢ '13‘-1311)’ 1135 8 frame 5 speed printing or in a display of motion sequences.
buffer for refresh of the display. A similar kind of
buffer, called page buffer, is used in a printer to com-
pose the printed image. As discussed above, an uncom-
pressed image requires a large amount of memory. For
example, a color printer at 400 dpi at 24 bits per pixel
(i.e. 8 bits for each of the intensities for red, green and
blue) will require 48 megabytes of storage for a standard
81x11 image. The required amount of memory can be
drastically reduced by storing compressed data in the
frame or page buffers. However, decompressed data
must be made available to the display or the print head
when needed for output purpose. The present invention
described above, such as the embodiment shown in
FIG. 1, will allow decompression of data at a rate suffi-
cient to support display refresh and composition of
printed image in a printer.

An embodiment of the present invention for applica-
tions in frame buffers for display refresh, and for printed
image composition in printers is shown in FIG. 16. A
source of compressed image data is provided by data
compression unit 1602, under direction from a control-
ler 1601. Controller 1601 may be a conventional com-
puter, or any source suitable for providing image data
for a display or for a printer. The data compression unit
1602 may be implemented by the embodiment of the
present invention shown in FIG. 1. The compressed
data are sent in small packets (e.g. 8 pixel by 8 pixel
blocks as described above) over a suitable communica-
tion channel 1606, which can be as simple as a cable, to
the display or printer controlling device 1604. Since
compressed data rather than uncompressed data is sent
over the communication channel 1606, the bandwidth
required for sending entire images is drastically reduced
by a factor equal to the compression ratio. As discussed
previously in the Description of Prior Art section, a
compression ratio of 30 is desirable, and is attainable
according to the embodiment of the present invention

10

15

20

25

30

35

40

45

55'

65

The compressed data are stored in the main memory
1603 associated with the display or printer controlling
device 1604. The compressed data memory maps into
the physical locality of the image displayed or printed,
i.e. the memory location containing the compressed
data representing a portion of the image may be simply
determined and randomly accessed by the display con-
troller unit 1604. Because the compressed data are
stored in small packets, compressed data corresponding
to small areas in the image may be updated locally by
the display controller unit 1604 without decompressing
parts of the image not affected by the update. This is
especially useful for intelligent display applications
which allow incremental updates to the image.

The compressed data stored in main memory 1603 is
decompressed by decompression unit 1607, on demand
of the display or printer controlling device 1604 when
required for the display or printing purpose. The de-
compressed image are stored in the cache memory 1605.
Because the physical processes of painting a screen or
printing an image are relatively slow processes, the
bandwidth of decompressed data needed to supply for
the needs of these functions can be easily satisfied by a
high speed decompression unit, such as the embodiment
of the present invention shown in FIG. 1.

Because the cost of memory in frame buffer or page
bufier applications is a significant portion of the total
cost of a printer or display, the embodiment of the pres-
ent invention shown in FIG. 16 provides enormous cost
advantage, and allows applications of image processing
to areas hitherto deemed technically difficult or eco-
nomically impractical.

The above detailed description is intended to be ex-
emplary and not limiting. To the person skilled in the
art, the above discussion will suggest many variations
and modifications within the scope of the present inven-
tion.

5,196,946 -
55 55

APPENDIX_ I it

 Still Picture

 Compression
" :

December 15, 1989

_ JPE"GM'S‘t"iVl§l l9icture Cornpression Standard t‘3_oVcumen_tation:

The algorithm specified by this document is the latest algorithm being considered
by the Joint Photographic Expert Group (JPEG), a joint ISO/CCl'l'l' committee,
in the standardization process. It is important to note that this draft has not yet
been approved by the committee and any or all of the algorithmic techniques
presented herein are subject to change.

,. C-Cube Microsystems is providing this document for general information
purposes only and assumes no responsibility for errors or ommissions.

For additional information or questions, please contact:

Eric Hamilton

C-Cube Microsystems, lnc.

(408) 944-6300

5,196

a%%g
an -5: the Hcmlflll oiciure ouautv. to..' riérrion is tho:

"""' An::z.i7ic.-i sancii.-mum-ze ih-. VISIBLE DU

- or-pr6v:"1'."!s "S 5'3.‘-"C911 DY. "'9 9'-'53‘;
L: “gigs the ot ouantization mil"!!!

: mu.-r.;i.¢;n - e g a:::roIno to DFOQVE” "‘
""°Cuf\qOnVI::::FDeE'|’€E"‘lIOP\ ar~e u.-ieevs:M¢""9 0' ""‘¢'- 7”" "'
:3!‘ versaoiiitv tor-not y-,1 gen-ieg or gniorseeri aooiieaiior-is.

- - - v uiia-uo ot the received
The SEHUENTiii.i;|:n3"i:’::EG::f;:°:'m. uwmanq O‘ we
''"‘'°‘ ‘W ":.L, q.,.m,;eg ggeiiicierits in a variahie number of

. lrlnslorrrigoelg ‘O! Lcw can rate enannets. such as 1200
'°'”‘",,.:, gig; gaging rate (0.03 out per pixel to 0.25 bit Der
:3: cweys coca recevnisibimv °‘ ""9 °'°‘“" " ‘"‘ '’’‘V
‘"95 G‘ [HG Df%|'¢l3IVI HD9313-

;L5_xiatLlT¥'i'or tuzur
59 rggetii-iitiofi 3' ‘J

The use at the oisaeie cosine transiorrn may allow COMPAT-
5. h .n".,¢n°gg ggfiinq Of Vlfltfiflfibfifi.

:E:'el°a,,n,:,::.;,-.‘g emu Digital Television CCCEC - CCTTT 3%
xv ano CCIR -.

2_2 sasic Coding Technique
5”;-.qgi3 at the tooirig method2.2..

C or

[meet]Lm.¢, l lEHl!o§y K e
:1. cc? cuaniixerionl ICBCIBG III

cueniixeiioh‘ V-L; 11:5,,“Motrlx

Fig.1 : tasie mam? '"¢""°5

The aroeezsinq is lhreeototd :

Tranxtori-nauori : a 2-dimensional OCT Is aooiieo to a x 3 oioexs
oi pixels 2

3_ unaar Quantization : Afler transtormation. the eoeinciehts are
quantize: linearity, In using Quantization ste.':s that are ce-
oenoent uoon the psycnovisuai sensitivity or the associated
DC? - I x I suoirnages.
note : are-siflrvea Quantization matrices will be oetine-5 in the
“JV! stanaare. ::ut Ci-73lCfl'I|lEO one: an be emoeoce: in the

omoressee can (125 bytes) to tit sveafic aooiiations.

1 Entrooy Ceding : The content of the block is Ulfififhtfltfi by
senoinq mtormation on tna value and the position oi the ouari-
tizec merncents cesorioeo aionq a ziq-lag scan. .

The DC coemciehi: are treated senaraieiy. They are cum-
uec In sin-iole DFCM on the precision from previous 3 ii I
Hot: X vaiue.
The AC metncents retative ocsitioris and number or bits to

i-eoreserx the quantlzee \raIue.s are enacted via 2-olmensionai
VLC tables.
note : orecinned VLC taoies mil be Celine-2: in the future
nariuaro. out customize: taoies (Ir.-iv huriorm bytes) might be
assooate: to comoresseo images to at sue-cm: aooiiuiions.

,946
8

mi
2.3 Progressive Update’;

The orogressive uooate is achieved through clflerent mech-
I'-sr.-=. one ieiaies to the oassicai oyramicai ca:-.-moosition of In
msoe. another one uses s%raI seiesion oi the DCT met!‘-cienu
and a last one is rt-iaoe through a reairsive structure. However. it
3 worth noting that ‘spectral seiecion‘ is the hasic ootiori.

SP'It:ra1 Selection

It sin-ioiy consists ot sending ttrst. low frequency terms (DC and
‘*1 ‘CI of can 5:: oiocx for a crude version or the image and then
to term: by se.-icing more am more ‘high tre:ucflC1' ¢=N|='1HD 931
he final image. The to-day most ernaent oroceoure has been to
39-1! one (three! us.-.ine~.enttsHY.Cr.C:)-at a time be each his
Dust. This technique is rather simote. although reeuiring a butter,
but it sutiers from btocklnoss at the earliest stage (aooui 0.15 cit

9': oixei). /
Hiararer-neat Daceirwositiori

This relates to classicai ovrarriioai cecii-g tesnnioue. where ‘.32
'0" ‘WW: II I-Hereo-suosamcies prior. here. to ADC‘-' eecinc. as
set! exoiairiea in the l'iq.2 :

- ..

:——-‘ :.oc7 ‘....~..""" 13:13:: 3':

.c.9
.

1
[H01 ISL-I 1) I

Fig.2 :nierarchieaI oecorrioosition

The tea-ihioue is very ettieierrt tor toelrig images oeiou 0.1 oil
Def Duel. 10? In: reauireci suosamolmg ratio that Is orly 1/4 in octn
uirectici-is. limits the extension oi the proeueeo artetacts on the
eisoiayeo-iriteroclateo image.

ltoeirsiva stnietira

The idea is to once rxursiveiy the difference oenneeri the cg-
coeeo and the originai images as eaamolilieo in tig.2, This arr.-5:3:
increases the nnenas oi the uuantlzea coetnoents. like soeoia:
seiewori ooa tor traisuenq netinition.

2.4 Reversibility

To-div. it Is sirnoiy oertorrneo from escaping the Transform cc.
. rriairi ano by Entropy Coding, in the spatial eon-iairi. oiiiergnggg gg.
tvreeri the very last OCT er.-aoeee image and the origiriai. Again, a
suesamoiirig scserhe can oe oeviseo tot" smooth SIN ratio up-
graoihg of the rearmruuee image. A none: of the original image
is uiainaoia at a cmorusion tacior at about 2 (Le. I bits per pixei
tor a C213 42.2. Image).

5,196,946

fbverview
:,1:PEG Still Picture :

I Color Standard S is

Baseline System:

Mandatory part of the standard,
all decoders must have it.

Extended System: »

S Optional part of the standard,

Special Function:

Direct Path to Reversible

5,196,946

61

T . i:}.,..si',"i .. _ .

'The‘ baseline system is a lossy sequential 2 component system
based on huffman entropy coding. The decoder is optimized for the
CCIR 601 (Y, Cr, Cb) colour model; . »

Iltrapuntt lfiefiulre

\

, __ <IDuat1.'_puafl‘Pfieiimre

Transform

8x8 Forward DCT

~ -Quantization DeQuant'ization

I 5 ¢_Zn1 A-IN-Ififib h A I-It-5.5

Receive1Custom

.--¢

1 Custom matrices

Coding model Coding model

 Sequential Sequential
1-D DC prediction 1-D DC prediction

Receive resync

 in Entropy CoderEntropy Coder

Huffman Huffman

Default Fixed Tables Default Fixed Tables

and/or 2 for DC and 2 for AC
Custom Fixed Tables

and/or

Adaptive Tables

Receive 4 Custom

...'....»--;;.-.-:~.......~w::...........;...¢:.,-. :»..:' . -- ..

5,196,946
63 54

Pre - Encoder: Color Conversion

R CCIR 601

XXX
XXX

XXX

Filtering and Sub—sampIing

6 E is
Most likely format .48....

‘ . _<___ ; " .-

16

To Encoder Input data: 8—bits, Y, Cr, Cb according to CCIR 601

Questions ? What if we don't have Y,.Cr, Cb
What if the pixels are more than 8 bits

5,196,946
65 66

Encoder: ForW'a'Idfl"ransform

8x8 Discrete Cosine Transform

put formula here

Each block get transformed into an 8x8 bloc
of DCT coefficients

Example coefficient (1,1) is the DC value of
the block.
DCT-transform requirements:

A - fast implementation on 16 bit
Separation of image into 8x8 blocks mic“? P’°°°55°"-

- The forward transform followed

by the inverse transform yields a

picture close to the original.

1 - dimensional 1 - dimensional

DCT DCT i

(e.g columns) (e.g rows)

5,196,946
67 68

Encoder: Coding Model

L - Separation of DC and AC coefficients ’ '

DC Coefficients

in each block

AC coefficient ordexing within a block

_ DC coefficient

%flEflEflEfl
flflflflflflflfl
HEEEEEEH
HEIHHIEH
WHIIKHEH
HEIHHIHM

*EHEEElEl
EE§LEHEE

5,196,946
69 70

A<;_c.951in,go-seequence _

' a) Start counting run length of zero's

'b)_ if a signifcant number is found -> detennine
most significant but and position in 2D Huffman
table.

c) ‘code the sign -1? residue value with code-length
given by index

(1) repeat a,b,c until End of Block is reached.

l

The Decoder follows the encoder -but in a reverse

order. p

Exception:
The decoder can detect a special code used for
resynchronization I!

5,196,946
71 72

5. Overview
C

5.1 Introduction

This specification defines a set of still picture gray scale and color image
“data compression algorithms. The algorithms are applicable to digital images
corresponding-to natural scenes and other types of continuous tone images,
and are expected to give good compression performance on images=with pre-
cisions from 4 to 16 bits per component sample. The algorithm can be applied
to arbitrary source image resolutions, many color models, multiple image
components, various sampling formats, and continuous tone renditions of text.
The technique does not apply to bi-level images.

Two classes of compression algorithms are defined, a set based on the two-
dimensional discrete cosine transform (DCT) and a set based on spatial pre-
diction techniques. The DCT based algorithms are intended to give output
image quality relative to the source images ranging from very good to visu-
ally indistinguishable. The spatial algorithms use differential pulse code
modulation (DPCM) techniques, and are intended primarily for lossless and
nearly lossless coding.

Two modes of operation are defined, sequential and progressive. In the se-
quential mode, the top row or segment of data in the image is coded and either
stored or distributed; then a second row or segment is coded and either
stored or distributed. The process continues until the entire image has been
coded. In each case, each segment is fully coded. The decoder decodes the
segments in the order in which they were coded.

In the progressive mode of operation, an entire image is first coded at some
level of quality which is less than the final quality needed. This same image
is then coded again, but at a higher level of quality. Each time the image
is coded, only the incremental information needed to improve the quality is
transmitted. The process is repeated successively until the desired level
of quality has been obtained. The decoder decodes the first quality level
image and the incremental information in the same order in which they were
coded.

A "baseline system" is defined which guarantees that a reasonable level of
function will be present in all decoders which use the DCT algorithms. This
baseline system uses a restricted version of the sequential DCT algorithm.
The baseline system must be present in all systems which use the DCT com-
pression algorithms.

The baseline DCT system capabilities can be enhanced in a number of ways.
These so called "extended systems" can use progressive modes of compression,
higher precision (up to 12 bits/sample), and alternative coding techniques.
They have fewer constraints in several other important parts of the system.

A separate lossless coding system is defined which uses a DPCM algorithm.
The baseline DCT system is not required in a lossless decoding system.

The compression achieved with these algorithms is dependent on the charac-
teristics of the images. For the color images of natural scenes which have
been used for testing and development of the algorithms, recognizable images
are obtained at about 0.1 bits per pixel and useful images are obtained at
about 0.25 bits per pixel. At 0.75 bits per pixel the images are typically
of excellent quality, and at about 1.5 bits per pixel or less the images are
essentially indistinguishable from the original source images. Lossless
coding is obtained at about 2:1 compression for these test images. All of
these ratios are based on tests of B:2:2 CCIR 601 format Y,Cb,Cr images with
an average of 16 bits/pixel.

5,196,946
73 74

5.2 The‘coding system '

The coding system consists of‘two distinct structural blocks in both the
. encoder -and the decoder. Figure 5.2.1 provides a sketch of the basic
‘ structure.. ’ ' '

I 'I'

_. I.:. ‘I
- -I I

---------I--|--

I Encoder I I I Decoder I I
I I I I I I
I ------------- I I --------—---- I
I I Encoder I I I I Decoder I
I I Model I I I I Model I I
I ------------- I I ------------- I
I .I I I I I
I I 5 I I I S‘ I
I ------------- I I ------------— I
I I Entropy I I I I EntrDPY I I
I I Coder I I ‘I I Decoder I I
I ------------- I I ------------- I
I I I I I I

———————-- I ——-»—-———— ——-—--—-——— I ——_-....-__

I I I I
I C I (C‘ I

_ ------------—>) I ---------->—-

Figure 5.2.1 Encoder and Decoder systems

Input data I is fed into the encoder model. The encoder model creates a set
of symbols or coding decisions 5 from the input data, and this representation
of the input data is fed to the entropy coder. The entropy code: in turn
creates a coded data stream C, which - after transmission or storage - is
the input C‘ to the entropy decoder. The entropy decoder reconstructs the
set of symbols or coding decisions 5', and this representation is fed to the
decoder model which creates the output image data I’.

In general, I’ may not be an exact replica of I. However, S’ should be ex-
actly the same as 5, provided that C‘ is exactly the same as C. Therefore,
the entropy code: and entropy coder are lossless, and the difference (dis-
tortion) between I' and I is introduced only in the encoder and decoder
model.

The possibility of channel errors which can make C not equal to C‘ is re-
cognized to exist in some environments. Rrocedures have been defined which
permit extra, optional, redundancy to be incorporated into C in order to make
it possible to recover from some error conditions.

The coding models fall into two classes, those for DC? based systems and
those for DPCM based systems.

5.2.1 Models for DC? based systems

The models for the DCT based systems can be divided into three parts, as shown

in figure 5.2.1.1.

75 76

I . I‘
I - -I -- .
I ‘ I --

---------- I ——————--- ————....-_- I-......-

I Encoder I I ‘ I Decoder I I
I I I I ~ I'’ I
I ------------- I I ----—4-—----- I
I I FDCT I I I I IDCT I I
I I (8xB) I I ’ I I (8x8) I I
I ------------- I I ------------- I
I I I I I I
I I I I I I
I ------------- I I ------------- I
I I Quantize I I I I Dequantize I I
I -----------—- I I ------------- I
I I I I I I
I I I I _ I I
I -----------—- I I ------------- I
I I Coefficient I I I I Symbol to I I
I I to Symbol I_ I I I Coefficient I I
I I conversion_I I I I conversion 1 I
I ------------- I I -----------—- I
I I I I I I
.........I...._—..— ———__....I.........

I I
I S I 5'

Figure 5.2.1.1 Encoder and Decoder models for the DCT based systems

In the encoder 8x8 blocks of input samples are transformed using the forward
DCT (FDCT) into an 8x8 array of DCT coefficients. These coefficients are
quantized using an 8x8 matrix of quantization values, and the quantized
output is fed to a procedure which converts the coefficient values to a set
of symbols. This last step is lossless.

In the decoder the symbols decoded by the entropy decoder are fed to a pro;
cedure which converts them to quantized DCT coefficient values. These
quantized DCT coefficients are dequantized using the same quantization values
employed by the encoder. The inverse DCT (IDCT) then converts the 3x3 Dc:
array back into an 8x8 array of sample values.

The distortion between I and I’ is "governed entirely by the FDCT,
quantization, dequantization and IDCT procedures.

5.2.2 Models for the DPCM algorithms

The models for the DPCM algorithms can be divided into two parts, as shown
in figure 5.2.2.1.

5,196,946
77 73

I ' .I',"' '"
I _ . I__ _
I . It I

$-—_—_"-l_*..._ _‘_ ‘ .__ _‘ —:—_|___-—_’-_ ‘ ,-_
I Encoder I I I Decoder I 3 . -,I
I I I I ‘ I I
I ------------- I I ------------- I
I I calculate I I I I reconstruct I I
I I Difference I I I I Output, I:I
I ------------- I I --------1---- I
I I I I I I
I -7----------~ I I ------------- I
I I Difference I I I I Symbol to I I
I I to symbol I I I I Difference I I
I I conversion I I I I conversion I I
I ------------- I I ------------- I
I I I I I I
.......—_ I ———————-—— ——-—-———— I ------__-

I I
I S I 5'

Figure 5.2.2.1 Encoder and Decoder models for DPCM algorithms

In the DPCM encoder a prediction is generated from neighboring values which
have already been coded and are known to the decoder. The difference between
the sample and this predicted value is then calculated and fed to the
Difference-to-Symbol conversion procedure. Alternatively, a difference can
be calculated between the sample and a corresponding sample taken from an
image I‘ generated by an earlier stage of a hierarchical progression.

In the DPCM decoder, the symbols are converted back into differences, and
these differences are added to the prediction (the same prediction as in the
encoder) to generate the output values I‘.

The distortion between I and I’ is governed entirely by the calculation of
the difference and the calculation of the reconstructed output. The
Difference-to-Symbol and Symbol—to-Difference conversions are lossless..

5.3 The two-dimensional Discrete Cosine Transform (DC?)

The 8x8 two—dimensional discrete cosine transform is a key part of the DCT
based algorithms. The transform used is an 8x8 transform,-which means that
the FDCT transforms Bxe blocks of pixel data into 8x8 blocks of DCT coeffi-
cients.

Image quality is determined by frequency dependent quantization of the DCT
coefficients. A matrix of quantization values is used which has 64 inde-
pendent elements.

5.3.1 Ex8 sample block and 8x8 DCT Coefficient block conventions

The 8x8 blocks of samples are obtained by dividing the input sample array
into contiguous 8x8 blocks. As an example, the subdivision of a Y-Cb-Cr
image with vertical resolution of 576 rows and horizontal resolution of ei-
ther 720 columns (Y) or 360 columns (Cb and Cr) is shown in figure 5.3.1.1.

5,196,946
79 80

I<————720—-L-------—>I I<---90-------4--——>I;
I columns I I blocks .I

----- - ---— - -— — -—- -- — - —-— - ------- -+-+—+-+---—---———e

I I I 'I-+—+—+—+-----------I
I I I" I++—+-+-+-—-—-------I

576 rows I Y I ===> 72 blocks |—+-+—+—+----—--4---|
I I I I + + + + ' I
I I '

|<--360--—>I I<---as--—>I
I columns I I blocks I

-— — — — —-— ~- — — — — — —-— — — —— —+_+-_----
I I-+-+------I
I I-+-+------I

I-+-+------I
I I + + I
I I + + |

Ln \.l m H0tIn nU
INN

V 4 N UI- OnW m

|<——360--->I l<---as--->1
I columns I - I blocks I

---— — — — — — — — — —-— — -— - — —— —+-+-_----

I I-+r+------I
I I—+-*----~-I

===> 72 blocks I-+-+-—----I
I I + + I
I I + + I

——.——— —u———..-—.—— -a—.———.- -..-..——————

Ln M o\ *1 0E m (1 *1

Figure 5.3.1.1 Example of 8x8 block division

Note that this subdivision process is defined relative to the internal rep-
resentation of the image — the representation that is used in the encoding
and decoding. The relationship between this internal representation and the
actual image is determined by the application.

The samples within each 8x8 block are assigned horizontal indices i with
values from 0 to 7, and vertical indices j with values from O to 7. Figure
5.3.1.2 illustrates the convention.

horizontal sample index i

I I I
I I I

vertical 1 _I I I

sample 2 _I I I
index j 3 I__I__I__

I I I
I I I
I I I
I I I
I I I

...—_._._.—

..—..__ ——

._—.: :-

I
I
I

_. __ _.I__ __ -
__ __I__

I
I
I
I
I

_.—.—___— .__..—.--—.—
—..__.._.—_.——-———————-..:_.

Figure 5.3.1.2. Convention for sample indices in 6x8 block

The Exs array of DCT coefficients is ordered with the DC component in the
upper left corner, increasing horizontal "frequencies" to the right and in-
creasing vertical "frequencies" going down the array. Figure 5.3.1.3 il-
lustrates the convention. The DC coefficient position is crosshatched, while
the AC coefficients are left blank.

5,196,946
31 d 82

horizontal frequency index u

0 1 2 3 4 5 6 7

_ __ __l__l__l__ __ __ __l_

_ XX __l__l__ __ __ ._ __l-
vertical _ _ __l___)__ __ __ _ __)_

frequency _ __ __!__I__ __ __ __ __1_
index v 1 1

l
Ixldllflfihlkl-O

Figure 5.3.1.3. Convention for 2-D DCT coefficient array

5.3.2 Forward DCT (FDCT) and Inverse DCT (IDCT) reference models

The reference models for the two—dimensional FDCT and IDCT calculations are
based on the following formulae:

FDCT:

7’ 7

I-"(u,v) = (1/l4)C(u)C(v) > > {(1.3) cos(2i+1)u pi/16 cos(2j+1)v pl/15

i=0 j=0

IDCT:

7 7

f(i;j) = (1/4) -;— -;- C(U)C(V)F(U.V) COs(2i+1)u pi/16 cos(2j+1)v pi/16
325 3:3

where C(u) = 1/ VF3_ for u-0

Eifii Z 1/ J7 §Z§1i.3°‘ "°
C(v) = 1 for v not =0

f(i,j): input/output picture element
(from -128 to 127 for baseline system)

F(u,j): DCT coefficient
(from -1023 to 1023 for baseline system)

The reference calculation should be carried out in a double precision (64
bit) floating point representation.

There are quite a few FDCT and IDCT implementations which use algorithms
designed to reduce the number of multiplications and additions in the
transformation. These practical, fast, DCT algorithms use fixed precision
integer arithmetic. Because round-off and truncation effects depend on the
way the calculations are done, different IDCT implementations will give
slightly different answers.

Although there is no formal specification of the implementation, the tech-
niques for computing the FDCT and IDCT should have sufficient accuracy rel-
ative to the reference calculation to meet the requirements of the
application. _w_

i19&946

. 83 84
“S.3:2.1_ Level Shift

Unless a difference image is being coded, the input data has-an unsigned.
.‘representation. when coding unsigned data of precision P, the input is level

shifted by subtracting 2'-(P-1) before processing with the forward DCT. (For
8 bit precision, 128 is_subtracted.) After processing with the IDCT, the
same level shift must be added to the output values to return them to an
unsigned representation.

5.3.3 Quantization and bequantization

A property of the FDCT is that it typically concentrates the energy of the
64 samples contained in each 8x8 block of data into just a few of the 64
transform coefficients. within a given block, eight times the average of
the values of the 54 pixels is found in one, so called, DC coefficient. If
the entire block has a constant value. then only this DC term can be non-zero.
Deviations frmn a constant-value block will generally introduce non-zero
values in some of the other 63, so called, AC coefficients.

5.3.3.1 Quantization transfer function

Quantized coefficient values are obtained by linearly quantizing each DCT
coefficient with the quantization value, Q(u,v), assigned to that coeffi-
cient. Pigure S.3.3.1.1 illustrates the relationship between the unquantized
DCT coefficient, F(u,v) and the quantized DCT coefficient, C(u,v).

C(u.v)9

I
3 + <----->

I

g 2 + <----->' I
1 -9- <----—>

—3Q -2Q —Q I
---------—+—---——--——--—+--—--——---——~+-—---—+—-— F(u,v)

I Q 29 3Q
<-----> + -1

I

<—-—-—> + -2
I

<—----> + -3

‘ .

Figure 5.3.3.1.1. Illustration of linear quantization procedure

The mathematical relationship for the quantization procedure is:

For F(u,v) >= 0,

C(u.v) = (F(u.v) + (Q(u.v)/2) / Q(u.v)

and for F(u,v) < 0,

C(u,v) = (F(u.v) - (Q(u.v)/2) / Q(u.vl

The dequantization should also be linear: letting F’(u.v) denote the de-
quantized DCT coefficients, the dequantization procedure is;

F'(u,v) = C(u,v) ‘ Q(u.V)

Loss is introduced during the quantization process, making the process ir-
reversible in general....a..—

5,196,946
85 86

.3.3,2 The matrix-of quantization values '

Tests with human observers have shown that the AC coefficients are not of
equal importance. Taking advantage of the variation in the sensitivity of
the human eye, one can use coarse quantizers_for the "high frequency" coef-
ficients. - ‘ ‘ ' - --

The quantization of each of the 64 coefficients is separately specified by
a quantization matrix of 64 independent values. In principle. a different
matrix should be defined for each color coordinate-system, spatial resol-
ution, data precision and application. Therefore, default matrices are not
specified - instead, the quantization matrix is always included in the com-
pressed data signaling information.

As a guide and example, however, tables 5.3.3.2.1 and 5.3.3.2.2 give two
matrices which have been used with good results on 8 bit/sample Y,Cb,Cr im-
ages of the format illustrated in figure 5.3.1.1. Note that these
quantization values are appropriate for the DCT normalization defined in
section 5.3.2.

Table 5.3.3.2.1. Luminance quantization matrix

16 11 10 16 24 40 51 61
12 12 1a 19 26 56 60 55
14 13 16 24 -no 57 69 56
14 17 22 29 51 87 80 62
18 22 37 S6 66 109 103 77
2a 35 55 64 81 10a 113 92
a9 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 5.3.3.2.2. Chrcminance quantization matrix

17 18 2A 47 66 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
B7 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

.99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

If these quantization values are divided by 2, the resulting image is usually
nearly indistinguishable from the original.

5.4 Entropy coding

Seth a Huffman coding technique and a one-pass adaptive arithmetic coding
technique have been defined for the lossless entropy coding procedure of
figure 5.2.1.

5.4.1 Huffman coding

The Huffman coding procedures use codes from a table of code words which is
fixed for the duration of the coding procedure. Each symbol supplied by the
model is coded using a particular code word extracted from the table.

The tables used by the Huffman coding technique can be constructed from in-
formation which can (optionally) be included as par: of the signaling pa-
rameters. It is therefore possible to create custom Huffman tables whid
are appropriate for a class of images, or even specifically optimized f
each individual image.

Alternatively, default Huffman code tables are included in the bar
system — two tables for_QC_coefficient coding (DPCM algorithm) and two .

5,196,946
87 88

for AC coefficient coding ——and these tables may be used.in place of-the
custom tables. For each type of table, one default is intended for use with
Juminance data: the other is intended for chrominance data. ‘ '

The baseline system uses only the Huffman coding technique.

5.11.2 __A_ri_.t.h_metic coding

Adaptive binary arithmetic coding procedures and associated coding_models
have also been defined for each of the coding systems. Custom tables are
not necessary for this type of coder, since the functional equivalent of the
code tables - the set of probability estimates - is adapted dynamically to
each image, and even to regions within each image. The arithmetic coding
procedures thus provide a one-pass adaptive mode of coding.

5.5 Coding models for the DCT compression systems

The coding models for the DCT algorithms can be divided into two basic
classes — the DPCM model for coding the DC coefficients and a separate model
for coding the AC coefficients. These models are designed for the sequential
algorithm and (with some minor enhancements) the first stages of the pro—
gressive DCT sequence. A modified set of models is required for later stages
of the DCT progression.

5.5.1 DPCM coding model for the DC coefficients

The DPCM coding model for the DC coefficients is a one-dimensional coding
model in which the DC value of the previous Bx8 block of a given component
is used as to predicfl the DC value being coded. The difference is coded
losslessly.

In the progressive modes, the precision of the DC coefficient is reduced by
truncating the low order bits before coding the value with the DPCM algo-
rithm. The full precision of the DC coefficient is recovered in later stages
of the progression by sending the low order bits of the DC coefficient one
bit plane at a time.

5.5.2 Coding model for the AC coefficients

For purposes of compression, the two-dimensional DCT array is reordered using
a zigzag scan or sampling pattern. This sampling pattern creates a one-
dimensional array with DCT coefficients qualitatively in order of ascending
spatial frequency. The order of position in the one-dimensional vector is
given in table 5;5.2.1. Coefficient 0 is the DC coefficient."

Table 5.5.2.1. zigzag ordering of DCT coefficients

1 5 6 1A 15 27 28
4 7 13 16 26 29 42
B 12 17 25 30 41 43

11 18 2Q 31 fl0 45 53
19 23 32 39 45 52 54

20 22 33 38 a6 51 55 60
21 34 37 B7 50 56 59 61
35 36 08 49 57 58 62 63

5.5.2.1 Sequential DCT algorithm

In the sequential algorithm the coefficients are coded in order of occurrence
in the one—dimensional zigzag array, starting with the DC coefficient. Since
many coefficients are zero - especially at high frequencies - the coding
models use a run length coding mechanism and an end-of-block symbol to ef-

ficiently code runs of zero coeff'cients. h

5,196,946
89 90

5.5.2.2 Progressive DCT algorithms ~

Two complementary progressive coding techniques are defined for coding the
fitT, spectral selection and successive approximation. Spectral selection
can be used within stages of successive approximation. The underlying FDCT
and IDCT calculations are the same as in the sequential system, and when the

I

last progressive_stage is complete, the image quality is identical for the.
progressive DCT and sequential DCT systems.

5.5.2.2.1 Spectral selection

One way of achieving a progressive coding sequence is to segment the one-
, dimensional zigzag vector of coefficients into bands and code each band as

a separate'stage of the progression. This mode is called "spectral se-
lection".

5.5.2.2.2 Successive approximation

Another way of achieving a progressive coding sequence is to send approximate
values of the coefficients in the first stage and send the additional in-
formation needed to accurately represent the full precision DCT coefficient
in later stages. This mode of progressive coding is called "successive ap-
proximation". The precision of the DCT coefficient magnitude is truncated
in the first stage, and the full precision is recovered in later stages by
sending the smaller coefficients and the missing low order magnitude bits
one bit plane at a time.

5.6 Lossless DPCM coding model

The lossless coding system uses a DPCM coding model which is derived from
the DPCM model used for coding the DC coefficients of the DCT. The predictor
is two-dimensional, and is the average of the samples immediately above and
to the left of the sample being coded.

Input data precision of up to 16 bits/sample may be used with the lossless
coding system.

5.7 Hierarchical mode of progression

. A set of additional capabilities is provided through the hierarchical pro-
gressive modes. After the first stage (which can be coded with any of the
DCT or spatial algorithms), the difference between a reference (the output
for the same component from the previous hierarchical stage) and the current
source image is coded. The algorithms for coding differences are subsets
of the DCT and spatial algorithms already defined. -'

The hierarchical mode allows changes in spatial resolution as part of the
progressive transmission. The resolution changes are accomplished by means
of upsampling filters which double the spatial resolution of the reference
image both horizontally and vertically.

5.8 Organization of the technical specification

The sections which follow this introduction and overview are as follows:

Section 6 provides a detailed specification of the input data organization,
compressed data organization and all signaling parameters required for de-
coding of an image.

Section 7 describes sequential DCT coding with Huffman coding. This section
also defines the baseline system.

Section 8 describes the sequential DCT mode with arithmetic coding.

Section '9 describes the successive approximation and spectral selection
progressive modes for coding the DCT. '-

i19&946
91 9_2

Section 10 describes the DPCM lossless coding algorithmf"

Section 11 describes the hierarchical modes'which provide for progressive
coding with resolution changes between stages as well as refinement of image
quality at a fixed resolution. The algorithms forlcoding difference ima es
are described in this section.

Section 12 describes the arithmetic coding procedures used in the coding
models defined for arithmetic coding. -

Section 13 contains a variety of material which is not part of the specifi-
cation of the algorithm, but nonetheless is important for an understanding
of how to use the system. Among the topics covered in this section are the
techniques for generating custom Huffman tables, some of the decoding pro-
cedures, a typical downsampling filter for use in the hierarchical mode, some
test data for arithmetic coding, and a procedure for suppressing blocking
artifacts in the output images.

i19&946
93 94

6. Data organization and'signaling parameters-

"This section first describes the data organization for input data and com-
pressed data. It then defines the signaling parameters-contained in the
compressed data. ~

- Each component - of the image is represented internally in the
compression/decompression system as a rectangular array of samples. The
relationship between this internal representation as a rectangular array and
the placement of pixels in the physical image is defined by the application.
All signaling parameters and conventions for processing the data are defined
with respect to the internal representation.

some of the signaling parameters may also be useful in the application.
‘Since the internal and external representations may not be identical, ap-
plications may need to duplicate some of the information in additional ap-
plication specific signaling information. ‘

6.1 Image data ordering

An image can contain up to 255 unique components. The components are grouped
into frames, and each frame can contain up to four components.

6.1.1 Image frames and scans

Each frame of an image contains data for up to four image components; a frame
consists of one or more scans through the image data for each component de-
fined in the frame signaling parameters. Each frame in an image is inde-
pendently specified, except that down-loaded matrices and tables may be
retained from one frame to the next.

Within each scan, two basic types of data ordering are defined, interleaved
and non-interleaved. with non-interleaved data, each scan contains only
one component: with interleaved data, each scan contains data from all or
the components in the frame.

All scans within a single frame must use the same data ordering.

6.1.1.1 Minimum data unit (MDU)

The minimum data unit (HDU) is the smallest unit of data which is allowed
for a given class of compression algorithm and data ordering.

In the encoder any incomplete MDU are completed by replication of the
right-most column and the bottom row of each component. Any extra rows and
columns added by the encoder are discarded by the decoder.

6.1.1.1.1 MDU for the DCT algorithms - 8x8 blocks and block interleaves

For DC? algorithms with non-interleaved data, the HDU is an 8x8 block of
samples. The Ex8 block units result from the division of each component into
contiguous 8x8 sample blocks for purposes of computing the DC". The upper
left 8x2 block is aligned with the upper left 8x8 group of pixels in the
array. The blocks in the component are processed from left to right along
block rows, and from.top block row to bottom block row of each component.

For DCT algorithms with interleaved data the MDU is a block interleave. A
block interleave consists of a sequence of 8x8 blocks of samples containing
one or more 6x8 blocks from each component in the frame. The order of blocks
and the number of blocks in a block interleave are determined from the sam-
pling ratio signaling parameter. The sampling ratio defines the relative
frequency both horizontally and vertically for the sampling of the individual
components in the frame. This will be described in more detail in the section
which defines the sampling ratio;

5,196,946
95 96

6.1,1.1.2 MDU for the spatial algorithms_r samples and sample interleaves

“Eor spatial algorithms with non—interleaved data the MDU is one sample. The
samples from each component are processed from left to right along rows, and
from top row to bottom row.

For spatial algorithms with interleaved data the MDU is a sample interleave.
A sample interleave is comprised of a sequence of samples containing one or
more samples from each component in the frame. The order of samples and the
number of samples in a sample interleave are determined from the sampling
ratio signaling parameter; this will be described in the section which de-
fines the sampling ratio.

6.1.1.2 Coding interval

The coding interval is defined to be an integer multiple of MDUs. If re-
synchronization is enabled, the coding interval is also the resynchronization
interval. A

For the spatial algorithms only certain integer values are allowed. The
coding interval for the spatial algorithms must he a multiple of the number
of MDU in one row of the frame.

6.1.1.2.1 Coding interval for the sequential DCT mode

In the sequential DCT mode the 8x8 blocks are coded in one pass. For this
- mode, either block interleaved or non-interleaved data ordering is allowed

within a scan. However, each BxB block is coded as a separate unit.
Therefore. for the sequential DCT mode the coding interval is only used to
define the resynchronization interval.

6.1.1.2.2 Coding interval for the progressive DCT and spatial modes

In the progressive DCT and spatial algorithms the coding interval and sam-
pling ratio are used to define a data interleave with a periodicity which
can be much larger than the periodicity of the block interleave. Within a
coding interval the components are coded in the sequence defined in the
sampling ratio, but without any interleaving. The order of coding of the
components within a coding interval is defined by the sampling ratio.

For some of the progressive coding algorithms, code words have been defined
which describe features from more than one 8x8 block. These code words may
only be used to describe features from a sequence of blocks of a single
component within a single coding interval. In addition, in the progressive
modes the DC coefficient is coded separately from the AC coefficients within
a coding interval.

6.1.1.2.3 Incomplete coding interval at the end of a scan

If the coding interval specified is not a factor of the total number of MDU
in the frame, the final coding interval will be incomplete. The size of the
final interval is then reduced such that it contains the number of MDU re-

quired to complete the frame.

6.1.1.2.a Non-interleaved data ordering within a scan

For non-interleaved data ordering the coding interval has the same function
as in the interleaved data organizations. However, only one component is
coded in each coding interval.

6.1.1.3 Constraints on data ordering

Only one data ordering can be used within a single frame.

5,196,946 .
97 98

The.sequential.DCT.mode can use either non-interleaved data ordering or block
interleaved data ordering. The sequential DCT mode uses only one scan per
frame when using block interleave, and only one scan per component when using '-

“non-interleaved data ordering.

The progressive DCT-algorithms and the.spatial algorithms use the extended
data interleave defined by the coding interval and sampling ratio.

6.2 Compressed data organization and conventions-

The compressed data stream contains delineated segments for each frame in
the image. The compressed data stream segment for each frame contains a
segment with signaling parameters followed by delineated segments for each
scan. Each scan contains a segment with signaling parameters and a coded

data segment. The coded data segments contain data generated using either
Huffman coding or Arithmetic coding techniques. Special resynchronization
codes may also.be imbedded within the coded data segment.

The image frames and the segments within a frame are delineated by unique

byte aligned "marker" codes consisting of two eight bit integers. The marker
codes and associated length fields allow the various segments to be located

in the compressed data without decompression of the coded data. '

6.2.1 Bit ordering and byte ordering conventions in the compressed data

The bit ordering and byte ordering conventions in the compressed data are
as follows:

1. The coded data are byte aligned: if the data are converted to a se-
rial bit stream, bytes are sent least-significant-bit first.

2. Sixteen bit integers are sent least-significant-byte first.

3. Huffman codes are sent root first.

4. Variable length integers associated with Huffman coding are sent
least—significant—bit first.

5. Arithmetic codes are sent most-significant-byte first.

6.2.2 Marker code definitions

Unique marker codes have been defined which make it possible for a decoder
to parse the compressed data and locate specific segments without having to
decompress data in other segments.

The marker codes consist of two byte-aligned 8 bit integers. The first 8

bit integer is always X'F?'; the second integer is any value greater than
or equal to X'C0‘. The X'FF‘ byte occurs first in the compressed data. Table
6.2.2.1 contains the definitions of the various marker codes.

The Huffman and Arithmetic codes are constrained such that a marker code
cannot be created by any valid sequence of normal coding operations. For
Huffman coding the constraint is introduced by inserting ("stuffing") a zero

byte following any X'FF' byte which is created by any combination of Huffman
codes or appended bits. 1—bits are used to pad the coded data to get byte
alignment of the marker code. If these 1-bits happen to create a X'FF‘ byte,
a zero byte is stuffed before appending the x'FF' prefix to the marker code.
Further discussion on the use of marker codes within the coded data is con-
tained in the sections on Huffman coding.

‘In arithmetic coding the constraint which keeps marker codes unique is in-

troduced by a bit stuffing procedure which must be invoked whenever a byte
aligned X'FF' is produced in the coded data. This procedure guarantees that
the arithmetic coder will not generate a byte with a value greater than x'E?'

following a X’FPI7"The bYt8 aligned X'FF' prefix for the marker code is

i19&946
99 100

generated in the process of emptying (flushing) the current contents“of*the-"
arithmetic coder code-register--_Purther discussion_on_the use of marker
codes within the coded data is contained in the sections on arithmetic cod-

ing.

For those marker codes followed by a variable length field, the first two

bytes of the variable length field contain an unsigned 16 bit integer giving
the length of the field in bytes (the length includes the two bytes speci-

"fying-the.length). »The variable length field may contain accidental marker
code patterns. -

bit field category
msb lsb length

7 6 S A 3 2 1 0

1 1 0 O x x x x v PRV - Private use
1 1 0 1 x x x x V APP - Application use
1 1 1 0 x x x x V SOP — Start of frame

1 1 1 1 0 j k m 0 RSC - Fixed interval resync
1 1 1 1 1 '0 0 0 V SOS - Start of scan
1 1 1 1 1 0 O 1 2 LCT - Line count follows (16 bits)
1 1 1 1 1 1 0 O 0 S01 - Start of image
1 1 1 1 1 1 1 O O EDI - End of image
1 1 1 1 1 1 1 1 0 FIL - fill bits

Table 6.2.2.1 Definition of the second 8-bit integer of the Marker codes

The SCI (Start Of Image) marker code always starts the compressed, data
stream. Usually (for the exception, see PRV and APP marker code descriptions
below), the SOI marker code is followed immediately by the SO? marker code.
Note that the SOI marker code can be used to detect problems with either bit
order or bit sense of the data. ‘

The 50? (start Of rame) marker code starts the signaling parameter sequence
for the signaling parameters which apply to all scans within a given image
frame. The length field gives the length in bytes for this portion of the
signaling parameters. The 50? marker code contains a four bit field which
can be used (optionally) for modulo 16 numbering of the image frames.

The 505 (Start Of Scan) marker code starts the signaling parameter sequence
for a scan within the image frame. The length field gives the length in bytes
for this portion of the signaling field. Each scan in the frame must start
with this marker code.

The EDI (End Of Image) marker code terminates the compressed data stream.

The ES: (Resynchronization) marker code may be added to the compressed data
at the start of each coding interval. If used, it provides a unique byte

aligned code which can be located by scanning the compressed data. A three
bit field in this marker code provides a modulo 8 resynchronization interval
count. The decoder must be able to bypass this marker code if it is unable
to interpret it.

The LCT (Line Count) marker code provides a mechanism for transmitting the
line count at the end of the scan. It is followed by a 16 bit unsigned in-
teger value containing the number of lines in the frame. If the LCT marker
code is used, it should be added to the compressed data at a point where the
decoder will intercept the information before it is needed to terminate the
decoding process. The procedure for doing this is different for Huffman
coding and Arithmetic coding, and therefore will be described in the sections
on these coders. The LCT marker code can only be used at the end of the final

coding interval of the first scan in a frame.

The FIL_(Fill) marker code provides a mechanism for extending the 1-bit se-
quence in the marker code prefix (X‘FF'). The FIL marker code must always
be followed by another marker code.

5,196,946
101 102

The PRV and APP marker codes are marker code categories reserved for private
use and application specific use respectively. Information contained in
these fields should not affect the decoding of the compressed data. These
codes.and associated fields may be_inserted into the compressed data before
the SOP and S05 marker codes (which then-occur immediately after the inserted
field). They can also be inserted immediately after the scan signaling
field. The decoder mdst be able to bypass these fields if it is unable to
interpret them. PRV and APP marker codes and associated fields may be fol-
lowed by other PRV and APP marker codes and by any other marker codes which
are allowed at that position in the compressed data.

Marker codes with values less than X'CO' are reserved.

6.2.3 Structure of the compressed data stream

The structure of a typical compressed data set is as follows:

SOI

SOF, frame parameter field length, frame parameters
SOS, scan parameter field length, scan parameters

RSC ', coded data for coding interval
RSC **, coded data for coding interval
... etc. ...

RSC ", coded data for final coding interval
505, scan parameter field length, scan parameters

RSC ‘, coded data for coding interval
RSC ", coded data for coding interval
... etc. ...

RSC *°, coded data for final coding interval
... etc. ... - . ~

SOF, frame parameter field length, frame parameters
... etc. ...

... etc. ...
EOI

* Optional marker code which enables resynchronization at the start
of each coding interval.

" RSC Marker must be present if resynchronization is enabled.

where the SOI, SOF, SOS, RSC and E01 marker codes are defined in section
6.2.2. The coded data is the portion of the data stream created by Huffman
or Arithmetic coding. Coded data segments are always terminated by a marker
code.

5,196,946
103 104

6.4 Signaling parameters for a frame ‘ ' V --

The signaling parameters following the SQ? marker code are as follows:

parameter number of bits
in field

Signaling field length 16_
Mode selection 8

Data precision 8
Number of lines (internal) 16

Line length (internal) 16
Coding interval 16
Sampling ratio V
Quantization matrix assignment V/0
Quantization matrix specification V/0

V variable length

when a parameter precision is indicated by N/0, the field is N bits when
present. However, the field is omitted when not needed.

All integer signaling parameters are unsigned.

6.4.1 Signaling field length

A 16 bit integer gives the length in bytes of the signaling parameters for
the frame. The length value excludes the two bytes allocated to the SOF
marker code, but includes the two bytes in the length field.

6.4.2 Mode selection

An 8 bit integer identifies the mode selected for the compression algorithm.
The bit assignments in the mode selection parameter are given in table
6.4.2;1.

Table 6.4.2.1 Bit assignments in the mode selection byte.

bit position bit assignment
bit=1 bit=0

7 (msb) reserved g reserved
6 extended system baseline system
5 spatial algorithm DCT algorithms

A differential coding non-differential coding
3 hierarchical non—hierarchical

2 progressive sequential
1 arithmetic coding Huffman coding
O (lsb) reserved reserved

A value of zero for the mode selection signals the baseline sequential mode.

Some combinations of bit patterns are illegal. For example, if the baseline

system is selected, all other bits must also be zero. However, sequential
DCT algorithms with Huffman coding may use extensions beyond the baseline
system capabilities.

To give other examples, the selection of either independent lossless or
difference coding is only meaningful if spatial algorithms are selected, the
difference coding can only be invoked in the hierarchical mode, and selection

of progressive and sequential is only meaningful when the DCT algorithms are
selected.

Reserved bits must always be set to zero.

e.

5,196,946
105

6.4.3 Data precision

106

An 8 bit integer specifies the input data precision in bits. Input pre-
cisions of from 1 to 12 bits are allowed for the DCT algorithms. Input

precisions of up to 16 bits are allowed for the lossless coding system. All
image components in a frame must have the same input data precision.

The precision of the quantized DCT is determined by the input data precision,
the smallest quantization matrix value, and the normalization defined for
the DCT calculations. The largest quantized DCT coefficient precision pos-

sible is '15 bits, corresponding to an input precision of 12 bits and
quantization matrix values of one.

In the baseline system the input data precision is 8 bits per component
sample and the quantized DCT coefficient precision is limited to a maximum
of 11 bits.

Output data have the same precision as input data. However, since the DCT
is quantized, it is possible for the the IDCT output to overflow the input
data range. Provisions should be made for properly interpreting the output
data when this occurs.

Both input and output data have an unsigned representation.

6.4.4 Number of lines in internal representation

A 16 bit integer specifies the number of raster lines in the internal rep-
resentation of the frame. The value excludes any lines added to complete
the block rows. The raster line count for the component with the largest

number of samples vertically is used for this field.

If the number of raster lines is set to zero, the number of raster lines is
unspecified at the start of compression. If the number of raster lines is
unspecified, the marker code which signals the line count must be used in
the first scan.

6.4.5 Line length of internal representation

A 16 bit integer specifies the number of pixels per raster line in the
internal representation of the frame. The value excludes any columns added
to complete a block row. A value of zero is not allowed. The number of
samples per raster line for the component with the largest number of samples
horizontally is used for this field. "

6.4.6 Coding interval

A 16 bit integer specifies the number of MDU in a coding interval. If this
value is zero, the coding interval defaults to the number of MDU in the scan.

If resynchronization is enabled, the coding interval is also the resynchro-
nization interval.

6.4.7 Sampling ratio and component identification number

A variable length field specifies the number of components in a frame, the
component identification number for each component and the relative sampling
ratio for each component. The sampling ratio is defined for the internal

representation of the data. The sampling patterns defined for the image
components should be regular, rectangular, and appropriate for the com-
pression algorithms.

The signaling information is given by:

Nc, c1, (v1_x-:1), c2, (V2 H2). -, Cn, (Vn Hn)

5,196,946

107 _ 108

where the (Vk Hk) are 8 bit integers.

Nc = number of components in sampling ratio (8 bit integer).

Ck = number assigned to kth image component (8 bit integer).
11

Vk number of vertical samples of kth component (low order 4 bits).

Hk = number of horizontal samples of kth component (high order 4 bits).

Nc must have a value of 1, 2, 3 or 4. All other values are undefined.

The values of Ck are assigned by the application; any 8 bit value other than
zero is allowed, but each component must be assigned a unique number which
is used for that component in all of the frames in the image. The value of
zero is reserved to signal the presence of interleaved data in the scan.

The (Vk Hk) fields make up an 8 bit integer where the Hk value is in the high
order four bits and the Vk value is in the low order four bits. The allowed

values of Hk and Vk are 1, 2 and 4. All other values are undefined for these

parameters. One (Vk Hk) value must be provided for each of the No components
in the frame. ‘

If interleaved data is used, the sampling ratio and the coding interval de-
fine the ordering of blocks (or samples) within the interleave. If non-
interleaved data is used, the sampling ratio defines the relative number of
rows and the relative number of columns in each component.

For algorithms using interleaved data ordering in a scan, the total number
of blocks (or samples) in the minimum data unit (MDU) is the sum over the
blocks (or samples) from all of the components.

Nc

Nb = sum (Vk)'(Hk)
k=1

For a given frame, the total number of blocks (or samples) in the MDU must
be in the range from 1 to 10 inclusive.

when the frame has only one component, both V1 and H1 are present in the
signaling field and should be set to one. The image line length and number
of raster lines specified in the signaling fields are the values appropriate
for that component.

If the number of lines or the line length would give a fraction of a sample
at the right edge or bottom of a component, the component dimensions are
rounded up to the next full sample.

6.4.7.1 Relationship to data interleaving

when an interleaved data organization is used, the sequence of blocks in a
data interleave follows the order defined in the sampling ratio. Each image
component is partitioned into 8x8 blocks, and each 8x8 block becomes one
block in the block interleave. Blocks from a given component are contiguous
in the interleave, and are concatenated in the interleave in left-to—right,
top—to-bottom order relative to the internal representation.

Coding of the blocks is in the order of concatenation within the interleave.
Each component uses an independent predictor for coding the DC coefficient.

For example, if a frame is defined with three components, ABC, and the sam-
pling is (2h:2v):(2h:1v):(1h:1v) for A, B and C;

5,196,946
109 110

‘ ' A1,A2 B1,B2 C1

A3,Afl \

If the coding interval is one, the block sequence is:

A1,A2,A3,A4, B1,E2, C1

Each of the quantities A1,...,C1 represents an 8x8 block of data from a given
component. Blocks A1, A2, A3 and A4 use one DC predictor. Blocks B1 and
82 use a second DC predictor and block C1 uses a third DC predictor. The
predictor for a given DC coefficient is the DC coefficient of the previous
block of the same component.

If the coding interval is two (progressive DCT mode only), the block sequence
is:

A1,A2,A1,A2,A3,A4,A3,A4, B1,B2,B1,B2, C1,C1

If the components are numbered X'52', x'a7' and x'a2' (the ASCII codes for
R, G and B), the sampling ratio parameters for this sequence would be:

Nc,C1(H1 V1),C2(H2 V2),C3(H3 V3) = X'O3 52 22 47 21 42 11'

As a second example, consider Y,Cb,Cr with (2h:1v):(1h:1v):(1h:1v) sampling:

Nc,C1(H1 V1),C2(H2 V2),C3(H3 V3) = X'O3 01 21 02 11 03 11'

For a coding interval of one, the interleave consists of two 8x8 Y blocks,
one 8x8 Cb block and one 8x8 Cr block. In this example the Y, Cb and Cr

components are numbered 1, 2 and 3, respectively. Note that a component
number of 0 is reserved for signaling purposes.

6.4.8 Quantization matrix assignment and point transform assignment

The quantization matrix assignment is required for DCT algorithms.

Each component in a frame is assigned a specific quantization matrix which
must be down—loaded as part of the frame signaling information. Up to four
matrices are allowed, one for each possible component.

The assignment of quantization matrices is specified by a set of four bit
integers, one for each component in the frame.

Tq(1). I Tq(NC)

Up to four quantization matrices can be defined and must be numbered 0, 1,
2 or 3. The Tq values are catenated together in the order in which the
components have been defined, forming an integer of either 8 bit or 16 bit
precision, where Tq(1) is always placed in the low order four bits of the
integer. Any unused high order bits in the-integer should be set to zero.

For example, a three component system which used matrix 0 for the first
component, matrix 1 for the second component and matrix 2 for the third
component would use a 16 bit integer signaling field with a value of X'0210'.

The selections in these fields must be consistent with the number of compo-
nents and the quantization matrix specification.

The baseline system is restricted to two matrices, O and 1.

6.4.8.1 Point transform assignment

For spatial algorithms the quantization matrix assignment field is replaced
by a point transform assignment field. The point transform for each Compo-

5,196,946
111 112

nent is specified by a four bit field, one four bit field for each component
"in the frame.

Pt(1), , Pt(NC)

The Pt values are catenated together in the order in which the components
have been defined, forming an integer of either 8 bit or 16 bit precision,
where Pt(1) is always placed in the low order four bits of the integer. Any
unused high order bits in the integer should be set to zero.

6.4.9 Quantization matrix specification

‘The quantization matrix specification is required for DCT algorithms.

The down-load of a quantization matrix is preceded by an 8 bit integer con-
taining two four bit fields, Pm and Nm.

Pm = precision of matrix elements (high order 4 bits). A value of
zero signals an 8 bit integer precision; a value of one signals
a 16 bit integer precision. No other values are allowed.

Nm matrix number (low order 4 bits). Values of D, 1, 2 and 3
are allowed.

For input precisions of 8 bits or less, Pm must be zero (8 bit precision).

The matrix values are downloaded in zigzag scan order. Following the last
matrix value, a new matrix can be downloaded. The matrix downloading se-

quence is terminated when the 8 bit field comprising Nm and Pm is X'80';
any values other than X'80' or a combinatizn of the allowed values of Nm and
Pm are undefined. -

Matrices down-loaded in a given image frara fay be used in a subsequent image
frame. If a matrix is selected which has not yet been down—loaded for the

current image, the results will be unpred;c:able.

The quantization matrix specification field is omitted for the spatial al-
gorithms.

6.5 Signaling parameters for a scan

The signaling parameters for a scan are preceded_by the SOS marker code and
associated 16 bit integer length field. The signaling parameters which
follow are:

field precision(bits)

Component identification M 8
Progressive coding parameters 24/0
Code table selection(s) V

Code table specification(s) V

when a parameter precision is indicated by N/0, the field is N bits when
present. However, the field is omitted when not needed.

6.5.1 Component identification

If the component identification is zero, the data from all components in the
-frame is interleaved in the manner specifed by the coding interval.

If the component identification is not zero. non-interleaved data ordering
is used._ In this case, the scan codes one component and the component

5,196,946

113 g 114

identification for the scan must match one of the component identification
‘numbers specified in the'sampling'ratio. ‘

6.5.2 ‘Progressive coding parameters

Progressive coding parameters must be specified when using the progressive
gmodes for.coding the DCT. However, in the sequential DCT and spatial algo-

rithms (and in hierarchical modes selecting these algorithms) the progressive
coding parameters are omitted.

when present, the progressive coding parameters are:

field precision(bits)

Successive approximation bit position(s) 8
Start of spectral selection (inclusive) 8
End of spectral selection (inclusive) 8

6.5.2.1 Successive approximation bit position(s)

The successive approximation bit positions are specified by an 8 bit integer.

The low order four hits of the 8 bit integer give the magnitude least sig-
nificant bit position for data which will be coded in the current scan. For
the first scan of a given band, this four bit field gives the scaling of the
DCT coefficients. The DCT coefficients are divided by 2*'B, where B is the
value given for the bit position. For subsequent (successive approximation)
scans, this field gives the bit position of the magnitude bit which will be
coded in the scan.

The high order four bits of the 8 bit integer give the magnitude least sig-
nificant bit position for data coded in the preceding scan of the band. In
the first scan for a given spectral selection band this field must be set
to zero. For scans after the first for a given band, this four bit value
must be one unit larger than the current successive approximation bit posi-
tion value. Any other combinations of values for the two four bit fields
are undefined.

All coefficients in a band must be coded to the precision set in the previous
successive approximation field before invoking the successive approximation
algorithm.

6.5.2.2 Start of spectral selection

The start of spectral selection is the index of the first coefficient in the
spectral band. The minimum value for the start of spectral selection is 0.
A value of 0 signals that DC data is included in the band.

6.5.2.3 End of spectral selection

The end of the spectral selection is the index of the last coefficient in

the spectral band. The end of the band must be greater than or equal to the
start of the band. The maximum value for the end of spectral selection is
63. The minimum value is the start of spectral selection value.

Each band is coded independently; bands do not have to be contiguous.

6.5.2.4 Coding order for a single coding interval

In progressive modes it is necessary to code the DC coefficients separately
from the AC coefficients. It is also necessary to code each component in-
dependently. Therefore, the order in which coding operations are carried
out is as follows: within a coding interval the components are coded in the
order defined by the sampling ratio (section 6.4.7). If both DC and AC co-

efficients are coded in a ba§1_d....the DC coefficient is coded first for all

5,196,946
115 116

blocks of the component in the coding interval. The band of AC coefficients
is then coded, block-by—block, for'all blocks of the component in the coding
interval. ‘

6.5.3 Code table assignment

The code table assignment specifies which Huffmah code tables are to be used
with each component. ‘If arithmetic coding is used, this field selects the
statistics area to be used.

Depending on the signaling parameters, either AC and/or DC tables may be
required. '

For interleaved data in the scan the code table selection fields are a set
of four bit fields:

(Td(1) Ta(1))., (Td(NC) Ta(Nc))

.DC.and AC tables are specified for each component in the frame.

For non-interleaved data in the scan the code table selection field is two
four bit fields:

Td(K) Ta(K)

where K is inferred from the component identification field.

Each pair of entries is an 8 bit integer where the DC table specified in the
low order four bits and the AC table is specified in the high order four hits.
If one of the four bit fields is not needed it should be set to zero.

Td(K) specifies the DC code table to be used for the Kth image component.
The DC code tables are numbered 0, 1, 2, and 3.

Ta(K) specifies the AC code table to be used for the Kth image component.
The AC code tables are numbered 0, 1, 2, and 3.

For interleaved data the order of assignment of tables to components follows
the order in which components are assigned in the sampling ratio. For ex-

ample, if the first 8 bit integer of the table selection field is X'10', Td(1)
is set to zero and Ta(1) is set to one. If C1 is component 47, DC table zero
and AC table one are assigned to component 47.

The selections in.these fields must be consistent with the number of compo-
nents and the Huffman table specifications. If the selections are incon-
sistent, the results will be unpredictable.

Two default sets of code tables are defined; one set (the luminance default)
is typically used with luminance and the other (the chrominance default) is
typically used with chrominance. Tables numbered 0 and 2 are assigned the
luminance defaults and tables numbered 1 and 3 are assigned the chrominance
defaults.

For the baseline system, only tables numbered 0 and 1 are allowed.

Defaults defined for each table may be replaced with corresponding custom
tables. If custom tables are down~loaded, the table number is identified
at the start of the down—load sequence.

6.5.4 Code table specification

The down-load of each Huffman code table or arithmetic coding preset is

preceded by an 8 bit integer field containing two four bit integers, Td and
Nd. where Nd is in the low order four hits of;tbe 8 bit integer field. Nd

5,196,946
117 118

specifies the table number, and Td specifies_the information being down-
loaded for that table. "The binary values for Td"are ‘defined ‘in ‘table
5.5.4.1.

Table 6.5.4.1 Bit assignments for custom table specification

Td Nd ‘Meaning

0000 OOXX Custom DC Huffman table/arithmetic coding preset XX
0001 OOXX Custom AC Huffman table/arithmetic coding preset XX
0010 OOXX Default DC Huffman table/arithmetic coding preset xx
0011 OOXX Default AC Huffman table/arithmetic coding preset xx
1000 0000 End of matrix/table download sequence

All other values of Td and Nd are undefined. Nd may have values of 0, 1, 2
and 3. However, Nd is restricted to a value of 0 or 1 in the baseline system.

If a given table is selected in the code table selection field and is not
down-loaded, the most recent definition of that table from a previous frame
or scan in the sequence is used. If the table has never been specified, the
default assigned to that table is used. If Td is 2 or 3, the defaults defined
for the table are restored as specified above.

_A value of X'80' terminates the table specification list.

6.5.a.1 Table specification
x.

‘If Td is 0, a DC Huffman code table or statistics preset follows. If Td is
1, an AC Huffman code table or statistics preset follows.

6.5.4.1.1 Huffman table specification

The Huffman tables are specified by identifying the number of codes of each

length in the table: for each code length a list of all symbols with codes
of that length is specified. ‘

The code table is constrained such that only codes between 1 bit and 16 bits

in length are allowed. Since the coding model never requires more than 256
symbols, sixteen 8-bit integers specify the number of codes of each possible
length.

L1, L2,.....,L16,

The symbols (numeric values between 0 and 255) then follow. one 8-bit integer
for the number of codes of each length specified in the first_16 bytes of
the download. The values are sent in order of increasing code length.

V<1,1>, ... V<1,N1>, V<2,1>,...,V<2,N2>, ... ,V<16,1>,...,V<16,N16>

A procedure described in Section 7.3.S.4.2 is used to generate the actual
Huffman table.

6.5.a.1.2 Arithmetic coding preset

The arithmetic coding preset contains a one byte conditioning field and a

variable length field defining a preset of statistics bins.

The conditioning field for the DC algorithm contains two four bit fields.
The low order four bits contain the value of L and the high order four bits
contain the value of U. (L and U will be defined in section 8.4.1.)

The conditioning field for the AC algorithm contains an 8 bit integer value
Kx which is used for conditioning the magnitude decisions on coefficient

position in the zigzag vector when coding magnitudes of non—zero AC coeffi-
cients. (Kx is defined in section 8.4.2.)

5,196,946
119 120

Statistics preset information then.follows....An 8-bit integer gives the
number of statistics estimate presets; it is followed by a list of 8-bit
integers, one for each statistics estimate which is to be preset. Each in-
teger specifies an index to the estimation state machine for-a particular
probability estimate. The list of indices follows the order in which storage
locations (statistics "bins") are defined. This ordering is given in the
sections describing the arithmetic coding statistical models. Any statistics
estimate which is not specified is set to the default.statistics initial-
ization.

Unless the resynchronization interval is relatively small, statistics preset
is not normally needed.

6.5.5 Resynchronization

Resynchronization is normally disabled. It is enabled for a scan by ap-
pending the RSC marker code to the code stream immediately after the end of
the SOS signaling fields. If either the PRV or the APP marker codes are also
needed there, the RSC marker code must follow the field for that marker code.

If resynchronization is enabled, a RSC marker code must-be placed in the code
stream at the end of each coding interval. If the LCT code occurs at the
end of the final coding interval, the RSC marker code must follow it.

The RSC code includes a modulo 8 count of the resynchronization intervals.
This count is started at zero and is incremented by one after each RSC code
is added to the code stream.

At each resynchronization point the coder and decoder are reset to known
starting conditions. All DC predictions are reset to 0 for the DCT algo-
rithms. For the lossless algorithms the prediction is reset to 2"(P—1),
where P is the precision.

5,196,946
121 122

7. Sequential DCT system with Huffman Coding (Baseline system)

This section describes the sequential DCT system with Huffman coding. .A
restricted version of this sequential system provides a baseline capability~
which must be present in all of the DCT based systems.

within a scan the sequential DCT algorithm (and therefore the baseline sysi
tem) is restricted to either block interleaved data or non-interleaved data.
In block interleaved data the components are interleaved and coded in a

single scan. In non-interleaved format, each component is sent in a separate
scan.

7.1 Signaling information required for decoding

The signaling information has been defined in section 6. A brief synopsis
is given here for the restricted format defined for the sequential system.

size of value

field (bits)

marker code prefix 8 X'FF'
SDI (Start—OE-Image) marker code . 8 X'FE'

Signaling parameters for a frame

marker code prefix 8 X’FF'
SOP (Start—Of—Frame) marker code 8 X'ED' to X'EF'
Frame signaling data field length 16 < 65536
Mode selection 8 0 or X'40'

Data precision - 8 see Section 6.4.3
Number of lines (internal) ' 16 < 65536

Line length (internal) 16 1 to 65535
Coding interval * 16 0 to 65535
Sampling ratio variable see Section 6.4.7
Quantization matrix assignment variable see Section 6.4.8
Quantization matrix specification ' variable see Section 6.4.9

Signaling parameters for a scan

marker code prefix 8 .X‘FF‘
SOS (Start-Of—Scan) marker code 8 X'F8'
Scan signaling data field length 16 < 65536
Component identification '* 8 0 to 255
Code table assignment variable see Section 6.5.3
Code table specification variable see Section 6.5.4

* If set to zero, the coding interval is defaulted to the number of minimum
data units (MDU) in the full scan.

*‘ If set to zero, interleaved data ordering is used.

7.1.1 Restrictions for baseline system

In the baseline system the mode parameter is zero and the precision is re-
stricted to 8 bits. In addition, no more than two quantization matrices,
two DC Huffman tables and two AC Huffman tables may be downloaded. These
tables and matrices must be numbered either 0 or 1.

7.1.2 Additional signaling with marker codes

Marker codes are defined in section 6.2.2.

The LCT marker code is followed by a 16 bit integer giving the number of lines
in the frame. This marker code may be used only at the end of the final

5,196,946
123 124

coding interval of the first scan in the frame. If used. it must precede
the marker code (SOS, SOP or EOI) which terminates tfie-£inaL.codinG interval
of the first scan. -

The PRV and APP marker codes and associated fields may be inserted just be-
fore the SOF and S05 marker codes, and also immediately following the scan
parameters.

A RSC marker code may follow the scan parameters. If it does. resynchroni-
zation is enabled and RSC marker codes will then be placed at the beginning

iof each coding interval in the scan.

The baseline decoder must be able to skip over PRV and APP fields. It must
also be able to recognize RSC marker codes and reset the decoder when they
are encountered.

7.2 Sequential Control Structure for encoding an Image

The control structure for compression of an image is shown in figure 7.2.1.

(encode image)

I ccde frame 1

< more frames> ——————— ——>| add EDI I

Figure 7.2.1. Encoder control structure for a image

Each frame in the image is coded independently. Only the quantization ma-
trices and code tables may be retained from one frame to the next. Component
identification should also be consistent from frame to frame.

7.2.1 Control structure for a frame

The control structure for compression of a frame is oriented around the scans
in the frame. If non-interleaved data ordering is used, each component is
sent in a separate scan, and the component being sent in a given scan is
identified by the component identification in the scan header. If inter-
leaved data ordering is used, all of the components in the frame are sent
in a single scan. '

Figure 7.2.1.1 provides a sketch of the frame control structure.

5, 196,946
125 126

-————__—----_..————-----—..

I add So? marker code I

I generate frame I
I signaling information I

I encode scan I---___—_——_-.—-——-———..--—_

1'10

Figure 7.2.1.1. Encoder control structure for a frame.

7.2.2 Control structure for a scan

A scan is comprised of a sequence of coding intervals. For the sequential
algorithm. however, if the coding interval is set to zero it defaults to the
full scan. A coding interval which is less than the full scan has no func-
tional purpose if resynchronization is not enabled - the coded data is then
independent of the coding interval. '

If resynchronization is enabled, a RSC marker code is placed in the coded
data at the start of each coding interval. (The RSC marker at the start of
the first coding interval enables resynchronization.) If resynchronization
is disabled, the control structure is the same, except that the entire scan
contains one coding interval and RSC markers are not used. A scan is always
terminated by a SOS, SOP or EOI marker code. The LCT marker code can precede
one of these marker codes at the end of the first scan in the frame.

Figure 7.2.2.1 provides a sketch of the scan control structure. The loop
is terminated when the encoder has coded the expected number of minimum data
units (MDU). The number of MDU is calculated from the frame signaling pa-
rameters (see Sections 6.1.1 and 6.4.7). ~

5,196,946 —'
127 128

~—- --~. s -M —~ (encode scan)

I add 505 marker code I

I generate.scan I
I signaling information I
I initialize coder I-——___——-.--—.._..—___—.-————

-—.—_————...—..._-___—.-———_--..

I encode data for next I
I coding interval I.-—_-_——._-—.-...—_-__--.._.—...__

no

<more intervals> ---------—(done)
‘J

I yes

Figure 7.2.2.1. Encoder control structure for a scan

7.2.3 Coding interval control structure

Figure 7.2.3.1 provides a sketch of the encoder control structure for a
coding interval. The loop is terminated either when the encoder has coded
the number of lines of minimum data units (MDU) in the coding interval or
when it has completed the image frame.

(encode coding interval)
I

yes ———————————————————--

< resync >---——>I add RSC marker code I
? I reset coder I
I no I increment modulo I
I I RSC count I
I ---------------------
I I

------------>I<—-—--—-----—--———-———

I I
I -------------------

I I encode next MDU I
I -------------------
I I
I no
I <more MDU > ----------(done)
I
I .._._._.._-...-—___

Figure 7.2.3.1. Encoding of a coding interval

If the coder is reset, the DC predictions are set to zero.

7.2.4 Coding a minimum data unit (MDU)

The minimum data unit for the sequential DCT algorithm is one block inter-
leave for interleaved data ordering, and one 8x8 block for non-interleaved
data ordering. Within a given MDU with interleaved data ordering, the 8x8
DCT blocks are coded in the order defined by the sampling ratio parameters
for the frame. The control structure for encoding a MDU with interleaved
data ordering is shown in figure 7.2.4.1. In this figure, C(N) refers to
the image component in the Nth block of the MDU.

5,196,946
129 130

_ . - "_ (encode MDU)_

N = N + 1

calculate forward 8x8 DCT

using Tq(C(N))
encode DC for Nth 8x8 block

using Td(C(N))
encode AC for Nth 8x8 block

using Ta(C(N))-——...———-_-——._——__——_—._———..————_

(done)

Figure 7.2.4.1. Encoder control for coding a MDU

7.3 Process for encoding an 8x8 block

In the sequential DCT algorithm the DCT of each 8x8 block is coded as a
complete unit, independent of whether the data is interleaved or non-
interleaved.

7.3.1 Forward DCT (FDCT)

The mathematical definition of the FDCT is given in section 5.3.2. For

purposes of exposition, the DCT coefficients are ordered in an 8x8 array with
the DC component in the upper left corner, increasing horizontal "frequen-
cies" from left to right along rows of the array, and increasing vertical
"frequencies" down the columns of the array. Threshold matrices and the
zigzag ordering are defined relative to this convention.

The precision of the FDCT computation is not specified.

7.3.1.1 Level shift in the FDCT

In computing the FDCT the input data is level shifted to a signed represen-
tation by subtracting 2"(P-1), where P is the precision specified for the
input data. For the baseline system, P=8 and the input data is level shifted
by subtracting 128.

Upon completion of the IDCT computation an inverse level shift is used to
restore the original unsigned representation.

7.3.2 Inverse DCT (IDCT)

The mathematical definition of the IDCT is given in section 5.3.2. The

precision of the IDCT computation is not specified.

7.3.2.1 Level shift in the IDCT

After computation of the IDCT the signed N bit precision output data is level
shifted by adding 2"(P-1), converting the output to an unsigned represen-
tation. In the baseline system P=8 and the output data is level shifted by
adding 128.

5,196,946

131 _ 132

7.3.3 Quantization rules

7.3.3.1 Quantization of the FDCT

The normalization of the DCT (see section 5) is defined such that the coef-
ficients before quantization have a precision of N+3 bits, where N is the
input data precision.w=After quantization the DCT coefficients have a pre-
cision of

N + 3 — log2(M)

where M is the quantization matrix value for the coefficient. M is an integer
which is specified individually for each DCT coefficient. Section 6.4.9
describes the specification of the matrix of quantization values.

In the baseline system input and output data precision are restricted to 8
bits and the precision of the quantized DCT values is restricted to a maximum
of 11 bits. In extended precision implementations N may be as large as 12
bits.

A uniform quantization procedure should be used to quantize the DCT coeffi4
cients: this procedure should be consistent with the dequantization procedure
defined for the IDCT (section 7.3.3.2). The quantization matrix is not
specified. However, some typical quantization matrices are given in section
5.3.3.2.

7.3.3.2 Dequantization of the IDCT

The dequantization of the DCT is done by multiplying each quantized coeffi-
cient value by the quantization value for that coefficient. If necessary,.
the output values should be clamped to stay within the precision range
specified.

7.3.4 Coding models for Huffman coding

7.3.4.1 Coding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensional pre-
dictor which is the DC value from the previous 8x8 block from the same com-

ponent. The conventions for ordering of 8x8 blocks within an MDU ene given
in section 6.1.1. In the decoder the difference is decoded and added to the
prediction.

At the start and after each resynchronization, the prediction for the DC
coefficient is initialized to 0. (Note that the input data has been level
shifted.)

7.3.4.2 Coding model for AC coefficients

The two—dimensional array of DCT coefficients is rearranged into a one-
dimensional linear array or vector, ZZ(O..63), using a zigzag ordering. The

zigzag ordering of the coefficients in ZZ relative to the normal two-
dimensional coefficient array is:

O 1 5 6 14 15 27 2B
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 an 53

10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 S7 S8 62 63

Coefficient o is the DC coefficient.

1196346
133 134

The coefficients in Z2 are ordered so that the lower "frequencies" tend to
occur first. Since many coefficients are zero, runs of reros are identified
and coded as runs, rather than as individual zero values. In addition, if
the last part of the vector is entirely zero, this is coded explicitly as
an end-of-block (EOE). This will be described in more detail in the section
on the structure of the AC table.

7.3.5 Huffman coding

Two coding procedures are used, one for the DC coefficient ZZ(O) and the
other for the AC coefficients zz(1)..zz(63). The coefficients are coded in

the order in which they occur in ZZ, starting with the DC coefficient.

7.3.5.1 Huffman coding of DC coefficients

7.3.5.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits)
to which are appended additional bits (in most cases) which can code any
possible difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way
that no code consists entirely of 1-bits.

The differences are grouped into 16 categories with each category being as-
signed a 4 bit value, SSSS. A Huffman code is created for each of the 16
difference categories. (Depending on precision, fewer difference categories
and therefore fewer codes may be needed.)

Table 7.3.S.1.1.1. Difference categories for DC coding

SSSS Difference values
0 0
1 -1,1
2 -3,-2,2,3
3 . -7..-a,4..7
a -15..-8,8..15
S -31..-16,16..31
6 -63..-32,32..63
7 -127..-64,6fl..127
8 —255..-128,128..2S5
9 -511..-256,256..511

10 —1023..-512,512..1023
11 -2047..-1024,1024..2047
12 -4095..-2048,20a8..4095
13 -8191..~4096,4096..8191
14 -16383..-8192,8192..16383
15 -32767..-16384,16384..32767

For each category enough additional bits are appended to the code word to
uniquely identify which difference in that-category actually occurred. The
number of extra bits is given by SSSS; the extra bits are appended to the
serial bit stream following the convention for integers, least significant
bit first. when the coefficient is positive, the low order bits of the co-
efficient are transmitted. when the coefficient is negative, the low order
bits of the coefficient-1 are transmitted. Note that the most significant

bit of the appended bit sequence is 0 for negative coefficients and 1 for
positive coefficients.

7.3.5.1.2 Default Huffman tables for the DC coefficients (2)

Tables 7.3.S.2.1.2.1 and 7.3.5.2.1.2.2 give default Huffman tables 0 and 1
for the DC coefficients. Table 0 is appropriate for luminance components

Of high quality Vide° images. Table 1 is appropriate for chrominance com-
ponents of the same images. 4 ‘ '

5,196,946
135 136

Note that even though these are listed as default tables and the final al-
gorithm is expected to contain default tables, these are only provisional
tables and should be expected to change.

Table 7.3.S.2.1.2.1 DC Codeword Default Table 0

Category Codelength Codeword

0 3 000
1 3 001
2 3 010
3 3 011
4 3 100
5 3 101
6 3 110
7 4 1110
8 5 11110

9 6 111110 3
10 7 1111110
11 8 11111110

The 16 bytes which specify the list of code lengths for DC table 0 is:

X'O0 00 07 01 01 01 01 01 00 00 00 00 00 00 00 00'

The set of values following this list is:

X'00 01 02 03 04 05 06 07 08 09 0A 0B’

Table 7.3.5.2.1.2.2 DC codeword Default Table 1

Category Codelength Codeword

00
01
100
101
110
1110
11110
111110
11111100
11111101
11111110
111111110a-lu—al

—l(Dl.Dm\lO\U‘|I>l.-Pk)--O mmmmmmauuwmm
The 16 bytes which specify the list of code lengths for DC table 1 is:

X'O0 02 O3 01 O1 O1 00 03 01 O0 00 O0 00 00 00 00'

The set of values following this list is:

X'00 01 02 03 04 05 06 07 08 09 0A 0B’

7.3.5.1.3 Downloadable Huffman tables for the DC coefficients

The procedure for downloading the Huffman tables is given in Section
6.5.4.1.1. The procedure for creating a code table from this information

’is described in section 7.3.5.4.2. '

5,196,946
137 138

_In the baseline system no more than two Huffman tables may be downloaded for
the DC coefficients.

7.3.5.1.4 Huffman encoding and decoding procedures for DC coefficients

The difference, DIFF, between the DC value and the prediction is coded. The

prediction is always the DC value coded for the previous DCT block of the
same component.

The encoding procedure is defined in terms of a set of extended tables,
XHUFCO and XHUFSI, which contain the complete set of Huffman codes and sizes
for all possible difference values. For full 16 bit precision the tables
are relatively large. In many cases, however, the precision of the differ-
ence signal may be small enough to make this implementation practical.

XHUFCO and XHUFSI are generated from the encoder tables EHUFCD and EHUFSI
(section 7.3.S.4.2) by appending the additional bit patterns to the Huffman
codes for each difference category. By definition, XHUFCO and XHUFSI have
entries for each possible difference value. XHUFCO contains the concatenated
bit pattern of the Huffman code and the additional bit field; XHUFSI contains
the total length in bits of this contatenated bit pattern. Both are indexed
by DIFF.

The encoding procedure for a DC coefficient is:

DIFF=DC-PRED

CODE=XHUFCO(DIFF)
SIZE=XHUFSI(DIFF)

transmit SIZE bits of CODE

where DC is the quantized DC coefficient value, PRED is the predicted quan-
tized DC value, and DIFF is the difference between the DC coefficient and
the prediction. The Huffman code (CODE) (including any additional bits) is
obtained from XHUFCO and SIZE (length of code including additional bits) is
obtained from XHUFSI, using DIFF as the index to the two tables.

The decoding procedure is not specified. However, an example of a possible
decoder implementation is described in section 13.2 to provide a point of
reference for implementers.

7.3.5.2 Huffman coding of AC coefficients

7.3.S.2.1 Structure of AC code table

Each nonzero AC coefficient in the vector of zigzag ordered coefficients,
Z2, is described by a composite 8-bit value, I, of the form

I = binary 'NNNNSSSS'

The 4 least significant bits, ’SSSS', define a category for the amplitude
of the next nonzero coefficient in 22, and the 4 most significant bits,
'NNNN', give the position of the coefficient in zz relative to the previous
nonzero coefficient (i.e. the run-length of zero coefficients between nonzero
coefficients). Since the run length of zero coefficients may exceed 15, the
value 'NNNNSSSS'=24O is defined to represent a run length of 15 zero coef-
ficients followed by a coefficient of zero amplitude. (This can be inter-

preted as a run length of 16 zero coefficients.) In addition, a special value
'NNNNSSSS'='0000000O' is used to code the end-of-block (EOE), signaling that
all remaining coefficients in the block are zero.

The general structure of the code table is illustrated in figure

i196946
139 140

— ssss

I 0 1 2 Ia 15
-—I--——-I ———————————————————————— ——I

0 I see I I
I I I
I x I . I

NNNN I x I RUN-SIZE
I x I VALUES I
I I I

15 I ZRL I I

Figure 7.3.5.2.1.1. Two—dimensional value array for Huffman coding.

The entries marked ‘X’ are undefined for the sequential system. Additional
EOE run codes using those composite values will be defined for the progres-
sive modes of the extended system.

with four hits allocated to SSSS, this value table allows coding of DCT AC
coefficients with up to 15 bit precision. The magnitude ranges assigned to
each value of SSSS are defined in table 7.3.5.2.1.2.

Table 7.3.5.2.1.2. Values assigned to coefficient amplitude ranges.

SSSS AC coefficients
1 -1,1
2 -3,—2,2,3
3 -7..-4,u..7
4 -15..—8,B..1S
5 -31..-16,16..31

_ 6< —63..-32,32..63
7 —127..-6a,64..127
8 -255..—12B,12B..255
9 -511..-256,2S6..511

10 —1023..—512,S12..1023
11 -2oa7..-1o2a,1024..20a7
12 —a09S..-2048,20a8..a095
13 —8191..—aO96,a096..B191
Ia —16383..-8192,8192..16383
15 unused

The composite value is Huffman coded and each Huffman code is followed by
additional bits (assumed to be randomly distributed, and thus uncoded) which

specify the sign and exact amplitude of the coefficient.

The AC code table consists of one Huffman code (maximum length 16 bits, not

including extension bits) for each possible composite value. The codes for
each composite value are generated in a manner which makes the all 1-bit
pattern for any length a prefix for a longer code.

The format for the additional bits is the same as in the coding of the DC
coefficients. ZZ(K) is the Kth coefficient in the vector of coefficients

being coded. The value of SSSS gives the number of additional bits required
to specify the sign and precise amplitude of the coefficient. The additional
bits transmitted are either the low~order SSSS bits of zZ(K) when zZ(K) is

positive or the low-order SSSS bits of ZZ(K)—1 when ZZ(K) is negative.

7.3.5.2.2 Default Huffman tables for the AC coefficients (2)

Tables 7.3.5.2.2.2.1 and 7.3.5.2.2.2.2 give default Huffman tables 0 and 1
for the AC coefficients. Table 0 is appropriate for luminance components

of high quality video images. Table 1 is appropriate for chrominance com-
ponents of the same images.

i19&946
141 142

Note that even-thougn these are.listed as default tables and the final al-
qorlthm is expected to contaln default tables, these are only provisional
tables and should be expected to change.

Table 7.3.5.2.2.2.1 AC Codeword Default Table 0

Run/Size Ccdelength Codeword

0/0 4 1010

0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 6 111000
0/7 7 1111000
0/8 10 1111110110
0/9 15 111111111000000
0/A 16 1111111110000o10
1/1 4 1100
1/2 6 111001
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000011

M _ 1/7 16 111111111000o100
1/0 16 1111111110000101
1/9 16 1111111110000110
1/A 16 1111111110000111
2/1 5 11011
2/2 6 11111000
2/3 10 1111110111
2/4 16 1111111110001000
2/5 16 1111111110001001
2/6 16 1111111110001010
2/7 16 1111111110o01011
2/8 16 1111111110001100
2/9 16 11111111100o1101
2/A 16 1111111110001110
3/1 6 111010
3/2 9 111110111

13/3 11 11111110111
3/4 16 1111111110001111
3/5 16 1111111110010000
3/6 16 1111111110010001
3/7 16 1111111110010010
3/8 16 1111111110010011
3/9 16 1111111110010100
3/A 16 1111111110010101
4/1 6 111011
4/2 10 1111111000
4/3 16 1111111110010110
4/4 16 1111111110010111
4/5 16 1111111110011000
4/6 16 1111111110011001
4/7 16 1111111110011o10
4/6 16 1111111110011011
4/9 16 1111111110011100
4/4 16 1111111110011101
5/1 7 1111010
5/2 10 1111111001
5/3 16 1111111110011110
5/4 16 1111111110011111
5/5 16 111111111010oo0o
5/6 -15" 1111111110100001

1196946
143 _ 144

5/7 ' 16- -~~- 111111111010001o.
5/8 16 1111111110100o11
5/9 16 1111111110100100
S/A 16 1111111110100101
6/1 7 1111011 .
6/2 11 11111111000
6/3 16 ‘111111111C100110

'6/4 16 1111111110100111
6/5 16 111111111o1o1ooa
6/6 16 1111111110101001
6/7 16 1111111110101010
6/8 16 1111111110101011
6/9 16 1111111110101100
6/A 16 1111111110101101
7/1 8 11111001
7/2 11 11111111001
7/3 16 1111111110101110
7/4 16 11111111101o1111
7/5 16 1111111110110000
7/6 16 1111111110110001
7/7 16 1111111110110010
7/8 16 1111111110110011
7/9 16 111111111011010O
7/A 16 1111111110110101
8/1 8 11111010
8/2 16 1111111110110110
8/3 16 1111111110110111
8/4 16 1111111110111000
8/5 16 1111111110111001
8/6 16 1111111110111010
8/7 16 1111111110111011
8/8 16 1111111110111100
8/9 16 1111111110111101
8/A 16 1111111110111110
9/1 9 111111000
9/2 16 111111111o111111
9/3 16 11111111110000O0
9/4 16 11111111110000C1
9/5 16 1111111111000010
9/6 16 1111111111000O11
9/7 16 1111111111000100
9/8 16 1111111111000101
9/9 16 1111111111000110
9/A 16 1111111111000111
A/1 9 111111001
A/2 16 1111111111001000
A/3 16 1111111111001001
A/A 16 1111111111001010
A/5 16 1111111111001011
A/6 16 1111111111001100
A/7 16 ’ 1111111111001101
A/8 16 1111111111001110
A/9 16 1111111111001111
A/A 16 1111111111010000
B/1 9 111111010
B/2 16 1111111111010001
B/3 16 1111111111010010
B/4 16 1111111111010011
8/5 16 1111111111010100
8/6 16 1111111111010101
3/7 16 111111111101o110
8/8 16 1111111111010111
8/9 16 1111111111011000
B/A 16 1111111111011001
C/1 10 1111111010
c/2 16 ¥11T1111111o11o1o

5,196,946
145 146

/3 16 “ 1111111111011011
c/a 16 1111111111011100
c/5 16 1111111111o11101
c/6 16 1111111111011110
c/7 - 16 1111111111c11111
C/8 16 1111111111100000
c/9 16 _ 1111111111100001
C/A ’ " 16 111111111110001o
D/1 11 11111111010
D/2 16 1111111111100011
0/3 16 1111111111100100
D/4 16 1111111111100101
D/S 16 11111111111o011o
D/6 16 11111111111 0111
0/7 16 11111111111010o0
D/8 16 1111111111101001
D/9 16 ‘ 1111111111101010
D/A 16 1111111111101011
E/1 12 111111110110
E/2 1 16 1111111111101100
E/3 16 1111111111101101
E/4 16 1111111111101110
E/S 16 1111111111101111
E/6 16 1111111111110000
E/7 A 16 11111111111100s1
E/8 16 1111111111110010
E/9 16 111111111111o011
E/A 16 1111111111110100
F/0 12 111111110111
F/1 16 1111111111110101
F/2 16 1111111111110110
F/3 16 1111111111110111
F/4 16 11111111111110o0
F/S 16 111111 111111001
F/6 16 1111111111111010
F/7 16 1111111111111c11
F/8 16 1111111111111100
P/9 16 1111111111111101
F/A 16 1111111111111110

The 16 bytes which speclfy the list of code lengths for AC table 0 is:

X'00 02 01 03 02 04 04 O3 05 05 05 02 G0 00 01 7D‘

The set of values which follows this list is:

X'01 02 03 00 04 11 05 21 06 12 31 41 07 13 51 61
22 71 81 14 32 91 A1 B1 08 23 42 52 C1 15 33 62
72 D1 E1 F0 09 0A 16 17 18 19 1A 24 25 26 27 29
29 2A 34 35 36 37 38 39 3A 43 44 45_46 47 48 49
4A 53 S4 55 S6 57 58 59 SA 63 64 65 66 67 68 69
6A 73 74 75 76 77 78 79 7A 82 83 84 85 66 87 85
89 BA 92 93 94 95 96 97 98 99 9A A2 A3 A4 5 A6
A7 A8 A9 AA B2 B3 B4 B5 B6 B7 E8 E9 BA C2 C3 C4
C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E2
E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7 F8
F9 FA‘

Table 7.3.5.2.2.2.2 AC codeword Default Table 1

Run/Size Codelength codeword

0/0 2 00
0/1 2 O1

0/2
0/3
O/A
0/5
0/6
0/7
0/8
0/9
0/13.
1/1
1/2
1/3
1/A
1/5
1/6
1/7
1/8
1/9
1/11
2/1
2/2
2/3
2/11
2/5
2/6
2/7
2/8
2/9
2/A
3/1
3/2
3/3
3/it
3/5
3/6
3/7
3/8
3/9
3/9.
a/1
A/2
a/3
0/4
4/5
u/6
a/7
0./8
L1/9
0/21
5/1
5/2
5/3
5/4
5/5
5/6
5/7
5/8
5/9
5/A
6/1
6/2
6/3
6/11
6/5

6/5
6/7

147

.—I'._I._J-A (IJO\l>lJ'lU1(JlLI\0\ll!‘|£>l.J
5,196,946

148

100.
1010
11000
1110110
111111000
11111111011101;
111111110111011
111111110111100
111111110111101
1011 .

111000
11110110
1111110110
111111110111110
111111110111111
1111111110010101
1111111110010110
1111111110010111
1111111110011000
11001
1110111
1111110111
11111110110
1111111110011001
1111111110011010
1111111110011011
1111111110011100
1111111110011101
1111111110011110
11010
1111000
111111001
11111110111
1111111110011111
1111111110100000
1111111110100001
1111111110100010
1111111110100011
1111111110100100
11011
11110111
11111111000
111111111000000
1111111110100101

1111111110100110
1111111110100111
1111111110101000
1111111110101001
1111111110101010
111001
111111010
111111111000001
1111111110101011
111111111010110o
1111111110101101
11111111101c1110
1111111110101111
1111111110110000
1111111110110001
1111001
1111111000
111111111000010
1111111110110010
1111111110110011
1111111110110100
1111111110110101

i19&946
149 150

6/8 16 1111111110110110 _
6/9 16 11111111o110111 1
6/A. 16 1111111110111000
7/1 6 - 111010
7/2 10 1111111001
7/3- 15 11'111111000011
7/4 16 1111111110111001
7/5 16 _ 1111111110111010
7/6 16 111111111o111011
7/7 16 1111111110111100
7/8 16 1111111110111101
7/9 16 1111111110111110
7/A 16 1111111110111111
8/1 7 1111010
8/2 12 111111110100
8/3 15 ' 111111111000100
8/a 16 1111111111o00000
8/5 16 1111111111000001
8/6 16 1111111111000010
8/7 16 __ 1111111111000011
8/8 0 16 1111111111000100
8/9 16 1111111111000101
8/A 16 1111111111000110
9/1 8 11111000

9/2 12 111111110101
9/3 16 1111111111000111
9/4 16 1111111111001000
9/5 16 1111111111001001
9/6 16 111111111100101o
9/7 16 1111111111001011
9/8 16 1111111111001100
9/9 16 1111111111001101
9/A 16 1111111111001110
A/1 8 11111001
A/2 15 1111111110o0101
A/3 16 1111111111001111
A/a 16 1111111111010000

A/S 16 1111111111010o01
A/6 16 1111111111010010
A/7 16 1111111111010011
A/8 16 111111111101o100
A/9 16 1111111111010101
A/A 16 1111111111010110
8/1 8 11111010
8/2 14 11111111011100
8/3 16 111111111101o111
8/4 16 1111111111011000
B/5 16 1111111111011001
8/6 16 1111111111o11010
8/7 16 1111111111011011
8/8 16 . 1111111111011100
8/9 16 1111111111011101
B/A 16 1111111111011110
c/1 8 11111011
c/2 15 1111111110o0110
c/3 16 1111111111011111
c/a 16 . 1111111111100000
c/5 16 111111111110o001
c/6 16 1111111111100010
c/7 16 1111111111100c11

C/8 16 _ 1111111111100100
c/9 16 1111111111100101
C/A 16 1111111111100110
0/1 10 1111111010

0/2 _1s 111111111000111
D/3 V 16 1111111111100111

5,196,946
151 152

D/4 16 '111111111110103O
13/5 16 1111111111101OG1
D/6 16 1111111111101C1O
D/7 16 1111111111101011
D/8 16 11111111111011OO
D/9 16 1111111111101101
D/A 16 111111111110111O
E/1 12 111111110110 -
E/2 15 111111111001OOD
E/3 16 1111111111101111
E/4 16 11111111111100DO
E/5 _ 16 111111111111OOU1

E/6 16 111111111111001O
E/7 16 111111111111D011
E/8 16 11111111111101OO
E/9 16 1111111111110101
E/A _ 16 1111111111110110
F/O 11 11111111001
F/1 15 111111111001001
F/2 16 111111111001010O
F/3 16 1111111111110111
F/4 16 1111111111111000
F/S 16 1111111111111001
F/6 ' 16 111111111111101O
F/7 ‘ 16 1111111111111011
F/S 16 111111111111110O
F/9 16 1111111111111101
F/A 16 111111111111111O

The 16 bytes which specify the list of code lengths for AC table 1 is:

X'OO 02 01 02 04 a3 05 06 O3 05 G4 03 00 O1 10 63'

The set of values which follows this list is:

X'O0 O1 02 O3 11 04 21 31 41 12 51 71 05 22 32 61
81 13 A2 91 A1 B1 C1 06 33 52 14 23 62 72 D1 24
34 43 F0 82 92 E1 E2 07 08 09 DA 15 16 44 53 63
73 83 A2 C2 D2 E2 F1 F2 17 18 19 1A 25 26 27 28
29 2A 35 36 37 38 39 3A 45 46 47 48 49 4A 54 S5
56 57 58 59 5A 64 65 66 67 68 69 6A 74 75 76 77
78 79 7A 84 85 86 87 88 89 BA 93 94 95 96 97 98
99 9A A3 A4 A5 A6 A7 A8 A9 AA 33 B4 B5 B6 B7 B8
99 BA C3 C4 C5 C6 C7 C8 C9 CA D3 D4 D5 D6 D7 D8
D9 DA E3 E4 E5 E6 E7 E8 E9 EA F3 F4 F5 F6 F7 F8
F9 FA‘

7.3.5.2.} Downloadable Huffman tables for the AC coefficients

The procedure for downloading the Huffman tables is given in Section
6.5.4.1.1. The procedure for creating a code table from this information
is described in section 7.3.5.4.2.

In the baseline system no more than two Huffman tables may be downloaded for
the AC coefficients.

ll
7.3.'.2.4 Huffman encoding and decoding procedures for AC coefficients

The Huffman code table is assumed to be available as a pair of vectors, EEUFCO
(containing the code bits) and EHUFSI (containing the length of each code
in bits), both indexed by the composite value defined above.

The encoding procedure for the AC coefficients in a block is shown in figures
7.3.5.2.4.1 and 7.3.5.2.4.2.

5,196,946
153 154

(encode AC coefficients)

I R = 0 l

I K=0 I
I R=0 I

—————————————————————————— -—>I<---——~——-—-—————————--——

I I I
I --------------- I - ----- ----

I I K = K+1 I I R=R+I I
I - -------------- ----------
I I I
I yes no I
1 < zz(x)=0 >-----—< K=63 >----
I ? ?
I -------------->I no I yes
I I ‘ I I
I ----------------------- I ---------------------
I I code HUFFSIIZAOI bits I I I code EHUFSIIOI bits I
I I of EHUFCO(2a0) I I I of EHUFCOIOI I
I I R=R-I6 I I ---------------------
I ----------------------- I
I yes

I ---------—< R > 15 >
I ?
I I no
I
I
I
I
I
I

Figure 7.3.5.2.4.I. Huffman encoding procedure for AC coefficients

The procedure "code HUFFSI(240) bits of EHUFCOIZQOI" codes a run of 16 zero
coefficients (ZRL code of figure 7.3.5.2.1.I). The procedure "code HUFFSIIO)
bits of EHUFCOIOI" codes the end—of-block (EOE code). If the last coeffi-
cient (K=63) is not zero, the E03 code is bypassed.

5,196,946
155 156

(encode R,ZZ(K))

SSSS = CSIZEIZZ(K))

I = (16*R) + SSSS
code EHUFSI(I) bits

of EHUFCO(I)

yes
--------< ZZ(K)<O >

I ZZ(K)=ZZ(KI-I I

I code SSSS low order I
I bits of ZZ(K) I

(done)

Figure 7.3.5.2.4.2. Encoding a non—zero AC coefficient.

CSIZE is a function which maps an AC coefficient to the S555 value described
above, thereby giving the number of bits which must be transmitted to com-

pletely specify the sign and amplitude.

7.3.5.3 Byte stuffing

In order to provide code space for marker codes which can be located in the
compressed bit stream without decoding the stream, byte stuffing is used.

The marker codes are byte aligned in the compressed data, and are defined
to be a X'FF' byte followed by a byte in the range X'C0' to X'F?'. Marker
code values below X'FFCO' are reserved.. Byte alignment is achieved by pad-

ding incomplete bytes with 1-bits. If padding with 1-bits creates a X'FF'
value, a zero byte is stuffed before adding the X'FF' and marker code.

whenever, in the course of normal encoding, the byte value X'FF' is created
in the code string, a X'O0' byte is stuffed into the code string.

If a X'O0' byte is detected after a X'F?' byte, the decoder must discard it.
If the byte is not zero, a marker code has been detected, and must be in-
terpreted to whatever degree is needed to decode the data.

7.3.5.4 Huffman table specification

The Huffman table is specified in terms of a 16 byte list (BITS) giving the
number of codes for each code length from I to 16. This is followed by a
list of the 8 bit values which are assigned to each code (HUFFVAL). The

values are placed in the list in order of increasing code length. Code
lengths greater than 16 bits are not allowed, and the procedure for gener-
ating the Huffman table parameters must reserve a code point so that the
longest code word cannot be all I—bits.

The procedures which are used to generate this list are not specified. The
list must be generated in a manner which is consistent with the rules for
Huffman coding, and it must observe the constraints discussed in the previous
paragraph. Section 13.1 contains an example of a procedure for generating
lists of lengths and values which are in accord with these rules.

7.3.5.a.1 Signaling of table generation data

5,196,946

157 158

_Section 6.5.a describes the Huffman code table specification..

7.3.5.4.2 Table generation procedure

Given a vector BITS(1..16) containing the number of codes of each size. and
a vector HUFFVAL(O..2S5) containing the values to be associated with those
codes as described above, two tables are generated. The HUFFSIZE table
contains a list of code lengths: the HUFFCODE table contains the Huffman

codes corresponding to those lengths. HUFFSIZE is generated by the procedure
in figure 7.3.5.4.2.1.

(SIZE_TABLE)

I p=o I
I‘ I=I I
I J=1 I

I
------------------------------>I

I I
I --------------------------~>I
I I ————————————— —— I
I I I HUFFSIZE(P)=I I no
I --I P=P+1 I---< J>BITS(I) >
I | J=J+1 I v
I --------------- I yes
I I
I —————————————--

I I I=I+1 I
I I J=1 I
I
I
I

I HUFFSIZE(P)=O I
I LASTP=P I

Figure 7.3.S.4.2.1. Generation of table of Huffman code sizes

Note that the variable LASTP is set to the index of the last entry in the
table.

A Huffman code table, HUFFCODE, containing a code for each size in HUFFSIL

is generated by the procedure in figure 7.3.5.4.2.2. The notation "sll" in
this figure indicates the shift-left—logical operation — in this case, b
one bit position.

5,196,946
159 160

.L.._... Agpeub (X ?> .;....-

An American National Standard

IEEE Standard for a Simple

32-Bit Backplane Bus: NuBus

1. General

1.1 Scope. This standard describes a computer backplane bus optimized for 32-
bit transfers, multiprocessor operations, and simplicity. In brief, this is a
synchronous (10 MHz), multiplexed, multimaster bus that provides a strictly fair
arbitration mechanism. The only bus transfers are read and write (and block
transfer versions of each of these) to a single 32-bit address space. Geographic

slot addressing and nondaisy-chain arbitration scheme make system configura-
tion simpler by eliminating switches and jumpers. This minimalist approach
results in a conceptually straightforward bus with a small pin count (51 active
signal lines). Figure 1 shows the major elements of a typical NuBus system.

1.2 Objective. The objectives of this bus are:

0 Optimized for 32-bit transfers
0 System architecture independence

0 Multiprocessor support

0 Ease of system integration

° Sparsity of mechanism
These objectives result in a bus that is optimized for 32 bits, but simple enough

for'low-cost applications, such as 32-bit personal computers.

1.3 Purpose. This’ standard is intended to describe and specify the logical,
electrical, and physical interface standard for circuit boards that allow them to
connect to and communicate over a backplane. It also specifies the backplane
environment that must be provided to these boards. This standard is oriented to

designers of bus interface logic, designers of backplane environments, and those
evaluating buses. In keeping with the minimalist philosophy of the bus, the
standard has taken a similar approach. Section 2 provides an introduction to the

bus, Section 3 is the “minimalist” core of the specification, and Appendix A

5,196,946
161 162

[ANSI/IEEE '
Std 1196-19987 ' SECTION 1

HASTEQ SLAVE MLSVER SLAVE

I" _______'II_______ _—III" ________ "II" ————— ‘*7
SPECIFIC I svecmc I I svecmc I

I I I I I I I I
I I I II I I I

- I I I

I nouuou ' c°:I.::°L I I I I nan-ulou I I I
I i I ~ In II I I I ’ II I I II II I I
I I I II I I I
I I I I I I I I
I I I I I I I II I I I I I I
I I I I I I I I
I I I I I I I I

I I I I I I I I
I I I I I I I I
I I I I I I I I_J J .1 _ __.I

DATA. CONTROL
AND PAIR‘!

AI IlTlA'nOIl

[Extracted from Texas Instruments NuBus" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 1

Simplified NuBus Diagram

describes implications and capabilities that follow from the rules presented in
Section 3.

Not specified by this standard are:
0 Physical Environment—This includes topics such as how a backplane

attaches to a rack, provisions for system cooling, resistance to vibration, etc.
0 System Architecture—This is a low-level specification. Any system archi-

tectures (such as message passing protocols) are not within the scope of this
standard. A

1.4 Definitions

1.4.1 General

backplane. A circuit board with one or more bus connectors that provides
signals for communication betweerrbus modules, and provides certain resources
to the connected modules.

5,196,946
163 164

- * -' ~ ANSI/IEEE "‘

GENERAL Std 1196-1987

board. A device connected to the bus. Usually constructed from a printed circuit

board. Also referred to as a module.

bus. A set of signal lines to which a number of devices are connected and over
which information is transferred between them.

byte. A set of 8 signals or bits taken as a unit.

half-word. For the purpose of this standard, a half-word is a 16-bit data item
taken as a unit.

master. A bus device that initiates a transaction.

slave. A bus device that responds to a transaction.

word. For the purpose of this standard, a word is a 32—bit data item taken as a
unit.

1.4.2 Protocol

ackpcycle. A cycle in which a slave responds to a master and terminates a
transaction.

arbitration. A collection of mechanisms that allow masters to access the bus

without confiicting with each other. 1

arbitration contest. This is the core mechanism to resolve bus ownership

between one or more competing masters. It takes two bus periods.

attention cycle. A single cycle in which a master indicates the start and
acknowledge in the same cycle.

block transfer. A transaction in which a single address is conveyed by the

master and multiple data items from sequential addresses are then communi-
cated between the master and the slave.

bus lock. Method of a master ensuring continued tenure of the bus. Not

identical to resource lock.

competitor. A master that participatesin a particular arbitration contest.

cycle. One period of the bus clock, from rising edge to the next rising edge.

data cycle. A period in which data are valid and are acknowledged. This occurs
when acknowledge is asserted at the end of a transaction and on intermediate

acknnwledges during a block transfer.

driving edge. A time corresponding to a rising edge of the bus clock.

A 5,196,946
165 166

ANSI/IEEE _
Std 1196-1987 , SECTION 1

fairness. A property of some arbitration techniques that ensures all modules
will get access to the bus on approximately the same terms. This prevents
modules from being “starved.”

null cycle. A type of an attention cycle that is used to dismiss a resource lock
and initiate a rearbitration.

ownership. State of a master that has arbitrated and won the bus and has not
yet lost a bus arbitration contest.

period. Time between two driving edges.

resource lock. A type of an attention cycle that indicates to slaves that data
items will be referenced in a locked fashion and any nonbus path to referenced
data items should be locked out. A null cycle clears this state.

_ sample edge. A time corresponding to a falling edge of the bus clock signal.

signal line. A conductor on the backplane other than ground, or power.

start cycle. A cycle that initiates a transaction. The address and transfer type
are valid during this cycle.

tenure. Time period of unbroken ownership of the bus by a particular module.
May consist of one or more transactions or attention cycles.

transaction. A sequence of cycles beginning with a start cycle and ending with
an ack cycle that is used to convey data between a master and a slave.

1.4.3 Physical

asserted. The state of a signal line. Since all lines are active low signals, this
state is the low state for all bus lines.

drive. A module activity causing a bus signal line to be in a particular sate.

high, false, 1. Unasserted state of a bus line.

low, true, 0. Asserted state of a bus line.

open-collector. A type of bus driver (only drives low or not at all).

slot. A backplane location that accepts a NuBus module.

three-state. A type of bus driver. Either drives high, low, or not_ at all.

unasserted. The state of a signal line. Since all signal lines are active low, this
state is the high state for all bus lines.

5,196,946
167 168

' ' ANSI/IEEE

GENERAL Std 1196-1987

1.5 References. The following publications shall be used in conjunction with
this standard.

[1] ANSI/IEEE 1101-1987, IEEE Standard for Mechanical Core Specifications

for Microcomputers?’

[2] IEC 297-1-1986, Dimensions of Mechanical Structures of the 482.6 mm

Series; Part 1: Panels and Racks.3

[3] IEC 603-2-1980, Two-Part Connectors for Printed Boards, for Basic Grid of
2.54 mm (0.1 in), With Common Mounting Features.

2 ANSI/IEEE publications can be obtained from the Sales Department, American National
Standards Institute, 1430 Broadway, New York, NY 10018, or from the Institute of Electrical and
Electronics Engineers, Service Center, Piscataway, NJ 08854-4150.

3 IEC pub1ica,tig_n_s are available in the US from the Sales Department, American National
Standards Institute, 1430 Broadway, New York, NY 10018.

5,196,946
169 170

2. Overview

This section introduces concepts required for a general understanding of the
NuBus specification contained in Section 3. The material presented in this
section of the standard does not specify the bus, but rather describes some
characteristics of the bus. The description given in this section is deliberately

brief and intuitive; Appendix A contains an in-depth elaboration of the specifi-
cations given in Section 3._

2.1 Bus Lines. NuBus lines can be grouped into four classes based on the

functions they perform: utility signals, data transfer signals, arbitration signals,
and "power.

2.1.1 Utility Signals. The system clock and the bus timeout function are
supplied by the terminator board, or other backplane module, and are not
required on any NuBus board. Usually, the power fail warning and reset signals
are generated by agents that do not reside on the backplane. '

Clock (CLK*) —— Synchronizes bus arbitration and data transfers. Nominally
10 MHz with a duty cycle of 25%. Usually, bus signals are changed on the rising
edge and sampled (75 ns later) on the falling edge.

Reset (RESET*) — An open-collector signal, used to return all modules to
their initial power-up state. May be asserted asynchronous to the CLK* line.

Power Fail Warning (PFW*) — This open-collector line signals that system

power is about to fail. May be asserted asynchronous to the CLK* line.
Card Slot Identification (ID < 3 . . . 0)*) — These four lines are not bused, but

are binary-encoded at each position to specify the module’s position on the
backplane.

Non-Master Request (NMRQ*) — An asynchronous line asserted by boards
that are not capable of becoming bus masters, to indicate a need for some service.
The nature of this service and the determination of the provider are not specified

by this standard. ‘

5,196,946
171 172

ANSI/IEEE _ —_ _
Std 1196-1987 SECTION 2

2.1.2 Bus Data Transaction Signals. These signals are all three~state lines.
and include address/data, control, and parity lines. .

Address and Data (AD(31 . . . O)*) — These lines are multiplexed to carry
3 address information at the beginning of a transaction, and 8, 16, or 32 bits of
_data later in the transaction.

Transfer Mode (TM(1 . . . O)*) — At the beginning of the transaction, these
two lines indicate the type of transaction being initiated. Later in the transac-
tion, the responding module uses them to indicate success or failure of the
requested transaction.

System Parity (SP*) — This line carries the even parity bit generated from
the 32 bits on the AD (31 . . . O)* lines, if parity is being used.

System Parity Valid (SPV*) —— If asserted, it indicates that a parity bit has
been generated for the AD (31 . . . O)* lines.

Start Signal (S TAR T*) — This signal is asserted at the start of a transaction,
and also initiates an arbitration contest. Additionally, when asserted in conjunc-
tion with the A CK* line, it denotes special nontransaction cycles called attention
cycles.

Transfer Acknowledge (ACK*) — The usual use of this signal is to indicate
the ending cycle of a transaction. It has a special use if asserted during the same
cycle with S TART*.

2.1.3 Arbitration System Signals. The signals in this group are all open-
collector lines and are used by the distributed arbitration logic to determire the
next owner of the bus. _

Bus Request (RQST*) —— This line is asserted by modules to indicate their
desire to own the bus. The fair arbitration scheme guarantees that all modules
requesting the bus will obtain ownership within some determinable maximum
time.

Arbitration Signals (ARB <3 . . . O)*) — These four lines are bused and
binary-encoded in the same manner as the ID (3 . . . O)* lines. During an arbitra-
tion contest, contending modules compare these lines with the binary value of
their own ID (3 . . . O)* lines and drive the ARB (3 . . . 0) * lines according to the
rules of the distributed arbitration logic. The net effect of an arbitration contest
is that two cycles after starting a contest the ARB<3 . . . O)* lines carry the
binary-encoded number of the next bus owner.

2.1.4 Power Lines. Four voltages are defined for use by NuBus modules:
+5 V, -12 V, - 12 V, and -5.2 V. Voltage specifications such as required
regulation are defined elsewhere in this standard; the amount of current avail-
able from each voltage supply is not specified by this standard.

5,196,946
173 174

ANSI/IEEE

OVERVIEW Std 1196-1987

2.2 Bus Operation

NOTE: The material presented in this section is descriptive and tutorial in nature, and is not a full
specification of the bus.

2.2.1 Fundamental Concepts

0 In general, signals are changed only on the rising edge of the system clock
and sampled 75 ns later on the falling edge of the clock. The falling edge of the
clock is called the sample edge and the rising edge of the clock is called the

driving edge.

° The 100 ns time period between successive driving edges is called a bus cycle
or simply a cycle. All cycles that exist can be categorized by considering the logic
state of the following signals: START*, ACK*, TM(1 . . . 0)*, and AD(l . . .

O)*.

0 A start cycle is one in which S TART* is asserted (and ACK* is not asserted).
The TM<1 . . . O)* and AD(l . . . O)* lines can be thought of as encoding one of

sixteen possible kinds of transactions, eight of which are read transactions and
the other eight are write transactions.

0 An ack cycle is one in which ACK* is asserted (and S TAR T* is not asserted).
The TM ('1 0)* lines encode one of four possible status codes, signifying

. successful completion, postponement, error, or bus timeout.

0 An attention cycle is one in which both S TART* and ACK* are asserted at
the same time. the TM(1 . . . O)* lines encode four possible types of attention

cycles, two of which are defined as reserved for future use.~The other two are
used as broadcast messages to lock and unlock resources, and are beyond the

scope of this overview.

0 A transaction is the basic bus data transfer operation, which begins with a

start cycle and ends with an ack cycle. Transactions may be categorized based
on the category of the start cycle which initiates the transaction. Thus, there
are read transactions, block write transactions, and so on.

0 The bus is said to be busy for the time between a start cycle and its corre-

sponding ack cycle. The bus is idle for the time between an ack cycle and the
next start cycle.

2.2.2 Examples of Transactions. In order to use the bus, a module must
first have ownership of the bus. A module (for example, the module in slot #7 on
the backplane) obtains ownership by requesting the bus and waiting until the

5,196,946
175 176

ANSI/IEEE

Std 1196-1987 SECTION 2

distributed arbitration logic determines that the next owner will be #7. Then,
the module waits until the bus is idle, and does a start cycle to begin the trans-

action. If the module wishes to do a "read word” transaction, then the AD(1 . . .

O) * and TM (1 . . . O)* lines will be encoded for this type of transaction, and the
rest of the address lines will have the desired word address. If another module
determines that the address refers to itself, then in some subsequent cycle it will

place the requested data on the AD<31 . . . O)* lines, and issue an ack cycle.
This completes the transaction, and bus ownership may or may not pass to some
other module, depending on the circumstances.

In a similar fashion, to write a word of data to another module on the bus, the

start cycle would contain the appropriate code on the TM(1 . . . O)* and AD(1
O)* lines, and the desired address in the rest of the address lines. The next

_ cycle, the master would switch the AD(31 . . . O)* lines to carry the 32 bits of
data to be written. In the second or subsequent cycle, the address slave module

would sample the data lines and then issue an ack cycle, thus completing the
transaction.

Note that it is possible to have both read and write transactions be as short
as two cycles, consisting of only the start cycle and the ack cycle. However, trans-
actions may be longer than two ‘cycles.

5,196,946
177 178

3. Specification

3.1 Protocol

3.1.1 Signal Determinacy. A signal line is determinate during a given cycle
if it is in either an asserted or unasserted state within the specified setup and

hold times of the system clock. When a signal is specified to be determinate, it
shall be determinate as a consequence of one of the following:

(1) If a signal is driven during cycle n, then it is determinate during cycle 72.
(2) If the three-state signal is driven asserted during cycle 71 and is not driven

during cycles n + 1 and n + 2, then it is not guaranteed determinate during
cycle n + 1, but is guaranteed (by the bus termination) to be unasserted during
cycle 71 + 2. _

(3) If an open-collector signal is driven asserted during cycle 71 and is not
driven during cycle n + 1, then it is guaranteed (by the bus termination) to be
unasserted during cycle n + 1.

(4) If a signal is unasserted during cycle n and is not driven during cycle n +
1, then it is guaranteed (by the bus termination) to remain unasserted during
cycle 72. + 1.

3.1.2 Bus Cycles. A bus cycle is a single period of CLK*, beginning with the

rising edge. The rising edge of CLK* is the driving edge, denoted by Di, and is
associated with the driving of bus signals during bus cycle i. The falling edge of

CLK* is the sample edge, denoted by S ,-, and is associated with the sampling of

bus signals duringbus cycle i.
3.1.3 Transactions. A transaction consists of two or more bus cycles, the first

of which is a start cycle and the last of which is an ack cycle. A start cycle is a

bus cycle in which START* is asserted, ACK* is unasserted, AD(31 . . . O)*
carry an address, and TM(1 . . . O)* carry the transfer mode. An ack cycle is a
bus cycle in which ACK*'is asserted, S TART* is unasserted. AD(31 . . . O)*

carry data, and TM (1 . . . O)* carry the transfer response status.
3.1.3.1 Data Sizes. Three different data sizes may be transferred: bytes,

halfwords, and words. The data transferred is unjustified as shown in Fig 2.

5,196,946

179 180

ANSUIEEE
Std 1196-1987 SECTION 3

AD31* ADO*

Word I

Halfword 1 Halfword 0

Byte 3 Byte 2 Byte 1 Byte 0

[Extracted from Texas Instruments NuBus"‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 2

Relationship of Words, Halfwords, Bytes and AD(31 . . . 0)* Lines

That is, a byte is conveyed on the same byte lane regardless of the transfer
mode used to access it. Similarly, a halfword is conveyed on the same halfword

lane regardless of the transfer mode used to access it. The data size and lane for
a transaction is determined during a start cycle by the TM (1 . . . O)* -and AD (1

. . . O)* lines as shown in Table 1. '

(NOTE: These encodings and bit and byte labels specify data transfers over the bus and do not neces-
sarily directly correspond to the address encoding or byte labeling convention of a particular micro-
processor.

Table 1

‘Transfer Mode Summary

TM1* TMO* AD 1* AD 0* Type of Cycle

L L L L Write byte 3
L L L H Write byte 2
L L H L Write byte 1
L L H H Write byte 0
L H L L Write halfword 1
L H L H Block write
L H H L Write halfword O
L H H H Write word
H L L L Read byte 3

]H L L H Read byte 2
H L H L Read byte 1
H L H H Read byte 0
H H L L Read halfword 1
H H L H Block read
H H H L Read halfword 0
H H H H Read word

5,196,946
181 182

‘ 5‘ ANSI/IEEE
SPECIFICATION - ‘ Std 1196-1987

During any cycle on which AD(31 .. . O)* are specified to carry data, all

AD (31 . . . O)* lines shall be determinate. This is independent of either the data
size or lane. ‘

; NOTE: The state of any AD (31 . . . O)* line not included in the transfer mode, although determi-
nate, is unspecified.

3.1.3.2 Bus Parity. Parity checking of the AD (31 . O)* lines is optional
~ on a cycle by cycle basis. Thus parity is useful only when the module driving

the AD (31 . . . O)* lines generates parity and the module capturing the address
or data checks it.

Two signals, SP"‘ and SPV* are used to communicate the parity bit and to

indicate parity is being used, respectively. SPV* shall be determinate during

any cycle in which the AD (31 . . . O)* lines are specified to carry address or data.

If SPV* is asserted during a cycle that AD(31 . . . O)* carries an address or

data, then SP* shall be driven with the even parity of the AD (31 . . . O)* lines.

Even parity means that if an even number of AD(31 . . . O)* lines are asserted,
then SP* is unasserted; otherwise SP* is asserted.

If SPV* is unasserted during a cycle that AD(3l . . . O)* carries an address

or data, then SP* is unspecified and may be indeterminate.

Although byte and halfword transactions are supported, parity (if used) shall

always be generated over the complete 32 bits of the AD(31 . . . O)* lines. If

parity errors are detected, the following applies:

During Address Cycle—A slave detecting a parity error shall not respond
on this transaction. ’

During Data Cycle on Read—A master detecting a parity error shall

complete the transaction. The data are presumed to be corrupted.
During Data Cycle on Write—An addressed slave detecting a parity error

shall acknowledge with the error status code.

3.1.3.3 Acknowledgment. During an ack cycle the TM(1 O)* lines

carry a transaction response status as shown in Table 2.

The transaction response status conveys information from the addressed slave

to the master relevant to the current transaction. If the slave is going to respond,

it shall complete the transaction with an ack cycle within 255 cycles following

the start cycle. '

NOTE: The master shall complete each transaction, regardless of the transaction response status.
The action taken by a master in response to an abnormally completed transaction is not specified
by this standard. » '

3.1.3.3.1 Bus Transfer Complete. This response indicates a normal

valid completion of a bus transaction. If the transaction is a block transfer and

bus transfer complete is issued without the transfer of any intermediate data,

5,196,946

183 134

_ ANSI/IEEF. ' -. I .
Std 1196-1987 . SECTION 3

Table 2

Transaction Response Status

Summary

TM 1* TM 0* Type of Acknowledge

L L Bus transfer complete
L H Error
H L Bus timeout error
H H Try again later

this response indicates that the slave does not support block transfers and that
no data has been transferred. This is not an error condition.

3.1.3.3.2 Error. This response indicates an error condition was detected

by the slave and indicates an unsuccessful transaction. During a read or block
read an error response indicates that any data transferred may not be valid.
During a write, event cycle, or block write, an error response indicates that the
write may not have completed correctly.

3.1.3.3.3 Bus Timeout Error. This response indicates that no slave

responded to the start cycle address. Timeout logic shall be implemented by the
chassis in order to terminate the current transaction with a bus timeout er ror.

If a periodof 256 cycles have elapsed since a start cycle, and there has been no
corresponding ack cycle, then the bus timeout logic shall assume the role of the
slave, and shall generate ‘an ack cycle with a bus timeout error code.

3.1.3.3.4 Try Again Later. This response indicates that the slave is
unable to complete the transaction at this time. There is a strong implication
that the transfer can_ be accomplished by some future request.

During a single read or write transaction, or the first data transfer cycle of a
block transfer, this is not an error condition. The requesting module should retry
the transaction. The maximum number of retries is not specified by this

document, but slaves should not be designed in such a manner that a large
number of retries is required to access them.

This response shall not occur during a block transfer on any data cycle other
than the first one.

3.1.3.4 Single Data Cycle Transactions. A single data cycle transaction
is a read transaction or a write transaction in which only a single data value is

transferred.

3.1.3.4.1 Read Transactions. A read transaction consists of the

following steps (refer to Fig 3):

5,196,946
185 186

. ANSI/IEEE

SPECIFICATION Rfd 1196-1987

0(1) S(!) D(2) S(n-I) D(n) S(n) D(n+1)

CLKI 5 i ' i i
I I

I . ‘
. i ' I 3

I I ,

I
I
I

START- II
I ACK-

I I I I

[Extracted from Texas Instruments NuBus"" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 3

Read Transaction

D1 — The master asserts S TART * and drives the AD(31 . . . O)* lines with I
the desired address and drives the TM(1 . . . O)* lines with the appro-

priate transfer mode to initiate the transaction. The master shall ensure
that ACK* is unasserted.

S1—— Bus modules sample the AD<31...0)* and TM<1 . . . O)* lines.
D2 — The master stops driving the AD(31...O)*, TM(1...O)* and ACK*

lines. The master drives S TART* unasserted and waits for an ack cycle.

D,._ — The addressed slave drives the requested data onto the AD(31 . . . O)*
lines, drives the appropriate transaction response status on the TM(1
. . . O)* lines, and asserts ACK*. The slave shall ensure that AD (31 . . .
O)* lines not indicated by the transfer mode are determinate.

Sn - The bus master samples the AD(31...O)* and TM(1 . . . O)* lines to
receive the data and note any error condition.

D,,.,1 — The addressed slave stops driving the AD(31 . . . O)*, TM(1 ... O)*,
andACK* lines. The bus owner shall drive A CK* to a determinate state.

This may be the D1 of the next transaction.
3.1.3.4.2 Write Transactions. A write transaction consists of the

following steps (refer to Fig 4):

;

5,196,946
187 188

ANSI/IEEE

Std 1196-1987 SECTION 3

0(1) 5(1) 0(2) 5(2) 0(3) SI"-‘I D(n) Sm» D(n+I)

cI.I<- I I I LI I_._.I . LII I I

I I I I

_ E I I
I I 0%" I>—-—

I I I I
I I I I
I « - » I I :

“I” i .
I l I II I

I I Isum. I ' I I
__..—————/ I I I I

I I I
I
I
I

' [Extracted from Texas Instruments NuBus"“ specification document with permission of the publisher.

Copyright (1983, 1986, 1988) Texas Instruments Incorporated.]

ADxc

_________,________4>
I I

ACK-

I
II

I

I

Fig 4
Write Transaction

D1 — The master asserts START* and drives AD (31 . . . O)* lines with the
desired address and the TM (1 . . . O)* lines with the appropriate

transfer mode to initiate the transaction. The master shall ensure that

ACK* is unasserted.

S1 —- Bus slaves sample the AD(31 . . . O)* and TM(1 . . . O)* lines.

D2—D,, — The master drives the data to be written onto the appropriate AD (31

. . . O)* lines. The master stops driving the TM(1 . . . O)* and ACK*

lines. The master drives S TART* unasserted and waits for an ack

cycle. The determinacy requirement in this case indicates that the

master drives all of the AD(3l . . . O)* lines independent of the data
sizes or lanes. '

S2—S,, -— The addressed slave samples the AD(31 . . . O)* and TM(1 . . . O)*
lines to receive the data. The data may be sampled on any cycle after

the start cycle through the ack cycle.

D” -— The addressed slave drives the appropriate transaction response status

on the TM(1 . . . O)* lines and asserts'ACK

D,,+ 1 —- The bus master stops driving the AD(31 . . . O)* lines, and the

addressed slave stops driving the TM(1 . . . O)* and ACK* lines. The

5,196,946
189 190

' ' “ ANSI/IEEE

SPECIFICATION Std 1196-19t37

bus owner shall drive ACK* to a determinate state. This may be the

- D1 of the next transaction.
3.1.3.-4.3 Event Transactions. An event transaction is a special case of

a write transaction that is used to post interrupts. The write address shall either
specify a word, a halfword 0, or a byte 0, and the data written shall have ADO*
asserted. The remaining AD* lines required by the transfer mode should be
either all asserted or all unasserted. Other combinations are reserved for future

use. Any bus master can generate an interrupt for another module by performing
an event transaction into an area of the address space that is being monitored

by the slave module. Neither the method of monitoring nor the response elicited
is specified by this standard. H

3.1.4 Block Transfers. A block transfer is a read transaction or a write
transaction in which multiple data values are transferred. A block transfer
consists of a start cycle, multiple data cycles to or from sequential address
locations, and an ack cycle. The number of data words transferred is controlled
by the master and communicated during the start cycle. Allowed lengths of block
transfers are two, four, eight, and sixteen words. Only word transfers are

provided in block mode. ‘
The type of block transfer (read or write) is specified by an encoding of AD(1

...O)* and TM('1...O)* as defined in Table 1.
The size of the block to be transferred and its starting address are determined

by an encoding of the AD(5 . . . 2)* lines as defined in Table 3. The response of
a slave to any other encoding of these lines during a block transfer is undeter-
mined. . '

During block transfers, each data cycle is acknowledged by the responding
slave. The intermediate data cycles are acknowledged by asserting TM0* with
both TM 1* and ACK* unasserted. For intermediate acknowledgments, TM0*

has the same significance and timing with respect to AD(31 . . . 0)* as ACK*

Table 3

Block Size and Starting Address Summary

Block Size

AD 5* AD 4* AD 3* AD 2* (Words) Block Starting Address

X X X H 2 (A31 -* A3)000
X X H L 4 (A3, -* A4)000O
X H L L 8 (A31 -* A5)00OO0
H L L L 16 (A31 -' A.;)O0O0OO

5,196,946
191 192

ANSI/IEEE
Std 1196-1987 ” SECTION 3:

does during nonblock transfers. The final data cycle in an ack cycle, and the
transaction response status has the same meaning as in a single data cycle
transaction, as indicated in Table 2.

3.1.4.1 Block Read. A block read transaction consists of the following steps

(refer to Fig 5):

D1 —— The bus master asserts S TART* and drives the AD(31 . . . O)* lines
with the desired address and drives the TM(1 . . .' 0)* lines with the

appropriate transfer mode to initiate the transaction. The master shall
ensure that ACK* is unasserted. i

S1 - The bus modules sample the AD(31 . . . 0)* and TM(l . . . O)* lines.
D2 — The bus master stops driving the AD(31 ... 0)*, TM(l ... O)* and

ACK* lines. The master drives S TART* unasserted and waits for an

intermediate acknowledgment.

D,, — The addressed slave drives the first word of the requested data on the
AD(31 . . . O)* and drives TM0* asserted. The slave shall assure that
ACK* and TM 1* are unasserted.

Sn — The bus master, responding to the assertion of TM0* with ACK*
unasserted, samples the AD(31 . . . 0)* lines, and captures the data. _

Dull — If the addressed slave is not ready to put the next consecutive word on
the bus, the addressed slave drives TM0* unasserted until a bus cycle
in which the word is ready.

NOTE: The previous three steps are repeated for ascending addresses until all but the final word of
the block have been transferred. < ' ‘

D b -- The addressed slave» drives the final word of requested data on the AD (31
. . . 0)* lines, drives the appropriate transfer response status on the
TM 0* lines, and drives ACK* asserted.

Sb — The bus master samples the AD(3l . . . 0)* and TM(l . . . O)* lines to
receive the data and note any error conditions.

Db“ -- The addressed slave stops driving the AD(31 ... O)*, TM(l ... O)*,
and ACK* lines. The bus owner shall drive ACK* to a determinate state.

This may be the D1 of the next transaction.
3.1.4.2 Block Write. A block write transaction consists of the following

steps (refer to Fig 6):

D1 — The bus master asserts START* and drives the AD (31 . . . 0) * lines
with the desired address and the TM(1-. . . 0) * lines with the appro-

priate transfer mode to initiate the transaction. The master shall
ensure that ACK* is unasserted. .

S1 — The bus modules sample the AD(3l . . .0)* and TM(l . . .0)* lines.
’ D 2-D” —— The bus master drives the first word of the data to be written onto

E7E8Emme59NuAmS

:cm.._w.5aOwnufl£0.05

4.

Hmurn
:.3mpca.8o:~mu:mE:.5m:~mmxmm.Awwmwdwae.mmmS..Em_EEoO.._m.._m_3.:_~35._o:o_mm_E.8a£33ucmfisoovcosaufuwmmEmsmszmu:mE:.5m:_mmxou.Eo.cwflunwsxmzC+nVaucmA59coozzun22mufauu2:B51:.u:3:u.2snacoomc...._o>n_mumnnuiuuoz...4..__

649,6

9 .:::m
115,

.n9T.oo<

_.
_

1

j_j_.V3033:5So

SPECIFICATION

3NmTCES

5,196,946

:oSn.$QOvia?xoomumare

_.v3m..om._ou=_mn_=mE:.£m:Hmmxmp.Awwmadam;.mmmCEmmhaov...mEw:£_Ema:.3:o_mm_E$afirs..:oE=uo_.cosmocfionm.:m:m:Zmacofisbmcmmmxmu.Eoccflombxa2+£mvcmEEcuuiun£2»unionoz.2.02»9_;:...2o_n_m:oamu.».o>2nvnnmuiuaoz»1..__

m__mm__.xo<_____

.

.ll|4|Illlr||iT:..|l|lT.|w.55
_

__T||I|||IH_ll|
T:||nI|___.2__OO

._
E.3752_

__ll<:.o@.<55
_.__IINIIAZ<53<.—<o _..no«n.mo«._____

195

Std 1196-1987
BEETLT/..SNA

:5037...have:.£mC+5oEmA50:.5mA30EmTE

5,196,946
197 198

ANSI/IEEE

SPECIFICATION ‘ Std 1196-1987 '

the appropriate AD(31 . . . 0)*, TM(1...O)* and ACK* lines. The
master drives S TART* unasserted and waits for an intermediate

acknowledgment.

Sn — The addressed slave samples the AD (31 . . . O)* lines to receive the
data and drives the TM0* line asserted. The slave shall assure that
ACK* and TM 1* are unasserted. The data may be sampled on any

cycle after the start cycle through the intermediate acknowledge
cycle.

D,, + 1 — The bus master drives the next consecutive word of the data on the
AD(3l . . . O) * lines. If the slave is not ready to sample the data, the
slave drives TM0* unasserted until it is ready to proceed.

NOTE: The previous two steps are repeated for ascending addresses until all but the final word of
the block have been transferred.

A Db_;,-Db — The bus master drives the final word of the requested data on the
AD(31 . . . O)* lines.

S 5, — The addressed slave sample the AD<31 . . . 0)* lines and captures
the final word of the block transfer. The data may be sampled on any

cycle from the previous intermediate acknowledge through the ack
V cycle.

Db — The addressed slave asserts ACK* and drives -the appropriate trans-
action response status on the TM(1 . . . 0)* lines.

Dbll —The bus master stops driving the AD(31 0)* lines, and the V
_ addressed slave stops driving the TM(1 . . . O)* and ACK* lines. The

bus owner shall drive ACK* to a determinate state. This may be the

D1 of the next transaction.
3.1.4.3 Block Transfer Early Termination. An addressed slave that is

incapable of performing any block transfer shall issue an ack cycle without any
intermediate data transfer cycles (TM0* asserted, TM 1* and ACK* unasserted)
with a bus transfer complete transaction response status. The single word trans-
ferred shall be ignored by the master during a read and shall be ignored by the
addressed slave during a write. This is a normal response of a module incapable
of supporting block transfers and is not an error condition.

If the addressed slave detects an error during a block transaction, the trans-
action may be terminated by the addressed slave by issuing an ack cycle with
the appropriate transaction response status. Any data transferred during a block
transfer that is ended with an error condition is not guaranteed to be meaningful.

NOTE: The slave is not required to signal the error as soon as it is detected. Thus, the error could
have occurred at any time during the active block transfer, and all data transferred are suspect.

5,196,946
199 ‘ 200

ANSI/IEEE - -. . /14 V
Std 1196-1987 SECTION 3

3.1.5 Attention Cycles. An attention cycle is a singlebus cycle during which
the master asserts both S TAR T* and ACK* in the same clock period. The TM (1

. . . O)* lines are also driven and define one of four types of attention cycles. The

AD(31 . . . O)* lines are ignored by all modules and no module is selected nor

are any data transferred. Table 4 defines the four types of attention cycles.
3.1.5.1 Attention-Null Cycle. An attention-null cycle is used to reinitiate

arbitration. If the bus is requested and acquired, but not used by the new owner,

and RQS T * is asserted, then the new bus owner shall generate an attention-

null cycle to initiate a new arbitration contest. If RQST* is not asserted, then
an attention-null cycle is not required, but may be inserted.

An attention—null cycle is also used to indicate the end of a locked resource

transfer sequence. Resource locking is described in 3.1.62.4.
3.1.5.2 Attention-Resource-Lock Cycle. An attention-resource-lock cycle

~ is used to indicate that the following sequence of locked transactions should also

lock any resource that is addressed during the locked sequence. Resource locking
is described in 3.1.62.4. .

3.1.5.3 Reserved Attention Cycles. These two types of attention cycles

are currently not defined, but are reserved for future use. Current modules shall
restart arbitration, but not change the state of a resource lock, if they see either

one of these cycles.

If either one of these cycles are defined in the future, they shall be defined in
. a manner that is consistent with this specification, that is, they will restart

arbitration and not affect resource lock.

3.1.6 Arbitration. Arbitration is the mechanism used to determine which

bus module will be the next bus owner.

3.1.6.1 Bus Ownership. There is always a bus owner, except for the period

immediately after reset and before any bus modules request bus ownership. Bus

ownership may be thought of as a token that is always present and is passed
from one module to another.

Table 4

Attention Cycle Summary

TM 1* 7 TM 0* Type of Attention Cycle

L L Attention-null
L H Reserved
H L Attention-resource-lock
H H Reserved

5,196,946
201 202

ANSI/IEEE

SPECIFICATION . f_ Std 1 196—] 987

3.1.6.1.1 Bus Owner Responsibilities. The bus owner has certain

privileges and certain responsibilities. The bus owner is the only bus module
that can initiate bus transactions. The bus owner is responsible for guaranteeing

that the S TART * signal is in a determinate state on every bus cycle and that
the ACK* signal is in a determinate state during the start cycle, and during all
cycles between transactions. Figure 7 defines the responsibility of the bus owner
on a cycle by cycle basis.

Fig 7

Signal Driving Responsibilities of the Bus Owner

NUTE~ EACH auacx REPRESENT: PUVER 5"
out Now: cuncx mzmn Tmmmnns

CNN THE BUS

ARE
CONTEST

VUN

TUKEN TRANSFERRED
TO NEW UVNER

TRANSACTION '
START CYCLE

NEV UVNER NUT READY

ATTENTION
CYCLE

 PAUSE

UNASSERT START‘ KSSERT START! ASSERT START‘
LNASSERT ACXI LNASSERT ACKI 533537 pug,
ASSERT RUST! DRIVE THXI, SPVI muvg mx.

RELEASE RDSTI RELEASE RUST!

VAIT LNASSERT START!
UNASSERT ACKI

UNASSERT START!
TRISTATE ACKI, TMXI, SPVI

ARICONTESTVUN ARICONTESTVON
RESPENDTNG HUIIULE

ACK CYCLE

UNASSERT START!
TRISTATE ACKI, TMXI. SPVI

NU DTFER REQUESTS

ACX CYCLE

ASSERT ACKI
DRIVE THXI. SPVI

LNASSERT START!
UNASSERT ACKI

TRISTATE ALL
SIGNALS

 masses? smu-

umsszm ACXI 1
TI! TRANSACTION’ DR ‘ATTENTION CYCLE’ @IF ROSTI IS NUT ASSERTED

[Extracted from Texas Instruments NuBus"‘ specification document with permission of the publisher.

Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

‘ARR cmrzsr van

5,196,946
203 ' 204

ANSI/IEEE - .5; .
Std 1196-1987 SECTION 3

If S TART * or ACK* is asserted during cycle n by any module, then it shall
be driven during cycle n + 1 by the bus owner.

Transfer mode 0 and 1 (TM(1 . . . O)*) shall be driven by the current bus
owner during start cycles to indicate the type of bus operation being initiated.
They shall be driven by the responding module during ack cycles to denote the
type of acknowledgment. The encoding of these lines during a start cycle shall
be as given in Table 1, and during an ack cycle shall be as given in Table 2.
TM0* is asserted by the responding module during block transfer modes to
acknowledge individual words. When TM0* is asserted by the responding
module as an intermediate acknowledge during a block transfer on some cycle
n, then it shall be driven by the responding module on cycle 72 + 1.

During a start cycle, the current bus owner drives the four control signals, the
AD(31 . . . O)* lines, and the parity lines. After the start cycle, the AD(31 . . .
0) * lines are driven by the master for write transactions, and by the responding
module for read transactions. The master does not drive the three control sipalsr
ACK“‘, TM0*, and TM 1* after the START* cycle. The responding module may
drive these three control signals during any cycle after the start cycle, and shall
drive them during the ack cycle.

3.1.6.2 Determination of Next Owner. The next owner is determined by
the arbitration process. The arbitration process varies, depending on the state
of the bus when a potential owner requests to become the next owner. Bus
modules request bus ownership by driving the open-collector RQS T * line
asserted. A module shall not begin to drive the RQST* line if it was asserted
on the previous sample edge. A module that has begun to assert RQS T * shall
continue to assert RQST * until it wins an arbitration contest and asserts
S TART *.

3.1.6.2.1 Single Competitor. The simplest case is when the bus is not
being used and one bus module requests ownership by driving the RQST* line
asserted. In this case, an arbitration contest occurs, which the single requestor

wins. The requestor becomes the new bus owner at the end of the arbitration
contest.

In the case that a transaction is in progress and a single bus module requests

bus ownership by driving the RQS T* line asserted, the requestor will determine
that it will be the next bus owner at the end of the arbitration contest, but it
will not assume ownership until the completion of the transaction on the cycle
immediately following the ack cycle.

3.1.6.22 Multiple Competition. Morethan one bus module may request
bus ownership simultaneously by driving the RQST* line asserted on the same
bus cycle. In this case, the arbitration contest will determine which requesting

5,196,946
205 206

ANSI/IEEE

SPECIFICATION Std 1196-1987

module will be the next bus owner. The winning bus module will assume owner-

ship at the end of the arbitration contest if the bus is not busy, or at the end of
the bus transaction on the cycle immediately following the ack cycle if the bus

: is busy when the contest is completed.
As each winning bus modu_le__aLsumes bus ownership, the remaining reques-

tors compete in a new“a‘rbitration~"contest to determine the next winner. This
sequence repeats until all requestors have won.

3.1.6.2.3 Fairness. All bus modules are given equal access to the bus. At
the end of each transaction, the next winning requestor shall assume ownership.
Since a module may assert the RQST* line only if it was not asserted on the
previous sample edge, all requestors who requested ownership simultaneously
will win before any new requestors are permitted to request ownership. There-
fore, a single module is prevented from continuously requesting ownership and
winning the arbitration contests.

3.1.6.2.4 Locking. Although modules normally perform only one trans-
action before allowing another requestor to become bus owner, sometimes a
module may need to lock the bus. An example of this is an indivisible test-and-
set operation performed in a multiprocessor environment. Two levels of locking
are provided: bus locking and resource locking.

Bus locking is accomplished with no additional mechanism. To lock the bus,
a module simply continues to request bus ownership and participate in arbitra-
tion contests. (It does not release RQS T*.) Since it won the previous contest, and
no other (possibly higher-numbered) modules can join the contention, it will win
subsequent contests. Figure 8 shows an example in which module #4 locks the
bus for two transactions. " '

Modules should not lock the bus unless required, and should lock the bus for

as short a t_enure as possible. '
Resource locking is done by issuing an attention-bus-lock cycle as the first

transaction of the locked bus tenure to alert all modules that a locked operation

is occurring. The bus lock is maintained using the bus lock mechanism described
in the preceding paragraphs. A bus owner that issues an attention-bus-lock
cycle shall issue an attention-null cycle as the last cycle of its locked bus tenure
to indicate to all modules that the locked operation is completed. All bus modules
with resources that may be locked shall monitor the NuBus for attention-bus-
lock cycles. If that module is ever addressed after an attention-bus-lock cycle,
but before a corresponding attention-null cycle, then it shall lock its internal
resource until the bus master issues an attention-null cycle. Only one attention- .

bus-lock cycle is issued for each locked tenure, so all modules with lockable
resources shall record this occurrence; however, they do not need to react to it

5,196,946
207 208

ANSL’lEl3E

Std 1196-1987 SECTION 3

ll TENUHE I2 TENURE ll TENURE

f_:/&.:_...‘f_..._./+______ UNTILNEXT ARE

ADDRESS!
DATA

ARBITRATION

ROST-

Maslcr M. Masler #2. and Master 11 Master It removes ROSTO
oes-re bus and assert RUST: (u desiring and lakes ID on ARE):-.
two unawasuble transacnons)

Master I A
keeps CO71lESllHg

[Extracted from Texas Instruments NuBus“ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 8

Bus Locking Example

unless they are addressed before the locked tenure is completed with an atten-
tion-null cycle. This allows multiple resources to be “touched” and locked during
the same locked tenure.

A bus owner that intends to performian indivisible operation should always"
look resources on addressed slaves in addition to locking the bus. For example,

a module containing both a processor and memory contains a resource (memory)
that can be accessed from the NuBus and directly from the local processor. A

bus master that is attempting to perform a locked sequence of transactions on

this memory must also lock the memory resource so that the local processor does
not interfere with the locked sequence. This is to prevent the local processor

from modifying a data structure that is being modified by the bus master. A
module is not required to provide locking of its local resources and may provide
locking on some and not on others; however, only local resources that can be
locked can be used for reliable test—and-set operations.

3.1.-6.2.5 Parking. As long as RQST* remains unasserted, the bus owner

‘ is considered to be “parked” on thebus and may continue to use the bus without

the necessity of going through an arbitration contest in which it is the only
contender. Once another module drives the RQST* line asserted, an arbitration

“contest is started and the bus owner shall not begin another transaction.

5,196,946
209 210

ANSI/TEEE

SPECIFICATION Std 1196-1987

This concept of “bus parking” reduces the average time needed to acquire the
bus in systems with a small number of active contenders.
NOTE: A parked bus owner that desires a locked series of transactions is required to request an
arbitration contest by driving RQST* asserted.

3 3.1.6.3 Transfer of Ownership. The conceptual bus ownership token is
transferred from one module to another module in response to a bus request at
specific, well-defined occasions, as follows:

0 If the bus is busy (a transaction is in progress), and the arbitration contest is
complete, then the token is transferred at the end of the ack cycle and the new
bus owner assumes bus ownership on the cycle immediately following the ack
cycle.

0 If the bus is not busy (the current bus owner is parked), then the token is
transferred at the end of the arbitration contest and the new bus owner assumes

~ - bus ownership on the cycle immediately following the arbitration contest.

0 If the bus is busy, but the ack cycle occurs before the arbitration contest is
completed, then the token is transferred at the end of the arbitration contest
and the new bus owner assumes bus ownership on the cycle immediately
following the arbitration contest.

0 If an attention-null cycle is issued, then the token is transferred at the end of
the arbitration contest and the new bus owner assumes bus ownership on the .
cycle immediately following the arbitration contest.

0 If any transaction completes and no module has requested bus ownership, then
the token is not transferred and the bus master retains bus ownership and is
parked.

3.1.6.4 Arbitration Contest. An arbitration contest occurs after either of
two occurrences: RQS T * transitions from the unasserted state to the asserted
state, or a start cycle occurs while RQS T * is asserted. During arbitration, one
or more modules contend for control of the bus.

3.1.6.4.1 Arbitration Signals

Bus Request—RQST* is an open~collector line driven asserted by any module
to request bus ownership.

Arbitrate Signals—ARB (3 . . . O)* are open-collector binary coded lines, with
ARB 3* representing the most significant bit. They are driven by contenders in
each arbitration contest and are used by the distributed arbitration logic to
determine the next bus owner.

ID Signals—ID(3 . . . 0)* provide a unique binary coded value to each bus
module. ID 3* represents the most significant bit.

ANSUIEEE

Std 1196-1987

5,196,946
211 212

SECTION 3

3.1.6.4.2 Contest Description. An arbitration contest (see Fig 9) consists
of the following steps:

S1-

D2-

S3-—

D4'Dn—1 ""'

Dn+3"_

A module shall not assert RQST* unless RQST* was unasserted.

If RQST* is unasserted on this sample edge, then all modules that

desire bus ownership begin driving their ID codes on the ARB(3 . . .

0)* lines immediately after this edge.

Modules that desire ownership of the bus, and that started driving

the ARB(3 . .. O)* lines on S1, begin driving the RQST* lines

asserted and continue to drive it asserted until that module becomes

bus master.

The arbitration logic distributed among the modules determines

which of the modules is to become the next bus owner. The contest

mechanism shall settle within two clock periods, at which time the

code on the ARB(3 0)* lines reflects the ID of the highest-

numbered contender.

The winning module waits until bus ownership is transferred to it

before becoming a bus master. On the cycle that the conceptual bus

ownership token is transferred to the new owner, it is responsible

for driving S TART* andACK* to determinate states, even if it does

not immediately start a transaction. The new owner shall not wait

longer than 255 cycles before starting a transaction.
The bus owner begins its bus transaction by dri*~'.ng START“

asserted, and quits driving RQST*. (RQS T * is not released if the

bus owner is locking the bus.) "

The bus owner stops driving the ARB(3 . . . O)* lines, unless it

desires to lock the bus. If multiple modules were requesting bus

ownership, the next contest begins on S,, when the current bus owner

releases the ARB(3 . . . O)* lines. Other modules that desire bus

ownership and that started driving the ARE (3 . . . O)* lines on S1

and driving RQST* on D2, continue driving ARB(3 . .. O)* and

asserting RQST*.

The arbitration logic distributed among the modules determines
which of the modules is to become the next bus owner. The contest

mechanism shall settle within two clock periods, at which time the

code on the ARB(3 0>* lines reflects the ID of the highest-

numbered contenders. If the previous owner is locking the bus, it

will again win the arbitration contest and remain as the bus owner.

The winning module waits until the bus ownership is transferred to

it before becoming the bus mas_tc_3_r_. This edge is equivalent to D4,

214
5,196,946

213

E7E86mmsmN1AdLbSNmTAmFICEPS

I7rn|._IF|1]l:LJri|]|.
an+23

52%

_.wm:.Ou3+23

2:?

\xu<025.20mn_O»mE226mam
zo=<E_mm<\E...¢+zE

Em

$3COMV-Om_—~wo~..—mh—o.~<
:.3Eo.Cou:_mu:eE:.sm:_maxmbEmmadmmfi.mmmC.:_m_.:EoO..S;m:€E93we=o_mm_E..mn2:3q.:wE=uovzosmucmumam.:m:m=ZE:mE=.5m:_mmxofiEocc3om.sxm:9:.Cuzvm

aE:

.723

So:7

an

Em

.xu<.E<rm.xmz<.52.

A 5,196,946
215 216

ANSIJIEEE * - » _____._.__ 1 £1
Std 1196-1987 . SECTION 3

and the sequence from D4 to D,,+3 is repeated for all remaining
requestors who started asserting RQST* on D2. ‘

Once a module has requested bus ownership, it shall not stop requesting until
:1 it has won ownership and generated a start cycle for a bus transaction or gener-

ated as attention cycle. When the last requestor becomes master and asserts
S TART* and quits asserting RQST*, the RQS T * line will become unasserted.
New requestors can now request bus ownership, and a new series of arbitration
contests begins on S1. Figure 10 illustrates a sequence of several modules
contending for bus ownership.

3.1.6.4.3 Arbitration Logic Mechanism. When a bus contest occurs,
each module shall drive the arbitration lines with its unique ID code, and then
unassert them if it detects higher ID codes than its own on the arbitration lines.
Figure 11 illustrates this relationship in a logic diagram.

Note that the ARB (3 . . . O)* lines are common to all cards while the ID(3
. . . O)* lines present a unique binary code to each card slot. The signals “arb”
and “grant” in Fig 11 are module signals, with “arb” indicating that a module
is contending for the bus and “grant” indicating that the ARB(3 O)*’

Fig 10

Multiple Arbitration Contests

MASTER #2 MASTER #1 MASTER 415
TRANSACWON TRANSACWON TRANSACHON

ADDRESSI
DATA

ARBITRATION
ROSTU

Master :1 and Master #2 desue bus removes ROSTO Becaiise RDSTI is unasserled,
and assen ROSTO and contend .In.d.1alu:§_V_!_s ID of! ARB)“. Master I 15 may assen it and contend.

Masler I15 desnres bus but cannot ’ Master 41 releases ROSTO as 11
conlend because ROST- rs assened inmates transacuon.

[Extracted from Texas Instruments NuBus"‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

5,196,946
217 218

ANSI/IEEE

SPECIFICATION Std 1 196-1987

NOTE: THIS IS NOT A PRACTICAL IMPLEMENTATION. BUT IS FOR

ILLUSTRATIVE PURPOSES ONLY.

[Extracted from Texas Instruments NuBus" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 11

Arbitration Logic

currently match this module’s ID (3 . . . O)* lines. The following logic equations
describe how the arbitration logic on any given module works:

ARB3* = 1193* - arb

ARB2* = ID2* - arb - (ID3* + ARB3*) ,

ARE 1* = 1191* , arb - (ID3* + ARB3*) - (ID2* +ARB2*)

ARBO* = IDO* - arb - (ID3* +A‘R'1'37F)-(ID2* +ARB2*) - (ID1* +ARB1*)

where “-” is the logical AND operator and “+” the logical OR operator, and

ouerline indicates logical inversion.

According to these equations, after a short delay (arbitration period) the
ARB (3 . . . 0)* lines shall equal the ID code of the highest-numbered contender.

3.1.7 Address Space

3.1.7.1 Slot and Uncommitted Space. The ID<3 . . . O)* shall be used to

allocate a portion of the total address space to each module. The upper one-
sixteenth (256 megabytes) of the entire four gigabyte NuBus address space is

called "slot space.” As shown in Fig 12, this area is divided into sixteen regions

of sixteen megabytes each, which are mapped to the sixteen possible NuBus card

slots (or ID codes). Addresses of the form FS,-XXXXXX reference address space

5,196,946
219 9 220

ANSI/IEEE ..

Std 1196-1987 SECTION 3

NuBus
Address

FFFFFFFF

| Slot space
(U16 0! total physical
address space) .

SLOT
FOOOOOOO 0 __

i

"K;

uncommitted 15/16
or total physical
address space

00000000

Each slot has 16 mbyies oi memory space lrom
F(lD)O000O0 - F(!D)FFFFFF

[Extracted from Texas Instruments NuBus" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated.)

Fig 12

NuBus Address Space

5,196,946
221 222

- S ANSI/IEEE

SPECIFICATION ' V Std 1196-1987

that belongs to the slot space of the module in slot S,. This fixed address alloca-
tion, based solely on a module’s slot location, enables the design of systems that
are free of jumpers and configuration switches.

The remaining fifteen-sixteenths of the 32-bit physical address space is uncom-
mitted and may be allocated as required. Any allocation of this space may be
module or system dependent, but allocation of the space shall be programmable

1 by registers in the slot space of the module to which it is allocated.
3.1.7.2 Slot Occupancy. Each module shall respond (with either “transfer

complete” or “error” codes, as appropriate) to read requests within the high-
order word (address FS,FFFFFC) of its slot space. Either response indicates
occupancy of the addressed slot.

. 3.1.7.3 Configuration ROM. Each module should have a configuration
ROM that is located at the top of the module’s slot space. Note that, in general,
provision of a configuration ROM satisfies the requirement of slot occupancy.

'3.1.8 Utility Functions. This section identifies the signal lines that serve
"utility-type functions for the NuBus. CLK*, RESET*, PFW*, and the bus
timeout function shall be supplied by the terminator module (or other backplane
module) and are not required to be on any NuBus module; however, a NuBus
module may assert RESET * or PFW* if required as part of that module’s
functionality.

3.1.8.1 Clock Signal. Clock (CLK*) synchronizes bus arbitration and data
transfers between system modules. CLK* has an asymmetric duty-cycle of 25%
and a constant nominal frequency of 10 MHz. Unless stated otherwise, bus

signals shall be changed only at the rising edge of CLK*, and shall be sampled
only at the falling edge. _ '

3.1.8.2 Reset Signal. Reset (RESET*) is an open-collector line that returns
all cards to their initial power-up state (system reset). It is asserted during system

power up/down, and may be asserted at any other time to reset the system. When
RESET* is asserted, it shall remain asserted for a minimum of 1 ms.

This signal may be asserted or unasserted asynchronously with the driving
edge of CLK*.

Upon power loss, RESET* shall be asserted before the output of the +5 V
supply falls below +4.8 V, and remain asserted until the +5 V supply falls below
+ 1 V. Upon power up, RESET* shall be asserted before the +5 V supply reaches
+1 V, and remain asserted until at least 100 ms after all the power supply
voltages are stable.

3.1.8.3 Power Fail Warning Signal. Power fail warning (PFW*) is an

open-collector line that provides advance warning of an impending power failure.
This signal may be asserted asynchronously with respect to CLK*.

5,196,946

223 224

ANSI/IEEE ’ 2 T ,-
Std 1196-1987 SECTION 3

Upon interruption of ac power, PFW* shall be asserted for a minimum of 2
ms before RESET* is asserted. The state of PFW* upon power-up is undefined,
but it shall become unasserted at least 1 ms before RESET* is deasserted.

Optionally, the PFW* signal may also be used to control the power supply. If
PFW* is driven high (> 2.4 V) while the system is powered off, the power supply
will turn on (in less than 1.5 S). If the system is powered, and PFW* is asserted,

the power supply will turn the system off; however, the power will remain within
limits for at least 2 ms and RESET* will be asserted before the +5 V supply

drops below +4.8 V.

The power supply shall draw less than 20 mA from PFW* during the power-
on cycle. The power supply should also filter this signal so that glitches on PFW*
of less than 250 ns will not cause the power supply to turn off.

3.1.8.4 Non-Master Request. Non-master request (NMRQ*) is an open-

collector line that provides a simple method for a bus module to indicate a need
for service.

This signal may be asserted and unasserted asynchronously with respect to
CLK*.

A module needing service asserts NMRQ* for at least one clock period, and
should continue to assert NMRQ* until its service need has been satisfied.

NMRQ* may be bused or not bused by the chassis. The bused NMRQ* line or
the individual nonbused NMRQ* lines should be terminated by the chassis as

open-collector signals.
3.1.8.5 Card Slot Identification Signals. Identification signals (ID(3 . . .

O)*) shall be binary-coded (with ID3* being the most significant bit) to specify
the physical location of each module. The highest-numbered slot (fifteen) shall
have the four signals wired low on the backplane, and the lowest-numbered slot
(zero) shall have all four signals open. Intervening numbered slots shall have

appropriate combinations of the four signals open and wired low. The distributed
arbitration logic shall use the ID numbers to uniquely identify modules for
arbitration contests, as explained in Section 3.1.6.

Each module must provide appropriate pull-ups on each ID(3 . . . 0)* line so
that those lines that are left open on the backplane will be interpreted as high

by the arbitration logic. A

3.2 Physical

3.2.1 Timing ‘

3.2.1.1 Basic NuBus Timing. The NuBus system clock shall have a 100

ns period with a 75 ns unasserted/25 ns asserted duty cycle. Figure 13 shows the
basic timing for most NuBus signals. The low-to-high transition of C ’* shall

, be used to assert and unassert signals on the bus. Signals shall be sampled on

5,196,946
225 226

‘ ‘ ’ ANSI./IEEE

SPECIFICATION Std 1196-1987

CLK/ | . I

SIGNALI

I

I I

I s j I
I - I

I SAMPLE EDGE -——I I
I I

DRIVING EDGES

[Extracted from Texas Instruments NuBus" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 13

‘Basic NuBus Signal Timing

the high-to-low transition of the clock. The asymmetric duty cycle of the clock
provides 75 ns for propagation and setup time. With 25 ns between the sample
and driving edges, bus skew’ problems are avoided.

3.2.1.2 Utility and Data Transfer Timing. Figure 14 shows the clock,
control, and address/data timing relationships during data transfers.

3.2.1.3 Arbitration Timing. The timing of the ARB (3 . . . 0)* signals is
not the same as the timing of the data transfer signals. The timing of an arbitra-
tion contest always begins on the sample edge of CLK* and completes two clock
periods later. A contest starts on the sample edge of CLK* immediately preceding
the assertion of RQS'T* and on the sample edge of CLK* during a start cycle. If
RQST* and S TART * both become active in the same cycle, then the timing of
the arbitration contest starts over during the start cycle.

Figure 15 details the ARB(3 . . . 0) * timing for an arbitration between module
#A (1010) and module #5 (0101) following a S TART* initiated by module #8. In
the general case, contenders wait for the current bus master to release the
ARB (3 . . . 0)": lines before the new arbitration can take place. Thus, the asser-
tion time (T,,,,T'fb-r ARB(3 . . . 0)* signals is the turn ofl? time of the current
master (Toff), plus the bus propagation delay (Tpd)y plus the time taken to react

5,196,946
227 » 228

ANSI/IEEE - -
Std 1196-1987 ‘ SECTION 3

+~e~~+ 1 +—1~«~l
 +v1i+iil

XXOXOXOXOXOXOXOOXOXOX
. Tpd

 Parameter Description Minimum Maximum

T,, Clock period 99.99 ns 100.01 ns
Tm Clock width 73 ns 77 ns
T0,, Turn on time —— 35 ns
Ton Turn ofi time — 35 ns

T,,d » Propagation delay —— 17 ns
T,“ Set-up time 21 ns -

T,, _ Hold time Tcp -— Ta, —

NOTE: Setup, hold. and other timeslare defined at the module-to-NuBus connector. All module-
internal delays shall be taken into account while providing for the above specified times.

[Extracted from Texas Instruments NuBus“‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 14

Data Transfer Timing Specifications

to the change in logic levels (Ten). At the end of this time (T0,), both devices
assert their slot ID’s on the ARB(3 . . . 0)* lines, resulting in a pattern of F
(1111). This causes module #A to release ARBl* and module #5 to release ARB2*

and ARB0*. After A1252 * reaches a high state, module #A again asserts ARB1*.

5,196,946
229 230

" ANSI/IEEE

SPECIFICATION Std 1196-1987

REOUEST- \ ' i f
' OR

START- / \ ' /

ARES-

 Parameter Description Minimum Maximum

Tm, Arbitration time — 200 ns
Tm, ARB turn on time 10 ns 83 ns
Tm Arbitration enable time — 26 ns
Td, Arbitration disable time -— 26 ns
T,” Arbitration set-up time 31 ns —
Th Hold time 10 ns —
T0,; Turn off time 10 ns 40 ns

T,,d Propagation delay —- 17 ns

[Extracted from Texas Instruments NuBus"‘ specification document with permission of the publisher.

Copyright (1983, 1986, 1988) Texas Instruments Incorporated.]

Fig 15

Arbitration Timing

5,196,946
231 232

ANSUIEEE » ~

Std 1196-1952.7 SECTION 3

On the second falling edge of CLK* following the assertion of RQST* or the

unassertion of S TAR T* , module #A wins the arbitration contest.

3.2.2 DC and AC Specifications for Signals

3.2.2.1 Logical and Electrical States. All NuBus signals are active when

low. The relationship between logical states and electrical signal levels for all

NuBus signal lines is shown in Table 5.

3.2.2.2 Termination Requirements. The termination circuits perform two

functions: reduce signal ringing, and guarantee signal determinacy during the

times that a signal is not being drivenby a module. The terminators shall cause

the following signal determination:

(1) If a three-state signal is asserted during cycle n and is not driven during

cycles n + 1 and n + 2, then the terminators Will guarantee that it will be in

the unasserted state during cycle 72 + 2, but the terminators do not guarantee

determinacy during cycle n + 1.

(2) If an open-collector signal is asserted during cycle n and is not driven

during cycle n + 1, then the terminators will guarantee that it is unasserted

during cycle n + 1.

(3) If a signal is unasserted during cycle n. and is not driven during cycle n +

1, then the terminators will guarantee that it remains unasserted during cycle
n + 1. '

Table 6 provides the drive requirements, the load allowance, and the required

termination for each of the NuBus signal lines. These lines can be divided into

four basic types: clock (CLK*), address/data (AD (31 . . . O) *, SPV*, SP*), control

(START*, ACK*, TMO*, TMl*), and open collector (RESET*, RQST*, ARB<3

' ...O)*, PFW*, NMRQ*).* <

3.2.3 Backplane (Signal) Characteristics. To meet the NuBus timing

requirements with the drivers and terminations described above, the character-

istic impedance (Z5) and the roundtrip propagation delay (Tpd) of a backplane
loaded with cards shall be controlled. Both of these parameters depend on

Table 5

Logical State Definitions

Electrical Signal Level
Logical State (Active Low)

Unasserted (H) > 2.0 V at the receiver
‘ < 3.5 V at the driver

Asserted (L) < 0.8 V at the receiver

5,196,946

233 234

A ANSI/IEEE
SPECIFICATION , Std 1196-1987

Table 6

Bus Drivers, Receivers, and Terminations

AC Drive DC Drive AC Load DC Loading

signal IPD IPU I01. IOH CL Ill. 11;:
Type (min) (min) (min) (min) (max) (max) (max)__*_

Clock 90 mA -50 mA 60 mA -30 mA 18 pF -1.4 mA 0.1 mA
@ 3.0 V from driver

Address/ 80 mA -40 mA 24 mA -1.6 mA 18 pF -0.5 mA 0.1 mA
Data @ 3.2 V

Control 80 mA -40 mA 24 mA -1.6 mA 18 pF -0.5 mA 0.1 mA
@ 3.2V

Open 80 mA N/A 60 mA N/A 18 pF -0.625 mA 0.1 mA
Collector
_____:_

Desired Characteristics

Termination Primary Function (Thevenin Equivalent) Typical Implementation_____:

Clock Minimize reflection 50 Q @ 1.6 V 16 75 (2 End away from driver
Address/Data Determinacy 175 9. @ 3.0 V 270/470 9 One end
Control Determinacy 175 (2 @ 3.0 V 270/470 $2 One end
Open Collector Unassert signal 65 Q @ 3.5 V 180/470 9 Both ends

NOTES:

I01,-Low output drive current available at 0.5 V.
Io},-—High output drive current available at specified voltage.
IpU—Transient pull-up current, required for one tpp whenever the driver transitions from asserted

to unasserted.

IpD—Transient pull-down current, required for one (PD whenever the driver transitions from
unasserted to asserted. '

I,L—DC low-level input current.
I,H—DC high-level input current.
Negative currents indicate flow out of a node and positive currents indicate flow into a node.

backplane geometries (length, card spacing, layer separation, etc), as well as the
type of dielectric used in the backplane. Only the critical parameters (Z5 and
Tpd) are specified by this document. Their specifications shall be

25 Q

Tpd _<_ 17.0 ns

N0. IV

3.2.4 Voltage Specifications. Four voltages are specified on the NuBus, as
shown in Table 7. While +5, + 12, and — 12 volts are required, -5.2 V is optional.

The pins designated for -5.2 shall be used for -5.2 or not at all.

5,196,946

235 _ 236
ANSI/IEEE ' . .

Std 1196-1987 ‘ ' SECTION 3

Table 7

Voltage Specifications

Nominal Value Tolerance from Combined Line Max Ripple
Source (volts) Nominal and Load (PK-PK)
Label ' Regulation

+5 5 i-3% 0.3% 50 mV
-5.2 -5.2 $370 0.3% 50 mV
+12 12 :l:3% 0.3% 75 mV
-12 -12 i3% 0.3% 75 mV

3.2.5 Mechanical Specifications—-Triple Height Modules. Two mechan-
ical form-factor options are defined for NuBus modules: triple height and PC-
style. This section defines the triple height form-factor, and the following section
defines the PC-style form-factor.

The triple height form-factor is derived from specifications for connectors as
given in IEC 603-2-1980 [3]4 and for modules in IEC 29711986 [2]. It shall
conform to ANSI/IEEE Std 1101-1987 [1], except where noted otherwise in this

section. This section details the particular options of the IEC family used by

NuBus triple height modules.
3.2.5.1 Board Configuration—Triple Height

3.2.5.1.1 Board Size. NuBus modules shall correspond to triple height

boards as specified by IEC standards [2], [3], 366.7 mm (14.43? in). Cards shall
be triple depth, 280 mm (11.024 in), as specified by IEC standards [2], [3]. The
dimensions and layout of -a module are shown in Fig 16.

3.2.5.1.2 Connectors. Three connectors shall be mounted in the

standard positions as specified by IEC standards [2], [3] as shown in Fig 16. The
connectors are referred to as P1, P2, and P3, with P1 at the top and P3 at the

bottom. The NuBus is located on P1, which shall be a C096-M connector, as

specified by IEC 603-2-1980 [3], with pin assignments as shown in Table 8. P2
and P3 should be C096-M connectors, as specified by IEC 603-2-1980 [3]; however,

other connectors as specified by IEC standards are allowed if high current or

shielded connections are required. '

3.2.5.1.3 Component Height. The module component height shall be
less than 13.97 mm (0.55 in). No component or lead shall extend beyond the

board bottom more than 2.54 mm (0.10 in).

‘The numbers in square brackets refer to those of the references“-‘listed in 1.5.

5,196,946

237 238
‘ _ ANSI/IEEE

SPECIFICATION _ Std 1196-1987

2.75 : o 15
(0.109-1

com powsm ‘

sxoz aes.7_g:g
(14,437)

E OTHER INDICATORS
ERROR INDICATORS

Cardguude

O.I50' Typ.
(Clearance From P.C.B.

Edge to Components) ‘ 0 O
I 230 _ O" 3

(11.024')

Eiecxor/
IniecIor

[Extracted from Texas Instruments NuBus“ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 16

Triple Height NuBus Board

5,196,946
239 ‘ 240

ANSI/IEEE _ . . .
Std 1196-1987 SECTIQN -.3

Table 8

Pin Assignments (P1)

(As viewed from front edge of board) '

 Row==~

Pin ll A B C

1 —-12 -12 RESET*
2 RESERVED GND RESERVED
3 SPV* GND +5
4 SP* +5 +5
5 TM1* +5 'TMO*
6 AD1* +5 ADO*
7 AD3* +5 AD2*
8 ADS* -5.2 AD4*
9 AD7* -5.2 AD6*

10 AD9* -5.2 AD8*
11 ADll* -5.2 AD10*
12 AD13* GND ADl2*
13 AD15* GND AD14*
14 AD17* GND AD16*
15 AD19* GND AD18*
16 AD21* GND AD20*
17 AD23* GND AD22*
18 AD25* GND AD24*
19 AD2'7* GND AD26*
20 AD29* GND AD28*
21 AD31* GND AD30*
22 GND GND GND
23 GND GND PFW*
24 ARB1* -5.2 ARBO*
25 ARB3* -5.2 ARB2*
26 ID1* -5.2 IDO*
2'7 ID3* -5.2 ID?‘
28 ACK* +5 START*
29 +5 +5 +5
30 RQST* GND +5
31 NMRQ* GND GND
32 +12 +12 CLK*

3.2.5.1.4 Board Thickness. In the area of the card guides, that is, within

2.5 mm (0.098 in) of the top and bottom edges, NuBus cards shall be 1.6 i 0.2
mm (0.063 -_t 0.008 in) thick. In other areas, the board may be thicker; however,
any additional thickness is deducted from lead length allowance.

3.2.5.1.5 Working Area. Components shall not be placed on any part of
the board within 0.150 in- of the top or bottom edges.

5,196,946

241 . 242
‘ ’ ‘ ‘ ~ ANSI/IEEE

SPECIFICATION Std 1196-1987

3.2.5.1.6 Malfunction Indicator. Modules should have a malfunction
indicator. It shall be mounted as shown in Fig 16. When this indicator is on, it
should indicate that the module is defective in some way. The indicator may
turn on temporarily after power-up while the module is being checked for correct
operation.5 2 '

3.2.5.1.7 Other Indicators. If other indicators are required to display
status of a module, they should be located as shown in Fig 16.

32.5.1.8 Board Ejector/Injector. Triple height NuBus cards shall
contain a pair of ejector/injector devices that operate in conjunction with a “lip”
on the card cage. These devices are mounted on the front edge of the module at
the top and bottom with pins pressed into "the module, as shown in Fig 16. The
details of the ejector/injector device are shown in Fig 17. This ejector/injector
mechanism is not consistent with ANSI/IEEE Std 1101-1987 [1].

3.25.1.9 Card Cage Lip. A lip will be provided as shown in Fig 18 on
the top and bottom of the card cage. This lip provides the surfaces that the ejector/
injector devices act against when the module is being installed or removed.

3.2.5.1.10 Intercard Spacing. The card cage shall space modules 20.32

mm (0.80 in) apart. V
3.2.5.1.11 Ground Distribution on Boards. Logic boards shall not

connect power or signal ground to chassis ground or to connector shield ground.
Capacitive bypassing is allowable, using low-leakage, low ESR capacitors.

3.2.5.2 Cable Configuration. All cable connections to a triple height board
shall be via the P2 and P3 connectors. No cable attachments are permitted to
the front edge of the board.

3.2.6 Mechanical Specifications—PC-Style Boards. This section defines
the PC-style form-factor for NuBus modules.

The PC-style form-factor option is derived from specifications for connectors
as given in IEC 6032-1980 [3] and is for use in equipment that requires a smaller
form factor than the triple height boards.

3.2.6.1 Board Config‘uratio,n—PC-Style. Figure 19 is a diagram (viewing
the component side) of a PC-style NuBus module. Note that the NuBus connector
is located along the bottom edge of _the card and that an I/O connector is at the
right edge. A metal expansion shield (shown in Fig 20) covers the right side of
the card and provides a solid mating to_a system’s metal I/O shield. The screw
pads for this expansion shield are to be used to provide grounding for any I/O
conne.ctor’s shield.

5The intention is to encourage, but not require a malfunction indicator. However, ifone is present,
it must be mounted as shown in the figure.

5,196,946
243 244

ANSI/IEEE ‘ ' ‘ " 7» :
Std 1196-1987 SECTION 3

Calmark
107-20
or Eouvvalenx

22.86 : 0 12
l 900")

L094") Dxa. Hole

6.35:O.38
I 25")

2 77
(109") Dia Hole

I

| (0901

6.35
(25"l

[Extracted from Texas Instruments NuBus” specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 17

Triple Height NuBus Board Ejector/Injector

Note that Fig 19 shows the PC-style card as viewed from the component side
of the board.

3.2.6.1.1 Board Size. PC-style NuBus boards shall be 101.6 mm (4.0")

in height and a maximum of 326.6 mm (12.858") in length. The length of the
card shall vary only on the left side of the card. The minimum length shall be
177.8 mm (7.0”).

3.2.6.1.2 Connectors. The NuBus connector (referred to as P1) is

mounted on the board as shown in Fig 19. This connector shall be a C096-M

connector as specified by IEC 603-2-1980 [3], with pin assignments as shown in
Table 8.

I/O connectors (if required) shall be contained in the area shown in Fig 20,
located at the right side of the board. The exact type and number of these connec-

5,196,946

245 g 246

' ' ‘ ANSI/IEEE
SPECIFICATIUN Std 1196-1987

29 2.| . I(l|.50")

72420.38

(.255")

1.5 (.059")

E

6.1 MIN

(.240")

____i_

NOTES: ! 1 I PCB guide surface

Limit of PCB edge when seated

E FRONT SURFACE OF BACKPLAHE

[Extracted from Texas Instruments NuBus" specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 18

Triple Height NuBus Card Cage Lip

tors are determined by the board’s function; the limitations on size and place-

ment are system and vendor specific.

Auxilliary connectors (if required) should be placed on the top edge of the

board, in the area so designated in Fig 19. The maximum length of such a

connector shall be 76 mm (3.0"). Note that the use of auxilliary connectors is

discouraged, but may be necessary for multiboard subsystems.

3.2.6.1.3 Component Height. The board component height shall be less

than 15.24 mm (O.60”). No component or lead shall extend more than 2.54 mm

(0.10”) beyond the noncomponent side of the board.

5,196,946
247 g 248

ANSI/IEEE '~ T — «
Std 1196-1987 . . SECTION 3

TOP VIEW

T E : ::E /L
Exponsion Shield

no components COMPONENT SlDE VlEW

Area
‘ " -A I c « rS UXI iory onnec or Z <1’ _

in 2

S “ls
§ Exoansion .;' Shield

§ Moummg l/O Erognonecior
N
\
\

(12858) Max (7.0) Min NOTE:

Dimensions are in millimeters.
Dimensions shown in () are in inches.

[Extracted from Texas Instruments NuBus” specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 19

_ PC-Style NuBus Board

3.2.6.1.4 Board Thickness. The board shall be 1.6 _-t 0.2 mm (0.063 1

0.008”) thick. The board’s warpage shall be controlled so that total warpage is
at most 2.54 mm (0.10”).

3.2.6.1.5 Working Area. Components may be placed anywhere except

for areas designated as having no components by Fig 19. Components may not
extend beyond the edge of the board in any direction. Note that the use of auxil-
lary connectors may require a notch in the edge of the board for cable routing
in order to keep the designated area free of components. Components should be
aligned along the length of the card.

3.2.6.1.6 Intercard Spacing. The system shall space modules a
minimum of 22.86 mm (0.900") apart.

3.2.6.1.7 Cables. All cabling leaving the systein enclosure shall be by

means of an I/O connector located at the right side of the board, through the

expansion shield.

5,196,946 _
249 250

ANSI/IEEE

SPECIFICATION Std 1195-1937

1

 MAX. .. 1CONNECTOR CUTOUT
92.0 MIN

97.25 MAX

NOTES: 30 O1 Dimensions are in millimeters.
2. Dimensions shown in (I are in inches.
3. The expansion shield should be connected to the board using these two .

mounting holes. Any method may be used. such as integral Soloed brackets on
the shield or oascrete mounting blocks. as long as the component height
specification and the shield outline shown here is preserved,

[Extracted from Texas Instruments NuBus”‘ specification document with permission of the publisher.
Cépyright (1983, 1986, 1988) Texas Instruments Incorporated] ‘

Fig 20 ‘

Expansion Shield for PC-Style NuBus Board

5,196,946

251 252

ANSI/IEEE A '
Std 1196-1987 ‘**"“"'“ SECTIO“ 3

’ Table 9

Pin Assignments (P2 and P3)

(As viewed from front edge of board)

Row==

Pin 11 A B C_______________._______.___________________

1 _ _ .._

2 — GND —
3 — GND -
4 ._ .. __

5 — +5 —
6 -— +5 -
7 — +5 —
3 _ _ __
9 _ __ ._

10 —— --5.2ENAB -
11 — -5.2 OUT -
12 — GND -
13 -— ' — ——
14 —- + 12ENAB -
15 —- + 12 OUT —
16 - GND —
17 —- — —
18 — -—- —

19 — GND -
20 — -12OUT —
21 — —12ENAB —
22 — — -

23 — GND —
24 — — —
25 — - -
26 — — —
27 — — —

28 -— +5 —
29 — —- -

30 - GND -
31 — GND —
32 — -— —

3.2.7 Pin Assignments. The pin assignments for the P1 connector are listed
in Table 8 and the recommended pin assignments for the P2 and P3 connectors

are listed in Table 9. If P2 or P3 is a C096 connector, as specified in IEC 603-2-
1980 [3], then these connectors shall be wired as shown in Table 9. If a different
connector is used, then ground pins should be allocated along the length of the
connector for EMI (electro magnetic interference) control purposes.

5,196,946
253 254

- ‘ ” ANSI/IEEE

SPECIFICATION . Std 1196-1987

3.2.7.1 TTL I/O Signals. Rows A and C should be used for TTL level I/O
signals only. .

3.2.7.2 Non-TTL I/O Signals. I/O signals that have voltage excursions

greater than (0-5 V) should be connected via pins in row B of P2 and P3 to
minimize problems if the wrong cable is inadvertently connected.

If +12 V, -12 V or -5.2 V is required by the cable assembly, i.t should be
supplied via the appropriate +12OUT, —12OUT, or —5.2OUT pin. These pins
are not connected to the backplane, but aresupplied from P1 via traces on the
NuBus module. This allows those voltage lines to be fused, if required.

Generally, non-TTL drivers should only be powered if the correct cable is
installed. The +12ENAB, —12ENAB, and —-5.2ENAB pins are used to allow
the cable assembly to provide a jumper from the appropriate xOUT pin to the
xENAB pin to provide power to the drivers. Figure 21 illustrates the use of the
xENAB pins.

3.3 Compliance. Modules may be designed that conform to the NuBus speci-
fication without the requirement of being able to support all possible types of
transactions. A manufacturer of a NuBus module who wishes to claim compli-
ance with this specification must disclose those operations that the module does
not support. The following paragraphs describe the permissible variations.

3.3.1 Modules

3.3.1.1 Masters. A module is not required to have the ability to arbitrate

and become a bus master.

A master is allowed to support any combination of eight, sixteen, and thirty-
two bit singleitransfers; and any combination of two-, four-, eight-, or sixteen-
word block transfers. 2

A manufacturer of a module that locks the bus under control of hardware or
firmware must disclose the maximum number of transactions that the module

will attempt with the bus locked. Locked transactions done under software
control obviously cannot be specified by the module manufacturer and should be
used with caution. Designing a master that locks the bus for more than sixteen
contiguous memory transfers is permissible, but discouraged. A manufacturer
shall clearly identify any module that locks the NuBus for more than sixteen
contiguous transfers.

3.3.1.2 Slaves. The addressing of a slave should allow complete access to

its functions by masters that support only 32-bit transfers. Figure 22 illustrates
the data path connections for an 8-bit and 16-bit slave that provides access to all
byte addresses. However, it is not required that this level of interconnection be
provided. A simple 8-bit module may be connected to only one byte lane and a
simple 16-bit module may be connected to only two byte lanes. In general, this

5,196,946
255 256

ANSI/IEEE A ‘r 5;
td 1196-1987 SECTION 3

P1
-12V

P2
or
F3

OPTIONAL " "
rust: ! !

TO CABLE.
IF

NEEDED

+120UT

I

lg! I J (I5II— I

[Extracted from Texas Instruments NuBus”‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated]

Fig 21
Cable Driver Power Via JCENAB Pins

requires that independent device registers be located in diiferent 32-bit words,

even though all bits may not be meaningful data.

Slaves are not required to support block transfers, but if a slave does support

block transfers, then it shall support all types (two, four, eight, and sixteen word)
of block transfers.

3.3.1.3 Memories. Modules that are identified as memory boards shall

respond to 8-, 16-, and 32-bit transfers. All 32 bits that contain the addressed

entity shall be returned on read operations.

5,196,946

257 _ 258
' ANSI/IEEE

SPECIFICATION Std 1196-1987

ADJII A023! M315! M371

3 B” MODUF A0241 ADIGI AD8/ ADOI

5 air
INTERNAL ---I

Bus I l

16 BIT
INTERNAL
BUS

32 BIT
INTERNAL
BUS

All lines vnoxcate 6 on paths.
Boxes are 8 on II'lf\SC£IVEI'S

[Extracted from Texas Instruments NuBus”‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated.)

Fig 22

Data Paths for 8-, 16-, and 32-Bit Slaves

5,196,946
259 260

ANSI/IEEE

Std 1196-1987 SECTION 3

3.3.2 Backplane

3.3.2.1 NMRQ*. NMRQ* may be a bused signal, or treated as individual

signals from each slot.

3.3.2.2 Termination. Termination may be varied on chasses with a small

number of slots, but must always meet the signal determinacy requirements.

Termination may be mounted directly on the backplane, or implemented in

plug-in modules.

3.3.2.3 Slots. Any number of slots (up to sixteen) may be provided by the

backplane.

5,196,946

261 262

Appendix

(This Appendix is not a part of ANSI/IEEE Std 1196-1987, IEEE Standard for a Simple 32-bit
Backplane Bus Specification: NuBus, but is included for information only.)

This Appendix provides explanations of features of the standard that follow
from the specification, describes the differences between similar concepts, and
provides information about bus features that gives a designer background about
the philosophy and style of the bus. This Appendix is not a part of the specifi-
cation, and nothing in this Appendix is intended to be read as a “shall.”

A1. Locking

Bus locking and resource locking are strongly related but distinct bus mecha-
nisms provided by this standard. Bus locking is an arbitration-related technique
a master may use that guarantees continued, unbroken, bus tenure. A master
should only use this capability to accomplish an indivisible operation such as
“test—and-set”; however, it may be used to gain performance or for other reasons.

When bus locking is used for the recommended purpose of_disallowing other
bus masters from accessing a set of locations while it performs an atomic opera-

tion, a problem may occur. If a location being referenced can be modified via a
path other than the system bus, the operation may not be indivisible. Buslocking
prevents other system bus masters from accessing any location, but does not
inform a slave that it is required to lock out other module specific paths that
may access that location. Memory on board a CPU module will often be dual-.
ported; to insure an indivisible operation, the other port must be locked out also.

Resource locking provides this facility. It is signaled by a master, by a single-
cycle broadcast (special case of an attention cycle), to all slaves that indicates
that a resource lock may be required. Slaves that are subsequently accessed are
to lock out any board specific paths from reading or writing a location that is
accessed over the bus.

NOT Many slaves, such as ordinary memory modules, have no path other than the system bus,
and therefore ignore the resource lock command.

5,196,946
263 264

4'1 ;. .

A Std 1196-1987 ~ ‘ ‘ APPENDIX

The specification only guarantees to masters that locations actually refer-
enced will be locked; however, it is permissible and practical for a slave to lock

a complete memory array or region. Locking more than required is practical for
a slave implementation, but cannot be assumed by a master.

Resource locking implies more than bus locking, but bus locking always

accompanies resource locking.

V A2. Technology Dependence
As a high-speed, synchronous bus, this standard has no claim to technology

independence. However, its protocols have been designed to allow modules that
are low-cost and, therefore, relatively slow. Address decode time and response

time for reads and writes are only limited by the bus timeout period (25.5 ms).

This section describes the extent of technology dependence the bus specifica-

tion implies.

Speed—All modules must perform certain operations within defined time

_ periods:
0 Track bus state at bus clock speed. (START*, ACK*, and TM(1 . . . O)* are

the only signals that affect bus state.)
0 Latch address in the one cycle during which it is valid.

0 Turn drivers on and off within turn on and hold times specified.

Speed—Masters only:
I Perform arbitration in specified manner. Requires arbitration contest to be

performed in a specified minimum time.
Bus Drive—There are current drive, receiver threshold, and capacitive load

requirements that restrict the technology that may be used for the actual bus
drivers and receivers.

A3. Flow Control

At the highest level, two programs on two CPU modules may have a producer/
consumer relationship and require flow control. This is accomplished within the

logic of the programs, possibly using an atomic test-and-set at the core of its
“handshake.” This high-level flow control is not what is being discussed in this

section, but rather a low-level handshake between master and slave in a partic-
ular bus transfer.

Masters and slaves have different roles and different flow mechanisms. Masters

implicitly control flow in that a master is the initiator in any interaction and
will only initiate actions that it is prepared to execute. In view of this implicit
flow control, no lower level handshake is provided to the master in the protocols.

The result is that a master must be able to perform any transaction it initiates

at the maximum rate supported by the protocol.

5,196,946
265 266

C‘A‘P'i_>‘E’:ixiD'1x

Slaves, in contrast, may be addressed‘ at any time by a master, and therefore
it is critical that slaves do have a cycle by cycle flow control means. Other than
the need to latch an address in one cycle, and to track bus state at bus speeds,
a slave may regulate all aspects of all transactions to the rate it desires.

I A4. Single Address Space

All addressable resources: memory, I/O registers, configuration information,
and interrupt mechanism, are in a single 2**32 byte space. This allows a 32-bit
value to uniquely identify any bus entity without the awkward need to also
know whether the value references "memory space,” "I/O space,” “system

space,” "control space,” “short address space,” etc.

A5. Non-Master Request Versus Event Cycles

The NMRQ* line provides a nonspecific, low-performance, low-cost method for
a module to indicate a general need for service. More sophisticated modules
would probably not use this line, but instead would have the additional arbitra-
tion logic that allowed them to become masters, and generate event cycles.
NMRQ* should be used only for those slaves so simple that the additional cost
to become master is prohibitive.

Events at a bus level are simply write transfers to particular locations. This
method of interrupting allows directed interrupts, which are important in multi-
processor systems. It requires no additional mechanism to generate if a module
already has master capability. For a CPU to “catch” these events and turn them
into on-board interrupts, a memory-mapped register (perhaps an addressable
latch) that feeds a priority encoder is all that is needed.

A6. Capacitive Loading

The capacitive loading specifications are difficult to meet. Meeting or
approaching the maximum value requires great care in driver/receiver selection
and minimizing trace length from connector to circuits.

A7. Bus Clock

The clock signal is unique in that it is driven from one end of the bus to a
termination at the other end. Most bus signals are driven from modules in two

. directions to termination at each end of the backplane. This difference provides
the clock with the advantage of driving about twice the impedance other signals
do.

Combined with the larger drive current specified for the clock, the higher
impedance provides the property that the clock signal will go through the
receiver threshold area at all points on a backplane on the first transition.

5,196,946
267 268

ANSI/IEEE‘ ~ ~ ‘

Std 1196-1987 APPENDIX

Reflections will not be needed to get it above the threshold. Of all signals, the
clock must have a clean edge and thus must have the property that the single-

ended driving provides.

, A8. Termination
The termination values have been specified for use in a fully loaded sixteen-

slot system. A designer who is building a system with only a few slots may
consider modifying the termination to suit a simpler system. Before doing this.
however, a thorough understanding of the purpose of the termination and
backplane physics should be obtained. It is critical that the clock signal does not
ring, that the address/data lines and control lines are determinate when they
are specified to be sampled, and that the open-collector lines transition from
asserted to unasserted states within the specified times.

A9. Byte Addressing on Bus

Various computer CPUs number their bits and bytes differently from one
another. This situation has come to be called the “endian” problem, from Gullitu

er’s Travels, which described the conflict between two groups over which end of

an egg should be broken first, the big end or the little end. The differences
between “big-endian” and “little-endian,” computers as to byte addressing often
seem as arbitrary and as unlikely to be resolved.6 In spite of this problem, CPUs
of either byte addressing persuasion can be (and have been) used with the NuBus.

Section 3 of this specification defines the relationship of words, halfwords, and
bytes from the bus’s point of view. At a minimum, this is required so that one
may unambiguously know what “1196 bus, byte 51” is. Different processors may
map that into different byte addresses from their perspective, but it is important
to have a defined “byte 51” from a bus interface hardware point of view.

It is recommended that CPUs wire their data path connection to the bus such

that, when performing a byte access, an instruction reading or writing "byte n”
actually gets bus byte n. Processors following this recommendation will be able
to communicate via shared memory on the bus through arrays of bytes, if all

references to this area are through byte reads and writes. Thirty-two bit words

will be scrambled between different style CPUs, but bytes will be in the same

place. Other buses have made the opposite choice. On those buses, CPUS are
required to connect to the bus such that different type processors can readily
exchange 32-bit words on word boundaries, but do not have a common under-
standing of where "byte 51” is.

‘See "On.Holy Wars and a Plea for Peace," by Danny Cohen, in the October, 1981 issue of IEEE
Computer Magazine.

5,196,946
269 ' 270

_ _ A10. Fairness
The 1196 bus provides only one method of arbitration, and that method has

the property of providing each board the same access to bandwidth and about
the same average latency as all other boards waiting to access the bus. This
feature is called “fairness” in that all boards that attempt to access the bus at
a given time will gain use of the bus before any of those boards can access it a
second time. This policy is the result of two presumptions: (1) bus arbitration is
a very rapid, low-level event that exists exclusively in order to ‘allow one and

; only one board to have ownership of the bus at a given instant; and (2) it is
critical that no board or combination of boards be able to “starve” other boards
from bus bandwidth.

Other bus structures have adopted a fair arbitration mechanism along with a
priority mechanism, and in some cases a preemptive priority mechanism. The
1196 bus is “strictly fair” based on the idea that optional fairness is no fairness.

Even though a system may limit the time that any one board may have the
bus, any bus that allows priority arbitration can put no finite upper bound on
the latency time a low priority board may wait to acquire the bus. A case can
occur where control of the bus passes back and forth between higher priority
masters and a lower priority board is “starved.”

The 1196 bus slots do have ID numbers that are used, among other things, for
the arbitration contest. Boards with higher slot numbers will get access before
lower numbered boards that requested the bus on the identical clock cycle. Some
method was needed to break this sort of tie, and the slot number has the advan-
tages of being simple and deterministic. This does not provide a high-numbered
slot with greater access to bandwidth, but only with a somewhat smaller theoret-
ical average and maximum latency. A lower numbered board may have to wait
for all other boards to use the‘bus‘once, and then for all boards of higher slot
number to use the bus once.

A11. Elimination of Switches and Jumpers

Switches and jumpers have a long history of causing operational difficulties
in computer systems. A goal of the NuBus is to provide the means to eliminate
most, if not all, jumpers from the system. The slot addressing provides a mecha-
nism that allows each board to be uniquely addressed. The board should then be
designed with software controlled registers to peform any functionithat would
require switches or jumpers in an old style system.

A12. Preferred I/O Cabling

Cabling for the triple height NuBus cards is via the two auxilliary connectors,
P2 and P3. No cabling is to be connected to any other edge of the board. The P2

5,196,946

271 g 272

and P8 connectors ‘interface to mating DIN connectors on the backplane. The 1/
0 cables then connect on the back side of the backplane. Since the cables will

generally not incorporate a 96 pin DIN connector to mate to the backplane

connector, an adaptor card is required to provide a mating connector to match’

the cable. The adaptor card can provide multiple connectors for separate cables,

as long as all of the required signals can be routed through the backplane

connector. Figure A1 illustrates this arrangement.

A significant benefit of this cabling scheme is that the boards may be removed

from the system without disturbing the system cabling. This simplifies mainte-

nance and improves system reliability.

Fig A1

Cabling Scheme for Triple Height NuBus Cards

system board
(3-high Eumcard)

NuBus

96-pin DIN
connectors

l/O adapter card
and cable

4

4 front backplane rear "

[Extracted from Texas Instruments NuBus"‘ specification document with permission of the publisher.
Copyright (1983, 1986, 1988) Texas Instruments Incorporated.)

A13. Reserved Attention Cycles

The two reserved attention cycles may be defined at a later date, as a need is

identified. Possible uses might be for broadcast cycles, or response to nonmaster

requests. Whatever use is defined in the future must be compatible with the

current definitions. This requires that newly defined attention cycles will restart
arbitration and not affect the resource lock mechanism. This will allow current

hardware to be ‘upward compatible.

5,196,946
274273

SECTION PAGE

Table 8 Pin Assignments (P1) . 52

‘Table 9 Pin Assignments (P2 and P3) . 58

APPENDIX '

A1. Locking . 63

A2. Technology Dependence . 64
A3. Flow Control . 64

A4. Single Address Space . 65
A5. Non-Master Request Versus Event Cycles . 65

A6. Capacitive Loading . 65
A7. Bus Clock . 65

A8. Termination . 66

A9. Byte Addressing on Bus . 66
A10. Fairness . 67

A11. Elimination of Switches and Jumpers . 67

A12. Preferred I/O Cabling' . 67

A13. Reserved Attention Cycles . 69

APPENDIX FIGURE

Fig A1 Cabling Scheme for Triple Height NuBus Cards 68

we claim: - 30 sional discrete cosine transform to said “zig-zag”
1. A system for data compression and decompression, °'d_°r°d °°°ffi°i°m5 °f “id 2'dim°n5i°““1 disaete

comprising: cosine transform;
video interface means for receiving and transmitting

digitized images;
discrete cosine transform means for performing, dur-

ing data compression, a 2-dimensional discrete
cosine transform on data received by said video
interface means, and providing coefficients of said
2-dimensional discrete cosine transform, and for

performing, during data decompression, a 2-dimen-
sional inverse discrete cosine transform, and pro-
viding as output data said coefficients of said 2-:
dimensional inverse discrete cosine transform to
said video interface for transmission as digitized
images;

quantization means for attenuating, during data com-
pression, higher frequency coefficients of said 2-;
dimensional discrete cosine transform, and for par-;

tially restoring, during data decompression, said'
higher frequency coefficients of said 2-dimensional
discrete cosine transform, in preparation for said
2-dimensional inverse discrete cosine transform;

zig-zag means for rearranging, during data compres-
sion, said coefficients of said 2-dimensional discrete
cosine transform from “sequential” order into “zig-'
zag” order, and for rearranging, during data de-
compression, said zig-zag ordered coefiicients of
said 2-dimensional discrete cosine transform from a

“zig-zag” order to a “sequential” order;
data packing and unpacking means for packing, dur-‘:

ing data compression, said “zig-zag” ordered coef-
ficients of said 2-dimensional discrete cosine trans-

form as run length-represented coefficients of said
2-dimensional discrete cosine transform, said run

length-represented coefficients of said 2-dimen-
sional discrete cosine transform represent runs of
zero coefficients as rim lengths of zero coefficients,
and for unpacking, during data decompression, said
rim length-represented coefficients of said 2-dimen-

35

40

:45

SO

55

65

Huffman coding/decoding means for coding, during
data compression, said rim length-represented co-
efficients of said 2-dimensional discrete cosine

transform into Huffman codes, and for decoding,
during data decompression, said Hufiman codes
into said run length-represented coefiicients of said
2-dimensional discrete cosine transform;

host interface means for transmitting, during data
compression, said Huffman codes to a host com-
puter, and for retrieving, during data decompres-
sion, said Huffman codes from a host computer;

wherein said discrete cosine transform means com-

prises:

block memory means for storing, during data com-
pression, said data received by said -video interface
means, and for storing, during data decompression,
said output data of said 2-dimensional inverse dis-
crete cosine transform;

discrete cosine transform processor means for provid-
ing, during data compression, coefficients of a dis-
crete cosine transform and during decompression,
coefiicients of an inverse discrete cosine transform;

row storage means for temporarily storing intermedi-
ate data of said 2-dimensional discrete cosine trans-

form, and intermediate data of said 2-dimensional
inverse discrete cosine transform;

input selection means for alternatively receiving,
during data compression, data from said block
memory means and intermediate data of said 2-
dimensional discrete cosine transform from said;

' row storage means for transmitting to said discrete
cosine transform processor means, and for alterna-
tively receiving, during data decompression, data
from said quantization means and said intermediate
data of said 2-dimensional inverse discrete cosine
transform from said row storage means for trans-

5,196,946
275

mitting to said discrete cosine transform processor
means; and

row/column separation means for, during data com-
pression, separating from said coefficients of said
discrete cosine transform said coefficients of said
2-dimensional discrete cosine transform and said
intermediate data of said 2-dimensional discrete

cosine transform, for transmitting said coefficients
of said 2-dimensional discrete cosine transform to

said quantization means and said intermediate data
of said 2-dimensional discrete cosine transform to

said row storage means, for, during data decom-
pression, separating from said coefficients of said
inverse discrete cosine transform said coefiicients
of said 2-dimensional inverse discrete cosine trans-
form and said intermediate data of said 2-dimen-
sional inverse discrete cosine transform, and for

transmitting said coefficients of said 2-dimensional
inverse discrete cosine transform to said block

memory means, and for transmitting said interme-
diate data of said 2-dimensional inverse discrete

cosine transform to said row storage means.

2. A system as in claim 1, for data compression and
decompression, wherein said block memory means
comprises:

memory storage means for separately receiving and
storing video data having Y-, U-, and V-types;

a plurality of address counter means for separately
containing logical read/write addresses for read/-
write accesses to said Y-, U-, and V-types video
data stored in said memory storage means; and

address-aliasing means for implementing an “in-line”
memory to minimize storage requirement, and for
translating said logical read/write addresses into
physical addresses for said read/write accesses to
said Y-, U-, and V-types video data stored in said
memory storage means;

3. A system as in claim 1, for data compression and
decompression, wherein said discrete cosine transform
processor means comprises:

a first plurality of latches for receiving a first, second,
third and fourth data;

first summing means for selectably computing a first
sum or a difference of said first and second data,

and for selectably computing a second sum or dif-
ference for said third and fourth data;

a second plurality of latches for receiving, storing and
transmitting as a first result said first sum or differ-
ence and as a second result said second sum or

A difference; _
first multiplication means for selectably performing a

first multiplication of said first result with 2 cos
(pi/8), 2 cos (pi/4), 2 cos (3pi/8) and l;

a third plurality of latches for receiving, storing and
transmitting result of said first multiplication and
for receiving from said second plurality of latches,
storing and transmitting said second result;

first multiplexor means for selecting a first multi-
plexed datum from said result of said first multipli-
cation and said first result in said second plurality
of latches; '

second multiplexor means for selecting a second mul- ‘
tiplexed datum form said result of said first multi-
plication and said second result in said third plural-
ity of latches;

second summing means for computing a third sum or
difference of said first multiplexed datum and said

20

30

45

50

276

second result stored in said third plurality of
latches;

third multiplexor means for selecting a third multi-
plexed datum from said second result stored in said
third plurality _of latches and said third sum or
difference;

a fourth plurality of latches for receiving said second
multiplexed datum and said third multiplexed da-
turn;

a plurality of multiplexors for selecting from said
fourth plurality of latches a fourth, fifth, sixth and
seventh multiplexed data;

third summing means for selectably providing a
fourth sum or difference of said fourth and fifth

multiplexed data, and for selectably providing a
fifth sum or difference of said sixth and seventh

multiplexed data;
a fifth plurality of latches for receiving and storing

said fourth sum or difference, and said fifth sum or
difference;

a second multiplication means for selectably perform-
ing a second multiplication of said fourth sum and
2 cos (pi/8), 2 cos (pi/4), or 2 cos (3pi/8) or 1;

a sixth plurality of latches for receiving and storing
the result of said second multiplication and said
fifth sum or difference;

fourth multiplexor means for selecting an eighth mul-
tiplexed datum from said result of said second mul-
tiplication stored in said sixth plurality of latches
and said fourth sum or difference;

fourth summing means for computing a sixth sum or
difference of said eighth multiplexed datum and
said fifth sum or difference stored in said sixth

plurality of latches;
fifth multiplexor means for selecting a ninth multi-

plexed datum from said fifth sum or difference
stored in said sixth plurality of latches;

sixth multiplexor means for selecting a tenth multi-
plexed datum from said sixth sum or difference and
said fifth sum or difference stored in said sixth

plurality of latches;
ii seventh plurality of latches for receiving and stor-

ing said ninth multiplexed datum and said tenth
multiplexed datum;

fifth summing means for providing a seventh sum of
said ninth and tenth multiplexed data, and for se-

lectably providing a eighth sum or difference of
said ninth and tenth multiplexed data; and

an eighth plurality oflatches for receiving and storing
said seventh sum and said eighth sum.

4. A system as in claim 1, wherein said row storage
. means comprises:

55 _:vx

w 1

memory means for storing intermediate data of a
2-dimensional discrete cosine transform during
data compression and for storing intermediate data
for a 2-dimensional inverse discrete cosine trans-

form during data decompression, said memory
means allows reading and writing a pair of said
intermediate data at a time; and

address generator means for generating addresses for
read/write access reading and writing said pair of
said intermediate data to said memory means.

5. A system as in claim 4, wherein said memory means
55 comprises:

an odd plane of a plurality of memory cells, for stor-
ing a fu'st datum of said pair of said intermediate
data; and

an even plane of a plurality of memory cells, for

5,196,946
277

storing a second datum of said pair of said interme-.
diate data.

6. A system as in claim 5, wherein said memory means
is accessed by a method comprising the steps of:

providing, in order, a first and a second square matri-
ces of the same dimension, and each matrix with an
even number of rows and column, said matrices are

provided two entries at a time row-by-row;
writing said fu'st matrix into said memory means two

entries at a time, in an order such that, in the begin-
ning of the writing the first row, the first of said
two entries is written into said odd plane, and the
second of said two entries is written into said even

plane, and said order is maintained throughout said
first row, and said order is reversed at the begin-

10

15

20

25

30

35

45

55

65

278

ning of the second row, such that the first of said
two entries is written into said even plane, and the
second of said two entries is written into said odd

plane, said order is reversed alternatively until said
first matrix is completely written into said memory
means; and

reading said first matrix two entries at a time column-
by-column until the entire first matrix is read, and
writing said second matrix two entries at a time
row-by-row into the memory locations of said
memory means previously occupied by each two
entries of said first matrix read, and said writing of
said second matrix is in an order substantially the
same as described for writing said first matrix.

Q t 8 C 1

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. :5,1g5,945 Page 1 of 2

DATED = March 23, 1993

|NVENTOR(S) 1 Alexander Balkanski, et :11

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 1, line 48: delete "2§x28x28" and insert

—-23 x 2‘ x 2‘’--,

Column 7, line 30: delete "x[n]e“ and insert

——i [n]e--.

Column 7, line 34: delete "X[kP' second occurrence

and insert ——§ [k]-—.

Column 11, lines 25-29: delete the equations and

insert —-2, -2 cos%, -2 cos%, -2 coséag, -2 cos—7§U—-—.
Column 20, line 35: delete "YYUVYYUV" and insert

——YYUV—-.

Column 20, line 54: delete "col10—co17" and insert

- -COlO—COl7-- .

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 2 5,196,946 Page 2 of 2

DATED 1 March 23, 1993

'NVENTOR(3) 5 Alexander Balkansld, et all

It‘ is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
oorrected as shown below:

Column 273, line 35: Claim: delete "ransform" and

insert --transform——.

Signed and Sealed this

Twenty-seventh Day of December, 1994

Am" fiéted W I
BRUCE LEHZMAN

Arresting Ofiicer Commissioner of Patents and Trademarks

