
182 • Chapter 6: Process Synchronization

repeat

produce an item in nextp

wait(empty);
wait(mutex);

add nextp to buffer

signal(mutex);
signal(full);

until false;

Figure 6.10 The structure of the producer process.

only reading as readers, and to the rest as writers. Obviously, if two readers
access the shared data object simultaneously, no adverse effects will result.
However, if a writer and some other process (either a reader or a writer)
access the shared object simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the
writers have exclusive access to the shared object. This synchronization
problem is referred to as the readers-writers problem. Since it was
originally stated, it has been used to test nearly every new synchronization
primitive. The readers-writers problem has several variations, all
involving priorities. The simplest one, referred to as the first
readers-writers problem, requires that no reader will be kept waiting
unless a writer has already obtained permission to use the shared object.
In other words, no reader should wait for other readers to finish simply

repeat
wait(full);
wait(mutex);

remove an item from buffer to nextc

signal(mutex);
signal(empty);

consume the item in nextc

until false;

Figure 6.11 The structure of the consumer process.

Apple 1013 (Part 2 of 4)
U.S. Pat. 9,189,437

6.5 Classical Problems of Synchronization • 183

wait(wrt);

writing is performed

signal(wrt);

Figure 6.12 The structure of a writer process.

because a writer is waiting. The ~econd readers-writers problem Tequires
thati once a writer is. ready, that write;r performs its write as soon as
possible, In other words, if a writer is waiting to access the object, no new
readers may start reading.

We note that .a solution to either problem may result in starvation. In
the first case, w:dters may starve; in the second case, readers may star\re.
For this reason, other variants of the problem have been proposed. In this
section, we present a solution to the first readers-writers problem. Refer
to the Bibliographic Notes for relevant references on starvation-free
solutions to the readers-writers problem.

In the solution to the first readers-writers problem, the reader
processes share the following data structures:

var mutex, wrt: semaphore;
readcount : integer;

The semaphores mutex and wrt are initlaliz~d to 1; readcount is initialized to
0. The s~maphore wrt is common to both the reader and writer processes.
The mutex . semaphore is used to ensure mutual exclusion when the
variable readcount is updated. Readcount keeps track of how many processes
are. currently reading the object. _The semaphore wrt functions as a mutual
exclusion semaphore for the writers. It also is used by the first or last
reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.12; the code for a
reader process is shown in Figure 6.13. Note that, if a writer is in the
critical section and ri · readers are waiting, theri one reader is queued ori
wrt, and n - 1 readers are queued on mutex. Also observe that, wheri. a
writer executes signal(wrt), we may resume the execution of either the
waiting readers or a single waiting writer. The selection is made by the
scheduler~

6.5.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a coinrnon circular table surrounded by five chairs,
each belonging to one philosopher. In the center of the table there is a

Chapter 6; Process Synchronization

wait(mutex);
readcount:
if readcount

signal(mutex);

readcount + 1;
1 then wait(wrt);

reading is performed

wait(mutex);
readcount:
if readcount

signal(mutex);

readcount 1;
0 then signal(wrt);

Figure 6.13 The structure of a reader process.

bowl of rice, and the table is laid with five single chopsticks
When a philosopher thinks, she does not interact with
From time to time, a philosopher gets hungry and tries to
chopsticks that are closest to her (the chopsticks that are
her left and right neighbors). A philosopher may pick
chopstick at a time. Obviously, she cannot pick up a
already in the hand of a neighbor. When a hungry L/.LLLH.JC'\J

her chopsticks at the same time, she eats without releasing
When she is finished eating, she puts down both of her

thinking again.
dining-philosophers problem considered

synchronization problem, neither because of its practical
because computer scientists dislike philosophers, but
example for a large class of concurrency-control problems.

Figure 6.14 The situation of the dining philosophers.

6.5 Classical Problems of Synchronization • 185

representation of the need to allocate several resources among several
processes in a deadlock and starvation-free manner.

One simple solution is to represent each chopstick by a semaphore. A
philosopher tries to grab the chopstick by executing a wait operation on
that semaphore; she releases her chopsticks by executing the signal
operation on the appropriate semaphores. Thus, the shared data are

var chopstick: array [0 . .4] of semaphore;

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it has the
possibility of creating a deadlock. Suppose that all five philosophers
become hungry simultaneously, and each grabs her left chopstick. All the
elements of chopstick will now be equal to 0. When each philosopher tries
to grab her right chopstick, she will be delayed forever.

Several possible remedies to the deadlock problem are listed next .. In
Section 6.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

• Allow at most four philosophers to be sitting simultaneously at the
tabJe.

• Allow a philosopher to pick up her chopsticks only if both chopsticks
are available (note that she must pick them up in a critical section) ..

• Use an asymmetric solution; that is, an odd philosopher picks up first
her left chopstick and then her right chopstick, whereas an even
philosopher picks up her right chopstick and then her left chopstick.

repeat
wait(chopstick[i]);
wait(chopstick[i+ 1 mod 5]);

eat

signal(chopstick[i]);
signal(chopstick[i+ 1 mod 5]);

think

until false;

Figure 6.15 The structure of philosopher i.

186 • Chapter 6: Process Synchronization

Finally, any satisfactory solution to the dining-philosophers probl~m
must guard against the possibility that one of the philos'?phers will starve
to death. A deadlock-free solution does not necessarily eliminate the
possibility of starvation.

6.6 • Critical Regions

Although semaphores provide a convenient and effective mechanism for
process synchronization, their incorrect use can still result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place, and these sequences 9-o not always occur.

We have seen an example of such types of errors in the use of co~nters
in our solution to the producer-consumer problem (Section 6.1). I~ that
example, the timing problem happ~ned only rarely, and even then the
counter value appeared to be a reasonable valt1~ - off by only 1.
Nevertheless, this solution is obviously not an acceptable one. It is ·for th~s
reason t1:1-at semaphores were intr()duced in the first place.

Unfortunately, such timing errors can still occur with the use of
semaphores. To illustrate how, let us review the solution to the critical­
section problem using semaphores. All processes share a semaphore
variable mutex, which is initialized to 1. Each process must execute
wait(mutex) before entering the critical section, and signal(mutex) afterward.
If this sequence is not observed, ·two processes may be in th~ir critical
sections simultaneously. · ·

Let us examine the various diffict1lties that may result. Note that these
difficulties will arise even if a single process is not well behaved. This
situation may be the result of ap. honest programming· error or ot" an
uncooperative programmer.

• Suppose that a process interchanges the order in which the wait and
signal operations on the semaphore mutex are exeq.Ited, resulting in the
following execution: ·

signal(mutex);

critical section

wait(mutex);

In this situation, several processes may be executing in their ~ritical
section simultaneously, viol~tipg the mutual-exclusion requirement.
This error may be discovered only if several processes . are
simultaneously active in their c:P.tical sections. Note that this situation
may not always be reproducible;

6.6 Critical Regions • 187

• Suppose that a process replaces signal(mutex) with wait(mutex). That is,
it executes

wait(mutex);

critical section

wait(mutex);

In this case, a deadlock will occur.

• Suppose that a process omits the wait(mutex), or the signal(mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated
easily when semaphores are used incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models
we discussed in Section 6.5.

To deal with the type of errors we have outlined, a number of high­
level language constructs have been introduced. In this section, we
describe one fundamental high-level synchronization construct - the
critical region (sometimes referred to as conditional critical region). In Section
6.7, we present another fundamental synchronization construct - the
monitor. In our presentation of these two constructs, we assume that a
process consists of some local data, and a sequential program that can
operate on the data. The local data can be accessed by only the sequential
program that is encapsulated within the same process. That is, one process
cannot directly a~cess the local data of another process. Processes can,
however, share global data.

The critical-region high-level synchronization construct requires that a
variable v of type T, which is to be shared among many processes, be
declared as

var v: shared T;

The variable v can be accessed only inside a region statement of the
following form:

region v when B do S;

This construct means that, while statement S is being executed, no other
process can access the variable v. The expression B is a Boolean expression
that governs the access to the critical region. When a process tries to enter
the critical-section region, the Boolean expression B is evaluated. If the

188 • Chapter 6: Process Synchronization

expression is true, statement 5 is executed. If it is false, the process
relinquishes the mutual exclusion and is delayed until B becomes true and
no other process is in the region associated with v. Thus, if the two
statements,

region v when true do 51;
region v when true do 52;

are executed concurrently in distinct sequential processes, the result will be
equivalent to the sequential execution "51 followed by 52," or "52 followed
by 51."

The critical-region construct guards against certain simple errors
associated with the semaphore solution to the critical-section problem that
may be made by a programmer. Note that it does not necessarily eliminate
all synchronization errors; rather, it reduces their number. If errors occur
in the logic of the program, reproducing a particular sequence of events
may not be simple.

The critical-region construct can be effectively used to solve certain
general synchronization problems. To illustrate, let us code the bounded­
buffer scheme. The buffer space and its pointers are encapsulated in

var buffer: shared record

end;

pool: anay [O .. n-1] of item;
count,in,out: integer;

The producer process inserts a new item nextp into the shared buffer by
executing

region buffer when count < n
do begin

pool[in] := nextp;
in:= in+1 mod n;
count : = count + 1;

end;

The consumer process removes an item from the shared buffer and puts it
in nextc by executing

region buffer when count > 0
do begin

nextc := pool[out];
out:= out+1 mod n;
count : = count - 1;

end;

6.6 Critical Regions • 189

Let us illustrate how the conditional critical region could be
implemented by a compiler. With each shared variable, the following
variables are associated:

var mutex, first-delay, second-delay: semaphore;
first-count, second-count: integer;

The semaphore mutex is initialized to 1; the semaphores first-delay and
second-delay are initialized to 0. The integers first-count and second-count are
initialized to 0.

Mutually exclusive access to the critical section is provided by mutex. If
a process cannot enter the critical section because the Boolean condition B
is ·false, it initially waits on the first-delay semaphore. A process waiting on
the first-delay semaphore is eventually moved to the second-delay semaphore
before it is allowed to reevaluate its Boolean condition B. We keep track of
the number of processes waiting on first-delay and second-delay, with first­
count and second-count respectively.

When a process leaves the critical section, it may have changed the
value of some Boolean condition B that prevented another process from

wait(mutex);
while not B

do begin

S· I

first-count : = first-count + 1;
if second-count > 0

then signal(second-delay)
else signal(mutex);

wait(first-delay);
first-count : = first-count - 1;
second-count : = second-count + 1;
if first-count> 0

then signal(first-delay)
else signal(second-delay);

wait(second-delay);
second-count := second-count - 1;

end;

if first-count > 0
then signal(first-delay);
else if second-count > 0

then signal(second-delay);
else signal(mutex);

Figure 6.16 Implementation of the conditional-region construct.

190 • Chapter 6: Process Synchronization

entering the critical section. Accordingly, we must trace through the queue
of processes waiting on first-delay and second-delay (in that order) allowing
each process to test its Boolean condition. When a process tests its Boolean
condition (during this trace), it may discover that the latter now evaluates
to the value true. In this case, the process enters its critical section.
·Otherwise, the process must wait again on the first-delay and second-delay
semaphores, as described previously. Accordingly, for a shared variable x,
the statement

region x when B do S;

can be implemented as shown in Figure 6.16. Note that this
implementation requires the reevaluation of the expression B for any
waiting processes every time a process leaves the critical region. If several
processes are delayed, waiting for their respective Boolean expressions to
become true, this reevaluation overhead may result in inefficient code.
There are various optimization methods that we can use to reduce this
overhead. Refer to the Bibliographic Notes for relevant references.

6.7 • Monitors

Another high-level synchronization construct is the monitor type. A
monitor is characterized by a set of programmer-defined operators. The
representation of a monitor type consists of declarations of variables whose
values define the state of an instance of the type, as well as the bodies of
procedures or functions that implement operations on the type. The
syntax of a monitor is

type monitor-name = monitor
variable declarations

procedure entry Pl (...);
begin ... end;

procedure entry P2 (...);
begin ... end;

procedure entry Pn (...);
begin ... end;

begin
initialization code

end.

6.7

The representation of a monitor type cannot be used
various processes. Thus, a procedure defined within a monitor can access
only those variables declared locally within the monitor
parameters. Similarly, the local variables of a monitor can be
only the local procedures.

The monitor construct ensures that only one process a
active within the monitor. Consequently, the programmer does
code this synchronization constraint explicitly (Figure 6.17).
monitor construct, as defined so far/ is not sufficiently powerful
some synchronization schemes. For this purpose, we need to .,.."" ,,..._
tional synchronization mechanisms. These mechanisms are
condition construct. A programmer who needs to wrjte her own
synchronization scheme can define one or more variables of

var X1 y: condition;

The only operations that can be invoked on a condition
and signal. The operation

x.wait;

operations

Figure 6.17 Schematic view of a monitor.

192 Chapter 6: Process Synchronization

means that the process invoking this operation is suspended
process invokes

x.signal;

The x.signal operation resumes exactly one suspended
is suspended, then the signal operation has no effect;

state of x is as though the operation was never executed
Contrast this operation with the signal operation
semaphores, which always affects the state of the semaphore.

Now suppose that, when the x.signal operation is invoked by a n.-.nr<t:>CC

P, there is a suspended process Q associated with condition x.
the suspended process Q is allowed to resume its execution, the
process P must wait. Otherwise, both P and Q will
simultaneously within the monitor. Note, however, that both pr•OCt~ss>e
conceptually continue with their execution. Two possibilities

1. P either waits until Q leaves the monitor, or waits
condition.

Q either waits until P leaves the monitor, or waits for
condition.

queues associated with
x, y conditions

...

operations

Figure 6.18 Monitor with condition variables.

6 .. 7 Monitors • 193

There are reasonable arguments in favor of adopting either option 1 or
option 2. Since P was already executing in the monitor, choice 2 seems
more reasonable. However, if we allow process P to <:ontinue, the "logical"
condition for which Q was "Yaiting may no longer hold by the time Q is
resumed. ··"

Choice 1 was advocated by Hoare, mainly because the preceding
argument in favor of it translates directly to simpler and more elegant
proof rules. A compromise between these two choices was adopted in the
language Concurrent Pascal. When process P executes the signal operation,
it immediately leaves the monitor. Hence, Q is immediately resumed. This
model is less powerful than Hoare's, because a process cannot signal more
than once during a single procedure call.

Let us illustrate these concepts by presenting a deadlock-free solution
to the dining-philosophers probl~m. Recall that a philosopher is allowed to
pick up her chopsticks only if both of them are available. To code this
solution, we need to distinguish between three states in which a
philosopher may be. For this purpose, we introduce the following data
structure:

var state: array [0 .. 4] of (thinking, hungry, eating);

Philosopher i can set the variable state[i] = eating only if her two neighbors
are not eating (state[i+4 mod 5] =I= eating and state[i+ 1 mod 5] =I= eating).

We also need to declare

var self: array [0 .. 4] of condition;

where philosopher i can delay herself when she is hungry, but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution. The distribution of
the chopsticks is controlled by the monitor shown in Figure 6.19.
Philosopher i must invoke the operations pickup and putdown on an
instance dp of the dining-philosophers monitor in the following sequence:

dp.pickup(i);

eat

dp.putdown(i);

It is easy to show that this solution ensures that no two neighbors are
eating simultaneously~ and that no deadlocks will occur. We note,
however, that it is possible for a philosopher to starve to death. We shall
not present a solution to this problem, but rather shall leave it as an
exercise for you.

194 • Chapter 6: Process Synchronization

type dining-philosophers = monitor
var state : array [0 . .4] of (thinking, hungry, eating);
var self: array [0 . .4] of condition;

procedure entry pickup (i: 0 . .4);
begin

state[i] : = hungry;
test (i);
if state[i] =F eating then self[i].wait;

end;

procedure entry putdown (i: 0 .. 4);
begin

state[i] : = thinking;
test (i+4 mod 5);
test (i+ 1 mod 5);

end;

procedure test (k: 0 . .4);
begin

if state[k+4 mod 5] =I= eating
and state[k] = hungry
and state[k+ 1 mod 5] =I= eating
then begin

state[k] := eating;
self[k].signal;

end;
end;

begin
fori:= 0 to 4

do state[i] : = thinking;
end.

Figu~e 6.19 A monitor solution to the dining-philosopher problem.

We shall now consider a possible implementation of the monitor
mechanism using semaphores. For each monitor, a semaphore mutex
(initialized to 1) is provided. A process must execute wait(mutex) before
entering the monitor, and must execute signal(mutex) after leaving the
monitor. /

Since a signaling process must wait until the resumed process either
leaves or waits, an additional semaphore, next, is introduced, initialized to

6.7 Monitors • 195

0,. on which the signaling processes may suspend themselves. An integer
variable next-count will also be provided to count the number of processes
suspended on next. Thus, each external procedure F will be replaced by

wait(mJtex);

body ofF;

if next-count > 0
then signal(next)
else signal(mutex);

Mutual exclusion within a monitor is ensured.
We can now describe how condition variables are implemented. For

each condition x, we introduce a semaphore x-sem and an integer variable
x-count, both initialized to 0. The operation x.wait can now be implemented
as

x-count : = x-count + 1;
if next-count > 0

then signal(next)
else signal(mutex);

wait(x-sem);
x-count : = x-count - 1;

The operation x.signal can be implemented as

if x-count > 0
then begin

next-count : = next-count + 1;
signal(x-sem);
wait(next);
next-count : = next-count - 1;

end;

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch Hansen. In some cases, however, the generality of
the implementation is unnecessary, and a significant improvement in
efficiency is possible. We leave this problem to you in Exercise 6.12.

We turn now to the subject of process-resumption order within a
monitor. If several processes are suspended on condition x, and an
x.signal operation is executed by some process, then how do we determine
which of the suspended processes should be resumed next? One simple
solution is to use an FCFS ordering, so that the process waiting the longest

196 • Chapter 6: Process Synchronization

is resumed first. There are, however, many circumstances in which such a
simple scheduling scheme is not adequate. For this purpose, the
conditional-wait construct can be used; it has the form

x.wait(c);

where cis an integer expression that is evaluated when the wait operation
is executed. The value of c, which is called a priority number, is then stored
with the name of the process that is suspended. When x.signal is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the monitor shown in
Figure 6.20, which controls the allocation of a single resource among
competing processes. Each process, when requesting an allocation of its
resources, specifies the maximum time it plans to use the resource. The
monitor allocates the resource to that process that has the shortest time­
allocation request.

A process that needs to access the resource in question must observe
the following sequence:

R.acquire(t);

access the resource;

R.release;

where R is an instance of type resource-allocation.
Unfortunately, the monitor concept cannot guarantee that the

preceding access sequences will be observed. In particular,

• A process might access the resource without first gaining access
permission to that resource.

• A process might never release the resource once it has been granted
access to that resource.

• A p~ocess might attempt to release a resource that it never requested.

• A process might request the same resource twice (without first
releasing that resource).

Note that the same difficulties are encountered with the critical section
construct, and these difficulties are similar in nature to those that
encouraged us to develop the critical-region and monitor constructs in the
first place. Previously, we had to worry about the correct use of
semaphores. Now, we have to .Worry about the correct use of higher-level

I

type resource-allocation = monitor
var busy: boolean;

x: condition;

6. 7 Monitors • 197

procedure entry acquire (time: integer);
begin

if busy then x.wait(time);
busy : = true;

end;

procedure entry release;
begin

busy : = false;
x.signal;

end;

begin
busy : = false;

end.

Figure 6.20 A monitor to allocate a single resource.

programmer-defined operations, with which the compiler can no longer
assist us.

One possible solution to the above problem is to include the resource­
access operations within resource-allocation monitor. However, this solution
will result in scheduling being done according to the built-in monitor­
scheduling algorithm, rather than by the one we have coded.

To ensure that the processes observe the appropriate sequences, we
must inspect all the programs that make use of the resource-allocation
monitor and its managed resource. There are two conditions that we. must
check to establish the correctness of this system. First, user processes
must always make their calls on the monitor in a correct sequence. Second,
we must be sure that an uncooperative process does not simply ignore the
mutual-exclusion gateway provided by the monitor, and try to access the
shared resource directly, without using the access protocols. Only if these
two conditions can be ensured can we guarantee that no time-dependent
errors will occur, and that the scheduling algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is
not reasonable for a large system or for a dynamic system. This access­
control problem can be solved only by additional mechanisms that will be
elaborated in Chapter 13.

198 • Chapter 6: Process Synchronization

6.8 • Synchronization in Solaris 2

To solidify this discussion, we now return to Solaris 2. Before the advent
of Solaris 2, Sunos used critical sections to guard important data
structures. The system implemented the critical sections by setting the
interrupt level to as high as or higher than any interrupt that could modify
the same data. Thus, no interrupt would occur that would allow a change
to the same data.

In Section 5.5, we described the changes needed to support real-time
computing on a time-sharing system. Solaris 2 was designed to provide
real-time capabilities, be multithreaded, and support multiprocessors.
Continuing to use critical sections would have caused a large performance
degradation, as the kernel bottlenecked waiting for entry into critical
sections. Further, critical sections could not have been implemented via
interrupt elevation because interrupts could occur on other processors on a
multiprocessor system. To avoid these problems, Solaris 2 uses adaptive
mutexes to protect access to every critical data item.

On a multiprocessor system, an adaptive mutex starts as a standard
semaphore implemented as a spinlock. If the data are locked, and
therefore already in use, the adaptive mutex does one of two things. If the
lock is held by a thread that is currently running, the thread waits for the
lock to become available because the thread holding the lock is likely to be
done soon. If the thread holding the lock is not currently in run state, the
thread blocks, going to sleep until it is awakened by the lock being
released. It is put to sleep so that it will avoid spinning when the lock will
not be freed reasonably quickly. A lock held by a sleeping thread is likely
to be in this category. On a uniprocessor system, the thread holding the
lock is never running if the lock is being tested by another thread, because
only one thread can run at a time. Therefore, on a uniprocessor system,
threads always sleep rather than spin if they encounter a lock.

For more complex synchronization situations, Solaris 2 uses condition
variables and readers-writers locks. The adaptive mutex method described
above- is used to protect only those data that are accessed by short code
segments. That is, a mutex is used if a lock will be held for less than a
few hundred instructions. If the code segment is longer than that, spin
waiting will be exceedingly inefficient. For longer code segments,
condition variables are used. If the desired lock is already held, the thread
issues a wait and sleeps. When a thread frees the lock, it issues a signal to
the next sleeping thread in the queue. The extra cost of putting a thread
to sleep and waking it, and of the associated context switches, is less than
the cost of wasting several hundred instructions waiting in a spinlock.

The readers-writers locks are used to protect data that are accessed
frequently, but usually only in a read-only manner. In these
circumstances, readers-writers locks are more efficient than are

(;.9 Atomjc Transactions • 199

semaphores, beca~se multiple thr~ads may be reading data concurrently,
whereqs semapho~es would always §er+alize access · to th~ data.
Readers-writers locl<s are expensive to implement, so qgain they 'lre used
on only long sections of code. ·

6.9 • Atomic Transactions

The mu4:tal exclusion of critical ~ections ensures that the critical sections
are exeq.1ted ~tomically. That i~, if two critical sections are executed
concu~e!ltly, the result is equivalent to t~eir sequential execution in some
unlqtown order. Although this prpperty · i~ useful in many application
doma~ns, there are many ci;lses where we wpuld like to make sure that a
critical section form,s a singJe logical unit. of work that either is performed
i:n its entirety o:r is not performed at ~11. An ex~mple is funds transfer, in
which one account is debited an4 another is credited .. C:leady, it is
essential for data consistency that e1ther both the credit anci debit occur, or
that neither occur. · · · ·

The remainder qf this ~ection is related to the field of database
systems. Databases are concerned with the storage and retrieval of data,
and with.· the consistency of the qata. Recently, there has ·been an upsurge
of interest in using database-systems techrt~ques in operating systems.
Operating syste~s can be viewed as mcmipulators of di;1ta; as s~ch, they
can benefit · from. the advaqced t~chniques a11d models available from
datapase research. For in~tance; many ·of the ad ho~ techniques used in
operating systems to manflge files could ·b~ ~ore fle~ble and powerful if
more formal database methods were used in their place. In Sections 6.9.2
to. 6.9.4, we destribe what the~e d:atabase techniques are, and how they
can l:>e used by operating systems. · · · ·

6. 9.1 Systelll Model
A collection of. instructions (operations) t~at performs a single logical
function is called atransaction. A major issue in. processing transactions is
the preservation of. atoinicity despite ·the. possibility of failures within the
computer system. In Section 6. 9, we describe · various mechanisms for
ensuring transaction atomicity. We do so by first considering an
environment where only one transaction qm be executing at a time. Then,
we · cons1d~r ·the case where · multiple · transactions a~e active
simultaneously.

A . transaction is a program unit that accesses and possibly updates
various data items that inay reside on the disk within some files. From our
point of view, a tran~action is simply a sequence of read and writ~
operations~ ter~nated by eit}l:er a COJ11111~t operaqort Or an abort opera~on.

200 • Chapter 6: Process Synchronization

A commit operation signifies that the transaction has terminated its
execution successfully, whereas an abort operation signifies that the
transaction had to cease its normal execution due to some logical error. A
terminated transaction that has completed its execution successfully is
committed; otherwise, it is aborted. The effect of a committed transaction

· cannot be undone by abortion of the transaction.
A transaction may also cease its normal execution due to a system

failure. In either case, since an aborted transaction may have already
modified the various data that it has accessed, the state of these data may
not be the same as it would be had the transaction executed atomically. So
that the atomicity property is ensured, an aborted transaction must have
no effect on the state of the data that it has already modified. Thus, the
state of the data accessed by an aborted transaction must be restored to
what it was just before the transaction started executing. We say that such
a transaction has been rolled back. It is part of the responsibility of the
system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by
their relative speed, capacity, and resilience to failure.

• Volatile storage: Information residing in volatile storage does not
usually survive system crashes. Examples of such storage are main and
cache memory. Acc~ss to volatile storage is extremely fast, both
because of the speed of the memory access itself and because it is
possible to access directly any data item in volatile storage.

• Nonvolatile. storage: Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disk
and magnetic tapes. Disks are more reliable than is main memory, but
are less reliable than are magnetic tapes. Both disks and tapes,
however, are subject to failure, which may result in loss of
information. Currently, nonvolatile storage is slower than volatile
storage by several orders of magnitude, because disk and tape devices
are electromechanical and require physical motion to access data.

• Stable storage: Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such
storage, we need to replicate information in several nonvolatile storage
caches (usually disk) with independent failure modes, and to update
the information in a controlled manner (see Section 12.6).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile
storage.

6. 9 Atomic Transactions • 201

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data
it accessed. The most widely used method for achieving this form of
recording is write-ahead logging. The system maintains, on stable storage, a
data structure called the log. Each log record describes a single operation
of a transaction write, and has the following fields:

• Transaction name: The unique name of the transaction that p~rformed
the write operation

• Data item name: The unique name of the data item written

• Old value: The value of the data item prior to the write

• New value: The value that the data item will have after the write

Other special log records exist to record significant events during
transaction processing, such as the start of a transaction and the commit or
abort of a transaction.

Before a transaction Ti starts its execution, the record <Ti starts> is
written to the log. During its execution, any write operation by Ti is
preceded by the writing of the appropriate new record to the log. When Ti
commits, the record <Ti commits> is written to the log.

Because the information in the log is used in reconstructing the state of
the data items accessed by the various transactions, we cannot allow the
actual update to a data item to take place before the corresponding log
record is written out to stable storage. We therefore require that, prior to a
write(X) operation being executed, the log records corresponding to X be
written onto stable storage.

Note the performance penalty inherent in this system. Two physical
writes are required for every logical write requested. Also, more storage is
needed: for the data themselves and for the log of the changes. In cases
where the data are extremely important, and fast failure recovery is
necessary, the price is worth the functionality.

Using the log, the system can handle any failure that does not result in
the loss of information on nonvolatile storage. The recovery algorithm uses
two procedures:

• undo(Ti), which restores the value of all data updated by transaction Ti
to the old values

• redo(Ti), which sets. the value of all data updated by transaction Ti to
the new values

The set of data updated by Ti and their respective old and new values can
be found in the log.

202 • Chapter 6: Process Synchronization

The undo arid redQ operations. must be idempotent (that is, multiple
executions of art operati~n have. the same. result as does one execution) to
guarantee. correct behaVior, even if a failure occurs during the recovery
process.

If a transaction Ti aborts, then we can restore the state of the data that
·it has updated by simply executing undo(Ti)· If a systei:n faihne occurs, we
restore the state of all . updated data by consulting the log to determine
which transactions need to be redone and which rieed to be undone. This
classification of transactions is accompiished as follows:

• Transaction Ti needs to be undone if the ._log contains the record
<Ti starts>, but does not contain the record <Ti commits>.

• Transaction Ti needs to be redone if the log contains both the record
<Ti starts> and the record <Ti commits>.

6.9.3 Checkpoints

When a system failure occurs, we must. consult the log to determine those
transactions that need to beredone and those that need to be undone. In
principle, we need to search the entire log to make these determinations.
There are two major drawbacks to this approach:

1. The searching process 1s ti.tile-cdnsuming.

2. Most of the transactions that, according to our algorithm, need to be
redone, have. already act-ually updated the data that the log says they
need to modify. Although tedomg the data modifications will cause
no harm (ciue to id.empotency), it will nevertheless cause recovery to
take longer.

To reduce these types of overhead, we intt:dduce the concept of checkpoints.
During execution, the system maintains the write-ahead log. In addition,
the system periodically performs checkpoints, whieh require the following
sequence_ of actions to take plate:

1. Output ail log records curtently residing in volatile storage (usually
main memory) onto stable storage.

2. Output aU modified data residing in volatile storage to the stable
storage.

3. Output a log record <checkpoint> onto stable storage.

The presence of a <checkpoint> record in the log allows the system to
streamline its recovery procedure. C_onsider a transaction Ti that

6. 9 Atomic Transactions • 203

committed prio.r to the checkpoint. The <Ti commits> record appears in
the log before the <checkpoint> record. Any modifications made by Ti
must have been written to stable storage either prior to the checkpoint, or
as part of the checkpoint itself. Thus, at recovery time, there is no need to
perform a redo operation on Ti.

This observation allows us to refine our previous recovery algorithm.
After a failure has occurred, the recovery routine examines the log to
determine the most recent transaction Ti that started executing before the
most recent checkpoint took place. It finds such a transaction by searching
the log backward to find the first <checkpoint> record, and then finding
the subsequent <Ti start> record.

Once transaction Ti has been identified, the redo and undo operations
need to be applied to only transaction Ti and al1 transactions Tj that started
executing after transaction Ti. Let us denote these transactions by the set
T. The remainder of the log can thus be ignored. The recovery operations
that are required are as follows:

• For all transactions Tk in T such that the record <Tk commits> appears
in the log, execute redo(Tk)·

• For all transactions Tk in T that have no <Tk commits> record in the
log, execute undo(Tk)·

6.9.4 Concurrent Atomic Transactions

Because each transaction is atomic, the concurrent execution of transactions
must be equivalent to the case where these transactions executed serially in
some arbitrary order. This property, called serializability, can be maintained
by simply executing each transaction within a critical section. That is, all
transactions share a common semaphore mutex, which is initialized to 1.
When a transaction starts executing, its first action is to execute
wait(mutex). After the transaction either commits or aborts, it executes
signal(mutex).

Although this scheme ensures the atomicity of all concurrently
executing transactions, it nevertheless is too restrictive. As we shall see,
there are many cases where we can allow transactions to overlap their
execution, while maintaining serializability. There are a number of different
concurrency-control algorithms to ensure serializability. These are described
below.

6.9.4.1 Serializability.

Consider a system with two data items A and B, that are both read and
written by two transactions T 0 and T 1. Suppose that these transactions are
executed atomically in the order T 0 followed by T 1. This execution

204 • Chapter 6: Process Synchronization

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Figure 6.21 Schedule 1: A serial schedule in which T0 is followed by T1.

sequence, which is called a schedule, is represented in Figure 6.21. In
schedule 1 of Figure 6.21, the sequence of instruction steps is in
chronological order from top to bottom, with instructions of T 0 appearing
in the left column and instructions of T1 appearing in the right column.

A schedule where each transaction is executed atomically is called a
serial schedule. Each serial schedule consists of a sequence of instructions
from various transactions where the instructions belonging to one single
transaction appear together in that schedule. Thus, for a set of n
transactions, there exist n! different valid serial schedules. Each serial
schedule is correct, because it is equivalent to the atomic execution of the
various participating transactions, in some arbitrary order.

If we allow the two transactions to overlap their execution, then the
resulting schedule is no longer serial. A nonserial schedule does not
necessarily imply that the resulting execution is incorrect (that is, is not
equivalent to a serial schedule). To see that this is the case, we need to
define the notion of conflicting operations. Consider a schedule S in which
there are two consecutive operations Oi and Oj of transactions Ti and Tj,
respectively. We say that Oi and Oj conflict if they access the same data
item, and at least one of these operations is a write operation. To illustrate
the concept of conflicting operations, we consider the nonserial schedule 2

. of Figure 6.22. The write(A) operation of T0 conflicts with the read(A)
operation of T1. However, the write(A) operation of T1 does not conflict
with the read(B) operation of T0, because the two operations access
different data items.

Let Oi and Q. be consecutive operations of a schedule S. If Oi and Oj
are operations of different transactions and oi and oj do not conflict, then
we can swap the order of Oi and Q. to produce a new schedule S'. We
expect S to be equivalent to S', as ail operations appear in the same order
in both schedules, except for Oi and Oj, whose order does not matter.

Let us illustrate the swapping idea by consider:ing again schedule 2 of
Figure 6.22. As the write(A) operation .of T1 does not conflict with the

6.9 Atomic Transactions • 205

To Tl

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Figure 6.22 Schedule 2: A concurrent serializable schedule.

read(B) operation of T0, we can swap these operations to generate an
equivalent schedule. Regardless of the initial system state, both schedules
produce the same final system state. Continuing with this procedure of
swapping nonconflicting operations, we get:

• Swap the read(B) operation of T0 with the read(A) operation of T1.

• Swap the write(B) operation of T 0 with the write(A) operation of T 1.

• Swap the write(B) operation of T0 with the read(A) operation of T1.

The final result of these swaps, is schedule 1 in Figure 6.21, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a
serial schedule. This result implies that, regardless of the initial system
state, schedule 2 will produce the same final state as will some serial
schedule.

If a schedule 5 can be transformed into a serial schedule 5' by a series
of swaps of nonconflicting operations, we say that a schedule 5 is conflict
serializable. Thus, schedule 2 is conflict serializable, because it can be
transformed into the serial schedule 1.

6.9.4.2 Locking Protocol

One way to ensure serializability is to associate with each data item a lock,
and to require that each transaction follow a locking protocol that governs
how locks are acquired and released. There are various modes in which a
data item can be locked. In this section, we restrict our attention to two
modes:

• Shared: If a transaction Ti has obtained a shared-mode lock (denoted
by S) on data item Q, then Ti can read this item, but it cannot write Q.

• Exclusive: If a transaction Ti has obtained an exclusive-mode lock
(denoted by X) on data item Q, then Ti can both read and write Q.

" I

206 • Chapter 6: Process Synchronization

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access a data item Q, transaction T; must first lock Q in the
appropriate mode. If Q is not currently locked, then the lock is granted,
and T; can now access it. However, if the data item Q is currently locked
by some other transaction, then T; may have to wait. More specifically,
suppose that Ti requests an exclusive lock on Q. In this case, T; must wait
until the lock on Q is released. If T; requests a shared lock on Q, then T;
must wait if Q is locked in exclusive mode. Otherwise, it can obtain the
lock and access Q. Notice that this scheme is quite similar to the
readers-writers algorithm discussed in Section 6.5.2.

A transaction may unlock a data item that it had locked at an earlier
point. It must, however, hold a lock on a data item as long as it accesses
that item. Moreover, it is not always desirable for a transaction to unlock a
data item immediately after its last access of that data item, because
serializability may not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests
in two phases:

• Growing phase: A transaction may obtain locks, but may not release
any lock.

• Shrinking phase: A transaction may release locks, but may not obtain
any new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the
shrinking phase, and no more lock requests can be issued.

The two-:-phase locking protocol ensures conflict serializability (see
Exercise 6.21). It does not, however, ensure freedom from deadlock. We
note that it is possible that, for a set of transactions, there are conflict
serializable schedules that cannot be obtained through the two-phase
locking protocol. However, to improve performance over two-phase
locking, we need either to have additional information about the
transactions or to impose some structure or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order between every pair of
conflicting transactions is determined at execution time by the first lock
that they both request and that involves incompatible modes. Another
method for determining the serializability order is to select an ordering
among transactions in advance. The most common method for doing so is
to use a timestamp-ordering scheme.

6.9 Atomic Transactions • 207

With each transaction Ti in the system, we associate a unique fixed
timestamp, denoted by TS(Ti). This timestamp is assigned· by the system
before the transaction . Ti starts execution. If a transaction Ti has been
assigned timestamp TS(Ti), and a new transaction Tj enters the system,
then TS(Ti) < TS(Tj). There are two simple methods for implementing this
scheme:

• Use the value of the system clock as the timestamp; that is, a
transaction's timestamp is equal to the value of the clock when the
transaction enters the system. This method will not work for
transactions that occur on separate systems or for processors that do
not share a clock.

• Use a logical counter as the timestamp; that is, a transaction's
timestamp is equal to the value of the counter when the transaction
enters the system. The counter is incremented after a new timestamp
is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(Ti) < TS(Tj), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction Ti appears
before transaction Tj'

To implement this scheme, we associate with each data item Q two
timestamp values:

• W-timestamp(Q), which denotes the largest timestamp of any
transaction that executed write(Q) successfully

• R-timestamp(Q), which denotes the largest timestamp of any
transaction that executed read(Q). successfully

These timestamps are updated whenever a new read(Q) or write(Q)
instruction is executed.

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates
as follows:

• Suppose that transaction Ti issues read(Q).

o If TS(Ti) < W-timestamp(Q), theh this state implies that Ti needs to
read a value of Q which was already overwritten. Hence, the read
operation is rejected, and Ti is rolled back.

o If TS(Ti) > W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to the maximum of R-timestamp(Q) and
TS(Ti)·

li' i!
J
f
II
t!

208 • Chapter 6: Process Synchronization

• Suppose that transaction Ti issues write(Q):

o If TS(Ti) < R-timestamp(Q), then this state implies that the value of
Q that Ti is producing was needed previously and Ti assumed that
this value would never be produced. Hence, the write operation is
rejected, and Ti is rolled back.

o If TS(Ti) < W-timestamp(Q), then this state implies that Ti is
attempting to write an obsolete value of Q. Hence, this write
operation is rejected, and Ti is rolled back.

o Otherwise, the write operation is executed.

A transaction Ti, which is rolled back by the concurrency-con~rol scheme as
result of the issuing of either a read or write operation, is assigned a new
timestamp and is restarted.

To illustrate this protocol, we consider schedule 3 of Figure 6.23 with
transactions T2 arid T3. We assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus, in schedule 3,
TS(T2) < TS(T3), and the schedule is possible under the timestamp
protocol.

We note that this execution can also be produced by the two-phase
locking protocol. There are, however, schedules that are possible under the
two-phase locking protocol but are not possible under the timestamp
protocol, and vice versa (see Exercise 6.22).

The timestamp-ordering protocol ensures conflict serializability. This
capability follows from the fact that conflicting operations are processed in
timestamp order. The protocol ensures freedom from deadlock, because no
trartsaction ever waits.

6.10 • Summary

Given a collection of cooperating sequential processes that share data,
mutual exclusion must be provided. One solution is to ensure that a critical
section of code is in use by only one process or thread at a time. Different
algorithms exist for solving the . critical-section problem, with the
assumption that only storage interlock is available.

The main disadvantage of these user coded solutions is that they all
require busy waiting. Semaphores overcome this difficulty. Semaphores
can be used to solve various synchronization problems, and can be
implemented efficiently, especially if hardware support for atomic
operations is available.

Various different synchronization problems (such as the bounded­
buffer probiem, the readers-writers problem, and the dining-philosophers
problem) are important mainly because they are examples of a large class

read(B)

read(A)

read(B)
write(B)

· read(A)
write(A)

6.10 Summary • 209

Figure 6.23 Schedule 3: A schedule possible under the timestamp protocol.

of concurrency-control problems. These problems are used to test nearly
every newly proposed synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these
problems. Critical regions can be used to implement mutual-exclusion and
arbitrary-synchronization problems safely and efficiently. Monitors provide
the synchronization mechanism for sharing abstract data types. A
condition variable provides a method for a monitor procedure to block its
execution until it is signaled to continue.

Solaris 2 is an example of a modern operating system which
implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing. It uses adaptive
mutexes for efficiency when protecting data from short code segments.
Condition variables and readers-writers locks are used when longer
sections of code need access to data.

A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it· are executed t~ completion,
or none are performed. To ensure atomicity despite system failure, we can
use a write-ahead log. All updates are recorded on the log, which is kept in
stable storage. If a system crash occurs, the information in the log is used
in restoring the state of the updated data items, which is accomplished
with the use of the undo and redo operations. To reduce the overhead in
searching the log after a system failure has occurred, we can use a
checkpoint scheme.

When several transactions overlap their execution, the resulting
execution may no longer be equjvalent to an execution where these
transactions executed atomically. To ensure correct execution, we must.
use a concurrency-control scheme to guarantee serializability. There are
various different concurrency-control schemes that ensure serializability by
either delaying an operation or aborting the transaction that issued the
operation. The most common ones are locking protocols and timestamp­
ordering schemes.

210 • Chapter 6: Process Synchronization

• Exercises

6.1 What is the meaning of the term busy waiting? What other kinds of
waiting are there? Can busy waiting be avoided altogether? Explain
your answer.

· 6.2 f'rove that, in the bakery algorithm (Section 6.2.2), the following
property holds: If Pi is in its critical section and Pk (k =I= i) has already
chosen its number[k] =I= 0, then (number[i],i) < (number[k],k).

6.3 The first known correct software solution to the critical-section
problem for two processes was developed by Dekker. The two
processes, P 0 and P 1, share the following variables:

var flag: array [0 .. 1] of boolean; (* initially false *)
turn: 0 .. 1;

The structure of process Pi (i = 0 or 1), with P. (j = 1 or 0) being the
other process, is shown in Figure 6.24. 7

Prove that the algorithm satisfies all three requirements for the
critical-section problem.

repeat

flag[i] : = true;
while flagU]

do if turn = j
then begin

flag[i] := false;
while turn = j do no-op;
flag[{] : = true;

end;

critical section

turn := j;
flag[i] := false;

remainder section

until false;

Figure 6.24 The structure of process Pi in Dekker's algorithm.

var j: o .. n;
repeat

repeat
flag[i] : = want-in;
j := turn;
while j =I= i

do if flag[j] =I= idle
then j : = turn
else j := j+1 mod n;

flag[i] := in-cs;
j := 0;

Exercises • 211

while (j < n) and (j = i or flag[j] =I= in-cs) do j : = j + 1;
until (j > n) and (turn = i or flag[turn] = idle);
turn := i;

critical section

j := turn+1 mod n;
while (flag[j] = idle) do j := j+1 mod n;
turn:= j;
flag[i] := idle;

remainder section

until false;

Figure 6.25 The structure of Pi in Eisenberg and McGuire's algorithm.

6.4 The first known correct software solution to the critical-section
problem for n processes with a lower bound on waiting of n - 1
turns, was presented by Eisenberg and McGuire. The processes share
the following variables:

var flag: array [O .. n-1] of (idle, waO-in, in-cs);
turn: O .. n-1;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is
shown in Figure 6.25.

Prove that the algorithm satisfies all three requirements for the
critical-section problem.

212 • Chapter 6: Process Synchronization

6.5 In Section 6.3, we mentioned that disabling interrupts frequently
could affect the system's clock. Explain why it could, and how such
effects could be minimized.

. .
6.6 Show that, if the wait and signal operations are not executed

atomically, then mutual exclusion may be violated.

6.7 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs, and the barber room containing the barber chair. If
there are no customers to be served, the barber goes to sleep. If a
customer enters the barbershop and all chairs are occupied, then the
customer leaves the shop. If the barber is busy, but chairs are
available, then the customer sits in one of the free chairs. If the
barber is asleep, the customer wakes up the barber. Write a program
to coordinate the barber and the customers.

6.8 The Cigarette-Smokers Problem. Consider a system with three smoker
processes and one agent process. Each smoker continuously rolls a
cigarette and then smokes it. But to roll and smoke a cigarette, the
smoker needs three ingredients: tobacco, paper, and matches. One of

·the smoker processes has paper, another has tobacco, and the third
has matches. The agent has an infinite supply of all three materials.
The agent places two of the ingredients on the table. The smoker who
has the remaining ingredient then makes and ·smokes a cigarette,
signaling the agent on completion. The agent then puts out another
two of the three ingredients, and the cycle repeats. Write a program
to synchronize the agent and the smokers.

6.9 Demonstrate that monitors, conditional critical regions, and
semaphores are all equivalent, insofar as the same types of
synchronization problems can be implemented with them.

6.10 Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

6.11 The strict mutual exclusion within a monitor makes the bounded­
buffer monitor of Exercise 6.10 mainly suitable for small portions.

a.· Explain why this assertion is true.

b. Design a new scheme that is suitable for larger portions.

6.12 Suppose that the signal statement can appear as only the last
statement in a monitor procedure. Suggest how the implementation
described in Section 6.7 can be simplified.

6.13 Consider a system consisting of processes P1, P2, ... , Pn, each of
which has a unique priority number. Write a monitor that allocates
three identical line printers to these processes, using the priority
numbers for deciding the order of allocation.

Exercises • 213

6.14 A file is to be shared among different processes, each of which has a
unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint:. The sum of all unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

6.15 Suppose that we replace the wait and signal operations of monitors
with a single construct await(B}, where B is a general Boolean
expression that causes the process executing it to wait until B
becomes true.

a. Write a monitor using this scheme to implement the
readers -writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that it
can be implemented efficiently? (Hint: Restrict the generality of
B; see Kessels [1977].)

6.16 Write a monitor that implements an alarm clock that enables a calling
program to delay· itself for a specified number of time units (ticks).
You may assume the existence of a real hardware clock, which
invokes a procedure tick in your monitor at regular intervals.

6.17 Why does Solaris 2 implement multiple locking mechanisms? Under
what circumstances does it use spinlocks, blocking semaphores,
conditional variables, and readers-writers locks? Why does it use
each mechanism?

6.18 Explain the differences, in terms of cost, among the three storage
types: volatile, nonvolatile, and stable.

6.19 Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? How does the frequency of checkpoints
affect:

• System performance when no failure occurs?

• The time it takes to recover from a system crash?

• The time it takes to recover from a disk crash?

6.20 Explain the concept of transaction atomicity.

6.21 Show that the two-phase locking protocol ensures conflict
senalizability.

6.22 Show that there are schedules that are possible under the two-phase
locking protocol but are not possible under the timestamp protocol,
and vice versa.

214 • Chapter 6: Process Synchronization

Bibliographic Notes

The mutual-exclusion algorithms 1 to 2 for two processes were first
discussed in the classical paper by Dijkstra [1965a]. Dekker's algorithm
(Exercise 6.3) - the first correct software solution to the two-process
·mutual-exclusion problem - was developed by the Dutch mathematician
T. Dekker. This algorithm also was discussed by Dijkstra [1965a]. A
simpler solution to the two-process mutual-exclusion problem has since
been presented by Peterson [1981] (algorithm 3).

Dijkstra [1965b] presented the first solution to the mutual-exclusion
problem for n processes. This solution, however does not have an upper
bound on the amount of time a process must wait before that process is
allowed to enter the critical section. Knuth [1966] presented the first
algorithm with a bound; his bound was 2n turns. A refinement of Knuth's
algorithm by deBruijn [1967] reduced the waiting time to n2 turns, after
which Eisenberg and McGuire [1972] (Exercise 6.4) succeeded in reducing
the time to the lower bound of n - 1 turns. The bakery algorithm
(algorithm 5) was developed by Lamport [1974]; it also requires n - 1
turns, but it is easier to program and to understand. Burns [1978]
developed the hardware-solution algorithm that satisfies the bounded
waiting requirement.

General discussions concerning the mutual-exclusion problem were
offered by Lamport [1986, 1991]. A collection of algorithms for mutual
exclusion were given by Raynal [1986].

The semaphore concept was suggested by Dijkstra [1965a]. Patil [1971]
examined the question of whether semaphores can solve all possible
synchronization problems. Parnas [1975] discussed some of the flaws in
Patil' s arguments. Kosaraju [1973] followed up on Patil' s work to produce a
problem that cannot be solved by wait and signal operations. Lipton [1974]
discussed the limitation of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The
bounded-buffer problem, the dining-philosophers problem, and the
sleeping-barber problem (Exercise 6.7) were suggested by Dijkstra [1965a,
1971]. The cigarette-smokers problem (Exercise 6.8) was developed by Patil

· [1971]. The readers-writers problem was suggested by Courtois et al.
[1971]. The issue of concurrent reading and writing was discussed by
Lamport [1977]. The problem of synchronization of independent processes
was discussed Lamport [1976].

The critical-region concept was suggested by Hoare [1972] and by
Brinch Hansen [1972]. The monitor concept was developed by Brinch
Hansen [1973]. A complete description of the monitor was given by Hoare
[1974]. Kessels· [1977] proposed an extension to the monitor to allow
automatic signaling. General discussions concerning concurrent
programming were offered by Ben-Ari [1990].

Bibiiographic Notes • 215

Some details of the locking mechanisms used in Solaris 2 are presented
in Khanna et al. [1992], Powell et al. [1991], and especially Eykholt et al.
[1992]. Note that the locking l!lechanisms used by the kernel are
implemented for user-level threads as well, so the same types of locks are
available inside and outside of the kernel.

The write-ahead log scheme was first introduced in System R [Gray et
al. 1981]. The concept of serializability was formulated by Eswaran et al.
[1976] in connection with their work on concurrency control for System R.
The two-phase locking protocol was introduced by Eswaran et al. [1976].
The timestamp-based concurrency-control scheme was provided by Reed
[1983]. An exposition of various timestamp-based concurrency-control
algorithms was presented by Bernstein and Goodman [1980].

CHAPTER 7

DEADLOCKS

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources
are not available at that time, the process enters a wait state. It may
happen that waiting processes will never again change state, because the
resources they have requested are held by other waiting processes. This
situation is called a deadlock. We have already discussed this issue briefly in
Chapter 6, in connection with semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law
passed by the Kansas legislature early in this century. It said, in part:
"When two trains approach each other at a crossing, both shall come to a
full stop and neither shall start up again until the other has gone."

·In this chapter, we describe methods that an operating system can use
to deal with the deadlock problem. Note, however, that most current
operating systems do not provide deadlock-prevention facilities. Such
features probably will be added over time, as deadlock problems become
more common. Several trends will cause this situation, including larger
numbers of processes, many more resources (including CPUs) within a
system, and the emphasis on long-lived file and database servers rather
than batch systems. ·

7.1 • System Model

A system consists of a finite number of resources to be distributed among a
number of competing processes. The resources are partitioned into severql
types, each of which consists of some number . of identical instances.

217

218 • Chapter 7: Deadlocks

Memory space, CPU cycles, files, and vo devices (such as printers and tape
drives) are examples of resource types. If a system has two CPUs, then the
resource type CPU has two instances. Similarly, the resource type printer
may have five instances.

If a process requests an instance of a resource type, the allocation of
any instance of the type will satisfy the request. If it will not, then the
instances are not identical, and the resource type classes have not been
defined properly. For example, a system may have two printers. These two
printers may be defined to be in the same resource class if no one cares
which printer prints which output. However, if one printer is on the ninth
floor and the other is in the basement, then people on the ninth floor may
not s.ee both printers as equivalent, and separate resource classes may
need to be defined for each printer.

A process must request a resource before using it, and must release the
resource after using it. A process may request as many resources as it
requires to carry out its designated task. Obviously, the number of
resources requested may not exceed the total number of resources available
in the system. In other words, a process cannot request three printers if
the system only has two.

Under the normal mode of operation, a process may utilize a resource
in only the following sequence:

1. Request: If the request cannot be granted immediately (for example,
the resource is being used by another process), then the requesting
process must wait until it can acquire the resource.

2. Use: The process can operate on the resource (for example, if the
resource is a printer, the process can print on the printer).

3. Release: The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 3. Examples are the request and release device, open and close
file, and allocate and free memory system calls. Request and release of
other resources can be accomplished through the wait and signal operations
on semaphores. Therefore, for each use, the operating system checks to
make sure that the using process. has requested and been allocated the
resource. A system table records whether each resource is free or allocated,
and, if a resource is allocated, to which process. If a process requests a
resource that is currently allocated to another process, it can be added to a
queue of processes waiting for this resource. ·

A set of processes is in a deadlock state w~en every process in the set
is waiting for an event that can be caused by only another process in the
set. The events with which we are mainly concerned here are resource
acquisition and release. The resources may be either physical resources
(for example, printers, tape drives, memory space, and CPU cycles) or

7.2 Deadlock Characterization • 219

logical resources (for example, files, semaphores, and monitors).
However, other types of events may result in deadlocks (for example, the
IPC facility discussed in Chapter 4).

To illustrate a deadlock state, we consider a system with three tape
drives. Suppose that there are three processes, each holding one of these
tape drives. If each process now requests another tape drive, the three
processes will be in a deadlock state. Each is waiting for the event "tape
drive is released," which can be caused only by one of the other waiting
processes. This example illustrates a deadlock involving processes
competing for the same resource type. ·

Deadlocks may also involve different resource types. For example,
consider a system with one printer and one tape drive. Suppose that
process Pi is holding the tape drive and process Pj is holding the printer. If
Pi requests the printer and Pj requests the tape dnve, a deadlock occurs.

7.2 • Deadlock Characterization

It should be obvious that deadlocks are undesirable. In a deadlock,
processes never finish executing and system resources are tied up,
preventing other jobs from ever starting. Before we discuss the various
methods for dealing with the deadlock problem, we shall describe features
that characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold
simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If
another process requests that resource, the requesting process must be
delayed until the resource has been released.

2. Hold and wait: There must exist a process that is holding at least one
resource and is waiting to acquire additional resources that are
currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that
process has completed its task.

4. Circular wait: There must exist a set {P0, P 1, ... , Pn} of waiting
processes such that P 0 is waiting for a resource that is held by P 1, P 1 is
waiting for a resource that is held by P2, ... , Pn _ 1 is waiting for a
resource that is held by P w and P n is waiting for a resource that is held
by P0.

220 II Chapter 7: Deadlocks

We emphasize that all four conditions must hold for a
occur. The circular-wait condition implies the hold-and-wait COlrt<ll.tlon
the four conditions are not completely independent. We
Section 7.4, however, that it is useful to consider each
separately.

7.2.2 Resource-Allocation Graph
Deadlocks can be described more precisely in terms of a
called a system resource-allocation graph. This graph consists a
vertices V and a set of edges The set of vertices V is partitioned
types P = { P 1, P 2, ... , P n}, the set consisting of all the or(Jce·ssf~s
system, and R {R 1, R2, ... , Rm}, the set consisting of
in the system.

A directed edge from process Pi to resource type Rj is
Pi~ Ri it signifies that process Pi requested an instance of resource
Rj and is currently waiting for that resource. A directed
resource type Rj to process Pi denoted by Rj ~Pi; it
instance of resource type Rj has been allocated to process
edge Pi~ Rj is called a request edge; a directed edge Rj-+
assignment edge.

Pictorially, we represent each process Pi as a circle, and resource
type Rj as a square. Since resource type Rj may have more one
instance, we represent each such instance as a dot within the
that a request edge points to only the square Rj, whereas an ,..,..," ... ,.., ..
edge must also designate one of the dots in the square.

Figure 7.1 Resource-allocation graph.

7.2 Deadlock Characterization • 221

When process Pi requests an instance of resource type Rj, a request
edge is inserted in the resource-allocation graph. When this request can be
fulfilled, the request edge is instantaneously transformed to an assignment
edge. When the process later releases the resource, the assignment edge is
deleted.

The resource-allocation graph in Figure 7.1 depicts the following
situation.

• The sets P, R, and E:

o p = {Pl, P2, P3}

o R = {R1, R2, R3, R4}

o E = {P1 ~ R 1, P2 ~ R3, R 1 ~ P2, R2 ~ P2, R2 ~ P1, R3 ~ P3}

• Resource instances:

o One instance of resource type R 1

o Two instances of resource type R2

o One instance of resource type R3

o Three instances of resource type R4

• Process states:

o Process P 1 is holding an instance of resource type R2, and is
waiting for an instance of resource type R1.

o Process P 2 is holding an instance of R 1 and R2, and is waiting for
an instance of resource type R3.

o Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown
easily that, if the graph contains no cycles, then no process in the system
is deadlocked. If, on the other hand, the graph contains a cycle, then a
deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that
a deadlock has occurred. If the cycle involves only a set of resource types,
each of which has only a single instance, then a deadlock has occurred.
Each process involved in the cycle is deadlocked. In this case, a cycle in
the graph is both a necessary and a sufficient condition for the existence of .
deadlock.

If each resource type has several instances, then a cycle does not
necessarily imply that a deadlock occurred. In this case, a cycle in the
graph is a necessary but not a sufficient condition for the existence of
deadlock.

Chapter 7: Deadlocks

To illustrate this concept, let us return to the
depicted in Figure 7 .1. Suppose that process P3 requests an
resource type R2. Since no resource instance is currently

edge P3 ~ R2 is added to the graph (Figure 7.2). this
minimal cycles exist in the system:

Pr ~ R1 ~ P2 ~ R3 ~ P3 ~ R2 ~ P1
P2 ~ R3 ~ P3 ~ R2 ~ P2

Processes P1, P2, and P3 are deadlocked. Process
resource R3, which is held by process P3. Process P3, on the
waiting for either process P 1 or process P 2 to release resource
addition, process P 1 is waiting for process P 2 to release resource

Now consider the resource-allocation graph in
example, we also have a cycle

However, there is no deadlock Observe that process P 4 may
instance of resource type R2. That resource can then be auoc<ue,a
breaking the cycle.

In summary, if a resource-allocation graph does not
the system is not in a deadlock state. On the other hand, if
then the system may or may not be in a deadlock state.
important when we deal with the deadlock problem.

Figure 7.2 Resource-allocation graph with a deadlock.

223

Figure 7.3 Resource-allocation graph with a cycle but no ".,v ,,...

7.3 111 Methods for Handling Deadlocks

Principally, there are three methods for dealing with the'""'"'''""""'''""'-"' n ... ru-.1""'rn

• We can use a protocol to ensure that the system will never a
deadlock state.

• We can allow the system to enter a deadlock state and

• We can ignore the problem all together, and pretend
never occur in the system. This solution is the one
operating systems, including UNIX.

recover.

We shall elaborate briefly on each method. Then, in Sections we
shall present detailed algorithms.

To ensure that deadlocks never occur, the system use
deadlock-prevention or a deadlock-avoidance scheme. Deadlock
a set of methods for ensuring that at least one of
(Section 7.2.1) cannot hold. These methods
constraining how requests for resources can be made. We '""'"''"''"''""'
methods in Section 7.4. Deadlock avoidance, on the other hand, rLHHH',..""'"'

the operating system be given in advance additional
concerning which resources a process will request and
lifetime. With this additional knowledge, we can '·'"'·-"""H·"·'"'

whether or not the process should wait. Each request
system consider the resources currently available, the resources '"'"''""""1"+"'
allocated to each process, and the future requests and
process, to decide whether the current request can
delayed. We discuss these schemes in Section 7.5.

224 • Chapter 7: Deadlocks

If a system does not employ either a deadlock-prevention or a
deadlock-avoidance algorithm, then a deadlock situation may occur. In
this environment, the system can provide an algorithm that examines the
state of the system to determine whether a deadlock has occurred, and an
algorithm to recover from the deadlock (if a deadlock has indeed occurred).
We discuss these issues in Section 7. 6 and Section 7. 7.

If a system does not ensure that a deadlock will never occur, and also
does not provide a mechanism for deadlock detection and recovery, then
we may arrive at a situation where the system is in a deadlock state yet
has no way of recognizing what has happened. In this case, the
undetected deadlock will result in the deterioration of the system
performance, because resources are being held by processes that cannot
run, and because more and more processes, as they make requests for
resources, enter a deadlock state. Eventually, the system will stop
functi_oning and will need to be restarted manually.

Although this method does not seem to be a viable approach to the
deadlock problem, it is· nevertheless used in some operating systems. In
many systems, deacUocks occur infrequently (say, once per year); thus, it is
cheaper to use this method instead of the costly deadlock prevention,
deadlock avoidance, or deadlock detection and recovery methods that must
be used constantly. Also, there are circumstances tn which the system is
i~ a frozen state without it being in a deadlock state. As an example of this
situation, consider a real-time process running at the highest priority (or
any process running on a non-preemptive 'scheduler) and never returning
control to the operating system.

7.4 • Deadlock Prevention

As we noted in Section 7.2.1, for a deadlock to occur, each of the four
necessary conditions must hold. By ensuring that at least one of these
conditions cannot hold, we can prevent the occurrence of a deadlock. Let us
elaborate on this approach by examining each of the four necessary
conditions separately .

. 7 .4.1 M-utual Exclusion
The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, on the other hand, do not require mutually exclusive
access, and thus cannot be involved in a deadlock. Read-only files are a
good example of a sharable resource. If several processes attempt to open
a read-only file at the same time, they can be granted simultaneous access
to the file. A process never needs to wait for a sharable resource. In
general, however, it is not possible to prevent deadlocks by denying the
mutual-exclusion condition: Some resources are intrinsically twnsharable.

7.4 Deadlock Prevention • 225

7 .4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we
must guarantee that, whenever a process requests a resource, it does not
hold any other resources. One protocol that can be used requires each
process to request and be allocated all its resources before it begins
execution. We can implement this provision by requiring that system calls
requesting resources for a process precede all other system calls.

· An alternative protocol allows a process to request resources only
when the process has none. A process may request some resop.rces and
use them. Before it can request any additional resources, however, it must
release all the resources that it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a tape drive to a disk file, sorts the disk file,
anq then prints the results to a printer. If all resources must be requested
at the beginning of the process, then the process must initially request the
tape drive, disk file, and the printer. It will hold the printer for its entire
execution, even though it needs the printer only at the enq.

The second method allows the process to request initially only the tape
drive and disk file. It copies from the tape drive to the disk, then releases
both the tape drive and the disk file. The process must then again request
the disk file and the printer. After copying the disk file to the printer, it
releases these two resources and terminates.

There are two main disadvantages to these protocols. First, resource
utilization may be low, since many of the resources may be allocated but
unused for a long period. In the example given, for instance, we can
release the tape drive and disk file, and then again request the disk file
and printer, only if we can be sure that our data will remain on the disk
file. If we cannot be assured that they will, then we must request all
resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the
resources that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition is that there be no preemption of resources
that have already been allocated. To ensure that this condition does not
hold, we can use the following protocol. If a process that is holding some
resources requests another resource that cannot be immediately allocated
to it (that is, the process must wait), then all resources currently being held
are preempted.. That is, these resources are implicitly released. The
preempted resources are added to the list of resources for which the
process is waiting. The process will be restarted only when it can regain
its old resources, as well as the new ones that it is requesting.

226 • Chapter 7: Deadlocks

Alternatively, if a process requests some resources, we first check
whether they are available. If they are, we allocate them. If they are not
available, we check whether they are allocated to some other process that
is waiting for additional resources. If so, we preempt the desired resources
from the waiting process and allocate them to the requesting process. If the
resources are not either available or held by a waiting· process, the
requesting process must wait. While it is waiting, some of its resources
may be preempted, but only if another process requests them. A process
can be restarted only when it is allocated the new resources it is requesting
and recovers any resources that were preempted while it was waiting.

This protocol is often ~applied to resources whose state can be easily
saved and restored later, such as CPU registers and memory space. It
cannot generally be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

One way to ensure that the circular-wait condition never holds is to
impose a _total ordering of all resource types,. and to require that each
process requests resources in an increasing order of en11meration.

Let R = {R 1, R2, ... , Rm} be the set of resource types. We assign to
each resource type a unique integer number, whic~ allows us to compare
two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R ~ N, where N is
the set of natural numbers. For example, if the set of resource types R
includes tape drives, disk drives, and printers, then the function F might
be defined as follows:

F(tape drive) = 1,
F(disk drive) = 5,
F(printer) = 12.

We can now consider the following protocol to prevent deadlocks:
Each process can request resources only in an increasing order of
enumeration. That is, a process can initially request any number of
instances . of a resource type, say Ri. After that, the process can request
instances of resource type Rj if and only if F(Rj) > F(Ri). If several instances
of the same resource type are needed, a single request for all of them must
be issued. For example, using the function defined previously, a process
that wants to use the tape drive and printer at the same time must first
request the tape drive and then request the printer.

Alternatively, we can simply require that, whenever a process requests
an instance of resource type Rj, it has released any resources Ri such that
F(Ri) ~ F(Rj). , ·

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by ass_uming that a circular wait exists

7.5 Deadlock Avoidance • 227

(proof by contradiction). Let the set of processes involved in the circular
wait be {P0, PI, ... , Pn}, where P; is waiting for a resource R;, which is
held by process P; +I· (Modulo arithmetic is used on the indexes, so that
Pn is waiting for a resource Rn held by P0.) Then, since process P; +I is
holding resource R; while requesting resource R; + 1, we must have
F(R;) < F(R; +I), for all i. But this condition means that F(R0) < F(R 1) < ... <
F(Rn) < F (R0). By transitivity, F(R0) < F(R0), which is impossible.
Therefore, there can be no circular wait.

Note that, the function F should be defined according to the normal
order of usage of the resources in a system. For example, since' the tape
drive is usually needed before the printer, it would be reasonable to define
F(tape drive)< F(printer).

7.5 • Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent
deadlocks by restraining how requests can be made. The restraints ens:tue
that at least one of the necessary conditions for deadlock cannot occur,
and, hence, that deadlocks cannot hold. Possible side effects of preventing
deadlocks by this method, however, are low device utilization and reduced
system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a
system with one tape drive and one printer, we might be told that process
P will request first the tape drive, and later the printer, before releasing
both resources. Process Q, on the other hand, will request first the
printer, and then the tape drive. With this knowledge of the complete
sequence of requests and releases for each process, we can decide for each
request whether or not the process should wait. Each request requires that
the system consider the resources currently available, the resources
currently allocated to each process, and the future requests and releases of
each process, to decide whether the current request can be satisfied or
must wait to avoid a possible future deadlock.

The various algorithms differ in the amount and type of information
required. The simplest and most useful model requires that each process
declare the maximum number of resources of each type that it may need.
Given a priori information, for each process, about the maximum number
of resources of each type that may be requested, it is possible to construct
an algorithm that ensures that the system will never enter a deadlock state.
This algorithm defines the deadlock-avoidance approach. A deadlock­
avoidance algorithm dynamically examines the resource-allocation state to
ensure that there can never be a circuliu-wait condition. The resource­
allocation state is defined by the number of available and allocated
resources, and the maximum demands of the processes.

228 • Chapter 7: Deadlocks

7.5.1 Safe State
A state is safe if the system can -allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a
system is in a safe state only if there exists a safe sequence. A sequence of
processes <PI, P2, ... , P n> is a safe sequence for the current allocation state
if, for each Pi, the resources that Pi can still request can be satisfied by the
currently available resources plus the resources held by all the Pj, with j <
i. In this situation, if the resources that process Pi needs are not
immediately available, then Pi can wait until all Pj have finished. When
they have finished, Pi can obtain all of its needed resources, complete its_
designated task, return its allocated resources, and terminate. When Pi
terminates, Pi +I can obtain its needed resources, and so on. If no such
sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlock state. Conversely, a deadlock state is an
unsafe state. Not all unsafe states are deadlocks, however (Figure 7.4). An
unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlock) states. In an unsafe
state, the operating system cannot prevent processes from requesting
resources such that a deadlock occurs: The behavior of the processes
controls unsafe states.

To illustrate, we consider a system with 12 magnetic tape drives and 3
processes: P01 P 1, and P2. Process P0 requires 10 tape drives, process PI
may need as many as 4, and process P 2 may need up to 9 tape drives.
Suppose that, at time t0, process P 0 is holding 5 tape drives, process PI is
holding 2, and process P2 is holding 2 tape drives. (Thus, there are 3 free
tape drives.)

Maximum Needs Current Needs

10
4
9

5
2
2

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies
-the safety condition, since process PI can immediately be allocated all its
tape drives and then return them (the system will then have 5 available
tape drives), then process P0 can get all its tape drives and return them
(the system will then have 10 available tape drives), and finally process P2
could get all its tape drives and return them (the system will then have all
12 tape drives available).

Note that it is possible to go from a safe state to an unsafe state.
Suppose that, at time ti, process P2 requests and is allocated 1 more tape
drive. The system is no longer in a safe state. At this point, only process
P1 can be allocated all its tape drives. When it returns them, the system

7.5 Deadlock

Figure 7.4 Safe, unsafe, and deadlock state ..,.,.,,...,;:,.,,

will have only 4 available tape drives. Since process
drives, but has a maximum of 10, it may then request more
Since they are unavailable}' process P0 must wait. Similarly,
request an additional 6 tape drives and have wait,
deadlock.

Our mistake is in granting the request from process
tape drive. If we had made P2 wait until either of the
finished and released its resources, then we could
deadlock situation.

Given the concept of a safe state, we can define
that ensure that the system will never deadlock. The
ensure that the system will always remain in a safe
system is in a safe state. Whenever a process requests a resource
currently available, the system must decide whether the resource can
allocated immediately or whether the process must
granted only if the allocation leaves the system in a safe

Note that, in this scheme, if a process requests a resource
currently available, it may still have to wait. Thus, resource

lower than it would be without a deadlock-avoidance

7. Resource-Allocation Graph Algorithm
If we have a resource-allocation system with only one
resource type, a variant of the resource-allocation graph

can be used for deadlock avoidance.
In addition to the request and assignment edges, we 1ntroc1uc:e

type of edge, called a claim edge. A claim edge Pi ~
process Pi may request resource Rj at some time in
resembles a request edge in direction, but is represented by a

Chapter 7: Deadlocks

process Pi requests resource Rj, the claim edge Pi.......,. Rj
a request edge. Similarly, when a resource Rj is released

assignment edge Rj.......,. Pi is reconverted to a claim edge Pi.......,.
that the resources must be claimed a priori in the system.

Pi starts executing, all its claim edges must
resource-allocation graph. We can relax this condition by

Pi,. Rj to be added to the graph only if all the edges
process Pi are claim edges.

Suppose that process Pi requests resource Rj.
granted only if converting the request edge,. Rj to an u.

R ·,. Pi does not result in the formation of a cycle in
ahocation graph. Note that we check for safety by using a
algorithm. An algorithm for detecting a cycle in this
order of n 2 operations, where n is the number of processes

If no cycle exists, then the allocation of the resource
system in a safe state. If a cycle is found/ then the allocation
system in an unsafe state. Therefore, process Pi will have to
requests to be satisfied.

To illustrate this algorithm, we consider the
of Figure 7.5. Suppose that P2 requests R2• Although
we cannot allocate it to P 2, since this action will create a cycle
(Figure 7.6). A cycle indicates that the system in an
requests R2, and P2 requests R1, then a deadlock will occur.

7.5.3 Banker's Algorithm
resource-allocation graph algorithm not applicable a resource-

allocation system with multiple instances of each resource
deadlock-avoidance algorithm that we describe next is
system, but is less efficient than the resource-allocation graph
algorithm is commonly known as the banker's algorithm. The name was

' '

' '

Figure 7.5 Resource-allocation graph for deadlock

-

' '

' '
/

/

7.5 Deadlock

Figure 7.6 An unsafe state in a resource-allocation

chosen because this algorithm could be used a banking
that the bank never allocates its available cash such that
satisfy the needs of all its customers.

When a new process enters the system, it must declare
number of instances of each resource type that it may
mq.y not exceed the total number of resources in the c:u<:,i-<Pln

requests a set of resources, the system must determine
allocation of these resources will leave the system in a
the resources are allocated; otherwise, the process must
other process releases enough resources.

Several data structures must be maintained to implement
algorithm. These data structures encode the state of the
system. Let n be the number of processes in the system
number of resource types. We need the following data

e Available: A vector of length m indicates the number
resources of each type. If AvailableUJ k, there are k
resource type Rj available.

e Max: An n x m matrix defines the maximum demand
If Max[i,j] k, then process may request
resource type Rj'

e Allocation: An n x m matrix defines the number of resources
type currently allocated to each If Allocation[i,j]
process Pi is currently allocated k instances of resource type

• Need: An n x m matrix indicates the remaining resource
process. If Need[i,j] k, then process Pi may need k more
resource type Rj to complete its task. Note that Need[i,j]
Allocation[i, j].

These data structures vary over time in both size and value.

232 • Chapter 7: Deadlocks

To simplify the presentation of the banker's algorithm, let us establish
some notation. Let X and Y be vectors of length n. We say that X < Y if
and only if X[i]. < Y[i] for all i = 1, 2, ... , n. For example, if X = (1,7,3,2)
andY= (0,3,2,1), then Y <X. Y <X if Y <X and. Y =I= X.

We can treat each row in the matri~es Allocation and Need as vectors
. and refer to them as Allocationi and Needi, respectively. The vector
Allocationi specifies the resources currently allocated to process Pi; the
vector Needi specifies the additional resources that process Pi may still
request to complete its task.

7.5.3.1 Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state can
be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize Work := Available and Finish[i] := false fori = 1, 2, ... , n.

2. Find an i such that both

a. Finish[i] = false

b. Needi < Work

If no such i exists, go to step 4.

3. Work := Work + Allocationi
Finish[i] := true
go to step 2.

4. If Finish[i] = true for all i, then the system is in a safe state.

This algorithm may require an order of m x n 2 operations to decide
whether a state is safe.

7.5.3.2 ~esource-Request Algorithm

Let Requesti be the request vector for process Pi. If Requesti[j] = k , then
process Pi wants k instances of resource type Rj" When a request for
resources is made by process Pi, the following actions are taken:

1. If Requesti < Needi, go to step 2. Otherwise, raise an error condition,
since the process has exceeded its maximum claim.

2. If Requesti < Available, go to step 3. Otherwise, Pi must wait, since the
resources are not available.

7.5 Deadlock Avoidance • 233

3. Have the system pretend to have allocated the requested resources to
process Pi by modifying the state as follows:

Available : = Available - Requesti;
Allocationi : = Allocationi + Requesti;
Needi : = Needi - Requesti;

If the resulting resource-allocation state is safe, the transaction is
completed and process Pi is allocated its resources. However, if the
new state is unsafe, then Pi must waH for Requesti and· the old
resource-allocation state is restored.

7.5.3.3 An Illustrative Example

Consider a system with five processes P 0 thr.ough P 4 and three resource
types A, B, C. Resource type A has 10 instances, resource type B has 5
instances, and resource type C has 7 instances. Suppose that, at time T 0,

the following snapshot of the system has been taken:

Allocation Max Available

ABC ABC ABC
Po 010 753 /332
pl 200 322
p2 302 902
p3 2 11 222
p4 002 433

The content of the matrix Need is defined to be Max - Allocation and is

Need

ABC
P0 7 4 3
.pl 1 2 2

\ p2 6 0 0
P3 0 11

I P4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence·
<P1, P3, P4, P2, Po> satisfies the safety criteria.

Suppose now that process P 1 requests one additional instance of
resource type A and two instances of resource type C, so Request1 =
(1,0,2). To decide whether this request can be immediately granted, we
first check that Request1 < Available (that is, (1,0,2) < (3,3,2)), which is

Ji

234 • Chapter 7: Deadlocks

true. We then pretend that this request has been fulfilled, and we arrive at
the following new state:

Allocation Need Available

ABC ABC ABC
Po 0 1 0 743 230
pl 302 020
p2 302 600
p3 2 11 0 11
p4 002 431

We must determine whether this new system state is safe. To do so,
we execute our safety algorithm and find that the sequence <P1; P3, P4, P0,

P 2> satisfies our safety requirement. Hence, we can immediately grant the
request of process P 1.

You should be able to see, however, that when the system is in this
state, a request for (3,3,0) by P4 cannot be granted, since the resources are
not available. A request for (0,2,0) by P0 cannot be granted, even though
the resources are available, since the resulting state is unsafe.

7.6 • Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock­
avoidance algorithm, then a deadlock situation may occur. In this
environment, the system must provide:

• An algorithm that examines the state of the system to determine
whether a deadlock has occurred

• An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as
they pertain to systems with only a single instance of each resource type,
as well as to systems with several instances of each resource type. At this
point, however, let us note that a detection and recovery scheme requires
overhead that includes not only the run-time costs of maintaining the
necessary information. and executing the detection algorithm, but also the
potential losses inherent in recovering from a deadlock.

7.6.1 Single Instance of Each Resource Type
If all resources. have only a single instance, then we can define a deadlock
detection algorithm that uses a variant of the resource-allocation graph,
called a wait-for graph. ·we obtain this graph from the resource-allocation

graph by removing the nodes of type resource and
appropriate edges.

More precisely, an edge from Pi to Pj in a wait-for graph uuvu~;;L)
process Pi is waiting for process Pj to release a resource that
edge Pi -'? Pj exists in a wait-for graph if and only if the ,.n,,.,...a,,,.,:~

resource-allocation graph contains two edges Pi -'? Rq and
some resource Rq. For example, in Figure 7.7, we present a resource­
allocation graph and the corresponding wait-for graph.

As before, a deadlock exists in the system if and only if
graph contains a cycle. To detect deadlocks, the system
the wait-for graph and periodically to invoke an algorithm that-:"'' ...
cycle in the graph.

An algorithm to detect a cycle in a graph requires an n 2

operations, where n is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a
with multiple instances of each resource type. The
algorithm that we describe next is applicable to
algorithm employs several time-varying data structures
those used in the banker's algorithm (Section 7.5.3):

e Available: A vector of length m indicates the number
resources of each type.

(a) (b)

Figure 7.7 (a) Resource-allocation graph. (b) Corresponding

236 • Chapter 7: Deadlocks

• Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process.

• Request: An n x m matrix indicates the current request of each process.
If Request[i,j] = k, then process Pi is requesting k more instances of
resource type Rj.

The less-than relation (<) between two vectors is defined as in Section
7.5.3. To simplify notation, we shall again treat the rows in the matrices
Allocation and Request as vectors, and shall refer to them as Allocationi and
Requesti, respectively. The detection algorithm described here simply
investigates every possible allocation sequence for the processes that
remain to be completed. Compare this algorithm with the banker's
algorithm of Section 7.5.3.

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize Work := Available. For i = 1, 2, ... , n, if Allocationi =I= 0, then
Finish[i] :=false; otherwise, Finish[i] := true.

2. Find an index i such that both

a. Finish[i] = false.

b. Requesti < Work.

If no such i exists, go to step 4.

3. Work := Work + Allocationi
Finish[z] := true
go to step 2.

4. If Finish[i] = false, for some i, 1 < i < n, then the system is in a
deadlock state. Moreover, if Finish[i] = false, then process Pi is
deadlocked.

This algorithm requires an order of m x n 2 operations to detect whether
the system is in a deadlocked state.

You may wonder why we reclaim the resources of process Pi (in step
3) as soon as we determine that Requesti < Work (in step 2b). We know
that Pi is currently not involved in a deadlock (since Requesti < Work).
Thus, we take ~n optimistic attitude, and assume that Pi will require no
more resources to complete its task; it will thus s'oon return all currently
allocated resources to the system. If our assumption is incorrect, a
deadlock may occur later. That deadlock will be detected the next time
that the deadlock-detection algorithm is invoked.

To illustrate this algorithm, we consider a system with five processes
Po through P 4 and three resource types A, B, C. Resource type A has 7
instances, resource type B has 2 instances, and resource type C has 6

7.6 Deadlock Detection • 237

instances. Suppose that, at time T0, we have the following resource­
allocation state:

Allocation Request Available

ABC ABC ABC
Po 010 000 000
PI 200 202
p2 303 000
p3 2 11 1 0 0
p4 002 002

We claim that the system is not in a deadlocked state. Indeed, if we
execute our algorithm, we will find that the sequence <P0, P2, P3, P 1, P4>
will result in Finish[i] = true for all i.

Suppose now that process P2 makes one additional request for an
instance of type C. The Request matrix is modified as follows:

Request

ABC
P0 0 0 0
P1 2 0 2
p2 0 01
p3 10 0
p4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process P 0, the number of available resources is not
sufficient to fulfill the requests of the other processes. Thus, a deadlock
exists, consisting of processes P 1, P 2, P 3, and P 4 .

7.6.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on
two factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be
invoked frequently. Resources allocated to deadlocked processes will be
idle until the deadlock can be broken. In addition, the number of processes
involved in the deadlock cycle may grow.

238 • Chapter 7: Deadlocks

Deadlocks can come into being only when some process. makes a
request that cannot be granted immediately. It is possible that this request
is the final request that completes a chain of waiting processes. In the
extreme, we could invoke the deadlock-detection algorithm every time a
request for allocation cannot be granted immediately. In this case, we can

· identify not only the set of processes that is deadlocked, but also the
specific process that "caused" the deadlock. (In reality, each of the
deadlocked processes is a link in the cycle in the resource graph, so all of
them, jointly, caused the deadlock.) If there are many different resource
types, one request may cause many cyCles in the resource graph, each
cycle completed by the most recent request, and "caused" by the one
identifiable process.

Of course, invoking the deadlock-detection algorithm for every request
may incur a considerable overhead in computation time. A less expensive
alternative is simply to invoke the algorithm at less frequent intervals -
for example, once per hour, or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and will cause
CPU utilization to drop.) If the detection algorithm is invoked at arbitrary
points in time, there may be many cycles in the resource graph. We would
generally not be able to tell which of the many deadlocked processes
"caused" the deadlock.

7. 7 • Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several
alternatives exist. One possibility is to inform the operator that a deadlock
has occurred, and to let the operator deal with the deadlock manually.
The other possibility is to let the system recover from the deadlock
automatically. There are two options for breaking a deadlock. One solution
is simply to abort one or more processes to break the circular wait. The
second option is to preempt some resources from one or more of the
deadlocked processes.

7. 7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods.
In both methods, the system reclaims all resources allocated to the
terminated processes.

• Abort all deadlocked processes: This method clearly will break the
deadlock cycle, but at a great expense, since these processes may have
computed for a long time, and the results of these partial computations
must be discarded, and probably must be recomputed ~ater.

7. 7 Recovery from Deadlock • 239

• Abort one process at a time until the deadlock cycle is eliminated:
This method incurs considerable overhead., since, after each process is
aborted, a deadlock-detection algorithm must be invoked to determine
whether any processes are still deadlocked.

Notice that aborting a process may not be easy. If the process was in the
midst of updating a file, terminating it in the middle will leave that file in
an incorrect state. Similarly, if the process was in the midst of printing
data on the printer, the system must reset the state of the printer to a
correct state before proceeding with the printing of the next job. ·

If the partial termination method is used, then, given a set of
deadlocked processes, we must determine which process (or processes)
should be terminated in an attempt to break the deadlock. This
determination is a policy decision, similar to CPU-scheduling problems. The
question is basically an economic one; we should abort those processes the
termination of which will incur the minimum cost. Unfortunately, the term
minimum cost is not a precise one. Many factors may determine which
process is chosen, including:

1. What the priority of the process is

2. How long the process has computed, and how much longer the
process will compute before completing its designated task

3. How marty and what type of resources the process has used (for
example, whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

6. Whether the process is interactive or batch

7. 7.2 Resource Preemption
To eliminate deadlocks using resource preemption, we successively
preempt some resources from processes and give these resources to other
processes until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues
need to be addressed:

1. Selecting a victim: Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such
parameters as the number of resources a deadlock process is holding,
and the amount of time a deadlocked process has thus far consumed
during its execution.

240 • Chapter 7: Deadlocks

2. Rollback: If we preempt a resource from a process, what should be
done with that process? Clearly, it cannot continue with its normal
execution; it is missing some needed resource. We must roll back the
process to some safe state, and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart
it. However, it is more effective to roll back the process only as far as
necessary to break the deadlock. On the other hand, this method
requires the system to keep more information about the state of all the
running processes.

3. Starvation: How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted
from the same process?

In a system where victim selection is based ,primarily on cost
factors, it may happen that the same process is always picked as a
victim. As a result, this process never completes its designated task, a
starvation situation that needs to be dealt with in any practical system.
Clearly, we must ensure that a process can be picked as a victim only a
(small) finite number of times. The most common solution is to include
the number of rollbacks in the cost factor.

7.8 • Combined Approach to Deadlock Handling

Researchers have argued that none of the basic approaches for handling
deadlocks (prevention, avoidance, and detection) alone is appropriate for
the entire spectrum of resource-allocation problems encountered in
operating systems. One possibility is to combine the three basic
approaches, allowing the use of the optimal approach for each class of
resources in the system. The proposed method is based on the notion that
resources can be partitioned into classes that are hierarchically ordered. A
resource-ordering technique (Section 7.4.4) is applied to the classes. Within
each class, the most appropriate technique for handling deadlocks can be
used.

It is ·easy to show that a system that employs this strategy will not be
subjected to deadlocks. Indeed, a deadlock cannot involve more than one
class, since the resource-ordering technique is used. Within each class, one
of the basic approaches is used. Consequently, the system is not subject to
deadlocks.

To illustrate this technique, we consider a system that consists of the
following four classes of resources;

• Internal resources: Resources used by the system, such as a process
control block

7. 9 Summary • 241

• Central memory: Memory used by a user job

• Job resources: Assignable devices (such as a tape drive) and files

• Swappable space: Space for each user job on the backing store

One mixed deadlock solution for this system orders the classes as shown,
and uses the following approaches to each class:

• Internal resources: Prevention through resource ordering can be_ used,
since run-time choices between pending requests are unnecessary.

• Central memory: Prevention through preemption can be used, since a
job can always be swapped out, and the central memory can be
preempted.

• Job resources: Avoidance can be used, since the information needed
about resource requirements can be obtained from the job-control
cards.

• Swappable space: Preallocation can be used, since the maximum
storage requirements are usually known.

This example shows how various basic approaches can be mixed within
the framework of resource ordering, to obtain an effective solution to the
deadlock problem.

7.9 • Summary

A deadlock state occurs when two or more processes are waiting
indefinitely for an event that can be caused only by one of the waiting
processes. Principaily, there are three methods for dealing with deadlocks:

• Use some protocol to ensure that the system will never enter a
deadlock state.

• Allow the system to enter deadlock state and then recover.

• Ignore the problem all together, and pretend that deadiocks never
occur in the system. This solution is the one used by most operating
systems, including UNIX.

A deadlock situation may occur if and only if four necessary conditions
hold simultaneously in the system: mutual exclusion, hold and wait, no
preemption, and circular wait. To prevent deadlocks, we ensure that at
least one of the necessary conditions never holds.

Another method for avoiding deadlocks that is less stringent than the
prevention algorithms is to have a priori information on how each process

i f • • •

242 • Chapter 7: Deadlocks

will be utilizing the resources. The banker's algorithm needs to know the
maximum number of each resource class that may be requested by each
process. Using this information, we can define a deadlock-avoidance
algorithm.

If a system does not employ. a protocol to ensure that deadlocks will
never occur, then a detection and recovery scheme must be employed. A
deadlock-detection algorithm must be invoked to determine whether a
deadlock has occurred. If a deadlock is detected, the system must recover
either by terminating some of the deadlocked processes, or by preempting
resources from some of the deadlocked processes.

In a system that selects victims for rollback primarily on the basis of
cost factors, starvation may occur. As a result, the selected process never
completes its designated task.

Finally, researchers have argued that none of these basic approaches
alone are appropriate for the entire spectrum of resource-allocation
problems in operating systems. The basic approaches can be combined,
allowing the separate selection of an optimal one for each class of
resources in a system.

• Exercises

7.1 List three examples of deadlocks that are not related to a computer­
system environment.

7.2 Is it possible to have a deadlock involving only one single process?
Explain your answer.

7.3 People have said that proper spooling would eliminate deadlocks.
Certainly, it eliminates frorh contention card readers, plotters,
printers, and so on. It is even possible to spool tapes (called staging
them), which would leave the resources of CPU time, memory, and
disk space. Is it possible to have a deadlock involving these
resources? If it is, how could such a deadlock occur? If it is not, why
not? What deadlock scheme would seem best to eliminate these
deadlocks (if any are possible), or what condition is violated (if they
are not possible)?

7.4 Consider the traffic deadlock depicted in Figure 7.8.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule that will avoid deadlocks in this system.

7.5 Suppose that a system is in an unsafe state. Show that it is possible
for the processes to complete their execution without entering a
deadlock state.

Figure 7.8 Traffic deadlock for Exercise

7.6 In a real computer system, neither the resources
demands of processes for resources are consistent over
(months). Resources break or are replaced, new nnlrP·"'""'"'
go, new resources are bought and added to the system.
controlled by the banker's algorithm, which of the
can be made safely (without introducing the ...,.,_,,_,"'U-'U"'-

and under what circumstances?

a. Increase Available (new resources added)

b. Decrease Available (resource permanently removed

c. Increase Max for one process (the process needs more resources
than allowed, it may want more)

d. Decrease Max for one process (the process_.._..__.,..._
need that many resources)

e. Increase the number of processes

f. Decrease the number of processes

7.7 Prove that the safety algorithm presented in Section an
order of m x n 2 operations.

7.8 Consider a system consisting of four resources of the same
are shared by three processes, each of which
resources. Show that the system is deadlock-free.

244 • Chapter 7: Deadlocks

7.9 Consider a system consisting of m resources of the same type, being
shared by n processes. Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free if
the following two conditions hold: ·

a. The maximum need of each process is between 1 and m
resources

b. The sum of all maximum needs is less than m + n

7.10 Consider a computer system that runs 5000 jobs per month with no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun
about 10 jobs per deadlock. Each job is worth about $2 (in CPU time),
and the jobs terminated tend to be about half-done when they are
aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker's algorithm) could be installed in the
system with an increase in the average execution time per job of
about 10 percent. Since the machine currently has 30-percent idle
time, all 5000 jobs per month could still be run, although turnaround
time would increase by about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

7.11 Consider the following snapshot of a system:

Allocation Max Available

ABCD ABCD ABCD
Po 0012 0012 1520
PI 1000 1750
p2 1354 2356
p3 0632 0652
p4 0014 0656

Answer the following questions using the banker's algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process PI arrives for (0,4,2,0) can the request be
granted immediately?

Bibliographic Notes • 245

7.12 Consider the following resource-allocation policy. Requests and
releases for resources are allowed at any time. If a request for
resources cannot be satisfied because the resources are not available,
then we check any processes that are blocked, waiting for resources.
If they have the desired resources, then these resources are taken
away from them and are given to the requesting process. The vector
of resources for which the waiting process is waiting is increased to
include the resources that were taken away.

For example, consider a system with three resource types and the
vector Available initialized to (4,2,2). If process P0 asks for (2,2,1), it
gets them. If P1 asks for (1,0,1), it gets them. Then, if P0 asks for
(0,0,1), it is blocked (resource not available). If P2 now asks for (2,0,0),
it gets the available one (1,0,0) and one that was allocated to P0 (since
P0 is blocked). P0's Allocation vector goes down to (1,2,1), and its
Need vector goes up to (1,0,1).

a. Can deadlock occur? If so, give an example. If not, which
necessary condition cannot occur?

b. Can indefinite blocking occur?

7.13 Can a system detect that some of its processes are starving? If you
answer "yes," explain how it can. If you answer "no," explain how
the system can deal with the starvation problem.

7.14 We can obtain the banker's algorithm for a single resource type from
the general banker's algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the
multiple-resource-type banker's scheme cannot be implemented by
individual application of the single-resource-type scheme to each
resource type.

7.15 Suppose that you have coded the deadlock-avoidance safety
algorithm and now wish to implement the deadlock-detection
algorithm. Can you do so by simply using the safety algorithm code
and redefining Maxi = Waitingi + Allocationi, where Waitingi is a
vector specifying the resources process i is waiting for, and Allocationi
is as defined in Section 7.5? Explain your answer.

Bibliographic Notes

Dijkstra · [1965a] was one of the first and most influential contributors in the
deadlock area. Holt [1972] was the first person to formalize the notion of
deadlocks in terms of a graph-theoretical model similar to the one
presented in this chapter. The issue of starvation was covered by Holt

246 • Chapter 7: Deadlocks

·'

[1972]. Hyman [1985] provided the deadlock example from the Kansas
legislature.

The various prevention algorithms were suggested by Havender [1968],
who has devised the resource-ordering scheme for the IBM OS/360 system.

The banker's algorithm for avoiding deadlocks was developed for a
·single resource type by Dijkstra [1965a], and was extended to multiple
resource types by Habermann [1969]. General discussions concerning
avoiding deadlocks by stating claims have been written by Habermann
[1969], Holt [1971, 1972], and Parnas and Habermann [1972]. Exercises 7.8
and 7.9 are from Holt [1971].

The deadlock"'"detection algorithm for multiple instances of a resource
type, which was described in Section 7.6.2, was written by Coffman et al.
[1971]. The combined approach to deadlocks described in Section 7.8 was
originally suggested by Howard [1973].

General surveys and useful bibliographies have been offered by Isloor
and Marsland [1980], Newton [1979], and Zoble [1983].

PART THRE'E

STORAGE MANAGEMENT

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be in main memory (at
least partially) during execution.

To improve both the utilization of CPU and the speed of its response to
its users, the computer must keep several processes in memory. There are
many different memory-management schemes. These schemes reflect
various approaches to memory management, and the effectiveness of the
different algorithms depends on the particular situation. Selection of a
memory-management scheme for a specific system depends on many
factors, especially on the hardware design of the system. Each algorithm
requires its own hardware support.

Since main memory is usually too small to accommodate all data and
programs permanently, the computer system must provide secondary
storage to back up main memory. Most modern computer systems use
disks as the primary on-line storage medium for information (both
programs and data). The file system provides the mechanism for on-line
storage of and access to both data and programs residing on the disks. A
file is a collection of related information defined by its creator. Files are
mapped, by the operating system, onto physical devices. Files are
normally organized into directories to ease their use.

CHAPTER 8

MEMORY
MANAGEMENT

In Chapter 5, we showed how the CPU can be shared by a set of processes.
As a result of CPU scheduling, we can improve both the utilization of the
CPU and the speed of the computer's response to its users. To realize this
increase in performance, however, we must keep several processes in
memory; we must share memory.

In this chapter, we discuss various ways to manage memory. The
memory-management algorithms vary from a primitive bare-machine
approach to paging and segmentation strategies. Each approach has its
own advantages and disadvantages. Selection of a memory-management
s~heme for a specific system depends on many factors, especially on the
hardware design of the system. As we shall see, many algorithms require
hardware support.

8.1 • Background

As was shown in Chapter 1, memory is central to the operation of a
modern computer system. Memory is a large array of words or bytes, each
with its own address. The cpu fetches instructions from memory according
to the value of the program counter. These instructions may cause
Cl.dditionalloading from and storing to specific memory addresses.

A typical instruction execution cycle, for example, will first fetch an
instruction from memory. The instruction is then decoded and may cause
operands to be fetched from memory. After the instruction has been
executed on the operands, results may be stored back in memory. Notice
that the memory unit sees only a stream of memory addresses; it does not

249

250 • Chapter 8: Memory Management

know how they· are generated (the instruction counter, indexing,
indirection, literal addresses, and so on) or what they are for (instructions
or data). Accordingly, we. ·can ignore how a memory address is generated
by a program. We are interested in only the sequence of memory
addresses generated by the running program.

8.1.1 Address Binding
Usually, a program resides on a disk as a binary executable file. The
program must be brought into memory and placed within a process for it
to be executed. Depending on the memory management in use, the
process may be moved between disk and memory during its execution.
The collection of processes on the disk that are waiting to be brought into
memory for execution forms the input queue.

The normal procedure is to select one of the processes in the input
queue and to load that process into memory. As the process is executed, it
accesses instructions and data from memory. Eventually, the process
terminates, and its memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process does not need to be 00000. This
arrangement affects the addresses that the user program can use. In most
cases, a user program will go through several steps (some of which may be
optional) before being executed (Figure 8.1). Addresses may be represented
in different ways during these steps. Addresses in the source program are
generally symbolic (such as e ~ «-•t). A compiler will typically bind these
symbolic addresses to relocatable addresses (such as "14 bytes from the
beginning of this module"). The linkage editor or loader will in turn bind
these relocatable addresses to absolute addresses (such as 74014). Each
binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses
can be done at any step along the way:

• Compile time: If it is known at compile time where the process will
reside in memory, then absolute code can be generated. For example, if
it is.known a priori that a user process resides starting at location R,
then the generated compiler code will start at that location and extend
up from there. If, at some later time, the starting location changes,
then it will be necessary to recompile this code. The MS-DOS .COM­
format programs are absolute code bound at compile time.

• Load time: If it is not known at compile time where the process will
reside in memory, then the compiler must generate relocatable code. In
this case, final bin.ding is delayed until load time. If the starting
address changes, we need only to reload the user code to incorporate
this changed value.

8.1

}
compile
time

load
time

}

execution
time
(run time)

• Execution time: If the process can be moved
from one memory segment to another,
until run time. Special hardware must be available
work, as will be discussed in Section 8.2.

A major portion of this chapter is devoted to showing how
bindings can be implemented effectively in a computer
discussing appropriate hardware support.

252 • Chapter 8: Memory Management

8.1.2 Dynamic Loading
To obtain better memory-space utilization, we can use dynamic loading.
With dynamic loading, a routine is not loaded until it is called. All routines
are kept on disk in a relocatable load format. The main program is loaded
into memory and is executed. When a routine needs to call another
routine, the calling routine first checks to see whether the other routine
has been loaded. If it has not been, the relocatable linking loader is called
to load the desired routine into memory and to update the program's
address tables to reflect this change. Then, control is passed to the newly
loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This scheme is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In
this case, although the total program size may be large, the portion that is
actually used (and hence actually loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a scheme. Operating systems may help the
programmer, however, by providing library routines to implement
dynamic loading.

8.1.3 Dynamic Linking
Notice that Figure 8.1 also shows dynamically linked libraries. Most
operating systems support only static linking, in which system language
libraries are treated like any other object module and are combined by the
loader into the binary program image. The concept of dynamic linking is
similar to that of dynamic loading. Rather than loading being postponed
until execution time, linking is postponed. This feature is usually used
with system libraries, such as language subroutine libraries. Without this
facility, all programs on a system need to have a copy of their language
library (or at least the routines referenced by the program) included in the
executable image. This requirement wastes both disk space and main
memory. With dynamic linking, a stub is included in the image for each
library-routine reference. This stub is a small piece of code that indicates
how to locate the appropriate memory-resident library routine, or how to
load the library if the routine is not already present.

When this stub is executed, it checks to see whether the needed
routine is already in memory. If the routine is not in memory, the
program loads it into memory. Either way, the stub replaces itself with
the address of the routine, and executes the routine. Thus, the next time
that that code segment is reached, the library routine is executed directly,
incurring no cost for dynamic linking. Under this scheme, all processes
that use a language library execute only one copy of the library code.

8.1 Background • 253

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and all programs that reference
the library will automatically use the new version. Without dynamic
linking, all such programs would need to be relinked to gain access to the
new library. So that programs will not accidentally execute new,
incompatible versions of libraries, version information is included in both
the program and the library. More than one version of a library may be
loaded into memory, and each program uses its version information to
decide which copy of the library to use. Minor changes retain the same
version number, whereas major changes increment the version ·number.
Thus, only programs that are compiled with the new library version are
affected by the incompatible changes incorporated in it. Other programs
linked before the new library was installed will continue using the older
library. This system is also known as shared libraries.

Unlike dynamic loading, dynamic linking generally requires some help
from: the operating system. If the processes in memory are protected from
one another (Section 8.4.1), then the operating system is the only entity
that can check to see whether the needed routine is in another processes'
memory space, and can allow multiple processes to access the same
memory. addresses. This concept is expanded when used in conjunction
with paging, as discussed in Section 8.5.5.

8.1.4 Overlays

In our discussion so far, the entire program and data of a process must be
in physical memory for the process to execute. The size of a process is
limited to the size of physical memory. So that a process can be larger
than the amount of memory allocated to it, a technique called overlays is
sometimes used. The idea of overlays is to keep in memory only those
instructions and data that are needed at any given time. When other
instructions are needed, they are loaded into space that was occupied
previously by instructions that are no longer needed.

As an example, consider a two-pass assembler. During pass 1, it
constructs a symbol table; then, during pass 2, it generates machine­
language code. We may be able to partition such an assembler into pass 1
code, pass 2 code, the symbol table, and common support routines used
by both pass 1 and pass 2. Assume that the sizes of these components are
as follows (K stands for "kilobyte," which is 1024 bytes):

Pass 1 70K
Pass 2 80K
Symbol table 20K
Common routines 30K

To load everything at once, we would require 200K of memory. If only

254 II Chapter 8: Memory Management

150K is available, we cannot run our process. However, notice
and pass 2 do not need to be in memory the same time. We
two overlays: Overlay A is the symbol table, common routines,
and overlay B is the symbol table, common routines, and pass

We add an overlay driver (lOK) and start with overlay
When we finish pass 1, we jump to the overlay driver,
overlay B into memory, overwriting overlay A, and then
to pass 2. Overlay A needs only 120K, whereas overlay
(Figure 8.2). We can now run our assembler in the 150K of
load somewhat faster because fewer data need to be
execution starts. However, it will run somewhat slower, due
110 to read the code for overlay B over the code for overlay A.

The code for overlay A and the code for overlay B are kept on
absolute memory images, and are read by the overlay driver as
Special relocation and linking algorithms are needed to
overlays.

As in dynamic loading, overlays do not require any
from the operating system. They can be implemented
user with simple file structures, reading from the files into mE:~m<Jrv
then jumping to that memory and executing the newly read
The operating system notices only that there more I/0 than

20K

30K

10K

70K 80K

Figure 8.2 Overlays for a two-pass assembler.

8.2 Logical versus Physical Address Space • 255

The progra·mmer, on the other hand, must design and program the
overlay structure properly. This task can be a major undertaking, requiring
complete knowledge of the structure of the program, its code, and its data
structures. Because the program is, by definition, large (small programs do
not need to be overlayed), obtaining a sufficient understanding of the
progrqm may be difficult. For these reasons, the use of overlays is
currently limited to microcomputer and other systems that have limited
amounts of physical memory and that lack hardware support for more
advanced techniques. Some microcomput-er compilers provide to the

·programmer support of overlays to make the task easier. Automatic
techniques to run large programs in limited amounts of physical memory
are certainly preferable.

8.2 • Logical versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical
address, whereas an address seen by the memory unit (that is, the one
loaded into the memory address register of the memory) is commonly
referred to as a physical address.

The compile-time and load-time address-binding schemes result in an
environment where the logical and physical addresses are the same.
However, the execqtion-time address-binding scheme results in an
environment where the logical and physical addresses differ. In this case,
we usually refer to the logical address as a virtual address. We use logical
address and virtual address interchangeably in this text. The set of all logical­
addresses generated by a program is referred to as a logical address space;
the set of all physical addresses corresponding to these logical addresses is
referred to as a physical address space. Thus, in the execution-time q.ddress­
binding scheme, the logical and physical address spaces differ.

The run-time mapping from virtual to physical addresses is qone by
the memory-management unit (MMU), which is a hardware device. There are
a number of different schemes for accomplishing such a mapping, as will
be discussed in Sections 8.4.1, 8.5, 8.6, and 8.7. For the time being, we
shall illustrate this mapping with a simple MMU scheme, which is a
generalization of the base-register scheme described in Section 2.4.

As illustrated in Figure 8.3, this scheme requires hardware support
slightly different from the hardware configuration discussed in Section 2.4.
The base register is now called a relocation register. The value in the
relocation register is added to every address generated by a user process at
the time it is sent to memory. For example, if the base is at 14,000, then an
attempt by the user to address location 0 is dynamically relocated to
location 14,000; an access to location 346 is mapped to location 14346. The
MS-DOS operating system running on the Intel 80X86 family of processors
uses four relocation registers when loading and running processes.

256 11 Chapter 8: Memory Management

logical
address

346

relocation
register

MMU

physical
address

14346

Notice that the user program never sees the" real physical
The program can create a pointer to location 346, store it
manipulate it, compare it to other addresses- all as the
when it is used as a memory address (in an indirect load or

it relocated relative to the base register. The user program
logical addresses. The memory-mapping hardware
addresses into physical addresses. This form of
was discussed in Section 8.1.1. The final location of a .-at-"'"'""'',..

address is not determined until the reference made.
Notice also that we now have two different types of

addresses (in the range 0 to max) and physical addresses
R + 0 to R + max for a base value R). The user
addresses and thinks that the process runs in locations 0
program supplies logical addresses; these logical
mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a
address space is central to proper memory management.

3 • Swapping

process needs to be in memory to be executed. A process,
swapped temporarily out of memory to a backing store, then '-'Jl"J"""'""'"

back into memory for continued execution. For example,

multiprogramming environment with a round-robin
algorithm. When a quantum expires, the memory manager
swap out the process that just finished, and to swap in
the memory space that has been freed (Figure 8.4). In
CPU scheduler will allocate a time slice to some other r,.,.,o.,,.,

When each process finishes its quantum, it will be swapped
process. Ideally, the memory manager can swap processes
that there are always processes in memory, ready to execute,
scheduler wants to reschedule the CPU. The quantum
sufficiently large that reasonable amounts of computing are
swaps.

A variant of this swapping policy is used for priority-based
algorithms. If a higher-priority process arrives and wants
memory manager can swap out the lower-priority process so
load and execute the higher-priority process. When the
process finishes, the lower-priority process can be swapped
continued. This variant of swapping is sometimes called roll

Normally a process that is swapped out will be swapped
same memory space that it occupied previously. This
by the method of address binding. If binding is done
time, then the process cannot be moved different
execution-time binding is being used, then it is possible to
into a different memory space, because the physical
computed during execution time.

G) swap out

swap in

backing store

main memory

Figure 8.4 Swapping of two processes using a disk as a uu"·"""'"'

258 • Chapter 8: Memory Management

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run .

. Whenever the CPU scheduler decides to execute a process, it calls the
dispatcher. The dispatcher checks to see whether the next process in the
queue is in memory. If the process is not, and there is no free memory
region, the dispatcher swaps out a process currently in memory and swaps
in the desired process. It then reloads registers as normal and transfers
control to the selected process.

It should be clear that the context-switch time in such a swapping
system is fairly high. To get an idea of the context-switch time, let us
assume that the user process is of size lOOK and the backing store is a
standard hard disk with a transfer rate of 1 megabyte per second. The
actual transfer of the lOOK process to or from memory takes

lOOK I 1000K per second - 1/10 second
- 100 milliseconds

Assuming that no head seeks are necessary and an average latency of 8
milliseconds, the swap time takes 108 milliseconds. Since we must both
swap out and swap in, the total swap time is then about 216 milliseconds.

For efficient CPU utilization, we want our execution time for each
process to be long relative to the swap time. Thus, in a round-robin CPU­
scheduling algorithm, for example, the time quantum should be
substantially larger than 0.216 seconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If
we have a computer system with 1 megabyte of main memory and a
resident operating system taking lOOK, the maximum size of the user
process is 900K. However, many user processes may be much smaller than
this size - say, lOOK. A lOOK process could be swapped out in 108
milliseconds, compared to the 908 milliseconds for· swapping 900K.
Therefore, it would be useful to know exactly how much memory a user

·process is using, not simply how much it might be using. Then, we would
need to swap only what is actually used, reducing swap time. For this
scheme to be effective, the user must keep the system informed of any
changes in memory requirements. Thus, a process with dynamic memory
requirements will need to issue· system calls (request memory and release
memory) to inform the operating system of its changing memory needs.

There are other constraints on swapping. If we want to swap a
process, we must be sure that it is completely idle. Of particular concern is
any pending I/O. If a process is waiting for an I/O operation, we may want
to swap that process to free up its memory. However~ if the I/O is

8.4 Contiguous Allocation • 259

asynchronousfy accessing the user memory for I/O buffers, then the process
cannot be swapped. Assume that the I/O operation was queued because the
device was busy. Then, if we were to swap out process P 1 and swap in
process P2, the I/O operation might then attempt to use memory that now
belongs to process P2. The two main solutions to this problem are (1) never
to swap a process with pending IIO, or (2) to execute I/O operations only
into operating-system buffers. Transfers between operating-system and
process memory then occur only when the process is swapped in;

The assumption that swapping requires few if any head seeks needs
further explanation. We postpone discussing this issue until Chapter 12,
where secondary-storage structure is covered. Generally, swap space is
allocated as a separate chunk of disk, separate from the file system, so that
its use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too little execution time to be a
reasonable memory-management solution. Modified versions of swapping,
however, are found on many systems.

A modification of swapping is used in many versions of UNIX.
Swapping was normally disabled, but would start if many processes were
running and were using a threshold amount of memory. Swapping
would again be halted if the load on the system was reduced. Memory
management in UNIX is described fully in Section 19.6.

PCs lack sophisticated hardware (or operating systems that take
advantage of the hardware) to implement more advanced memory­
management methods, but they are being used to run multiple, large
processes, and a modified version of swapping is the best means to· allow
them to run. A prime example is the Microsoft Windows operating
system, which supports concurrent execution of processes in memory. If a
new process is loaded and there is insufficient main memory, an old
process is swapped to disk. This operating system, however, does not
provide full swapping, because the user, rather than the scheduler, decides
when it is time to swap one process for another. Any swapped-out
process remains swapped out (and not executing) until the user selects that
process to run. The follow-on Microsoft operating system, Windows/NT,
takes advantage of advanced MMU features now found even on PCs. In
Section 8.7.2, we describe the memory-management hardware found on
the Intel 386 family of processors used in many PCs. In that section, we
also describe the memory management used on this CPU by another
advanced operating system for Pes: IBM OS/2.

8.4 • Contiguous Allocation

The main memory must accommodate both the operating system and the
various user processes. The memory is usually divided into two partitions,

260 Chapter 8: Memory Management

user

512K

Figure 8.5 Memory partition.

one for the resident operating system, and one for the user or<Jee!SSE~s
possible to place the operating system in either low memory
memory. The major factor affecting this decision is the
interrupt vector. Since the interrupt vector is often in low T""-''TT"

more common to place the operating system in low memory.
shall discuss only the situation where the operating system
memory (Figure 8.5). The development of the other situation is cu.~.,,u-"

8.4.1 Single-Partition Allocation

If the operating system is residing in low memory and the user nn"lcP'"'Sf'"'­

are executing in high memory, we need to protect the nr>.or::.

code and data from changes (accidental or malicious) by
processes. We also need to protect the user processes from one
We can provide this protection by using a relocation register, as """"""'""'"""'"'""

SectioQ 8.2, with a limit register, as discussed in Section
relocation register contains the value of the smallest physical
limit register contains the range of logical addresses (for
relocation = 100,040 and limit 74,600). With relocation
registers, each logical address must be less than the limit register;
maps the logical address dynamically by adding the value in the
register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the Ois;oattCllei
loads the relocation and limit registers with the correct values as
the context switch. Because every address generated by the CPU is

logical
address

no

trap; addressing error

physical
address

Figure 8.6 Hardware support for relocation and

against these registers, we can protect both the operating "'"'T.,,,

other users' programs and data from being modified by
process.

Note that the relocation-register scheme provides an .orr.::>rh

allow the operating-system size to change dynamically.
desirable in many situations. For example, the operating
code and buffer space for device drivers. If a device
operating-system service) is not commonly used, it is
the code and data in memory, as we might be able to use
other purposes. Such code is sometimes called transient
code; it comes and goes as needed. Thus, using this
of the operating system during program execution.

8.4.2 Multiple-Partition Allocation

Because it is desirable, in general, that there
residing in memory at the same time, we need to
how to allocate available memory to the various processes
input queue waiting to be brought into memory.
schemes for memory allocation is to divide memory
fixed-sized partitions. Each partition may contain
Thus, the degree of multiprogramming bound
partitions. When a partition is free, a process is
queue and is loaded into the free partition. When the
the partition becomes available for another
originally used by the IBM OS/360 operating system
longer in use. The scheme described next is a generalization
partition scheme (called MVT) and is used primarily in a batch

Chapter 8: Memory Management

note, however, that many of the ideas presented are
applicable to a time-sharing environment where pure segmentation

memory management (Section 8.6).
The operating system keeps a table indicating which

are available and which are occupied. Initially, all memory
user processes, and is considered as one large block of available
hole. When a process arrives and needs memory, we search for a
enough for this process. If we find one, we allocate only as
as is needed, keeping the rest available to satisfy future requests.

For example, assume that we have 2560K of memory
resident operating system of 400K. This situation leaves 2160K
processes, as shown in Figure 8.7. Given the input queue the

FCFS job scheduling, we can immediately allocate memory to .,...,.,'"',.,<='"'
P2, and P3, creating the memory map of Figure 8.8(a). We

size 260K that cannot be used by any of the remaining pr<)Ce~ssE~s
input queue. Using a round-robin CPU-scheduling with a
time unit, process P2 will terminate at time 14, releasing its
situation is illustrated in Figure 8.8(b). We then return to our

schedule the next process, process P 4, to produce the
Figure 8.8(c). Process P1 will terminate at time 28 to produce
process P5 is then scheduled, producing Figure 8.8(e).

This example illustrates the general structure of the aw)ca.no~n
processes enter the system, they are put into an

operating system takes into account the memory
process and the amount of available memory space in

Figure 8.7 Scheduling example.

1000K

--+
allocate

i700K

2000K 2000K

2300K 2300K

2560K 2560K

(a) (b) (c) (d) (e)

Figure 8.8 Memory allocation and long-term

processes are allocated memory. When a process allocated it
loaded into memory and it can then compete for the CPU. When a
terminates, it releases its memory, which the operating C'U<~t'o,rn
fill with another process from the input queue.

At any given time, we have a list of available block
queue. The operating system can order the input queue
scheduling algorithm. Memory allocated to processes until,
memory requirements of the next process be satisfied; no
block of memory (hole) is large enough to hold that
operating system can then wait until a enough block
can skip down the input queue to see whether the
requirements of some other process can be

In general, there is at any time a of holes, of various
throughout memory. When a process and needs
search this set for a hole that is large enough for this process.
too large, it is split into two: One part is allocated to the
the other is returned to the set of holes. When a process
releases its block of memory, which then placed back the
If the new hole is adjacent to other holes, we merge these amacE'n
to form one larger hole. At this point, we may need to
there are processes waiting for memory whether this
recombined memory could satisfy the demands of any of
processes.

264 • Chapter 8: Memory Management

This procedure is a particular instance of the general dynamic storage­
allocation problem, which is how to satisfy a request of size n from a list of
free holes. There are many solutions to this problem. The set of holes is
searched to determine which hole is best to allocate. First-fit, best-fit, and
worst-fit are the most common strategies used to select a free hole from the
set of available holes.

• First-fit: Allocate the first hole that is big enough. Searching can start
either at the beginning of the set of holes or where the previous first-fit
search ended. We can stop searching as soon as we find a free hole
that is large enough.

• Best-fit: Allocate the smallest hole that is big enough. We must search
the entire list, unless the list is kept ordered by size. This strategy
produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole. Again, we must search the entire
list, unless it is sorted by size. This strategy produces the largest
leftover hole, which may be more useful than the smaller leftover hole
from a best-fit approach.

Simulations have shown that both first-fit and best-fit are better than
worst-fit in terms of decreasing both time and storage utilization. Neither
first-:-fit nor best-fit is clearly better in terms of storage utilization, but first-fit is
generally faster.

8.4.3 External and Internal Fragmentation

The algorithms described in Section 8.4.2 suffer from external fragmentation.
As processes are loaded and removed from memory, the free memory
space is broken into little pieces. External fragmentation exists when
enough total memory space exists to satisfy a request, but it is not
contiguous; storage is fragmented into a large number of small holes.
Looking back at Figure 8.8, we can see two such situations. In Figure
8.8(a), there is a total external fragmentation of 260K, a space that is too
small to. sat~sfy the requests of either of the two remaining processes, P 4
and P5. In Figure 8.8(c), however, we have a total external fragmentation
of 560K (= 300K + 260K). This space would be large enough to run
process P 5 (which needs 500K), except that this free memory is not
contiguous. The free memory space is fragmented into two pieces, neither
one of which is large enough, by itself, to satisfy the memory request of
process P5 •

· This fragmentation problem can be severe. In the worst case, we could
have a block of free (wasted) memory between every two processes. If all
this memory were in one big free block, we might be abl~ to run several
more processes. The selection of first-fit versus best-fit can affect the

amount of fragmentation. (First-fit is better for some systems,
better for others.) Another factor is which end a

allocated. (Which is the leftover piece- the one on the top, or
the bottom?) No matter which algorithms are used,
fragmentation will be a problem.

Depending on the total amount of memory storage and
process size, external fragmentation may be either a minor or a
problem. Statistical analysis of first-fit, for instance, reveals
with some optimization, given N allocated blocks, another 0.5N v"'"''-"'"'
be lost due to fragmentation. That is, one-third of memory
unu~able! This property is known as the 50-percent rule.

Another problem that arises with the multiple partition
scheme is illustrated by Figure 8.9. Consider the hole of
Suppose that the next process requests 18,462 bytes. If we H

the requested block, we are left with a hole of 2 bytes. The
keep track of this hole will be substantially larger than the hole
general approach is to allocate very small holes as part
request. Thus, the allocated memory may be slightly
requested memory. difference between these two numbers
fragmentation - memory that is internal to a partition, but
used.

One solution to the problem of external fragmentation
The goal to shuffle the memory contents to place all
together in one large block For example, the memory map of
can be compacted, as shown in Figure 8.10. The three holes of
300K, and 260K can be compacted into one hole of size 660K.

next request is
for 1 bytes

} hole of 18.464 bytes

Figure 8. 9 Memory allocation made in some multiple of

266 Chapter 8: Memory Management

Compaction is not always possible. Notice that, in
moved processes P 4 and P 3. For these processes to be able to
their new locations, all internal addresses must be relocated. If
static and is done at assembly or load time, compaction
compaction is possible only if relocation is dynamic, and
execution time.

If addresses are relocated dynamically, relocation requires
the program and data, and then changing the base register to
new base address.

When compaction possible, we must determine its
compaction algorithm is simply to move all processes toward one
memory; all holes move in the other direction, producing one
available memory. This scheme can be quite expensive.

Consider the memory allocation shown in Figure 8.11. If we use
simple algorithm, we must move processes P3 and P4, for a 600K
moved. In this situation, we could simply move process P 4 above
P 3, moving only 400K, or move process P 3 below process P 4,

200K. Note that, in this last instance, our one large hole
memory is not at the end of memory, but rather is in the ""u'""'""·'"'
notice that, if the queue contained only one process that wanted
could satisfy that particular request by moving process p2 "',....,..,..., , 1"'""~·""

(such as below process P4). Although this solution does not
large hole, it does create a hole big enough to satisfy the
request. Selecting an optimal compaction strategy is quite difficult.

1700K

2000K

2300K

2560K

compact

Figure 8.10 Compaction.

0 0

300K 300K

500K 50 0K

600K 600K

BOOK
1000K

1200K 1200K

1500K

1900K

p4

300K ;..----1
p1

500K ;..-~--1

600K i----'"---1

1 OOOK ;........---;

1200K

8.5

300K 1-----;

500K

600K

i500K

2100K 2100K 2100K 2100K .___ __ __.

original allocation moved 600K moved 400K moved 200K

Figure 8.11 Comparison of some different ways to compact

Swapping can also be combined with compaction.
rolled out of main memory to a backing store and rolled
When the process is rolled out, its memory is released, and
reused for another process. When the process is to
several problems may arise. If static relocation is used, the nl".nr•:.cc

rolled into the exact same memory locations that it occupied .,.,.. .. ,..TH

This restriction may require that other processes be rolled out
memory.

If dynamic relocation (such as with base and limit
then a process can be rolled into a different location. In
free block, compacting if necessary, and roll in the process.

One approach to compaction is to roll out those prcxe·sst:!s
moved, and to roll them into different memory locations.
roll-in, roll-out is already a part of the system, the
compaction may be minimal.

8.5 Paging

Another possible solution to the external fragmentation
permit the physical address space of a process to be
allowing a process to be allocated physical memory wherever
available. One way of implementing this solution through

268 Chapter 8: Memory Management

paging scheme. Paging avoids the considerable problem of
varying-sized memory chunks onto the backing store, from which

previous memory-management schemes suffered. When some
fragments or data residing in main memory need to be swapped
must be found on the backing store. The fragmentation
discussed in connection with main memory are also prevalent

except that access is much slower, so compaction
of its advantages over the previous methods, paging

forms is commonly used in many operating systems.

8.5.1 Basic Method

Physical memory is broken into fixed-sized blocks called frames.
memory is also broken into blocks of the same size called pages.
process is to be executed, its pages are loaded into any available
frames from the backing store. The backing store divided
sized blocks that are of the same size as the memory

The hardware support for paging is illustrated in
address generated by the CPU is divided into two a page
and a page offset (d). The page number is used as an index a
The page table contains the base address of each page in physical nu->rnn

This base address is combined with the page offset to define

page table

Figure 8.12 Paging hardware.

8.5

memory address that is sent to the memory unit. The
memory is shown in Figure 8.13.

The page size (like the frame size) is defined by the
of a page is typically a power of 2 varying between 512
bytes per page, depending on the computer architecture. The se1ect1or
power of 2 as a page size makes the translation of a logical ""''-"""'"''-""'
page number and page offset particularly easy. If the size of """""'·""''""
space is 2m, and a page size is 2n addressing units (bytes or
the high-order m -n bits of a logical address designate the
and the n low-order bits designate the page offset.
address is as follows:

where p is an index into the page table and d is the
the page.

For a concrete, although minuscule, example, consider
Figure 8.14. Using a page size of 4 bytes and a physical
bytes (8 pages), we show an example of how the

logical
memory

page table

frame
number

1

2

3

4

5

6

7

physical
memory

Figure 8.13 Paging model of logical and physical

·t
i
l

l
i

l
I!
f
~~

I
I'
I
I
I
I :.

270 • Chapter 8: Memory Management

can be mapped into physical memory. Logical address 0 is page 0, offset 0.
Indexing into the page table, we find that page 0 is in frame 5. Thus,
logical address 0 maps to physical address 20 (= (5 x 4) + 0). Logical
address 3 (page 0, offset 3) maps to physical address 23 (= (5 x 4) + 3).
Logical address 4 is page 1, offset 0; according to the page table, page 1 is

· mapped to frame 6. Thus, logical address 4 maps to physical address 24 (=
(6 x 4) + 0). Logical address 13 maps to physical address 9.

Notice that paging itself is a form of dynamic relocation. Every logical
address is bound by the paging hardware to some physical address. The
observant reader will have realized that paging is similar to using a table of
base (relocation) registers, one for each frame of memory.

0 a
1 b
2 c
3 d
4 e
5 f
6 g
7 h
8 i
9 j

10 k
11 I
12 m
13 n
14 0

15 p

logical
memory

0

4 i
j
k
I

8 m
n
0

page table p
12

16

20 a
b
c
d

24 e
f
g
h

28

physical memory

Figure 8.14 Paging example for a 32-byte memory with 4-byte pages.

8.5 Paging • 271

When we use a paging scheme, we have no external fragmentation:
Any free frame can be allocated to a process that needs it. However, we
may have some in.ternal fragmentation. Notice that frames are allocated as
units. If the memory requirements of a process do not happen to fall on
page boundaries, the last frame allocated may not be completely full. For
example, if pages are 2048 bytes, a process of 72,766 bytes would need 35
pages plus 1086 bytes. It would be allocated 36 frames, resulting in an
internal fragmentation of 2048 - 1086 = 962 bytes. In the worst case, a
process would need n pages plus one byte. It would be allocated n + 1
frames, resulting in an internal fragmentation of almost an entire frame. If
process size is independent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that
small page sizes are desirable. However, there is quite a bit of overhead
involved in each page-table entry, and this overhead is reduced as the size
of the pages increases. Also, disk IIO is more efficient when the number of
data being transferred is larger (Chapter 12). Generally, page sizes have
grown over time as processes, data sets, and main memory have become
larger. Today, pages typically are either 2 or 4 kilobytes.

When a process arrives to be executed, its size, expressed in pages, is
examined. Each user page needs one frame. Thus, if the process requires rt
pages, there must be n frames available in memory. If there are n frames
available, they are allocated to this process. The first page of the process is
loaded into one of the allocated frames, and the frame number is put in
the page table for this process. The next page is loaded into another frame,
and its frame number is put into the page table, and so on (Figure 8.15).

An important aspect of paging is the clear separation between· the
user's view of memory and the actual physical memory. The user program
views that memory as one single contiguous space, containing only this
one program. In fact, the user program is scattered throughout physical
memory, which also holds other programs. The difference between the
user's view of memory and the actual physical memory is reconciled by the
address-translation hardware. The logical addresses are translated into
physical addresses. This mapping is hidden from the user and is
controlled by the operating system. Notice that the user process by
definition is unable to access memory it does not own. It has no way of
addressing memory outside of its page table, and the table includes only
those pages that the process owns.

Because the operating system is managing physical memory, it must be
aware of the allocation details of physical memory: which frames are
allocated, which frames are available, how many total frames there are,
and so on. This information is generally kept in a data structure called a
frame table. The frame table has one entry for each physical page frame,
indicating whether the latter is free or allocated and, if it is allocated, to
which page of which process or processes.

272 Chapter 8: Memory Management

free-frame list free-frame list
14 15
13 13 1
18
20 14
15

15

16

17

18

19 0
1

20 2
3

21 new-process page table 21

(a) (b)

Figure 8.15 Free frames. (a) Before allocation, and (b)

In addition, the operating system must be aware that user tmJce·ss<:~s
operate in user space, and all logical addresses must be
produce physical addresses. If a user makes a system call (to
example) and provides an address as a parameter (a buffer/
that address must be mapped to produce the correct physical
operating system maintains a copy of the page table for each
maintains a copy of the instruction counter and
copy used to translate logical addresses to physical addresses
the operating system must map a logical address to a
manually. It also used by the CPU dispatcher to define
page table when a process to be allocated the CPU.
increases the context-switch time.

8.5.2 Structure of the Page Table

Each operating system has its own methods for storing
allocate a page table for each process. A pointer to the
with the other register values (like the instruction counter) in
control block When the dispatcher told to start a process, it
the user registers and define the correct hardware page-table
the stored user page table.

8.5 Paging • 273

8.5.2.1 Hardware Support

The hardware implementation of. the page table can be done in a number
of different ways. In the simplest case, the page table is implemented as a
set of dedicated registers. These registers should be built with very high­
speed logic to make the paging address translation efficient. Every access
to memory must go through the paging map, so efficiency is a major
consideration. The CPU dispatcher reloads these registers, just as it reloads
the other registers. Instructions to load or modify the page-table registers
are, of course, privileged, so that only the operating system can cllange the
memory map. The DEC PDP-11 is an example of such an architecture. The
address consists of 16 bits, and the page size is 8K. The page table, thus,
consists of eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table is
reasonably small (for example, 256 entries). Most contemporary
computers, however, allow the page table to be very large (for example, 1
million entries). For these machines, the use of fast registers to implement
the page table is not feasible. Rather, the page table is kept in main
memory, and a page-table base register (PTBR) points to the page table.
Changing page tables requires changing only this one register,
substantially reducing context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into
the page table, using the value in the PTBR offset by the page number fori.
This task requires a memory access. It provides us with the frame number,
which is combined with the page offset to produce the actual address. We
can then access the desired place in memory. With this scheme,· two
memory accesses are needed to access a byte (one for the page-table entry,
one for the byte). Thus, memory access is slowed by a factor of 2. This
delay would be intolerable under most circumstances. We might as well
resort to swapping!

The standard solution to this problem is to use a special, small, fast­
lookup hardware cache, variously called associative registers or translation
look-aside buffers (TLBs). A set of associative registers is built of especially
high-speed memory. Each register consists of two parts: a key and a value.
When the associative registers are presented with an item, it is compared
with all keys simultaneously. If the item is found, the corresponding value
field is output. The search is fast; the hardware, however, is expensive.
Typically, the number of entries in a TLB varies between 8 and 2048.

Associative registers are used with page tables in the following way. ·
The associative registers contain only a few of the page-table entries. When
a logical address is generated by th,~ CPU, its page number is presented to a
set of associative registers that contain page numbers and their
corresponding frame numbers. If the page number is found in the
associative registers, its frame number is immediately available and is used

Chapter 8: Memory Management

to access memory. The whole task may take less than 10
than it would were an unmapped memory reference used.

If the page number is not in the associative registers, a
reference to the page table must be made. When the
obtained, we can use it to access memory (as desired). In

page number and frame number to the associative
they will be found quickly on the next reference (Figure 8.16).
already full of entries, the ope-rating system must select
replacement. Unfortunately, every time a new page table is
instance, each context switch), the TLB must be flushed (erased)
that the next executing process does not use the wrong
information. Otherwise, there could be old entries in the TLB

valid virtual addresses but have incorrect or invalid physical
over from the previous process.

The percentage of times that a page number is found in the
registers is called the hit ratio. An SO-percent hit ratio
the desired page number in the associative registers 80 n<=>rrt:•nr

If it takes 20 nanoseconds to search the associative
nanoseconds to access memory, then a mapped memory access
nanoseconds when the page number is in the ""''"'"''--'""

TLB hit

TLB miss

page table

Figure 8.16 Paging hardware with TLB.

8.5 Paging • 275

fail to find the page number in the associative registers (20 nanoseconds),
then we must first access memory for the page table and frame number
(100 nanoseconds), and then access the desired byte in memory (100
nanoseconds), for a total of 220 nanoseconds. To find the effective memory­
access time, we must weigh each case by its probability:

effective access time - 0.80 x 120 + 0.20 x 220
- 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory access time
(from 100 to 140 nanoseconds).

For a 98-percent hit ratio, we have

effective access time 0.98 X 120 + 0.02 X 220
122 nanoseconds.

This increased hit rate produces only a 22-percent slowdown in memory
access time.

The hit ratio is clearly related to the number of associative registers.
With the number of associative registers ranging between 16 and 512, a hit
rC:ltiO of 80 to 98 percent can be obtained. The Motorola 68030 processor
(used in Apple Macintosh systems) has a 22-entry TLB. The Intel 80486 CPU
(found in some IBM PC compatibles) has 32 registers, and claims a 98-
percent hit ratio.

8.5.2.2 Protection

Memory protection in a paged environment is accomplished by protection
bits that are associated with each frame. Normally, these bits are kept in
the page table. One bit can define a page to be read and write or read­
only. Every reference to memory goes through the page table to find the
correct frame number. At the same time that the physical address is being
computed, the protection bits can be checked to verify that no writes are
being made to a read-only page. An attempt to write to a read-only page
causes a hardware trap to the operating system (memory-protection
violation).

This approach to protection can be expanded easily to provide a finer
level of protection. We can create hardware to provide read-only, read­
write, or execute-only protection. Or, by providing separate protection bits
for each kind of access, any combination of these accesses can be allowed,­
and illegal attempts will be trapped to the operating system.

One more bit is generally attached to each entry in the page table: a
valid-invalid bit. When this bit is set to ''valid," this value indicates that the
associated page is in the process's logical address space, and is thus a legal
(valid) page. If the bit is set to "invalid," this value indicates that the page

Ill Chapter 8: Memory Management

00000 .-----, frame number

0

1

2

3

4

5

6

7

\
2

3

4

7

8

9

0

0

I
v

v

v

v

v

v

i

j

page table

valid-invalid bit

Figure 8.17 Valid (v) or invalid (i) bit in a page

0

1

2

3

4

5

6

7

8

9

page

not in the process's logical address Illegal addresses are
using the valid -invalid bit. The operating system sets

to allow or disallow accesses to that page. For
a 14-bit address space (0 to 16,383), we may have a

should use only addresses 0 to 10,468. Given a page of 2K, we
situation shown in Figure 8.17. Addresses in pages 0, 1,
mapped normally through the page table. Any attempt

in pages 6 or 7, however, finds that the valid
invalid, and the computer will trap to the operating cu.:,t-t:nn

Notice that as the program extends only to address
rPT'Pr~>nr•a beyond that address is illegaL However, to
classified as valid, so accesses to addresses up to 12,287 are

from 12,288 to 16,383 are invalid. This problem a
page and reflects the internal fragmentation of paging.
Rarely does a process use all of its address range. In

n .. t-..,-.a use only a small fraction of the address space available
would be wasteful in these cases to create a page table with

8.5 Paging • 277

every page in the address range. Most of this table would be unused, but
would take up valuable memory space .. Some systems provide hardware,
in the form of a page-table length register (PTLR), to indicate the size of the
page table. This value is checked against every logical address to verify
that the address is in the valid range for the process. Failure of this test
causes an error trap to the operating system.

8.5.3 Multilevel Paging
Most modern computer systems support a very large logical address space
(232 to 264). In such an environment the page table itself becomes
excessively large. For example, consider a system with a 32-bit logical
address space. If the page size in such a system is 4K bttes (212), then a
page table may consist of up to 1 million entries (232 I 2 2). Because each
entry consists of 4 bytes, each process may need up to 4 megabytes of
physical address space for the page table alone. Clearly, we would not
want to allocate the page table contiguously in main memory. One simple
solution to this is to divide the page table into smaller pieces. There are
several different ways to accomplish this.

One way is to use a two-level paging scheme, in which the page table
itself is also paged (Figure 8.18). To illustrate this, let us return to our 32-
bit machine example, with a page size of 4K bytes. A logical address is
divided into a page number consisting of 20 bits, and a page offset
consisting of 12 bits. Since we page the page table, the page number is
further divided into a 10-bit page number, and a 10-bit page offset. Thus,
a logical address is as follows:

page offset
d

12

where p1 is an index into the outer page table, and p2 is the. displacement
within the page of the outer page table. The address-translation scheme
for this architecture is shown in Figure 8.19. The VAX architecture supports
two-level paging. The v AX is a 32-bit machine with page size of 512 bytes.
The logical address space of a process is divided into four equal sections,
each of which consists of 230 bytes. Each section represents a different part
of the logical address space of a process. The first 2 high-order bits of the
logical address designate the appropriate section. The next 21 bits ·
represent the logical page number of that section, and the last 9 bits
represent an offset in the desired page. By partitioning the page table in
this manner, we allow the operating system to leave partitions unused
until a process needs them. An address on the v AX architecture is as
follows:

278 Chapter 8: Memory Management

where s designates the section number, p is an index into the
and dis the displacement within the page.

A one-level page table for a VAX process using one segment stiH
bits* 4 bytes per entry 8 megabytes. To further reduce

use, the VAX pages the user process page tables.
For a system with a 64-bit logical address space, a two-level

scheme is no longer appropriate. To illustrate this point, suppose
page in such a system 4K bytes (212). In this case, the page
consist of up to entries. If we use a two-level paging scheme,
page in the inner page table would contain 29 8-byte entries. (Eight
needed to store the 52-bit pointer to the physical page.) The outer
will thus consist of 8-byte entries, or 246 bytes.

page table
memory

Figure 8.18 A two-level page-table scheme. ·

8.5 Paging • 279

logical addre·ss

I P1 I P2 I d I

p1 {

P2{
outer-page

d{ table

page of
page table

desired page

Figure 8.19 Address translation for a two-level 32-bit paging architecture.

not want to allocate the outer page table contiguously in main memory. The
obvious solution is to divide the outer page table into smaller pieces. This
solution is also used on some 32-bit processors for added flexibility and
efficiency.

There are a number of different ways to accomplish this. We can use a
three-level paging scheme, where the outer page table itself is also paged
(resulting in a second-level outer page). Even with a third level of page tables,
each one page in length, a 64-bit address space is daunting, since the second
outer page table is stili 234 bytes large.

The next step would be a four-level paging scheme, where the second­
level outer page table itself is also paged. The SPARC architecture (with 32-
bit addressing) supports a three-level paging scheme, whereas the 32-bit
Motorola 68030 architecture supports a four-level paging scheme.

How does multilevel paging affect system performance? Given that
each level is stored as a separate table in memory, converting a logical
address to a physical one may take four memory accesses. We have now
quintupled the amourit of time needed for one memory access! Caching
again pays dividends, however, and performance remains reasonable.
Given a cache hit rate of 98 percent, we have

effective access time = 0.98 x 120 + 0.02 x 520
= 128 nanoseconds.

Thus, even with the extra levels of table lookup, we have only a 28-percent
slowdown in memory access time.

8.5.4 Inverted Page Table

Usually, each process has a page table associated with it. The page table
has one entry for each page that the process is using (or one slot for each

280 • Chapter 8: Memory Management

virtual address, regardless of the latter's validity). This table
representation is a natural one, since processes reference pages through
the pages' virtual addresses. The operating system must then translate
this reference into a physical memory address. Since the table is sorted by
virtual address, the operating system is able to calculate where in the table
·the associated physical-address entry is, and to use that value directly.
One of the drawbacks of this scheme is that each page table may consist of
millions of entries. These tables may consume large amounts of physical
memory, which is required just to keep track of how the other physical
memory is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page. Thus,
there is only one page table in the . system, and it has only one entry for
each page of physical memory. Figure 8.20 shows the operation of an
inverted page table. Compare it to Figure 8.12, which depicts a standard
page table in operation. Examples of systems using such a scheme are the
IBM System/38 computer, the IBM RISC System 6000, IBM RT, and Hewlett­
Packard Spectrum workstations.

To illustrate this scheme, we shall describe a simplified version of the
implementation of the inverted page table used in the IBM RT. Each virtual
address in the system consists of a triple

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number>. When
a memory reference occurs, part of the virtual address, consisting of
<process-id, page-number>, is presented to the memory subsystem. The
inverted page table is then searched for a match. If a match is found -
say, at entry i .- then the physical address <i, offset> is generated. if no
match is found, then an illegal address access has been attempted.

By keeping information about which virtual-memory page is stored in
each physical frame, inverted page tables reduce the amount of physical
meinory needed to store this information. However, the inverted page
table no ·longer contains complete information about the logical address
space of a process, which is required if a referenced page is not currently
in memory. For this information to be available, an external page table
(one per process) must be kept. Each such table looks like the traditional
per-process page table, containing information on where each virtual page
is located.

But do external page tables negate the utility of inverted page tables?
Since these tables are referenced only when a page fault is occurring, they
do not need to be available quickly. Instead, these tables are themselves
paged in and out of memory as necessary. Unfortunately, a page fault

page table

Figure 8.20 Inverted

physical
address

table.

may now result in the virtual-memory manager

8.5

as it pages in the external page table it needs to locate the
the backing store. This special case requires careful handling
and a delay in the page-lookup processing.

Although this scheme decreases the amount of
store each page table, it increases the amount of time needed
table when a page reference occurs. Because the inverted
sorted by a physical address, but lookups occur on virtual
whole table might need to be searched for a match. This
take far too long. To alleviate this problem, we use a hash
search to one - or at most a few page-table entries. Of
access to the hash table adds a memory to the ,....,,..,..,£:,'"''''"'0

virtual-memory reference requires at least two real-memory
the hash-table entry and one for the table. To
we use associative memory to hold
These registers are searched first, before the hash table

8.5.5 Shared Pages

Another advantage of paging is the possibility of
This consideration is particularly important a time-sharing
Consider a system that supports 40 users, each of whom '-""""-'- ... L'-'

editor. If the text editor consists of 150K of code and 50K of
would need SOOOK to support the 40 users. If the code

282 • Chapter 8: Memory Management

it can be shared, as shown in Figure 8.21. Here we see a
editor (each page of size 50K; the large page size is

figure) being shared among three processes. Each process
page.

Reentrant code (also called pure code) is non-self-modifying
reentrant, then it never changes during execution.

can execute the same code at the same time.
own copy of registers and data storage to hold the

execution. The data for two different processes will,
each process.

one copy of the editor needs to be kept in physical
page table maps onto the same physical copy of the
are mapped onto different frames. Thus, to support

we need only one copy of the editor (150K), plus 40 copies of
data per user. The total space req-pired now 2150K,
8000K a significant savings.

Other heavily used programs also can be shared: compilers,
systems, database systems, and so on. To be sharable, the

process P1

page table
for P1

page table
for P3

process P2

page table
for

1

2

3

4

5

6

7

8

9

10

Figure 8.21 Sharing of code in a paging environment.

8.6 Segmentation • 283

reentrant. The read-only nature of shared code should not be left to the
correctness of the code; the operating system should enforce this property.
This sharing of memory between processes on a system is similar to the
way threads share the address space of a task, as described in Chapter 4.

Systems that use inverted page tables have difficulty implementing
shared memory. Shared memory is usually implemented as two virtual
addresses that are mapped to one physical address. This standard method
cannot be used, however, as there is only one virtual page entry for every
physical page, so one physical page cannot have the two (or more) shared
virtual addresses.

8.6 • Segmentation

An important aspect of memory management that became unavoidable
with paging is the separation of the user's view of memory and the actual
physical memory. The user's view of memory is not the same as the actual
physical memory. The user's view is mapped onto physical memory. The
mapping allows differentiation between logical memory and physical
memory.

8.6.1 Basic Method
What is the user's view of memory? Does the user think of memory as a
linear array of bytes, some containing instructions and others containing
data, or is there some other preferred memory view? There is general
agreement that the user or programmer of a system does not think of
memory as a linear array of bytes. Rather, the user prefers to view memory
as a collection of variable-sized segments, with no necessary ordering
C\mong segments (Figure 8.22).

Consider how you think of a program when you are writing it. You
think of it as a main program with a set of subroutines, procedures,
functions, or modules. There ·may also be various data structures: tables,
arrays, stacks, variables, and so on. Each of these modules or data
elements is referred to by name. You talk about "the symbol table,"
"function Sqrt," "the main program," without caring what addresses in
memory these elements occupy. You are not concerned with whether the
symbol table is stored before or after the Sqrt function. Each of these
segments is of variable length; the length is intrinsically defined by th~
purpose of the segment in the program. Elements within a segment are
identified by their offset from the beginning of the segment: the first
statement of the program, the seventeenth entry in the symbol table, the
fifth instruction of the Sqrt function, and so on.

Segmentation is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments. Each

284 Chapter 8: Memory Management

logical address space

Figure 8.22 User's view of a program.

segment has a name and a length. Addresses specify both
name and the offset within the segment. The user therefore
address by two quantities: a segment name and an offset.
scheme with paging, where the user specified only a single
was partitioned by the hardware into a page number and
invisible to the programmer.)

For simplicity of implementation, segments are numbered
referred to by a segment number, rather than by a segment name.
logical address consists of a two tuple:

<segment-number, offset>.

Normally, the user program is compiled, and the compiler ~'""··v"'"
constructs segments reflecting the input program. A Pascal
create separate segments for (1) the global variables; (2) the
stack/ to store parameters and return addresses; (3) the
each procedure or function; and (4) the local variables of
and function. A FORTRAN compiler might create a separate
each common block. Arrays might be assigned separate
loader would take all these segments and assign them segment

8.6

8.6.2 Hardware
Although the user can now refer to objects in the program
dimensional address, the actual physical memory is stilt of
dimensional -sequence of bytes. Thus, we must define an
to map two-dimensional user-defined addresses into
physical addresses. This mapping is effected by a segment table.
of the segment table has a segment base and a segment limit.

contains the starting physical address where the "0'~n1'0~"'

memory, whereas the segment limit specifies the length of the
use of a segment table is illustrated in Figure

address consists of two parts: a segment number, s, and an
segment, d. The segment number is used as an index into
table. The offset d of the logical address must be between
segment limit. If it is not, we trap to the operating
addressing attempt beyond end of segment). If this offset
added to the base to produce the address in physical
the desired byte. The segment table thus essentially
base-limit pairs.

As an example, consider the situation shown in
five segments numbered from 0 through The
physical memory as shown. The segment table has a
each segment, giving the beginning address of the ~~'0"

segment
table

yes

no

trap; addressing error physical memory

Figure 8.23 Segmentation hardware.

286 • Chapter 8: Memory Management

segment 3

segment 0

limit
segment 4 0 1000 1400

1 400 6300
2 400 4300
3 1100 3200
4 1000 4700

table
segment 1 segment 2

logical address space

Figure 8.24 Example of segmentation.

memory (the base) and the length of that segment (the
segment 2 is 400 bytes long, and begins at location 4300.
to byte 53 of segment 2 is mapped onto location 4300 +
reference to segment 3, byte 852, is mapped to 3200 (the
3) + 852 4052. A reference to byte of 0
trap to the operating system, as this segment only 1000

8.6.3 Implementation of Segment Tables

Segmentation is closely related to the partition
management presented earlier, the main difference being

1400

2400

3200

5700

6300

may consist of several segments. Segmentation is a more £'tHTlr\

however, which is why we are describing it after
the page table, the segment table can be put either in

memory

8.6 Segmentation • 287

memory. A segment table kept in registers can be referenced quickly; the
addition to the base and comparison with the limit can be done
simultaneously to save time.

In the case where a program may consist of a large number of
segments, it is not feasible to keep the segment table in registers, so we
must keep it in memory. A segment-table base register (STBR) points to the
segm~nt table. Also, because the number of segments used by a program
may vary widely, a segment-table length register (STLR) is used. For a logical
address (s,d), w~ first check that the seg.tnent number s is legal (that is, s <
STLR). Then, we add the segment number to the STBR, resulting in the
address (STBR + s) in memory of the segment-table entry. This entry is
read from memory and we proceed as before: Check the offset against the
segll\ent length and compute the physical address of the desired byte as
the sum of the segment base and offset.

As occurs with paging, this .. mapping requires two memory references
per logical address, effectively slowing the computer system by a· factor of
2, t~niess · something is done. The normal solution is to use a set of
associative registers to hold the most recently used segment-table entries.
Again, a relatively small set of associative registers can generally reduce
the time required for memory accesses to no more than 10 or 15 percent
slower than unmapped memory accesses.

8.6.4 Protection and Sharing
A particular advantage of segmentation is the association of protection
with the segments. Because the segments represent a semantically defined
portion of the program, it is likely that all entries in the segment will be
used the same way. Hence, we have. some segments that are instructions,
whereas other segments are data. In a modern architecture, instructions
are non-self-modifying, so instruction segments can be defined as read­
only or execute-only. The memory-mapping hardware will check th~
protection bits associated with each segment-table entry to prevent illegal
accesses to memory, such as attempts to write into a read-only segment, or
to use an execute-only segment as data. By placing an array in its own
segment, the memory-management hardware will automatically check that
array indexes are legal and do not stray outside the array boundaries.
Thus, many common ·program errors will be detected by the hardware
before they can cause serious damage.

Another advantage of segmentation involves the sharing of code or
data. Each process has a segment table associated with its process control·
block, which the dispatcher uses to define the hardware s~gm,ent table
when this process is given the CPU. Segments are shared when entries in
the segment tables of two different processes point to the same physical
locations. (Figure 8.25).

Chapter 8: Memory Management

segment 0
43062

segment 1

logical memory
process P1

segment table
process P1 68348 f.-t-,,.,-;.,.,-;.--.~~,.,-;..,-~

segment 0

segment 1

logical memory
process

segment table
process P2

72773

90003

98553

physical memory

Figure 8.25 Sharing of segments in a segmented memory

The occurs at the segment level. Thus, any
defined to be a segment. Several segments can

a program composed of several segments can be shared.
For example, consider the use of a text editor in a

complete editor might be quite large, composed
segments can be shared among all users, limiting

memory needed to support editing tasks. Rather than n
editor, we need only one copy. For each user, we still
unique segments to store local variables. These segments, of course,
not be shared.

8.6 Segmentation • 289

It is also possible to share only parts of programs. For example,
common subroutine packages can be shared among many users if they are
defined as sharable, read-only segments. Two FORTRAN programs, for
instance, may use the same Sqrt subroutine, but only one physical copy of
the Sqrt routine would be needed.

Although this sharing appears simple, there are subtle considerations.
Code segments typically contain references to themselves. For example, a
conditional jump normally has a transfer address. The transfer address is a
segment ·number and offset. The segment number of the transfer address
will be the segment number of the code segment. If we try to share this
segment, all sharing processes must define the shared code segm~nt to
have the same segment number. ·

For instance, if we want to share the Sqrt routine, and one process
wants to make it segment 4 and another wants to make it segment 17, how
should the Sqrt routine refer to itself? Because there is only one physical
copy of Sqrt, it must refer to itself in the same way for both users - it
must have a unique segment number. As the number of users sharing the
segment increases, so does the difficulty of finding an acceptable segment
number. · ·

Read-only data segments that contain no physical pointers may be
shared as different segment numbers, as may code segments that refer to
themselves not directly, but rather only indirectly. For example,
conditional branches that specify the branch address as an offset from the
current program counter or relative to a register containing the current
segment number would allow code to avoid dir~ct reference to the current
segment number.

8.6.5 Fragmentation
The long-term scheduler must find and allocate memory for all the
segments of a user program. This situation is similar to paging except that
the segments are of variable length; pages are all the same size. Thus, as
with ·the variable-sized partition scheme, memory allocation is a dynamic
storage-allocation problem, usually solved with a best-fit or first-fit
algorithm.

Segmentation may then cause external fragmentation, when all blocks
of free memory are too small to accommodate a seg~ent. In this case, the
process may simply have to wait until more memory (or at least a larger
hole) becomes available, or compaction may be used to create a larger hole ..
Because segmentation is by its nature a dynamic relocation algorithm, we
can compact memory whenever we want. If the CPU scheduler must wait
for one process, due to a memory-allocation problem, it may (or may not)
skip through the CPU queue looking for a smaller, lower-priority proce~s to
run.

290 • Chapter 8: Memory 'Management

How serious a problem is external fragmentation for a segmentation
scheme? Would long-term scheduling with compaction help? The answers
to these questions depend mainly on the average segment size. At one
extreme, we could define each process to be one· segment. This approach
reduces to the variable-sized partition scheme. At the other extreme, every
byte could be put in its own segment and relocated separately. This
arrangement eliminates external fragmentation altogether; however, every
byte would need a base register for its relocation, doubling memory use!
Of course, the next logical step- fixed-sized, small segments- is paging.
Generally, if the average segment size is small, external fragmentation will
also be sma~l. (By analogy, consider putting suitcases in the trunk of a car;
they never quite seem to fit. However, if you open the suitcases and put
the individual items in the trunk, everything fits.) Because the individual
segments are smaller than the overall process, they are more likely to fit in
the available memory blocks.

8.7 • Segmentation with Paging

Both paging and segmentation have their advantages and disadvantages.
In fact, of the two most popular microprocessors now being used, the
Motorola 68000 line is designed based on a flat address space, whereas the
Intel 80X86 family is based on segmentation. Both are merging memory
models toward a mixture of paging and segmentation. It is possible to
cornbjne these two schemes to improve on each. This combination is best
illustrated by two different architectures - the innovative but not widely
used MULTICS system and the Intel 386.

8.7.1 MULTICS
I

In the MULTICS system, a logical address is formed from an 18~bit segment
number and a 16-bit offset. Although this scheme creates a 34-bit address
space, the segment-table overhead is tolerable; we need only as many
segment-table entries as we have segments, as there need not be empty
segment-table entries.

'·However, with segments of 64K words, each of which consists of 36
bits, the average segment size could be large and external fragmentation
could be a problem. Even if external fragmentation is not a problem, the
sea·rch time to allocate a segment, "!J.Sing first-fit or best-fit, could be long.
Thus, we may waste memory due to external fragmentation, or waste time
due to lengthy searches, or both. ·

The solution adopted was to page the segments. Paging eliminates
external fragmentation and makes the allocation problem trivial; any empty
frame can be used for a desired page. Each page in MULTICS consists of lK

8. 7 Segmentation with

logical address

STBR

segment table

yes

trap

page table for
segments

physical
address

8.26 Paged segmentation on the GE 645

words. Thus, the segment offset (16 bits) is broken
number and a 10-bit page offset. The page number

to give the frame number. Finally, the frame
with the offset to form a physical address. The
shown in Figure 8.26. Notice that the difference ru:H,;Art:UC>rt

segmentation is that the segment-table entry
of the segment, but rather the base address of a

We must now have a separate page table for each
each segment is limited in length by its """'"'man

table does not need to be full sized. It requires
as are actually needed. As with paging, the last page of
generally will not be completely fulL Thus, we will have, on

Chapter 8: Memory Management

one-half page of internal fragmentation per segment.
although we have eliminated external fragmentation, we have
internal fragmentation and increased table-space overhead.

In truth, even the paged-segmentation view of MULTICS just nl"'"'"""n
simplistic. Because the segment number is an 18-bit quantity, we

have up to 262,144 segments, requiring an excessively large
ease this problem, MULTICS pages the segment table!

number (18 bits) is broken into an 8-bit number and a
Hence, the segment table is represented by a page table

up to 28 entries. Thus, in generaL a logical address in
follows:

6

where s1 is an index into the page table of the segment table
displacement within the page of the segment table. Now we
the page containing the segment table we want. Then, d 1 a
into the page table of the desired segment, and finally, d2 a
into the page containing the word to be accessed (see Figure 8.27).

To ensure reasonable performance, 16 associative
that contain the address of the 16 most recently
register consists of two parts: a key and a value. The key is a
that is the concatenation of a segment number and a
value is the frame number.

page table
for segment

table
page of

segment table

page table
for segment

Figure 8.27 Address translation in MULTICS.

8. 7 Segmentation with Paging • 293

8.7.2 OS/2 32-Bit Version
The new IBM OS/2 32-bit version is an operating system running on top of
the Intel 386 (and 486) architecture. The 386 uses segmentation with
paging for memory management. The maximum number of segments per
process is 16K, and each segment can be as large as 4 gigabytes. The page
size is 4K bytes. We shall not give a complete description of the memory­
management structure of the 386 in this text. Rather, we shall present the
major ideas.

The logical address space of a process is divided into two partitions.
The first partition consists of up to 8K segments that are private to that
process. The second partition consists of up to 8K segments that are
shared among all the processes. Information about the first partition is
kept in the local descriptor table (LDT), information about the second partition
is kept in the global descriptor table (GDT). Each entry in the LOT and GOT
table consists of 8 bytes, with detailed information about a particular
segment including the base location and length of that segment.

The logical address is a pair (selector, offset), where the selector is a
16-bit number:

s g p

13 1 2

in which s designates the segment number, g indicates whether the
segment is in the GOT or LOT, and p deals with protection. The offset is a
32-bit number specifying the location of the byte (word) within the
segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LOT or GOT.
This cache lets the 386 avoid having to read the descriptor from memory
for every memory reference.

The physical address on the 386 is 32 bits long and is formed as
follows. The select register points to the appropriate entry in the LOT or
GOT. The base and limit information about the segment in question are
used to generate a linear address. First, the limit is used to check for
address validity. If the address is not valid, a memory fault is generated,
resulting in a trap to the operating system. If it is valid, then the value of
the offset is added to the value of the base, resulting in a 32-bit linear.
address. This address is then translated into a physical address.

As pointed out previously, each segment is paged, and each page is 4K
bytes. A page table may thus consist of up to 1 million entries. Because
each entry consists of 4 bytes, each process may need up to 4 megabytes of
physical address space for the page table alone. Clearly, we would not
want to allocate the page table contiguously in main memory. The

294 • Chapter 8: Memory Management

solution adopted in the 386 is to use a two-level paging scheme. The
linear address is divided into a page number consisting of 20 bits, and a
page offset consisting of 12 bits. Since we page the page table, the page
number is further divided into a 10-bit ·page directory pointer and a 10-bit
page table pointer. The logical address is as follows:

page offset
d
12

The address-translation scheme for this architecture is similar to the
scheme shown in Figure 8.19. The Intel address translation is shown in
more detail in Figure 8.28. So that the efficiency of physical-memory use
can be improved, Intel 386 page tables can be swapped to disk. In this
case, an invalid bit is used in the page-directory entry to indicate whether
the table to which the entry is pointing is in memory or on disk. If the
table is on disk, the operating system can use the other 31 bits to specify
the disk location of the table; the table then can be brought into memory
on demand.

8.8 • Summary

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged
segmentation. The greatest determinant of the method used in a particular
system is the hardware provided. Every memory address generated by the
CPU must be checked for legality and possibly mapped to a physical
address. The checking cannot be implemented (efficiently) in software.
Hence, we are constrained by the hardware available ..

The memory-management algorithms discussed (contiguous allocation,
paging, segmentation, and combinations of paging and segmentation)
differ in many aspects. The following list indicates some important
considerations that you should use in comparing different memory­
. management strategies:

• Hardware support: A simple base register or a pair of base and limit
registers is sufficient for the single and multiple partition schemes,
whereas paging and segmentation need mapping tables to define the
address map.

• Performance: As the algorithm becomes more complex, the time
required to map a logical address to a physical address increases. For
the simple systems, we need only to compare or add to the logical
address - operations that are fast. Paging and segmentation can be as

8.8

16 32

descriptor table

linear address

page directory page table

Figure 8.28 Intel 80386 address translation.

fast if the table is implemented in fast registers.
memory, however, user memory accesses can

0

substantially. A of associative registers can reduce the
degradation to an acceptable level.

• Ftagmentation: A multiprogrammed system will
more efficiently with a higher level of multiprogramming.

page frame

set of processes, we can increase the multiprogramming level
packing more processes into memory. To accomplish
must reduce memory waste or fragmentation. Systems
allocation units, such as the single-partition scheme and

296 • Chapter 8: Memory Management

from internal fragmentation. Systems with variable-sized allocation
units, such as the multiple-partition scheme and segmentation, suffer
from external fragmentation.

• Relocation: One solution to the external-fragmentation problem is
compaction. Compaction involves shifting a program in memory
without the program noticing the change. This consideration requires
that logical addresses be relocated dynamically, at execution time. If
addresses are relocated only at load time, we cannot compact storage.

• Swapping: Any algorithm can have swapping added to it. At intervals
determinecl- by the operating system, usually dictated by CPU­
scheduling policies, processes are copied from main memory to a
backing store, and later are copied back to main memory. This scheme
allows more processes to be run than can be fit into memory at one
time.

• Sharing: Another means of incre&sing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used, to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but
shared programs and data must be designed carefully.

• Protection: If paging or segmentation is provided, different sections of
a user program can be declared execute-only, read-only, or read-write.
This· restriction is n~cessary with shared code or data, and is generally
useful in any case to provide simple run-time checks for common
programming errors.

• Exercises

8.1 Explain the difference between logical and physical addresses.

8.2 Explain the following allocation algorithms:

a. First-fit

b. Best-fit

c. Worst-fit

8.3 When a process is rolled out of memory, it loses its ability to use the
CPU (at least for a while). Describe another situation where a process
loses it~ ability to use the CPU, but where the process does not get
rolled out.

8.4 Explain the difference between internal and external fragmentation.

Exercises • 297

8.5 Given memory partitions of lOOK, SOOK, 200K; 300K, and 600K (in
order), how would each of the First-fit, Best-"fit, and Worst.;.fit
algorithms place processes of 212K, 417K, 112K, and 426K (in order)?
Which algorithm makes the most efficient use of memory?

8.6 Consider a system where a program can be separated into two parts:
code and data. The CPU knows whether it wants an instruction
(instruction fetch) or data (data fetch or store). Therefore, two
base-limit register pairs are provided: one for instructions and one
for data. The instruction base'- limit register pair is automatically
read-only, so programs can be shared among different users. Discuss
the advantages and disadvantages of this scheme.

8. 7 Why are pages sizes always powers of 2?

8.8 Consider a logical address space of eight pages of 1024 words each,
mapped onto a physical memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

8. 9 Why is it that, on a system with paging, a process cannot access
meinory it does not own? How could the operating system allow
access to other memory? Why should it or should it not?

8.10 Consider a paging system with the page table stored in memory.

a. If a memory reference hikes 200 nanoseconds, how long does a
paged memory reference take?

b. If we add associative registers, arid 75 percent of all page-table
references are found in the associative registers, what is the
effective memory reference time? (Assume that finding a page­
table entry in the associative registers takes zero time, if the entry
is there.)

8.11 What is the effect of allowing two entries in a page table to point to
the same page frame in memory? Explain how this effect could be
used to decrease the amount of time needed to copy a large amount
of memory from one place to another. What would the effect of
updating some byte in the one page be on the other page?

8.12 Why are segmentation and paging sometimes combined into one
scheme?

8.13 Describe a mechanism by which one segment could belong to the
address space of two different processes.

8.14 Explain why it is easier to share a reentrant module using
segmentation than it is to do so when pure paging is used.

l
I
t

298 • Chapter 8: Memory Management

8.15 Sharing segments among processes without reqmnng the same
segment number is possible in a dynamically-linked segmentation
system.

a. Define a system that allows static linking and sharing of segments
without requiring that the segment numbers be the same.

b. Describe a paging scheme that allows pages to be shared without
requiring that the page numbers be the same.

8.16 Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 0,430

b. 1,10

c. 2,500

d. 3,400

e. 4,112

8.17 Consider the Intel address translation scheme shown in Figure 8.28.

a. Describe all the steps that are taken by the Intel 80386 in
translating a logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation hardware?

c. Are there any disadvantages to this address translation system?

8.18 In the IBM/370, memory protection is provided through the use of keys.
A key is a 4-bit quantity. Each 2K block of memory has a key (the
storage key) associated with it. The CPU also has a key (the protection
key) associated with it. A store operation is allowed only if both keys
are equal, or if either is zero. Which of the following memory­
management schemes could be used successfully with this hardware?

a. Bare machine

b. Single~user system

Bibliographic Notes • 299

c. Multiprogramming with a fixed number of processes

d. Multiprogramming with a variable number of processes

e. Paging

f. Segmentation

Bibliographic Notes

Dynamic storage allocation was discussed by Knuth [1973, Section 2.5],
who found through simulation results that first-fit is generally superior to
best-fit. Additional discussions were offered by_ Shore [1975], Bays [1977],
Stephenson [1983] and Brent [1989]. An adaptive exact-fit storage­
management scheme was presented by Oldehoeft and Allan [1985].
Discussions concerning the 50-percent rule were offered by Knuth [1973].

The concept of paging can be credited to the designers of the Atlas
system, which has been described by Kilburn et al. [1961] and Howarth et
al. [1961]. The concept of segmentation was first discussed by Derinis
[1965]. Paged segmentation was first supported in the GE 645, on which
MULTICS was originally implemented [Organick 1972].

Inverted page tables were discussed in an article about the IBM RT

storage manager by Chang and Mergen [1988].
Cache memories, including associative memory, were described and

analyzed by Smith [1982]. This paper also includes an extensive
bibliography on the subject. Hennessy and Patterson [1990] discussed the
hardware aspects of TLBs, caches, and MMUs.

The Motorola 68000 microprocessor family was described in Motorola
[1989a]. The Intel 8086 was described in Intel [1985a]. The Intel 80386
paging hardware was. described in Intel [1986]. Tanenbaum [1992] also
discussed Intel 80386 paging. The new Intel 80486 hardware was covered
in Intel [1989].

CHAPTER 9

VIRTUAL
MEMORY

In Chapter 8, we discussed various memory-management strategies that
have been used in computer systems. All these strategies have the same
goal: to keep many processes in memory simultaneously to allow
multiprogramming. However, they tend to require the entire process to be
in memory before the process can execute.

Virtual memory is a technique that allows the execution of processes
that may not be completely in memory. The main visible advantage of this
scheme is that programs can be larger than physical memory. Further, it
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from concern over memory storage
limitations. Virtual memory is not easy to implement, however, and may
substantially decrease performance if it is used carelessly. In this chapter,
we discuss virtual memory in the form of demand paging, and examine its
complexity and cost.

9.1 • Background

The memory-management algorithms of Chapter 8 are necessary because
of one basic requirement: The instructions being executed must be in
physical memory. The first approach to meeting this requirement is to
place the entire logical address space in physical memory. Overlays and
dynamic loading can help ease this restriction, but they generally require
special precautions and extra effort by the programmer. This restriction

301

302 • Chapter 9: Virtual Memory

seems both necessary and reasonable, but it is also unfortunate, since it
limits the size of a program to the size of physical memory.

In fact, an examination of real programs shows us that, in many cases,
the entire program is not needed. For instance,

• Programs often have code to handle unusual error conditions. Since
these errors seldom, if ever, occur in practice, this code is almost never
executed.

• Arrays, lists, and tables are often allocated more memory than they
actually need. An array may be declared 100 by 100 elements, even
though it is seldom larger than 10 by 10 elements. An assembler
symbol table may have. room for 3000 symbols, although the average
program has less than 200 symbols.

• Certain options and features of a program may be used rarely. For
instance, the routines on U.S. government computers which balance
the budget have not been used in years.

Even in those cases where the entire program is needed, it may not all be
needed at the same time (such is the case With overlays, for example).

The ability to execute a program that is only partially in memory would
h~we many benefits:

• A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming
task.

• Because each user program could take less physical memory, more
programs could be run at the same time, with a corresponding increase
in CPU utilization and throughput, but with no increase in response
time or turnaround time.

• Less I/O would be needed to load or swap each user program into
memory, so each user program would run faster.

Thus, running a program that is not entirely in memory would benefit
both the system and the user.

Virtual memory is the separation of user logical memory from physical
memory. This separation allows an extremely large virtual memory to be
provided for programmers when only a smaller physical memory is
available (Figure 9.1). Virtual memory makes the task of programming
much easier, because the programmer no longer needs to worry about the
amount of physical memory available, or about what code can be placed in
overlays, but can concentrate instead on the problem to be programmed.
On systems which support virtual memory, overlays have virtually
disappeared.

pageO

page 1

page2

page n

virtual
memory

memory
map

physical
memory

9.2 Demand

Figure 9.1 Diagram showing virtual memory larger than

Virtual memory is commonly implemented by demand
also be implemented in a segmentation system. Several
paged segmentation scheme, where segments are broken
Thus, the user view is segmentation, but the
implement this view with demand paging. Demand c.po-1rtf)•n

be to provide virtual memory. Burroughs' computer
used demand segmentation. The IBM OS/2 operating
demand segmentation. However, segment-replacement
more complex than ate page-replacement algorithms because
have variable sizes.

2 Demand Paging

demand-paging system is similar to a paging system
(Figure 9.2). Processes reside on secondary memory (which
disk). When we want to execute a process, we swap it
Rather than swapping the entire process into memory,

• 303

we use

304 B Chapter 9: Virtual Memory

program
A

program
8

'

"

main
memory

swap in

Figure 9.2 Transfer of a paged memory to contiguous disk ,LJ,,,LC

lazy swapper. A lazy swapper never swaps a page into memory
page will be needed. Since we are now viewing a process as a

rather than one large contiguous address space, the use
swap is technically incorrect. A swapper manipulates
whereas a pager is concerned with the individual of a
shall thus use the term pager, rather than swapper, in
demand paging.

When a process to be swapped in, the
will be used before the process is swapped out
in a whole process, the pager brings only those
memory. Thus, it avoids reading into memory
anyway, decreasing the swap time and the amount of
needed.

With this scheme, we need some form of hardware
distinguish between those pages that are in memory and those
are on the disk. The valid- invalid bit scheme described in
be used for this purpose. This time, however, when this
"valid," this value indicates that the associated page is both
memory. If the bit is set to "invalid," this value indicates
either not valid (that is, not in the logical address space of the ""''"''"'r.:)c

9.2 Demand

is valid but is currently on the disk The page-table entry
brought into memory is set as usual, but the page-table
that is not currently in memory is simply marked invalid,
address of the page on disk. This situation is depicted

Notice that marking a page invalid will have no '-'!.'"'"'"''­

never attempts to access that page. Hence, if we guess right
all and only those pages that are actually needed, the
exactly as though we had brought in all pages. While the
and accesses pages that are memory resident, execution proceeds

But what happens if the process tries to use a page
brought into memory? Access to a page marked invalid causes a ·r~nr~"-'~"171

trap. The paging hardware, in translating the address
table, will notice that the invalid bit is set, causing a trap
system. This trap is the result of the operating system's failure
desired page into memory (in an attempt to

0

1

2

3

4

5

6

7

logical
memory

frame

0

1

2

3

4

5

6

7

valid-invalid
bit

~ ' 4 v

i

6 v

j

i

9 v

i

i

page table

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

physical memory

Figure 9.3 Page table when some pages are not in

-

306 • Chapter 9: Virtual Memory

overhead and memory requirements), rather than an invalid address error
as a result of an attempt to use an illegal memory address (such as an
incorrect array subscript). We must therefore correct this oversight. The
procedure for handling this page fault is simple (Figure 9.4):

1. We check an internal table (usually kept with the process control block)
for this process, to determine whether the reference was a valid or
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, ·
but we have not yet brought in that page, we now page in the latter.

3. We find a free frame (by taking one from the free-frame list, for
example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in
memory.

6. We restart the instruction that was interrupted by the illegal address
trap. The process can now access the page as though it had always
been in memory.

It is important to realize that, because we save the state (registers,
condition code, instruction counter) of the interrupted process when the
page fault occurs, we can restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. In
this way, we are able to execute a process, even though portions of it are
not (yet) in memory. When the process tries to access locations that are not
in memory, the hardware traps to the operating system (page fault). The
operating system reads the desired page into memory and restarts the
process as though the page had always been in memory.

In the extreme case, we could start executing a process with no pages
in memory. When the operating system set the instruction pointer to the

. first instruction of the process, which is on a non-memory-resident page,
the process would immediately fault for the page. Mter this page was
brought into memory, the process would continue to execute, faulting as
necessary until every page that it needed was actually in memory. At that
point, it could execute with no more faults. This scheme is pure demand
paging: Never bring a page into memory until it is required.

Theoretically, some programs may access severai new pages of
memory with each instruction execution, (one page for the instruction and
many for data) possibly causing multiple page faults per instruction. This
situation would result in unacceptable system performanc~. Fortunately,

operating
system

reference

C0

0
restart

instruction
page table

reset page
table

0 page is on
backing store

0
trap

physical
memory

9.2 Demand

bring in
missing page

Figure 9.4 Steps in handling a page fault.

analysis of running processes show that this behavior
unlikely. Programs tend to have locality of reference,
9. 1, which results in reasonable performance from demand 1-'""l"'~-'"'r.

The hardware to support demand paging is the same as
and swapping:

• Page table: This table has the ability to mark an
a valid -invalid bit or special value of protection

• Secondary memory: This memory holds those
memory. The secondary memory is usually a
known as the swap device, and the section
purpose known as swap space or backing store.
is further discussed in Chapter 12.

In addition to this hardware support, considerable crn·r"''

we shall see.
as

308 • Chapter 9: Virtual Memory

Some additional architectural constraints must be imposed. A crucial
issue is the need to be able to restart any instruction after a page fault. In
most cases, this requirement is easy to meet. A page fault could occur at
any memory reference. If the page fault occurs on the instruction fetch, we
can restart by fetching the instruction again. If a page fault occurs while

. we are fetching an operand, we must re-fetch the instruction, decode it
again, and then fetch the operand.

As a worst case, consider a three-address instruction such as ADD the
content of A to B placing the result in C. The steps to execute this
instruction would be

1. Fetch and decode the instruction {ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we faulted when we tried to store in C (because C is in a page not
currently in memory), we would have to get the desired page, bring it in,
correct the page table, and restart the instruction. The restart would
require fetching the instruction again, decoding it again, fetching the two
operands again, and then adding again. However, there is really not much
repeated work (less than one complete instruction), and the repetition is
necessary only when a page fault occurs.

The major difficulty occurs when one instruction may modify several
different locations. For example, consider the IBM System 360/370 MVC
(move character) instruction, which can move up to 256 bytes from one
location to another (possibly overlapping) location. If either block (source
or destination) straddles a page boundary, a page fault might occur after
the move is partially done. In addition, if the source and destination blocks
overlap, the source block may have been modified, in which case we
cannot simply restart the instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a

. page fault is going to occur, it will happen at this step, before anything is
modified. The move c~n then take place, as we know that no page fault
can occur, since all the relevant pages are in memory. The other solution
uses temporary registers to hold the values of overwritten locations. If
there is a page fault, all the old values are written back into memory before
the trap occurs. This action restores memory to its state before the
instruction was started, .so that the instruction can be repeated.

A similar architectural problem occurs in machines that use special
addressing modes, including autodecrement and autoincrement modes (for
example, the PDP-11). These addressing modes use a register as a pointer

9.3 Performance of Demand Paging • 309

and automatically decrement or increment the register as indicated.
Autodecrement automatically decrements the register before using its
contents as the operand address; autoincrement automatically increments
the register after using its contents as the operand address. Thus, the
instruction

MOV (R2)+,-(R3)

copies the contents of the location pointed to by register 2 into the location
pointed to by register 3. Register 2 is incremented (by 2 for a word, since
the PDP-11 is a byte-addressable computer) after it is used as a pointer;
register 3 is decremented (by 2) before it is used as a pointer. Now
consider what will happen if we get a fault when trying to store into the
location pointed to by register 3. To restart the instruction, we must reset
the two registers to the values they had before we started the execution of
the instruction. One solution is to create a new special status register to
record the register number and amount modified for any register that is
changed during the execution of an instruction. This status register allows
the operating system to ·"undo" the effects of a partially executed
instruction that causes a page fault.

These are by no means the only architectural problems resulting from
adding paging to an existing architecture to allow demand paging, but
they illustrate some of the difficulties. Paging is added between the CPU
and the memory in a computer system. It should be entirely transparent to
the user process. Thus, people often assume that paging could be added to
any system. Although this assumption is true for a non-demand paging
environment, where a page fault represents a fatal error, it is not true in
the case where a page fault means only that an additional page must be
brought into memory and the process restarted.

9.3 • Performance of Demand Paging

Demand paging can have a significant effect on the performance of a
computer system. To see why, let us compute the effective access time for a
demand-paged memory. The memory access time, rna, for most computer
systems now ranges from 10 to 200 nanoseconds. As long as we have no
page faults, the effective access time is equal to the memory access time. If,
however, a page fault occurs, we must first read the relevant page from
disk, and then access the desired word.

Let p be the probability of a page fault (0 < p < 1). We would expect p
to be close to zero; that is, there will be only a few page faults. The effective
access time is then

effective access time = (1-p) x rna + p x page fault time.

-~
-~

310 • Chapter 9: Virtual Memory

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence
to occur:

1. Trap to the operating system.

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check that the page reference was legal and determine the location of
the page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling;
optional).

7. Interrupt from the disk (1/0 completed).

8. Save the registers and process state for the other user (if step 6

9.

10.

11.

executed).

Determine that the interrupt was from the disk.

Correct the page table and other tables to show that the desired page
is now in memory.

Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, then
resume the interrupted instruction.

Not all of these steps may be necessary in every case. For example, we are
assuming that, in step 6, the CPU is allocated to another process while the
IIO occurs. This arrangement allows multiprogramming to maintain CPU
utilization, but requires additional time to resume the page-fault service
routine when the 1/0 transfer is complete.

In any case, we are faced with three major components of the page­
fault service time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

9.3 Performance of Demand Paging • 311

The first and third tasks may be reduced, with careful coding, to
several hundred instructions. These tasks may take from 1 to 100
microseconds each. The page-switch time, on the other hand, will probably .
be close to 24 milliseconds. A typical hard disk has an average latency of 8
milliseconds, a seek of 15 milliseconds and a transfer time of 1 millisecond.
Thus, the total paging time would be close to 25 milliseconds, including
hardware and software time. Remember also that we are looking at only
the device service time. If a queue of processes is waiting for the device
(other processes that have caused page faults), we have to add device
queueing time as we wait for the paging device to be free to service our
request, increasing the time to swap even more.

If we take an average page-fault service time of 25 milliseconds and a
memory access time of 100 nanoseconds, then the effective access time in
nanoseconds is

effective access time (1-p) x (100) + p x (25 milliseconds)
- (1-p) X 100 + p X 25,000,000

100 + 24,999,900 X P·

We see then that the effective access time is directly proportional to the
page-fault rate. If one access out of 1000 causes a page fault, the effective
access time is 25 microseconds. The computer would be slowed down by a
factor of 250 because of demand paging! if we want less than 10-percent
degradation, we need

110 > 100 + 25,000,000 X p,
10 > 25,000,000 X p,
p < 0.0000004.

That is, to keep the slowdown due to paging to a reasonable level, we can
allow only less than 1 memory access out of 2,500,000 to page fault.

It is important to keep the page-fault rate low in a demand-paging
system. Otherwise, the effective access time increases, slowing process
execution dramatically.

One additional aspect of demand paging is the handling and overall
use of swap space. Disk 110 to swap space is generally faster than that to
the file system. It is faster because swap space is allocated in much larger
blocks, and file lookups and indirect allocation methods are not used (see
Chapter 12). It is therefore possible for the system to gain better paging
throughput, by copying an entire file image into the swap space at process
startup, and then to perform demand paging from the swap space.
Systems with limited swap space can employ such a different scheme
when binary files are used. Demand pages for such files are brought
directly from the file system. However, when page replacement is called
for, these pages can simply be overwritten (because they are never

312 • Chapter 9: Virtual Memory

modified) and read in from the file system again if needed. Yet another
option is initially to demand pages from the file system, but to write the
pages to swap space as they are replaced. This approach will ensure that
only needed pages are ever read from the file system, but all subsequent
paging is done from swap space. This method appears to be a good
compromise; it is used in BSD UNIX.

9.4 • Page Replacement

In our presentation so far, the page-fault rate is not a serious problem,
because each page is faulted for at most once, when it is first referenced.
This representation is not strictly accurate. Consider that, if a process of

, 10 pages actually uses only one-half of them, then demand paging saves
the I/O necessary to load the five pages that are never used. We could also
increase our degree of multiprogramming by running twice as many
processes. Thus, if we had 40 frames, we could run eight processes, rather
than the four that could run if each required 10 frames (five of which were
never used).

If we increase our degree of multiprogramming, we are over-allocating
memory. If we run six processes, each of which is 10 pages in size, but
actually uses only five pages, we have higher ·cpu utilization and
throughput, with 10 frames to spare. It is possible, however, that each of
these processes, for a particular data set, may suddenly try to use all 10 of
its pages, resulting in a need for 60 frames, when only 40 are available.
Although this situation may be unlikely, it becomes much more likely as
we increase the multiprogramming level, so that the average memory
usage is close to the available physical memory. (In our example, why stop
at a multiprogramming level of six, when we can move to a level of seven
or eight?)

Over-allocating will show up. in the following way. While a user
process is executing, a page fault occurs. The hardware traps to the
operating system, which checks its internal tables to see that this is a page
fault and not an illegal memory access. The operating system determines
where tJ::te desired page is residing on the disk, but then finds there are no
free frames on the free-frame list; all memory is in use (Figure 9.5).

The operating system has several options at this point. It could
terminate the user process. However, demand paging is something that
the operating systerri. is doing to improve the computer system's utilization
and throughput. Users should not be aware that their processes are
running on a paged system. Paging should be logl.cally transparent to the
user. So this option is not the best choice.

We could swap out a process, freeing ali its frames, and reducing the
level of multiprogramming. This option is a good idea at times, and we

PC

2 J

3 M

logical memory
for user 1

0

1

2

3

logical memory
for user 2

frame

valid- invalid
bit

\ ' 3 v

4 v

5 v

i

page table
for user 1

valid-invalid

page table
for user 2

0 monitor

1

2 D

3 H

4

5 J

6 A

7 E

physical
memory

Figure 9.5 Need for page replacement.

consider it further in Section 9. 7. First, we shall discuss a more
possibility: page replacement.

Page replacement takes the following approach. If no
find one that is not currently being used and free it. We can
by writing contents to swap space, and changing the
other tables) to indicate that the page is no longer in memory
The freed frame can now be used to hold the page for which
faulted. The page-fault service routine is now modified to
replacement:

1. Find the location of the desired page on the disk.

Find a frame:

a. there a free frame, use it.

b. Otherwise, use a page-replacement algorithm to
frame.

c. Write the victim page to the disk; change the page and
accordingly.

Chapter 9: Virtual Memory

3. Read the desired page into the (newly) free frame; change
and frame tables.

Restart the user process.

Notice that, if no frames are free, two page transfers (one out
are required. This situation effectively doubles the page-fault ""'"'"'r<r•a.

and will increase the effective access time accordingly.
This overhead can be reduced by the use of a modify (dirty)

page or frame may have a modify bit associated with it in the
The modify bit for a page is set by the hardware whenever any

in the page is written into, indicating that the page
modified. When we select a page for replacement, we examine

If the bit is set, we know that the page has been modified
read in from the disk. In this case, we must write that page to
the modify bit is not set, however, the page has not been
was read into memory. Therefore, if the copy of the page on
not been overwritten (by some other page, for example), we
writing the memory page to the disk; it is already there.
also applies to read-only pages (for example, pages of binary

frame valid-invalid bit
\ I

0 i

f v

page table

0

change
to invalid

reset page
table for

new page

f

physical
memory

swap out
victim

G)pa_g,.e,_.

page in

Figure 9.6 Page replacement.

9.5 Page-Replacement Algorithms • 315

pages cannot be modified; thus, they may be discarded when desired.
This scheme can reduce significantly the time to service a page fault, since
it reduces 110 time by one-half if the page is not modified.

Page replacement is basic to demand paging. It completes the
separation between logical memory and physical memory. With this
mechanism, a very large virtual memory can be provided for programmers
on a smaller physical memory. With non-demand paging, user addresses
were mapped into physical addresses, allowing the two sets of addresses
to be quite different. All of the pages of a process still must be in physical
memory, however. With demand paging, the size of the logical address
space is no longer constrained by physical memory. If we have a user
process of 20 pages, we can execute it in 10 frames simply by using
demand paging, and using a replacement algorithm to find a free frame
whenever necessary. If a page that has been modified is to be replaced, its
contents are copied to the disk. A later reference to that page will cause a
page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

We must solve two major problems to implement demand paging: We
must develop a frame-allocation algorithm and a page-replacement algorithm. If
we have multiple processes in memory, we must decide how many frames
to allocate to each process. Further, when page replacement is required,
we must select the frames that are to be replaced. Designing appropriate
algorithms to solve these problems is an important task, because disk 110 is
so expensive. Even slight improvements in demand-paging methods yield
large gains in system performance.

9.5 • Page-Replacement Algorithms

There are many different page-replacement algorithms. Probably every
operating system has its own unique replacement scheme. How do we
select a particular replacement algorithm? In general, we want the one
with the lowest page-fault rate.

We evaluate an algorithm by running it on a particular string of
memory references and computing the number of page faults. The string of
memory references is called a reference string. We can generate reference
strings artificially (by a random-number generator, for example) or by
tracing a given system and recording the address of each memory
reference. The latter choice produces a large number of data (on the order
of 1 million addresses per second). To reduce the number of data, we note
two things.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, not the
entire address. Second, if we have a reference to a page p, then any

316 • Chapter 9: Virtual Memory

immediately following references to page p will never cause a page fault.
Page p will be in memory after the first reference; the immediately
following references will not fault. .

For example, if we trace a particular process, we might record the
following address sequence:

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101, 0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105,

which, at 100 bytes per page, is reduced to the following reference string

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1.

To determine the number of page faults for a particular reference string
and page-replacement algorithm, we also need to know the number of
page frames available. Obviously, as the number of frames available
increases, the number of page faults will decrease. For the reference string
considered previously, for example, if we had three or more frames, we
would have only three faults, one fault for the first reference to each page.
On the other hand, with only one frame available, we would have- a
replacement with every reference, resulting in 11 faults. In general, we
expect a curve such as that in Figure 9. 7. As the number of frames
increases, the number of page faults drops to some minimal level. Of
course, adding physical memory increases the number of frames.

16

14 \
$
'"5

12 ctl -Q)
Ol 10 ctl
a. -0 8
Q)
.0
E 6
:::1
c

'

\
~
~

, .

-r---_
4

2

1 2 3 4 5 6

number of frames

Figure 9.7 Graph of page faults versus the number of frames.

9.5 Page-Replacement Algorithms • 317

To illustrate the page-replacement algorithms, we shall use the
reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

9.5.1 FIFO Algorithm
The simplest page-replacement algorithm is a FIFO algorithm.· A FIFO
replacement algorithm associates with each page the time when that page
was brought into memory. When a page must be replaced, the oldest page
is chosen. Notice that it is not strictly necessary to record the time when a
page is brought in. We can create a FIFO queue to hold all pages in
memory. We replace the page at the head of the queue. When a page is
brought into memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty.
The first three references (7, 0, 1) cause page faults, and are brought into
these empty frames. The next reference (2) replaces page 7, because page 7
was brought in first. Since 0 is the next reference and 0 is already in
memory, we have no fault for this reference. The first reference to 3 results
in page 0 being replaced, since it was the first of the three pages in
memory (0, 1, and 2) to be brought in. This replacement means that the
next reference, to 0, will fault. Page 1 is then replaced by page 0. This
process continues as shown in Figure 9.8. Every time a fault occurs, we
show which pages are in our three frames. There are 15 faults altogether.

The FIFO page-replacement algorithm is easy to understand and
program. However, its performance is not always good. The page replaced
may be an initialization module that was used a long time ago and is no
longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 2 0 1 7 0

page frames

Figure 9.8 FIFO page-replacement algorithm.

318 • Chapter 9: Virtual Memory

Notice that, even if we select for replacement a page that is in active
use, everything still works correctly. After we page out an active page to
bring in a new one, a fault occurs almost immediately to retrieve the active
page. Some other page will need to be replaced to bring the active page
back into memory. Thus, a bad replacement choice increases the page-fault
rate and slows process execution, but does not cause incorrect execution.

To illustrate the problems that are possible with a FIFO page­
replacement algorithm, we consider the reference string

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Figure 9. 9 shows the curve of page faults versus the number of available
frames. We notice that the number of faults for four frames (10) is greater
than the number of faults for three frames (nine)! This result is most
unexpected and is known as Be lady's anomaly. Belady' s anomaly reflects the
fact that, for some page-replacement algorithms, the page-fault rate may
increase as the number of allocated frames increases. We would expect that
giving more memory to a process would improve its performance. In some
early research, investigators noticed that this assumption was not always
true. Belady's anomaly was discovered as a result.

9 .5.2 Optimal Algorithm
One result of the discovery of Belady' s anomaly was the search for an
optimal page-replacement algorithm. An optimal page-replacement
algorithm has the lowest page-fault rate of all algorithms. An optimal

16

14
2
"5

12 a:s -Q)
O'l 10 a:s a.
0 8 ...
Q)
.c
E 6

"' ~ ~ ~
" :::1

c::
4

2

1 2 3 4 5 6 7

number of frames

Figure 9.9 Page-fault curve for FIFO r~placement on a reference string.

9.5 Page-Replacement Algorithms • 319

algorithm will· never suffer from Be lady's anomaly. An optimal page­
replacement algorithm exists, and has been called OPT or MIN. It is simply

Replace the page that will not be used
for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible
page-fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page­
replacement algorithm would yield nine page faults, as shown in Figure
9.10. The first three references cause faults that fill the three empty frames.
The reference to page 2 replaces page 7,· because 7 will not be used until
reference 18, whereas page 0 will be used at 5, and page 1 at· 14. The
reference to page 3 replaces page 1, as page 1 will be the last of the three
pages in memory to be referenced again. With only nine page faults,
optimal replacement is' much better than a FIFO algorithm, which had 15
faults. (If we ignore the first three, which all algorithms must suffer, then
optimal replacement is twice as good as FIFO replacement.) In fact, no
replacement algorithm can process this reference string in three frames
with less than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string.
(We encountered a similar situation with the SJF CPU-scheduling algorithm
in Section 5.3.~.) As a result, the optimal algorithm is used mainly for
comparison studies. For instance, it may be quite useful to know that,
although a new algorithm is not optimal, it is within 12.3 percent of
optimal at worst and within 4.7 percent on average.

9.5.3 LRU Algorithm

If the optimal algorithm is not feasible, perhaps an approximation to the
optimal algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward or forward in time) is that the

reference string

7 0 2 0 3 0 4 2 3 0 3 2 2 0 1 7 0 1

page frames

Figure 9.10 Optimal page-replacement algorithm.

320 • Chapter 9: Virtual Memory

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames

Figure 9.11 LRU page-replacement algorithm.

FIFO algorithm uses the time when a page was brought into memory; the
OPT algorithm uses the time when a page is to be used. If we use the recent
past as an approximation of the near future, then we will replace the page
that has not been used for the longest period of time (Figure 9.11). This
approach is the least recently used (LRU) algorithm.

LRU replacement associates with each page the time of that page's last
use. When a page must be replaced, LRU chooses that page that has not
been used for the longest period of time. This strategy is the optimal
page-replacement algoritJ:tm looking backward in time, rathe! . than
forward. (Strangely, if we let 5 R be the reverse of a reference string 5,
then the page-fault rate for the OPT algorithm on 5 is the same as the
page-fault rate for the OPT algorithm on S R . Similarly, the page-fault rate
for ·the LRU algorithm on 5 is the same as the page-fault rate for the LRU
algorithm on 5 R .)

The result of applying LRU replacement to our example reference string
is shown in Figure 9.11. The LRU algorithm produces 12 faults. Notice that
the first five faults are the same as the optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the
three frames in memory, page 2 was used least recently. The most recently
used page is page 0, and just before that page 3 was used. Thus, the LRU
algorithm replaces page 2, not knowing that page 2 is about to be used.
When it then faults for page 2, the LRU algorithm replaces page 3 since, of
the thr~e pages in memory {0, 3, 4}, page 3 is the least recently used.

·.Despite these problems, LRU replacement with 12 faults is still much better
than FIFO replacement with 15.

The LRU policy is often used as. a page-replacement algorithm and is
considered to be quite good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:

• Counters: In the simplest case, we associate with each page-table entry
a time-of-use field, and add to the CPU a logical clock. or counter. The

9.5 Pa~e-Replacement Algorithms • 321

clock is incremented for every memory reference. Whenever a
reference to a page is made, the contents of the clock register are
copied to the time-of-use field in the page table for that page. In this
way, we always have the "time" of the last reference to each page. We
replace the page with the smallest time value. This scheme requires a
search of the page table to find the LRU page, and a write to memory
(to the time-of-use field, in the page table) for each memory acce~s. The
times must also be maintained when page tables are changed (due to
CPU scheduling). Overflow of the clock must be considered.

I

• Stack: Another approach to implementing LRU replacement is to keep a
stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the top of the stack is
always the most recently used page and the bottom is the LRU page
(Figure 9.12). Because entries must be removed from the middle of the
stack, it is best implemented by a doubly linked list, with a head and
tail pointer. Removing a page and putting it on the top of the stack
then requires changing six pointers at worst. Each update is a little
more expensive, but there is no search· for a replacement; the tail
pointer points to the bottom of the stack, which is the LRU page. This
approach is particularly appropriate for software or microcode
implementations of LRU replacement.

Neither optimal replacement nor LRU replacement suffers from Belady's
anomaly. There is a class of page-replacement algorithms, called stack
algorithms, that can never exhibit Belady's anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n

reference string

4 7 0

2

stack
before

a

7 1 0 2

7

stack
after

b

1 2

t
a

7 1 2

t
b

Figure 9.12 Use of a stack to record the most recent page references.

322 • Chapter 9: Virtual Memory

frames is always a subset of the set of pages that would be in memory with
n + 1 frames. For LRU replacement, the set of pages in memory would be
the n most recently referenced pages. If the number of frames is increased,
these n pages will still be the most recently referenced and so will still be
in memory.

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of
the clock fields or stack must be done for every memory reference. If we
were to use an interrupt for every reference, to allow software to update
such data structures, it would slow every memory reference by a factor of
at least 10, hence slowing every user process by a factor of 10. Few
systems could tolerate that level of overhead for memory management.

9.5.4 LRU Approximation Algorithms
Few systems provide sufficient hardware support for true LRU page
replacement. s·ome systems provide no hardware support, and other
page-replacement algorithms (such as· a FIFO algorithm) must be used.
Many systems provide some help, however, in the form of a reference bit.
The reference bit for a page is set, by the hardware, whenever that page is
referenced (either a read or a write to any pyte in the page). Reference bits
are associated with each entry in the page table. ·

Initially, all bits are cleared (to 0) by the operating system. As a user
process exeq.ttes, the bit associated with each page referenced is set (to 1)
by the hardware. After some time, we can determine which pages have
been used and which have not been used by examining the reference bits.
We do not know the order of use, but we know which pages were used
and ·which were not used. This partial ordering information leads to many
page-replacement algorithms that approximate LRU replacement.

9.5.4.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference
bits at regular intervals. We can keep an 8-bit byte for each page in a table
in memory. At regular intervals (say every 100 milliseconds), a timer
interrupt transfers control to the operating system. The operating system
shifts the reference bit for each page into the high-order bit of its 8-bit
byte, shifting the other bits right 1 bit, discarding the low-order bit. These
8-bit shift registers contain the history of page use for the last eight time
periods. If the shift register contains 00000000, then the page has not been
used for eight time periods; a page that is used at least once each period
would have a shift register value of 11111111.

A page with a history register value of 11000100 has been used more
recently than has one with 01110111. If we interpret these 8-pit bytes as
unsigned integers, the page with the lowest number is the LRU page, and it

9.5, Page-Replacement Algorithms • 323

can be replaced. Notice that the numbers are not guaranteed to be unique,
however. We can either replace (swap out) all pages with the smallest
value, or use a FIFO selection among them.

The number of bits of history can be varied, of course, and would be
selected (depending on the hardware available) to make the updating as
fast as possible. In the extreme case, the number can be reduced to zero,
leaving only the reference bit itself. This algorithm is called the second­
chance page-replacement algorithm.

9.5.4.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement
algorithm. When a page has been selected, however, we inspect its
reference bit. If the value is 0, we proceed to replace this page. If the
reference bit is 1, however, we give that page a second chance and move
on to select the next FIFO page. When a page gets a second chance, its
reference bit is cleared and its arrival time is reset to the current time.
Thus, a page that is given a second chance will not be replaced until all
other pages are replaced (or given second chances). In addition, if a page
is used often enough to keep its reference bit set, it will never be replaced.

One way to implement the second-chance (sometimes referred to as
the clock) algorithm is as a circular queue. A pointer indicates which page
is to be replaced next. When a frame is needed, the pointer advances until
it finds a page with a 0 reference bit. As it advances, it clears the reference
bits (Figure 9.13). Once a victim page is found, the page is replaced and
the new page is inserted in the circular queue in that position. Notice
that, in the worst case, when all bits are set, the pointer cycles through the
whole queue, giving each page a second chance. It clears all the reference
bits before selecting the next page for replacement. Second-chance
replacement degenerates to FIFO replacement if all bits are set.

9.5.4.3 Enhanced Second-Chance Algorithm

The second-chance algorithm described above can be enhanced by
considering both the reference bit and the modify bit (Section 9.4) as an
ordered pair. With these 2 bits, we have the following four possible
classes:

1. (0,0) neither recently used nor modified- best page to replace

2. (0,1) not recently used but modified - not quite as good, because the
page will need to be written out before replacement

3. (1,0) recently used but clean- probably will be used again soon

4. (1,1) recently used and modified - probably will be used again, and
write out will be needed before replacing it

324 Chapter 9: Virtual Memory

reference
bits

reference
bits

circular queue of pages circular queue of pages

(a) (b)

Figure 9.13 Second-chance (dock) page-replacement

When page replacement is called for, each page in one
classes. We use the same scheme as the dock algorithm, but
examining whether the page to which we are pointing the Y'£>T'"''"'"

7
"'"'

set to 1, we examine the class to which that page belongs. We
first page encountered in the lowest nonempty class. Notice
have to scan the circular queue several times before we
replaced,

This algorithm is used in the Macintosh
scheme. The major difference between this algorithm and
clock algorithm is that here we give preference to those
been modified to reduce the number of I/Os required.

9.5.5 Counting Algorithms
There are many other algorithms that can be used for page
For example, we could keep a counter of the number of
have been made to each page, and develop the following two

9.5 Page-Replacement Algorithms • 325

• LFU Algorithm: The least frequently used (LFU) page-replacement
algorithm requires that the page with the smallest count be replaced.
The reason for this selection is that an actively used page should have
a large reference count. This algorithm suffers from the situation in
which a page is used heavily during the initial phase of a process, but
then is never used again. Since it was used heavily, it has a large count
and remains in memory even though it is no longer needed. One
solution is to shift the counts right by 1 bit at regular intervals, forming
an exponentially decaying average usage count.

• MFU Algorithm: The most frequently used (MFU) page-replacement
algorithm is based on the argument that the page with the smallest
count was probably just brought in and has yet to be used.

As you might expect, neither MFU nor LFU replacement is common. The
implementation of these algorithms is fairly expensive, and they do not
approximate OPT replacement very well.

9.5.6 Page Buffering Algorithm

Other procedures are often used in addition to a specific page-replacement
algorithm. For example, systems commonly keep a pool of free frames.
When a page fault occurs, a victim frame is chosen as before. However,
the desired page is read into a free frame from the pool before the victim is
written out. This procedure allows the process to restart as soon as
possible, without waiting for the victim page to be written out. When the
victim is later written out, its frame is added to the free-frame pool. ·

An expansion of this idea is to maintain a list of modified pages.
Whenever the paging device is idle, a modified page is selected and is
written to the disk. Its modify bit is then reset. This scheme increases the
probability that a page will be clean when it is selected for replacement,
and will not need to be written out.

Another modification is to keep a pool of free frames, but to remember
which page was in each frame. Since the frame contents are not modified
when a frame is written to the disk, the old page can be reused directly
from the free-frame pool if it is needed before that frame is reused. No 110

is needed in this case. When a page fault occurs, we first check whether
the desired page is in the free-frame pool. If it is not, we must select a free
frame and read into it.

This technique is used in the v AXNMS system, with a FIFO replacement
algorithm. When the FIFO replacement algorithm mistakenly replaces a
page that is still in active use, that page is quickly retrieved from the free­
frame buffer, and no I/O is necessary. The free-frame buffer provides
protection against the relatively poor, but simple, FIFO replacement
algorithm. This method is necessary because the early versions of the v AX
did not correctly implement the reference bit.

326 • Chapter 9: Virtual Memory

9.6 • Allocation of Frames

How do we allocate the fixed amount of free memory among the various
processes? If we have 93 free frames and two processes, how many frames
does each process get?

The simplest case of virtual memory is the single-user system.
Consider a single-user microcomputer system with 128K memory
composed of pages of size lK. Thus, there are 128 frames. The operating
system may take 35K, leaving 93 frames for the user process. Under pure
demand paging, all 93 frames would initially be put on the free-frame list.
When a user process started execution, it would generate a sequence of
page faults. The first 93 page faults. would all get free frames from the
free-frame list. When the free-frame list was exhausted, a page­
replacement algorithm would be used to select one of the 93 in-memory
pages to be replaced with the ninety-fourth, and so on. When the process
terminated, the 93 frames would once again be placed on the free-frame
list.

There are many variations on this simple strategy. We can require that
the operating system allocate all its buffer and table space· from the free­
frame list. When this space is not in use by the operating system, it can be
used to support user paging. We could try to keep three free frames
reserved on the free-frame list at all times. Thus, when a page fault occurs,
there is a free frame available to page into. While the page swap is taking
place, a replacement can be selected, which is then written to the disk as
the user process continues to execute.

Other variants are also possible, but the basic strategy is clear: The
user process is allocated any free frame.

A different problem arises when demand paging is combined with
multiprogramming. Multiprogramming puts two (or more) processes in
memory at the same time.

9.6.1 Minimum Number of Frames
There are, of course, various constraints on our strategies for the
allocations of frames. We cannot allocate more than the total number of
available frames (unless there is page sharing). There is also a minimum
number of frames that can be allocated. Obviously, as the number of
frames allocated to each process decreases, the page fault-rate increases,
slowing process execution.

Besides the undesirable performance properties of allocating only a few
frames, there is a minimum number of frames that must be allocated. This
minimum number is defined by the instruction-set architecture. Remember
that, when a page fault occurs before an executing instruction is complete,
tl}e instruction must be restarted. Consequently, we must· have enough

9.6 Allocation of Frames • 327

frames to hold all the different pages that any single instruction can
reference.

For example, consider a machine in which all memory-reference
instructions have only one memory address. Tpus, we need at least one
frame for the instruction and one frame for the memory reference. In
addition, if one-level indirect addressing is allowed (for example, a load
instruction on page 16 can refer to an address on page 0, which is an
indirect reference to page 23), then paging requires at least three frames
per process. Think about what might happen if a process had only two
frames. · ·

The minimum number of frames is defined by the computer
architecture. For example, the move instruction for the PDP-11 is more than
one word for some addressing modes, and thus the instruction itself may
straddle two pages. In addition, each of it& two operands may be indirect
references, for a total of six frames. The worst case fo:r the IBM 370 is
probably the MVC instruction. Since the instruction is storage to storage, it
takes 6 bytes and can straddle two pages. The block of characters to move
and the area to be moved to can each also straddle two pages. This
situation would require six frames. (Actually, the worst case is if the MVC

instruction is the operand of an EXECUTE instruction that straddles a page
boundary; in this case, we need eight frames.)

The worst-case scenario occurs in architectures that allow multiple
levels of indirection (for example, each 16-bit word could contain a 15-bit
address plus a 1-bit indirect indicator). Theoretically, a simple load
instruction could reference an indirect address that could reference an
indirect address (on another page) that could also reference an indirect
address (on yet another page), and so on, until every page in virtual
memory had been touched. Thus, in the worst case, the entire virtual
memory must be in physical memory. To overcome this difficulty, we must
place a limit on the levels of indirection (for example, limit an instruction
to at most 16 levels of indirection). When the first indirection occurs, a
counter is set to 16; the counter is then decremented for each successive
indirection for this instruction. If the counter is decremented to 0, a trap
occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same
number of frames.

The mininu-1-m number of frames per process is defined by the
architecture, whereas the maximum number is defined by the amount of
available physical memory. In between, we are still left with significant
choice in frame allocation.

9.6.2 Allocation Algorithms
The easiest way to split m frames among n processes is to give everyone an
equal share, min frames. For instance, if there are 93 frames and five

I II

~
t
u

j
l
!
l
1

328 • Chapter 9: Virtual Memory

processes, each process will get 18 frames. The leftover three frames could
be used as a free-frame buffer pool. This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing
amounts of memory. If a small student process of 10K and an interactive
database of 127K are the only two processes running in a system with 62

·free frames, it does not make much sense to give each process 31 frames.
The student process does not need more than 10 frames, so the other 21
are strictly wasted.

To solve this problem, we can use proportional allocation. We allocate
available memory to each process according to its size. Let the size of the
virtual memory for process pi be si' and define

Then, if the total number of available frames is m, we allocate ai frames to
process Pi' where ai is approximately

a.= s./5 x m.
l l

Of course, we must adjust each ai to be an integer, which is greater than
the minimum number of frames required by the instruction set, with a sum
not exceeding m.

For proportional allocation, we would split 62 frames between two
processes, one of 10 pages and one of 127 pages, by allocating four frames
and 57 frames, respectively, since

10/137 X 62 - 4,
127/137 X 62 - 57.

In this way, both processes share the available frames according to their
"needs," rather than equally.

In both equal and proportional allocation, of course, the allocation to
each process may vary according to the multiprogramming level. If the
multiprogramming level is increased, each process will lose some frames to
_provide the memory needed for the n~w proc~ss. On the other hand, if
the multiprogramming level decreases, the frames that had been allocated
to the departed process can now be spread over the remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition,
however, we may want to give the high-priority process more memory to
speed its execution, to the detriment of low-priority pro~esses.

One approach is to use a proportional allocation scheme where the
ratio of frames depends not on the relative sizes of processes, but rather
on the processes' priorities, or on a combination of size and priority.

9.7 Thrashing • 329

9.6.3 Global.Versus Local Allocation
Another important factor in the way frames are allocated to the various
processes is page replacement. With multiple processes competing for
frames, we can classify page-replacement algorithms into two broad
categories: global replacement and local replacement. Global replacement
allows a process to select a replacement frame from the set of all frames,
even if that frame is currently allocated to some other process; one process
can take a frame from another. Local replacement requires that each
process select from only its own set of allocated frames. .

For example, consider an allocation scheme where we allow high­
priority processes to select frames from low-priority processes for
replacement. A process can select a replacement from among its own
frames or the frames of any lower-priority process. This approach allows a
high-priority process to increase its frame allocation at the expense of the
low-priority process.

With a local replacement strategy, the number of frames allocated to a
process does not change. With global replacement, a process may happen
to select only frames allocated to other processes, thus increasing the
number of frames allocated to it (assuming that other processes do not
choose its frames for replacement).

One problem with a global replacement algorithm is that a process
cannot control its own page-fault rate. The set of pages in memory for a
process depends not only· on the paging behavior of that process, but also
on the paging behavior of other processes. Therefore, the same process
may perform quite differently (taking 0.5 seconds for orie execution and
10.3 seconds for the next execution) due to totally external circumstances.
Such is not the case with a local replacement algorithm. Under local
replacement, the set of pages in memory for a process is affected by . the
paging behavior of only that process. For its part, local replacement might
hinder a process by not making available to it other, less used pages of
memory. Thus, global replacement generally results in greater system
throughput, and is therefore the more common method.

9.7 • Thrashing

If the number of frames allocated to a low-priority process falls below the
minimum number required by the computer architecture, we must
suspend that process' execution. We should then page out its remaining.
pages, freeing all its allocated frames. This provision introduces a swap-in,
swap-out level of intermediate CPU scheduling.

In fact, look at any process tpat does not have "enough" frames.
Although it is technically possible to reduce the number of allocated frames
to the minimum, there is some (larger) number of pages that are in active

330 • Chapter 9: Virtual Memory

use. If the process does not have this number of frames, it will very
quickly page fault. At this point, it must replace some page. However,
since all its pages are in active use, it must replace a page that will be
needed again right away. Consequently, it very quickly faults again, and
again, and again. The process continues to fault, replacing pages for which

· it will then fault and bring back in right away.
This high paging activity is called thrashing. A process is thrashing if it

is spending more time paging than executing.

9. 7.1 Cause of Thrashing
Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too
low, we increase the degree of multiprogramming by introducing a new
process to the system. A global page-replacement algorithm is used,
replacing pages with no regard to the process to which they belong. Now
suppose a process enters a new phase in its execution and needs more
frames. It starts faulting and taking pages away from other processes.
These processes need those pages, however, and so they also fault, taking
pages fr6m other processes. These faulting processes must use the paging
device to swap pages in and out. As they queue up for the paging device,
the ready queue empties. As processes wait for the paging device, CPU
utilization decreases.

The CPU scheduler sees the decreasing CPU utilization, and increases the
degree of multiprogramming as a result. The new process tries to get
started by taking pages from running processes; causing more page faults,
and a longer queue for the paging device. As a result, CPU utilization
drops even further, and the CPU scheduler tries to increase the degree of
multiprogramming even more. Thrashing has occurred and system
throughput plunges. The page-fault rate increases tremendously. As a
result, the effective memory access time increases. No work is getting
done, because the processes are spending all their time paging.

This phenomenon is illustrated in Figure 9.14. CPU utilization is plotted
against the degree of multiprogramming. As the degree of

· multiprogramming increases, CPU utilization also increases, although more
slowly, until a maximum is reached. If the degree of multiprogramming is
increased even further, thrashing sets in and CPU utilization drops sharply.
At this point, to increase CPU utilization and stop thrashing, we must
decrease the degree of multiprogramming.

The effects of thrashing can be limited by using a local (or priority)
replacement algorithm. With local replacement, if one process starts
thrashing, it cannot steal frames from another process and cause the latter
to thrash also. Pages are replaced with regard to the process of which they
are a part. However, if processes are thrashing, they will be in the queue

degree of multiprogramming

Figure 9.14 Thrashing.

for the paging device most of the time. The
page fault will increase, due to the longer
device. Thus, the effective access time will
is not thrashing.

9.7

To prevent thrashing, we must provide a process as many
needs. But how do we know how many frames it
several techniques. The working-set strategy (discussed
starts by looking at how many frames a process actually
approach defines the locality model of execution.

The locality model states that, as a process executes/ it moves
locality to locality. A locality is a of that are
together (Figure 9.15). A program generally composed
different localities, which may overlap.

For example, when a subroutine is called, it defines a new "V""''U""

this locality, memory references are made to the
subroutine, its local variables, and a subset global
the subroutine exited, the process this locality,
variables and instructions of the subroutine are no longer
may return to this locality later. Thus, we see localities are
the program structure and its data The locality
all programs will exhibit this basic memory "'"''"'"'"'"'
the locality model is the unstated principle behind the
so far in this book. If accesses to types data were
than patterned, caching would be

Suppose that we allocate enough frames to a process to
its current locality. It will fault for the pages in locality
pages are in memory; then, it will not fault again until it

-

Chapter 9: Virtual Memory

l::.? 2 20 ~~--i+rilil+rm~ifm#H
E
:::s
c

execution time 111>

Figure 9.15 Locality in a memory reference pattern.

If we all~cate fewer frames than the of the current locality,
will thrash, since it cannot keep in memory all the pages that it

7.2 Working-Set Model

The working-set model is based on the assumption of locality.
uses a parameter/ .:l, to define the working-set window. The
examine the most recent 8 page references. The set of pages
recent a page references is the working set (Figure 9.16). If a
active use, it will be in the working set. If it is no longer being

9. 7 Thrashing • 333

drop from the working set A time units after its last reference. Thus, the
working set is an approximation of the program's locality.

For example, given the sequence of memory references shown in
Figure 9.16, if A = 10 memory references, then the working set at time t1 is
{1, 2, 5, 6, 7}. By time t2, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of A. If A is
too small, it will not encompass the entire locality; if A is too large, it may
overlap several localities. In the extreme, if A is infinite, the working set is
the set of pages touched during the process execution.

The most important property of the working set is its size. If we
compute the working-set size, wssi' for each process in the system, we can
then consider

D =I wssi,

where Dis the total demand for frames. Each process is actively using the
pages in its working set. Thus, process i needs WSSi frames. If the total
demand is greater than the total number of available frames (D > m),
thrashing will occur, because some processes will not have enough frames.

The use of the working-set model is then quite simple. The operating
system monitors the working set of each process and allocates to that
working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process' pages are
written out and its frames are relocated to other processes. The suspended
process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree
of multiprogramming as high as possible. Thus, it optimizes CPU
utilization.

The difficulty with the working-set model is keeping track of the
working set. The working-set window is a moving window. At each
memory reference, a new reference appears at one end and the oldest
reference drops ·off the other end. A page is in the working set if It is
referenced anywhere in the working-set window. We can approximate the
working-set model with a fixed interval timer interrupt and a reference bit.

page reference table

... 2615777751623412344434344413234443444 ...

.---. L1_.~ • A ~

Figure 9.16 Working-set model.

334 • Chapter 9: Virtual Memory

For example, assume ~ is 10,000 references and we can cause a timer
interrupt every 5000 references. When we get a timer interrupt, we copy
and clear the reference-bit values for each page. Thus, if a page fault
occurs, we can examine the current reference bit and 2 in-memory bits to
determine whether a page was used within the last 10,000 to 15,000
references. If it was used, at least 1 of these bits will be on. If it has not
been used, these bits will be off. Those pages with at least 1 bit on will be
considered to be in the working set. Note that this arrangement is not
entirely accurate, because we cannot tell where, within an interval of 5000,
a reference occurred. We can reduce the uncertainty by increasing the
number of our history bits and the number of interrupts (for example, 10
bits and interrupts every 1000 references). However, the cost to service
these more frequent interrupts will be correspondingly higher.

9.7~3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set
can be useful for prepaging (Section 9.8.1), but it seems a clumsy way to
control thrashing. The page-fault frequency (PFF) strategy takes a more direct
approach.

The specific problem is how to prevent thrashing. Thrashing has a
high page-fault rate. Thus, we want to control the page-fault rate. When it
is too high, we know that the process needs more frames. Similarly, if the
page-fault rate is too low, then the process may have too many frames. We
can establish upper and lower bounds on the desired page-fault rate
(Figure 9.17). If the actual page-fault rate exceeds the upper limit, we
allocate that process another frame; if the page-fault rate falls below the
lower limit, we remove a frame from that process. Thus, we can directly
measure and control the page-fault rate to prevent thrashing.

As with the working-set strategy, we may have to suspend a process.
If the page-fault rate increases and no free frames are available, we must
select some process and suspend it. The freed frames are then distributed
to processes with high page-fault rates.

9. 8 • . Other Considerations

The selections of a replacement algorithm and allocation policy are the
major decisions to make for a paging system. There are many other
considerations as well.

9.8.1 Prepaging

An obvious property of a pure demand-paging system is the large number
of page faults that occur when a process is started. This situa~on is a result

number of frames

Figure 9.17 Page-fault

of trying to get the initial locality into memory. The
happen at other times. For instance, when a
restarted, all its pages are on the disk and each must
own page fault. Prepaging is an attempt to prevent this high
paging. The strategy is to bring into memory at one time all
will be needed.

In a system using the working-set model, for example,
each process a list of the pages in its working set. If we
process (due to an I/O wait or a lack of free frames), we
working set for that process. When the process to
completion or enough free frames), we automatically
working set back into memory before restarting the

Prepaging may be an advantage in some cases. The
whether the cost of prepaging is less than the
corresponding page faults. It may well be the case
brought back into memory by prepaging are not
pages are prepaged and a fraction a of these s
a 1). The question is whether the cost of

or less than the cost of prepaging (1 a)
close to zero, prepaging loses; if a is close to one, T-.r•-'T-."

9.8.2 Page Size

The designers of an operating system for an existing machine .:,.,.,._,_,.v""

a choice concerning the page size. However, when new

336 • Chapter 9: Virtual Memory

being designed, a decision regarding the best page size must be made. As
you might expect, there is no single best page size. Rather, there is a set
of factors that support various sizes. Page sizes are invariably powers of 2,
generally ranging from 512 (29) to 16,384 (214) bytes~ .

How do we select a page size? One concern is the size of the page
·table. For a given virtual memory space, decreasing the page size increases
the number of pages, and hence the size of the page table. For a virtual
memory of 4 megabytes (222); there would be 4096 pages of 1024 bytes but
only 512 pages of 8192 bytes. Because each active process must have its
own copy of the page table, we see that a large page size is desirable.

On the other hand, memory is better utilized with smaller pages. if a
process is allocated. memory starting at location 00000, continuing until it
has as much as it needs, the process probably will hot end exactly on a
page boundary. Thus, a part of the last page must be allocated (because
pages are the units of allocation) but is unused (internal fragmentation).
Assuming independence of process size and page size, we would expect
that, on the average, one-half of the last page of each process will be
wasted. This loss would be only 256 bytes for a page of 512 bytes, but
would be 4096 bytes for a page of 8192 bytes. To minimize internal
fragmentation, we need a small page size.

Another problem is the time required to read or write a page. I/O time
is composed of seek, latency, and transfer times. Transfer time is
proportional to the amount transferred (that is, the page size), a fact that
would seem to argue for a small page size. Remember from Chapter 2,
however, that latency and seek time normally dwarf transfer time. At a
transfer rate of 2 megabytes per second, it takes only 0.2 milliseconds to
transfer 512 bytes. Latency, on the other hand, is perhaps 8 milliseconds
and seek time 20 milliseconds. Of the total I/O time (28.2 milliseconds),
therefore, 1 percent is attributable to the actual transfer. Doubling the
page size increases I/O time to only 28.4 milliseconds. It takes 28.4
milliseconds to read a single page of 1024 bytes, but 56.4 milliseconds to
read the same amount as two pages of 512 bytes each. Thus, a desire to
minimize 110 time argues for a larger page size.

With a smaller page size however, total I/O should be reduced, since
locality "Y'ill be improved. A smaller page size allows each page to match

·program locality more accurately. For example, consider a process of size
200K, of which only one-half (lOOK) are actually used in an execution. if
we have only one large page, we must bring in the entire page, a total of
200K transferred and allocated. If we had pages of only 1 byte, then we
could bring in only the lOOK that are actually used, resulting in only iOOK
being transferred and allocated. With a smaller page size, we have better
resolution, allowing us to isolate only the memory that is actually needed.
With a larger page size we must allocate and transfer not only what is
needed, but also anything else that happens to be in the page, whether it

9.8 Other Considerations • 337

is needed or not. Thus, a smaller page size should result in less I!O artd
less total allocated memory.

On the other hand, did you notice that with a page size of 1 byte, we
would have a page fault for each byte? A process of 200K, using only one­
half of that memory, would generate only one page fault with a page size
of 200K, but 102,400 page faults for a page size of 1 byte. Each page fault
generates the large amount of overhead needed for processing the
interrupt, saving registers, replacing a page, queueing for the paging
device, and updating tables. To minimize the number of page faults, we
need to have a large page size. .

The historical trend is toward larger page sizes. Indeed, the first
edition of this book (1983) used 4096 bytes as the upper bound on page
sizes, and this value was the most common page size in 1990. The Intel
80386 has a page size of 4K; the Motorola 68030 allows page sizes to vary
from 256 bytes to 32K. The evolution to larger page sizes is probably the
result of CPU speeds and main memory capacity increasing faster than have
disk speeds. Page faults are more costly today, in overall system
performance, than previously. It is therefore advantageous to increase
page sizes to reduce their frequency. Of course, there is more internal
fragmentation as a result.

There are other factors to consider (such as the relationship between
page size and sector size on the paging device). The problem has no best
answer. Some factors (internal fragmentation, locality) argue for a ""small
page size, whereas others (table size, I/O time) argue for a large page size.
At least two systems allow two different page sizes. The MULTICS hardware
(GE 645) allows pages of either 64 words or 1024 words. The IBM/370 allows
pages of either 2K or 4K. The difficulty of picking a page size is illustrated
by the fact that MVS on the IBM/370 selected 4K pages, whereas VS/1 selected
2K pages.

9.8.3 Program Structure
Demand paging is designed to be transparent to the user program. In
many cases, the user is completely unaware of the paged nature of
memory. In other cases, however, system performance can be improved by
an awareness of the underlying demand paging.

As a contrived but informative example, assume pages are 128 words
in size. Consider a Pascal program whose function is to initialize to 0 each
element of a 128 by 128 array. The following code is typical:

var A: array [1 .. 128] of array [1 .. 128] of integer;
for j : = 1 to 128

do for i : = 1 to 128
do A[i][j] := 0;

338 • Chapter 9: Virtual Memory

~Notice that the array is stored row major. That is, the array is stored
A[1][1], A[1][2], ... , A[1][128], A[2][1], A[2][2], ... , A[128][128]. For pages of
128 words, each row takes one page. Thus, the proceeding code zeros one
word in each page, then another word in each page, and so on. If the
operating system allocates less than 128 fraines to the entire program, then

. its execution will result in 128 x 128 = 16,384 page faults. Changing the
code to

var A: array [1 .. 128] of array [1 .. 128] of integer;
for i : = 1 to 128

do for j : = 1 to 128
do A[i]Ul := 0;

on the other hand, zeros all the words on one page before starting the next
page, reducing the number of page faults to 128.

Careful selection of data structures and programming structures cart
increase locality and hence lower the page-fault rate and the number of
pages in the working set. A stack has good locality since access is always
made to the top. A hash table, on the other hand, is designed to scatter
references, producing bad locality. Of course, locality of reference is just
one measure of the efficiency of the use of a data structure. Other heavily
weighed factors include search speed, total number of memory references,
and the total number of pages touched.

At a later stage, the compiler and loader can have a significant effect
on paging. Separating code and data and generating reentrant code means
that code pages can be read-only and hence will never be modified. Clean
pages do not have to be paged out to be replaced. The loader can avoid
placing routines across page boundaries, keeping each routine completely
in one page. Routines that call each other many times can be packed into
the same page. This packaging is a variant of the bin-packing problem of
operations research: Try to pack the variable-sized load segments into the
fixed-sized pages so that interpage references are minimized. Such an
approach is particularly useful for large page sizes.

The choice of programming language can affect paging as well. For
example, LISP uses pointers frequently, and pointers tend to randomize

· access to· memory. Contrast LISP with PASCAL, which uses few pointers.
PASCAL programs will have better locality of reference and therefore
generally will execute faster than LISP programs on a virtual memory
system.

9.8.4 I/O Interlock
When demand paging is used, we sometimes need to allow some of the
pages to be locked in memory. One such situation occurs when 110 is done
to or from user (virtual) memory. I/O is often implemented by a separate I/O

processor. For example, a magnetic-tape controller is
number of bytes to transfer and a memory address for the
9.18). When the transfer is complete, the CPU is interrupted.

We must be sure the following sequence of events does not occur:
process issues an I/O request, and is put in a queue for that I/O
Meanwhile, the CPU is given to other processes. These
page faults, and, using a global replacement algorithm,
replaces the page containing the memory buffer for the
The pages are paged out. Some time later, when the I/O
to the head of the device queue, the I/O occurs to the
However, this frame is now being used for a different page
another process.

There are two common solutions to this problem. One
never to execute I/O to user memory. Instead/ data are
between system memory and user memory. I/O takes place
system memory and the I/O device. To write a block on tape, we
the block to system memory, and then write it to tape.

This extra copying may result in unacceptably high
solution is to allow pages to locked into memory. A lock bit
with every frame. If the frame is locked, it cannot be
replacement. Under this approach, to write a block on
memory the containing the block. The system can

magnetic-tape
drive

Figure 9.18 Diagram showing why frames used for I/O

340 • Chapter 9: Virtual Memory

usual. Locked pages cannot be replaced. When the 110 is complete, the
pages are unlocked.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events. A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into
memory. Ready to continue, the low-priority process enters the ready
queue and waits for the CPU. Since it is a low-priority process, it may not
be selected by the CPU scheduler for a while. While the low-priority process
waits, a high-priority process faults. Looking for a replacement, the paging
system sees a page that is in memory but has not been referenced or
modified: the page the low-priority process just brought in. This page
looks like a perfect replacement; it is clean and will not need to be written
out, and it apparently has not been used for a long time.

Deciding whether the high-priority process should be able to replace
the low-priority process is a policy decision. After all, we are simply

. delaying the low-priority process for the benefit of the high-priority
process. On the other hand, we are wasting the effort spent to bring in the
page of the low-priority process. If we decide to prevent replacing a newly
brought-in page until it can be used at least once, then we can use the lock
bit . to implement this mechanism. When a page is selected for
replacement, its lock bit is turned on and remains on until the faulting
process is again dispatched.

Using a lock bit can be dangerous, however, if it gets turned on but
never gets turned off. Should this situation occur (due to a bug in the
operating system, for example), the locked frame becomes unusable. The
Macintosh Operating System provides a page locking mechanism because
it is a single-user system, and the overuse of locking would only hurt the
user doing the locking. Multi-user systems need to be less trusting of
users. For instance, Sunos allows locking "hints," but is free to disregard
them if the free page pool becomes too small or if an individual process is
requesting too many pages be locked in memory.

9.8.5 Real-Time Processing
The discussions in this chapter have concentrated on providing the best
overall utilization of a computer system by optimizing the use of memory.
By using memory for active data, and moving inactive data to disk, we
increase overall system throughput. However, individual processes may
suffer as a result, because they now may take additional page faults during
their execution.

Consider a real-time process or thread, as described in Chapter 4.
Such a process expects to gain control of the CPU, and to run to completion
with a minimum of delays. Virtual memory is the antithesis of real-time
computing, because it can introduce unexpected, long-term delays in the

9.9 Demand Segmentation • 341

execution of a process while pages are brought into memory. Therefore,
real-time systems almost never have virtual memory.

In the case of Solaris 2, Sun wanted to allow both time-sharing and
real-time computing within a system. To solve the page fault problem,
Solaris 2 allows a process to tell the system which pages are important to
that process. In addition to allowing "hints" on page use that we have
mentioned, the operating system allows privileged users to require pages
to be locked into memory. If abused, this mechanism could lock all other
processes out of the system. It is necessary to allow real-time processes to
have bounded and low dispatch latency.

9.9 • Demand Segmentation

Although demand paging is generally considered the most efficient
virtual-memory system, a significant amount of hardware is required to
implement it. When this hardware is lacking, less efficient means are
sometimes devised to provide virtual memory. A case in point is demand
segmentation. The Intel 80286 does not include paging features, but does
have segments. The OS/2 operating system, which runs on this CPU, uses
the segmentation hardware to implement demand segmentation as the
only possible approximation of demand paging.

OS/2 allocates memory in segments, rather than in pages. It keeps track
of these segments through segment descriptors, which include information
about the segment's size, protections, and location. A process does not
need to have all its segments in memory to execute. Instead, the segment
descriptor contains a valid bit for each segment to indicate whether the
segment is currently in memory. When a process addresses a segment
containing either code or data, the hardware checks this valid bit. If the
segment is in main memory, the access continues unhindered. If the
segment is not in memory, a trap to the operating system occurs (segment
fault), just as in demand-paging implementations. OS/2 then swaps out a
segment to secondary storage, and brings in the entire requested segm~nt.
The interrupted instruction (the one causing the segment fault) then
continues.

To determine which segment to replace in case of a segment fault, OS/2

uses another bit in the segment descriptor called accessed bit. An accessed
bit serves the same purpose as does a reference bit in a demand-paging
environment. It is set whenever any byte in the segment is either read or
written. A queue is kept containing an entry for each segment in memory.
After every time slice, the operating system places at the head of the
queue any segments with a set access bit. It then clears all access bits. In
this way, the queue stays ordered with the most recently used segments at
the head. In addition, OS/2 provides system calls that processes can use to
inform the $ystem of those segments that can either be discarded, or must

342 • Chapter 9: Virtual Memory

always remain in memory. This information is used to rearrange the
entries in the queue. When an invalid-segment trap occurs, the memory­
management routines first determine whether there is sufficient free
memory space to accommodate the segment. Memory compaction may be
done to get rid of external fragmentation. If, after compaction, there is still
not sufficient free memory, segment replacement is performed. The
segment at the end of the queue is chosen for replacement and is written
to swap space. If the newly freed space is large enough to accommodate
the requested segment, then the requested segment is read into the
vacated segment, the segment descriptor is updated, and the segment is
placed at the head of the queue. Otherwise, memory compaction is
performed, and the procedure is repeated.

It should be clear that demand segmentation requires considerable
overhead. Thus, demand segmentation is not an optimal means for
making best use of the resources of a computer system. The alternative on
less sophisticated hardware is, however, no virtual memory at all. Given
the problems entailed in systems lacking virtual memory, such as those
described in Chapter 8, that solution is also lacking. Demand
segmentation is therefore a reasonable compromise of functionality given
hardware constraints that make demand paging impossible.

9.10 • Summary

It is desirable to be able to execute a process whose logical address space is
larger than the available physical address space. The programmer can
make such a process executable by restructuring it using overlays, but this
is generally a difficult programming task. Virtual memory is a technique to
allow a large logical address space to be mapped onto a smaller physical
memory. Virtual memory allows extremely large processes to be run, and
also allows the degree of multiprogramming to be raised, increasing CPU
utilization. Further, it frees application programmers from worrying about
memory availability.

Pure demand paging never brings in a page until that page is actually
referenced. The first reference causes a page fault to the operating-system

. resident . monitor. The operating system consults an internal table to
determine where the page is located on the backing store. It then finds a
free frame and reads the page in from the backing store. The page table is
updated to reflect this change, and the instruction that caused the page
fault is restarted. This approach allows a process to run even though its
entire memory image is not in main memory at once. As long as the page­
fault rate is reasonably low, performance is acceptable.

Demand paging can be used to reduce the number of frames allocated
to a process. This arrangement can raise the degree of multiprogramming
(allowing more processes to be available for execution at one time) and-

Exercises • 343

in theory, at least - the CPU utilization of the system. It also allows
processes to be run even though their memory requirements exceed the
total available physical memory. Such processes run in virtual memory.

If total :memory requirements exceed the physical memory, then it may
be necessary to replace pages from memory to free frames for new pages.
Various page-replacement algorithms are used. FIFO page replacement is
easy to program, but suffers from Beiady' s anomaly. Optimal page
replacement requires future knowledge. LRU · replacement is an
approximation of optimal, but even it may be difficult to implement. Most
page-replacement algorithms, such as the second-chance algorithm, are
approximations of LRU replacement.

In addition to a page-replacement algorithm, a frame-allocation policy
is needed. Allocation can be fixed, suggesting local page replacement, or
dynamic, suggesting global replacement. The working-set model assumes
that processes execute in localities. The working set is the set of pages in
the current locality. Accordingly, each process should be allocated enough
frames for its current working set. .

If a process does not have enough memory for its working set, it will
thrash. Providing enough frames to each process to avoid thrashing may
require process swapping and scheduling.

In addition to requiring that we solve the major problems of page
replacement and frame allocation, the proper design of a paging system
requires that we consider page size, 110, locking, prepaging, program
structure, and other topics. Virtual memory can be thought of as one level
of a hierarchy of storage levels in a computer system. Each level has its
own access time, size, and cost parameters. A full example of a hybrid,
functional virtual-memory system is presented in Chapter 20.

• Exercises

9.1 When do page fau;lts occur? Describe the actions taken by the
operating system when a page fault occurs.

9.2 Assume you have a page reference string for a process with m frames
(initially all empty). The page reference string has length p with n
distinct page numbers occurring in it. For any page-replacement
algorithms,

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

9.3 A certain computer provides its users with a virtual-memory space of
232 bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4096 bytes.
A user process generates the virtual address 11123456. Explain how

j
i
l

·I

J
'!

!
I

344 • Chapter 9: Virtual Memory

the system establishes the corresponding physical location.
Distinguish between software and hardware operations.

9.4 Which of the following programming techniques and structures are
"good" for a demand-paged environment ? ·Which are "not good"?
Explain your answers.

a. Stack

b. Hashed symbol table

c. Sequential search

d. Binary search

e. Pure code

f. Vector operations

g. Indirection

9.5 Suppose we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty

. page is available or the replaced page is not modified, and 20
milliseconds 1£ the replaced page is modified. Memory access time is
100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?

9.6 Consider the following page-replacement algorithms. Rank these
algorithms on a five-point scale from "bad" to "perfect" according to
their page-fault rate. Separate those algorithms that suffer from
Beiady' s anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

9.7 When virtual memory is implemented in a computing system, there
are certain costs associated with the technique, and certain benefits.
List the costs and the benefits. ls it possible for the costs to exceed
the benefits? If it is, what measures can be takeri. to ensure that this
does not happen?

9.8 An operating system supports a paged virtual memory, using a central
processor with a cycle time of 1 microsecond. It costs an additional
1 microsecond to access a page other than the current one. Pages
have 1000 words, and the paging device is a drum· that rotates at

Exercises • 345

3000 revolutions per minute, and transfers 1 million words per second.
The following statistical measurements were obtained from the system:

• 1 percent of all instructions executed accessed a page other than the
current page.

• Of the instructions that accessed another page, 80 percent accessed
a page already in memory.

• When a new page was required, the replaced page was modified
50 percent of the time.

Calculate the effective instruction time on this system, assuming that
the system is running one process only, and that the processor is idle
during drum transfers.

9.9 Conside~ a demand-paging system with the following time-measured
utilizations:

CPU utilization
Paging disk
Other 110 devices

20%
97.7%

5%

Which (if any) of the following will (probably) improve CPU

utilization? Explain your answer.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk, or multiple controllers with multiple
hard disks.

g. Add prepaging to the page fetch algorithms.

h. Increase the page size.

9.10 Consider the two-dimensional array A:

var A: array [1 .. 100] of array [1 .. 100] of integer;

where A[1][1] is at location 200, in a paged memory system with
pages of size 200. A sm~ll process is in page 0 (locations 0 to 199) for
manipulating the matrix; thus, every instruction fetch will be from
page 0.

For three page frames, how many page faults are generated by
the following array-initialization loops, using LRU replacement, and

Ill

346 • Chapter 9: Virtual Memory

assuming page frame 1 has the process in it, and the other two are
initially empty:

a. for j:= 1 to 100 do
for i : = 1 to 100 do

A[i]U]:= 0;

b. for i := 1 to 100 do
for j:= 1 to 100 do

A[i]U]:= 0;

9.11 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faqlts would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, or 'seven frames?
Remember all frames are initially empty, so your first unique pages
will all cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement

9.12 Suppose that we want to use a paging algorithm that requires a
reference bit (such as second-chance replacement or working-set
model), but the hardware does not provide one. Sketch how we
could simulate a referenc~ bit even if one were not provided by the
hardware, or explain why it is not possible to do so. If it is possible,
calculate what the cost would be.

9.13 We have devised a new page-replacement algorithm that we think
may be optimal. In some contorted test cases, Belady's anomaly
occurs. Is the new algorithm optimal? Explain your answer.

9.14 Suppose your replacement policy (in a paged system) consists of
regularly examining each page and discarding that page if it has not
been used since the last examination. What would you gain and what
would you lose by using this policy rather than LRU or second-chance
replacement?

9.15 Segmentation is similar to paging, but uses variable-sized "pages."
Define two segment-replacement algorithms based on FIFO and LRU

page-replacement schemes. Remember that, since segments are not
the same size, the segment that is chosen to be replaced may not be
big enough to leave enough consecutive locations for the needed
segment. Consider strategies for systems where segments cannot be
relocated, and those for systems where they can.

Exercises • 347

9.16 A page-replacement algorithm should Ininimize the number of page
faults. We can do this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete
for a small number of page frames. We can associate with each page
frame a counter of the number of pages that are associated with that
frame. Then, to replace a page, we search for the page frame with the
smallest counter.

a. Define a page-replacement algorithm using this basic idea.
Specifically address the problems of (1) What the initial.value of .
the counters is, (2) when counters are increased, (3) when
counters are decreased, and (4) how the page to be replaced is
selected.

b. How many page faults occur for your algorithm for the following
reference string, for four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page­
replacement strategy for the reference string in part b with four
page frames?

9.17 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time
of 1 microsecond per memory access. Thus, each memory reference
through the page table takes two accesses. To improve this time, we
have added an associative memory that reduces access time to one
memory reference, if the page-table entry is in the associative
memory.

Assume that 80 percent of the accesses are in the associative
memory, and that, of the remaining, 10 percent (or 2 percent of the
total) cause page faults. What is the effective memory access time?

9.18 Consider a demand-paged computer system where the degree of
multiprogramming is currently fixed at four. The system was recently
measured to determine utilization of CPU and the paging disk. The
results are one of the following alternatives. For each case, what is
happening? Can the degree of multiprogramming be increased to
increase the CPU utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization .87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

9.19 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table.

348 • Chapter 9: Virtual Memory

Can the page tables be set up to simulate base and limit registers?
How can they be, or why can they not be?

9.20 What is the cause of thrashing? How does the system detect
thrashing? Once it detects thrashing, what can the system do to
eliminate this problem?

Bibliographic Notes

Demand paging was first used in the Atlas system, implemented on the
Manchester University MUSE computer around 1960 [Kilburn et al. 1961].
Another early demand-paging system was MULTICS, implemented on the GE

645 system [Organick 1972].
Belady et al. [1969] were the first researchers to observe that the FIFO

replacement strategy may have the anomaly that bears Belady's name.
Mattson et al. [1970] demonstrated that stack algorithms are not subject to
Belady's anomaly.

The optimal replacement algorithm was presented by Belady [1966]. It
was proved to be optimal by Mattson et al. [1970]. Belady;s optimal
algorithm is for a fixed allocation; Prieve and Fabry [1976] have an optimal
algorithm for situations where the allocation can vary.

The enhanced clock algorithm was discussed by Carr and Hennessy
[1981]; it is used in the Macintosh virtual memory-management scheme,
and was described by Goldman [1989].

Thrashing was discussed by Denning [1968]. The working-set model
was developed by Denning [1968]. Discussions concerning the working-set
model were presented by Denning [1980].

The page-fault-rate monitoring scheme was developed by Wulf [1969],
who successfully applied this technique to the Burroughs BSSOO computer
system. Chu and Opderbeck [1976] discussed program behavior and the
page-fault-frequency replacement algorithm. Gupta and Franklin [1978]
provided a performance comparison between the working-set scheme and
the page-fault-frequency replacement scheme.

Demand segmentation and details of OS/2 were described by Iacobucci
· [1988]. Further information about OS/2 was presented in [Microsoft 1989].

The Intel 80386 paging hardware was described in [Intel 1986]; the
Motorola 68030 hardware was covered in [Motorola 1989b]. Virtual-memory
management in the VAX/VMS operating system was discussed by Levy and
Lipman [1982]. Discussions concerning workstation operating systems and
virtual memory are offered by Hagmann [1989].

CHAPTER 10

FILE
SYSTEM
INTERFACE

For most users, the file system is the most visible aspect of an operating
system. It provides the mechanism for on-line storage of and access to both
data and programs belonging, to the operating system and all the users of
the computer system. The file system consists of two distinct parts: a
collection of files, each storing related data, and a directory structure, which
organizes and provides information about all the files in the system. Some
file systems have a third part, partitions, which are used to separate
physically or logically large collections of directories. In this chapter, we
consider the various aspects of files, and the variety of directory
structures. We also discuss ways to handle file protection, which is
necessary in an environment where multiple users have access to files, and
where it is usually desirable to control by whom and in what ways files
may be accessed. Finally, we discuss the semantics of sharing files among
multiple processes.

10.1 • File Concept

Computers can store information on several different storage media, such
as magnetic disks, magnetic tapes, and optical disks. So that the computer
system will be convenient to use, the operating system provides a uniform
logical view of information storage. The operating system abstracts from
the physical properties of its storage devices to define a logical storage
unit, the file. Files are mapped, by the operating system, onto physical
devices. These storage devices are usually nonvolatile, so the contents are
persistent through power failures and system reboots.

349

350 • Chapter 10: File-System Interface

A file is a named collection of related information that is recorded on
secondary storage. From a user's perspective, a file is the smallest
allotment of logical secondary storage; that is, data cannot be written to
secondary storage unless they are within a file. Commonly, files represent
programs (both source and object forms) and data. Data files may be
numeric, alphabetic, alphanumeric, or binary. Files may be free-form, such
as text files, or may be formatted rigidly. In general, a file is a sequence of
bits, bytes, lines, or records whose meaning is defined by the file's creator
and user. The concept of a file is thus extremely general.

The information in a file is defined by its creator. Many different types
of information may be stored in a file: source programs, object programs,
executable programs, numeric data, text, payroll records, graphic images,
sound recordings, and so on. A file has a certain defined structure
according to its type. A text file is a sequence of characters organized into
lines (and possibly pages); a source file is a sequence of subroutines and
functions, each of which is further organized as declarations followed by
executable statements; an object file is a sequence of bytes organized into
blocks understandable by the system's linker; an executable file is a series of
code sections that the loader can bring into memory and execute. The
internal structure of files is discussed in Section 10.1.4.

10.1.1 File Attributes

A file is named, for the convenience of its human users, and is referred to
by its name. A name is usually a string of characters, such as "example.c".
Some systems differentiate between upper- and lower-case characters in
names, whereas other systems consider the two cases to be equivalent.
When a file is named, it becomes independent of the process, the user,
and even the system that created it. For instance, one user might create
file "example.c", whereas another user might edit that file by specifying its
name. The file's owner might write the file to a floppy disk or magnetic
tape, and might read it off onto another system, where it could still be
called "example. c".

A file has certain other attributes, which vary from one operating
system to another, but typically consist of these:

• Name. The symbolic file name is the only information kept in human­
readable form.

• Type. This information is needed for those systems that support
different types.

• Location. This information is a pointer to a device and to the location
of the file on that device.

• Size. The current size of the file (in bytes, words or blocks), and
possibly the maximum allowed size are included in this attribute.

10.1 File Concept • 351

• Protection. Access-control information controls who can do reading,
writing, executing, and so on.

• Time, date, and user identification. This information may be kept for
(1) creation, (2) last modification, and (3) last use. These data can be
useful for protection, security, and usage monitoring.

The information about all files is kept in the directory structure that also
resides on secondary storage. It may take from 16 to over 1000 bytes to
record this information for each file. In a system with many file$, the size
of the directory itself may be megabytes. Because directories, like files,
must be nonvolatile, they must be stored on the device and brought into
memory piecemeal, as needed. We shall discuss the directory-structure
organization in Section 10.3 ·

10.1.2 File Operations
A file is an abstract data type. To define a file properly, we need to consider
the operations that can be performed gn files. The operating system
provides system calls to create, write, read, reposition, delete, and truncate
files. Let us consider what the operating system must do for each of the six
basic file operations. It should then be easy to see how similar operations,
such as renaming a file, would be implemented.

• Creating a file. Two steps are necessary to create a file. First, space in
the file system must be found for the file. We shall discuss how to
allocate space for the file in Chapter 11. Second, an entry for the new
file must be made in the directory. The directory entry records the
name of the file and the location in the file system.

• Writing a file. To write a file, we make a system call specifying both
the name of the file and the information to be written to the file. Given
the name of the file, the system searches the directory to find the
location of the file. The system must keep a write pointer to the
location in the file where the next write is to take place. The write
pointer must be updated whenever a write occurs.

• Reading a file. To read from a file, we use a system call that specifies
the name of the file and where (in memory) the next block of the file
should be put. Again, the directory is searched for the associated
directory entry, and the system needs to keep a read pointer to the
location in the file where the next read is to take place. Once the read
has taken place, the read pointer is updated. Since, in general, a file is
either being read or written, most systems keep only one current-file­
position pointer. Both the read and write operations use this same
pointer, saving space and reducing the system complexity.

352 • Chapter 10: File-System Interface

• Repositioning within a file. The directory is searched for the
appropriate entry, and the current-file-position is set to a given value.
Repositioning within a file does not need to involve any actual 110.
This file operation is also known as a file seek.

• Deleting a file. To delete a file, we search the directory for the named
file. Having found the associated directory entry, we release all file
space (so that it can be reused by other files) and erase the directory
entry.

• Truncating a file. There are occasions when the user wants the
attributes of a file to remain the same, but wants to erase the contents
of the file. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged
(except for file length) but for the file to be reset to length zero.

These six basic operations certainly comprise the minimal set of
required file operations. Other common operations include appending new
information to the end of an existing file, and renaming an existing file.
These primitive operations may then· be combined to perform other file
operations. For instance, creating a copy of a file, or copying the file to
another 110 device, such as a printer or a display, may be accomplished by
creating a new file, and reading from the -old and writing to the new. We
also want to have operations that allow a user to get and set the various
attributes of a file. For example, we may want to have an operation that
allows a user to determine the status Qf a file, such as the file's length, and
have an operation that allows a user to set file attributes, such as the file's
owner.

Most of the file operations mention~d involve searching the directory
for the entry associated with the named file. To avoid this constant
searching, many systems will open a file when that file first is used
actively. The operating system keeps a small table containing information
about all open files (the open-file table). When a file operation is requested,
an index into this table is used, so no searching is required. When the file
is no longer actively used, it is closed by the process and the operating
system removes its entry in the open-file table.

Some systems implicitly open a file when the first reference is made to
it. The file is automatically closed when the job or program that opened
the file terminates. Most systems, however, require that a file be opened
explicitly by the programmer with a system call (open) before that file can
be used. The open operation takes a file name and searches the directory,
copying the directory entry into the open-file table, assuming the file
protections allow such access. The open system call will typically return a
pointer to the entry in the open-file table. This pointer, not the actual file
name, is used in all I/O operations, avoiding any further searching, and
simplifying the system-call interface.

10.1 File Concept • 353

The implementation of the open and close operations in a multiuser
environment, such as UNIX, is more complicated. In such a system, several
users may open the file at the same time. Typically, the operating system
uses two levels of internal tables. There is a per-process table of all the
files that each process has open. Stored in this table is information
regarding the use of the file by the process. For instance, the current file
pointer for each file is found here, indicating the location in the file which
the next read or write call will affect.

Each entry in the per-process table in tum points to a systemwide
open-file table. The systemwide table contains information that is process
independent, such as the location of the file on disk, access dates, and file
size. Once a file is opened by one process, another process executing an
open call simply results in a new entry being added to the process' opE:?n
file table with a new current file pointer, and a pointer to the appropriate
entry in the systemwide table. Typically, the open-file table also has an
open count associated with each file, indicating the number of processes
which have the file open. Each close decreases this count, and when the
count reaches zero, the file is no longer in use, and the file's entry is
removed from the open file table. In summary, there are several pieces of
information associated with an open file.

• File pointer. On systems that do not include a file offset as part of the
read and write system calls, the system must track the last read/write
location as a current-file-position pointer. This pointer is unique to
each process operating on the file, and therefore must be kept
separate from the on-disk file attributes.

• File open count. As files are closed, the operating system must reuse
its open-file table entries, or it could run out of space in the table.
Because multiple processes may open a file, the system must wait for
the last file close before removing the open-file table entry. This
counter tracks the number of opens and closes, and reaches zero on
the last close. The system can then remove the entry.

• Disk location of the file. Most file operations require the system to
modify data within the file. The information needed to locate the file
on disk is kept in memory to avoid having to read it from disk for each
operation.

Some operating systems provide facilities for locking sections of an
open file for multiprocess access, to share sections of a file among several
processes, and even to map sections of a file into memory on virtual­
memory systems. This last function is called memory mapping a file and
allows a part of the virtual address space to be logically associated with a
section of a file. Reads and writes to that memory region are then treated
as reads and writes to the file, greatly simplifying file use. Closing the file

---
...
.!_
I

,. ,
I I I I I
7 TIT J

I I I I
I I I_

A I I
prOCeSS I .,. r _ _

virtual memory
1 1

I

disk file

,-
I ,-,-

--- d

10.1 File Concept • 355

program. This attempt normally produces garbage, but can be prevented if
the operating system has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type
as part of the file name. The name is split into two parts- a name and
an extension, usually separated by a period character (Figure 10.2). In this
way, the user and the operating system can tell from the name alone what
the type of a file is. For example, in MS-DOS, a name can consist of up to
eight characters followed by a period and terminated by an up-to-three­
character extension. The system uses the extension to Jndicate the type of
the file and the type of operations that can be done' on that file. For
instance, only a file with a ".com", ".exe", or ".bat" extension can be
executed. The ".com" and ".exe" files are two forms of binary executable
files, whereas a ".bat" file is a batch file containing, in ASCII format,

File type Usual extension Function

Executable exe, com, bin ready-to-run machine-
or none language program

Object obj, o compiled, machine Ian-
guage, not linked

Source code c, p, pas, f77, source code in various Ian-
asm, a guages

Batch bat, sh commands to the com-
mand interpreter

Text txt, doc textual data, documents

Word processor wp, tex, rrf, various word-processor
etc formats

Library lib, a libraries of routines for
programmers

Print or view ps, dvi, gif ASCII or binary file in a
format for printing or
viewing

Archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

Figure 10.2 Common file types.

356 • Chapter 10: File-System Interface

commands to the operating system. MS-DOS recognizes only a few
extensions, but application programs also use them to indicate file types in
which they are interested. For example, assemblers expect source files to
have an ".asm" extension, and the WordPerfect wordprocessor expects its
file to end with ".wp". These extensions are not required, but a user may
specify a file without the extension (to save typing), and the application
will look for a file with the given name and the extension it expects.
Because these extensions are not supported by the operating system, they
can be considered as "hints" to applications which operate on them.

Another example of the utility of file types comes from the TOPS-20
operating system. If the user tries to execute an object program whose
source file has been modified (edited) since the object file was produced,
the source file will be recompiled automatically. This function ensures that
the user always runs an up-to-date object file. Otherwise, the user could
waste a significant amount of time executing the old object file. Notice
that, for this function to be possible, the operating system must be able to
discriminate the source file from the object file, to check the time that each
file was last modified or created, and to determine the language of the
source program (in order to use the correct compiler).

Consider the Apple Macintosh operating system. In this system, each
file- has a type, such as "text" or "pict". Each file also has a creator
attribute containing the name of the program that created it. This attribute
is set by the operating system during the create call, so its use is enforced
and supported by the system. For instance, a file produced by a word
processor has the word processor's name as its creator. When the user
opens that file, by double-clicking the mouse on the icon representing the
file, the word processor is invoked automatically, and the file is loaded,
ready to be edited. ··

The UNIX operating system is unable to provide such a feature because
it uses a crude magic number stored at the beginning of some files to
indicate roughly the type of the file: executable program, batch file (known
as a shell script), postscript file, and so on. Not all files have magic
numbers, so system features cannot be based solely on this type
information. UNIX does not record the name of the creating program,
either. UNIX also allows file name extension hints, but these extensions are
not enforced or depended on by the operating system; they are mostly to
aid users in determining the type of contents of the file.

10.1.4 File Structure

File types also may be used to indicate the internal structure of the file. As
mentioned in Section 10.1.3, source and object files have structures that
match the expectations of the programs that read them. Further, certain

10.1 File Concept • 357

files must conform to a required structure that is understood by the operating
system. For example, the operating system may require that an executable file
have a specific structure so that it can determine where in memory to load the
file and what the location of the first instruction is. Some operating systems
extend this idea into a set of system-supported file structures, with sets of
special operations for manipulating files with those structures. For instance,
DEC's popular VMS operating system has a file system that does support
multiple file structures. It defines three file structures.

The above discussion brings us to one of the disadvantages of having
the operating system support multiple file structures: The resulting size of
the operating system is cumbersome. If the operating system defines five
different file structures, it needs to contain the code to support these file
structures. In addition, every file may need to be definable as one of the
file types supported by the operating system. Severe problems may result
from new applications that require information structured in ways not
supported by the operating system.

For example, assume that a system supports two types of files: text
files (composed of ASCII characters separated by a carriage return and line
feed) and executable binary files. Now, if we (as users) want to define an
encrypted file to protect our files from being read by unauthorized people,
we may find neither file type to be appropriate. The encrypted file is not
ASCII text lines, but rather is (apparently) random bits. Although it may
appear to be a binary file, it is not executable. As a result, we may have to
circumvent or misuse the operating system's file-types mechanism, or to
modify or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of
file structures. This approach has been adopted in UNIX, MS-DOS, and
others. UNIX considers each file to be a sequence of 8-bit bytes; no
interpretation of these bits is made by the operating system. This scheme
provides maximum flexibility, but little support. Each application program
must include its own code to interpret an input file into the appropriate
structure. However, all operating systems must support at least one
structure- that of an executable file- so that the system is able to load
and run programs.

Another example of an operating system that supports a minimal number
of file structures is the Macintosh Operating System, which expects files to
contain two parts: a resource fork and a data fork. The resource fork contains
information of interest to the user. For instance, it"holds the labels of any
buttons displayed by the program. A foreign user may want to relabel these
buttons in his own language, and the Macintosh operating system provides
tools to allow modification of the data in the resource fork. The data fork
contains the program code and data: the traditional file contents. To
accomplish the same task on a UNIX or MS-DOS system, the programmer would

358 • Chapter 10: File-System Interface

need to change and recompile the source code, unless she created her own
user-changeable data file. The moral of this example is that it is useful for an
operating system to support structures that will be used frequently, and that
will save the programmer substantial effort. Too few structures make
programming inconvenient, whereas too many cause operating-system bloat
and programmer confusion.

10.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the
operating system. Recall from Chapter 2 that disk systems typically have a
well-defined block size determined by the size of a sector. All disk 110 is
performed in units of one block (physical record), and all blocks are the
same size. It is unlikely that the physical record size will exactly match the
length of the desired logical record. Logical records may even vary in
length. Packing a number of logical records into physical blocks is a
common solution to this problem.

For example, the UNIX operating system defines all files to be simply a
stream of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks
(say, 512 bytes per block) as necessary.

The logical record size, physical block size, and packing technique
determine how many logical records are in each physical block. The
packing can be done either by the user's application program or by the
operating system.

In either case, the file may be considered to be a sequence of blocks.
All the basic I/O functions operate in terms of blocks. The conversion from
logical records to physical blocks is a relatively simple software problem.

Notice that disk space being always allocated in blocks has the result
that, in general, some portion of the last block of each file may be wasted.
If each block is 512 bytes, then a file of 1949 bytes would be allocated four
blocks (2048 bytes); the last 99 bytes would be wasted. The wasted bytes
allocated to keep everything in units of blocks (instead of bytes) is internal
fragmentation. All file systems suffer from internal fragmentation; the larger
the block size, the greater the internal fragmentation.

10.2 • Access Methods

Files store information. When it is used, this information must be accessed
and read into computer memory. There are several ways that the
information in the file can be accessed. Some systems provide only one
access method for files. On other systems, such as those of IBM, many

10.2 Access Methods • 359

different access methods are supported, and choosing the right one for a
particular application is a major design problem.

10.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by
far th~ most common, for example, editors and compilers usually access
files in this fashion.

The bulk of the operations on a file are reads and writes. A read
operation reads the n~xt portion of the file and automatically advances a
file pointer, which tracks the IIO location. Similarly, a write appends to the
end of the file and advances to the end of the newly written material (the
new end of file). Such a file can be reset to the beginning, and, on some
systems, a program may be able to skip forward or backward n records, for
some integer n (perhaps only for n = 1). Sequential access is depicted in
Figure 10.3. Sequential access is based on a tape model of a file, and works
as well on sequential-access devices as it does on random-access ones.

10.2.2 Direct Access

Another method is direct access (or relative access). A file is made up of
fixed-length logical records that allow programs to read and write records
rapidly in no particular order. The direct access method is based on a disk
model of a file, since disks allow random access to any file block. For direct
access, the file is viewed as a numbered sequence of blocks or records. A
direct-access file allows arbitrary blocks to be read or written. Thus, we
may read block 14, then read block 53, and then write block 7. There are
no restrictions on the order of reading or writing for a direct-access Q.le.

Direct-access files are of great use for immediate access to large
amounts of information. Databases are often of this type. When a query
concerning a particular subject arrives, we compute which block contains
the answer, and then read that block directly to provide the desired
information.

current position
end

Figure 10.3 Sequential-access file.

360 • Chapter 10: File-System Interface

For example, on an airline-reservation system, we might store all the
information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for
flight 713 is stored in block 713 of the reservation file. To store information
about a larger set, such as people, we might compute a hash function on
the people's names, or search a small in-core .index to determine a block to
read and search.

The file operations must be modified to include the block number as a
parameter. Thus, we have read n, where n is the block number, rather than
read next, and write n, rather than write next. An alternative approach is to
retain read next and write next, as with sequential access, and to add an
operation, position file to n, where n is the block number. Then, to effect a
read n, we would position ton and then read next.

The block number provided by the user to the operating system is
normally a relative block number. A relative block number is an index relative
to the beginning of the file. Thus, the first relative block of the file is 0, the
next is 1, and so on, even though the actual absolute disk address of the
block may be 14703 for the first block, and 3192 for the second. The use of
relative block numbers allows the operating system to decide where the file
should be placed (called the allocation problem, as discussed in Chapter
11), and helps to prevent the user from accessing portions of the file
system that may not be part of his file. Some systems start their relative
block numbers at 0; others start at 1.

Given a logical record length L, a request for record N is turned into an
110 request for L bytes at location L + (N -1) within the file. Since logical
records are of a fixed size, it is also easy to read, write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only
direct access. Some systems require that a file be defined as sequential or
direct when it is created; such a file can be accessed only in a manner
consistent with its declaration. Notice, however, that it is easy to simulate
sequential access on a direct-access file. If we simply keep a variable cp,
which defines our current position, then we can simulate sequential file
operations, as shown in Figure 10.4. On the other hand, it is extremely
inefficient and clumsy to simulate a direct-access file on a sequential-access
file.

10.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
additional methods generally involve the construction of an index for the
file. The index, like an index in the back of a book, contains pointers to the
various blocks. To find an entry in the file, we first search the index, and
then use the pointer to access the file directly and to find the desired
entry.

Sequential access

reset
read next

write next

10.3 Directory Structure • 361

Implementation for
direct access
cp := 0;
read cp;
cp := cp+1;
write cp;
cp := cp+1;

Figure 10.4 Simulation of sequential access on a direct-access file.

For example, a retail-price file might list the universal product codes
(UPCs) for items, with the associated prices. Each entry consists of a 10-
digit UPC and a six-digit price, for a 16-byte entry. If our disk has 1024
bytes per block, we can store 64 entries per block. A file of 120,000 entries
would occupy about 2000 blocks (2 million bytes). By keeping the file
sorted by UPC, we can define an index consisting of the first UPC in each
block. This index would. have 2000 entries of 10 digits each, or 20,000
bytes, and thus could be kept in memory. To find the price of a particular
item, we can (binary) search the index. From this search, we would know
exactly which block contains the desired entry and access that block. This
structure allows us to search a large file doing little I/0.

With large files, the index file itself may become too iarge to be kept in
memory. One solution is to create an index for the index file. The primary
index file would contain pointers to secondary index files, which would
point to the actual data items.

For example, IBM's indexed sequential access method (ISAM) uses a
small master index that points to disk blocks of a secondary index. The
secondary index blocks point to the actual file blocks. The file is kept
sorted on a defined key. To find a particular item, we first make a binary
search of the master index, which provides the block number of the
secondary index. This block is read in, and again a binary search is used to
find the block containing the desired record. Finally, this block is searched
sequentially. In this way, any record can be located from its key by at most
two direct-access reads. Figure 10.5 shows a similar situation as
implemented by VMS index and relative files.

10.3 • Directory Structure

The file systems of computers can be extensive. Some systems store
thousands of files on hundreds of gigabytes of disk. To manage all these
data, we need to organize them. This organization is usually done in two

-.
logical record

last name number

index file relative file

partition A
disk

disk 1

partition C

partition B

disk

we want

•

common

364 • Chapter 10: File-System Interface

10.3.1 Single-Level Directory

The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand
(Figure 10. 7).

A single-level directory has significant limitations, however, when the
number of files increases or when there is more than one user. Since all
files are in the same directory, they must have unique names. If we have
two users who call their data file test, then the unique-name rule is
violated. (For example, in one programming class, 23 students called the
program for their second assignment prog2; another 11 called it assign2.)
Although file names are generally selected to reflect the content of the file,
they are often limited in length. The MS-DOS operating system allows only
11-character file names; UNIX allows 255 characters.

Even with a single user, as the number of files increases, it becomes
difficult to remember the names of all the files, so as to create only files
with unique names. It is not uncommon for a user to have hundreds of
files on one computer system and an equal number of additional files on
another system. In such an environment, keeping track of so many files is
a daunting task.

10.3.2 Two-Level Directory

The major disadvantage to a single-level directory is the confusion of file
names between different users. The standard solution is to create a separate
directory for each user.

In the two-level directory structure, each user has her own user file
directory (UFD). Each UFD has a similar structure, but lists only the files of a
single user. When a user job starts or a user logs in, the system's master
file directory (MFD) is searched. The master file directory is indexed by user
name or account number, and each entry points to the UFD for that user
(Figure 10.8).

When a user refers to a particular file, only his own UFD is searched.
Thus, different users may have files with the same name, as long as all the
file names within each UFD are unique.

directory

files

Figure 10.7 Single-level directory.

-

user
file
directory

master
file

10.3 Directory Structure • 365

Figure 10.8 Two-level directory structure.

To create a file for a user, the operating system searches only that
user's UFO to ascertain whether another file of that name exists. To delete a
file, the operating system confines its search to the local UFO; thus, it
cannot accidentally delete another user's file that has the same name.

The user directories themselves must be created and deleted as
necessary. A special system program is run with the appropriate user
name and account information. The program creates a new user file
directory and adds an entry for it to the master file directory. The
execution of this program might be restricted to system administrators. The
allocation of disk space for user directories can be handled with the
techniques discussed in Chapter 11 for files themselves.

The two-level directory structure solves the name-collision problem,
but it still has problems. This structure effectively isolates one user from
another. This isolation is an advantage when the users are completely
independent, but is a disadvantage when the users want to cooperate on
some task and to access one another's files. Some systems simply do not
allow local user files to be accessed by other users.

If access is to be permitted, one user must have the ability to name a
file in another user's directory. To name a particular file uniquely in a
two-level directory, we must give both the user name and the file name. A
two-level directory can be thought of as a tree, or at least an inverted tree,
of height 2. The root of the tree is the master file directory. Its direct
descendants are the UFOs. The descendants of the user file directories are
the files themselves. The files are the leaves of the tree. Specifying a user
name and a file name defines a path in the tree from the root (the master
file directory) to a leaf (the specified file). Thus, a user name and a file
name define a path name. Every file in the system has a path name. To
name a file uniquely, a user must know the path name of the file desired.

For example, if user A wishes to access her own test ·file named test,
she can simply refer to test. To access the test file of user B (with

366 • Chapter 10: File-System Interface

directory-entry name userb), however, she might have to refer to !userbltest.
Every system has its own syntax for naming files in directories other than
the user's own.

There is additional syntax to specify the partition of a file. For
instance, in MS-DOS a partition is specified by a letter followed by a colon.
Thus, a file specification might be "C:\userb\test". Some systems go even
further and separate the partition, directory name, and file name parts of
the specification. For instance, in VMS, the file "login.com" might be
specifie~ as: "u:[sst.jdeck]login.com;1", where "u" is the name of the
partition, "sst" is the name of the directory, "jdeck" is the name of
subdirectory, and "1", is the version number. Other systems simply treat
the partition name as part of the directory name. The first name given is
that of the partition, and the rest is the directory and file. For instance,
"/u/pbg/test" might specify partition "u", directory "pbg", and file "test".

A special case of this situation occurs in regard to the system files.
Those programs provided as a part of the system (loaders, assemblers,
compilers, utility routines, libraries, and so on) are generally defined as
files. When the appropriate commands are given to the operating system,
these files are read by the loader and are executed. Many command
interpreters act by simply treating the command as the name of a file to
load and execute. As the directory system is defined presently, this file
name would be searched for in the current user file directory. One solution
would be to copy the system files into each user file directory. However,
copying all the system files would be enormously wasteful of space. (If the
system files require 5 megabytes, then supporting 12 users would require 5
x 12 = 60 megabytes just for copies of the system files.)

The standard solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example,
user 0). Whenever a file name is given to be loaded, the operating system
first searches the local user file directory. If the file is found, it is used. If it
is not found, the system automatically searches the special user directory
that contains the system files. The sequence of directories searched when a
file is named is called the search path. This idea can be extended, such that
the search path contains an unlimited list of directories to search when a
command name is given. This method is the one most used in UNIX and
MS-DOS.

10.3.3 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 10.9). This generalization allows users to create
their own subdirectories and to organize their files accordingly. The MS-DOS
system, for instance, is structured as a tree. In fact a tree is the most
common directory structure. The tree has a root directory. Every file in the

10.3 Directory Structure • 367

Figure 10.9 Tree-structured directory structure.

system has a unique path name. A path name is the path from the root,
through all the subdirectories, to a specified file.

A directory (or subdirectory) corttairts a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All
directories have the same internal format. One bit in each directory entry
defines the entry as a file (0) or as a subdirectory (1). Special system calls
are used to create and delete directories.

In normal use, each user has a current directory. The current directory
should contain most of the files that are of current interest to the user.
When reference is made to a file, the current directory is searched. If a file
is needed that is not in the current directory, then the user must either
specify a path name or change the current directory to be the directory
holding that file. To change the current directory to a different directory, a
system call is provided that takes a directory name as a parameter and
uses it to redefine the current directory. Thus, the user can change his
current directory whenever he desires. From one change directory system
call to the next, all open system calls search the current directory for the
specified file.

The initial current directory of a user is designated when the user job
starts or the user logs in. The operating system searches the accounting file

368 • Chapter 10: File-System Interface

(or some other predefined location) to find an entry for this user (for
accounting purposes). In the accounting file is a pointer to (or the name of)
the user's initial directory. This pointer is copied to a local variable for this
user, which specifies the user's initial current directory.

Path names can be of two types: absolute path names or relative path
names. An absolute path name begins at the root and follows a path down
to the specified file, giving the directory names on the path. A relative
path name defines a path from the current directory. For example, in the
tree-structured file system of Figure 10.9, if the current directory is
root/spell/mail, then the relative path name prt!first refers to the same file as
does the absolute path name root!spell!maillprt!first.

Allowing the user to define his own subdirectories permits him to
impose a structure on his files. This structure might result in separate
directories for files associated with different topics (for example, a
subdirectory was created to hold the text of this book) or different forms of
information (for example, the directory programs may contain source
programs; the directory bin may store all the binaries).

An interesting policy decision in a tree-structured directory structure is
how to handle the deletion of a directory. If a directory is empty, its entry
in its containing directory can simply be deleted. However, suppose the
directory to be deleted is not empty, but contains several files, or possibly
subdirectories. One of two approaches can be taken. Some systems, such
as MS-DOS, will not delete a directory unless it is empty. Thus, to delete a
directory, the user must first delete all the files in that directory. If there
are any subdirectories, this procedure must be applied recursively to them,
so that they can be deleted also. This approach may result in a substantial
amount of work.

An alternative approach, such as that taken by the UNIX rm command,
is to provide the option that, when a request is made to delete a directory,
all that directory's files and subdirectories are also to be deleted. Note that
either approach is fairly easy to implement; the choice is one of policy. The
latter policy is more convenient, but more dangerous, because an entire
directory structure may be removed with one command. If that command
was issued in error, a large number of files and directories would need to
be restored from backup tapes.

With a tree-structured directory system, files of other users can be
accessed easily. For example, user B can access files of user A by specifying
their path names. User B can specify either an absolute or a relative path
name. Alternatively, user B could change her current directory to be user
A's directory, and access the files by their file names. Some systems also
allow users to define their own search paths. In this case, user B could
define her search path to be (1) her local directory, (2) the system file
directory, and (3) user A's directory, in that order. As long as the name of
a file of user A did not conflict with the name of a local file or system file,
it could be referred to simply by its name.

10.3 Directory Structure • 369

Note that a path to a file in a tree-structured directory can be longer
than that in a two-level directory. To allow users to access programs
without having to remember these long paths, the Macintosh operating
system automates the search for executable programs. It maintains a file,
called the "Desktop File", containing the name and location of all
executable programs it has seen. When a new hard disk or floppy disk is
added to the system, or the network is accessed, the operating system
traverses the directory structure, searching for executable programs on the
device and recording the pertinent information. This mechanism supports
the double-click execution functionality described previously. A double­
click on a file causes its creator attribute to be read, and the "Desktop File"
to be searched for a match. Once the match is found, the appropriate
executable program is started with the clicked-on file as its input.

10.3.4 Acyclic-Graph Directories
Consider two programmers who are working on a joint project. The files
associated with that project can be stored in a subdirectory, separating
them ftom other projects and files of the two programmers. But since both
programmers are equally responsible for the project, both want the
subdirectory to be in their own directories. The common subdirectory
should be shared. A shared directory or file will exist in the file system in
two (or more) places at once. Notice that a shared file (or directory) is not
the same as two copies of the file. With two copies, each programmer can
view the copy rather than the original, but if one programmer changes the
file, the changes will not appear in the other's copy. With a shared file,
there is only one actual file, so any changes made. by one person would be
immediately visible to the other. This form of sharing is particularly
important for shared subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

A tree structure prohibits the sharing of files or directories. An acyclic
graph allows directories to have shared subdirectories and files (Figure
10.10). The same file or subdirectory may be in two different directories. An
acyclic graph (that is, a graph with no cycles) is a natural generalization of
the tree-structured directory scheme.

In a situation where several people are working as a team, all the files
to be shared may be put together into one directory. The user file
directories of all the team members would each contain this directory of
shared files as a subdirectory. Even when there is a single user, his file
organization may require that some files be put into several different
subdirectories. For example, a program written for a particular project
should be both in the directory of all programs and in the directory for that
project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new

370 • Chapter 10: File-System Interface

Figure 10.10 Acyclic-graph directory structure.

directory entry called a link. A link is effectively a pointer to another file or
subdirectory. For example, a link may be implemented as an absolute or
relative path name (a symbolic link). When a reference to a file is made, we
search the directory. The directory entry is marked as a link and the name
of the real file (or directory) is given. We resolve the link by using the path
name to locate the real file. Links are easily identified by their format :ln
the directory entry, (or by their having a special type on systems that
support types) and are effectively named indirect pointers. The operating
system ignores these links when traversing directory trees to preserve the
acyclic structure of the system.

The other approach to implementing shared files is simply to duplicate
all information about them in both sharing directories. Thus, both entries
are identical and equal. A link is clearly different from the original
directory entry; thus, the two are not equal. Duplicate directory entries,
however, make the original and the copy indistinguishable. A major
problem with duplicate directory entries is maintaining consistency if the
file is modified.

An acyclic-graph directory structure is more flexible than is a simple
tree structure, but is also more complex. Several problems must be
considered carefully. Notice that a file may now have multiple absolute
path names. Consequently, distinct file names may refer to the same file.
This situation is similar to the aliasing problem for programming
languages. If we are trying to traverse the entire file system (to find a file,
to accumulate statistics on all files, or to copy all files to backup storage),

10.3 Directory Structure • 371

this problem becomes significant, since we do not want to traverse shared
structures more than once.

Another problem involves de~etion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to
the now-nonexistent file. Worse, if the remaining file pointers contain
actual disk addresses, and the space is subsequently reused for other files,
these dangling pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this
situation is somewhat easier to handle. The deletion of a link does not
need to affect the original file; only the link is removed. If the file entry
itself is deleted, the space for the file is deallocated, leaving the links
dangling. We can search for these links and remove them also, but unless
a list of the associated links is kept with each file, this search can be
expensive. Alternatively, we can leave the links until an attempt is made to
use them. At that time, we can determine that the file of the name given
by the link does not exist, and can fail to resolve the link name; the access
is treated just like any other illegal file name. (In this case, the system
designer should consider carefully what to do when a file is deleted and
another file of the same name is created, before a symbolic link to the
original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the original file is gone or
has been replaced.

Another approach to deletion is to preserve the file until all references
to it are deleted. To implement this approach, we must have some
mechanism for determining that the last reference to the file has been
deleted. We could keep a list of all references to a file (directory entries or
symbolic links). When a link or a copy of the directory entry is established,
a new entry is added to the file-reference list. When a link or directory
entry is deleted, we remove its entry on the list. The file is deleted when
its file-reference list is empty.

The trouble with this approach is the variable and potentially large size
of the file-reference list. However, we really do not need to keep the entire
list- we need to keep only a count of the number of references. A new
link or directory entry increments the reference count; deleting a link or
entry decrements the count. When the count is 0, the file can be deleted;
there are no remaining references to it. The UNIX operating system uses
this approach for nonsymbolic links, or hard links, keeping a reference
count in the file information block (or inode, see Section 19.7.2). By
effectively prohibiting multiple references to directories, we maintain an
acyclic-graph structure.

To avoid these problems, some systems do not allow shared directories
or links. For example, in MS-DOS, the directory structure is a tree structure,
rather than an acyclic graph, thereby avoiding the problems associated
with file deletion in an acyclic-graph directory structure.

372 • Chapter 10: File-System Interface

10.3.5 General Graph Directory
One serious problem with using an acyclic graph structure is ensuring that
there are no cycles. If we start with a two-level directory and allow users
to create subdirectories, a tree-structured directory results. It should be
fairly easy to see that simply adding new files and subdirectories to an
existing tree-structured directory preserves the tree-structured nature.
However, when we add links to an existing tree-structured directory, the
tree structure is destroyed, resulting in a simple graph structure (Figure
10.11).

The primary advantage of an acyclic graph is the relative simplicity of
the algorithms to traverse the graph and to determine when there are no
more references to a file. We want to avoid traversing shared sections of
an acyclic graph twice, mainly for performance reasons. If we have just
searched a major shared subdirectory for a particular file, without finding
that file, we want to avoid searching that subdirectory again; the second
search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to avoid
searching any component twice, for reasons of correctness as well as
performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One
solution is to arbitrarily limit the number of directories which will be
accessed during a search.

A similar problem exists when we are trying to determine when a file
can be deleted. As with acyclic-graph directory structures, a 0 in the
reference count means that there are no more references to the file or

Figure 10.11 General graph directory.

10.4 Protection • 373

directory, and the file can be deleted. However, it is also possible, when
cycles exist, that the reference count may be nonzero, even when it is no
longer possible to refer to a directory or file. This anomaly results from the
possibility of self-referencing (a cycle) in the directory structure. In this
case, it is generally necessary to use garbage collection to determine when
the last reference has been deleted and the disk space can be reallocated.
Garbage collection involves traversing the file system, marking everything
that can be accessed. Then, a second pass collects everything that is not
marked onto a list of free space. (A similar marking procedure can be
used to ensure that a traversal or search will cover everything in the file
system once and only once.) Garbage collection for a disk-based file
system, however, is extremely time-consuming and is thus seldom
attempted.

Garbage collection is necessary only because of possible cycles in the
graph. Thus, an acyclic-graph structure is much easier to work with. The
difficulty is to avoid cycles, as new links are added to the structure. How
do we know when a new link will complete a cycle? There are algorithms
to detect cycles in graphs; however, they are computationally expensive,
especially when the graph is on disk storage. Generally, tree directory
structures are more common than are acyclic-graph structures.

10.4 • Protection

When information is kept in a computer system, a major concern is its
protection from both physical damage (reliability) and improper access
(protection).

Reliability is generally provided by duplicate copies of files. Many
computers hc:~.ve systems programs that automatically (or through
computer-operator intervention) copy disk files to tape at regular intervals
(once per day or week or month) to maintain a copy should a file system
be accidentally destroyed. File systems can be damaged by hardware
problems (such as. errors in reading or writing), power surges or failures,
head crashes, dirt, temperature extremes, and vandalism. Files may be
deleted accidentally. Bugs in the file-system software can also cause file
contents to be lost. Reliability is covered in more detail in Chapter 12.

Protection can be provided in many ways. For a small single-user
system, we might provide protection by physically removing the floppy
disks and locking them in a desk drawer or file cabinet. In a multiuser
system, however, other mechanisms are needed.

10.4.1 Types

The need for protecting files is a direct result of the ability to access files.
On systems that do not permit access to the files of other users, protection

i
l

374 • Chapter 10: File-System Interface

is not needed. Thus, one extreme would be to provide complete protection
by prohibiting access. The other extreme is to provide free access with no
protection. Both of these approaches are too extreme for general use. What
is needed is controlled access.

Protection mechanisms provide controlled access by limiting the types
of file access that can be made. Access is permitted or denied depending
on several factors, one of which is the type of access requested. Several
different types of operations may be controlled:

• Read. Read from the file.

• Write. Write or rewrite the file.

• Execute. Load the file into memory and execute it.

• Append. Write new information at the end of the file.

• Delete. Delete the file and free its space for possible reuse.

• List. List the name and attributes of the file.

Other operations, such as renaming, copying, or editing the file, may
also be controlled. For many systems, however, these higher-level
functions (such as copying) may be implemented by a system program that
makes lower-level system calls. Protection is provided at only the lower
level. For instance, copying a file may be implemented simply by a
sequence of read requests. In this case, a user with read access can also
cause the file to be copied, printed, and so on.

Many different protection mechanisms have been proposed. Each
scheme has its advantages and disadvantages and must be selected as
appropriate for its intended application. A small computer system that is
used by only a few members of a research group may not need the same
types of protection as will a large corporate computer that is used for
research, finance, and personnel operations. A complete treatment of the
protection problem is deferred to Chapter 13.

10.4.2 Access Lists and Groups
The most common approach to the protection problem is to make access
dependent on the identity of the user. Various users may need different
types of access to a file or directory. The most general scheme to
implement identity-dependent access is to associate with each file and
directory an access list, specifying the user name and the types of access
allowed for each user. When a user requests access to a particular file, the
operating system checks the access list associated with that file. If that user
is listed for the requested access, the access is allowed. Otherwise, a
protection violation occurs, and the user job is denied access to the file.

10.4 Protection • 375

The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This
technique has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task,
especially if we do not know in advance the list of users in the system.

• The directory entry that previously was of fixed size needs now to be
of variable size, resulting in space management being more
complicated.

These problems can be resolved by use of a condensed version of the
access list.

To condense the length of the access list, many systems recognize
three classifications of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access
is a group, or workgroup.

• Universe. All other users in the system constitute the universe.

As an example, consider a person, Sara, who is writing a new book.
She has hired three graduate students Gim, Dawn, and Jill) to help with
the project. The text of the book is kept in a file named book. The
protection associated with this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

• All others users should be able to read the file. (Sara is interested in
letting as many people as possible read the text so that she can obtain
appropriate feedback.)

To achieve such a protection, we must create a new group, say text, with
members Jim, Dawn, and Jill. The name of the group text must be then
associated with the file book, and the access right must be set in accordance
with the policy we have outlined.

Note that, for this scheme to work properly, group membership must
be controlled tightly. This control can be accomplished in a number of
different ways. For example, in the UNIX system, groups can be created
and modified by only the manager of the facility (or by any superuser).
Thus, this control is achieved through human interaction. In the VMS
system, with each file, an access list (also known as an access control list)
may be associated, listing those users who can access the file. The owner

376 • Chapter 10: File-System Interface

of the file can create and modify this list. Access lists are discussed further
in Section 13.4.2.

With this more limited protection classification, only three fields are
needed to define protection. Each field is often a collection of bits, each of
which either allows or prevents the access associated with it. For example,
the UNIX system defines three fields of 3 bits each: rwx, where r controls
read access, w controls write access, and x controls execution~ A separate
field is kept for the file owner, for the owner's group and for all other
users. In this scheme, 9 bits per file are needed to record protection
information. Thus, for our example, the protection fields for the file book
are as follows; For the owner Sara, all 3 bits are set; for the group text, the
rand w bits are set; and for the universe, only the r bit is set.

Notice, however, that this sche~e is not as general as is the access-list
scheme. To illustrate our point, let us return to the book example.
Suppose that Sara wants to exclude Jason from the list of people who can
read the text. She cannot do so with the basic protection scheme outllned.

10.4.3 Other Protection Approaches
There is another approach to the protection problem, which is to associate
a password with each file. Just as access to the computer system itself is
often controlled by a password, access to each file can be controlled by a
password. If the passwords are chosen randomly and changed often, this
scheme may be effective in limiting access to a file to only those users who
know the password. There are, however, several disadvantages to this
scheme. First, if we associate a separate password with each file, the
number of passwords that a user needs to remember may become large,
making the scheme impractical. If ortly one password is used for all the
files, then, once it is discovered, all files are accessible. Some systems (for
example, TOPS-20) allow a user to associate a password with a subdirectory,
rather than with an individual file, to deal with this problem. The IBM
VM/CMS operating system allows three passwords for a minidisk: one each
for read, write, and multiwrite access. Second, commonly, only one
password is associated with each file. Thus, protection is on an ali-or­
nothing basis. To provide protection on a more detailed level, we must use
multiple passwords.

Limited file protection is also currently available on single user
systems, such as MS-DOS and Macintosh operating system. These operating
systems, when originally designed, essentially ignored dealing with the
protection problem. However, since these systems are being placed on
networks where file sharing and communication is necessary, protection
mechanisms are having to be retrofitted into the operating system. Note
that it is almost always easier to design a feature into an new operating
system than it is to add a feature to an existing one. Such updates are
usually less effective and are not seamless.

10.4 Protection • 377

-rw-rw-r-- 1 pbg staff 31200 Sep 3 08:30 intro.ps
drwx------ 5 pbg staff 512 Jul 8 09:33 private/
drwxrwxr-x 2pbg staff 512 Jul 8 09:35 doc/
drwxrwx--- 2pbg student 512 Aug 3 14:13 student-proj/
-rw-r--r-- 1 pbg staff 9423 Feb 24 1993 program.c
-:rw:xr-xr-x 1 phg staff 20471 Feb 24 1993 program
drwx--x--x 4pbg faculty 512 Jul 3110:31 lib/
drwx------ 3 pbg staff 1024 Aug 29 06:52 mail/
drwxrwxrwx 3 pbg staff 512 Jul 8 09:35 test/

Figure 10.12 A sample directory listing.

We note that, in a multilevel directory structure, we need not only to
protect individual files, but also to protect collections of files contained in a
subdirectory; that is, we need to provide a mechanism for directory
protection. The directory operations that must be protected are somewhat
different from the file operations. We want to control the creation and
deletion of files in a directory. In addition, we probably wap.t to control
whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file may be
significant in itself. Thus, listing the contents of a directory must be a
protected operation. Therefore, if a path name refers to a file in a
directory, the user must be allowed access to both the directory and the
file. In systems where files may have numerous path names (such as
acyclic or general graphs), a given user may have different access rights to
a file, depending on the path name used.

10.4.4 An Example: UNIX

In the UNIX system, directory protection is handled similarly to file
protection. That is, associated with each subdirectory are three fields -
owner, group, and universe- each consisting of the 3 bits rwx. Thus, a
user can list the content of a subdirectory only if the r bit is set in the
appropriate field. Similarly, a user can change his current directory to
another current directory (say foo) only if the x bit associated with the foo
subdirectory is set in the appropriate field.

A sample directory listing from a UNIX environment is shown in Figure
10.12. The first field describes the file or directory's protection. Ad as the
first character indicates a subdirectory. Also shown are the number of
links to the file, the owner's name, the group's name, the size of the file in
unit of bytes, the creation date, and finally the file's name (with optional
extension).

378 • Chapter 10: File-System Interface

10.5 • Consistency Semantics

Consistency semantics is an important criterion for evaluation of any file
system_ that supports sharing of files. It is a characterization of the system
that specifies the semantics of multiple users accessing a shared file
simultaneously. In particular, these semantics should specify when
modifications of data by one user are observable by other users.

For the following discussion, we assume that a series of file accesses
(that is, reads and writes) attempted by a user to the same file, is always
enclosed between the open and close operations. We call the series of
accesses between an open and close operation a file session. To illustrate
the concept, we sketch several prominent examples of consistency
semantics.

10.5.1 UNIX Semantics

The UNIX file system (see Chapter 17) uses the following consistency
semantics:

• Writes to an open file by a user are visible immediately to other users
that have this file open at the same time.

• There is a mode of sharing where users share the pointer of current
location into the file. Thus, the advancing of the pointer by one user
affects all sharing users. Here, a file has a single image that interleaves
all accesses, regardless of their origin.

These semantics lend themselves to an implementation where a file is
associated with a single physical image that is accessed as an exclusive
resource. Contention for this single image results in user processes being
delayed.

10.5.2 Session Semantics

The Andrew file system (see Chapter 17) uses the following consistency
semantics:

• Writes to an open file by a user are not visible immediately to other
users that have the same file open simultaneously.

• Once a file is closed, the changes made to it are visible only in sessions
starting later. Already-open instances of the file do not reflect these
changes.

According to these semantics, a file may be associated temporarily with
several (possibly different) images at -the same time. Consequently,

10.6 Summary • 379

multiple users are allowed to perform both read and write accesses
concurrently on their image of the file, without delay. Notice that almost
no constraints are enforced on scheduling accesses.

10.5.3 Immutable-Shared-Files Semantics
A different, unique approach is that of immutable shared files. Once a file is
declared as shared by its creator, it cannot be modified. An immutable file
has two important properties: Its name may not be reused and its contents
may not be altered. Thus, the name of an immutable file signifies that the
contents of the file are fixed, rather than the file being a container for
variable information. The implementation of these semantics in a
distributed system (Chapter 17) is simple, since the sharing is disciplined
(read-only).

10.6 • Summary

A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte,
a line (fixed or variable length), or a more complex data item. The
operating system may specifically support various record types or may
leave that support to the application program.

The major task for the operating system is to map the logical file
concept onto physical storage devices such as magnetic tape or disk. Since
the physical record size of the device may not be the same as the logical
record size, it may be necessary to block logical records into physical
records. Again, this task may be supported by the operating system or left
for the application program.

Tape-based file systems are constrained; most file systems are disk­
based. Tapes are commonly used for data transport between machines, or
for backup or archival storage.

Each device in a file system keeps a volume table of contents or device
directory listing the location of the files on the device. In addition, it is
useful to create directories to allow files to be organized. A single-level
directory in a multiuser system causes naming problems, since each file
must have a unique name. A two-level directory solves this problem by
creating a separate directory for each user. Each user has her own
directory, containing her own files.

The directory lists the files by name, and includes such information as
the file's location on the disk, length, type, owner, time of creation, time of
last use, and so on.

The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize his files. Acyclic-graph directory structures allow subdirectories

380 • Chapter 10: File-System Interface

and files to be shared, but complicate searching and deletion. A general
graph structure allows complete flexibility in the sharing of files and
directories, but sometimes requires garbage collection to recover unused
disk space.

Since files are the main information-storage mechanism in most
computer systems, file protection is needed. Access to files can be
controlled separately for each type of access: read, write, execute, append,
list directory, and so on. File protection can be provided by passwords, by
access lists, or by special ad hoc techniques.

File systems are often implemented in a layered or modular structure.
The lower levels deal with the physical properties of storage devices.
Upper levels deal with symbolic file names and logical properties of files.
Intermediate levels map the logical file concepts into physical device
properties.

• Exercises

10.1 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may
occur if a new file is created in the same storage area or with the
same absolute path name? How can these problems be avoided?

10.2 Some systems automatically delete all user files when a user'logs off
or a job terminates, unless the user explicitly requests that they be
kept; other systems keep all files unless the user explicitly deletes
them. Discuss the relative merits of each approach.

10.3 Why do some systems keep track of the type of a file, while others
leave it to the user or simply do not implement multiple file types?
Which system is "better?"

10.4 Similarly, some systems support many types of structures for a file's
data, while others simply support a stream of bytes. What are the
advantages and disadvantages?

10.5 What are the advantages and disadvantages of recording the name
of the creating program with the file's attributes (as is done in the
Macintosh operating system)?

10.6 Could you simulate a multilevel directory structure with a single­
level directory structure in which arbitrarily long names can be
used? If your answer is yes, explain how you can do so, and
contrast this scheme with the multilevel directory scheme. If your
answer is no, explain what prevents your simulation's success.
How would your answer change if file names were limited to seven
characters?

Exercises • 381

10.7 Explain the purpose of the open and close operations.

10.8 Some systems automatically open a file when it is referenced for the
first time, and close the file when the job terminates. Discuss the
advantages and disadvantages of this scheme as compared to the
more traditional one, where the user has to open and close the file
explicitly.

10.9 Give an example of an application in which data in a file should be
accessed in the following order:

a. Sequentially

b. Randomly

10.10 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.

10.11 In some systems, a subdirectory can be read and written by an
authorized user, just as ordinary files can be.

a. Describe the protection problems that could arise.

b. Suggest a scheme for dealing with each of the protection
problems you named in part a.

10.12 Consider a system that supports 5000 users. Suppose that you want
to allow 4990 of these users to be able to access one file.

a. How would you specify this protection scheme in UNIX?

b. Could you suggest another protection scheme that can be used
more effectively for this purpose than the scheme provided by
UNIX?

10.13 Researchers have suggested that, instead of having an access list
associated with each file (specifying which users can access the file,
and how), we should have a user control list associated with each
user (specifying which files a user can access, and how). Discuss the
relative merits of these two schemes.

Bibliographic Notes

General discussions concerning file systems were offered
[1986]. Golden and Pechura [1986] described the
microcomputer file systems. Database systems and their
were described in full in Korth and Silberschatz [1991].

by Grosshans
structure of

file structures

A multilevel directory structure was first implemented on the MULTICS

system [Organick 1972]. Most operating systems now implement multilevel

382 • Chapter 10: File-System Interface

directory structures. These include UNIX [Ritchie and Thompson 1974], the
Apple Macintosh operating system [Apple 1991], and MS-DOS [Microsoft
1991].

The MS-DOS file system was described in Norton and Wilton [1988].
That of VAX VMS was covered in Kenah el al. [1988], and Digital [1981].
The Network File System (NFS) was designed by Sun Microsystems, and
allows directory structures to be spread across networked computer
systems. Discussions concerning NFS were presented in Sandberg et al.
[1985], Sandberg [1987], and Sun Microsystems [1990]. NFS is fully
described in Chapter 17. The immutable-shared-files semantics was
described by Schroeder et al. [1985].

Interesting research is ongoing in the area of file-system interfaces.
Several papers in USENIX [1992a] discussed the issues of file naming and
attributes. For example, the Plan 9 operating system from AT&T Bell
Laboratories makes all objects look like file systems. Thus, to display a list
of processes on a system, a user simply lists the contents of the lproc
directory. Similarly, to display the time of day, a user needs only to type
the file /devltime.

