
Netflix, Inc. Exhibit 1003

(12)

(54)

(75)

(73)

(“)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

United States Patent
Zintel et al.

XML-BASED TEMPLATE IANGUAGE FOR
DEVICES AND SERVICES

Inventors: William M. Zintel, Kenmore, WA

(US); Amar S. Gandhi, Redmond, WA
(US); Ye Gu, Seattle, WA (US);
Shyamalan Pather, Redmond, WA
(US); Jeffrey C. Schlimmer, Redmond,
WA (US); Christopher M. Rude,
Redmond, WA (US); Daniel R.
Weian, Kirkland, WA (US); Donald
R. Ryan, Redmond, WA (US); Paul J.
Leach, Seattle, WA (US); Ting Cal,
Redmond, WA (US); Holly N. Knight,
Woodinville, WA (US); Peter S. Ford,
Carnation, WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 1S4(b) by 841 days.

Appl. No.: 09/811,362

Filed: Mar. 16, 2001

Prior Publication Data

US 2002/0029256 A1 Mar. 7, 2002

(Under 37 CFR 1.47)

Related U.S. Application Data

Continuation-in-part of application No. 09/496,318, filed on
Feb. 1, 2000.
Provisional application No. 60/190,943, filed on Mar. 21,
2000, provisional application No. 60/160,235, filed on Oct.
18, 1999, and provisional application No. 60/139,137, filed
on Jun. 11, 1999.

Int. CL.’ G06F 15/177
U.S. Cl. 709/220; 709/218; 709/225;

709/229; 709/249

US006910068B2

US 6,910,068 B2

Jun. 21, 2005

(10) Patent No.:

(45) Date of Patent:

(58) Field of Search 709/218, 220,
709/225, 229, 249

(56) References Cited

U.S. PATENT DOCUMENTS

5,394,556 A 2/1995 Oprescu 395/8(1)
5,491,800 A 2/1996 Goldsmith etal. 395/200.12

(Continued)

FOREIGN PATENT DOCUMENTS

W0 WO 99/35856 7/1999

OTHER PUBLICATIONS

A. Kung, B. Raither, S. McConnell, Electronic Commerce
Services Expand Home Automation Capabilities, TRIA-
LOG, EMMSEC ’99 Conference, Jun. 1999, pp. 1-7.

(Continued)

Primary Examiner—JeErey Gaflin
Assistant Examiner—Mohammad 0. Farooq
(74) Attorney, Agent, or Firm—Lee & Hayes, PLLC

(57) ABSTRACT

Auniversal plug and play (UPnP) device makes itselfknown
through a set of processes-discovery, description, control,
eventing, and presentation. Following discovery of a UPnP
device, an entity can learn more about the device and its
capabilities by retrieving the device's description. The
description includes vendor-specific manufacturer informa-
tion like the model name and number, serial number, manu-
facturer name, URLs to vendor-specific Web sites, etc. The
description also includes a list of any embedded devices or
services, as well as URLs for control, eventing, and presen-
tation. The description is written by a vendor, and is usually
based on a device template produced by a UPnP forum
working committee. The template is derived from a template
language that is used to define elements to describe the
device and any services supported by the device. The
template language is written using an XML-based syntax
that organizes and structures the elements.

38 Claims, 48 Drawing Sheets

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2
Page 2

U.S. PATENT DOCUMENTS

5,559,967 A 9/1996 Oprescu et al. 395/285
5,627,964 A 5/1997 Reynolds et al. 395/183.22
5,745,126 A * 4/1998 Jain etal. 382/154
5,748,980 A 5/1998 Lipe et al. 395/828
5,764,930 A 6/1998 Staats 395/287
5,787,246 A 7/1998 Lichtman et al. 395/200.5
5,787,259 A 7/1998 Haroun et al. 395/200.83
5,793,979 A 8/1998 Lichtman et al. 395/200.56
5,809,331 A 9/1998 Staats et al. 395/830
5,881,230 A 3/1999 Christensen et al. 395/200.33
5,903,728 A 5/1999 Semenzato 395/200.47
5,903,894 A 5/1999 Reneris 707/100
5,938,752 A 8/1999 Leung et al. 710/126
6,083,276 A 7/2000 Davidson et 211.
6,101,499 A 8/2000 Ford et al. 707/10
6,167,448 A 12/2000 Hemphill et 211.
6,466,971 B1 10/2002 Humpleman et 211.
6,477,566 B1 * 11/2002 Davis et al. 709/223
6,507,856 B1 * 1/2003 Chen et al. 715/513
6,546,419 B1 4/2003 Humpleman et 211.
6,553,402 B1 * 4/2003 Makarios et al. 709/201
6,560,633 B1 * 5/2003 Roberts et al. 709/202

OTHER PUBLICATIONS

Web Interface Definition Language (WIDL), NOTE-
widl-970922, WebMethods, Inc. 1997, pp. 1-15.
“Home Plug & PlayTM: CAL—based Interoperability for
Home Systems,” HomePNPTMSpecification. Version 1.0, pp.
1-111, (Apr. 9, 1998).
White Paper, “HAVi, the A/V digital network revolution,”
HAW Organization, pp. 1-7 (1999).
“Specification of the Home Audio/Video Interoperability
(HAVi) Architecture,” The HAW Specification. Version 1.0
(Jan. 18, 2000).
Anderson, “FireWire System Architecture: Second Edition,
IEEE 1394a,” chapters 1-4 (1999).
Technical White Paper, “Jini Architectural Overview,” Sun
Microsystems, Inc. (1999).
“Salutation Consortium Frequently Asked Questions,” The
Salutation Consortium, pp. 1-6 (prior to filing date).
“Salutation Architecture Specification (Part-I), Version
2.0c,” The Salutation Consortium, (Jun. 1, 1999).
“How it works,” Thalia, pp. 1-3 (prior to filing date).
“Sun Microsystems and Thalia Productions Inc. to Collabo-
rate to Co-Develop Network Software and Protocols for the
Home, Results to Make Networked Appliances for the
Home a Reality,” Sunbeam Corporation, pp. 1-2 (2000).
“Sunbeam Joins Microsoft in the Universal Plug and Play
Forum to Establish A ‘Universal’ Smart Appliance Technol-
ogy Standard,” Sunbeam Corporation, pp. 1-2 (2000).

“Time for Smart Talk is Over, Sunbeam Trumps Small
Appliance Industry With Smart Appliance Debut,” Sunbeam
Corporation, pp. 1-4 (2000).
“Lonworks Core Technology,” Echelon Corporation, pp.
1-2 (2000).
“Underlying Protocol of Echelon’s Lonworks® Network
Adopted as New ANSI Standard, Free Reference Implemen-
tation Available to Developers,” Echelon Corporation, pp.
1-2 (2000).
Handley et al., “SIP: Session Initiation Protocol,” The Inter-
net Society, pp. 1-130 (Aug. 6. 2000).
Rosenberg et al., “SIP Extensions for Instant Messaging,”
Internet Engineering Task Force, pp. 1-30 (Jun. 15, 2000).
Rosenberg et al., “SIP Extensions for Presence,” Internet
Engineering Task Force, pp. 1-77 (Jun. 15, 2000).
Tsang et al., “Requirements for Networked Appliances:
Wide-Area Access, Control, and Interworking,” Internet
Engineering Task Force, pp. 1-9 (Sep. 2000).
Tsang et al., “SIP Extensions for Communicating with
Networked Appliances,” Internet Engineering Task Force,
pp. 1-9 (Nov. 2000).
Moyer et al., “Framework Draft for Networked Appliances
Using the Session Initiation Prtocol,” Internet Engineering
Task Force, pp. 1-31 (Nov. 2000).
Marples, “Naming and Accessing Network Appliances using
extensions to the Session Initiation Protocol,” SIP for
Toaster, Telcordia Technologies (2000).
“Networked Appliances,” AR Greenhouse, Telcordia Tech-
nologies, pp. 1-2 (Dec. 15, 2000).
Moyer et al., “SIP for Light Bulbs, Using SIP to Support
Communication with Networked Appliances,” Telcordia
Technologies (Aug. 2, 2000).
Bennett et al., “Integrating Presence with Multi-media
Communications,” White Paper, Dynamicsoft., pp. 1-18
(2000).
Rosenberg et al., “An Application Server Architecture for
Communications Services,” White Paper, Dynamicsoft., pp.
1-13 (2000).
“EIB Technology,” EIB (2000).
Freeman et al., “JavaSpacesTMPrinciples, Patterns, and Prac-
tice,” Addison-Wesley Longman, Inc., Reading, Massachu-
setts (1999, Sun Microsystems, Inc.).
Arnold et al., “The JiniTMSpecification,” Addison-Wesley
Longman, Inc., Reading, Massachusetts (1999, Sun Micro-
systems, Inc.).
Edwards, “Core JiniTM, Second Edition,” Prentice Hall PTR,

Upper Saddle River, New Jersey (2001).

* cited by examiner

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun 21 2005 Sheet 1 of 48 US 6,910,068 B2

100\

MULTIPLE ,—/102 103 MULTIPLE
FUNCTION oevnce FUNCTION DEVICE

DEVICE CONTROL

USER PROTOCOLS
CONTROL CONTROLLED

DEVICE

DEVICE CONTROL

PROTOCOLS USER
CONTROL

BRIDGE ‘ BRIDGED
DEVICE

CONTROLLED

DEVICE BRIDGED DEVICES

CONTROLLED

DEVICE

BRIDGED

DEVICE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 2 of 48 Us 6,910,068 B2

220 ROOT DEVICE 210 211

SERVICE SERVICE

2 321 2 1

SERVICE SERVICE

4DESCR1P- 21 21TION 5
DOCUMENT

seavnce SERVICE

223

PRESENTATION

SERVER

CONTROL

LOGIC

CONTROL

SERVER

SERVICE

STATE

SOURCE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 3 of48 US 6,910,068 B2

CLOCK TVNCR

DISCOVERY DESCRIPTION

SERVER SERVER

DESCRIPTION

SERVER DESCRIP-
TION

DOCUMENT

DESCRIP-

TION

DOCUMENT

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 4 of 48 US 6,910,068 B2

USER USER

CONTROL CONTROL

POINT POINT

EVENT

SUBSCRIBE

CONTROLLED DEVICE

232

EVENT CONTROL EVENT

3U:|3(§f'P- SERVER SOURCE
SERVER

FRONT COMMAND
PANEL

CONTROL

SERVICE

STATE

TABLE

COMMAND
320

INFRARED

REMOTE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 5 of 48 US 6,910,068 B2

USAGE 35°
35o

DESRIPTION 358

DISCOVERY 355

NAMING 354

ADDRESSING 352

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 6 of 48 Us 6,910,068 B2

ROOT DEVICE

220
21° 232

PRESENT-

°'§g§\‘,’§§Y ATION SERVICE / CONTROL
SERVER SERVER

205 /
DESCRIPTION 216

SERVER

PRESENT_ 230 SERVICE

\ EVENT

SUB-

SCRIP-
TION

SE RVER

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 7 of 48 Us 6,910,068 B2

CONTROLLED USER

DEVICE CONTROL

POINT

COMMANDS

SERVICE

CONTROL

SERVICE

CONTROL

PROTOCOL

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 3 of 43 US 6,910,068 B2

USER CONTROL POINT

APPUCATIONS OBJECT INTEGRATION
INTERFACES

[CLOCK

REHYDRATOR

CONTRACT

0 PACKETS NETWORK
' REQUEST! DATA

RESPONSE PACKETS
PATTERNS

PROTOCOLS

CONTROLLED DEVICE

(E.G.. CLOCK)

CONTROL

SERVER

DESCRIP-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun 21 2005 Sheet 9 of 48 US 6,910,068 32

DEVICE

FINDER

CreateServiceObject()

REHYDRATOR

QueryStateVar‘rable() lnvokeAction()

SERVICE OBJECT

QueryStateVariabIe()

' |UPNP-

lnvokeAction() SERWCE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 10 of 48 US 6,910,068 B2

USER CONTROL POINT CONTROLLED DEVICE

DISCOVERY DISCOVERY

CLIENT SERVER

DESCRIP- DESCRIP H DET3[g§”°- DETS'8I:IP-TION CLIENT TION
SERVER DOCUMENT

VISUAL
NAVIGATION

PRESENT-

ATION

SERVER WEB USER
BROWSER INTERFACE

USER

INTER-

FACE

BROWSER CONTROL
CONTROL SERVER

APPLICA-

TION

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 11 of 48 Us 6,910,068 B2

USER CONTROL POINT CONTROLLED DEVICE

DISCOVERY DISCOVERY

CLIENT

DESCRlP- °E$lg'§'P'
TION CLIENT SERVER

EVENT

SUBSCRIP SUBSCRIP

—TION -TION

CLIENT SERVER

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 12 of 48 US 6,910,068 B2

FIG. 13

COMBINED BRIDGE AND

USER CONTROL POINT

230

CONTROL APPLICA-

DESCR|p_ BRIDGE TION

DESCRIP-

COVERY TION s%VUE,§gE °s(l’5",£,R,% REHYDRATOR
senvea seavea

3P'

STATE CHANGE

PROVIDER

USER USER

CONTROL CONTROL
POINT POINT

BRIDGED
DEVICE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 13 of 48 US 6,910,068 B2

FIG. 14

USER CONTROL POINT CONTROLLED DEVICE

SSDP DISCOVERY REQUEST
DISCOVERY

SERVER

DISCOVERY

CLIENT DISCOVERY RESPONSE (URL)

I
(PARSE

DE$CR'PT|0N- ISSUE GET(DESCRlPTION URL)

REQUESTS FOR RESPONSE(UPnP
INFORMATION) DEs°R'PT'°N’*°°”'°"’*L —

GET ICON

v RESPONSE

DEVICE

DESCRIPTION GET NAME

sE"‘"°‘ T
‘ E

DESCRIPTION

SERVER

(CONFIGURE GET SCPD
REHYDRATOR. ADD

DEVICE ICON TO

USER INTERFACE)

I
VISUAL

NAVIGATION

(USER SELECTS DEVIC =

ICON)

I GET(PRESENTATlON URL)
PRESENTATION

3R°wsER (wee) SERVER

(EMBEDD D SCRIPT IN
WEB PAGE DISPLAYS

DEVICE UI; SCRIPT
CALLS REHYDRATOR

TO INTERACT WITH

DEVICE)
I GET/PUT(CONTROL URL)

REHYDRATOR { CONTROL SERVER

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005

FIG. 15

root

Sheet 14 of 48

specVersionMajor

specVersionMinor

URLBase

manufacturer

manufactu rerURL

modelName

modelNumber

mode|Description
mode|URL

UPC

seriaiNumber

device

UDN

friendiyName

deviceType
presentationURL

iconList

icon

size

color

depth

imageType
imageURL

icon

icon

service

serviceType

controlURL

eventSubURL

SCPD

service

service

device

service

service

device

service

device

device

US 6,910,068 B2

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 15 of 48

FIG. 16

<device>

<icon List>

<icon>

<size>1 6</size>

<color>0</coIor>

<depth>8</depth>

<imageType>PNG</imageType>


</icon>

<icon>

<size>32</size>

<color>0</coIor>

<depth>8</depth>

<imageType>PNG<fimageType>


<1icon>

<icon>

<size>48</size>

<coIor>0</coIor>

<depth>8<ldepth>

<imageType>PNG</imageType>


</icon>

<icon>

<size>‘I 6</size>
<co|or>1</coIor>

<depth>8</depth>

<imageType>PNG</imageType>


</icon><device>
<icon>

<size>32</size>

<color>O<lco1or>

<depth >8 </depth>

<imageType>PNG</imageType>


</icon>

<icon>

<size>48</size>

<color>0</coIor>

<depth>8</depth>

<imageType>PNG</imageType>


</icon>

</iconList>

‘ </device>

Netflix, Inc.

US 6,910,068 B2

Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 16 of 48 US 6,910,063 32

FIG. 17

<?xm| version="1.0"?>

<scpd xmlns="x-schemazscpdl-schema.xml">

<sen/ice StateTable>

<stateVariable>

<name>currentChannel</name>

<dataType>number</dataType>

<al|owedValueRange>
<minimum>D</minimum>

<maximum>55</maximum>

<step>1</step>

</a||owedValueRange>
</stateVariabIe>

</serviceStateTab|e>

<actionList>

<action>

<name>ChannelUp</name>

</action>

<action>

<name>ChanneIDown</name>

</action>

<action>

<name>SetChannel</name>

<argument>
<name>newChannel</name>

<reIatedStateVariable>

currentchannel

</relatedStateVariable>

</argument>

</action>

</actionList>

</scpd>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 17 of 48 US 6,910,068 B2

FIG. 18

<contract>

<protocol id="protocolDef">
<HTTP version="1.1">

<URL></URL>

<M-POST>

<MAN>http://www.microsoftcom/protocols/ext/XOAP</MAN>
</M-POST>

<HEADER name="Content-Type" vaIue="text/xml" />
<!-- Need to put in extension headers here —->

</HTTP>

</protoco|>

<RequestResponse name="queryStateVariable“>
<protocoI is="protoco|Def">
<in is="queryStateVariable">

<out is="querystatevariab!eResponse">

<error is="queryStateVariableResponse">

</RequestResponse>

<RequestResponse name="invokeAction">
<protocoI is="protoco|Def">
<in is="SerializedStream">

<out is="invokeActionResponse">

<error is="invokeAc‘tionResponse“>

</RequestResponse>

<Schema name="upnp_scpd|"
xmIns="urn:schemas-microsofl-comzxml-data"

xmlns:dt="urnzschemas-microsoft-com:datatypes">

<!-- Common -~>

<ElementType name="_return" content="textOnIy" dt:type="string" />
<E1ementType name="_fau|t" content="textOn!y" dt:type="string" />

<!- Query State Variable Call -->

<EIementType name="variableName" content="textOnly" dt:type="str‘1ng" />

<ElementType name="queryStateVariable" content=“eltOnly" model="closed">
<eIement type="variableName“ />

</ElementType>

<!-- Query State Variable Response -—>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 18 of 48 US 6,910,068 B2

<ElementType name="querystatevariabieResponse“ content="eltOnly"
mode|="cIosed">

<group order="one">

<eIement type="_return“>

<element type="_fauIt">

</grou p>

</ElementType>

<!-— Invoke Action Call ->

<AttributeType name="main" dt:type="idref" />

<AttributeType name="headers" dt:type="idref" />

<AttributeType name="id" dt:type="id" />

<ElementType name="sequenceNumber" content="textOnly" dt:type="int">

<AttrbuteType name="dt" dt:type="string" dt:values="int" />

<attribute type="dt" />

</E|ementType>

<E|ementType name="headers" content="eJtOn|y" mode[="c|0sed"

<attribute type="id" required="yes" />

<eIement type="sequenceNumber" />

</E|ementType>

<ElementType name="actionName" content="textOn|y" dt:type="string" />

<ElementType name="actionArg" content="textOnIy" dt:type="string" />

<ElementType name="invokeAction" content="eltOnIy" mode|="closed">

<attribute type=“id" required="yes" />

<element type="actionName">

<element type="actionArg" minOccurs="O" maxOccurs="*">

</E|ementType>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 19 of 48 US 6,910,068 B2

FIG. 20

<ElementType name="SeriaIizedStream" content="eltOnly" modeI="closed">
<a’ttribute ‘rype="main" required="yes" />

<attribute type="headers" required="yes" />

<element type="headers">

<e!ement type="invokeAction">

</ElementType>

<!- Invoke Action Response —->

<E|ementType name="invokeActionResponse" content="eItOnly“ model="closed">

<group order="one">

<e|ement type="_retum">

<eIement type="_fault">

</group>

</E|ementType>
</Schema>

</contract>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 20 of 48 US 6,910,068 B2

FIG. 21

<?xml version="1.0"'?>

<Schema name="upnp_scpdl"
xmIns="urn:schemas-microsoft—com:xm|—data"

xm!ns:dt="urnzschemas-microsoft-com:datatypes">

<!-- Common Etements and Attributes -->

<ElementType name="name" content="textOnIy" dt:type="string" />

<!-- Service State Table -->

<E|ementType name="minimum" content="textOnly" dt:type="number" />

<ElementType name="maximum" content="textOn|y" dt:type="numbe1" />

<ElementType name="step" content="textOn|y" dt:type="number" />

<E|ementType name="a|lowedValueRange" content="eltOn!y" mode|="closed">

<element type="minimum" />

<eIement type="maximum" />

<element type="step" minOccurs="O" />

</ElementType>

<ElementType name="aHowedValue" content="textOn|y" />

<E|ementType name="al|owedValueList" c0ntent="e|tOnly" m0del="c|osed">

<element type="aHowedValue" minOccurs="1 " maxOccurs="*" />

</ElementType>

<ErementType name="dataType" content="textOn|y" dt:type="string" />

<E|ementType name="stateVariable" content="eltOnly" model="closed">

<e|ement type="name" />

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 21 0f 48 US 6,910,068 B2

FIG. 22

<element type="dataType" />

<group minOccurs="0" maxOccurs="1" order="one">

<eIemeni type="a1I0wedValueRange" />

<element type:"allowedVa{ueList" />

</grou p>

</E|ementType>

<EIementType name="deviceStateTab|e" content="e|tOnly" mode!="cIosed">

<element type="stateVariabIe" minOccurs="1" maxoccu rs="*" />

</E|ementType>

<!-- Action List ——>

<EIementType name="relatedstatevariable" content="textOnly" dt:type="string" />

<ElementType name=“argument" content="eltOnly" mode|="c|osed">

<element type="name" />

<eIement type=“relatedStateVariable" />

</ElementType>

<ElementType name="action" content="e|tOn|y" mode|="c|osed">

<element type="name" />

<e|ement type="argument" minOccurs="O" maxOccurs="*" />
</ElementType>

<E|ementType name="actionList" content="eItOn|y" model="ciosed“>

<e|ement type="action" minOccurs="0" maxOccurs="*" />

</ElementType>

<!-- Root Element -->

<EIementType name="dcpd" content="eltOnly" model="closed">

<e|ement type=“deviceStateTable" />

<element type="actionList" />

</E|ementType>
</Schema>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun. 21 2005 Sheet 22 of 48 US 6,910,068 B2

604FIG. 23 °°°\ 602

VBSCRIPTI

SHELL FOLDER JSCRIPT C APPLICATION

UPNP API (REHYDRATOR)

DEVICE FINDER

DESCRIPTION SERVICES

DEVICE OBJECT

SERVICE OBJECT i

610

SSDP C API

GENA SERVER API

SS DPIUDP

630

SSDP SERVICE

GENA SERVER

SSDP/UDP GENA/HTTP/TCP

CONTROLLED DEVICE

HTTP SERVER 210 SERVICE SERVICE

21 1

GENA CLIENT API SERVICE SERVICE

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S. Patent Jun. 21,2005 Sheet 23 of 48 US 6,910,068 B2

FIG. 24

USER CONTROL POINT CONTROLLED DEVICE

RegisterEventSource()

SUBSCRIBE (Callback + Timeout)

RegisterNotification()

RESPONSE: SID + TIMEOUT

NOTIFY (SID) SubmitUpnpProperty-
Event()

200 OK

NOTIFY (SID) SubmitUpnpProperty—

200 OK

UNSUBSCRIBE (SID)

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21,2005 Sheet 24 of 48 US 6,910,068 B2

PROCESSING

UNIT OPERATING

SYSTEM

INTERFACE . REMOTE

COMPUTER

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun. 21, 2005 Sheet 25 of 48 US 6,910,063 B2

EMBEDDED COMPUTING DEVICE

PROCESSING OPERATIONAL

MEMORY UNIT CIRCUITRY

NETWORK

ADAPTER

NETWORK

MEDIA

DEVICE FUNCTIONS _
924

DISSIIIIIIJIT/LIERY EVENTING

930
DHCP DNS

AUTO”: TCF’/IF’ STACK MDNS

910 PHYSICAL MEDIA

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun 21 2005 Sheet 26 of 48 US 6,910,068 32

FIG. 28
934

T900 \
(TIMEOUT)

EMBEDDED ASSIGN AUTOIP ADDRESS
COMPUTING

DE‘/‘CE DNS NAME MU LTICAST

ANNOUNCE SERVICE

(TIMEOUT - WAIT FOR RESPONSE)

DISCOVER SERVICE

RESPONSE TO DISCOVER

XML DEVICE DESCRIPTION

940 DHCP BROADCAST

ADDRESS FROM DHCP SERVER

DNS UNICAST TO DNS SERVER
EMBEDDED

COMPUTING

DEWCE DISCOVER LISTENER
RESPONSE TO DISCOVER

ANNOUNCE SERVICE TO LISTENER

DIRECTORY UPDATED BY

LISTEN ER

CLIENT DEVICE SPECIFIC NEGOTIATION

°E"'°E LDAP QUERY DIRECTORY

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U S Patent Jun 21 2005 Sheet 27 of 48 US 6,910,063 32

APPLICATIONS -
954

SIMPLE DISCOVERY XML

ADSI

WINSOCK

TCP/JP STACK

NDIS

958

960
NIC

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 28 of 48 US 6,910,068 B2

FIG. 10$ 1044 -GAME

1050
NC 1 030

POVVER

105-

104

LGHTN TELEPHONE AumoE ‘ ' G 4042

REMOTE

CONTROL

use 10

1012

XDSL

TELEPHONE AUDIO 1014

1010

1011

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 29 of 48 US 6,910,068 B2

FIG. 32

[

object,

uuid(<foo>),
dual,

helpstring("lUPNPDevice interface"),

pointer_default(unique)
l

{

interface lUPNPDevice : lDispatch

[propget. id(D|SP|D_UPNPDEVlCE_DESCRlPTIONDOCUMENT),
helpstring("returns the document from which the properties of this device are

being read")]
HRESULT DescriptionDocument([restricted, hidden, out, retval]

lUPNPDescriptionDocument ** ppuddDocument);

purpose: returns the document from which the properties of this device are

being read.

parameters: ppuddDocument, A reference to the description document

object from which data about the device is being read. This must be freed when no
longer needed.

return values: S_OK, ppuddDocument is a refernce to the device's
description document.

[propget, id(D|SPlD_UPNPDEVlCE_lSROOTDEVlCE),
helpstring("denotes whether the physical location infonnation of this device can

be set")]

HRESULT lsRo0tDevice([out, retval] VARlANT_BOOL * pvarb);
parameters: pvarb, the address of a VARlANT_BOOL that will receive the

value of VARlANT_TRUE if the current device is the topmost device in the device

tree, and will receive the value of VARlANT_FALSE otherwise.

return values: S_OK. varb is set to the appropriate value

note: if a device is a root device, calls RootDevice() or ParentDevice() will
return NULL

[propget, id(DlSP|D_UPNPDEVlCE_ROOT),
helpstring("returns the top device in the device tree“)]

HRESULT RootDevice([out, retval] |UPNPDevice ** ppudDeviceRoot);

purpose: returns the top device in the device tree

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 30 of 48 US 6,910,068 B2

parameters: ppudDeviceRoot, On return, this refers to the "root" device of

the current device tree. The root device is the topmost parent of the current device.

if the current device is the root device this method will set *ppudDeviceRoot to null,

and return S_FALSE.

return values: S_OK, *ppudDeviceRoot contains a reference to the root

device. S_FALSE, the current device is the root device. *ppudDeviceRoot is null.

lpropget, id(DlSPlD_UPNPDEV|CE_PARENT),

helpstring("returns the parent of the current device")]

HRESULT ParentDevice([out, retval] |UPNPDevice ** ppudDeviceParent);

parameters: ppudDeviceParent, On return, if the device has a parent, this is

the address of a |UPNPDevice object which can describe the parent. This must be

released when no longer needed. if the device has no parent (it is a "root“ device),
than this value will be set to null.

return values: S_OK, ppudDeviceParent contains a reference to the device's

parent. S_FALSE. the current device is the root device, which has no parent.
*ppudDeviceRoot is null.

[propget. id(DISPID_UPNPDEVlCE_CHlLDREN),

helpstring("returns a collection of the children of the current devlce")]

HRESULT Children([out, retval] lUPNPDevices ** ppudChildren);

parameters: ppudChildren,On return, this is the address of a newly—created
lUPNPDevices collection that can enumerate this device's children. This must be

released when no longer needed. lfthe device has no children, this method will

return a collection object with a length of zero.

return values: S_OK, ppudChi|dren contains a list of the device's children.

[propget, id(DlSPlD_UPNPDEVlCE__UDN),

helpstring("returns the UDN of the device")]

HRESULT UniqueDeviceName([out, retval] BSTR * pbstrUDN);

parameters: pbstrUDN, On return, this contains the address of a newly-

allocated string which contains the device's Unique Device Name (UDN). The UDN

is globally unique across all devices - no two devices will ever have the same UDN.

This value must be freed when no longer needed.

return values: S_OK pbstrUDN contains the UDN of the device

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 31 of 48 US 6,910,068 B2

FIG. 34

[propget, id(DlSPlD_UPNPDEVlCE_D|SPLAYNAME),

he|pstring("returns the (optional) display name of the device")]

HRESULT DisplayName([out, retval] BSTR * pbstrDisplayName);

parameters: pbstrDisplayName, On return, this contains the address of the

device's display name. This value must be freed when no longer needed. if the

device does not specify a display name, this parameter will be set to null.

return values: S_OK, bstrDisplayName contains the display name of the

device. pbstrDisplayName must be freed. S_FALSE, the device did not specify a

display name. *pbstrDisplayName is set to null.

note: it is possible for multiple devices to have the same display name.

Applications should use UniqueDeviceName() to determine if two device objects
refer to the same device.

[propget, id(D|SPlD_UPNPDEVICE_CANSETDlSPLAYNAME).

helpstring("denotes whether the physical location information of this device can

be set")]

HRESULT CanSetDisp|ayName({out, retval] VARlANT_BOOL * pvarb);

parameters: pvarb, the address of a VARlANT_BOOL. This is true (!=0) on

return when the device's display name can be set (via SetDisplayName)

return values: S_OK verb is set to the appropriate value

[id(DlSPlD_UPNPDEVlCE__SETD|SPLAYNAME),

heIpstring("sets the display name on the device")]

HRESULT SetDispIayName([in] BSTR bstrDisplayName);

parameters: bstrDisplayName, the value to set the device's display name to.

return values: S_OK, varb is set to the appropriate value.

note: On success, this method sets the display name used by a device.

Note that this method changes the display name on the device itself, not simply on

the local object. This will block while the name is being set.

Additionally, this change will be made on the device alone, and will not be reflected

in the current device object. After a successful call to this method, DisplayName

will continue to return the ‘old’ value). To read the device's current name, the caller
must re-load the device's description.

[propget, id(DlSPlD_UPNPDEV|CE_DEVlCETYPE),

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 32 of 48 US 6,910,068 B2

FIG. 35

helpstring("returns the device type URl")]

HRESULT Type([out, retval] BSTR * pbstrType);

parameters; pbstrType, On return, this contains the address of a newly-allocated

string containing the device's type URI. This value must be freed when no longer
needed.

return values: S_OK, bstrType contains the type URI of the device, and must be
freed when no longer needed.

[propget, id(DlSP|D_UPNPDEVlCE_SERV|CES),

helpstring("returns the collection of services exposed by the device")]

HRESULT Services([out, retval] lUPNPServices ** ppusservioes);

parameters: ppusservices, On return, this is the address of a newly-created

lUPNPServices collection that can enumerate the services exposed by the device.
This must be released when no longer needed. if the device exposes no services, this

method will return a collection object with a length of zero.

return values: S_OK, pusservices contains a list of the device‘s children.

[propget, id(DlSPlD__UPNPDEVlCE_SERVlCEIDENTIFIER).

helpstring(“returns the (optional) service identifier of the device")]

HRESULT Serviceldentifier([out, retval] BSTR * pbstrServicelD);

parameters: pbstrService|D, On return, this contains the address of a newly-

allocated string containing the contents of the device's Serviceldentifier element, if the
device specifies one. This value must be freed when no longer needed. if the device

does not specify a Serviceldentifier value, this parameter will be set to null.

return value: S__OK. bstrServicelD contains the service identifier of the device.

pbstrServicelD must be freed. S_FALSE, the device did not specify a service identifier.

*pbstrServicelD is set to null.

note having a Serviceldentifier is mutually exclusive with having services. Any
device will either have a list of services or a Serviceldentifier, but not both.

[id(DlSPID_UPNPDEVICEDESCRlPTlON_LOADSMALLlCON),

helpstring("loads a small (titlebar-sized) icon representing the device, encoded in the

specified format")]

HRESULT LoadSmalllcon([in] BSTR bstrEncodingFormat,

[out, retval] BSTR * pbstr|conURL);

parameters:

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 33 of 48 US 6,910,068 B2

FIG. 36

bstrEncoding Format, A string containing the mime—type representing the desired

encoding fonnat of the icon. pbstrioonURL, On return, *pbstrlconURL contains a

newly-allocated string representing the URL from which the icon can be loaded.

This string must be freed when no longer needed.

return values: S_OK, *pbstrlconURL contains a reference to an icon,

encoded in the desired encoding format.

[id(DlSPlD_UPNPDEVICEDESCRlPTlON_LOADlCON),

helpstring("loads a standard-sized icon representing the device, encoded in the

specified format")]

HRESULT Loadlcon([in] BSTR bstrEncodingFormat.

[out, retval] BSTR * pbstrlconURL);

parameters: bstrEncodingFormat, A string containing the mime—type

representing the desired encoding format of the icon. pbstrioonURL, On return,

*pbstrlconURL contains a newly-allocated string representing the URL from which

the icon can be loaded. This string must be freed when no longer needed.

return values: S_OK, *pbstrlconURL contains a reference to an icon,

encoded in the desired encoding format.

[propget, id(DlSPlD_UPNPDEVlCEDESCRlPTlON_PRESENTATlONURL),

helpstring("obtains a presentation URL to a web page that can control the

device")]

HRESULT PresentationURL([out, retval] BSTR * pbstrURL);

parameters: pbstrURL, on return, the address of a newly-allocated string

containing the web-page—based control URL. If the device did not specify a

presentation URL, an empy string ("") will be returned.

return values:S_OK, bstrURL contains a newly-allocated URL that must be

freed when no longer needed. S__FALSE, the device does not have a presentation

URL. pbstrURL is set to null.

[propget, id(DlSPlD_UPNPDEVlCEDESCRlPTlON_PHYSlCALLOCATlON),

helpstring("a set of properties describing the device's physical location")]

HRESULT PhysicalLocation([out, retval] |UF’NPPropertyBag * pupl);

parameters: pupl on return, the address of a newly-allocated

UPNPPropertyBag object which contains information about the device's physical
location

return values

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 34 of 48 US 6,910,068 B2

S_OK upl contains a newly-allocated object that the caller must free when it

is no longer needed.

note: if the object does not provide any description information, an empy

property bag will be returned. See SetPhysicalLocation for a listing of defined

values in a physical location property bag.

lp|'0PQet,

id(DlSPID_UPNPDEVICEDESCRIPTlON_CANSETPHYSlCALLOCATlON),

he|pstring("denotes whether the physical location information of this device can

be set")]

HRESULT CanSetPhysica|Location([out, retval] VARlANT_BOOL * pvarb);
parameters: pvarb the address of a VARlANT_BOOL. This is true (!=0) on

return when the device's physical location can be set (via SetPhyslcalLocation)
return values: S_OK varb is set to the appropriate Value

fid(DlSPlD_UPNPDEVlCEDESCRlPTlON_SETPHYS|CALLOCATlON),

helpstring("writes a set of properties describing the device's physical location to

the device")]

HRESULT SetPhysicalLocation([in] lUPNPPropertyBag * pupl);

parameters: pupl A UPNPPropertyBag object which contains the name-

value pairs representing the device's current location. the function will not free the

object.

return values: S_OK he device has been updated with the supplied

physical location information

note: the following are standard values in the physical location property bag:

country, campus. building, floor, wing, room, latitude, longitude, altitude. These

values can be used programmatically to implement sorting or filtering functionality

based on the device's location. Additionally the property bag supports the following

value: description, which contains a user-displayable string representing a device's

location which does not have programattic significance. Additionally, the physical

location update will be made on the device alone, and will not be reflected in the

current device object. After a successful call to this method, PhysicalLocation will

continue to return the ‘old’ value. To read the device's current name, the caller

must re-load the device's description.

}

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 35 of 48 US 6,910,068 B2

FIG. 38

[propget, id(DlSPlD_UPNPDEVlCEDESCRlPTlON_PRODUCTNAME),

helpstring("a displayable string containing the product name")]

HRESULT ProductName([out, retval] BSTR * pbstr);

parameters: pbstr on return, the address of a newly-allocated string

containing the product name of the device.

return values: S_OK pbstr contains a newly-allocated string that must

be freed when no longer needed.

[propget, id(DlSPlD_UPNPDEVlCEDESCRIPTlON_DESCRlPTlON),

helpstring("displayable summary of the device's function")]

HRESULT Desoription([out, retval] BSTR * pbstr);

parameters: pbstr on return, the address of a newly-allocated string

containing a short description of the device meaningful to the user.

return values: S_OK pbstr contains a newly-allocated string that must

be freed when no longer needed.

[propget, id(DlSPlD__UPNPDEVlCEDESCRlPTlON_MODELNAME),

he|pstring("displayable model name")]

HRESULT ModelName([out, retval] BSTR * pbstr);

parameters: pbstr on return, the address of a newly-allocated string

containing the manufactuer's model name of the device.

return values: S_OK pbstr contains a newly-allocated string that must

be freed when no longer needed.

[propget. id(DlSPlD__UPNPDEVICEDESCRIPTlON_SERlALNUMBER),

helpstring("displayable serial number")]

HRESULT SerialNumber([out, retval] BSTR * pbstr);

parameters: pbstr on return, the address of a newly-allocated string

containing the manufacturers serial number of the device.

return values: S_OK pbstr contains a newly—allocated string that must

be freed when no longer needed.

note: a device's serial number is not guaranteed to be globally unique. The

DeviceUniqueName should always be used to distinguish devices.

[propget, id(DlSPID_UPNPDEVlCEDESCR|PTlON__M/XNUFACTURERNAME),

helpstring("displayable manufacturer name")]

HRESULT ManufacturerName([out, retval] BSTR * pbstr);

parameters

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 36 of 48 US 6,910,068 B2

FIG. 39

pbstr, on return, the address of a newly-allocated string containing the name of the
device's manufactuer.

return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

[propget, id(DlSPlD_UPNPDEVICEDESCRJPTION_MANUFACTURERURL),

helpstring("URL to the manufacturer's website")]

HRESULT ManufacturerURL([out, retvai] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated string

containing the URL of the manufacturers website.

return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

[propget, id(DlSPlD~UPNPDEViCEDESCRlPTlON_MODELNAME),

helpstring("displayable model name")]

HRESULT ModelName([out, retval] BSTR * pbstr);

parameters: pbstr, on return. the address of a newly-allocated string

containing the manufactuer's model name for the device.
return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

[propget, id(DlSPID_UPNPDEVlCEDESCRlPTION_SUPPORTL|ST),

helpstring("technical support contact information")]

HRESULT SupportList([out, retva|] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, multi—line

string containing phone numbers and other information that can guide the user to

technical support. This string must be freed when no longer needed.

return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

[propget, id(DlSPlD_UPNPDEVICEDESCRIPTlON_FAQLIST),

heIpstring("FAQ access display information")]

HRESULT FAQList([out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, multi-line

string containing FAQ information that can provide the user with URLs at which

device FAQs may be located.

return values: S__OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 37 of 48 US 6,910,068 B2

FIG. 40

Ipropget, id(DlSPID_UPNPDEVICEDESCRIPT|ON_UPDATELiST),

helpstring("information explaining where the user can update the device's

firmware")]

HRESULT UpdateList([out, retvai] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, muiti-line

string containing information and URLs from which the user can download updates
for the device's firmware.

return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 38 of 48 US 6,910,068 B2

FIG. 41

[

object,

uuid(FDBCOCY3-BDA3—4C66-AC4F-F2D96FDAD68C),
dual,

helpstring("lUPNPDevices Interface"),

pointer_default(unique)

]

lUPNPPropertyBag

{

[propget, id(DlSPID_UPNP_PROPERTYBAG_READ),

he|pstring("reads a value from the property bag")]

HRESULT Read([in] BSTR bstrName, (out, retval] VARIANT * pvarResu|t);

parameters: bstrName, name of the property to read. case is ignored.

pvarResultvalue of the property. if the property doese not exist, this is of type

VT_EMPTY

retum values: S_OK, the value was found in the property bag, and returned

in pvarResult. S_FALSE, there was no value with the given name in the property

bag. *pvarResult is of type VT__EMPTY

[propget, id(DISPID_UPNP_PROPERTYBAG_WRlTE),

helpstring("writes a value to the property bag")]

HRESULT Write([in] BSTR bstrName, [in] VARIANT * pvarvalue);

parameters: bstrName, name of the property to write. case is preserved

when writing. The supplied value will replace any other values of the same name,

even if they differ in case. pvarvalue, value of the property to write.

return values: S_OK, the value was written to the property bag, replacing the

value currently associated with this property, if it existed.

lpropget, id(DlSPlD_UPNP_PROPERTYBAG_DELETE),

helpstring("removes a value from the property bag")]

HRESULT Delete([in] BSTR bstrName);

parameters: bstrName, name of the value to remove from the property gab.

case is ignored when finding a value to remove.

return values: S_OK, the value has been removed from the property bag.

S_FALSE, the value was not found in the property bag.

};

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 39 of 48 US 6,910,068 B2

[

object,

uuid(A295019C-DC65-47DD-90DC-TFE918A1AB44),
dual,

helpstring("lUPNPService Interface"),

pointer_defau|t(unique)

]

interface |UPNPService : IDispatch

{

[id(1), helpstring("method GetProperty")]

HRESULT GetProperty(

[in] BSTR bstrPropertyName,

[out, retval] VARIANT *pValue

);

[id(2), helpstring("method lnvokeAction")]

HRESULT lnvokeAction(

[in] BSTR bstrActionName,

[in] VARIANT saActionArgs,

[out, retval] long *plStatus

);

[propget, id(3), heIpstring("property DCPl")]

HRESULT DCPi(

[out, retval] BSTR *pVal

);

[propget, id(4),

helpstring("retums a manufactuer-defined extension property")]

HRESULT VendorExtension([out. retval] VARIANT * pvarvaiue);

parameters: pvarVaiueOn return, this variant is filled with the value of the

"extension" element. If none exists, pvarvalue is set to VT_EMPTY

return values: S_OK, varvalue is set to the extension element. S_FALSE,

no vendor extension element exists. pvarvalue is VT_EMPTY

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 40 of 48 US 6,910,068 B2

FIG. 43

I

object,

uuid(FDBCOCT3-BDA3-4C66-AC4F-F2D96FDAD68C),
dual,

helpstring("|UPNPDevices Interface"),

pointer_defau|t(unique)

1

interface IUPNPDevices : |Dispatch

{

[propget, id(1), he|pstring("property Count")]

HRESULT Count(

[out, retval] long *pVa|

);

[propget, id(DlSPlD_NEWENUM), he|pstring("property _NewEnum")]
HRESULT _NewEnum(

[out, retval] LPUNKNOWN *pVal

);

[propget, id(DISPID__VALUE), he|pstring(“property Item")]
HRESULT Item(

[in] long llndex,

[out, retval] VARIANT *pVa|

);

};

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 41 of 48 US 6,910,068 B2

FIG. 44

I

object,

uuid(3F8C8E9E-9A7A-4DC8-BC41-FF31FA374956),

dual,

he!pstring("IUPNPServices Interface"),

pointer_defau|t(unique)

1

interface lUPNPServic:es : lDi-spatch

{

[propget, id(1), helpstring("property Count")]

HRESULT Count(

[out, retval] long *pVal

);

[propget, id(DISPlD_NEWENUM), he!pstring("property _NewEnum")]

HRESULT _NewEnum(

[out, retval] LPUNKNOWN *pVa|

);

[propget, id(DISPID_VALUE), he|pstring("property ltem")]

HRESULT Item(

[in] long llndex,

[out, retval] VARIANT *pVal

);

};

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 42 0f 48 US 6,910,068 B2

FIG. 45

<contract>

<protocol id="protoco|Def">

<HTTP version="1.1">

<URL> http://investor.msn.com/stockquote </URL>
<M—POST>

<MAN> http://www.upnp.org/service-control/m-post </MAN>
<M—POST>

<H EADER name="Content—Type" va|ue="text/xml" />
</HTTP>

</protocoI>

<RequestResponse name="getQuote">

<protocol is="protocoIDef" />

<in is="symboI" />

<out is="stockQuote"/>

<error is="error"/>

</RequestResponse>

<RequestResponse name="getQuotes">

<protocol is="protoco|Def" />

<in is="symbo|s" />
<out is="stockQuotes"/>

<error is="error"/>

</RequestResponse>

<!-— // schema definition follows -->

<schema xm|ns="urn:schema—microsoft-com:xml-data"

xm|ns:dt="urnzschema-microsoft-com:datatypes">

<ElementType name="symbo|" dt:type="string" />

<ElementType name="symbols">

<element type="symbol" maxOccurs="*" />

</E|ementType>

<E|ementType name="stockQuote">

<element type="company" />

<element type=“ticker" />

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 43 of 48 US 6,910,068 B2

FIG. 46

<element type="previousClose" />

<e|ement type="openingTrade" />

<eIement type="lastTrade" />

<element type="vo|ume" />

</ElementType>

<ElementType dt:type="string" name="company" />

<ElementType dt:type="string" name="ticker" />

<E|ementType dt:type="string" name="previousC|ose" />

<EIementType dt:type="string" name="openingTrade" />

<E|ementType dt:type="string" name="|astTrade" />

<E|ementType dt:type="string" name="volume“ />

<ElementType name="stockQuotes">
<element name="stockQuote" maxOccurs="*" />

</E|ement>

<E|ementType name="error">

<e|ement type="reason" />

</ElementType>

<E|ementType dt:type="string" name="reason" />

</schema>

</contract>

Request for "getQuote"

M-POST lstockquotes H1TP/1.1

Host: amarg5:8586

Content-Type: text/xml

Man: "http://www.upnp.org/service-control/m-post"; ns=01

01-MethodName: getQuotes

01—MessageType: Call

Accept-Language: en-gb, en;q=0.8

Referer: http://amarg5/uPnPService/Services/Stock/Crient/ticker.htm

Content-Length: 327

User—Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Connection: Keep-Alive

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 44 0f 48 US 6,910,068 B2

FIG. 47

<symbol>MSFT</symbol>

Response for "getQuote"

HTTP/1.1 200 OK

Connection: close

Cache-Control: private

Date: Mon Aug 16 15:37:35 PDT 1999

Expires: Mon Aug 16 15:37:35 PDT 1999

Content-Type: text/xml

Content-Length: 7912

Man: "http://www.upnp.org/service—control/m—post“; ns=01

Ext:

01-MessageType: Ca|lResponse

<stockQuote>

<company>Microsoft%2OCorporation</company>
<ticker>MSFT</ticker>

<previousC|ose>84%201 1/16</previousC|ose>

<openingTrade>85%201/16</openingTrade>
<IastTrade>84%205/16</IastTrade>

<volume>28.66%2OMil</volume>

</stockQuote>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 45 of 48 US 6,910,068 B2

FIG. 48

<!-- XDR Schema for protocol section of contract —->

<schema name="contract"

xmlns="urn:schema-microsoft-comsxml-data"

xm|ns:dt="um :schema-microsoft-com:datatypes">

<ElementType name="contract"

xmlns:protocolNS="contract-protocol"

xmlns:msgPatternNS="contract-msgPatterns"
xmlns:schemaNS="urn:schema-microsoft-comtxml-data">

<eIement type="protoco|NS:protocol" />

<element type="msgPattemNS:RequestResponse" minOccurs="0"
maxOccurs="*" />

<e|ement type="msgPatternNS:SolicitResponse" minOocurs="O“ maxOccurs="*“
/>

<element type="schemaNS:schema" minOccurs="O" maxOccurs="*" />

</E|ementType>

</schema>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 46 of 48 US 6,910,068 B2

igrotocoi
<!-- XDR Schema for protocol section of contract ——>

<schema name="contract—protoco|"
xmlns="urnzschema-microsoft-comzxml-data"

xmins:dt="urn :schema-microsoft-com:datatypes">

<E|ementType name="protocoi">

<!-- ID ——>

<AttributeType name="id" dt:type="id" />

<Attribute type="id" />

<group order="one">

<e|ement xmlnszhttp="contract—protocol-HTTP" type="http:HTTP" I>

<element xmlns:gena="contract-protocol-GENA" type="gena:GENA" />

// other protocol definitions go here

</group>

</ElementType>

</schema>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 47 of 48 US 6,910,068 B2

FIG. 50

HTTP

<!-- XDR Schema for HTTP section of contract -->

<schema name="contract-protocol-HTTP"
xmlns="urn:schema—microsoft-comzxml-data"

xm|ns:dt="urnzschema-microsoft-com:datatypes">

<E|ementType name="HTTP">

<!-- HTTP version -->

<AttributeType name="VERS|ON" dt:type="string" default="1.1" />

<Attribute type="VERSlON" />

<!-- The Verb to use -->

<group order="one">

<eIementtype="GET" />

<eIementtype="POST" />

<eIement type="M-POST" />

</group>

<!-- The protocol data -->

<e|ement type="URL" />

<element type="QUERY" minOccurs="O" />

<e|ement type="HEADER" minOccurs="0" />

</E|ementType>

<E|ementType name="URL" dt:type="string" />

<E!ementType name="QUERY">

<attributetype="name" />

<attributetype="value" />

<attribute type="required" />

</ElementType>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

U.S. Patent Jun. 21, 2005 Sheet 48 of 48 US 6,910,068 B2

FIG.51

<ElementType name="HEADER">

<attribute type="name" />

<attribute type="va|ue" required="yes" />

</ElementType>

<!-- Verb declarations -->

<ElementType name="GET"/>

<ElementType name="POST">

<element type="PARAM" minOccurs="O" maxOccurs="*" />

</ElementType>

<ElementType name="PARAM">

<element type="name" />

<element type="default" />

<elementtype="vaIue" />

<e|ement type="required" />

</ElementType>

<AttributeType name="name" dt:type="string" required="yes"/>

<AttributeType name="default" dt:type="string" />

<AttributeType name="value" dt:type="string" />

<AttributeType name="required" dt:type="boolean" default="no" />

<ElementType name="M-POST">

<element type="MAN" />

</E|ementType>

<E|ementType name="MAN" dt:type="string" />

</schema>

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

1
XML-BASED TEMPLATE LANGUAGE FOR

DEVICES AND SERVICES

RELATED APPLICATION DATA

This is a continuation-in-part of U.S. patent application
Ser. No. 09/496,318, entitled “Dynamic Self-Configuration
For Ad Hoc Peer Networking”, filed Feb. 1, 2000, which is
based on provisional application No. 60/139,137 filed Jun.
11, 1999, and provisional application No. 60/160,235 filed
Oct. 18, 1999. This also claims priority to provisional
application No. 60/190,943, filed Mar. 21, 2000, which is
hereby incorporated by reference.

TECHNICAL FIELD

This invention relates generally to dynamic connectivity
among distributed devices and services, and more particu-
larly relates to providing a capability for devices to auto-
matically self-configure to interoperate with other peer net-
working devices on a network, such as in a pervasive
computing environment.

BACKGROUND AND SUMMARY

The cost of computing and networking technologies have
fallen to the point where computing and networking capa-
bilities can be built into the design of many electronic
devices in the home, the office and public places. The
combination of inexpensive and reliable shared networking
media with a new class of small computing devices has
created an opportunity for new functionality based mainly
on the connectivity among these devices. This connectivity
can be used to remotely control devices, to move digital data
in the form of audio, video and still images between devices,
to share information among devices and with the uncon-
strained World Wide Web of the Internet (hereafter “Web”)
and to exchange structured and secure digital data to support
things like electronic commerce. The connectivity also
enables many new applications for computing devices, such
as proximity-based usage scenarios where devices interact
based at least in part on geographical or other notions of
proximity. A prevalent feature of these connectivity sce-
narios is to provide remote access and control of connected
devices and services from another device with user interface

capabilities (e.g., a universal remote controller, handheld
computer or digital assistant, cell phones, and the like).
These developments are occurring at the same time as more
people are becoming connected to the Internet and as
connectivity solutions are falling in price and increasing in
speed. These trends are leading towards a world of ubiqui-
tous and pervasive networked computing, where all types of
devices are able to effortlessly and seamlessly interconnect
and interact.

In the above ubiquitous and pervasive networked com-
puting scenarios, the devices desirably can interoperate on
an ad hoc peer-to-peer networking connectivity basis. Such
a peer networking connectivity model enables any net-
worked device to initiate a communication with any other
networked device, without having established a prior rela-
tionship or maintaining a persistent relationship between the
devices. This peer networking connectivity also allows
multiple devices to establish one or more connections with
a single device, and it allows for a device to be capable of
both initiating and accepting connections to/from other
devices.

The prevalent model for device connectivity, however,
has been that of host-peripheral connectivity, typified by the

10

15

20

25

30

35

40

45

50

55

60

65

2

personal computer and its many peripheral devices (e.g.,
data storage drives, user input devices, displays, printers,
scanners, etc.) connected via various buses (e.g., PCI,
VESA, AGP, Microchannel, ISA, EISA, USB), ports (e.g.,
serial, parallel), and connectors (e.g., PS/2 connector). This
host-peripheral connectivity model is characterized in that
the host and peripherals typically have persistent relation-
ships and stable configurations. This persistent relationship
is created, by example, through a set-up and configuration
process through which appropriate driver software is
installed by a user or administrator onto the host for use in
controlling the peripheral, and updating the host’s configu-
ration to include peripheral device settings. Such persistent
configured relationships with a user installation/
configuration experience are generally inappropriate to the
ubiquitous and pervasive computing environment where
portable and mobile devices desirably can instantly connect
and interact with other computing devices in their environ-
ment without having established prior or persistent relation-
ships.

More specifically, two common computing networks
where many of these small, network-capable computing
devices are expected to be used include the home and small
office. Such networks are commonly not actively managed
by experienced administrators. In fact, due to the lack of
networking experience of a large majority of the users of
these networks, lengthy, complex and/or involved user
installation and setup experiences pose a significant impedi-
ment to adoption and penetration of such networks and
devices into homes and small offices.

Further, the establishment of persistent relationships with
other devices in the configuration of these small, network-
capable computing devices is inappropriate to many usage
scenarios. For example, portable computing devices (such as
a handheld computer or digital assistant, cell phones, and the
like) may be used to access information (such as transpor-
tation departure/arrival times, store locations, etc.) from
other devices on networks in public places (such as malls
and airports). Not only would a user installation/
configuration experience upon each such use pose an
inconvenience, but the establishment of persistent configu-
ration information poses configuration management issues
and consumes device resources. As another example,
devices (such as printers, scanners, monitors and etc.) on an
office or home network may interact with many portable
computing devices (such as the laptops, cameras, and other
equipment of the mobile professional) that are introduced
into its network. Again, in device connectivity models
requiring establishing persistent device relationship
configurations, such one-time and occasional relationships
between these devices would results in configuration insta-
bility requiring management and maintenance of ever-
changing persistent device configurations. Due to the time
and cost (or lack of) active administration of these devices,
any requirement to manage and maintain changing persistent
device configurations on networked devices is undesirable.

Accordingly, there is a need for a device connectivity
model that supports ad hoc peer networking among com-
puting devices with preferably zero user installation or
configuration experience and without persistent device con-
figuration.

In accordance with a technology described herein, a
universal plug and play (UPnP) device makes itself known
and available for communication with other entities on a

network through a set of processes-discovery, description,
control, eventing, and presentation (herein also termed “self-
bootstrapping”). Following discovery of a UPnP device, an

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

3

entity can learn more about the device and its capabilities, or
interact with the device, by retrieving the device’s descrip-
tion from a URL provided by the device in an initial
discovery message.

The description is expressed in XML and includes
vendor-specific manufacturer information like the model
name and number, serial number, manufacturer name, URLs
to vendor-specific Web sites, etc. The description also
includes a list of any embedded devices or services, as well
as URLs for control, eventing, and presentation.

The description is written by a vendor and is usually based
on a standard device template produced by a UPnP forum
working committee. The template is derived from a template
language that utilizes standard XML constructions. The
template language includes a first set of elements to describe
the UPnP device and a second set of elements to describe

any services supported by the device. The template language
is written using an XML-based syntax that organizes and
structures the first and second sets of elements.

Additional features and advantages will be made apparent
from the following detailed description of the illustrated
embodiment, which proceeds with reference to the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are block diagrams of a device architecture
per Universal Plug and Play using user control points,
controlled devices and bridges for connectivity between
devices.

FIG. 3 is a block diagram of a device model per Universal
Plug and Play.

FIG. 4 is a block diagram illustrating example devices
conforming to the device model of FIG. 3.

FIG. 5 is a block diagram illustrating device state syn-
chronization using a state table and eventing.

FIG. 6 is a block diagram of layers in a self-bootstrapping
process including addressing, naming, discovery and
description layers per the device control model of FIG. 3.

FIG. 7 is a block diagram illustrating device addressing.
FIG. 8 is a block diagram of a programmatic interface-

to-network messaging adapter or Rehydrator in the device
control model of FIG. 3.

FIG. 9 is a general data flow diagram of the Rehydrator
of FIG. 8 in the device control model of FIG. 3.

FIG. 10 is a block diagram of an implementation design
of the Rehydrator of FIG. 8.

FIGS. 11 and 12 are block diagrams illustrating an inter-
nal software architecture of the user control point and
controlled device in the device control model of FIG. 3.

FIG. 13 is a block diagram illustrating an internal soft-
ware architecture of a combined bridge and user control
point in the device control model of FIG. 3.

FIG. 14 is a data flow diagram illustrating a typical
browsing protocol sequence in the device control model of
FIG. 3.

FIG. 15 is a listing showing a layout of a description
document in the device control model of FIG. 3.

FIG. 16 is a listing of an exemplary icon list of a
Description Document in the device control model of FIG.
3.

FIG. 17 is a listing of an exemplary service control
protocol declaration in a Description Document in the
device control model of FIG. 3.

FIGS. 18, 19, and 20 are a listing of an XML schema for
a contract in the device control model of FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 21 and 22 are a listing of an XML schema for a
Service Control Protocol Declaration Language used in the
device control model of FIG. 3.

FIG. 23 is a block diagram of an exemplary implemen-
tation of an eventing model used in the device control model
of FIG. 3.

FIG. 24 is a data flow diagram illustrating subscription,
notification and unsubscription in the eventing model of
FIG. 23.

FIG. 25 is a block diagram of a computer system that may
be used in the device control model of FIG. 3.

FIG. 26 is a block diagram of a device having embedded
computing and networking capability per Universal-Plug-
and-Play (UPnP) standards that may be used in combination
with the computer system of FIG. 25 in the device control
model of FIG. 3.

FIG. 27 is a block diagram of a software architecture per
UPnP standards in the embedded computing device of FIG.
26

FIG. 28 is a data flow diagram of a process for automatic
network introduction of the embedded computing device of
FIG. 26 into an ad hoc computer network environment per
the UPnP protocol.

FIG. 29 is a data flow diagram of a process for automatic
network introduction of the embedded computing device of
FIG. 26 into a configured computer network environment
per the UPnP protocol.

FIG. 30 is a block diagram of a software architecture of
a client device per UPnP standards having embedded com-
puting and networking capability that may be used in the
device control model of FIG. 3.

FIG. 31 is a block diagram of an exemplary home or office
pervasive computing environment having a variety of com-
puters as per FIG. 25 and embedded computing devices as
per FIG. 26 interconnected per UPnP standards that may be
used in the device control model of FIG. 3.

FIGS. 32 through 44 are program listings of interfaces
used in the Rehydrator implementation design of FIG. 10.

FIGS. 45-47 are an XML format listing that depicts an
exemplary contract for interacting with a stock quote Ser-
vice.

FIGS. 48-51 are an XML format listing that depicts an
XML schema for defining Contracts.

DETAILED DESCRIPTION

The following detailed description is directed toward
self-bootstrapping or automatic dynamic self-configuring of
devices for ad hoc peer networking with other devices on a
computing network that avoid user installation experience,
persistent relationship configurations, and software driver
downloads. In one described implementation, this self-
bootstrapping is used in a device architecture 100 (FIG. 1),
connectivity model, and device control protocol proposed by
Microsoft Corporation, called Universal Plug and Play
(“UPnP”).
Universal Plug and Play

Universal Plug and Play (UPnP) is an open network
architecture that is designed to enable simple, ad hoc com-
munication among distributed devices and services from
many vendors. UPnP leverages Internet technology and can
be thought of as an extension of the Web model of mobile
Web browsers talking to fixed Web servers to the world of
peer-to-peer connectivity among mobile and fixed devices.
UPnP embraces the zero configuration mantra of Plug and
Play (PnP) but is not a simple extension of the PnP host/
peripheral model.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

5

The cost, size and battery consumption of computing
technology—including processing, storage and displays—
continues to fall. This trend is enabling the evolution of
stand-alone, single or limited function computing devices
such as digital cameras, audio playback devices, smart
mobile phones and handheld computers. Concurrent with
this, the economical storage and transmission of digital
audio, video and still images is enabling highly flexible
models for managing entertainment content.

While many of these devices are capable of useful stand-
alone operation, seamless connectivity with the PC can
enhance the value to the customer of both stand-alone

devices and the PC. Good examples of this synergy are
digital image capture combined with PC image
manipulation, storage and email transfer/Web publishing
and information synchronization between a PC and a hand-
held computer or smart mobile phone.

Since many of these devices, and the PC itself, are mobile,
a suitable communication architecture must enable a highly
dynamic connectivity model and must enable peer-to-peer
operating among arbitrary combinations of devices.

The Internet has created a widespread awareness of the
value of simple, universal communication that is indepen-
dent of the underlying transmission technology and inde-
pendent of technology from any single vendor.

UPnP makes it possible to initiate and control the transfer
of bulk data (e.g. files) or A/V data streams from any device
on the network, to any device on the network, under the
control of any device on the network. UPnP enables the ad
hoc addition or removal of devices on the network, and it
enables multiple controlling devices to remain in sync with
each other.

UPnP reuses existing protocols and technology whenever
possible. The transition to this highly connected (and
connectable) world will not occur overnight. UPnP builds on
existing Internet protocols, but accommodates devices that
cannot run the complete UPnP protocol suite. UPnP provides
an architecture that enables legacy devices to communicate
with UPnP devices.

IP internetworking has been chosen as a UPnP baseline
due to its proven ability to span different physical media, to
enable real world multiple vendor interoperation and to
achieve synergy with the Internet and home and office
intranets. Internet synergy enables applications such as IP
telephony, multiple player games, remote control of home
automation and security, Internet based electronic
commerce, in addition to simple email and Web browsing.
UPnP’s scope includes remote control of devices and bulk
data transfer, and can be easily extended to specify A/V
streaming.

UPnP’s media independence enables a great deal of
flexibility in the packaging of products. UPnP enables an
A/V system to be controlled through an A/C power com-
munications technology, while the transmission of A/V
streams among the components is analog or digital. One of
the controllers of this system could be on the television,
while another is on a PC, and yet another connected via radio
or infrared.

Unlike Plug and Play, Universal Plug and Play is built on
top of networking and enables ad hoc peer-to-peer connec-
tivity. Networking, in this context, describes a style of
connectivity that enables any networked device to initiate a
communication with any other networked device, without
having established a prior relationship or maintaining a
persistent relationship between the devices. Networking also
allows multiple devices to establish one or more connections
with a single device, and it allows for a device to be capable

10

15

20

25

30

35

40

45

50

55

60

65

6

of both initiating and accepting connections to/from other
devices. The PnP, or host/peripheral, model is suitable
whenever there is a natural persistent relationship between
two devices (e.g. a keyboard, mouse and display maintain
and a persistent relationship with a host computer). Even
though networking does not mandate low level persistent
relationships, it provides the needed anchors (addresses) for
applications to choose to maintain associations as a conve-
nience for the customer (e.g. remembering commonly used
networked printers).

In order to achieve multiple vendor peer-to-peer interop-
eration among devices, vendors desirably agree on common
technology and standards up to the highest level of desired
functional interoperation.

UPnP leverages formal protocol contracts to enable peer-
to-peer interoperation. Protocols contracts enable real-world
multiple-vendor interoperation.

UPnP provides a device-driven auto-configuration capa-
bility that preserves the experience that customers have on
the Web. Today, it is possible to navigate around the Web
without loading programs beyond the browser itself. UPnP
enables the browser to be extended to control devices.

Because UPnP devices are controlled with explicit
protocols, the browser must somehow learn how to talk to
UPnP devices. This learning process is driven entirely from
the device itself and is accomplishing entirely by uploading
an XML document that describes the capabilities of the
device. The architectural component that enables device-
driven auto-configuration is called the Rehydrator. The job
of the Rehydrator is to convert between APIs and protocols.

There are some scenarios where the Web UI model is not

sufficient for a rich customer experience. It would not be
convenient to have a separate Web interface for each light
switch in a house. To support a rich user interface and to
enable the aggregation of devices into a single UI, UPnP
enables application control in addition to browser control of
devices. This is achieved simply by enabling applications to
call the same Rehydrator APIs that the browser does. Appli-
cations can also directly generate and consume the raw
UPnP control protocols, provided they are not interested in
the device-driven auto-configuration enabled by the Rehy-
drator.

UPnP assumes that there will be more than one device

with UI that wants to control other devices in any given
network, and it provides a simple mechanism that enables
these control points to remain in sync. This mechanism can
easily support device front panels and wireless remotes that
do not run UPnP protocols. The UPnP control model is
third-party control; any device can transfer bulk data (e.g.
files) or A/V data streams from any device on the network,
to any device on the network, under the control of any device
on the network.

Terminology
The detailed description that follows uses the terminology

defined below.

Module. A component of a device, software program, or
system that implements some “functionality”, which can be
embodied as software, hardware, firmware, electronic
circuitry, or etc.

User Control Point. The set of modules that enable
communication with a UPnP Controlled Device. User Con-

trol Points initiate discovery and communication with Con-
trolled Devices, and receive Events from Controlled
Devices. User Control Points are typically implemented on
devices that have a user interface. This user interface is used
to interact with Controlled Devices over the network. The

modules minimally include a Discovery Client, a Descrip-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

7

tion Client, a Rehydrator, an Event Subscription Client and
an Event Sink,. User Control Points may also include Visual
Navigation, a Web browser and an application execution
environment. User Control Points can add value to the

network by aggregating the control of multiple Controlled
Devices (the universal remote) or they can implement a
function as simple as initiating the transfer of data to or from
a Controlled Device. Examples of devices that could be User
Control Points are the personal computer (PC), digital
television (DTV), set-top box (STB), handheld computer
and smart mobile phone, and the like. Nothing prevents a
single device from implementing the functionality of a User
Control Point and one or more Controlled Devices at the
same time.

Controlled Device. The set of modules that perform
certain tasks (e.g., printing) and communicate with a User
Control Point. Controlled Devices respond to discovery
requests, accept incoming communications from User Con-
trol Points and may send Events to User Control Points.
Devices that support Controlled Device functionality may
also support local user interfaces such as front panel displays
or wireless remotes. The modules minimally include a
Discovery Server, a Description Server, a Control Server, an
Event Subscription Server and an Event Source. Controlled
Devices may also include a Presentation (e.g., Web) Server.
Examples of devices that could be Controlled Devices are
the VCR, DVD player or recorder, heating/ventilation/air-
conditioning equipment (HVAC), lighting controller, audio/
video/imaging playback device, handheld computer, smart
mobile phone and the PC, and the like. Nothing prevents a
single device from implementing the functionality of a User
Control Point and one or more Controlled Devices at the
same time.

Bridge. Aset of modules that enables Bridged and Legacy
Devices to interact with native UPnP devices. The bridge
itself exposes a collection of UPnP Controlled Devices to
User Control Points. The Bridge maps between native UPnP
Device Control Protocols and the underlying protocols or
other control methods exposed by the Bridged and Legacy
Devices. Optionally, such a device could expose UPnP
Controlled Devices to Legacy Devices in the manner
required by the Legacy Devices. Nothing prevents a single
device from implementing the functionality of a User Con-
trol Point, one or more Controlled Devices and a Bridge at
the same time.

Service Provider. A module used by a UPnP Bridge that
translates between UPnP protocols and the protocols used by
Bridged and Legacy Devices. No Service Providers are
required for communication among native UPnP devices.

Bridged Device. A device that cannot participate in UPnP
at the native protocol level, either because the device does
not have sufficient resources or because the underlying
media is unsuitable to run TCP and HTTP. Examples of
devices that could be Bridged Devices are power line-
controlled A/V equipment, light switches, thermostats,
wristwatches and inexpensive toys. Bridged Devices are
UPnP complaint and are exposed to other UPnP devices
through a UPnP Bridge.

Legacy Device. Any non-UPnP compliant device that
must be exposed to other UPnP devices through a UPnP
Bridge.

Device Model. The UPnP model of Controlled Devices.

The Device Model includes the addressing schemes,
Description Document, Devices and Services hierarchy and
the functional description of Services.

Device Control Protocol (DCP). A complete set of UPnP
protocols and schemas used to interact with a UPnP Con-
trolled Device.

10

15

20

25

30

35

40

45

50

55

60

65

8
Device Definition. The formal definition of a Device

Type. ADevice Definition includes a Device Type Identifier,
the fixed elements in the Description Document, the
required set of Service Definitions in the Root Device, and
the hierarchy of required Devices and Service Definitions.

Service Definition. The formal definition of a Service

Type. A Service Definition includes a Service Type
Identifier, definition of the Service State Table (SST), defi-
nition of the Service Command Set, the Service Control

Protocol (SCP) and Service Control Protocol Declaration
(SCPD).

Device. In the context of the Device Model, a container
for Services. A Device generally models a physical entity
such as a VCR, but can also represent a logical entity. A PC
emulating the traditional functions of a VCR would be an
example of a logical device. Devices can contain other
Devices. An example would be a TV/VCR packaged into a
single physical unit. UPnP enables the association of user
interface (display icon and root Web page) with every
Device, including Root Device.

Root Device. The topmost Device in a hierarchy of nested
Devices. A Device with no nested Devices is always a Root
Device.

Device Type. A relatively high level classification of
Devices with common functionality. Device Type is
intended to enable Devices to be simply and automatically
grouped for search and/or presentation. An example of a
Device Type is “VCR”. Device Types are formally defined
in terms of a required set of Service Definitions of minimum
version that a compliant Device must support. UPnP sup-
ports searches for all Devices of a specified Device Type.

Device Type Identifier. A unique identifier that identifies
a Device Definition. This identifier adheres to the format of

a Uniform Resource Identifier (URI). See, T. Berners-Lee,
R. Fielding, L. Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax”, which can be found at http://
www.ieff.org/rfc/rfc2396.txt.

Device Friendly Name. A human readable string that is
usually initialized by vendors at the time of manufacturer of
a Device. Every Device, including Root Devices, has a
Device Friendly Name. Atypical Device Friendly Name will
contain manufacturer and model information, and especially
when interpreted by humans, can be used to enable a more
precise identification of a UPnP Device from the set of
discovered Devices. Once identified, the Unique Device
Name (UDN) can be used to unambiguously identify the
same Device in the future. UPnP enables Device Friendly
Names to be changed by User Control Points. The Device
Friendly Name should not be used as device identifier.

Unique Device Name (UDN). The fundamental identifier
of a Device. Every Device, including Root Devices, has
exactly one UDN. The UDN is globally unique and
permanent, even across power cycles and physical location
changes. The UDN is the only UPnP device identifier
guaranteed never to change. UPnP enables searches for
devices by UDN.

Description Document. A structured unit of data that is
used by a User Control Point or UPnP Bridge to learn the
capabilities of a Controlled Device. Description Documents
are retrieved from the Description Server on a UPnP Con-
trolled Device. There is one Description Document for every
Root Device that describes the Root Device and all non-

Root Devices. Description Documents adhere to XML
grammar. To support localization, multiple Description
Documents can exist. A User Control Point requests the
preferred localized Description Document by using the
standard HTTP “accept-language” header.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

9

Service. The fundamental UPnP controllable entity (but
not the finest level of control). An example of a Service is
“Clock”. Services are defined with a mandatory common
base set of functionality. Vendors can extend the base set
with proprietary extensions provided the base functionality
is implemented. Service Definitions are versioned and later
versions are constrained to be supersets of previous ver-
sions. UPnP enables searches for all Devices that contain a

specified Service of a minimum version. This search would
find all clocks, regardless of their packaging. A search for
Device Type “Clock” would be used to find only stand-alone
clocks.

Service Type. A classification of Services by their func-
tion.

Service Type Identifier. A unique identifier that identifies
a Service Definition. This identifier adheres to the format of

a Uniform Resource Identifier (URI). See, T. Berners-Lee,
R. Fielding, L. Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax”, which can be found at http://
www.ietf.org/rfc/rfc2396.txt.

Service State Table (SST). A logical table consisting of
rows of [Variable, Type, Legal Values, Default Value, Cur-
rent Value] that represents the current electrical, mechanical
and/or logical state of a Service. SST instances are stored on
the Controlled Device itself and are the ultimate authority of
the state of the Service. All local user interface, such as front
panels or wireless remotes are required to update the SST on
UPnP compliant devices.

SST Definition:
Service Command Set. A set of Commands that can be

invoked on a Service. Commands generally result in
changes in the Current Value field of one or more rows of a
SST. Commands are logically represented in the format
Command (Variable=New Value, Variable=New Value, . . .
Services must accept or reject the complete set of changes to
a SST. There is a mandatory standard Query Command that
is used to retrieve the Current Value of any row of a SST.

Service Command Set Definition

Service Control Protocol (SCP). The protocol used to
invoke Commands against a Service and to return results.
There is exactly one SCP per Service Definition. SCPs
adhere to the grammar of SCP XML schema. SCPs can be
generated by an automated tool that accepts a SST Definition
and a Command Set Definition as input.

Service Control Protocol Declaration (SCPD). A formal
representation of the schema of a Service. The SCPD
declares the rows of a Service’s SST and the associated

Command Set. SCPDs are uploaded from Controlling
Devices in their Description Documents and enable User
Control Points or Bridges to invoke Commands on the
Service without any prior or persistent knowledge of the
capabilities (or schema) of the Service. There is exactly one
SCPD per Service Definition. SCPDs adhere to XML gram-
mar. SCPDs can be generated by an automated tool that
accepts a SST Definition and a Command Set Definition as
input.

Event. An unsolicited message generated by a Controlled
Device and delivered to one or more User Control Points.
Events are used to maintain a consistent view of the state of
Service across all interested User Control Points. UPnP

leverages the GENA event architecture (see “Generic Event
Notification”) to transport event messages. All events are
delivered using TCP/IP for reliability.

Generic Event Notification Architecture (GENA). An
event transport protocol. GENA leverages TCP/HTTP as a
transport. GENA has been submitted as an Internet Draft to
the IETF. See, J. Cohen, S. Aggarwal, Y. Goland, “General

10

15

20

25

30

35

40

45

50

55

60

65

10

Event Notification Architecture Base: Client to Arbiter”,
which can be found at http://www.ietf.org/internet-drafts/
draft-cohen-gena-client-00.txt.

Simple Service Discovery Protocol (SSDP). A simple
network device discovery protocol. UPnP uses SSDP to
allow User Control Points to find Controlled Devices and

Services. SSDP operates in a default, completely automatic
multicast UDP/IP based mode in addition to a server-based

mode that uses TCP/IP for registrations and query. Transi-
tions between the default dynamic mode and server-based
mode are automatic and transparent to upper level software.
SSDP enables every Controlled Device to control the life-
time that its Description URL is cached in all User Control
Points. This enables a Controlled Device to remain visible to

User Control Points for a relatively long time (through
power cycles), in addition to enabling a Controlled Device
to appear and disappear very quickly, all under the control
of the Controlled Device. SSDP and related Multicast and

Unicast UDP HTTP Messages specifications have been
submitted as Internet Drafts to the IETF. See, Y. Goland,
“Multicast and Unicast UDP HTTP Messages”, which can
be found at http://www.ietf.org/internet-drafts/draft-goland-
http-udp-00.txt; and Y. Goland, T. Cai, P. Leach., Y. Gu, S.
Albright, “Simple Service Discovery Protocol/1.0”, which
can be found at http://www.ietf.org/internet-drafts/draft-cai-
ssdp-v1-02.txt.

Client. In the context of UPnP, Client refers to a module
that initiates a TCP/HTTP connection to a peer HTTP server.

Server. In the context of UPnP, Server refers to an HTTP
server. This is a module that accepts incoming TCP/HTTP
connections and either returns a Web page or forwards the
payload data to another module. Client and Server describe
only the direction of initiation of TCP/HTTP connections.
There is no relationship between the low level concepts of
Client and Server and the high level concepts of User
Control Point and Controlled Devices. Logically, User Con-
trol Points always discover and initiate communication with
Controlled Devices, but this communication requires Client
and Server functionality on both sides.

Hostname. A Hostname is the Domain Name System
(DNS) or NetBIOS Name Service (NBNS) that, when
resolved to an IP address, represents a network interface that
can be used to establish TCP/IP level connectivity to User
Control Points, Controlled Devices or Bridges. Hostnames
can be used to provide persistent network level addressing
on a network where IP addresses are dynamically assigned
and of unknown lifespan or to integrate with an existing
managed network. UPnP provides an algorithm for seeding
a device’s hostname from its UDN at manufacturing time.

Uniform Resource Locator (URL). A format for express-
ing Web addresses. URLs minimally contain an identifica-
tion of the protocol family that the URL is valid for, a
Hostname, and a path. UPnP uses URIs as addresses
whenever the module accepting the incoming connection is
an HTTP server.

Description URL. The URL returned from a Controlled
Device or Bridge in response to any UPnP SSDP query. This
URL always points to a Description Server on the Controlled
Device. An HTTP GET can be issued on this URL to retrieve

the Description Document. This URL is valid as an address
for the lifetime of the Hostname embedded in the URL.

Discovery Server. The module that runs in a Controlled
Device or Bridge that responds to SSDP queries. This Server
is unique in that it must support UDP/HTTP in addition to
TCP/HTTP.

Discovery Client. The module that runs in a User Control
Point that initiates SSDP queries.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

11

Description Server. The module that runs in a Controlled
Device or Bridge that responds to HTTP GETs and returns
Description Documents. This service consists of a TCP/
HTTP server than can retrieve and return a Description
Document from persistent storage (like a filesystem).

Visual Navigation. User Control Point functionality that
displays the icons of discovered Devices and enables the
transfer of control to a browser or application to interact with
the Controlled Device. In Windows, Visual Navigation
could be implemented as a folder of icons.

Presentation URL. A URL that can be used by a User
Control Point to navigate to the Presentation Server of a
Controlled Device. This URL is returned in the Description
Document and is valid as an address for the lifetime of the

Hostname embedded in the URL. All Devices, including
non-Root Devices, can have an associated Presentation
URL.

Presentation Server. AWeb Server in most common cases.

The module that runs in a Controlled Device that responds
to HTTP GETs or Presentation URLs and returns user

interface using Web technologies (JavaScript, Jscripte,
ECMAScript, VBScript, ActiveXe, Java Applet, etc.).

Browser. A Presentation Client. AWeb browser extended

with a Rehydrator.
Control URL. A URL that can be used by a User Control

Point to navigate to the Control Server of a Controlled
Device or Bridge. This URL is returned in the Description
Document and is valid as an address for the lifetime of the
Hostname embedded in the URL. All Services have an
associated Control URL.

Control Server. The module that runs in a Controlled

Device or Bridge that responds to Commands invoked on a
Service by a User Control Point. Commands are encoded
and sent using the SCP specified in the Service Definition.
This service consists of a TCP/HTTP server that passes
control to the native control logic of a Service, updates the
SST and generates an event if the SST changes.

Rehydrator. In UPnP, a Control Client. A User Control
Point module that translates between native operating sys-
tem APIs and SCPs and events. The Rehydrator uploads
SCPDs from Controlled Devices and Bridges and generates
appropriate SCPs in response to application API requests to
invoke Commands.

Event Subscription URL. A URL that can be used by a
User Control Point to navigate to the Event Subscription
Server of a Controlled Device or Bridge. This URL is
returned in the Description Document and is valid as an
address for the lifetime of the Hostname embedded in the

URL. All Services have an associated Event Subscription
URL.

Event Subscription Server. The module that runs in a
Controlled Device or Bridge that responds to GENA SUB-
SCRIBE requests from User Control Points. ASUBSCRIBE
informs the Controlled Device or Bridge of the User Control
Point’s desire to receive future events. This service consists

of a TCP/HTTP server that adds the User Control Point’s
Event Sink URL to the list of destinations to be NOTIFY’d

whenever the SST associated with the Service changes.
Event Subscription Client. The module that runs in a User

Control Point that sends GENA SUBSCIBE messages to the
Event Subscription Server.

Event Sink URL. A URL, supplied by a User Control
Point, that is used as an address to send event NOTIFYs to.
This URL is valid as an address for the lifetime of the

Hostname embedded in the URL. There is no explicit
relationship between Event Sink URLs and Subscription
Identifiers.

10

15

20

25

30

35

40

45

50

55

60

65

12

Subscription Identifier (SID). A header in the GENA
NOTIFY message that identifies the source of an event. In
UPnP, the SID can be considered as an alias for the Event
Source instance.

Event Sink. The module that runs in a User Control Point

that accepts incoming GENA event NOTIFYs. This service
consists of a TCP/HTTP server that passes the event infor-
mation to interested applications running on the User Con-
trol Point.

Event Source. The module that runs in a Controlled

Device or Bridge that sends GENA NOTIFYs to the Event
Sink Servers of SUBSCRIBES User Control Points.

Domain Name System (DNS). A distributed system of
servers that locates the IP addresses of other computers on
a network based on their hierarchical names.

NetBIOS Name Server (NBNS). A server that locates the
IP addresses of other computers on a network based on their
fiat NetBIOS computer names.

Multicast DNS (MDNS). A peer-to-peer translation
scheme that does not require involvement of DNS servers.
UPnP Technologies Overview

An overview of technologies utilized in UPnP follows.
Device Discovery: Simple Service Discovery Protocol

(SSDP)
TCP/IP provides the ability to initiate a connection with

a specified application running on a specific device, pro-
vided both the network address of the device (IP address)
and the application address (port) are known. Generally,
application addresses (ports) are standardized and widely
known, but the problem of learning the IP address of a
device remains.

Simple Service Discovery Protocol (SSDP) is a protocol
that enables devices to learn of the existence of potential
peer devices and the required information (an IP address)
needed to establish TCP/IP connections to them. The suc-
cessful result of an SSDP search is a Uniform Resource

Locator (URL). The Hostname embedded in the URL can be
resolved to an IP address that can be used to make a
connection to the discovered device. The name to address

resolution is outside of the functionality of SSDP.
SSDP specifies a default, completely automatic, best-

effort multicast UDP-based operating mode, in addition to a
server mode that uses TCP for registration and query.
Fall-forward to server mode and fallback to the default

dynamic mode can occur automatically and transparently as
a server is added or removed from a network. Server mode

can be used to reduce network traffic, to implement searches
based on location or policy and to integrate with a directory
system.

SSDP requires that all devices specify a maximum life-
time that SSDP level knowledge of the device will remain
cached in other network devices. If a device does not refresh
the cache of other network devices before this interval

expires, the device will be assumed to have disappeared
from the network. This interval can be chosen to be larger
than a typical power down cycle to enable device visibility
to persist for a relatively long time, or a smaller interval can
be chosen to enable more dynamic visibility control. In all
cases, devices that are abruptly removed from the network
will eventually disappear from all networked devices.

In response to an SSDP search, UPnP devices return a
Description URL in the SSDP Location and optionally the
Alternate Location SSDP headers. An example loca-
tion header is a follows:

Location: http://device.local/description/path/
description.xml

In this example, the device.local is the Hostname of the
Controlled Device, and the “description/path/

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

13

description.xml” element of the URL is the path and name
of the Description Document on the device.

Eventing: Generic Eventing Notification (GENA)
Eventing, in the context of UPnP, is the ability for a device

to initiate a connection at any time to one or more devices
that have expressed a desire to receive events from the
source device. Events are used to enable synchronization
among multiple devices organized into a many to one
relationship. UPnP events are mainly used for asynchronous
notifications of state changes.

TCP/IP provides the fundamental support for the connec-
tions that carry event information reliably. Generic Event
Notification (GENA) adds conventions for establishing rela-
tionships between interested devices and an addressing
scheme to enable the unambiguous delivery of events.
GENA leverages HTTP addressing and encapsulation.

User Control Points, Controlled Devices and Bridges
With reference now to FIGS. 1 and 2, UPnP is an

application-level distributed network architecture where the
logical nodes on the network are User Control Points
104-105, Controlled Devices 106-107 and Bridges 120.
These classifications refer to functionality rather than physi-
cal entities. The functionality of UPnP User Control Points
104-105, Controlled Devices 106-107 and Bridges 120 can
be packaged into physical entities (e.g., multiple function
devices 102-103) in any combination.

The primary distinction between a User Control Point
104-105 and a Controlled Device 106-107 is that the User

Control Point is always the communication initiator. After
the initial communication, User Control Points can receive
events from Controlled Devices.

Controlled Devices 106-107 are responsible for storing
and updating the state of Services. User Control Points are
required to synchronize to the state on Controlled Devices
and to share state directly among themselves.

User Control Points typically have user interface that is
used to access one or more Controlled Devices on the

network. Controlled Devices typically only have local user
interfaces.

Bridges 120 (FIG. 2) expose devices that do not expose
native UPnP protocols as native UPnP Controlled Devices.
The Bridge itself looks to other UPnP User Control Points
like a set of Controlled Devices.

The following table lists the modules in the User Control
Points 104-105 and Controlled Devices 106-107, along
with their functions.

User Control Point Controlled Device

Function Module Function Module

Initiate discovery Discovery Client Respond to Discovery Server
of Controlled discovery
Devices. requests.
Retrieve Description Client Provide Description
Description Description ServerDocuments. Documents.

Display a folder Visual Navigation
of icons per
discovered
Device and allow
transfer of
control to a
selected device.
View user Web Browser Provide user Presentation

inteface for
remote User
Control Points.

interface exposed
by a Controlled
Device.

(Web) Server

5

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

User Control Point Controlled Device

Function Module Function Module

Execute Application
applications. Execution

Environment

Invoke Rehydrator Accept Control Server
Commands on a incoming plus native
Controlled Device Commands in control logic
by sending SCPs and
Service Control execute them.
Protocols in

response to local
API calls.

Inform a Event Accept requests Event
Controlled Device Subscription for Events and Subscription
of a desire to Client remember Server
receive Events. them.
Receive an Event. Event Sink Send an Event. Event Source

Device Model
The UPnP Device Model 200 shown in FIG. 3 is the

model of a UPnP Controlled Device or Bridge that is
emulating native Controlled Devices. The Device Model
includes the addressing scheme, eventing scheme, Descrip-
tion Document schema, Devices and Services schema and
hierarchy, and the functional description of modules. The
UPnP Device Model extends beyond simple API or a
command and control protocol definitions to enable multiple
User Control Points to have a consistent view of Controlled

Devices. This requires that the state of running services be
formally modeled and that all state changes be visible to
User Control Points. Central to the distributed UPnP archi-
tecture is the rule that Controlled Devices are the ultimate

authority for the state of Services running on them.
Service

The fundamental controllable entity in UPnP is a Service
210-217. Every running instance of a Service includes:
A Service State Table (SST) 230, which represents the

current state of the Service.

The SST 230 can be used to represent the operational
mode of device or to act as an information source or sink for

structured data or simple files. The SST of a VCR 254 (FIG.
4) could represent the current transport mode, tuner channel
selection, input and output switch selections, audio and
video decoding format and current timer program. The SST
of clock 251 (FIG. 4) would likely represent the current
time. The SST of an image rendering device could imple-
ment a video frame-buffer that can accept raw pixel infor-
mation or formatted JPG files. The SST of an audio or video

playback device could implement a transfer buffer or queue
of material to be played. The SST of PDA could implement
a collection of formatted data that has changed and needed
to be synchronized with another device, in addition to a
transfer buffer for accepting incoming formatted data.

The logical structure of a SST published in the Service
Definition, but the actual storage format of an instance of a
SST is entirely up the device. The only interaction with a
SST is through a formal application level network protocol.
A Control Server 232, which accepts incoming Commands

expressed in the Service’s Service Control Protocol
(SCP). The Control Server passes the command to the
Service’s native command processing logic and waits for
command completion. When the command is completed
successfully, the SST is updated, an event is generated,
and a successful response is returned to the User Control
Point. In the event of an illegal command or unsuccessful

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

15

command, no changes are made to the SST and a failure
response is returned. The Command and response
sequence is payload to a TCP/HTTP request/response.

An Event Subscription Server and Event Source 234. The
Event Subscription Server accepts incoming GENA SUB-
SCRIBE messages from User Control Points and adds
them to a list of User Control Points interested in SST

change events from the Service. The Event Source ini-
tiates a TCP/HTTP connection to each interested User
Control Point and sends a GENA NOTIFY each time the

Service’s DST changes. The NOTIFY payload includes
the changed contents of the DST.

A Control URL that identifies the Control Server.

An Event URL that identifies the Event Subscription Server.
The formal definition of a Service (Service Definition)

includes:

The definition of the SST. SST layouts are logically speci-
fied in terms of rows of [Variable, Type, Legal Values,
Default Value The actual instance of a SST would also
include a Current Value field in every row.

The definition of the Service Command Set that can be

invoked against the Service’s SST. Commands are logi-
cally specified in terms of Command(Variable=New
Value, Variable=New Value, . . . If a Command results
in more than a single Variable change, the updates are
atomic and the Command will fail if it is illegal to make
the specified change to any one Variable.

The definition of a structured unit of data called a Service

Control Protocol Declaration (SCPD). SCPD is used to
advertise the layout (schema) of the SST and Command
Set of the Service to a User Control Point or Bridge. The
SCPD enables the User Control Point to invoke Com-

mands (through the Rehydrator) on the Controlled Device
without any prior or persistent knowledge of the capa-
bilities of the device. The SCPD is uploaded from the
Controlling Device as part of the Description Document.
Generation of the SCPD for a Service based on its SST

definition and Command Set definition can be fully auto-
mated.

The definition of a network protocol used to invoke Com-
mands against the SST associated with a Service and to
return results. The SCP can be generated from the SCPD.
The Rehydrator’s job is to convert SCPDs into SCPs. The
reason for a formal SCP specification is to enable the
implementation of the Control Server itself and to enable
simple peer-to-peer device interoperation using only pub-
lished protocols.

An identifier, called the Service Type Identifier, that identi-
fies a unique Service Definition. Service Definitions are
versioned in controlled manner. Every later version of a
Service must be proper superset of the previous version.
Device

According to the device model 200 shown in FIG. 3, a
UPnP Device 202-205 (e.g., multiple function devices
102-103 of FIG. 1 and bridged devices 122-123 of FIG. 2)
is a logical container of one or more Services 210-217.
Generally a Device represents a physical entity such as a
VCR. Typical Services in the VCR Device example might be
“TRANSPORT”, “TUNER”, “TIMER” and “CLOCK”.
While Devices are often physical entities, a PC emulating
the traditional functions of a VCR could also be modeled in

the same way as the stand-alone VCR. Devices can contain
other Devices. An example would be a TV/VCR 250 (FIG.
4) packaged into a single physical unit. A Device (e.g.,
devices 202-203) may also be a logical container of other
Devices. The top-most Device in a hierarchy of nested
Devices 203-205 is called the Root Device 202. A Device

with no nested Devices is always a Root Device.

10

15

20

25

30

35

40

45

50

55

60

65

16

The UPnP Device Model was designed to be general and
flexible. It should be possible to model an entire Nuclear
Power Plant as a single Service or as a deeply nested
hierarchy of Devices and Services. In general, a Service
210-217 is cohesive set of functions that enables flexible

packaging into a variety of Devices. Services can be ver-
sioned independently of Devices.

All Devices, including Root Devices belong to one or
more Device Types. Device Types are intended to enable
instances of Devices to be simply and automatically grouped
for presentation. An example of a Device Type is “VCR”

254 (FIG. 4). Device Types are formally defined in terms of
a minimal set of versioned Services that a Device of Device

Type must support. Device Types are not formally ver-
sioned. Device Type is a relatively high level grouping. A
Device of Device Type only ensures that minimal set of
Services of a minimal version is present. There can be other
Services, higher versioned Services and Services with ven-
dor extensions present on such a Device.

UPnP enables SSDP level searches for a unique instance

of a Device (by UDN), all Devices of type Device Type and
all Devices that contain at least one Service Type of mini-
mum version. The result of an SSDP search is always a URL
that points to the Description Document contained in the
Root Device. In the event that matching Device is not the
Root Device, the Description Document has a tree of nested
Devices that can be traversed to find the matching Device.

Every Device includes:
One or more Device Types.
One or more Services.

Optionally, one or more Devices.

Optionally, a Presentation (Web) Server 220-223 that can be
used to expose Device user interface. Every Presentation
Server has an associated Presentation URL.

A globally unique identifier called the Unique Device Name

(UDN). The UDN is the fundamental identifier of an
instance of a Device. Every Device, including Root
Devices, has exactly one UDN.
Every Root Device 202 also includes the Description

Document 226 and Description Server 228 for all Devices
under and including itself.

The formal definition of a Device (Device Definition 226)
includes:

The fixed elements of the Description Document that
describe the Device.

The required hierarchy of Devices and Service Definitions.
There can be many Device Definitions that belong to a

single Device Type.
Device Types
The formal definition of a Device Type includes:

A Device Type Identifier.
The required hierarchy of Devices and Service Definitions

of minimum versions.
Service State Table

AService State Table (SST) logically consists of rows of:
Variable, Type, Legal Values, Default Value, Current

Value Although entries of the Service State Table in UPnP
consist of these five items, the state table alternatively can
contain fewer or additional items. Generally, each entry will
minimally consist of a Variable name or identifier, and its
current value.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

17

The following table lists various Types available in UPnP.

Description Example

String
Number

A sequence of UNICODE characters.
A number, with no limit on digits; may
potentially have a leading sign,
fractional digits, and optionally an
exponent. Punctuation as in US
English.
TRUE or FALSE.
A date in ISO8601 format, with
optional time and optional zone.
Fractional seconds may be as precise
as nanoseconds. See, “Data elements
and interchange formats - Information
interchange - Representation of dates
and times“, which can be found at
http zzzwwwiso.ch[markete[8601.pdf.
An unstructured sequence of bytes.

15, 3.14, —
123.456E+1O

Boolean
DateTime 19941105T08 :1

5:5+O3

ByteBlock

The ByteBlock is essentially a data buffer. In one use, a
variable of this type can be used to effect transfer of a file
from the Controlled Device to the User Control Point. The

file to be transferred is kept in the Service State Table as the
current value of this variable. On a change in the file, the file
is transferred to any subscribing User Control Point in an
event notification.

The reason for representing Services this way is to ensure
that the state of a Service is easily available in a common
way to multiple User Control Points.

An SST can be used to represent to current operational
mode of device, act as an information source or sink and/or
simply be a repository for commands. The SST of a VCR
Service could represent the current transport mode, tuner
channel selection, input and output switch selections, audio
and video decoding format and current timer program.
Alternatively, the VCR 254 could be represented as a
Transport Service 260, Tuner Service, I/O Switch Service,
A/V Decoding Configuration Service and Programmable
Timer Service 261.

The SST of a clock 251 would likely represent the current
time. Additionally an alarm clock could include Service
Variables to configure the clock.

The SST of an image rendering device could implement
a video frame-buffer that can accept raw pixel information
or formatted JPG files. The SST of an audio or video

playback device could implement a transfer buffer or queue
of material to be played. The SST of PDA could implement
a collection of formatted data that has changed and needed
to be synchronized with another device, in addition to a
transfer buffer for accepting incoming formatted data.

User Control Point Synchronization
In accordance with an device state and eventing model

illustrated in FIG. 5, UPnP rules require that every change
to an SST generate a corresponding event to announce the
change to the all interested User Control Points.

UPnP Self-Bootstrapping
With reference to FIG. 6, UPnP self-bootstrapping 350 is

an integrated set of technologies organized as layers of a
stack that include addressing 352, naming 354, discovery
356, and description 358 layers. The technologies in these
layers is discussed in detail below. At the addressing layer
352, UPnP utilizes the Dynamic Host Configuration Proto-
col (DHCP) and AutoIP protocol for device addressing
described below, which operate to dynamically assign an
address to a UPnP device when introduced on a network. At

the naming layer 354, UPnP utilizes the Domain Name
System (DNS) and multicast DNS protocols and/or the

10

15

20

25

30

35

40

45

50

55

60

65

18

NetBIOS Name Service (NBNS) protocol to provide ser-
vices to refer to devices using names according to a naming
convention. At the discovery layer 356, UPnP utilizes the
Simple Service Discovery Protocol (SSDP) protocol by
which a UPnP device can discover other devices present on
the network. At the description layer 358, UPnP utilizes
XML-based schema to describe device structures and opera-
tional functions exposed by a UPnP Controlled Device and
XML message-based protocols for their invocation. The
UPnP user control points can use this XML-based schema
description to invoke and thereby control the UPnP Con-
trolled Device at a usage layer 360.

Device Addressing
With reference now to FIG. 7, UPnP is built on top of

HTTP and leverages the native address format of the Web,
Uniform Resource Locators (URLs), beyond the basic net-
work addressing. URLs minimally contain an identification
of the application protocol family (“http”) that the URL is
valid for, a Hostname and a path. In the context of UPnP, the
path part of a URL can represent either a filesystem path or
simply an identifier of the local system module and context
that can process incoming messages.

While UPnP modules are described as HTTP servers,
there is no requirement that implementations be based on
actual Web servers. In most cases, the job of the HTTP
server is simply to accept the incoming connection, look at
the local destination part of the address (the path) and
forward the payload to another module. UPnP enables, but
does not require, that all HTTP Servers be based on a
common software implementation or runtime instance. Con-
trolled Devices and Bridges can include a TCP port speci-
fication as part of a URL to override the default value of 80.

The successful result of a SSDP level search in UPnP is

always one or more Description URLs. These URLs can be
used to navigate to the Description Document of a Con-
trolled Device or Bridge. A User Control Point uploads the
Description Document and extracts the URLs of the Servers
running on the Controlled Device or Bridge.

All URLs returned in the Description Document have a
lifetime equal to the lifetime of the Hostname embedded in
them. User Control Points can store these URLs as addresses

without going through a search sequence first. Once they
have been advertised in a Description Document, Controlled
Device and Bridges cannot arbitrarily change Server URLs.

Whenever a Hostname changes, all URLs associated with
all Devices addressed by that Hostname are invalidated. The
UDN is the only UPnP identifier guaranteed never to change.
Any persistent associations maintained by applications
should at least store the UDN to able to unambiguously
identify the target Device.

The lifetime of a Description URL is determined by
Controlled Device or Bridge that advertises it. If a Con-
trolled Device or Bridge allows an SSDP advertisement of
a Description URL to expire, the URL is invalidated.

User Control Points use the Event Subscription URL
returned by the Controlled Device or Bridge to connect to
the Event Subscription Server. This server does the house-
keeping of remembering all User Control Points that are
interested in receiving Events on a Service. The Event
Subscription Server needs an address to send the events back
to. This address is called the Event Sink URL, and is
supplied to the Controlled Device or Bridge in the GENA
SUBSCRIBE message. The lifetime of an event
subscription, and the Event Sink URL, is determined by the
timeout on the SUBSCRIBE message.

Further details of UPnP addressing are listed in the
following table.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

19

UPnP Addresses

URL Function

Description Points o the Description Server and Document path on a
URL Root Device. This URL is returned by the Description

Server as part of the discovery process.
Presentation Points o a Presentation (Web) Server on a Controlled
URL Device. There is one Presentation URL per Device,

including Root Devices. This URL can be entered into the
address bar of a Web browser to navigate to the root Web
page o a Device. This URL is returned in the DescriptionDocument.

Control URL Points o the Control Server implementing a Service on a
Contro led Device. There is one Control URL per instance
of a Service. This URL is returned in the DescriptionDocument.

Event Points o an Event Subscription Server on a
Subscription Device. This URL is returned in the Description Document.URL

Event Sink Points o an Event Sink (an HTTP Server) on a User
URL Contro Point. This URL is specified by the User Control

Point in the GENA SUBSCIBE message.

Device Discovery and Identification
UPnP enables SSDP searches for a unique Root or non-

Root Device by UDN, devices of a specified Device Type
and devices containing a Service of a specified Service Type.

UPnP SSDP Level Searches and Results

Search for Returns

A unique Root
Device

(by UDN)
A unique non-
Root Device

(by UDN)
Type of Device

A single Description URL pointing to the Description
Server and Document path on the Root Device.

A single Description URL pointing to the Description
Server and Document path on the Root Device that
contains the non-Root Device.

A set of Description URLs pointing to the Description
Servers/Document paths of all Root Devices that match
the Device Type, or contain a non-Root Device that
matches the Device Type.
A set of Description URLs pointing to the Description
Servers/Document paths of all Root Devices that contain
a matching Service, or contain a non-Root Device that
contains a matching Service.

Type of
Service

SSDP specifies Service Type (ST), Notification type (NT),
and Unique Service Name (USN) header fields for queries
and for announcements. UPnP uses the ST or NT header to

carry one of the UPnP defined identifiers. A unique USN is
required for each unique SSDP announcement.

Multiple instances of the same Service Type within a
Controlled Device 106-107 or Bridge 120 are not indepen-
dently announced.

UPnP search identifiers are used during the discovery
process. The result of a successful discovery is one or more
Description URLs. The format for search identifiers is:

upnp:searchtype: [allformat | UDNformat | srvformat
| devformat]
searchtype = [UDN | SrvType | DevType | all]allformat = all

UDNformat = UDN:namespace:uniqueid
namespace = [GUID | IEEEMAC | 1394]

srvformat = SrvType:servicetype:version
devformat = DevType:devicetype

10

15

20

25

30

35

40

45

50

55

60

65

20

UPnP Search Identifiers

Format Example

all upnp:all upnp:all
Unique Device upnp:UDN:namespace:u upnp:UDN:IEEEMAC:0C009
Name (UDN) niqueid 9123456
Device Type upnp:DevType:devicety upnp:DevType:vcr

pe
Service Type upnp:SrvType: servicety upnp SrvType:clock:1

pe:ver

SSDP specifies that SSDP announcements must be made
for all SSDP searchable values. The SSDP announcements

with “all” as the notification header value must carry the
Root Device UDN as the USN header value. SSDP

announcements for Device Types must carry the UDN of the
Root Device concatenated with the Device Type URI as the
USN header value. SSDP announcements for a Service Type
will carry the UDN of the Root Device concatenated with
the Service Type URI value as the USN header value. SSDP
announcements of UDNs will repeat the UDN value as the
USN header.

UPnP SSDP Announcements

UPnP Notification
Announcement Type SSDP USN

“all” Root Device UDN

Unique Root Root Device UDN Root Device UDN
Device

Unique non-Root Non-Root Device Non-Root Device UDN
Device UDN

Device Type Device Type Root Device UDN + Device
Identifier Type Identifier

Service Type Service Type Root Device UDN + Service
Identifier Type Identifier

UPnP Bridges 120 (FIG. 2) announce Bridged Devices
122-123 and associated Services using SSDP. The identifi-
ers associated with the Bridged Devices are unique for the
device, and they do not duplicate identifiers for Controlled
Devices and Services directly available on the Bridge itself.
This means that a Bridge that is also a Controlled Device
must announce Bridged Devices and local Controlled
Devices independently, with appropriate unique identifiers,
Description Documents and associated URLs.

Description
The UPnP Description Document 226 (FIG. 3) provides

the information necessary to identify, describe, connect and
control a UPnP Controlled Device 106-107 or Bridge 120
from a User Control Point 104-105.

The Description Document is an XML document. UPnP
defines the use of HTTP and XML for the Description
Document and wire protocols. UPnP adheres to the schema
declaration rules of XML-Data and processing rules of Y.
Goland, “Flexible XML Processing Profile.”

The top level XML elements are separated into three
categories: per Device, per Service and shared.

Rehydrator
With reference now to FIG. 8, all (UPnP) Controlled

Devices 106-107 (FIG. 1) or Bridges 120 (FIG. 2) expose
one or more Services 210-217 (FIG. 3) that can be con-
trolled remotely. Controlling such Services involves a mes-
sage exchange between a User Control Point 104 and the
device 106. This message exchange happens according to a

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

21

specific Service Control Protocol (SCP) 402, which specifies
the content and sequence of the messages exchanged.

User Control Points 104 are not required to have any prior
knowledge of the SCPs 402 required to control the Services
on the various devices. Therefore, a Controlled Device or
Bridge must be able to describe to a User Control Point the
protocols required to control its Services, such that the User
Control Point will be able to implement these protocols
dynamically. This requires a standard way of declaring
Service Control Protocols in a concise and unambiguous
fashion. UPnP introduces a technique for declaring Service
Control Protocols using a series of XML documents.

A Rehydrator 410 is a module that exposes a suitable API
to applications and either invokes Commands on a Service
or queries the state of that Service, or receives and responds
to events. The primary job of the Rehydrator is to map
between API calls and the Service Control Protocol

sequence that invokes the Command.
As part of the Service Definition 406, a Service State

Table 230 and Command Set 408 are defined. These things
can be combined in a deterministic way defined by UPnP to
produce a Service Control Protocol Definition (SCPD) 406,
which includes a Service Control Declaration 404 and a

Service Control Protocol 402. The SCPD 406 is a represen-
tation of the schema of a Service. It is possible to reconstruct
the SST, Command Set and SCP from the SCPD.

The SCPD is directly embedded into the Description
Document 226 of a Controlled Device. When the Descrip-
tion Document is uploaded into the User Control Point 104,
the Rehydrator 410 can extract the SCPD from it. At this
point, the Rehydrator has enough information to issue Ser-
vice specific SCPs 402.

General Operation of the Rehydrator
More generally with reference to FIG. 9, the Rehydrator

410 operates as a universal adapter to provide a program-
matic interface to any service-specific protocol of a remote
computing device. The Rehydrator 410 simply obtains a data
description or declaration of the methods, properties and
events of the remote service, as well as a definition of the
protocol of network data messages through which the Rehy-
drator invokes the methods, queries or sets the properties,
and receives event notifications. In UPnP, this data descrip-
tion takes the form of the Description Document 226, which
contains a Contract 412. The Contract defines network data

packets 413 (e.g., XML data), request/response patterns, and
protocol (e.g., GENA, HTTP, SSDP) via which the packets
are exchanged. This information is sufficient for the Rehy-
drator to exchange the appropriate network data packets to
interact with the Controlled Device Service, including to
invoke commands, query and set properties, and receive and
respond to events, without download of any executable code
to the User Control Point 104 device and with a zero

installation or configuration experience.
The Description Document 226 also includes a declara-

tion of the methods, properties and events for the Service.
Based on this declaration, the Rehydrator produces a cor-
responding programmatic interface for use by applications at
the User Control Point. The programmatic interface is an
application programming interface that can be in the form of
an object integration interface of an object-oriented pro-
gramming model, such as Microsoft COM, CORBA, Java
classes, and scripting engine name extensions. In the
example illustrated in FIG. 9, the Rehydrator 410 exposes a
COM object integration interface (“ICloc ” interface 414),
with methods getTime() and setTime(), for a Controlled
Device having a “Clock” Service with GetTime and SetTime
commands. The Rehydrator 410 converts calls of an appli-

10

15

20

25

30

35

40

45

50

55

60

65

22

cation program 416 to the IClock interface 414 into the
network data messages specified in the Contract to invoke
the corresponding commands of the Clock Service. The
Rehydrator 410 likewise creates suitable further program-
matic interfaces for other Services (e.g., Services 210-217
of FIG. 3) based on the Description Document of their
respective Controlled Devices.

Accordingly, the Rehydrator operates as a universal proxy
object with data-driven conversion of programmatic inter-
faces to network data messages. Further, the Rehydrator
produces the programmatic interface at the User Control
Point based solely on an XML data description. This opera-
tion allows the Rehydrator to produce just-in-time transient
interfaces to remote device Services without the complexity
of code downloads and installation or configuration. Upon a
later release of the interface by the application, the Rehy-
drator destroys the interface without need to de-install or
clean up persistent configuration data in a registry or con-
figuration file of the operating system or object execution
run-time.

Rehydrator Implementation
Summary. With reference to FIG. 10, a preferred imple-

mentation 440 of the Rehydrator 410 is as an internal
Microsoft Windows component that routes service control
requests from the UPnP API to devices. Applications wish-
ing to control a service on a UPnP device obtain a Service
object through the UPnP API and use the methods of this
object to query the state variables of the service and invoke
its actions. Those methods use the Rehydrator API to turn
the service control requests into network messages that
travel to the UPnP device. In this sense, the Rehydrator
performs a mapping between API calls and network proto-
cols.

Basic Functionality. The preferred implementation of the
Rehydrator is able to translate a service control call to the
UPnP API into the appropriate network messages defined by
the Service Control Protocol.

Asynchronous Event Notification. The preferred imple-
mentation of the Rehydrator is able to notify UPnP API
clients of any asynchronous events generated by the devices
they are controlling. Event notification is done by means of
the event interfaces defined below.

Error Reporting. For a variety of reasons, state variable
queries and action invocations may fail. The preferred
implementation of the Rehydrator is able to provide a way
to communicate the success or failure status of such opera-
tions to the parties initiating them.

Rehydrator Implementation Design. As illustrated in FIG.
10, the preferred implementation of the Rehydrator is used
in two ways. First, the Device Finder 450 uses it to create
Service objects 460. Then, these Service objects use it to
carry out service control operations (querying state variables
and invoking actions).

Creating Service Objects. When the Device Finder 450
creates a Device object, it invokes the Rehydrator 410 to
create Service objects 460 for each of the service instances
on that device. Each service instance supports a particular
Service Control Protocol and the Rehydrator needs a
description of this protocol in order to create a properly
hydrated Service object.

The Service Control Protocol is declared in two separate
XML documents: the DCPD and the Contract. The Rehy-
drator needs the information in both documents. These two

documents are passed to the Rehydrator as IXMLDOM-
Document interface pointers in the
RehydratorCreateServiceObject() API call.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

23

HRESULT

RehydratorCreateServiceObject(
IN IXMLDOMDocument *pDCpD,

IN IXMLDOMDocument
OUT IUPnPService

*pContractDocument,
* *pNewServiceObject);

This API returns a pointer to an IUPnPService interface
on a newly created Service object. In addition to the creating
the Service object, the Rehydrator sets up its internal data
structures so that it can properly handle requests to control
the service. Specifically, it creates a list of the properties and
actions exported by the service. Since all service instances
of the same service type export the same properties and the
same actions, this information is kept only once for each
service type and is indexed by Service Type Identifier.

The Rehydrator stores the information that is specific to a
particular service instance as private data within the Service
object itself. This includes the control URL and information
about the control server 232 (such as the HTTP verbs it
supports). The Service Type Identifier is the link between the
Service object that represents one instance of a service type
and the Rehydrator internal data structures that contain
information common to all instances of that service type.
The Service Type Identifier is stored as a private data
member in the Service object.

Querying Service Properties. Applications can query the
values of service properties by invoking the
IUPnPService::GetProperty() method on a Service object.
Internally, this method makes a call to the
RehydratorQueryStateVariable() function.

HRESULT

RehydratorQueryStateVariable(
IN LPCTSTR 1pcszVerb,
IN LPCTSTR 1pcszControlURL,
IN LPCTSTR 1pcszSTI,
IN LPCTSTR 1poszVarName,
OUT VARIANT *pValue);

The first two in parameters to this function supply the
service instance specific information: the HTTP verb to use
and the control URL to which the network messages will be
targeted. The third parameter is the Service Type Identifier
that will be used to locate the Service Control Protocol

information in the Rehydrator’s internal data structures. The
fourth parameter is the name of the variable that is being
queried (the Rehydrator will validate this against is internal
list of state variables exported by the service) and the final
parameter is the address of a VARIANT structure in which
the Rehydrator will place the variable’s value.

This function will generate an HTTP request to the control
server on the device. The body of this request will be an
XML fragment containing a XOAP-encoded request for the
variable’s value. The following is an example of such a
request (the exact header and payload format of this message
is defined in the service contract):

M-POST /clockService HTTP/1.1
Host: spather-xeon:8586
Content-Type: text/xml
Man: “http://wvvw.microsoft.com/protocols/ext/XOAP”;
ns=01

01-MethodName: queryStateVariable
01-MessageType: Call

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued

Accept-Language: en-gb, en;q=0.8
Referer: http://myhouse/VCR1Presentation
Content-Length: 84
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)
Connection: Keep-Alive
<queryStateVariable>

<variabieName>currentTime</variableName>
</queryStateVariable>

The control server will respond to this message with
another XML fragment: the XOAP-encoded method
response. The following is an example of such a response:

HTTP/1.1 200 OK
Connection: Close

Cache-Control: privateDate: Mon Oct 11 12:13:38 PDT 1999

Expires: Mon Oct 11 12:13:38 PDT 1999
Content-Type: text/xml
Content-Length: 62
Man: “http://wvvw.microsoft.com/protocols/ext/XOAP”;ns=01

01-MessageType: CallResponse
<queryStateVariableResponse>

<_return>12:13:28</_return>
</queryStateVariableResponse>

The rehydrator will extract the return value from this
XML fragment, place it in the VARIANT structure whose
address was passed as the last parameter to

RehydratorGetServiceProperty() and then return.

Invoking Service Actions. The process of invoking a
service action is very similar to querying a state variable. An

application calls IUPnPService::InvokeAction() on a Ser-
vice object, passing it the name of an action to invoke, and
an array of arguments to the action. Internally,

IUPnPService::InvokeAction() calls
RehydratorInvokeServiceAction(), declared as shown
below.

HRESULT

RehydratorInvokeServiceAction(
IN LPCTSTR 1pcszVerb,
IN LPCTSTR 1pcszControlURL,
IN LPCTSTR 1pcszSTI,
IN LPCTSTR 1pcszActionName,
IN SAFEARRAY saActionArgs,
OUT LONG *pStatus);

As was the case for querying state variables, the service
instance specific information is passed in the first two
parameters, followed by the Service Type Identifier in the
third. The action name and an array of arguments are passed
as the next two parameters, and the final parameter is the
address of a variable in which to store the status of the

operation.

RehydratorInvokeServiceAction() will send an HTTP
request to the control server identified by the second param-
eter. As before, the body of this message will be an XML
fragment containing a XOAP-encoded method call. An
example HTTP request to invoke an action is shown below.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

25

M-POST /clockService HTTP/1.1
Host: spather-xeon: 8586
Content-Type: text/xml
Man: “http://wvvw.microsoft.com/protocols/ext/XOAP”;ns=01
01-MethodName: invokeAction

01-MessageType: Call
Accept-Language: en-gb, en;q=0.8
Referer: http://myhouse/VCR1Presentation
Content-Length: 119
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)
Connection: Keep-Alive
<SerializedStream main=“invokeAction”>

<invokeAction id=“invokeAction”>
<actionName>setCurrentTime</actionName>
<actionArg>15 :41 :29</actionArg>

</invokeAction>
</SerializedStream>

The encoding of the body of this message is again
specified in the service contract. The Rehydrator will wait
for the HTTP response to this request, which would look
something like the example below.

HTTP/1.1 200 OK
Connection: Close

Cache-Control: private
Date: Mon Oct 11 15:22:38 PDT 1999

Expires: Mon Oct 11 15:22:38 PDT 1999
Content-Type: text/xm1
Content-Length: 50
Man: “http://wvvw.microsoft.com/protocols/ext/XOAP”;ns=01

01-MessageType: CallResponse
<invokeActionResponse>

<_return>0</_return>
</invokeActionResponse>

After receiving a response such as this, the Rehydrator
will extract the return value, place it in the out parameter it
was passed, and then return.

FIGS. 32 through 44 are program listings defining various
interfaces used in the preferred implementation of the
Rehydrator, including an lUPNPDevice Interface, an IUP-
NPPropertyBag Interface, an IUPNPService Interface, an
IUPNPDevices Interface, and an IUPNPServices Interface.

Description Document
With reference to FIG. 14, User Control Points 104 can

retrieve a Description Document 226 by issuing an HTTP
GET on a Description URL. This URL is returned in the
location header of either an SSDP announcement or an

SSDP query response.
The HTTP GET must include an accept-language header

that is used to request the preferred language of the response.
If the requested language is not supported, a Description
Document in the default language supported by the Con-
trolled Device or Bridge may be returned.

An HTTP GET is used to retrieve sub elements of a

Description Document that are expressed as URLs.
URL Handling
URLs embedded in Description Documents 226 take one

of 3 forms: a fully qualified URL or a relative URL.
Fully qualified URLs take the form:
http://devicename/pathname
The devicename part of the URL is a Hostname or IP

address and the pathname is a filesystem path or equivalent.
A fully qualified URL is used “as is” to establish an HTTP
connection to a device.

10

15

20

25

30

35

40

45

50

55

60

65

26
A relative URL does not contain the “:” character and is

of the form:

pathname
/pathname
Relative URLS are a compact representation of the loca-

tion of a resource relative to an absolute base URL. All

relative URLs in a Description Document are appended to
the value of the Description Document element <URLbase>
to form fully qualified URLs.

Binary Data
Some elements of a Description Document are binary.

XML does not directly support the embedding of binary
data. In order to include binary data directly in a Description
Document, one must convert the data to text using the Base
64 encoding scheme. This tends to increase the size of the
data by 25% on the average. Much of this overhead can be
eliminated if the binary data is passed by reference instead
of by value. To reference binary data, a URL to the data is
provided in a Description Document. The binary data can be
retrieved by doing a HTTP GET with that URL.

As an example, consider the <image> element in the
following Description Document:

<iconList>
<icon>

<size>16</size>
<imageType>PNG</imageType>
<color>1</color>
<depth>8</depth>
<image>

“http ://device.local/iconpath/icon.png”/>
</icon>

</iconList>

The icon would be retrieved with an HTTP GET of the

following format:

GET iconpath/icon.png HTTP 1.1
Host: device.local

The HTTP response would look like:

HTTP/1.1 200 OK
Content-Type: image/png
Content-length: #=##
<binary color icon data in the PNG format>

Description Document Layout
The basic layout of the Description Document 226 is

shown in FIG. 15.

The following table lists Description Document elements
that are sub-elements to the root element.

Root The XML root element of a UPnP DescriptionDocument.

specVersionMajor The major version of the UPnP Architectural
Reference that this Description Document was
created against. This value must be 1.

specVersionMajor The minor version of the UPnP Architectural
Reference that this Description Document was
created against.
This value must be 0.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

27

-continued

URLBase An optional element used to construct fully qualified
URLs. Relative URLS are appendec to the value of
<URLBaSe> to create fully qualified URLs. If this
element is present, it must agree wi h the HTTP Base
header.

manufacturer A recuired element that contains a textual
manufacturer name.

manufacturerURL An o3tional element containing a U {L that points to
the Web page of the manufacturer.

modelName A recuired element containing a tex ual product name.
modelDescription A recuired element containing a tex ual product

description.
modelNumber An o3tional element containing a textual product

model number.

modelURL An o3tional element containing a U {L that points to
the Web page of the product.

UPC An o3tional element containing the oroduct Universal
Product Code (UPC).

serialNumber An o3tional element containing a textual item serial
number.

The Description Document elements listec
associated with devices.
rootDevice A recuired sub elemen of the root. This element

is a container for one or more service elements
and tie elements that cescribe the rootDevice.
An o3tional sub element of the root or another device
elemen . This element contains the same kinds of
elemen s as a rootDevice element.

A recuired sub elemen of every roo Device or device
con aining the Unique Device Name.

A recuired sub elemen of every roo Device or device
con aining a textual friendly name. This
can be updated remotely.

A recuired sub elemen of every roo Device or device
n con aining a s andardized Device Type

Identifier.
An o3tional sub element of a rootDevice or device

con aining a Presentation U {L.
A recuired sub e emen o every roo Device or device
elemen . This element is a container for one or more

icon elemen s. UPnP requires a base set of six icons
that must exist in the iconList. All devices must

support PNG icon image ormats of hree sizes, 16 by
16, 32 3y 32 anc 48 by 48 pixels in 30th color and
black and wiite at 8 bit cepth. Additional formats
and sizes, inc uding JPEG, GIF, BMP, ICON and
VML, may be supported 3y adding tiem to tie list.
A recuirec sun e emen o every iconList element. This
element is a container or the elements that define an
icon.

A recuirec sun e emen o every icon elemen . There
must be icon elements wi h associated size elements

with he values 16, 32 and 48. Other icons may specify
other sizes.
A recuirec

in the following table are

device

UDN

friendlyName

deviceType

presentationURL
iconList

icon

size

color sun e emen o every icon elemen with
value 0 or 1. Each icon o size 16, 32 or 48 must
exist in color anc blac{ and white.

A recuirec sun e emen o every icon elemen .
required icons must exist with a value of 8.
A recuirec sun e emen o every icon elemen
identifies he ormat of the binary icon: png,
vml, gif, bmp, or ico.
A recuirec sun e emen 0

references a binary icon.
The following elements of the Description Document are associa ed with
Services.
service

depth All

that

"peg,
imageType

image every icon elemen that

An o3tional sub element of the rootDevice or
another device element. This element is a container
for the Service Definition.

serviceType A recuired sub element of every service element
containing a standardized Service Type Identifier.

controlURL A recuired sub element of every service containing a
Control URL.

eventSubURL A recuired sub element of every service containing an
Even Subscription URL.

SCPD A recuired sub element of every service. The SCPD is
a container for the standardized Service Control
Protocol Declaration associated the Service.

10

15

20

25

30

35

40

45

50

55

60

65

28

FIG. 16 shows an exemplary icon list in a Description
Document 226.

Service Control Protocol and SCP Declaration

As part of the Service Definition 406 shown in FIG. 8, a
Service State Table 230 and Command Set 408 are defined.

The SCPD 406 is a representation of the schema of a
Service. It is possible to reconstruct the SST 230, Command
Set 408 and SCP 402 from the SCPD deterministically.

The declaration of such a protocol must specify the list of
Variables that can be queried, the set of Commands that can
be invoked, as well as the wire protocol (the content and
sequence of network messages) required to carry out these
operations. SCPD is specified in two XML documents. The
first or Service Control Definition document 404, written in
a language called Service Control Protocol Declaration
Language (SCPDL), declares the list of state Variables and
Commands associated with the Service Type to be controlled
by the protocol. The second or Service Control Protocol
document 402 is written in Contract Definition Language
(CDL) and declares the wire protocol that will be used to
query the values of the state variables and invoke the actions
associated with the service.

Declaring the Service State Table and Command Set
A SCPDL document 404 is used to specify the list of state

Variables that a SCP can query and the set of Commands that
it can invoke. SCPDL is an XML schema, a set of rules for

writing XML documents (Service Control Protocol
Declarations).

FIG. 17 shows an exemplary SCPDL document. This
XML document consists of a root <scpd> element contain-
ing two sub-elements, <serviceStateTable> and <action-
List>. Within the <serviceStateTable> element is a <stat-
eVariable> element for each state variable associated with

the service. The Service in this example is a TV tuner with
has only one state variable, currentChannel. The elements
within the <stateVariable> element specify the name, data
type and allowed values for the state variable. Had the
Service more state variables, they would be represented by
additional <stateVariable> elements within the <deviceS-
tateTable> element.

The <actionList> element contains an <action> element

for every action associated with the Service. The elements
within an <action> element specify the name of the action
and any arguments the action may take. In this case, the
service supports two actions that do not take arguments,
ChannelUp and ChannelDown, and another, SetChannel,
that takes a new channel number as an argument. The
<argument> element and the elements nested within it define
the argument. The <relatedStateVariable> element within
<argument> specifies the name of one of the state variables
to which the argument is related. In the UPnP Device Model,
all arguments to actions must correspond directly to some
state variable.

Declaring the Contract
The Contract is a specification of the wire protocol that

will be used to query state Variables, invoke Commands and
carry notifications or events. This contract specifies the type
of protocol used, the network endpoint to which messages
are sent, the contents of those messages, the contents of the
expected responses and the contents of events. Contracts are
written in Contract Definition Language (CDL).

All UPnP SCPs will use essentially the same contract. A
specific contract applies to a single Service instance (since
it specifies the network endpoint to which messages are sent
and network endpoints are specific to service instances).
However, other than the network endpoint definition, all
contracts for all Service instances should be the same.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

29

FIGS. 18-20 show an exemplary Contract. This Contract
defines two methods: queryStateVariable and invokeAction.
These methods are invoked by exchanging XML messages
with a Control Server on a UPnP Controlled Device or

Bridge. The Contract completely defines the header and
payload of each message. By passing the appropriate argu-
ments to these methods, any of the state Variables declared
in the SCPDL declaration can be queried and any of the
actions invoked.

FIGS. 21 and 22 show an XML schema for the SCPDL.

Basic UPnP Eventing Architecture
With reference to FIG. 23, the UPnP architecture 200

(FIG. 3) requires that clients of the UPnP API be enabled to
receive notifications reliably from UPnP services 210-217
as their states change. Since state changes are relatively
common, the eventing subsystem is efficiency and perfor-
mance is a major consideration in this design. FIG. 23 and
the following discussion describe the Basic UPnP Eventing
Architecture 600, which encompasses both the controlled
device (CD) 106 and user control point (UCP) 104 sides of
the eventing service. It also includes the support APIs for
both a low-level service interaction and a higher level
COM-based wrapper of those APIs. The latter enables
automation controllers like Visual Basic and JScript 602 to
receive event notifications.

What is an Event?

Property change events are defined as any change in the
value of a row of the Device State Table (DST) 230 (FIG. 3)
for a service 210-217. This change will be reflected as a
property change notification. For example, if a “VCR”
device has a “VCR Transport” service, one row in that
service’s DST may be TapeState and the value could be
TapePresent. If the tape is ejected, the new value would be
TapeAbsent. This state change would be reflected as a
notification sent to all subscribers.

What is a Notification?

A UPnP event notification is an XML message sent over
HTTP/TCP to each and every subscriber to a particular
UPnP service. The content of the XML is defined below. The

important contents of this message are the unique identifier
for the subscription, the property name, new value, and
property type.

Notification Processing
In UPnP, the listener to Notifications is the SSDP service

itself. SSDP already listens on another multicast address for
“alive” and “byebye” messages sent by UPnP devices. The
same listener will listen on a TCP port for notifications sent.
All subscriptions sent from that UCP contain the same
callback URL and so all notifications will be directed to that
URL. When a notification arrives the SSDP service will

examine the NT header of the message and determine if it is
an event notification. If so, the message is parsed further to
determine if it should be forwarded on to subscribers (which
must exist). GENA defines the format of the HTTP message,
what headers can be used, and what they can be used for.

GENA

GENA is the protocol of communication that, in a pre-
ferred embodiment, UPnP devices use to send event notifi-
cations. Therefore, UPnP devices that wish to notify UCPs
of state changes are recommended to use GENA. Notifica-
tion subscribers will never be required to interact with a
UPnP device directly and so they are not required to use
GENA. The eventing API will encapsulate this complexity.
Other appropriate event transport protocols may be used,
such as publish/subscribe systems.

Receiving Notifications
Applications written in C (C Application 604) will be able

to utilize the SSDP C API 610 to receive callbacks when

10

15

20

25

30

35

40

45

50

55

60

65

30

notifications are processed by the SSDP service. This is
analogous to SSDP clients registering for notifications that
services have become available. When a UCP registers for
a notification, it passes as a parameter the URL of the service
for which it is interested in receiving notifications. This URL
is obtained from the description document for that service.
(When a service is registered on a UPnP device, it uses this
same URL to listen for subscription requests).

When a notification message is received by the SSDP
service listener, the SID header is checked against the list of
subscribers it maintains. If a subscriber is found, the call-
back function for that subscriber is invoked, with one of the
parameters being the contents of the notification message.
The notification client that implements the callback function
can process this message in any appropriate way.

Notifications in the UPnP API
The UPnP API 410 is a consumer of the basic C interface

provided by the SSDP C API 610 component. In order to
integrate seamlessly, the registration of notifications is
handled by the Service Object 612 inside the UPnP Object
Model. Service objects will register for notifications when
they are created. This ensures that the DST is maintained by
the UPnP API and is kept up to date. They will implement
the callback function required by the registration function. If
this callback function is invoked, it will pass on that noti-
fication to UCPs. The UCPs can be written in C, C++, VB,
or script code, so the mechanism for passing on notifications
can be different.

Script Support
A feature of the illustrated eventing system is that it

supports script languages such as VBScript and JavaScript
602. For VBScript, this is made possible by providing a
property on the Service object that, when set, contains the
IDispatch pointer for a VBScript function or subroutine that
will be the event handler. When the Service object’s noti-
fication callback is invoked, it checks to see if this IDispatch
pointer was set, and if so, it calls lDispatch::Invoke on
DISPID 0 of that interface to call the VBScript subroutine.
An equivalent mechanism is implemented for JScript.

Eventing Subsystem Terminology
UCP—User control point. Any piece of software that

searches for devices and controls them.
CD—controlled device. A hardware or software device

that announces its availability thru SSDP and allows control
by UCPs.

Subscriber—A UCP who wishes to be notified of event

changes.
Notifying Resource (or simply “Resource”)—For the

purposes of this document, this will always be a service
contained within a UPnP CD 106.

Event Source—a service that provides events. UPnP
services are event sources. All notifying resources are event
sources and vice versa.

Event—message generated when a change in a resource’s
state occurs.

Property—a single entry in the service’s state table whose
DefaultValue can change. Properties and events always have
a one to one correspondence.
Subscribing To Resources

Integrating With The UPnP API
The UPnP API 410 exposes several interfaces with which

a consumer can find and enumerate devices, control
services, and get properties on devices and services. To
allow the integration of events into this model, we add a new
property to the IUPnPService interface called EventHandler.
When this property is set, it tells the Service object 612 that
its client is interested in receiving notifications for that

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

31

service. The SSDP API RegisterNotification() API is called
when the Service object is created so that it can maintain a
local copy of the DST for that service. The Service object
knows the URL of the service and therefore it can provide
this as a parameter to RegisterNotification(
RegisterNotification() is also provided a callback function
which is a static member of the Service object class. This
function will be invoked for each and every notification sent
by that particular UPnP service.

The Notification Callback

The Service object 612 includes a static member function
called EventNotifyCallback() which is invoked for each
notification sent by the UPnP service. The callback is passed
the entire HTTP message contents in a structure which is a
parameter to the function. The prototype looks like this:

static VOID

CUPnPService: :EventNotifyCallback(SSDP_CALLBACK_TYP
E ssdpType,
SSDP_MESSAGE *pssdpMsg,

LPVOID pcontext);

The ssdpType parameter should always be SSDP_
PROPCHANGE. The pssdpMsg parameter contains the
relevant information about the event. The key piece of
information is the body of the XML message. The body
contains information about what property changed, what its
new value is and what type it is, among other information.
The pcontext parameter will always be the this pointer of the
Service object. This allows the code to call a method to fire
the event to the UCP. The callback will parse the XML body
using the XML DOM services. Property changes are iterated
and the local DST is updated to refiect these changes. After
this processing is done, an event notification may be fired for
each property that was changed to the owner of the sub-
scription if one exists. Depending on what environment the
owner is written in (C++ or script, etc. . . .), a different
mechanism for firing the event may be employed.

A special case for this process is the very first notification
received after a subscription is established. This notification
contains the entire set of properties and their values and is
used to locally sync up the DST. Events will not be fired to
clients of the UPnP API in this case.

Firing Notifications
When the EventNotifyCallback() function is called, the

local copy of the DST for the service is updated. After this,
an event needs to be fired if a subscriber exists. A subscriber

exists if the put_EventHandler() method was called, either
from VBScript, C++ code, or another source. To abstract
away this complexity, a new interface called IUPnPEvents is
needed.

This interface currently has one method called
NotifyEvent() which takes several parameters. When put_
EventHandler() function is called, its argument is an IUn-
known. This pointer is Queryinterface’d() for IDispatch
first, and if it succeeds, then IDispatch::Invoke() is called
with DISPID 0 to invoke the default method. This allows

VBScript 602 to be called. If that fails, however, it is
Queried for IUPnPEvents, and if that succeeds, the

NotifyEvent() method is called with the same parameters as
for Invoke(The handles C++ UCPs effectively.

Subscribing with C++
To subscribe to a UPnP service from C++, a UCP instan-

tiates a UPnP service object, issues QueryInterface() to it for
IUPnPEvents, and calls the

IIUPnPEvents::SetEventCallback() function. This function
takes 2 parameters, a callback function pointer and a context
pointer.

10

15

20

25

30

35

40

45

50

55

60

65

32

Subscribing With VBScript
To subscribe to a UPnP service’s events, all that needs to

be done by a script 602 is to create a function or subroutine
as a handler function and set the pointer of that function to
the EventHandler property of the Service object. Now,
anytime an event is fired, this VBScript function or subrou-
tine will be called. In VBScript, this is written as the
following:

Dim UPnPAPI

Set UPnPAPI = CreateObject(“UPnPAPI.1”)
Devices = UPnPAPI.FindDevices(. . .)For each device in Devices

For each service In devices.services

If service.dcpi = “clock.v1”
Service.EventHandler =

GetRef (“clock_PropertyChanged")
End if

Next service
Next device

Sub clock_PropertyChanged(prop, value)
MsgBox “The time has changed. It is now ” &

value & “.”
End Sub

In this example, the script enumerates all devices, looking
for any device that supports the “Clock” interface. When it
finds a device that supports that interface, it enumerates that
device’s services looking for the one that has the “clock.v1”
interface. Once it finds that service, it sets that service’s
EventHandler property to the VBScript subroutine called
“clock_PropertyChanged”. This name is arbitrary.
Sending and Receiving Notifications

GENA Client API

GENA clients are actually UPnP services. A GENA client
creates a new event source when it is initialized. The GENA

client API 620 facilitates this. It also provides a way for
GENA clients to send their notification messages. It is also
important to note that the HTTP server that lives on the
UPnP device is also a client of this API. The GENA client

API consists of the following functions:
RegisterUpnpEventSource()
The RegisterUpnpEventSource() API gives a GENA

client the ability to register itself as an event source. The
prototype is as follows:

BOOL RegisterUpnpEventSource (
LPTSTR szRequestUri,
DWORD cProps,
UPNP_PROPERTY *rgProps
);

Parameters: szRequestUri [in] an arbitrary Request-Uri
that SUBSCRIBE requests will be sent to. When a SUB-
SCRIBE request arrives at the given URI, it is acknowl-
edged and the subscriber is added to the list of notification
recipients. Note that this URI should match the URI pro-
vided in the description for this service. CProps [in] the
number of properties that this event source provides.
RgProps [in] Array of UPNP,PROPERTY structures which
contain information about each property. The property infor-
mation is derived from the DST for the event source.

Return Value: The function returns a TRUE if successful.

If the given URL has already been registered as an event
source, the return value is FALSE and GetLastError(
returns ERRORiALREADY,EXISTS.

Notes: The initial state of the event source needs to be

given to the API so that it can effectively maintain the
up-to-date state of the event source.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

33

DeRegisterUpnpEventSource()
The DeRegisterUpnpEventSource() API gives a GENA

client the ability to deregister itself as an event source. The
prototype is as follows:

VOID DeRegisterUpnpEventSource (
LPCTSTR szRequestUri

);

Parameters: szRequestUri [in] an arbitrary Request-Uri
that SUBSCRIBE requests will be sent to. When a SUB-
SCRIBE request arrives at the given URI, it is acknowl-
edged and the subscriber is added to the list of notification
recipients. Note that this URI should match the URI pro-
vided in the description for this service.

UPNP PROPERTY

typedef struct _UPNP_PROPERTY {
LPTSTR szName;
LPTSTR szValue;
LPTSTR szType;

} UPNP_PROPERTY;

Where szName is the name of the property, szValue is the
current value of property, and szType is the type of property
(string, integer, etc. . . .

SubmitUpnpPropertyEvent()
The SubmitUpnpPropertyEvent() API allows the GENA

client to submit a UPnP property change event to be sent to
subscribers as a notification. The prototype is as follows:

BOOL SubmitUpnpPropertyEvent (
LPCTSTR szRequestUri,
DWORD dwFlags,

DWORD cProps,
UPNP_PROPERTY *rgProps
);

Parameters: “szRequestUri [in]” identifies the event
source to which this event belongs. This is the same
Request-Uri passed to RegisterUpnpEventSource(
“DwFlags [in]” is unused. “CProps [in]” is the number of
events that are being submitted. “RgProps [in]” is an array
of UPNP_PROPERTY structures which contain informa-
tion about each event.

Return Value: If the function fails, the return value is
FALSE. The get extended error information, call the
GetLastError() function.

Notes: When a series of properties is submitted for event
notification, the local version of the property state for the
given event source is updated with the list of properties
passed in. SubmitUpnpPropertyEvent() calls
SubmitEvent() after it has generated an XML body.

SubmitEvent()
The SubmitEvent() API allows the GENA client to

submit an unstructured event to be sent to subscribers as a

notification. The prototype is as follows:

BOOL SubmitEvent (
LPCTSTR szRequestUri,
DWORD dwFlags,

10

15

20

25

30

35

40

45

50

55

60

65

34

-continued

LPCTSTR szHeaders,
LPCTSTR szEventBody

);

Parameters: SzRequestUri [in] identifies the event source
to which this event belongs. This is the same Request-Uri
passed to RegisterUpnpEventSource(DwFlags [in]
Unused. SzHeaders [in] null-terminated text string contain-
ing the headers for the event, each separated by CRLF.
SzEventBody [in] null-terminated text string containing the
body of the event message.

Return Value: If the function fails, the return value is
FALSE. The get extended error information, call the
GetLastError() function.

Notes: If no subscribers exist, the function does nothing.
If one or more subscribers exist, a message is sent to each
subscriber. SubmitEvent() will always send to all subscrib-ers.

UPnP Controlled Device Event Architecture

In UPnP, every UPnP service 210-211 that supports
property change event notifications is to be a GENA client.
Therefore, when the service is initialized, it must register
itself as a GENA event source. It will do this with the

RegisterUpnpEventSource() API. This returns a handle
which can be used in subsequent APls.

RegisterUpnpEventSource() takes a URL and an array of
properties as parameters. Inside the API, an entry in an array
of structures is initialized and the index is returned as the
handle. The structure contains the source URL as one of the

members. A second member of the structure, an array of
destination URLs, is left uninitialized. This is filled in each
time as subscriber is added for that event source. Another

member of the structure is the list of properties that this
event source provides. This is effectively a cached copy of
the DST for the event source. As events are submitted, the
local properties are updated.

When SubmitUpnpPropertyEvent() is called, each prop-
erty submitted replaces the corresponding property already
maintained by the API. If no subscribers exist, the request to
submit an event is ignored. If one or more subscribers exist,
their callback URLs are looked up in the list of subscribers
for the given event source and a NOTIFY message is
constructed and sent to each URL, one at a time, in order of
subscription.

If an event is submitted and no response is received (or a
CD-side error occurs), the CD continues to attempt to send
to the UCP. If the subscription timeout expires, then the
subscription is removed. If the UCP becomes available
again, it will re-subscribe because it will notice the sequence
numbers are not contiguous.

When an HTTP server 626 receives a SUBSCRIBE

message, it passes it along to a function which parses the
message for the necessary information. The Request-URI
identifies the service that is to be subscribed to. The callback
URL is obtained from the “Callback” header. Since the

Callback header can contain multiple URLs, it picks the first
“http:H/” URL it finds. It then adds the subscriber to the list
of subscribers for this event source. A unique subscription
identifier is constructed which it will send back to the

subscriber in the HTTP response to the SUBSCRIBE
request.

If no event source matches the Request-URI from the
subscription message, the HTTP server should return “404
Not Found”.

When a subscription is added, the local copy of the DST
is sent as a NOTIFY message. This special NOTIFY mes-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

35

sage contains sequence number 0 which informs the UCP
that this is an initial state population event and not a
notification where every event has changed.

When a CD receives an UNSUBSCRIBE message, it
checks the “SID” header to obtain the subscription identifier.
It looks up the subscriber ID in the list of subscribers for that
event source and removes the destination URL entry asso-
ciated with it.
GENA Server API

GENA servers 630 are generally going to be UPnP UCPs.
A GENA server is anything that receives and processes
NOTIFY messages to handle notifications from resources
and sends SUBSCRIBE and UNSUBSCRIBE messages to
receive notifications from resources. These APIs leverage
the already existing SSDP APIs. The following are the
changes to the APIs:

RegisterNotification()
The RegisterNotification() allows a UPnP UCP to request

notification when an event occurs for a given UPnP service.
The prototype is as follows:

HANDLE RegisterNotification (
NOTIFY_TYPE nt,
| ‘.7?
LPTSTR szResourceType,
if
// SSDP_PROPCHANGE is used.
LPTSTR szEventUrl,
ServiceCallbackFunc fnCallback,
void *pContext
);

// SSDP_ALIVE |
SSDP_PROPCHANGE
// based on NOTIFY_TYPE, unused

Parameters: Nt [in] An enumeration that determines the
type of notification requested. The values are: SSDP_
ALIVE—a service has become available, and SSDP_
PROPCHANGE—a property has changed on the service.
SzResourceType [in] Anull-terminated string specifying the
resource type desired. For SSDP,ALIVE, this is the service
type, for SSDP_PROPCHANGE this is unused. SzEven-
tUrl [in] A null-terminated string specifying the URL that a
subscription request should be sent to. FnCallback [in] A
pointer to a function that will be called each time a notifi-
cation is received. The function pointer is defined in the
SSDP spec. PContext [in] This parameter is included as a
parameter when invoking the client-supplied callback func-
tion.

Return Value: If the function succeeds, the return value is
a handle used in a subsequent call to the
DeregisterEventNotification() function. If the function fails,
the return value is INVALID,HANDLE,VALUE error

code. To get extended error information, call GetLastError.
ServiceCallbackFunc

typedef enum _SSDP_CALLBACK_TYPE {
SSDP_FOUND = 0,
SSDP_ALIVE = 1,
SSDP_BYEBYE = 2,
SSDP_DONE = 3,
SSDP_PROPCHANCE = 4,

} SSDP_CALLBACK_TYPE, * PSSDP_CALLBACK_TYPE;

UPnP UCP Architecture
When a UPnP UCP wishes to subscribe to notifications for

a particular UPnP service, it calls the RegisterNotification()
API. It passes to this API a notification type that identifies
the type of notification being requested, a URL to which a

10

15

20

25

30

35

40

45

50

55

60

65

36

subscription should be sent, and a callback function and
context for use when the notification is received.

RegisterNotification() will compose a SUBSCRIBE
message, using the data passed in, and send that to the URL
specified by the caller. The Callback header of the SUB-
SCRIBE message will be composed on the fly, as an
arbitrary URL for notifications to be sent to for this sub-
scription. This callback URL will likely be a constant since
the server API will always know how to handle requests sent
to this URL. It will then send the SUBSCRIBE message and
await a response.

RegisterNotification() in the SSDPAPI does not currently
send HTTP requests, but it can be modified to do so. It also
needs to await a response which it will also be modified to
do so.

When the response is received, the Subscription-ID
header contains a SID which is associated with the callback

function specified by the caller.
Immediately after the response is received, the UCP

should expect an initial NOTIFY message that contains the
complete set of properties maintained by the CD. This
becomes the local cached DST on the UCP side. From this

point on, all modifications to the table are made via NOTIFY
messages. This initial NOTIFY message will have sequence
number 0 that indicates it is an initial property set and not an
update. The UCP can use this information in any way it sees
fit. This ensures the UCP’s state table is always in sync with
the one on the CD.

When a message is received by the HTTP server on the
UPnP UCP, it is passed to a function which determines the
method name and Request-URI. If this is a NOTIFY
message, the headers are parsed and packaged up into a
structure. The callback function that was specified to
RegisterNotification() is called with that structure as one of
the parameters. UCPs who implement the callback function
can find the headers and body of the NOTIFY message and
do additional processing based on the notification type.

This all requires that the SSDP HTTP server listen on a
TCP socket in addition to the UDP multicast port it already
listens to. However, once a NOTIFY message is received, it
is processed in the same way regardless of from which
connection it originated.

Handling Failures
The following are subscription/notification failures that

can occur and their solutions:

Leaked Subscriptions
To protect against subscriptions that exist on the con-

trolled device, but no longer on the UCP, we institute the
timeout feature of GENA subscriptions. The scenario is this:
A UCP subscribes to a CD, then the UCP reboots.
Meanwhile, the CD is still trying to send notifications to that
UCP. If the UCP never comes back, the subscription would
be leaked because the UCP never told the CD that it was

going away. So to correct this, each subscription request
includes an arbitrary timeout value which indicates to the
CD that the UCP will be re-subscribing every n seconds
indicated in the timeout header of the subscription request.
If the timeout expires on the CD, the subscription is
removed. The UCP is required to re-subscribe before the
timeout period has elapsed. If it fails to do so, the subscrip-
tion will be terminated by the CD.

Some time before the timeout expires on the UCP, a
re-subscribe message should be sent. The re-subscribe mes-
sage is similar to the subscribe message, but it does not
contain an NT or Callback header. If the UCP is unable to

re-subscribe within the timeout period, the subscription will
be terminated by the CD. If the UCP sends a re-subscribe

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

37

after the CD has terminated the subscription, the CD will
return “412 Precondition Failed”.

Reboot of a Controlled Device

If a controlled device reboots, information about all of its
subscribers would be lost. To prevent this, the subscriber
information will be persisted across reboots of the device.
Because the subscription info contains a timeout member,
the absolute expiration time will be used when the subscrip-
tion information is persisted. That way, when the device
comes back up, it can check the timeout for each subscriber
and if that time has passed, the subscription will be removed.

Network Error Sending Event Notifications

If a controlled device receives an error sending an event
notification to a subscriber, it will NOT cease to send
notifications. It will continue to send notifications and

receive errors until the subscription expires. The problem for
the UCP is that it will have missed a number of event

notifications and so its state table will be out of sync. To
correct this, each event notification message will contain a
32-bit sequence number that starts at 0 and increments for
each message sent to a subscriber. If a subscriber receives a
notification with a sequence number that is not exactly one
more than the previous notification, it will know that it has
lost events and will ignore all future notifications until it
receives one with sequence number 0 again. Events with
sequence number 0 indicate that the event is an “initial state”
event.

Once it realizes that is has lost one or more events, the
UCP will send an UNSUBSCRIBE message, followed by a
SUBSCRIBE message. This is not the same as a
re-subscription because re-subscriptions do not cause the
CD to start the sequence over at 0. In this case, the active
unsubscribe/subscribe will cause the CD to restart the

sequence at 0 and send the entire state table with the first
notification message.

The SUBSCRIBE Message
When a UPnP UCP wishes to subscribe to event notifi-

cations for a UPnP service 210-211, it will form a SUB-
SCRIBE message of the following format:

SUBSCRIBE servicel HITP/1.1
Host: vcr.local:200
NT: upnpzevent
Callback: <http://remote1.local:923/upnp>
Timeout: Second-600

The response is as follows::
HITP/1.1 200 O.K.
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
Timeout: Second-600

This example of a GENA SUBSCRIBE request and
response demonstrates a subscription to event notifications
for “service1.” The host is “vcr.local.” All notifications for

this service will be sent to the callback URL http://
remote1.local:923/upnp. In the response, the “Subscription-
ID” header provides the subscriber with an identifier to use
when it wants to unsubscribe to this resource. The “Tim-
eout” header indicates that the subscriber will send a

re-subscription request before 10 minutes have elapsed. If
the device does not receive this request within that period of
time, it will remove the subscription.

The Re-SUBSCRIBE Message
When a UPnP UCP wishes to re-subscribe to event

notifications for a UPnP service, it will form a SUBSCRIBE
message of the following format:

10

15

20

25

30

35

40

45

50

55

60

65

38

SUBSCRIBE servicel HITP/1.1
Host: vcr.local:200

SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
Timeout: Second-600

The response would be as follows::
HITP/1.1 200 O.K.
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
Timeout: Second-600

Note that the NT and Callback headers are absent, but the
SID header exists. This tells the CD 106 which subscription
is being renewed and restarts the timeout. When the CD
receives this message, it will persist the subscriptions to disk
(or other persistent data storage medium), updating the
absolute timeout based on the current time and a new

timeout sent by the UCP (if it was different).
The NOTIFY Message
When a resource wishes to send an event notification, it

will form a NOTIFY message of the following format:

NOTIFY upnp HITP/1.1
Host: remote1.local:923
NT: upnpzevent
NTS: upnpzpropertychanged
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
Seq: 123
Content-Length: xxx
Content-Type: text/xml
<event XML schema>

The response is as follows::
HITP/1.1 200 O.K.

This example of a GENA NOTIFY request and response
demonstrates that a “upnp:propertychanged” event is being
sent to http://remotel.local:923/upnp. The USN header iden-
tifies “vcr.service1” as the event source. The XML contains

the property name, value, and type. The “Seq” header
indicates the sequence number of the notification. Sequence
number 0 indicates the initial state update for the subscriber.

Property Change Event XML Schema
A UPnP property change event will be of the following

form:

<U:propertyset xmlns:U=”upnp”>
<U:propcount>2</U:propoount>

<U:property>
<U:foo>

<U:type>string</U:type>
goodbye

</U:foo>
</U:property>
<U:property>
<KU:bar>

<U:type>integer</U:type>27
</U:bar>
</U:property>
</U:propertyset>

Here, a property named “foo” is of type “string” and has
a value of “goodbye” and a property named “bar” has a type
of “integer” and has a value of 27. The XML will be contains
a list of multiple properties that have changed, along with a
count to make it easy to determine this.

The UNSUBSCRIBE Message
When a UPnP UCP wishes to unsubscribe to event

notifications for a UPnP service, it will form an UNSUB-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

39 40

SCRIBE message of the following format: b. If the UCP started up before the UPnP device
initialized, it won’t see any services become available.
When the device finally starts, the UCP will be notified.

c. Once the UPnP services have been announced the UCP

5 will be able to access one or more of them.
d. The UCP drives the UPnP API to instantiate a UPnP

Service Object.
e. The UPnP Service Object does the following when it is

instantiated:

i. It obtains the event subscription URL from the
description for that service.

ii. It calls the SSDP API RegisterNotification() speci-
fying SSDP,PROPCHANGE as the event type, the
event subscription URL, a callback function pointer
(which is a static member function of the class), and
a context pointer (which is the “this” pointer of the
class). RegisterNotification() does the following:

UNSUBSCRTBE servicel HTTP/1.1
Host: vcr.local:200

SID: uuid:kj9d4fae-7dec-11d0-21765-00a0c91e6bf6
The response would be as follows:
HITP/1.1 200 O.k.

This example of a GENA UNSUBSCRIBE request and 10
response demonstrates that the UCP is no longer interested
in receiving event notifications from http://vcr.local/
service 1:200.

Step By Step: UCP to CD & Back
This section will take a step by step approach to what 15

happens on both sides (UCP & CD) of an event notification.
The description starts at the initialization of a UPnP device.
FIG. 24 illustrates the subscription, notification, and unsub- 1. It makes an LRPC call to the SSDP service. The
scription process. rest happens on the service side.

1. AUPnP device called “vcr” initializes. 20 2. If this is the first time it is called for SSDP_
a. It sets itself up to be an HTTP server by doing the PROPCHANGE notifications,

following: RegisterNotification() will call InternetOpen() to
i. It binds to a TCP socket using its IP address and an

arbitrary port number. This address/port pair will be
referenced by all incoming URL requests.

ii. It listens for incoming connection requests on that

get a handle to an internet session. This handle is
shared among all local UPnP UCPs.

25 3. It calls Internetconnect() passing the server name
given in the URL it was passed.

socket and sets itself up to accept any incoming 4. It calls HttpOpenRequest()passing in the rest of
COI1I1eCti0I1S. the URL it was passed.

b. It sets itself up to be an HTTP client by doing the 5. The handles returned by these functions are saved

following: 30 with the structure that maintains the subscription.
i. Calls InternetOpen() to get a handle to the internet 6. It composes a SUBSCRIBE message, using the

session data passed in, by calling
HttpAddRequestHeaders(It adds the “NT”,
“Callback”, and “Timeout” headers. The Callback
header of the SUBSCRIBE message will be com-

c. For each service it exposes, it does the following:
i. It calls the SSDP API RegisterUpnpEventSource() to

let the SSDP server know that it will be accepting 35
subscriptions and sending event notifications. At this
point, it has no subscribers. Note that this is called
before the service has announced itself so that it can

be ready to accept subscriptions immediately.
RegisterUpnpEventSource() sends no network traf-
fic on the wire. It is a local initialization only.
RegisterUpnpEventSource() does the following:
1. Adds a structure to the list of event sources

containing the following:

40

posed on the fly, as an arbitrary URL for notifi-
cations to be sent to for this subscription. The
server name is the local IP address, and the port is
the same one referred to by step 2a above.

7. It calls HttpSendRequest() to send the request to
the CD. This is a synchronous function that will
return when the request has been responded to by
the CD.

8. It calls HttpQueryInfo(. . . , HTTP_QUERY_

a. A URL to which subscribers will send sub- 45 CUSTOM, ~ ~ ~) t0 get the “S11hSCFlPtl0h'1d”
scription requests header. The resulting SID will be stored with the

b. A list of destination URLs. A notification S1lbSCripti0I1 Stflletllfe.

message will be sent to each destination URL. 9- It Calls HttpQueryInfo(. ~ . , HTTPLQUERYL
c. The state table for the event source. This CUSTOM, . . t0 get the “TiII1e011t” header. The

structure contains the property name, Value, 50 resulting timeout value Will be stored With the
and type for each property supported by the S1lbSCripti0I1 Stflletllfe.
service, 10. A timer is started for re-subscription based on the

ii. It calls the SSDP API RegisterService() to let the timeout Value returned in the response. When the
world know that it has become available, timer goes off, the re-subscription will be sent.

RegjsterserVjce() will send out an SSDP “alive” 55 11. The SID, callback function pointer, and timeout
message on the mnlticast channel that will be heard values are stored in a structure that maintains the
by any device running the SSDP service. liSt Of l0Cal S1lbSCripti0I1S.

d. It starts sending events immediately, even without 3~ Back 0h the UPhP CD» the Subsehptioh request is
subscribers. Each event submission updates the local reeeiVed by the HTTP 5erVer~ The fehowihg OCCUTS3
state table. This submission needs to be atomic with 50 a. The request is parsed into URI, NT, Callback, and

regard to adding subscribers, so between the time the TiII1e01lt fields.
SubmitEvent() API is called, and the time the local b. The NT field must match “upnp:event”. If it doesn’t, the
state table is updated, no subscriptions can be added or CD responds with “412 Precondition Failed.”
reII10Ved. c. The URI identifies the event source. The URI is

2- Meahwhlle, 3 UPHP UCP lhltlahZeS- 65 converted into a URL and matched with the list of event

a. It initializes its HTTP server, passively listening on a sources registered on the CD. If no match is found, the
TCP port. CD responds with “404 Not Found”.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

41

d. If a match is found, the following occurs:
i. The Callback URL is added to a list of subscriber

URLs.

ii. The Timeout value is processed and an absolute time
is stored with the event source data. If this time

42
a. The event source handle is converted to an event source

structure.

b. The properties that have changed as a result of the event
are passed into the function and updated in the local list

5 of properties stored with the event source.

expires and 3 ie'siibseiibe inessage nas not been c. For each subscriber, the following occurs:
feCe1Ved, the snbseiiptinn is iein0Ved~ i. InternetConnect() is called, passing the server name

iii. Anew SID is created, and stored with the subscriber speerhed hr the ea11baeh URL for this subserrptrbht
in the eVent s0niee~ ii. HttpOpenRequest() is called, passing in the rest of

iv. A sequence number is initialized to 0. 10 the ea11baeh URL.
V~ A snbseiiptinn iesP0nse is e0inP0sed> iheinding an iii. A NOTIFY message is composed, using the data

. echo of the Timeout header and the SID just created. passed hr’ by ea1hhg HttpAddReduestHeaders(1t
Vi~ The iesP0nse is sent~ adds the “NT”, “NTS”, “SID”, “Seq”, “Content-
vii. If the response is sent successfully, the list of event Length”, ahd <<C0hteht_Type=’ headers.

sources is persisted to disk for recovery purposes. 1. The NT header W111 a1Ways be <<ur,hr,;eVeht”. The
viii. A timer is started using the same timeout value as 15 NTS header W111 a1Ways be <<U13rr13;r,r0r,erty_

the header echoed to the UCP. When this timer ehahge”.
elapsesa the snbseiiptinn is iein0Ved- ii the CD 2. The SID header contains the SID stored in the

receives a red-siilbscribg rfiquest, thisfltimer wlill be eveht seuree structureieset- n an i ea Wei > t e tiinei Wi neVei e aPse- 3. The se uence number for the event source is

ix. An initial event notification is sent to initialize the 20 rheremegted and the seq header rs Created with
UCP’s state table. The following describes that pro- thrs Vahre.
eessi 4. The Content-Len th header will be the number of

1. InternetOpen() is called if an existing internet bytes hr the X1\/11% body. .
session nandie d0es.n0t eXist~ . 5. The Content-Type header Wlll always be “text/

2. InternetConnect() is called, passing the server 25 Xrhyq

naine speeined in the eaiibaek URL ini this sin)‘ 6. The body of the message is composed from the list
seiiPti0n~ of properties stored within the event source struc-

3. HttpOpenRequest() is called, passing in the rest of ture;

4 A1eN(O1ifl)FY{rhJd:sa e is com osed usin the data a. Write the <pr0pertySet> Opening tag.
' d . b Hg Hm AgdR > tHg d 30 b. Write the <propcount>n</propcount> tag.
$533 1;’ “§flii S” ESID” etfisues” jig erS(Where n is the number of total properties.
rjeilgtigtt Znd «C0ntent_-1-ypeg, h’ead:(riS.’ 0mem' For each property that hastbeen submitted:
a.The NT header will always be “upnp:event”. Wrlte the <pr0perty> Opening tag’ .

The NTS header will always be ‘‘UPnP:prop- 11' tt1VZ:r1It1:IE1ee0<fptr£)ei);r:£::1t1§I/lg tag’ Where prop IS
ertychange”. 35 ‘

b. The SID header contains the SID stored in the mjvvme the. <t.ype>type</type> tag’ Where type
event Source Structure is the stringized type name of the property

c. The Seq header will always be 0. . tYPe~
d. The Content-Length header will be the number iV~ Wtite tne Pinpeity Vaine

of bytes in the XML body. 40 V; Write the </Pi0P> einsing t3}g~

e.The Content-Type header will always be “text/ 31- Wtite Lne </Pi0PeitY> einsing tagXrh1”. . Write t e </propertyset> c osing tag

ft The body of the message rs eerhpesed from the iv. SubmitEvent() is called, passing the event source
list of properties stored within the event source nandiea nandie to tne neadeis eieated by 45(1)
structure; 45 IhI‘11”4C(111) above, and the body created in step

1. Write the <pr0pertyset>0pehrhg tag. 4c(iii)6. SubmitEvent() does the following:
ii. Write the <propcount>n</propcount>tag. 1- it eaiis iittRSendReqnestEX()> theh

Where n is the number of total properties. inteinetWiiteFiie() On tne body, then
111. For each property; HttpEndRequest(to send the request to the CD.
1. Write the <r,r0r,erty> epehrhg tag. 50 2. The response is ignored except for debugging
2. Write the <prop>opening tag, where prop is the p1lI‘pOSCS.

5. The UPnP UCP receives the notification message. The
message is processed as follows:
a. The HTTP server receives a NOTIFY message with a

Request-URI and several other headers.
b. The NOTIFY message is parsed, looking at the “NT”

header first. If this header contains “upnp:event”, then
the message is further processed for event notifications

name of the property.
3. Write the < type>type</type> tag, where type

is the stringized type name of the property
type. 55

4. Write the property value.
5. Write the </prop> closing tag.
6 Write the </property> closing tag
iv. Write the </propertyset> closing tag

5. It calls HttpSendRequestEx(), then
InternetWriteFile(), then HttpEndRequest() to
send the request to the CD.

6. The response is ignored except for debugging
purposes.

60
as follows:

i. The message is parsed for the NTS header. If that
contains “upnp:propertychanged”, then the message
is parsed further as follows:
1. The message is parsed for the SID header. The SID

indicates to the UPnP control point which sub-
4. The UPnP CD now is ready to send an event notification. 65

It does this by calling the SubmitUpnpPropertyEvent()
API. The following occurs inside that API:

scription this message applies to.
2. The message is parsed for the “Seq” header. If this

header contains a value of 0, the UCP knows this

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

43

is an initial state populate request. If the local
sequence number is exactly one less than the Seq
header, the local sequence number is updated
(incremented), and the message is processed fur-
ther.

3. The Request-URI can be ignored, since the HTTP
server knows all NOTIFY messages with an NT
header of “upnpzevent” are sent to the same
Request-URI.

4. If the Seq header contains a number that is not
exactly one more than the local sequence number,
the UCP knows it has missed an event. In this

state, it needs to unsubscribe and re-subscribe to
the event source in order to re-sync its state.

5. The SID is matched against the list of subscrip-
tions maintained on the UCP. When the SID is

matched, its associated callback function is
invoked.

6. The callback function is passed an SSDP_
MESSAGE structure which contains all the rel-

evant headers and the body of the XML message
received.

7. The callback function is implemented by the UPnP
API, as a static member of the Service object.
When this function is called, the following occurs:
a.The body of the message is parsed using the

XML DOM services.

b. As properties are enumerated, their values are
stored in the local state table for the service.

c. An event is fired to all high-level clients of the
UPnP API. This event contains the list of

properties that have changed and their new
values.

6. The re-subscription timer for one of the UCPs subscrip-
tions expires. The following occurs:
a. A re-subscribe message is composed. This message is

very similar to a subscribe message except in doesn’t
include an NT or Callback header, but it does have a
SID header.

b. The request is sent to the CD.
c. The response contains the new timeout value.
d. The timer is reset with this timeout.

UCP State Synchronization Models
CD-Initiated NeedsSync method
This method begins with the CD sending its initial state to

the subscriber the first time an event is submitted by the
service. UCPs will subscribe to the service first, then receive
notifications for events as they occur. The first event will
happen to be the initial state of the service. The UCP state
table will always be in sync with this method.

When the CD sends a notification to a subscriber and

receives an error. In this case, it marks the subscriber as
“NeedsSync” and the next time an event is submitted, all
events are sent to the subscriber. The problem with this is
that the API needs to keep track of which subscribers need
syncing and which ones don’t. The client of this API (the
UPnP service) would need to send separate messages to each
subscriber and know which ones needed all events and

which ones just wanted the ones that changed.
UCP-initiated Sync
This method states that the UCP should subscribe to event

notifications, then call a function that obtained the state from
the service. This means that any events that were received in
the meantime would need to be matched against the incom-
ing set of events and replaced if they were older. This
method leads to synchronization issues where the UCP may
receive events that are newer but when it queries for the

10

15

20

25

30

35

40

45

50

55

60

65

44

state, it gets an older view of the table. This requires using
sequence numbers to determine which information is newer.
If the view of the table received by the query is too old, it
has to be discarded. Alternatively, the properties that were
not received by event notification would not be overwritten,
but all other properties would be. Using sequence numbers
make this more complicated.

CD-initiated Sync
This preferred method takes a simpler approach. Any time

the UCP subscribes to a service, the service will immediately
afterwards, send the entire contents of the state table with the
first notification. This precludes the UCP from making a
query for the state table. Subsequent events update the local
state table on the UCP. If the connection is lost, the UCP will
lose its subscription. If the UCP realizes it has not received
an event after a certain amount of time has elapsed, it will
re-subscribe. At that point, the CD will re-send the entire
state table again, and the UCP is ensured to be up to date.
Exemplary Computer Hardware

FIG. 25 and the following discussion are intended to
provide a brief, general description of a suitable computer
which may be used in the above described UPnP device
control model. This conventional computer 820 (such as
personal computers, laptops, palmtops or handheld-PCs,
set-tops, servers, mainframes, and other variety computers)
includes a processing unit 821, a system memory 822, and
a system bus 823 that couples various system components
including the system memory to the processing unit 821.
The processing unit may be any of various commercially
available processors, including Intel x86, Pentium and com-
patible microprocessors from Intel and others, including
Cyrix, AMD and Nexgen; Alpha from Digital; MIPS from
MIPS Technology, NEC, IDT, Siemens, and others; and the
PowerPC from IBM and Motorola. Dual microprocessors
and other multi-processor architectures also can be used as
the processing unit 821.

The system bus may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, VESA, AGP,
Microchannel, ISA and EISA, to name a few. The system
memory includes read only memory (ROM) 824 and ran-
dom access memory (RAM) 825. A basic input/output
system (BIOS), containing the basic routines that help to
transfer information between elements within the computer
820, such as during start-up, is stored in ROM 824.

The computer 820 further includes a hard disk drive 827,
a magnetic disk drive 828, e.g., to read from or write to a
removable disk 829, and an optical disk drive 830, e.g., for
reading a CD-ROM disk 831 or to read from or write to other
optical media. The hard disk drive 827, magnetic disk drive
828, and optical disk drive 830 are connected to the system
bus 823 by a hard disk drive interface 832, a magnetic disk
drive interface 833, and an optical drive interface 834,
respectively. The drives and their associated computer-
readable media provide nonvolatile storage of data, data
structures, computer-executable instructions, etc. for the
computer 820. Although the description of computer-
readable media above refers to a hard disk, a removable
magnetic disk and a CD, it should be appreciated by those
skilled in the art that other types of media which are readable
by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, and the like,
may also be used in the exemplary operating environment.

Anumber of program modules may be stored in the drives
and RAM 825, including an operating system 835, one or
more application programs 836, other program modules 837,
and program data 838.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

45

A user may enter commands and information into the
computer 820 through a keyboard 840 and pointing device,
such as a mouse 842. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 821 through a serial port
interface 846 that is coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game
port or a universal serial bus (USB). Amonitor 847 or other
type of display device is also connected to the system bus
823 via an interface, such as a video adapter 848. In addition
to the monitor, computers typically include other peripheral
output devices (not shown), such as speakers and printers.

The computer 820 operates in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 849. The remote computer 849
may be a server, a router, a peer device or other common
network node, and typically includes many or all of the
elements described relative to the computer 820, although
only a memory storage device 850 has been illustrated in
FIG. 25. The logical connections depicted in FIG. 25 include
a local area network (LAN) 851 and a wide area network
(WAN) 852. Such networking environments are common-
place in offices, enterprise-wide computer networks, intra-
nets and the Internet.

When used in a LAN networking environment, the com-
puter 820 is connected to the local network 851 through a
network interface or adapter 853. When used in a WAN
networking environment, the computer 820 typically
includes a modem 854 or other means for establishing
communications (e.g., via the LAN 851 and a gateway or
proxy server 855) over the wide area network 852, such as
the Internet. The modem 854, which may be internal or
external, is connected to the system bus 823 via the serial
port interface 846. In a networked environment, program
modules depicted relative to the computer 820, or portions
thereof, may be stored in the remote memory storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing a communi-
cations link between the computers may be used.

In accordance with the practices of persons skilled in the
art of computer programming, the present invention is
described below with reference to acts and symbolic repre-
sentations of operations that are performed by the computer
820, unless indicated otherwise. Such acts and operations
are sometimes referred to as being computer-executed. It
will be appreciated that the acts and symbolically repre-
sented operations include the manipulation by the process-
ing unit 821 of electrical signals representing data bits which
causes a resulting transformation or reduction of the elec-
trical signal representation, and the maintenance of data bits
at memory locations in the memory system (including the
system memory 822, hard drive 827, floppy disks 829, and
CD-ROM 831) to thereby reconfigure or otherwise alter the
computer system’s operation, as well as other processing of
signals. The memory locations where data bits are main-
tained are physical locations that have particular electrical,
magnetic, or optical properties corresponding to the data
bits.

Exemplary Embedded Computing Device
FIGS. 26 and 27 are intended to provide a brief, general

description of a suitable embedded computing device 900
which may be used in the illustrated implementation of the
invention. The embedded computing device 900 can be any
variety of device incorporating electronics to control opera-
tional functions (operational circuitry 906), and in which
computing and networking capabilities are embedded. For

10

15

20

25

30

35

40

45

50

55

60

65

46

example, devices in which computing and networking func-
tions can be embedded include communications devices

(e.g., telephones, cell phones, audio and video conferencing
systems, 2-way radios, etc.), office equipment (printers, fax
machines, copiers, dictation, etc.), audio-video equipment
(audio and video recorders and players, including
televisions, radio receivers, compact disk (CD), digital video
disk (DVD), camcorders, etc.), entertainment devices (set-
top boxes, game consoles, etc.), environment control equip-
ment (thermostats, heating/ventilation/air-conditioning
equipment, light switches, etc.), security systems, home
appliances (coffee makers, dishwashers, clothes washer/
dryer), automobiles, public facilities equipment (signs, traf-
fic signals, etc.), manufacturing equipment, and many oth-ers.

With reference to FIG. 26, the device 900 includes a
processing unit 902, and a memory 904 to provide embed-
ded computing capability. The processing unit 902 has
hardware interfaces to the operational circuitry 906 that
operates devices functions. The processing unit 902 can be
a microprocessor or micro-controller, such as are available
from Intel, Motorola, IBM, and others. The memory 904
preferably incorporates RAM and ROM to hold software
and data for basic operating code as well as for user
applications.

The device 900 also includes a network adapter 908 for
connecting with a network media 910 that is interconnected
with the computer network in which the authoritative names
registry (described below) is implemented in accordance
with the invention. The network adapter 908 can be a
network interface card (or chip set integrated on a single
board with the processing unit 902) appropriate to the
particular network media 910. The network media can be
any of various wired or wireless network media, including
Ethernet, IEEE 1394 (a.k.a. firewire), radio frequency
(including satellite, cell, pager, commercial signal sideband,
etc.), power line carrier (PLC), phone line, and television
cable, among others.

With reference now to FIG. 27, the embedded computing
device 100 (FIG. 26) has a software architecture 120 that
conforms to the above described UPnP device control

model. UPnP provides a mechanism for the embedded
computing device to operate in the Internet, as well as
networks that have no administrator and no connection to

the Internet, and hence no access to configuration services
like the Dynamic Host Configuration Protocol (DHCP).
DHCP is a mechanism for providing devices with configu-
ration information needed to access the Internet. The mecha-

nism functions through the use of a multicast request for
configuration information that is generally responded to with
an IP address and DNS server location. Additional informa-

tion can only be returned in the response.
In non-configured (ad-hoc) networks, UPnP uses the

AutolP protocol. AutolP is an enhancement to DHCP that
allows devices to claim IP addresses in the absence of a

DHCP server or similar IP configuration authority. IP
addresses are claimed from a reserved range that is not
allowed to be transmitted on the open Internet; thus they are
only good for the local network. The embedded computing
device 100 claims an address by randomly generating an
address in the reserved range and then making an ARP
request to see if anyone else has already claimed that
address. AutolP systems will continually check for the
presence of a DHCP server so that if one should ever come
online, all the AutolP devices will attempt to switch their IP
addresses to one provided by the DHCP server. This allows
a network to operate in isolation, be connected to the

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

47

Internet with DHCP support and then to be returned to
isolation. This type of scenario will be common in homes
that use dial-up access.

UPnP also uses the Internet Domain Name System (DNS)
for addressing the embedded computing device 900. The
DNS is a mapping system that translates human readable
domain names, like microsoft.com, into their equivalent IP
address. Most corporate intranets implement an internal
version of the same technology to provide the same services.
In small networks, such as at home or in small business,
DNS servers may not exist. Multicast DNS allows DNS
requests to be multicast. This allows a machine to see
requests for its own name and respond to them. Like AutolP,
Multicast DNS is only used when a DNS server is not
available. (For more information, see B. Woodcock, Zocolo,
and B. Manning, “Multicast Discovery of DNS Services,”
which can be found at http://search.ietf.org/internet-drafts/
draft-manning-multicast-dns-01.txt.)

UPnP implements a peer discovery mechanism that uses
the Simple Service Discovery Protocol (SSDP) for discov-
ery of devices on IP networks. SSDP is based on profiles. A
single identifier specifies a profile that defines a contract
between the client and service (e.g., operational functions
provided by the embedded computing device). By identify-
ing itself with the profile, the service advertises compliance
with the associated contract. Using a single identifier makes
it possible to implement an extremely simple discovery
system. Clients send out a User Datagram Protocol (UDP)
multicast packet containing the identifier of the desired
service on some standard channel. Services listen on the

standard channel, read the request, see whether they provide
the service, and respond if so.

UPnP also provides a Directories mechanism to allow
discovery to scale—to the entire Internet if needed. When
present, a directory will read all incoming service requests
and respond to them itself. This requires that all services
(e.g., the embedded computing device 900) register with the
directory so that the directory is able to properly answer on
their behalf. The directory is also responsible for commu-
nicating with other directories in order to determine whether
the service is available within the local network, the WAN
and potentially the Internet.

To simplify the discovery protocol, directories are treated
as proxies. A proxy is a service that accepts requests and
takes responsibility for finding the proper response. When a
client comes online, it will perform discovery for the proxy.
If the proxy is present, then the client will send all future
discovery requests to the proxy. If the proxy isn’t present,
then the client will send all discovery requests to the
reserved discovery multicast channel. Regardless of the
presence of a proxy, the client’s request format and proce-
dures will always be the same. The only difference will be
the address to which the client sends its requests. For
services, the difference between a proxied and unproxied
network is their need to answer discovery requests. On a
proxied network, services need do nothing once they have
registered with the proxy. On an unproxied network, they
answer discovery requests directly.

SSDP uses the UDP-and Transmission Control Protocol

(TCP)-based Hyptertext Transport Protocol (HTTP) to pro-
vide for service discovery. SSDP uses a Uniform Resource
Identifier (URI) to represent the service and the OPTIONS
method to provide for discovery. SSDP also will provide
support for proxies. These proxies, which are really just
fronts for directories, redirect discovery requests to them-
selves. It is the proxy’s job to collect announce requests in
order to determine what services are available as well as to

10

15

20

25

30

35

40

45

50

55

60

65

48

communicate with other proxies in order to provide for
scalable service discovery.

The discovery process returns only the basic information
needed to connect to the embedded computing device. Once
a service has discovered its peers, the service often needs to
find out more information in order to work best with them.

The description process returns a schema providing descrip-
tive data about the service.

A schema is a structured data definition that defines a set

of structured values that provide descriptive information
about a service. UPnP uses the Extensible Markup Language
(XML) for schema, because XML’s self-describing struc-
tured data format provides the level of expressiveness and
extensibility needed by a universal schema and data format.

Accordingly, UPnP supports automatic network
introduction, meaning that devices and their related services
have the ability to be self-describing and allow automatic
configuration. When a device is plugged into the computer
network, the device automatically configures itself and
acquires a TCP/IP address. The device then announces its
presence to other devices already on the network using a
simple discovery protocol based on the Internet HTTP
protocol and is immediately ready to share its services with
any device that requests them.

With UPnP, device developers are not required to develop
specific device drivers to operate under UPnP. The task of
preparing a device for operation in this network environment
thus is fairly simple. Moreover, in configured networks,
dynamic detection allows an operating system to immedi-
ately begin using added devices or stop using removed
devices without rebooting.

UPnP Devices support automatic discovery,
identification, and configuration to achieve interoperability
in the home environment, but must also operate correctly in
a managed corporate network. Devices can be networked
instead of being attached directly to a PC, and devices are all
autonomous citizens on the network, able to talk with each
other and exchange information. UPnP provides a unified
way of performing directory services with automatic con-
figuration. Capability for simple discovery mechanism used
in the home environment provides the ability for any device
to become a node on the global Internet. Additionally,
directory services can be leveraged if they are available in
the corporate environment.

UPnP provides a common set of interfaces for accessing
devices and services, enabling the operational unification of
diverse media types. Communications protocols for Univer-
sal Plug and Play are based on industry standards, especially
key Internet standards such as TCP/IP, HTML, XML, HTTP,
DNS, LDAP, and others. Individual implementations for
particular networks and buses are built on established pro-
tocols.

As shown in FIG. 27, the software architecture 920 of the

embedded computing device 900 (FIG. 26) includes the
following software code modules that implement UPnP:
device functions 922, simple discovery 924, Hypertext
Transport Protocol (HTTP) 925, Transmission Control
Protocol/Internet Protocol (TCP/IP) stack 926, Dynamic
Host Configuration Protocol (DHCP) with AutolP extension
928, Domain Name System (DNS) with Multicast DNS
extension 930, and physical media 910 (also shown in FIG.
26). The device functions 922 is a software code module to
implement the device’s functionality. For example, where
the embedded computing device is a VCR, the device
functions code can include code to implement start, stop,
pause, record and other functions that the VCR can perform.

The simple discovery 924 is a software code module
(about 4 Kbytes) that implements a simple discovery pro-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

49

cedure (described below) for automatic network introduc-
tion under the UPnP protocol.

The simple discovery procedure additionally provides an
Extensible Markup Language (XML) format device
description, which is downloaded to clients that access the
device to allow activation of device functionality from the
client. XML is a textual, tag-based markup language. It was
originally designed to be the “Webby” simplification of
SGML (Standard Generalized Markup Language), and is
therefore intended to be used to create “vocabularies” of tags
that can be used to apply semantic markup to documents,
such as who the author was, what constitutes a paragraph
(semantically, not from a display point of view), when the
author last had breakfast, and so on. (For more information,
see A. Layman, E. Jung, E. Maler, H. Thompson, J. Paoli, J.
Tigue, N. H. Mikula, S. De Rose, “XML-Data”, which can
be found at http://www.w3.org/TR/1998/NOTE-xml-data-
0105; and MSDN Online, XML Data Center at http://
msdn.microsoft.com/xml/default.asp.) In the context of
UPnP, XML is used to provide the description of services
and capabilities of the embedded computing device. The
embedded computing device makes its features visible to
clients by providing its XML device description, which the
client can use to activate device functions 922. For example,
if the device is a camera, the client’s browser can direct the
camera to zoom in/out or adjust contrast using the mecha-
nism of XML.

The XML device description can provide links (via a
uniform resource locator or URL address) to an accompa-
nying XSL format style sheet. The XSL style sheets are used
to present the data in different ways, i.e., the style sheets are
applied to present different views of the same data. For
example, if the device contains a file system, one style sheet
can show the file selections, another shows the file sizes in
some sort of diagram; yet another style sheet could make
thumbnails of these image files.

The HTTP 925 is a software code modules (about 20
Kbytes) that implements the standard HTTP protocol, which
is an open standard mechanism for client/server message-
based communication. HTTP provides for proxying, content
negotiation and security. (For more information, see R.
Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee,
“Hypertext Transfer Protocol -HTTP/1.1”, which can be
found at http://www.ietf.org/rfc/rfc2068.txt.)

The TCP/IP stack 926 implements the standard TCP/IP
networking protocols for communication on the computer
network. The Internet Protocol (IP) is the foundation pro-
tocol of the Internet. It defines how a single message is sent
from a source through zero or more routers to its final
destination. It covers issues such as message length, mes-
sage fragmentation, addressing, and routing concerns. The
Transmission Control Protocol (TCP) is an IP-based proto-
col that provides support for the reliable, ordered delivery of
messages over IP. Additionally, User Datagram Protocol
(UDP) and Internet Group Management Protocol (IGMP)
multicast send/listen capability are included in the imple-
mentation.

The AutolP 928 is a software code module also used for
automatic network introduction via AutolP in the UPnP

protocol. AutolP uses a predefined set of IP addresses and,
when a device is connected to the network, it pings an
address in this address space. If it gets no replies, the device
assumes that the address is available and assigns it to itself.
To make this functionality even more useful it is combined
with Multicast DNS, in which the device itself holds its own
name. Thus it is not even necessary to determine what IP
address the device assigned to itself, because its name can

10

15

20

25

30

35

40

45

50

55

60

65

50

always be used instead. An IP Multicast is a mechanism for
sending a single message to multiple recipients. IP multi-
casting is especially useful for discovery operations where
one does not know exactly who has the information one
seeks. In such cases, one can send a request to a reserved IP
multicast address. Any services that can provide the
requested information will also subscribe to the multicast
request and thus be able to hear the information request and
properly respond. Multicast DNS is a proposal to the IETF
on rules for making normal DNS requests using multicast
UDP. (For more information, see B. Woodcock, B. Manning,
“Multicast Discovery of DNS Services”, which can be found
at http://www. ietf.orglinternet-drafts/draft-manning-
multicast-dns-01.txt.)

The DHCP 930 is a software code module that imple-
ments the Dynamic Host Configuration Protocol (DHCP),
which is a mechanism for providing devices with configu-
ration information needed to access the Internet. The mecha-

nism functions through the use of a multicast request for
configuration information that is generally responded to with
an IP address and DNS server location. Additional informa-

tion can only be returned in the response.
FIGS. 28 and 29 show processes 934, 940 per the UPnP

protocol for automatic network introduction of the embed-
ded computing device 900 (FIG. 26) into an ad hoc (where
the device does not have a configured IP address) and a
configured computer network environment, respectively.
The automatic network introduction process establishes an
appropriate configuration (e.g., with an IP address) of the
embedded computing device upon connection to a server
computer on a computer network, so as to enable access to
the device from a client. The processes 934, 940 involve five
phases: AutolP, announce, discovery, response to discovery,
and device description.

At the AutolP phase, the AutolP module 928 of the
embedded computing device 900 uses a predefined set of IP
addresses and, when the device is connected to the network,
it pings an address in this address space. If no reply is
received, the device 900 assumes that the address is avail-
able and assigns it to itself. Alternatively, the device 900
may combine AutolP with Multicast DNS, and itself hold its
own name. In which case, it is not necessary to determine
what IP address the device assigned to itself, because its
name can always be used instead.

At the announce phase, the embedded computing device
900 sends out a small multicast packet so that other devices
can find it on the network. The multicast message packet
essentially says, “I am here, I am, (say), a camera, and you
can reach me at this IP address or URL.”

At the discovery phase, the embedded computing device
900 listens for a discovery packet coming from a simple
discovery client, i.e., the device announces itself, then
listens for discovery. The discovery packet also is sent out by
multicast.

At response to discovery, the embedded computing device
900 listens to the multicast address and then parses the
information from a Simple Discovery request to decide if the
request is for its kind of device. If so, the device 100 then
sends back a response packet containing the following
information: the IP address or URL where it can be reached;
identification of its own device type; and the discovery
packet ID so the requesting client knows which request is
being answered.

Both the Announce and Discovery packets also contain a
link or a URL to an XML file that is used by the embedded
computing device at the device description phase to describe
itself (i.e., its functionality). This XML data contains all the

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

51

facts about the device. XML can also have URLs that point
to appropriate style sheets (XSL files) that are used for
optimal presentation. The XSL style sheets are used to
present the data in different ways, i.e., the style sheets are
applied to present different views of the same data. For
example, if the device contains a file system, one style sheet
can show the file selections; another shows the file sizes in
some sort of diagram; yet another style sheet could make
thumbnails of these image files.
Exemplary Client

With reference now to FIG. 30, a client that accesses and
uses the embedded computing device 900 over the computer
network has an exemplary client software architecture 950,
which includes software code modules for applications 952,
simple discovery 954, XML 955, LDAP 956, TCP/IP stack
958 and a network interface card (NIC) 960 that provides a
physical connection to the computer network. The applica-
tions 952 is a software code module that provides a user
interface features for locating desired devices (e.g., embed-
ded computing device 900) and services on the computer
network, and also user interface features to interact with the
located device or service. The applications 952 can include
an Internet browser, such as the Microsoft Internet Explorer,
that can present the XML device description in accordance
with an associated XSL style sheet for interaction with the
embedded computing device and activation of its opera-
tional functionality.

The simple discovery 954 is a module that implements the
above-described simple discovery per the UPnP protocol.
The XML 955 is a module that processes the XML device
description and XSL style sheets for presentation in the
application’s user interface. The LDAP 956 implements the
standard LDAP directory protocol for name look-up. The
TCP/IP stack 958 implements the TCP/IP protocol for
communications over the computer network.
Illustrative Pervasive Computing Environment

FIG. 31 illustrates a pervasive computing environment
1000, such as may be installed in a home, office or public
place, which includes a large number of embedded comput-
ing devices, such as the illustrated device 900 (FIG. 26). The
pervasive computing environment 1000 includes personal
computers 1002, 1004 (e.g., of the type shown in FIG. 25)
connected via a local area network (LAN) 1006. The PC
1002 is connected via a universal serial bus 1016 to a

telephone modem 1010, XDSL interface 1011 or a cable
modem 1012, which in turn provide a connection with the
computer network, e.g., the Internet.

Various embedded computing devices also connect to the
computer network via various network connections to the
PCs 1002, 1004. These include an audio device 1014 (e.g.,
speakers, radio tuner, microphone), and printer 1015 which
connect to the PC 1004 through a USB 1017. Also, a digital
camera 1020, a handheld PC (H/PC) 1021 and another
personal computing device 1022 connect via an infrared port
(IRDA) 1024, which also attaches to the PC 1004 through
the USB 1017. Also, lighting switches 1030 and like home
appliances are connected via an A/C power line-based
networking 1032 to the PC 1002. Further, a chain of IEEE
1394 cables 1048 connect a digital TV 1040, DVD player
1041, digital video camcorder (DV/DVC) 1042, an audio
device 1043 (e.g., CD player/recorder, radio receiver,
amplifier, and like audio system component), and a game
console 1044. Devices, such as a portable telephone 1050
and remote control 1051, have a radio frequency network
connection with the PC 1004.

With their various inter-networked connections, the
embedded computing devices are “visible” and accessible

10

15

20

25

30

35

40

45

50

55

60

65

52

from a client device 950 (FIG. 31) also connected to the
computer network.

Contract Definition Language
Overview

Contracts describe the public behavior of UPnP devices,
and alternatively of other entities on the Web (reachable via
HTTP, mostly) or other computer network that react to and
emit messages. The Contract is written in a Contract Defi-
nition Language (CDL). The messages for the most part are
structured documents, e.g., in XML. The messages may also
be HTML pages, streaming media, images or other
datatypes.

The contract will describe the following attributes:

end-point (well-defined name)

protocol

messaging patterns

delivery characteristics

payloads
All of these attributes may not be present in the contract

as some of them (the end-point, for instance) may not be
available at development time.

Protocol Description
Entities on the Web can be accessed using multiple

protocols: HTTP, GENA, SMTP, FTP, MSMQ, . . . This
section discusses how the protocol bindings are explicitly
declared. The templates for describing the protocol use the
format:

<protocol><HITP>

// HTTP specific settings go here
</HITP>

</protocol>
<protocol><HITP>

// GENA specific settings go here
</HITP>

</protocol>

The “protocol” element may have an “id” attribute. This
is useful when multiple messaging patterns will use the same
protocol definition. This will be covered in more detail
below.

For the sake of convenience, we only cover HTTP-based
protocols here. Extending this model to cover the other
protocols is straightforward.

HITP

GET

<protocol>
<HITP version=“1.0”>
<GET/>
<URL> http:11neteye.localzfullsizejpg

</URL>
</HITP></protocol>
GET with query string
<protocol>

<HITP version=“1.1”>
<GET/>
<URL> http://search.yahoo.com/bin/search
</URL>
<QUERY name=“pattern” required=“yes” />
<QUERY name=“limit” value=“50” required=“no”

/>
<QUERY name=“xml” value=“yes” required=“yes”

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

53 54

Below is an example of an XML payload description.
-continued

/> _

</H,ITP> 5 <schema xmlns=“urn:schema-microsoft-comzxml-data”xmlns:dt=“urn:schema-microsoft-

</PT0t0C°1> com:datatypes”>//
// symbol: a ticker symbol

This description indicates that the following are Valid // _<ElementType name=“symbol” dt:type=“string” />
URLSZ 10 //

http://search.yahoo.com/bin/search?pattern=Rio+ Symbols‘ may 0f“SYmb01”e1ementS
p1ayer&1imit=50&Xm1=yeS <ElementType name=“symbols”>

httP://search.yahoo.com/bin/search?xml=Yes&Pattern= <element typeysymbol” maxoccurswi />
R. 1 </ElementType>10+P ayer 15 //

The reason for not associating the query Variables with the St°°kQ“°te‘ quote detafls
GET Verb is because it is Valid to send a POST message to <ElementType name=«StOckQuOte»»>
a URL containing query Variables. <element tYPe=“e_0mPaI1Y”/>

Th “ 1 ” n ‘b t f th “QUERY” 1 t ' 1' <e1““““‘y""= Wk"-I />6 Va 116 a H u e or e e emen Imp 165 20 <element type=“preViousclose”/>
that the Value is static—it is to be treated as a part of the <elementtYPe=“0PeniI1gTrade”/>

URL Declaring it this way allows the appropriate construc- <element type=“1aStTrade” />. . <element type=“Volume” />
tion of the query string to be handled by the caller. </E1ememType>

<ElementType dt:type=“string” name=“company” />
<ElementType dt:type=“string” name=“ticker” />

25 <ElementType dt:type=“string” name=“preViousClose”/>POST
<ElementType dt:type=“string” name=“openingTrade”

<PT°t0C°1> /> . .. - ,. .. ,.
<HTTP VerSiOn=..1_1»> <ElementType dt.type=“string” name=“lastTrad”e />

<URL> 30 <ElementType dt:type= string name= Volume />
http://www.amazon.com/exec/obidos/generic- // _ “ ”
quickse/arCh_query </URL> // stockQuotes. array of stockQuote elements

<POST> // “ ”
<PARAM name/=..mOde.. defau1t=..b1ended» <ElementType name= stockQuotes > W”

requim/d=..yeS,, /> /Fjelemetnt name= stockQuote maxOccurs= /><PARAM name=“keyword-query” < emen >- .. ,. 35 //
required: yes /> _ _

<PARAM name=“zipcode” Value=“98112” // error‘ error Info
required=“yes” /> // “ ”

</POsT> <Eler1nentType name= error ></HyITP> <e ement type= reason />
</protocol> </ElementType>40 <ElementType dt:type=“string” name=“reason<:> />

</schema>
~ ~ ~ U" h'dl ' hbl l'dXMLf :

The default attribute indicates that the parameter’s Value mg t 1S ec Manon’ t e e OW are Va 1 ragmems<symbol> MSFT </symbol>
can be changed. <symbO1s>

<symbol>MSFT </symbol>
45 <symbol>IBM </symbol>

<symbol>AOL </symbol>
M-POST <symbol>YHOO </symbol>

<symbol>AMZN </symbol>
<protocol id=“protocolDef”> </ symbols>

<HITP Version=“1.1”> <s[QckQuQ[e>
<URL> httl’5//inVeSt°Lms“-Com/Stockquotes-XSP 50 <company>Microsoft%20Corporation</company>

</URL> _ <ticker>MSPT </ticker>
<QUERY nameysymbol” requlredyyes” /> <preViousClose>84%2011/16</preViousClose>
<M'POST> _ <openingTrade>85%201/16</openingTrade>

<MAN> http://www.upnp.org/serVice-control/m- <1aStTrade>84%205/16</1aStTrade>post </MAN> .

</M_POST> 55 <Volume>28.66%20Mil</Volume>
<HEADER name=“Content-Type” Value=“text/xml” /> </StOCkQuOte></HITP>

</protocol>
Messaging Patterns

The messaging pattern declaration acts as an anchor for
pulling together the protocol, delivery characteristics and the
payload information. The messaging pattern declarations
can include these types.

The M-POST and the enclosed MAN elements declare the 60
mandatory extension mechanism to be used. The optional
extension mechanism can also be handled in this way.

The “HEADER” element allows the declaration of HTTP

headers to be used. Request/response65 . .
GENA Solicit/response

Payload Description One way

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

55

Request/response (RR). The RR pattern is named. The
two samples below are equivalent mechanisms for declaring
the protocol to be used for the RR messaging pattern. The
linking mechanism is useful when multiple RR pairs use the
same protocol data. This is the case for UPnP. Also, a service
may employ multiple protocols for achieving the same
“method”-call. The “is” attribute accepts a list of ID-Refs—
implying that either of the protocols are equally suitable for
accessing the functionality.

<RequestResponse name=“getImage”>
<protocol>

<HITP version==“1.0”>
<GET/>
<URL> http://172.30.184.20/fullsize.jpg

</URL>
</HITP>

</protocol>

</RequestResporise>
<protocol id=“protocolDef1”>

<HTI'P version=“1.0”>
<GET/>
<URL> http://172.30.184.20/fullsize.jpg </URL>

</HITP>
</protocol>
<RequestResponse name=“getImage”>

<protocol is=“protocolDef1” />

</RequestResponse>

The payloads for request, response and error, in case of
XML data, are identified by the names of the elements
referenced by the “is” attribute. The schema information is
assumed to be in the same document. Below are examples
using the two schemes:

<RequestResponse name=“getQuote”>
// protocol declaration goes here
<in is=“symbol” />
<out is=“stockQuote” />
<error is=“error” />

</RequestResponse>
<RequestResponse name=“getQuote”

xmlns:f=“http: //electrocommerce.org/finance.xml”
xmlns:c=“http: //electrocommerce.org/common.xml”>

// protocol declaration goes here
<in is=“f:symbol” />
<out is=“f:stookQuote” />
<error is=“c:error” />

</RequestResponse>

The CDL described herein keeps the element declarations
in the “schema” block rather than sprinkle them in with the
messaging pattern definitions. The reasons for this are:

Re-use of element declarations is easy.

We can re-use fragment validation support as is.

Keeping schemas in one place is consistent with the use
of in-line schemas in SQLI2 and ADO.

In case the request or response are not XML documents
but HTML documents, or binary files, the following syntax
will be used. The contained element defines the nature of the

data. The use of MIME is not in the HTTP-specific sense but
in the “nature of the payload” sense. The presence of the “is”
attributes indicates that the MIME type is “text/xml.”

10

15

20

25

30

35

40

45

50

55

60

65

56

<RequestResponse name=“getImage”>

<out>

<mime type=“image/jpeg”/>
</out>

</RequestResponse>

Delivery Characteristics
The contract may specify the delivery characteristics

(sometimes also referred to as quality of service) required or
supported by the server. Examples are:

Ordered, best-effort

Guaranteed delivery

Fire-and-forget

Exactly once
At least once

Transactional

EXAMPLE

FIGS. 45-47 depict an exemplary contract for interacting
with a stock quote Service.

FIGS. 48-51 depict an XML schema for defining Con-
tracts.

Having described and illustrated the principles of our
invention with reference to an illustrated embodiment, it will
be recognized that the illustrated embodiment can be modi-
fied in arrangement and detail without departing from such
principles. It should be understood that the programs,
processes, or methods described herein are not related or
limited to any particular type of computer apparatus, unless
indicated otherwise. Various types of general purpose or
specialized computer apparatus may be used with or perform
operations in accordance with the teachings described
herein. Elements of the illustrated embodiment shown in

software may be implemented in hardware and vice versa.

In view of the many possible embodiments to which the
principles of our invention may be applied, it should be
recognized that the detailed embodiments are illustrative
only and should not be taken as limiting the scope of our
invention. Rather, we claim as our invention all such
embodiments as may come within the scope and spirit of the
following claims and equivalents thereto.

UPnP Template Language
UPnP forum working committees define UPnP device

templates to describe various devices and services. The
templates are written in a UPnP template language, which
evolved in part from the Contract Definition Language
described in the previous section. The template language
defines well-formed templates for devices and services. It is
written in XML syntax and is derived from XML Schema.
Because the UPnP template language, UPnP device
templates, and UPnP device descriptions are all machine-
readable, automated tools can automatically check to ensure
that the templates and descriptions have all required
elements, are correctly nested, and have values of the correct
data types.

To describe the UPnP template language, it is useful to
once again visit the general UPnP device architecture in
terms of a set of processes-discovery, description, control,
eventing, and presentation-that utilize the following protocol
stack.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

57

Protocol Stack

UPnP vendor
UPnP Forum
UPnP Device Architecture
SSDP/GENA/SOAP
HITPMU
UDP
IP

At the highest layer, messages logically contain only
UPnP vendor-specific information about their devices. Mov-
ing down the stack, vendor content is supplemented by
information defined by UPnP forum working committees,
which is written in the template language.

Messages are formatted using the Simple Service Discov-
ery Protocol (SSDP), General Event Notification Architec-
ture (GENA), and Simple Object Access Protocol (SOAP).
The above messages are delivered via HTTP, either a
multicast or unicast variety running over UDP, or the stan-
dard HTTP running over TCP. Ultimately, all messages
above are delivered over IP.

To briefly recap the UPnP networking process, given an IP
address, the first step is discovery. When a device is added
to the network, the UPnP discovery protocol allows that
device to advertise its services to control points on the
network. Similarly, when a control point is added to the
network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. The
fundamental exchange in both cases is a discovery message
containing a few, essential specifics about the device or one
of its services, e.g., its type, identifier, and a pointer to more
detailed information. The UPnP discovery protocol is based
on the Simple Service Discovery Protocol (SSDP).

The second step in UPnP networking is description. After
a control point has discovered a device, the control point still
knows very little about the device. For the control point to
learn more about the device and its capabilities, or to interact
with the device, the control point retrieves the device’s
description from the URL provided by the device in the
discovery message. Devices may contain other, logical
devices, as well as functional units, or services. The UPnP
description for a device is expressed in XML and includes
vendor-specific manufacturer information like the model
name and number, serial number, manufacturer name, URLs
to vendor-specific Web sites, etc. The description also
includes a list of any embedded devices or services, as well
as URLs for control, eventing, and presentation. How
devices are described using the template language is
explained below in more detail.

The third step in UPnP networking is control. After a
control point has retrieved a description of the device, the
control point has the bare essentials for device control. To
learn more about the service, a control point retrieves a
detailed UPnP description for each service. The description
for a service is also expressed in XML and includes a list of
the commands, or actions, the service responds to, and
parameters, or arguments, for each action. The description
for a service also includes a list of variables, which model
the state of the service at run time and are described in terms

of their data type, range, and event characteristics. To control
a device, a control point sends an action request to a device’s
service by sending a suitable control message to the URL for
control URL for the service (provided in the device
description). Control messages are also expressed in XML
using the Simple Object Access Protocol (SOAP). In

10

15

20

25

30

35

40

45

50

55

60

65

58

response to the control message, the service provides a
simple acknowledgement; unlike function calls, no service-
specific value is returned. The effects of the action, if any,
are modeled by changes in the variables that describe the
run-time state of the service.

The fourth step in UPnP networking is eventing. A UPnP
description for a service includes a list of actions the service
responds to and a list of variables that model the state of the
service at run time. The server publishes updates when these
variables change, and a control point may subscribe to
receive this information. The server publishes updates by
sending event messages, which contain the names of one of
more state variables and the current value of those variables.

These messages are also expressed in XML and formatted
using the General Event Notification Architecture (GENA).
A special initial event message is sent when a control point
first subscribes; this event message contains the names and
values for all evented variables and allows the subscriber to

initialize its model of the state of the service. To support
scenarios with multiple control points, eventing is designed
to keep all control points equally informed about the effects
of any action. Therefore, all subscribers are sent all event
messages, subscribers receive event messages for all
evented variables (not just some), and event messages are
sent no matter why the state variable changed (either in
response to a requested action or because the state the
service is modeling changed).

The fifth step in UPnP networking is presentation. If a
device has a URL for presentation, then the control point can
retrieve a page from this URL, load the page into a browser,
and depending on the capabilities of the page, allow a user
to control the device and/or view device status. The degree
to which each of these can be accomplished depends on the
specific capabilities of the presentation page and device.

UPnP Template Language for Devices
The template language can be applied to create descrip-

tions for both devices and the services. The template lan-
guage as it pertains to devices is described in this section. A
following section addresses the template language as it
pertains to services.

After a control point has discovered a device, the control
point still knows very little about the device. It only knows
the information that was in the discovery message (e.g., the
device’s (or service’s) UPnP type, the device’s universally-
unique identifier, and a URL to the device’s UPnP
description). For the control point to learn more about the
device and its capabilities, or to interact with the device, the
control point retrieves the device’s description from the
URL provided by the device in the discovery message.

The UPnP description for a device includes vendor-
specific, manufacturer information like the model name and
number, serial number, manufacturer name, URLs to

vendor-specific Web sites, etc. (details below). The descrip-
tion also includes a list of any embedded devices or services,
as well as URLs for control, eventing, and presentation. The
device vendor writes the description for the device. The
description is in XML syntax and is usually based on a
standardized device template produced by a UPnP forum
working committee.

A single physical device may include multiple logical
devices. Multiple logical devices can be modeled as a single
root device with embedded devices (and services) or as
multiple root devices (perhaps with no embedded devices).
In either case, there is one UPnP description for each root
device, with embedded device descriptions as needed.

Retrieving the UPnP description for a device is simple:
the control point issues an HTTP GET request on the URL

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

59

in the discovery message, and the device returns the descrip-
tion document. The protocol stack, method, headers, and
body for the response and request are explained in detail
below.

Vendors can differentiate their devices by extending
services, including additional UPnP services, or embedding
additional UPnP devices. When a control point retrieves a
particular device’s description, these added features are
exposed to the control point for control, eventing, and
presentation.

The following subsection A explains how devices are
described, explaining details of vendor-specific information,
embedded devices, and URLs for control, eventing, and
presentation. Subsections B and C explain UPnP device
templates and the UPnP template language as it pertains to
describing devices. Finally, subsection D explains in detail
how a control point retrieves a description from a device.

A. Device Description

The UPnP description for a device contains several pieces
of vendor-specific information, definitions of embedded
devices and services, and URLs for control, eventing, and
presentation of the device. To illustrate these, below is a
listing with placeholders (in italics) for actual elements and
values. Some of these placeholders would be specified by a
UPnP forum working committee (underlined) or by a UPnP
vendor (bold). Elements of the template language are bolded
and underlined. Immediately following the listing is a
detailed explanation of the elements, attributes, and values.

<?xml version=“1.0”'.7>

<root: xmlns=“urn: schemas-upnp-org:device:1:0”>
<specVersion>

<major>1</major>
<minor>0</minor>

</specVersion>
<URLBase>base URL for all relative URLs</URLBase>
<device>

<deviceType>urnzschemas-upnp-org:device:device-
type</deviceType>

<friendlyName>short user-friendly title</friendlyName>
<modelDescription>long user-friendly

title</modelDescription>
<modelName>model name</modelName>
<modelNumber>model number</modelNumber>
<modelURL>URL to model site</modelURL>
<manufacturer>manufacturer name</manufacturer>
<manufacturerURL>URL to manufacturer

site</manufacturerURL>
<serialNumber>manufacturer’s serial number</serialNumber>
<UDN>uuidzschemas-upnp-orgzdevicezdevice-type:
UUID</UDN>
<UPC>Universal Product Code</UPC>
<iconList>

<icon>

<mimetype>image/format</mimetype>
<width>horizontal pixels</width>
<height>vertical pixels</height>
<depth>color depth</depth>
<url>URL to icon</url>

</icon>
XML to declare other icons, if any, go here

</iconList>
<serviceList>

<service>

<serviceType>
urnzschemas-upnp-org:servicezservice-type:

service-version

</serviceType>
<serviceId>service ID</serviceId>
<SCPDURL>URL to service description</SCPDURL>
<controlURL>URL for control</controlURL>
<eventSubURL>URL, for eventing</eventsubURL>

10

15

20

25

30

35

40

45

50

55

60

65

60

-continued

</service>
Declarations for other serivces defined by a UPnP Forum

working committee (if any) go nere
Declarations for other services added by UPnP vendor (if

any) go here
</serviceList>
<deviceList>

Descriptions of embedded devices defined by a UPnP
Forum working committee (if any) go here

Description of embedded devices added by UPnP vendor (if
any) go here

</deviceList>
<presentationURL>URL for presentation</presentationURL>

</device>
</root>

Listed below are details for each of the elements,
attributes, and values appearing in the listing above. All
elements and attributes are case sensitive; HTTP specifies
case sensitivity for URLs; other values are not case sensitive
except where noted. The order of elements is insignificant.
Except where noted: required elements occur exactly once
(no duplicates), and recommended or optional elements may
occur at most once.
xml

Required for all XML documents. Case sensitive.
Root

Required. Must have urn:schemas-upnp-org:device: 1:0 as
the value for the xmlns attribute; this references the UPnP

Template Language (described below). Case sensitive. Con-
tains all other elements describing the root device, i.e.,
contains the following sub elements:

SpecVersion

Required. Contains the following sub elements:

major

Required. Major version of the UPnP Device Architec-
ture. Must be 1.

minor

Required. Minor version of the UPnP Device Architec-
ture. Must be 0.

URLBase

Optional. Defines the base URL. Used to construct fully-
qualified URLs. All relative URLs that appear else-
where in the description are appended to this base URL.
If URLBase is empty or not given, the base URL is the
value of the LOCATION header in the discovery mes-
sage. Specified by UPnP vendor. Single URL.

device

Required. Contains the following sub elements:

deviceType
Required. UPnP device type.

For standard devices defined by a UPnP forum
working committee, must begin with
urn:schemas-upnp-org:device: followed by a
device type suffix (as shown in the listing above).

For non-standard devices specified by UPnP
vendors, must begin with urn:, followed by a
domain name owned by the vendor, followed by
device:, followed by a device type suffix, i.e., urn:
domain-name:device: device-type.

Single URI.

FriendlyName
Required. Short description for end user. Should be

localized (cf. ACCEPT-LANGUAGE header).
String. Should be <64 characters.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

61
manufacturer

Required. Manufacturer’s name. Specified by UPnP
vendor. String. Should be <64 characters.

manufacturerURL

Optional. Web site for Manufacturer. May be relative to
base URL. Specified by UPnP vendor. Single URL.

ModelDescription
Recommended. Long description for end user. Should

be localized (cf. ACCEPT-LANGUAGE header).
Specified by UPnP vendor.

String. Should be <128 characters.
ModelName

Required. Model name. Specified by UPnP vendor.
String. Should be <32 characters.

ModelNumber

Recommended. Model number. Specified by UPnP
vendor. String. Should be <32 characters.

ModelURL

Optional. Web site for model. May be relative to base
URL. Specified by UPnP vendor. Single URL.

PresentationURL

Recommended. URL to presentation hosted by device
(cf. section on Presentation). May be relative to base
URL. Specified by UPnP vendor. Single URL.

SerialNumber

Recommended. Serial number. Specified by UPnP ven-
dor. String. Should be <64 characters.

UDN

Required. Universal Device Name. Universally-unique
identifier for the device, whether root or embedded.
For standard devices defined by a UPnP forum

working committee, must begin with
uuid:schemas-upnp-org:device: followed by the
device type, colon; UPnP vendor specifies UUID
suffix (as shown in the listing above).

For non-standard devices specified by UPnP
vendors, must begin with uuid:, followed by a
domain name owned by the vendor, followed by
:device:, followed by the device type, colon, fol-
lowed by a UUID suffix, i.e., uuid:domain-
name:device:device-type:UUID.

Single URI.
UPC

Optional. Universal Product Code. 12-digit, all-
numeric code that identifies the consumer package.
Managed by the Uniform Code Council. Single
UPC.

IconList

Required if and only if device has one or more icons.
Contains the following sub elements:

Icon

Recommended. Icon to depict device in a control point
UI. Recommend one icon in each of the following
sizes (width><height><depth): 16><16><1, 16><16><8,
32><32><1, 32><32><8, 48><48><1, 48><48><8. Contains
the following sub elements:

Mimetype
Required. Icon’s MIME type (cf. RFC 2387). Single

MIME image type.
Width

Required. Horizontal dimension of icon in pixels.
Integer.

Height
Required. Vertical dimension of icon in pixels. Inte-

ger.

10

15

20

25

30

35

40

45

50

55

60

65

62

Depth
Required. Number of color bits per pixel. Integer.

Url

Required. Pointer to icon image. (XML does not
support embedding of binary data. See note
below.) Retrieved via HTTP. May be relative to
base URL. Specified by UPnP vendor. Single
URL.

ServiceList

Required. Contains the following sub elements:
Service

Required. Repeated once for each service defined by
a UPnP forum working committee. If UPnP ven-
dor differentiates device by adding additional,
standard UPnP services, repeated once for addi-
tional service. Contains the following sub ele-
ments:

ControlURL

Required. URL for control (cf. section on
Control). May be relative to base URL. Speci-
fied by UPnP vendor. Single URL.

EventSubURL

Required. URL for eventing (cf. section on
Eventing). May be relative to base URL.
Specified by UPnP vendor. Single URL.

SCPDURL

Required. URL for service description (nee Ser-
vice Control Protocol Definition URL). (cf.
section on Control.) May be relative to base
URL. Specified by UPnP vendor. Single URL.

Serviceld

Required. Service identifier. Must be unique
within this device description. <format TBD>.
Defined by a UPnP Forum working committee.
Single URI.

ServiceType
Required. UPnP service type.
For standard service types defined by a UPnP

Forum working committee, must begin with
urn:schemas-upnp-org:service: followed by a
service type suffix (as shown in the listing
above).

For non-standard service types specified by UPnP
vendors, must begin with urn:, followed by a
domain name owned by the vendor, followed
by service:, followed by a service type suffix,
i.e., urn:domain-name:service:service-
type:service-version.

Single URI.
DeviceList

Required if and only if root device has embedded
devices.

Contains the following sub elements.
Device

Required. Repeat once for each embedded device
defined by a UPnP Forum working committee. If
UPnP vendor differentiates device by embedding
additional UPnP devices, repeat once for each
embedded device. Contains sub elements as
defined above for root sub element device.

For future extensibility, when processing XML like the
listing above, devices and control points may ignore any
unknown elements and any subelements or content as speci-
fied by the Flexible XML Processing Profile (FXPP).

XML does not support directly embedding binary data,
e.g., icons in UPnP descriptions. Binary data may be con-
verted into text (and thereby embedded into XML) using an

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

63 64

XML data type of either bin.base64 (a MINE-style base 64
encoding for binary data) or bin.hex (hexadecimal digits

represent octets). Alternatively, the data can be passed <7Xm1 Versionyl 0” 7>
indirectly; as it Werea by embedding a URL in the XML and <Schema name=“urn:schemas—upnp-org:device:1:0”
transferring the data in response to a separate HTTP request; 5 xmlns=“urnzschemas-microsoft-comzxml-data”

the icon(s) in UPnP descriptions are transferred in this latter Xmtns‘dt=““m‘S°hemaS‘m1°r°S°ft‘°°m‘datatYPeS”><ElementType name=“root” content=“eltOnly”>
manner‘ . <element type=“specVersion” />

B. UPHP DCVICC Template <element type=“URLBase” minOccurs=“0” />

The listing of the Preceding subsection A illustrates the 10 /E1<€1eHi§nHYPe=“deViCe”/>. < ement ype>

relationship between a UPnP device description and a UPnP <E1ememTyp6 name/=..SpecVerSiOn,,>
device template. As explained above, the description for a <e1emem typeamajor” />
device is written by the vendor, in XML, according to a <element tYP€=“miI10r”/>

device template produced by a UPnP forum working com- </E11ementType> “ . ,, _ ,,. . . <E ementType name= major dt.type= int />

mittee as a way to standardize devices. 15 <ElementType name=“minOr” dmype=«im» />
By appropriate specification of placeholders, the listing <ElementType nam€=“UR1_~BaS€” dt=tYpe=“uri” />

above can be either a UPnP device template or a UPnP <E1eT:1I;t:Zf1f °°ntent=“e1tOn1y”>
device description. Recall that some placeholders <element type=“friend1yName” />
(underlined) would be defined by a UPnP forum working <element type=“deviceType” />

<element type=“presentationURL” minOccurs=“0” />
<element type=“manufacturer” />
<element type=“manufacturertURL” minOccurs=“0” />

committee, i.e., the UPnP device type identifier) required 20
UPnP services, and required UPnP embedded devices (if
any). If these were defined, the listing would be a UPnP <element type=“modelName” />
device template, codifying the standard for this type of <elementtYP€=“m0de1Numb_er’:min0FCufS=“0”/>- - - <element type=“modelDescription” minOccurs=“0” />
device. UPnP device templates are one of the key deliver- “ ,, . “ ,,. . <element type= modelURL minOccursr= 0 />

ables from UPnP forum working committees. 25 <element type=“UpC» minOCcurS=“0” />
Taking this one step further, the remaining placeholders <element type=“serialNumber” minOccurs=“0” />

(bolded) in the listing in subsection Awould be specified by <element tYP€=“iC0nList” />
the vendor (i.e., vendor-specific information). If these place- <element tYPe=“Ser"_i°eL_iSt” />_- - - <element type=“deviceList” minOccurs=“0” />
holders were specified (as well as the others), the listing </E19/mentType>
would be a device description, suitable to be delivered to a 30 <E emen Tyae name/=..UDN., dmype=..uri., />
control point to enable control, eventing, and presentation. <13 emen Tyae name=“friend1yName” dt;type=“smng~~ />

Put another way, the UPnP device template defines the <E emen Tyoe name=“deviceType” dt:type=“uri” />
overall type of device, and each UPnP device description <E emen T306 nam€=“Pf€S€ntati0nURL” dt=tYP€=“uri” />

<E emen Tyoe name=“manufacturer” dt:type=“string” />
<E emen Tyoe name=“manufacturerURL” dt:type=“uri” />
<E emen Tyoe name=“modelName” dt:type=“string” />

instantiates that template with vendor-specific information.
The first is created by a UPnP forum working committee; the 35

1atter> by UPHP Vendor‘ <E emen Tyoe name=“modelNumber” dt:type=“string” />
C. DeV1Ce Template Language <E emen Tyoe name=“modelDescription” dt:type=“string” />
The UPnP template language well-formed templates for <E emen Tyne narne=“rnode1URL” dt:type=“uri” />

devices and services. This subsection C provides is a listing <E emen TY” name/=“UP_C” dt5tYPe=“String” /> _
and explanation of the language as it pertains to devices. A 40 <E emen Ty” name=“_Se“aH_‘Iumber” dt‘type=“St“ng” />. . . “ <E emen Tyoe name=“iconList” content=“eltOnly”>

following section entitled UPnP template language for <element type/=..icOn,, maXOCCurS=..*., />
Services explains the UPnP template language as it pertains </ElementType>
I0 SCFVTCCS. <E emen Tyoe name=“icon” content=“eltOnly”>

The UPnP template language is written in XML syntax <element tYP€=“mimetYP€” />
and is derived from XML Schema (Part 1: Structures, Part 45 <e1eme“ttYPe=“Wiftth”/>
2. D - <element type=“height” />

. atatypes). XML Schema provides a set of XML con- <element type/=“depth,, />
structions that express language concepts like required vs. <e1ememtype=..ur1,, />
optional elements, element nesting, and data types for values </E1ememType>
(as well as other properties not of interest here). The UPnP <ElementType name=“mimetype” dt:type=“string” />
template language uses these XML Schema constructions to 50 <E1€m€ntTYP€ nam€=“Width” dt=tYP€=int” />

<ElementType name=“height” dt:type=“int” />
<ElementType name=“depth” dt:type=“int” />
<ElementType name=“url” dt:type=“uri” />

define elements such as specVersion, URLBase, and
deviceType, which are found in the above listing. Because

the UPHP template tanguage ts Constructed using anothera <ElementType name=“deviceList” content=“eltOnly”>
precise language, it is unambiguous. Additionally, because <e1emem typeadevice” maXoccurs=“*” />
the UPnP template language, UPnP device templates, and 55 </ElementType>
UPnP device descriptions are all machine-readable, auto- <E1ementTYPe name=“S€YViC€LiSt“ C0nt€nt=“e1t0n1Y”><element type=“service” maxOccurs=“*” />

</ElementType>
<ElementType name=“service” content=“eltOnly”>

mated tools can automatically check to ensure the latter two
have all required elements, are correctly nested, and have

values of the correct data types. . <element type=««SerViceType»» />
Below is the UPnP template language for devices as 60 <elementtype=“serviceId”/>

defined by the UPnP device architecture. The elements it <element tYP€=“C0ntr01URL”/>
<element type=“eventSubURL” />

defines are used in UPnP device templates; they are bolded <element type=“SCPDURL” />
and underlined both below as in the listing above. The listing. . . </ElementType>

below is where these elements are defined and the listing <ElementType name=..SeMCeType.. dmype=“uri.. />
above is where they are used. Immediately following this is 65 <E1ememType name=“serVice1d~~ dmype=“uri~~ />
a brief explanation of the XML Schema elements, attributes, <ElementType name=“controlURL” dt:type=“uri” />
and values used.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

65

-continued

<ElementType name=“eventSubURL” dt:type=“uri” />
<ElementType name=“SCPDURL” dt:type=uri” />

</Schema>

ElementType
Defines an element in the new, derived language. name

attribute defines element name. dt:type attribute defines the
data type for the value of element in the new, derived
language.
Element

References an element for the purposes of declaring
nesting minOccurs attribute defines minimum number of
times the element must occur; default is minOccurs=1;
optional elements have minOccurs=0. maxOccurs attribute
defines maximum number of times the element must occur;
default is maxOccurs=1; elements that can appear one or
more times have maxOccurs=*.

D. Retrieving a Device Description
As explained above, after a control point has discovered

a device, it still knows very little about the device. To learn
more about the device and its capabilities, the control point
must retrieve the UPnP description for the device using the
URL provided by the device in the discovery message. This
is an HTTP-based process and uses the following subset of
the overall UPnP protocol stack.

At the highest layer, description messages contain vendor-
specific information, e.g., device type, service type, and
required services. Moving down the stack, vendor content is
supplemented by information from a UPnP forum working
committee, e.g., model name, model number, and specific
URLs. Messages from the layers above are hosted in UPnP-
specific protocols. In turn, the above messages are delivered
via HTTP over TCP over IP.

Using this protocol stack, retrieving the UPnP description
for a device is simple: the control point issues an HTTP GET
request to the URL in the discovery message, and the device
returns its description in the body of an HTTP response. The
headers and body for the response and request are explained
in detail below.

First, a control point sends a request with method GET in
the following format. Values in italics are placeholders for
actual values.

GET path to device descripticn HTTP/1.1
HOST: host for device descriptionzport for device description
ACCEPT-LANGUAGE: language preferred by control point

There is no message body for request to retrieve a
description.

Listed below are details for the request line and headers
appearing in the request. All header values are case sensitive
except where noted.
Request Line
GET

Method defined by HTTP.
Path to Device Description

Path component of device description URL (LOCATION
header in discovery message). Single, relative URL.
HTTP/1.1

HTTP version.
Headers
HOST

Required. Domain name or IP address and optional port
components of device description URL (LOCATION header

10

15

20

25

30

35

40

45

50

55

60

65

66

in discovery message). If the port is empty or not given, port
80 is assumed.
ACCEPT-LANGUAGE

Recommended. Preferred language(s) for device descrip-
tion. If no description is available in this language, device
may return a description in a default language. RFC 1766
language tag(s).

After a control point sends a request, the device sends a
response in the following format, where values in italics are
placeholders for actual values.

HITP/1.1 200 OK
CONTENT-LENGTH: bytes in body
CONTENT-TYPE: text/xml
DATE: when responded
SERVER: OS/version, JPnp / 1.0, product / version

The body of this response is a UPnP device description as
explained in detail above.

Listed below are details for the headers appearing in the
response. All header values are case sensitive except where
noted.
Headers
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xml.
DATE

Recommended. When response was generated. RFC 1123
date.
SERVER

Required. Concatenation of OS name, slash, OS version,
UPnP/1.0, product name, slash, and product version. String.
UPnP Template Language for Services

After a control point has (1) discovered a device and (2)
retrieved a description of the device, the control point has
the bare essentials for device control. To learn more about a

particular service supported by the device, a control point
retrieves a detailed UPnP description for each service.

A UPnP description for a service includes a list of the
commands, or actions, the service responds to, and
parameters, or arguments, for each action. Aservice descrip-
tion also includes a list of variables. These variables model

the state of the service at run time, and are described in terms
of their data type, range, and event characteristics. This
section explains the description of actions, arguments, state
variables, and properties of those variables.

Like the UPnP description for a device, the UPNP
description for a service is written by the vendor. The
description is in XML syntax and is based on a standard
service template. As with the device template, the service
template is produced by a UPnP forum working committee,
and they derive the template from the UPnP template
language, augmenting it with human language where nec-
essary. As explained above, the UPnP template language is
derived from standard constructions in XML. This section

explains the format for a UPnP service description, UPnP
service templates, typical augmentations in human
language, and the part of the UPnP template language that
covers services.

To control a device, a control point requests a device’s
service to perform an action. To do this, a control point sends
a suitable control message to the control URL for the service
(provided in the device description). In response, the service
provides a simple acknowledgement; unlike function calls,
no service-specific value is returned. The effects of the

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

67

action, if any, are modeled by changes in the variables that
describe the run-time state of the service. When these state

variables change, events are published to all interested
control points. This section explains the protocol stack for,
and format of, control messages.

To prevent a race condition between events headed for
control points and requested actions headed for a service,
control messages may include a key. With each new event
message a service generates, the service increments the key,
and includes that key in the event message. When a control
point sends a control message, it may choose to include a
key. If a control message includes a key, the service checks
to see if the key is current, i.e., if no events have been sent
since this key was issued. If the key is current (or if there was
no key in the control message), then the service acknowl-
edges the action request. If the key is not current, the service
fails the action request. This section briefly explains the
event key.

To determine the current value of a state variable, a
control point may poll the service. Similar to requesting an
action, a control point sends a suitable query message to the
control URL for the service. In response, the service pro-
vides the value of the variable. This section also explains the
format of these query messages.

The remainder of this section first explains how services
are described in subsection A, explaining details of actions,
arguments, state variables, and properties of those variables.
In subsections B and C, UPnP service templates, typical
ways to augment service descriptions with human language,
and the UPnP template language as it pertains to services are
explained. In subsection D, how a control point retrieves a
service description is described.

A. Service Description

The UPnP description for a service defines actions and
their arguments, and state variables and their data type,
range, and event characteristics. Each action may have zero
or more arguments. Each argument should correspond to a
state variable. This direct-manipulation programming model
reinforces simplicity.

To illustrate these points, below is a listing with place-
holders (in italics) for actual elements and values. For a
standard UPnP service, some of these placeholders would be
defined by a UPnP forum working committee (underlined)
or specified by a UPnP vendor (bolded). For a vendor-unique
service, all of these placeholders would be specified by a
UPnP vendor. Elements of the template language defined by
the UPnP device architecture are bolded and underlined for

later reference. Immediately following the listing is a
detailed explanation of the elements, attributes, and values.

<?xml version=“1.0”'.7>

<scpd xmlns=“urnzschemas-upnp-org:servicezl :0”>
<actionList>

<action>
<name>action name</name>
<argumentList>

<argument>
<name>formal parameter name</name>
<relatedStateVariable>state variable

name</relatedStateVariable>
</argument>

Declarations for other arguments defined by URP Forum
working committee (if any) go here

</argumentList>
</action>
Declarations for other actions defined by URnP Forum

5

10

15

20

25

30

35

40

45

50

55

60

65

68

-continued

working committee (if any) go here
Declarations for other actions added by UPnP vendor (if

any) go here
</actionList>
<serviceStateTable>

<stateVariable>
<name>variable name</name>
<dataType>variable data type</dataType>
<defaultValue>default value</defaultValue>
<allowedValueRange>
<minimum>minimum value</minimum>
<maximum>maximum value</maximum>
<step>increment value</step>

</allowedvalueRange>
</stateVariable>
Declarations for other state variables defined by UPnP

Forum working committee (if any) go here
Declarations for other state variables added by UPnP

vendor (if any) go here
</serviceStateTable>

</scpd>

Listed below are details for each of the elements,
attributes, and values appearing in the listing above. All
elements and attributes are case sensitive; values are not
case sensitive except where noted. Except where noted, the
order of elements is insignificant. Except where noted,
required elements occur exactly once (no duplicates), and
recommended or optional elements may occur at most once.
xml

Required for all XML documents. Case sensitive.
scpd

Required. Must have urn:schemas-upnp-org:service:1:0
as the value for the xmlns attribute; this references the UPnP
Template Language (explained below). Case sensitive. Con-
tains all other elements describing the service, i.e., contains
the following sub elements:

actionList

Required if and only if the service has actions. Contains
the following sub elements:

Action

Required for each action defined by a UPnP Forum
working committee. If UPnP vendor differentiates
service by adding additional actions, required for
each additional action. Contains the following sub
elements:

Name

Required. Name of action. String. Should be <32
characters.

ArgumentList
Required if and only if parameters are defined for

action.

Repeat once for each parameter. Contains the fol-
lowing sub elements:

Argument
Required. Contains the following sub elements:
Name

Required. Name of formal parameter. Should be
name of a state variable that models an effect
the action causes.

String. Should be <32 characters.
relatedStateVariable

Required. Must be the name of a state variable.
ServiceStateTable

Required if and only if the service has state variables.
Contains the following sub elements:

StateVariable

Required for each state variable defined by a UPnP
Forum working committee. If UPnP vendor dif-

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

69

ferentiates service by adding additional state
variables, required for each additional variable.
sendEvents attribute defines whether event mes-

sages will be generated when the value of this
state variable changes; non-evented state variables
have sendEvents=no; default is sendEvents=yes.
Contains the following sub elements:name

Required. Name of state variable. Defined by a
UPnP Forum working committee for standard
state variables; specified by UPnP vendor for
extensions. String. Should be <32 characters.

DataType
Required. Defined by a UPnP Forum working

committee for standard state variables; speci-
fied by UPnP vendor for extensions. Must be
one of the following values:

i4

Fixed point, integer number. May have a leading
sign. May have leading zeros. (No currency
symbol.) (No grouping of digits to the left of
the decimal, e.g., no commas.) Must be
between-2147483648 and 2147483647, i.e., 4

byte, long integer. (Same as i4 data type
defined by XML Schema, Part 2: Datatypes.)

R8

Floating point number. Mantissa (left of the
decimal) and/or exponent may have a leading
sign. Mantissa and/or exponent may have lead-
ing zeros. Decimal character in mantissa is a
period, i.e., whole digits in mantissa separated
from fractional digits by period. Mantissa
separated from exponent by E. (No currency
symbol.) (No grouping of digits in the
mantissa, e.g., no commas.) Must be between
—1.79769313486232E308 and

—4.94065645841247E-324 for negative
values, and between 4.94065645841247E-324
and 1.79769313486232E308 for positive
values, i.e., IEEE 64-bit (8-byte) double.
(Same as r8 data type defined by XML
Schema, Part 2: Datatypes).

String
Unicode string. (Same as string data type defined

by XML.)
DateTime

Date and Time in ISO 8601 format (Same as
datetime data type defined by XML Schema,
Part 2: Datatypes.)

Boolean

0, false, or no for false; 1, true, or yes for true.
(Same as boolean data type defined by XML
Schema, Part 2: Datatypes.)

Bin.hex or bin.bin64

Hexadecimal representation of binary data.
(Same as bin.base64 and bin.hex data types
defined by XML Schema, Part 2: Datatypes.)

DefaultValue

Recommended. Expected, initial value. Defined
by a UPnP Forum working committee or del-
egated to UPnP vendor. Must match data type.
Must satisfy allowedValueList or allowedValu-
eRange constraints.

AllowedValueList

Recommended. Enumerates legal string values.
Prohibited for data types other than string. At
most one of allowedValueRange and allowed-

10

15

20

25

30

35

40

45

50

55

60

65

70

ValueList may be specified. Sub elements are
ordered (e.g., see NEXT,STRING,
BOUNDED). Contains the following sub ele-ments:

AllowedValue

Required. A legal value for a string variable.
Defined by a UPnP Forum working committee
for standard state variables; specified by UPnP
vendor for extensions. String. Should be <32
characters.

AllowedValueRange
Recommended. Defines bounds for legal numeric

values; defines resolution for numeric values.
Prohibited for data types other than i4 and r8.
At most one of allowedValueRange and
allowedValueList may be specified. At least
one of the following sub elements must be
included. Contains the following sub elements:

Minimum

Required. Inclusive lower bound. Defined by a
UPnP Forum working committee or delegated
to UPnP vendor. Single i4 or r8.

Maximum

Required. Inclusive upper bound. Defined by a
UPnP Forum working committee or delegated
to UPnP vendor. Single i4 or r8.

Step
Recommended. Size of an increment operation,

i.e., value of s in the operation v=v+s. Defined
by a UPnP Forum working committee or del-
egated to UPnP vendor. Single i4 or r8.

For future extensibility, when processing XML like the
listing above, devices and control points ignore any
unknown elements and any sub elements or content as
specified by the Flexible XML Processing Profile (FXPP).

Note that it is logically possible for a service to have no
actions but have state variables and eventing; such a service
would be an autonomous information source. Conversely, it
is also logically possible for a service to have no state
variables (and no eventing) but have actions; such a service
might be stateless and cause short-term environmental
effects.

Services standardized by UPnP forum working commit-
tees are versioned. Every later version of a service is a
superset of the previous version, i.e., it includes all actions
and state variables exactly as they are defined by earlier
versions of the service. The UPnP service type remains the
same across all versions of a service whereas the service

version must be larger for later versions.
B. UPnP Service Template
The listing above also illustrates the relationship between

a UPnP service description and a UPnP service template. As
explained above, the UPnP description for a service is
written by a UPnP vendor, in XML, following a UPnP
service template. A UPnP service template is produced by a
UPnP forum working committee as a way to standardize
devices.

By appropriate specification of placeholders, the listing
above can be either a UPnP service template or a UPnP
service description. Recall that some placeholders would be
defined by a UPnP forum working committee (underlined),
i.e., actions and their parameters, and states and their data
type, range, and event characteristics. If these were
specified, the listing above would be a UPnP service
template, codifying the standard for this type of service.
Along with UPnP device templates, UPnP service templates
are one of the key deliverables from UPnP forum working
committees.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

71

Taking this one step further, the remaining placeholders in
the listing above would be specified by a UPnP vendor
(bolded), i.e., additional, vendor-specified actions and state
variables. If these placeholders were specified (as well as the
others), the listing would be a UPnP service description,
suitable for effective control of the service within a device.

Put another way, the UPnP service template defines the
overall type of service, and each UPnP service description
instantiates that template with vendor-specific additions.
The first is created by a UPnP forum working committee; the
latter, by a UPnP vendor.

C. Service Template Language
The paragraphs above explain UPnP service descriptions

and illustrate how one would be instantiated from a UPnP

<?xml version=“

72

Service Template. Like UPnP device templates, UPnP ser-
vice templates are produced by UPnP forum working
committees, and these templates are derived from the UPnP
template language. This template language defines well-

5 formed templates for devices and services. Below is a listing
of this language as it pertains to services. The elements it
defines are used in UPnP service templates. The elements are
bolded and underlined here and in the listing above. Below
is where these elements are defined, whereas above is where
they are used.

Immediately following this is a brief explanation of the
XML Schema elements, attributes, and values used. The
reference to XML Schema at the end of the section has
further details.

10

.0”'.7>

<Schema name=“urnzschemas-upnp-orgzservice:1:0”
xmlns=“urn:schemas-microsoft-comzxml-data”

xmlns :c t=“urnzschemas-microsoft-com :datatypes”>
<ElementTy3e name=“name” content=“textOnly” dt:type=“string”

/>
<ElementTy 3e name=“defaultValue” content=“textOnly”

dt:type=“string” />
<ElementTy3e name=“minimum” content=“textOnly”

dt:type=“number” />
<ElementTy 3e name=“maximum” content=“textOnly”

dt:type=“number” />
<ElementTy3e name=“step” content=“textOnly” dt:type=“number”

/>
<ElementTy 3e name=“allowedValueRange” content=“eltOnly”

model=“closec”>

</Elemen

<element type=“minimum” />
<element type=“maximum” />
<element type=“step” minOccurs=“0” >

Type>
<ElementType name=“allowedValue” content=“textOnly” />
<ElementType name=“allowedValueList” content=“eltOnly”

model=“closec”>

/>
</Elemen

44*”
<element type=“allowedvalue” minOccurs=“1” maxOccurs=

Type>
<ElementType name=“dataType” content=“textOnly”

dt:type=“string” />
<ElementType name=“stateVariable” content=“eltOnly”

model=“closec”>

/>

<element type=“name” />
<element type=“dataType” />
<element type=“defaultValue” minOccurs=“0” maxOccurs=“1”

<group minOccurs=“0” maxOccurs=“1” order=“one”>

/>

<element type=“allowedValueList” />
<element type=“allowedValueRange” />

</group>
<AttributeType name=“sendEvents” />
<attribute default=“yes” type=“sendEvents” required=“no”

</ElementType>
<ElementType name=“serviceStateTable” content=“eltOnly”

model=“closed”>

/>

“*7!
<element type=“stateVariaible” minOccurs=“1” maxOccurs=

</ElementType>
<ElementType name=“relatedStateVariable” content=“textOnly”

dt:type=“string” />
<ElementType name=“argument” content=“eltonly”

model=“closed”>

<element type=“name” />
<element type=“relatedStateVariable” />

</ElementType>
<ElementType name=“argumentList” content=“eltOnly”

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

73

-continued

model=“closed”>

<element type=“argument” minOccurs=“1” maxOccurs=“*” />
</ElementType>
<ElementType name=“action” content=“eltOnly” model=“closed”>

<element type=“name” />
<element type=“argumentList” minOcours=“0” maxOccurs=

“*7!

/>
</ElementType>
<ElementType name=“actionList” content=“eltOnly”

model=“closed”>

<element type=“action” minOccurs=“0” maxOccurs=“*” />
</Element Type>
<ElementType name=“scpd” content=“eltOnly” model=“closed”>

<element type=“serviceStateTable” />
<element type=“actionList”/>

</ElementType>
</Schema>

Attribute

References an attribute in the new, derived language for
the purposes of declaring in which elements it may appear.
Like any XML element, the AttributeType element may
have attributes of its own. Using the required attribute within
this element indicates whether the attribute must be present;
optional attributes have required =no.
AttributeType

Defines an attribute in the new, derived language. Like
any XML element, the AttributeType element may have
attributes of its own. Using the name attribute within this
element defines the name of the attribute as it will be used

in the derived language.
Element

References an element for the purposes of declaring
nesting. minOccurs attribute defines minimum number of
times the element must occur; default is minOccurs=1;
optional elements have minOccurs=0. maxOccurs attribute
defines maximum number of times the element must occur;
default is maxOccurs=1; elements that can appear one or
more times have maxOccurs=*.

ElementType
Defines an element in the new, derived language. name

attribute defines element name. dt:type attribute defines the
data type for the value of element in the new, derived
language. model attribute indicates whether elements in the
new, derived language can contain elements not explicitly
specified here; when only previously specific elements may
be used, model=closed. content attribute indicates what
content may contain; elements that contain only other ele-
ments have content=eltOnly; elements that contain only
strings have content=textOnly.

Group

Organizes content into a group to specify a sequence
minOccurs attribute defines minimum number of times

the group must occur maxOccurs attribute defines
maximum number of times the group must occur order
attribute constrains the sequence of elements; when at
most one element is allowed, order=one.

D. Augmenting the UPnP Template Language
As is the case with describing devices, some properties of

services are difficult to capture in the XML Schema formal-
ism. For services in particular, it is useful to describe the
effect actions have on state variables. This procedural infor-
mation is awkward to describe in a declarative language like
XML, so below is a recommended vocabulary for UPnP
forum working committees to use when defining service
actions or for UPnP vendors to use when they wish to
document the effects of extra actions.

20

25

30

35

40

45

50

55

60

65

74

ASSIGN (v, a)
Variable v becomes the value of argument a, i.e., v=a. v

and a must be the same data type. <why both this and SET?>
DECREMENT (v)

Equivalent to INCREMENT (v) with allowedValueRange
step treated as—step.
DECREMENT,BOUNDED (V)

Equivalent to INCREMENT,BOUNDED (v) with
allowedValueRange step treated as step.
DECREMENT,WRAP (v)

Equivalent to INCREMENT_WRAP (v) with allowed-
ValueRange step treated as step.
INCREMENT (v)

Variable v becomes the value of v plus allowedValueR-
ange step, i.e., v=v+step. Equivalent to DECREMENT (v)
with allowedValueRange step treated as step. v must be
either i4 or r8 and must have an allowedValueRange defi-
nition.

INCREMENT,BOUNDED (v)
Variable v becomes the value of v plus allowedValueR-

ange step, i.e., v=v+step.
If step is greater than 0 and if v plus step would be greater

than allowedValueRange maximum, then v becomes maxi-mum.

If step is less than 0 and if v plus step would be less than
allowedValueRange minimum, then v becomes minimum.

Equivalent to DECREMENT,BOUNDED (v) with
allowedValueRange step treated as step. v must be either i4
or r8 and must have an allowedValueRange definition.
INCREMENT,WRAP (v, c)

Variable v becomes the value of v plus allowedValueR-
ange step, i.e., v=v+step.

If step is greater than 0, and if v plus step would be greater
than allowedValueRange maximum, then v becomes mini-
mum plus step minus 1, i.e., v=minimum+step -1; if step is
1, this simplifies to v=minimum.

If step is less than 0 and if v plus step would be less than
allowedValueRange minimum, then v becomes maximum
plus step plus 1, i.e., v=maximum+step+1; if step is -1, this
simplifies to v=maximum.

Equivalent to DECREMENT_WRAP (v) with allowed-
ValueRange step treated as step. v must be either i4 or r8 and
must have an allowedValueRange definition.
NEXT,STRING,BOUNDED (v)

Variable v becomes the next allowedValue after the cur-

rent value of v. If v was already the last allowedValue, then
v does not change. v must be a string data type and must
have an allowedValueList definition.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

75

NEXTiSTRING,WRAP (V)
Variable V becomes the next allowedValue after the cur-

rent value of V. If V was already the last allowedValue, then
V becomes the first allowedValue. V must be a string data
type and must have an allowedValueList definition.
PREViSTRING,BOUNDED (V)

Variable V becomes the previous allowedValue before the
current Value of V. If V was already the first allowedValue,
then V does not change. V must be a string data type and must
have an allowedValueList definition.

PREV,STRING,WRAP (V)
Variable V becomes the previous allowedValue before the

current Value of V. If V was already the first allowedValue,
then V becomes the last allowedValue. V must be a string data
type and must have an allowedValueList definition.
SET (V, c)

Variable V becomes the Value of constant c, i.e., V=c. V and
c must be the same data type.
TOGGLE (V)

Variable V becomes the boolean negation of the Value of
V, i.e., V=NOT V. V must be boolean.

E. Retrieving a Service Description
As explained above, after a control point has discovered

a device and has retrieved a device description, it may need
to learn more about the services provided by the device.
Nearly identical to the process for retrieving a device
description, a control point may retrieve a service descrip-
tion using a description URL in the description (vs.
discovery) message.
Conclusion

Although the invention has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the

appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention.

We claim:

1. A method comprising:
creating a device template using a template language

written in XML syntax;
defining, from the device template, a device description

for a self-describing network device; and
automaticallly evaluating, via a computer software tool,

whether the device description is well formed.
2. A method as recited in claim 1, wherein the template

language is derived from XML schema.
3. A method as recited in claim 1, wherein the self-

describing network device comprises a universal plug and
play device.

4. A method as recited in claim 1, further comprising
storing the device description on a computer-readable
medium.

5. A method as recited in claim 1, further comprising:
creating a service template from a template language

written in XML syntax; and
defining, from the service template, a service description

for a service supported by the self-describing network
device.

6. A method comprising:
creating a service template from a template language

written in XML syntax;
defining, from the service template, a service description

for a service supported by a self-describing network
device; and

automaticallly evaluating, via a computer software tool,
whether the device description is well formed.

5

10

15

20

25

30

35

40

45

50

55

60

65

76

7. A method as recited in claim 6, wherein the template
language is derived from XML schema.

8. A method as recited in claim 6, wherein the self-
describing network device comprises a universal plug and
play device.

9. A method as recited in claim 6, further comprising
storing the service description on a computer-readable
medium.

10. A method of describing a a self-describing network
device, comprising:

storing a description of the self-describing network
device, the description comprising a set of elements to
describe the self-describing network device and an
XML-based syntax that structures the set of elements
such that, when the data structure is read by a comput-
ing device, the computing device can learn about the
self-describing network device;

making the description available to the computing device;
and

wherein the set of elements includes at least one of:

a first element to identify one or more versions of a
template lenguage;

a second element to identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

11. A method as recited in claim 10, wherein the storing
comprises storing the description at the self-describing net-
work device.

12. A method as recited in claim 10, wherein the self-
describing network device comprises a universal plug and
play device.

13. A method as recited in claim 10, wherein the second
element includes at least one of:

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;
a third subelement to identify a manufacturer;
a fourth subelement to specify a URL of a website for the

manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model number of the
self-describing network device;

an eighth subelement to specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelement to specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; and

a fifteenth subelement to identify any of one or more
devices embedded within the self-describing network
device.

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

77

14. A method as recited in claim 10, further comprising
storing a set of elements to describe at least one service
supported by the self-describing network device.

15. A method as recited in claim 10, wherein the sotoring
comprises storing the description at the self-describing net-
work device, the method further comprising storing a set
elements to describe at least one sevice supported by the
self-describing network device at a location remite from the
self-describing network device.

16. A method of describing a self-describing network
device, comprising:

storing a description of the self-describing network
device, the description comprising a set of elements to
describe the self-describing network device and an
XML-based syntax that structures the set of elements
such that, when the data structure is read by a comput-
ing device, the computing device can learn about the
self-describing network device;

making the description available to the computing device;
and

storing a set of elements to describe at least one service
supported by the self-describing network device,
wherein the set of elements to describe the service
includes at least one of:

a first element to identify any of one or more actions
performed by the service; and

a second element to identify any of one or more state
variables in the service.

17. A method as recited in claim 16, wherein the first
element includes at least one subelement for each corre-

sponding action, the subelement containing a name string to
hold a name of the action and an argument list to hold
parameters of the action.

18. A method as recited in claim 16, wherein the second
element includes at least one of:

a first subelement to identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelement to specify a default value of the state
variable;

a fourth subelement to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

19. A data structure stored on a computer-readable
medium, the data structure being constructed according to
an XML-based template language, the data structured com-
prising:

a set of elements to describe a self-describing network
device; and

an XML-based syntax that organizes and structures the set
of elements such that, when the data structure is read by
a computing device, the computing device can learn
about the self-describing network device;

wherein the set of elements requires:

a first element to identify one or more versions of the
template language; and

a second element to identify the self-describing network
device.

20. A data structure stored on a computer-readable
medium, the data structure being constructed according to
an XML-based template language, the data structure com-
prising:

a set of elements to describe a self-describing network
device; and

10

15

20

25

30

35

40

45

50

55

60

65

78

an XML-based syntax that organizes and structures the set
of elements such that, when the data structure is read by
a computing device, the camputing device can learn
about the self-describing network device;

wherein the set of elements includes at least one of:

a first element to identify one or more versions of the
template language;

a second element to identify the self-describing network
device; and

a third element to specify abase universal resource locator

(URL)
21. A data structure stored as recited in claim 20, wherein

the second element includes at least one of:

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;

a third subelement to identify a manufacturer;

a fourth subelement to specify a URL of a website for the
manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model number of the
self-describing network device;

an eighth subelement to specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelement to specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; and

a fifteenth subelement to identify any of one or more
devices embedded within the self-describing network
device.

22. A data structure stored on a computer-readable
medium, the data structure being constructed according to
an XML-based template language, the data structure com-
prising:

a set of elements to describe a service supported by a
self-describing network device; and

an XML-based syntax that organizes and structures the set
of elements such that, when the data structure is read by
a computing device, the computing device can learn
about the service supported by the self-describing net-
work device;

wherein the set of elements includes at least one of:

a first clement to identify any of one or more actions
performed by the service; and

a second element to identify any of one or more state
variables in the service.

23. A data structure stored as recited in claim 22, wherein
the first element includes at least one subelement for each

corresponding action, the subelement containing at least one

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

79

of a name string to hold a name of the action, an argument
list to hold parameters of the action, and a data type of the
parameters.

24. Adata structure stored as recited in claim 22, wherein
the second element includes at least one of:

a first subelement to identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelement to specify a default value of the state
variable;

a fourth subelenient to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

25. One or more computer-readable media, comprising
stored thereon:

a first set of elements to describe a self-describing net-
work device, the first set of elements being written in
an XML syntax;

a second set of elements to describe a service supported
by the self-describing network device, the second set of
elements being written in an XML syntax; and

a code segment that, when executed, returns the first set
of elements and at least a reference to the second set of

elements to an entity requesting a description of the
self-describing network device.

26. One or more computer-readable media as recited in
claim 25, wherein the first set of elements are stored on a
computer-readable media located at the self-describing net-
work device and the second set of elements are stored on a

separate computer-readable medium located remotely from
the self-describing network device, but accessible via a
network.

27. One or more computer-readable media as recited in
claim 25, wherein the first set of elements includes at least
one of:

a first element to identify one or more versions of the
template language;

a second element to identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

28. One or more computer-readable media as recited in
claim 25, wherein the second element of the first set of
elements includes at least one of:

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;

a third subelement to identify a manufanturer;

a fourth subelement to specify a URL of a website for the
manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model number of the
self-describing network device;

an eighth subelement to specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

10

15

20

25

30

35

40

45

50

55

60

65

80

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelement to specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; and

a fifteenth subelement to identify any of one or mare
devices embedded within the self-describing network
device.

29. One or more computer-readable media as recited in
claim 25, wherein the second set of elements includes at
least one of:

a first element to identify any of one or more actions
performed by the service; and

a second element to identify any of one or more state
variables in the service.

30. One or more computer-readable media as recited in
claim 29, wherein the first element of the second set of
elements includes at least one subelement for each corre-

sponding action, the subelement containing a name string to
hold a name of the action and an argument list to hold
parameters of the action.

31. One or more computer-readable media as recited in
claim 29, wherein the second element of the second set of
elements includes at least one of;

a first subelement to identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelement to specify a default value of the state
variable;

a fourth subelement to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

32. One or more computer-readable media as recited in
claim 25, wherein the code segment is configured to respond
to an HTTP GET request by returning the description in a
body of an HTTP response.

33. A self-describing network device comprising:
a II1CII1OI'y;

a description of the self-describing network device stored
in the memory, the description comprising a set of
elements written in an XML syntax to describe the
self-describing network device; and

a processor coupled to the memory to submit the descrip-
tion to a remote entity on a network;

wherein the set of elements comprises at least one of:

a first element to identify one or more versions of a
template language;

a second element to identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

34. A self-describing network device as recited in claim
33, wherein the description data comprises a first set of
elements a first set of elements to describe the self-

describing network device and a second set of elements to
describe a service supported by the self-describing network
device.

35. A self-describing network device as recited in claim
33, wherein the second element includes at best one of:

Netflix, Inc. Exhibit 1003

Netflix, Inc. Exhibit 1003

US 6,910,068 B2

81

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;

a third subelement to identify a manufacturer;

a fourth subelement to specify a URL of a website for the
manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model number of the
self-describing network device;

an eighth subelement to specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelement to specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; end

a fifteenth subelement to identify any of one or more
devices embedded within the self-describing network
device.

10

15

20

25

30

82

36. A self-describing network device comprising:
memory

a description the self-describing network device stored in
the memory, the description comprising a set of ele-
ments written in an XML syntax to describe the self-
describing network device; and

a processor coupled to the memory to submit the descrip-
tion to a remote entity on a network;

wherein the set of elements includes at least one of:

a first element to identify any of one or more actions
performed by a service supported by the self-describing
network device; and

a second element to identify any of one or more state
variables in the service.

37. A self-describing network device as recited in claim
36, wherein the first element includes at least one subele-
ment for each corresponding action, the subelement con-
taining a name string to hold a name of the action and an
argument list to hold parameters of the action.

38. A self-describing network device as recited in claim
36, wherein the second element includes at least one of:

a first subelement to identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelement to specify a default value of the state
variable;

a fourth subelement to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

Netflix, Inc. Exhibit 1003

