
1 APPLE 1017

Data Compression via Textual Substitution

JAMES A. STORER AND THOMAS G. SZYMANSKI

Princeton University, Princeton, New Jersey

Abstract. A general model for data compression which includes most data compression systems in the
literature as special cases is presented. Macro schemes are based on the principle of finding redundant
strings or patterns and replacing them by pointers to a common copy. Difierent varieties of macro schemes
may be defined by specifying the meaning of a pointer, that is, a pointer may indicate a substring of the
compressed string. a substring of the original string, or it sul:-string ofsome other string such as an external
dictionary. Other varieties of macro schemes may be defined by restricting the type of overlapping or
recursion that may be used. Trade-offs between different varieties of macro schemes, exact lower bounds

on the amount of compression obtainable, and the complexity of encoding and decoding are discussed, as
well as how the work of other authors relates to this model.

Categories and Subject Descriptors: E14 [Data]: Coding and Information Theory—~dam cofilpflction and
conrprerrion; F. 1.3 [Computation by Abstract Devices]: Complexity Classes—reducr'bi‘h'ry and corripletenci-i;
1'-12.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Probleins—parrern
matching.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Textual substitution, macro expansion, dictionary, NP-completeness

1. Introduction

On-line secondary storage space is one of the most restricting resources in many

modern computer installations, particularly in those employing multiuser time-shar-

ing systems. Fast algorithms for compressing and restoring data files can do much to

alleviate this problem. Some of the more popular data compression schemes described

in the literature include statistical encoding techniques such as Huffman codes [8],

which typically encode a block of source data as a variable-length string of bits

determined by various statistical properties of the source data; incremental encoding

methods (e.g., [21, 34]), which typically compress a file by recording only the
difference between successive records; and textual substitution or macro encoding

schemes (e.g., [6, 7, 12-14, 19, 20, 25-28, 30, 31, 33, 35, 37-39]), which factor out

duplicate occurrences of data, replacing the repeated elements with some sort of

special marker identifying the data to be replaced at that point. In addition, many

ad-hoc methods for handling data with certain known characteristics appear in the
literature.

This research was supported in part by the National Science Foundation under Grant MCS 74-2l939 and
in part by Bell Laboratories.

Authors’ present addresses: J. A. Storer, Department ofComputer Science, Brandeb University, Waltham,
MA 02254; T. G. Szymanski, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07914.

Permission to copy without fee all or put of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and]or specific permission.
© 1982 ACM 0004-5411]82/1000-0928 $00.75

Journal of the Association for Computing Machinery, Vol. 29, No at, October I982, pp 928-95]

APPLE 1017

2

Data Compression via Textual Substitution 929

This paper is devoted exclusively to the properties of the macro model for data

compression. We study two major types of macro schemes, the types being differ-
entiated by the location where the factored-out text is stored. Section 2 contains a

discussion of our model along with some basic definitions, Sections 3 and 4 present
our results for the two major types of schemes considered, and Section 5 examines

the relative performance of the various compression schemes introduced in the

preceding sections. To reduce the size of this paper, NP-completeness results are

presented in [30]. However, the more important results of [30] are summarized here.

Before proceeding to the next section, we define the following notation:

(1) If s and s, denote strings and n 2 1 is an integer, sis; denotes the concatenation
of s1 with S2, H§‘.1 3, denotes 51.92 - - - s,,, and 5” denotes I]?..1 S. 5° denotes the
empty string.

(2) We use the term collection to mean multiset.‘

(3) If s is a string, |s| denotes the length of s, and ifs is a collection, fsl denotes the

number of elements in s (with each element being counted as many times as it

appears in s).

(4) We extend the min function to strings by defining
. 'f 5

s» = {:; ;.,.l::.L.. '32‘,
(5) For a real number lz, |'h'| denotes the least integer greater than or equal to h.

2. The Model and Basic Definitions

We shall treat the source data as a finite string over some alphabet. With external

macro schemes, a source string is encoded as a pair of strings, a dictionary and a
skeleton. The skeleton contains characters of the input alphabet interspersed with

pointers to substrings of the dictionary. The dictionary is also allowed to contain

pointers to substrings of the dictionary. The source string is recovered by substituting

dictionary strings for pointers. With internal macro schemes, a string is compressed

by replacing duplicate instances of substrings with pointers to other occurrences of

the same substrings. The result is a single string of characters and pointers.

Throughout this paper let p 2 1 denote the implementation-dependent size of a
pointer.” If x is a string containing pointers, the length of x, denoted Ix |, is defined
to be the number of characters in x plus p times the number of pointers in x. We

shall treat a pointer as an indivisible object which, in some unspecified fashion,

uniquely and unambiguously identifies some string which is referred to as the target

of that pointer. The way a pointer is written is not important; the only assumption

we make is that it is always possible to determine by inspection of a pointer the

length of its target?‘ For simplicity we shall write a pointer as a pair (11, m), where 11

indicates the position of the first character in the target,‘ m indicates the length of the

target, and |(n, m)} is the pointer size p. Without loss of generality it will always be

assumed that m > p.

‘ A multiset is a set in which repetitions are allowed For example [a, a, b} is a multiset.
2 We assume that all pointers within a given string have a uniform size. (Variable-length pointers are
considered in [30]) We also assume p to be an integer, although our results generalize to nonintegral
pointer SIZES
3 It is not always necessary to make this assumption and, in fact, it can be useful to remove it See [30] for
a dlSCllSS10n of this.

‘ n can be either an absolute location or a displacement. For example, with internal schemes, 1: could be
the distance from the pointer to its target.

3

930 J. A. sronnn AND T. G. SZYMANSKI

As an example of these ideas, let p = 1, and consider the string

to = aaBccDaacEaccFacac,

which might be encoded under the external macro model as

J: - aacc#(l, 2)B(3, 2)D(l, 3)E(2, 3)F(2, 2)(2, 2),

where # separates the dictionary from the skeleton. For convenience, we assume

|#| - 0. The compression achieved by the string x (i.e., the ratio |x |/| w |) is lg. Using
the internal macro model, w could be encoded as

y = aaBccD(l, 2)cEa(4, 2)Fac(l3, 2),

achieving a compression of 15.

Implementation considerations motivate us to describe a number of variations on

our basic models. A scheme is recursive if a macro body (i.e., a string that is a target

of a pointer) is allowed to itself contain pointers. Two pointers overlap if their targets

overlap. Whether overlapping pointers are permitted in the external model depends

highly on the implementation chosen for the dictionary.” An original pointer is one
which denotes a substring of the original source string, whereas a compressedpointer

denotes a substring of the compressed representation itself. The string y of the

previous example contains compressed pointers. Using original pointers, we could
encode w as

2 -= aaBccD(l, 2)cEa(4, 2)!‘(8, 2)(8, 2),

achieving a compression of {-3. Original pointers are more natural for one-pass

decoding. Compressed pointers allow the recovery of portions of the source string

without requiring the implicit decompression of the entire string. A left (right) pointer

is one which denotes a substring occurring earlier (later) in the string. Considering

the strings x, y, and 2 presented above, only 1: uses overlapping pointers, only 2 uses

recursion, and none of these strings use right pointers. By using both left and right

pointers it is possible to save additional space over the use ofjust one direction. For
example, using both right and left pointers, the compressed forms y and 2 presented

above could be replaced by

y = (5, 2)B(l0, 2)DaacEaccF(6, 2)(6, 2),

z = (7, 2)B(i2, 2)DaacE(8, 2)cF(8, 2)(8, 2),

achieving a compression of it and 13 respectively. We discuss recursion in relation to

original pointers primarily to study the “power” of various methods. With original

pointers, a pointer is recursive if all or part of the string it represents is represented

by a pointer.

Cycles cannot occur in compressed forms with compressed pointers, but using

original pointers, cycles can often make sense. For example, the compressed form

ab(5, 2)a{l, 3) uniquely determines the palindrome crbaaaaba even though the two

pointers in this compressed form comprise a cycle. Here the pointers (5, 2) and (1, 3)

are a cycle in the sense that each points to a portion of the string represented by the

other. An example of a degenerate cycle is given by the compressed form a(l, n),

which uniquely determines the string a""‘1. Schemes which allow recursion but not
cycles are said to have topological recursion. From the above discussion it should be

clear that topological recursion is not necessary for a compressed form to be uniquely

5 Certain implementation considerations can lead to the placement of various restrictions on the kinds of
overlapping permitted. Some of these restrictions are described in [30, 32].

4

Data Compression via Textual Substitution 931

decodable. However, it can be useful to consider topological recursion for three

reasons. First, authors in the past (such as Lempel and Ziv) have assumed this.

Second, study of such schemes leads to a deeper understanding of the power of

original pointers. Third, topological recursion may model some practical considera-

tions in the design of efficient original pointer compression methods.

The above discussion leads us to formally define four basic macro schemes and

three types of restrictions which may be placed on any of these schemes. Throughout

this paper, 2 denotes the underlying alphabet from which the data in question is
constructed.

Definition 1. A compressed form of a string s using the EPM (external pointer
macro) scheme is any string t = so#s1 satisfying“

(1) so and s1 consist of characters from E and pointers to substrings of so.

(2) s can be obtained from s; by performing the following two steps:

(a) Replace each pointer in S1 with its target.

03) Repeat step A until .91 contains no pointers.

Definition 2. A compressedform of a string s using the CPM (compressedpointer
macro) scheme is any string t satisfying

(1) t consists of characters from E and pointers to substrings oft.

(2) s can be obtained from t by forming the string stir and then decoding as with the
EPM scheme.

Definition 3. A compressedform of a string 3 using the OPM (original pointer

macro) scheme is any string 1 satisfying

(1) t consists of characters from 2 and pointers representing substrings of s.

(2) s can be obtained from r by replacing each pointer (n, m) by the sequence of

pointers (n, 1), (n + 1, 1), ..., (n + m — 1, 1) and then decoding as with the

CPM scheme, with the stipulation that pointers are considered to have length 1.

Definition 4. A compressedform of a string .9 using the OEPM (original external

pointer macro) scheme is any string 1 = so#s1 satisfying

(1) t consists of characters from 2 and pointers.

(2) so may be decoded using the OPM scheme to produce a string r. Furthermore,
pointers in st point to substrings of r.

(3) s may be obtained by replacing each pointer in .91 with its target in r.

A contraction of a string s for pointer size p according to a given scheme is a

shortest compressed form of s using that scheme with pointer sizep. A contraction of
a string s will be denoted by A(s).’ We shall refer to the process of replacing a string
r by a pointer asfactoring out r and often refer to a string that is a target or potential
target as afactor.

Definition 5. A CPM (OPM) pointer ql depends on pointer qr,» if the target of q;

contains 42 (all or part of the string represented by qz) or if there is a pointer q.-5 such

that qr depends on :13 and qa depends on qz. A macro scheme is restricted to no

recursion if dependent pointers are forbidden, and to topological recursion if no

6 For convenience we assume throughout this paper that [#1 - 0.
’A string may have more than one ruinimal-length compressed form. For formal dkcussions we can
always ensure that A(s) is unique by assuming a lexicographic ordering.

5

932 I. A. STORER AND T. G. SZYMANSKI

pointer may depend on itself; that is, it must be possible to sort topologically” the
pointers of a compressed form according to their dependencies.

Definition 6. Two pointers overlap if their targets overlap and strictly overlap if

their targets overlap but neither target is a substring of the other. A macro scheme is

restricted to no overlapping if overlapping pointers are forbidden.

Definition 7. A CPM (OPM) pointer q points to the left if the leftmost character

of its target is to the left of q (the leftmost character of the string represented by q).

A right pointer is similarly defined. A macro scheme is restricted to unidirectional

pointers if all pointers must point in the same direction (ofcourse, with the EPM and

OEPM schemes, this only applies to the external dictionary). As a special case of

this, we can restrict a macro scheme to have only left or right pointers.

The different combinations of the four basic macro schemes we have defined and

the recursion, overlapping, and pointer direction restrictions provide us with a large

number of data compression methods. The combinations are sufficiently general to

cover virtually all of the text substitution schemes proposed in the literature.

Discussion of the utility and appropriateness of various restrictions to the models are

deferred until later in the paper.

We have not discussed the concept of adding to pointers" arguments which allow
the specification of modifications to be made on a factor before it is substituted.

Macro schemes with arguments generally have more power than ones without. Also,

a few data compression methods presented in the literature require a macro scheme

with arguments to model them, for example, the subsequence and supersequence

compression methods discussed in [16]. Macro schemes with arguments will not be

discussed in this paper, but it it should be noted that the macro model can be

extended to allow this generality.

3. The External Macro Model

The external macro model views the collection of macro bodies as residing outside

the remainder of the compressed string. This makes external schemes ideal for

compressing collections of strings using a common dictionary. There are several

reasons why it is more natural to treat all pointers as compressed pointers when
discussing this model. First, authors in the past have used the EPM scheme and not
the OEPM scheme (the authors mentioned in the introduction who used external

schemes all considered variants of the EPM scheme). Second, it allows us to

decompress arbitrary portions of the data without first having to produce the entire

string. Third, compressed pointers often require less space than original pointers. For
these reasons, we concentrate our attention in this section on the EPM model and
then indicate how our results can be extended to the OEPM model. As we shall see

in the next section, there are advantages to using original pointers over compressed

pointers that justify consideration of the OEPM model. In many cases the extension

of results to the OEPM scheme is trivial, since if recursion is forbidden, original and

compressed pointers become equivalent in power. Similarly, if overlapping is forbid-

den, unidirectional and bidirectional pointers become equivalent.

THEOREM 1. For all strings s, only topological recursion is allowed, then (assuming

.9 is compressible) both lAEPM(S)| and |AoEp_M(.‘u‘)| are

(a) 2p lag2(ls|/p) + 1.9;).

” For a discussion of topological sorting, see [10].

6

Data Compression via Textual Substitution 933

(b) 23}: loga(|s|/p) - 0.02p when overlapping isforbidden.
(c) 22(plsI)"" when recursion isforbidden.
(cl) 22(p|s |)"2 when both recursion and overlapping areforbidden.
(e) (a)—(d) hold even ifpointers are required to be unidirectional.

Ifnontopologicai recursion is allowed, then

(f) The bounds of (a)—(e) holdfor the EPM scheme.

But

(3) |AoEpM(S)| 1: 2p + 1, independently of what overlapping and pointer direction
restrictiofls are made.

Furthermore, all if the bounds in (a)—(g) are tight; that is, each is attainedfor infinitely
many strings s.”

PROOF. For (a)—(e), since |AoEpM(s)| :5 |AEPM(S') |, it is sufficient to show that the

OEPM scheme satisfies these bounds and the EPM scheme can attain them infinitely
often.

First let us consider (a). We can assume that s = a"' (for some a in 2) because

fAogpM(a"')| 5 I AuEpM(.5') |. It is easy to show that for somep < k 5 2p and n,

Ao1n=n(s) = 0* E q.#qu+1.

where q,, 1 5 i < n, points to the string represented by everything to the lefi of it and

q,.+1 points to some substring of length Is| in the dictionary. Since qt points to a
string of k characters, we must have It > p, or else a shorter contraction ofs could be

produced. Similarly, if k > 2p, we could produce a shorter contraction by representing
a" by a"""‘ followed by a pointer to this string. Thus we have

lAonrvM(s)| 2 k + np +p

2p1og2(|s},’lc) + lc -1-}:
2 mi11{pI'log2([s|/i)'|+i+p:p < is 2p}

2p log2(|s[/p) + min{p(l + h -— log2li): l < h 5 2}
> P1082051/P) + 1-9p-

For anyp < is 2p and n, the bound rnin{pilog2(|s|/i)| + i + ptp < i 5 2p} is
achieved exactly by the EPM scheme on the strings = a'’'.

We now consider 0:). Again we can assume that s = a"'. Since overlapping is
forbidden, the pointers of AonpM(s) can be divided into a sequence of sets S1, . . . , S...

such that the pointers in S., 1 < is m, have targets whose compressed representation

consists of pointers in some s_,, j < i; in fact, since we are concerned only with worst-
case performance,’° we can assume that j = i — 1. We can also assume that S.-, 1 _<_ i

5 m, contains at most three pointers. This is because for any k 7: 4 there are an i and

j such that 21' + 3f 5. k 5 2'3 ’, and so we can replace a set S. of four or more pointers

by a sequence of sets having at most three pointers, where the last set in the sequence

will represent a string at least as long as that represented by the original sequence of
four or more. Hence, for some x 5 2 we can assume that for all i > x, S; contains

“ Actually, the bound in (a) is just an approximation for the expression min{p|log».x(|s|;i)|+ i + p:p < i
< 2;}, which is attained exactly infinitely often. Similarly, the bound 111 (b) 15 just an approximation for
the expression min{3p| loga{| sl/i) I + i: 2p < I 5 4p], which IS attained exactly for infinitely many strings.
1" It 15 not necessary to consider a compressed form oflength x for a stung a’ if there is a compressed form
of length <1: (sx) for a string a‘ where z 2 y (z > y).

7

934 J. A. STORER AND T. G. SZYMANSKI

exactly three pointers. This is because we can assume that the sets of two come first

and a sequence of three two-pointer sets can be replaced by two three-pointer sets.

Given this, it can be assumed that for some 2p < k 5 4p, 0 ..<_ M 5 L 5 l, and n,
Aoiipm(s) is of the form

a*(q?»)‘(qi)”(_Inl2 q?)#q5‘»+u
where qo points to a‘; qr points to qfi; qg points to a”, qfi, or qi, depending on the
values of L and M; and for 3 5 is n + 1, qt points to q‘:’—i. Thus we have

iAoEpM(.S')| Z k + 31110 + +

2 3p|'log3(|s|/k2L2M)'I + k + 2Lp + 2Mp
2 3pflog3(|s|/k)'| + 1: + 3p(§ — log32)(L + M)

3 3PT10g3(|S|/k)'| + k

2 min{3pflog3(js|/i)‘] + i':2p < is 4p}

2 3p log;z.(|s|/p) + min{p(h -- 3 log3h):2 < h S 4}

> 3;! loga(|s|/p) - 0.02;).

For any 2]; < is 4p and n > 1, the bound of rnin[3p|log3(|s|/i)| + i‘:2p < i 5 4p}
is achieved using the EPM scheme with no overlapping on the strings = aw‘ .

The proofs for (c) and (d) appear in [30]. All of the proofs of (a)—(d) make use of

left pointers only, and so (e) follows. (f) follows trivially because compressed pointers

cannot form cycles, and hence with the EPM scheme all recursion must be topological.

For (g) we may again assume that s = am for some a in E. If s is compressible using
the EOPM scheme, then .9 must contain at least two pointers and at least one

character. Hence 2p + l is a lower bound. It is also tight, since a(l, ls] — l)#(1, ISD
is a compressed form for s = a"'. D

For topological recursion, Theorem 1 says just what one would expect; there is an

S2(_p log| s |) lower bound on the size of a compressed string when recursion is allowed

(log; with overlapping and logs without) and an S2((pIs])1/2) lower bound when
recursion is not allowed. For nontopological recursion the bound of (g) may seem

unnatural. Clearly we cannot represent a string of arbitrary length using a constant

amount of space. The bound of (g) simply illustrates the need for the pointer size to

be a function of the string size to model situations where pointers may indicate strings

of arbitrary length.

It should also be pointed out that the bounds of Theorem 1 apply primarily to

“pathological” strings; in practice, reducing the size of a file by a small constant

factor may be very significant. However, much of the utility of Theorem 1 comes

from the fact that it provides exact bounds which are needed in several of our NP»
completeness" proofs.

The next theorem considers encoding algorithms for the EPM model. Wagner [35]
presents a polynomial-time algorithm for compressing a string, assuming that the

dictionary of macro bodies is given as input to the encoding algorithm. However, no

mention is made as to how the selection of the best possible dictionary is accom-

plished. Several heuristic methods for constructing dictionaries have been presented

in [20] and [25}. Neither of these guarantees optimal compression or even provides

bounds on the compression that is obtainable. The reason for this gap in the literature

is the NP-completeness of finding AEpM(S).

“ For a definition of NP-completeness and related terms, see [1]. All ofour proofs show NP-completeness
in the sense of Karp [9] (which implies that of [3]).

8

Data Compression via Textual Substitution 935

THEOREM 2. Given a string s and an integer K, it is NP-complete to determine

whether IAE;-M/(s)| 5 K in any of thefollowing situations:

(a) both recursion and overlapping allowed;

(b) recursion allowed, overlappingforbidden;
(c) recursionforbidden, overlapping allowed;

(d) both recursion and overlappingforbidden;

(e) unidirectional pointers and any of (a)-(d).

Furthermore, the above are true regardless of whether p is part of theproblem input or
is constrained to be a fixed integer greater than 1. In fact, we show (b) and (d) to be

true even zfp = l.

PROOF. It should be clear that no one part of the theorem directly implies any

other. Thus several reductions are used. The reductions employed include the node

cover problem [9], the restricted node cover problem [17], the K-node cover problem

[30], and the superstring problem [4, 17]. As mentioned in the introduction, proofs of

all NP-completeness results appear in [30]. However, we shall include the proof of

(b) and (d) as a “sample proof.”

Proofof(b) and (d)forp >1. Let G = (V= {v1, . . . , v,,}, E = {e1, . . . , e,.,}), K

be an instance of the node cover problem, and let p = po. Let S be a special symbol,

and let @ denote a new, distinct symbol each time it occurs. For v. in V, let V. =

$v§”‘$, and for e, = (v,, v;,) in E, let E. = $v,”1$v‘;',“$. Now let
p rt. rn

s= (H 11 v;@)(n to).1-1 1-1 1-1

We claim that G has a node cover of size SK if and only if |A(s)| 5 |s| + K — m.

First suppose that G has a node cover X g V of size K. We shall construct a
compressed form t for s (having length |sI + K — m), where t is'of the form

s0#(]]-§’.1]]j'., F7} @)(flI’i1 E. @), where so contains those V, for which V. is in X, and
I7, is t; if v,- is not in X and a pointer to v, in so if v, is in X. If E. is sv;7“sv*,:"s,
then E‘. is either rv‘,§"1$ or $v,‘1q, where r is a pointer to v, in st; and q is
a pointer to vs in so. Since X is a node cover, this can always be done. If we now com-
pute the length of I, Isol = K(p + 1), IHf—1H?—: 77; @l = lH‘»'—1 H5’-1 V,@I -pK,
and [11:11 E.@| = |f[:’11 E.@| — m. Hence |A(s)] 5 M = ls] + K(p + 1) —pK— m
=|s| + K - m, as was to be shown.

Conversely, suppose that |A(s)| < |s| + K — m. We shall show that G has a
node cover of size at most K. First observe that since overlapping of pointer

targets is forbidden, no pointer in A(s) can refer, for any strings x and y, to a string
of the form xv.$v,y, x@y, or x@y, since such a string can occur at most once

in s and no gain can be achieved by factoring it out. Thus A(s) is of the form

so#(H{’.1 ".1 I7’,@)(]'[i'i1 E‘,@), where so is a dictionary of macro bodies and the
1775 and E35 are the shortest compressed forms of the W5 and E.-’s, respectively,
using so. As mentioned earlier, without loss of generality we are assuming throughout

this paper that every pointer references a string of length at least p + 1. Thus, since
| K] = p + I, we can infer that each I7. is either V, itself or a pointer to an occurrence
of v. in so. Similarly, since |E,| = 2p + 1, each E. must either consist of E. itself or else
be a string of the form rv,"'$ or $v, '1r, where r is a pointer to some V, in so. Now let
L be the number of E,’s such that E. = E,, that is, the number of 5'33 that have not

had a factor removed. Then |]'[I’.'., E,@| = |]'[;':, E.@| — (m — L), since removing a
factor from an E, saves one character. Let .1’ be the number of V.-’s in so. Then

9

936 J. A. sronmr. AND T. G. SZYMANSK1

{sol - 1(1) + l) and |]]l’.1 H}-‘.1 l7}@I == []]‘.-'.1 I]}‘.1 V,-@l - Jp, because each it.» that
is replaced by a pointer saves one character. Thus |A(s)| - J(p + 1) + l.s| — Jp -
(m-L)=-[s|+J+L—m,andsoJ+LsK.W'enowclaimthatGhasanode

cover of size J + L formed by taking the J nodes represented in so and one node

from each of the L edges not factored in Ms}. Therefore 6? has a node cover of size
K, as was to be shown.

Proofof(b) and (d)forp = l. The following proof is similar to the original proof

of this result [30] in that it employs a reduction to the node cover problem for degree
three graphs. However, although the actual the actual construction is slightly longer,
the proof of its correctness is simpler. This simplified proof is due to J. Gallant.

LetG=(V=* {V1,---.V,.},E== {e1,...,e».}),Kbea.ninstanceot'thenodecover

problem for which all nodes have degree 3." As in the proof for p > I, let 3 be a
special symbol, and let @ denote a new, distinct symbol each time it occurs. For v,
in Vlet

V. = Sv.-3 and W. = $”v.-$2.

and for e. = (v,, v;,) in E let

E5 = 32:5-S’v.t$2.

Now let
II M

S = (V=@ W-@)’)(II1 E@)-
The claim is that Ghas a node cover ofsize Kifand only if|A(s)l 5 |s| + K— 1411.

The first half of the proof argues that if X is a minimal node cover for G, then a

compressed form for s can be constructed as follows:

(I) The two copies of each V. go to a copy of V; in the dictionary and two pointers
in the skeleton.

(2) The two copies of each Wt go to two copies of 3 followed by a pointer to V.-

followed by a $ in the skeleton if v. is not in X; otherwise the two copies of W.

go to W; in the dictionary and two pointers in the skeleton.

(3) Each E; representing e. = (v,-, vi.) goes to a pointer to 32v,-S’ followed by a pointer
to v,t followed by 3 if v,- is chosen to cover the edge; otherwise E; goes to $

followed by a pointer to $v,$ followed by a pointer to $2v;.$’.

A compressed form for s as constructed above saves one character for each pair of

Vis for a total of it: four characters for each pair of Wis when 1:. is not in X, three

characters for each pair of W.-’s when 11,- is in X for a total of 4:1 — K, and six

characters for each E; for a total of 6m. Since In -= gn, this yields |A(s)| 5 Is] -
n--4n+K-—6m=|sI+K—l4n.

The other half of the proof requires more work. Here it must be argued that the

method of compressing S as described above is the best possible. This is done by

considering several cases that rest heavily on the fact that all nodes in G have degree
3. The degree-3 restriction makes it unprofitable to factor out many strings that might

otherwise be factored if nodes with large degrees were present. We leave the details

of this half of the proof to the reader. Note that the above reduction is for the case

where recursion is forbidden. If recursion is allowed, the same construction may be

used, except that one copy of W. should be used instead of two. El

12 Using a result from [SL it is easy to show this restriction of the node cover problem to be NP-complete;
see [17].

10

Data Compression via Textual Substitution 937

In [30], cases (b)—(e) of Theorem 2 are shown to hold for the EOPM scheme. Case

(a) is shown for the problem ofcompressing collections, but the single string problem
remains open at the time of the writing of this paper. In addition, in [30] it is

conjectured that all of (a)—(e) of Theorem 2 can be shown forp = 1.

Throughout this paper we assume that the alphabets over which strings are written

are unbounded in size. However, results concerning lower bounds on encoding

complexity are stronger if they apply to the case where all strings are assumed to be

written over some fixed size alphabet, and, although unbounded size alphabets model

many practical situations (such as when entries in a system dictionary are taken to be

the basic characters), there are certainly many situations in which it is more realistic

to consider strings to be written over some fixed finite alphabet. Thus it is worthwhile

to consider the complexity of compressing strings when it is assumed that all strings

are written over a fixed size alphabet. Since our motivation for doing this is to model

practical situations, when discussing fixed size alphabets we also require that pointers

of a given size can only encode a finite amount of information. This requirement is

met by stipulating that the pointer size 1: be dependent on the string being processed.

Because complexity results concerning fixed size alphabets are more technical, we

shall only state a few sample theorems to indicate the flavor of these results and only

for the case when both recursion and overlapping are forbidden. Suppose we allow

pointers to be able to indicate any substring of the source. Then a pointer’s length

must be some implementation-dependent multiple of the logarithm of the string

length.

THEOREM 3. Ifrecursion and overlapping areforbidden, then, giving a string 3 over

any alphabet with at least three Symbols, an integer K, and a real It > 0, it is NP-

complete to determine whether 5 has an EPM campressedform t satisfying M 5 K
when the pointer size is [h Iog2| t['|.

Two other natural ways to determine pointer size are either to require that the

information content of a pointer be sufficient to distinguish all the pointers in an
encoding or to require that a pointer be able to identify any substring of the

dictionary. To this end, if t is an encoding of some string using the EPM scheme,

let 80) be the number of distinct pointers in t, and let do?) be the dictionary
portion of t.

THEOREM 4. If recursion and overlapping areforbidden, then, given a string s over

any alphabet with at least three symbols, an integer K, and a real It 2 1, it is NP-

complete to determine whether S has an EPM compressedform I satisjjiing [t| :1 K in
thefollowing situations:

(a) p is [h log28(t)'|.

(b) p is [' h logzl d(t) | 1.

In [30], results similar to the above are shown for other combinations ofrestrictions.

Although Theorems 3 and 4 apply only for alphabets of size 3 or greater, we

conjecture that these results can be strengthened to apply for two-symbol alphabets.

The proofs of the last two theorems involve an extra level of complexity over the

corresponding proofs for the unbounded alphabet cases, because when one attempts

to embed, say, an NP-complete graph problem in a data compression problem, one
is forced to encode nodes of the graph as strings. Care must be taken to ensure that

the integrity of these strings is maintained during compression.
As was indicated at the start of this section, external macro schemes are useful for

compressing collections of strings. Many of the NP-completeness results of this

10

11

938 1. A. STORER AND T. G. SZYMANSKI

section can be strengthened when applied to collections. For example, some results

concerning bounded-size alphabets, when extended to collections, apply for two-
symbol alphabets. Storer [30] also contains results concerning limitations on the size
of strings in a collection and factors in compressed forms.

4. The Internal Macro Model

In the internal macro model it is rather unnatural to forbid the use of recursion or

overlapping. We shall therefore concentrate on the four combinations provided by

choosing between compressed and original pointers and choosing between unidirec-

tional and bidirectional pointers. In addition, we consider the topological recursion
restriction, not because we are necessarily claiming it to be a natural restriction for

the OPM scheme, but because studying topological recursion appears to lend insight

into the relative power of compressed and original pointers. As done in the last

section, we first start with some performance bounds.

THEOREM 5. For all strings s (assuming 3 is compressible),

(0) |Aoru(S)| 2 P+ 1?

(b) fora gopological recursion,“ both |Acpir(s)| and |Aopir(s)| are 2}: log2(|s|/p)
+ . 1:.

Furthermore, the above bounds are tight 1‘ and hold regardless ofwhether unidirectional
or bidirectionalpointers are used.

Pitoor. Siinilartothat of Theorem 1. 1:1

The next theorem deals with the relative power of compressed and original

pointers.

THEOREM 6. For any string s, |Aopu(s)| 5 |Acpu(s)I, independently of what

restrictions are made (provided the some restrictions are usedfor both). Furthermore,
for any real It > 0:

(ti) Using any alphabet ofsize 21, there are infinitely many strings sfor which

|¢0rM(5)|——-—— lt.
|Acm(-r)l ‘‘

(b) For top;logi;;aIhrecursion, using any alphabet ofsize 22, there are infinitely manystrings or W ic

|AoPu(-9)| 1

IAcPM(S)l < 3 + h.

Pnoor. Since a compressed pointer may always be converted to an original

pointer, it follows that for any string .5‘, |AopM(.?)' :5 |AcpM(S)| independently of what

restrictions are made. (it) follows trivially from Theorem 5, since for the string .9 - a”,

|Aom(-!)| '' P + 1 but |Acm(s)| is 0(P10s2n)-

Let us now consider (b). For n a multiple ofp define

n/p _ I 1
s. = a"b" [1 (aw-< - W).1'-1

" Remember that with compressed pointers. all recursion must be topological.
“ Similarly to Theorem l(a), the bound of H is just an approximation for the expression min{ p-
|log2(|.r|/i‘)|+ i‘:p < is 2p}, and it is this value that is achieved exactly by infinitely many strings.

11

12

Data Compression via Textual Substitution 939

Using the OPM scheme, 3,, can be represented by the compressed form
n/P

t[[(n——1p+1,n+p),L-1

where t is the best compressed representation of a"b". Since |t| = 0(pIog2n), we

have |AopM(s,,)| 5 p(n/p) + 0(pl0g2n) = n + 0(p1og2n). On the other hand, if we

attempt to factor s,. using the CPM scheme, a shortest compressed form is
H/P

a"b”H(n—rp+1,n+p),1-1

that is, the leading factor of a"b" is preserved intact. Here the n/p pointers to the

right of a"b” that point into a"b" “chop up” a"b" so that it cannot be factored with

compressed pointers; that is, if a"b" were factored, then at least some of the pointers

to the right of a"b” would be pointing to “part of a pointer” which is not allowed for

compressed pointers. Through the analysis of several cases, it can be shown that the

above compressed form is the best possible, and thus |AcpM(s,.)[= 3n. Hence, for any

real h > 0 we have, for sufficiently large n,

lAopM(Sn)I = n + 0(plog2n) -1 h D
|Ac1=M(sn)I an 5 3 J’ '

We do not yet know whether the bound in (b) is the best possible. Also, it should

be noted that although |AopM(s)| 5 lAcpM(.S') |, in principle it is possible for a
compressed pointer to require less space than its corresponding original pointer since,

for a given string .5‘, compressed pointers may point to smaller strings.

We now consider performance bounds concerning pointer direction. First, it is

obvious that using either the CPM or OPM schemes, for any string s,

(1) |AL(s)| = |AR(t)| where t is the reverse of st,

(2) |A1,(s)|, |AR(s)i _>_ |Aun(s)| 2 |A(s)|.

In view of this, we shall not bother to state “dual” theorems, that is, theorems that

may be obtained from a previous theorem by changing all occurrences of AL(s) to
AR(s), etc.

Before proceeding we present a short technical lemma that allows us to relate

results concerning left versus right pointers to results concerning unidirectional versus

bidirectional pointers.

LEMMA 1. Using any macro scheme, for a given alphabet 2, if there are infinitely

many strings s over 2 for which |AL(s)| / | AR(s)| < h, then there are infnitebr many

strings s’ over an alphabet 2’, where |E'| = 2] 21, for which

|Ar;n{s’)| < 2}:
jAuy(s’)| 1+ h'

PROOF. Given a string 5 over an alphabet 2 = {ah . . . , a,.} for which |A;,(s) |/
|AR(s)| < h, let 2’ = {a’1, . . . , a£,} be new symbols not in E, and let 5’ = st, where t

is the reverse of the string obtained by replacing each symbol a, in s by a;-'. It is easy
to check that

If-‘-Bn(S')| < 2 miI1{|AL(S)L |AR(S)i}
I13-UD(S')[‘ lAL(S)| + |Aa(S)|

< 3’;
l + h’

and that s’ is written over an alphabet of size 2 I E |. El

12

13

940 J. A. STORER AND T. G. SZYMANSKI

THEOREM 7. Let 0PM/TR denote the OPM scheme restricted to topological

recursion. For any real is > 0:

(:1) There are infinitely many strings sfor which

|AcpM/1:(s)| < 1
IACPM/LC’) I 2

(b) Using any ahthabet ofsize 2 or more, there are infinitely many strings s for which

 <mfl{£ P }+h

+h.

IAOPM/L(S)| 3’ 2P + 2

and

IAOPM/TR/R(.S')| <1 + h-
IAOPM/TR/L(S)l 3

Pnoos

(a) For any integer n > 1, let
n—1 n-1

sn=n<<n«w>a>»1-1 1-1
.1“ P

where t.,, = ,,_J a k. Using right pointers, each t,_, except t,,-1,1 can be replaced by a
pointer into t,._1,1. Hence We have

n—1

|Ac1>M/n(s..)| S up) + np + n -11-2

= ipnz + 0(pn).

Using left pointers, the target of a pointer must be a substring of the compressed

form of t,,, for some i and j. This is because for each 11,, and 1., ,+1, if a is the last

character of t.,, and b the first character of t.,,...1, the string ab occurs nowhere else in

s,. (in addition, the bis separate s.,... and s,-+1_1). Thus, since t,,_, cannot be a substring

0ftx,yifi<xo1'i=x&y<j,Wehave

n—1

|ficpM;1,(S,.)f E + II — lI-1

= pnz + 0(pn),

and hence for sufficiently large n,

IAC-PM/R(S,-,)| =pn2/2 + 0(pn) <1 + h
IACPM/L(Sn)| ["12 + 001") 2 '

(13) Let us first consider topological recursion. For n > 0 let
IH-I

S7: = H fllpbq’.I--rl

Since S,. can be factored by replacing each string a“’b ‘P, 1 5 1' 5 n, by a pointer into
the string am“)-"b‘”“’P, it follows that

|AopM/R(s,,)| S pn + 0(p log2(pn)).

13

14

Data Compression via Textual Substitution 94]

The key observation for calculating |AopM,L(s,,){ is to note that the largest possible
factor to the left of a‘*"b"’, 1 < i S n + 1, is a“'"“’b"'”". From this reasoning it follows

that |AopM;1,(Sn)| = 3})?! + 2p. Hence,

IAC-PM/R(Sn)| <1 h
|Aorw:.(sn)l 3 "L

for sufficiently large n.

The construction for nontopological recursion is the same, except that we now

have the option of writing a‘b’ as aqgbqg, where q; and q2 are the appropriate

pointers. U

COROLLARY 7.1. The bounds 4 + h, max{-}, p/(2p + 2)} + h, and -Q + it stated in

Theorem 7 arefor left versus right pointers. If, instead, unidirectional and bidirectional

pointers are compared, then the bounds § + h, max {I}, 2p/(3p + 2)} + h, and} + I!
follow. Furthermore, the alphabet sizes needed are at most double the sizes stated in
Theorem '7.

PROOF. Follows directly from Lemma E. C]

We do not yet know whether the bounds of Theorem 7 are tight. One technique

for deriving lower bounds on ratios concerning pointer directions is to consider the

overlapping content of a compressed form. We have not been able to use this to prove

or disprove that the bounds of Theorem 7 are tight, but the concept of overlapping

content does lead to some interesting ideas. We digress and consider this in relation
to the CPM scheme.

Definition 8. The overlapping content of a pair of pointers q. and q_, for pointer

size p is given by

0 if q. and q, do not strictly overlap,

0VCON(q», €11) = k if q. and q, strictly overlap by <p characters,

p if q; and q, strictly overlap by ap characters,

and the overlapping content of a compressed form t is given by

{rI..r1,)Et

THEOREM 8. For any string S,

IACPM/L(S)| ‘S IAC-pM(S)} + 0VC0N(AcpM(S)).

Pnoor. For a string 3, given ACpM(S) (or any compressed form for .9), all strict

overlapping can be removed to obtain a new compressed form t for s as follows:

while there 15 a string uvw such that nor is the target of some pointer q. and vw is the target of some
pointer «,1, do

Replace 9, by ququ where

= u if lit] 5. p,
9" a pointer to it otherwise,

_ v if Iv! 5 p,
9" a pointer to v otherwise.

The reader can check that [fl 5 IAcpM(.s')| + OVCON(AcpM(s)).

We now describe how to convert t to a left pointer CPM compressed form for .9
without increasing its size.

14

15

942 J. A. STORER AND T. G. SZYMANSKI

Sort the pointers in r topologically as qr, . . . , q,. so that q., l 5 r‘ 5 n, is not pointed to (directly or
indirectly) by any q,, i < j 5 :1. Since we are allowing substring overlapping, we assume that if 9. points
to uvw and q, points to v, then is j. Now, starting with 9;, do the following to each pointer q.. If .7, points
to the left, do nothing. Otherwise, if 9. points to a string w to its right, swap q. with w and adjust all other
pointers accordingly; that is, all pointers that point to some suhstring of w must be changed to point to this
substring in the new position of w.

The key point in verifying that the above procedure works is that at the ith stage,

pointers 91 through q.—1 are not disturbed. Cl

Since OVC0N(AcpM(s)) can be as large as 0(! SI2), it is possible for Theorem 8 to
yield very poor bounds. However, this is not always the case, as seen by the following
example.

Example 1. A CPM compressed form thas simple overlapping if each pointer in
I strictly overlaps with at most one pointer to its right and one to its left. Let

CPM/SO denote the CPM scheme restricted to simple overlapping. A CPM/S0

compressed form with n pointers has at most It — l strict overlaps. Thus, since the

construction of Theorem 8 preserves simple overlapping, for all strings s,

IACPM/L/so{S)l 5 IACPM/so(S)| + 0VC0N(AcPM/so(3))

< 2| ACPM/so(-V) D

We now turn our attention to the complexity of optimally compressing strings

using the internal macro model. Unfortunately, like the EPM scheme, optimal

encoding for the CPM scheme appears to be intractable.

THEOREM 9. Given a string .9 and an integer K, it is NP-complete to determine

whether [AcpM(s)| 5 K even when any combination of the restrictions to unidirectional

pointers, no recursion, and no overlapping is made. Furthermore, this is true regardless

of whether the painter size p is part of the problem input or is constrained to be afixed
integer greater than 1.

PROOF. First let us assume that overlapping is forbidden. In this case we can
use a construction similar to that used for Theorem l(b) and (cl). Let G = (V =

{v1, . . . , v,,}, E = {e1, . . . , em}), K be an instance of the node cover problem and, as

in the proof of Theorem 1, let $ be a special symbol, and let @ denote a new, distinct

symbol each time it occurs. Now, for e. = (v,, vs) in E, let E. = Sv, "$v’;—1$, and let
S = 11:11 EL@-

We claim that G has a node cover ofsize Kifand only if [A(s)| 5 |s| + K— m. If
G has a node cover X of size K, then for each node in X we can associate an E. in s

(which will not get factored), and for all remaining m - K Efs we can replace exactly

one string of the form $v,$ by a pointer. Thus |A(s)| 5 1s| + K — m. The proof of the

converse is very similar to that used in Theorem l(b) and (d), and we omit the details.
As with Theorem 1, the above construction works independently ofwhether recursion

is allowed (since the largest factor has length p + 1). In addition, the left, right, or

unidirectional pointer restrictions cause no problem. For example, ifwe are restricted

to left pointers, we consider nodes in X one at a time and associate each with the

leftmost “unassociated” E. containing it.

When overlapping is allowed, we can use the same construction as above, except

that we let G, K be an instance of the 1-node cover problem which is defined as:

Given a graph G and integer K, is there a set of K or fewer edges in G such that every

edge in G is adjacent to at least one of these edges? The 1-node cover problem can

be shown to be NP—complete as follows. For G = (V = {v1 - - - v,.], E =

15

16

Data Compression via Textual Substitution 943

{e1 ~ - - e,,,}), K an instance of the node cover problem, construct the graph G’ =

(V’, E’), where V’ is V together with the new nodes 2:, and y., 1 -5 i = K, and E’ is E

together with the new edges (v., x,) and (x,, y,), I 5 is n and 1 5 j 5 k. Then G has
a node cover of size K if and only if G’ has a node cover of size K.

The only remaining case is the CPM scheme (with or without recursion) with one

of the pointer direction restrictions. This requires a separate construction which

appears in [30] for the case p 2 5. E]

The situation for the OPM scheme is much better. Although, at the time of the

writing of this paper, the status of the encoding complexity of the OPM scheme with
bidirectional pointers remains open,” we shall show that the unidirectional case can

be done in linear time.“ Lempel and Ziv in [12] (and also in [39]) have developed a
data compression algorithm that falls within the framework of our OPM scheme

restricted to left pointers and topological recursion. (As we shall see from the proof

of Theorem 11, a linear-time encoding algorithm for left pointers implies a linear-

time encoding algorithm for unidirectional pointers.) Rodeh et al. [24] have presented

a linear-time implementation of the Lempel—Ziv algorithm using the techniques of

[l5}.” Their implementation can most simply be described as a one-pass greedy
algorithm. At each step the longest possible prefix of the remaining input that

matches some substring of the previously read input is removed from the input and

replaced with a pointer. For example, if we have already processed ababc and the
rest of the input is abcd, then we would output the pointer (3, 3) and delete the next

three characters of the input. The Lempel~Ziv algorithm is asymptotically optimal

for ergodic sources as the length of the source string tends to infinity; however, for

individual finite strings the compression achieved can be far from optimal.

THEOREM 10. Let LZ{s) denote the compressedform of 3 obtained by applying the
Lempt-2l~Ziv algorithm. Thenfor any string at,

If P=1s the" |LZ(5)| =|A0PM/TR/L(S)|a

P < I£\opM/TR/L(S)i < 1
2P ‘ 1 lLZ(5')|

Furthermore, for any real number li > 0 it is possible to construct a string 5 over a two-

symbol alphabet such that |AopM/ma/;,(s)| / |ALz(s)[:5 (p + l)/2p + h.

if p > 1, then

PROOF. Without loss of generality we can assume that in any minimal-length

compressed form, any substring that is represented by a pointer to an earlier

occurrence is as long as possible; that is, if Sm - - - 3,. is represented by a pointer, then
3". - - - s,.+1 is not a substring of S1 - - - s,.._1. Otherwise we could obtain an equivalent

compressed form of the same or shorter length by changing the pointer to represent

s,,, - - - 5,,“ and then either deleting a character (if the pointer was originally followed

by a character) or changing the following pointer (if the pointer was originally
followed by another pointer).

Let s be any string, and consider i = A01:-M/'[‘R/L(.$') and u =- Am-(3). Form the finest

partition of t and it into segments t = t1 - - - t,,. and u = ur - - - um such that for 1 :5

‘5 Recently, it has been shown by J. Gallant (in his Ph D. dissertation, “String Compression Algorithms,”
Princeton University) that this problem IS, in fact, NP-cornplete
16 Note that as with the CPM scheme, encoding for the OPM scheme with either or both of the recursion
and overlapping restrictions {with unidirectional or bidirectional pointers) IS NP-complete. A proof of this
may be found in [30]
‘7 In addition to [15], the interested reader should refer to [2, ll, 18, 22, 29, 36]. Also, a good introduction
to the above work is contained In [I]

16

17

944 I. A. STORER AND 1*. G. SZYMANSKI

: $1: 1::
mm, a._ - «

j s m, t; and u,- represent the same substring of s. In order to establish the bounds

quoted in this theorem, it is sufficient to show that

l'1|=|141|= 1-

P < < l for '> l
2p — I iuli ’

By definition of the Lempel—Ziv algorithm, it is impossible for some i‘, to begin with

a pointer while u, begins with a character. We therefore have one of the following
cases:

(1) t_, and 11, both consist of a single character.

(2) 1}‘ and u, both consist of a single pointer (which represent identical strings by the

optimality principle stated at the beginning of the proof).

(3) 1, begins with a character, and u,- begins with a pointer.

In the first two cases, |t,] = |u_,| = 1, and their ratio falls within the desired bounds.

We must therefore establish the bounds for case (3). Let us write

1; * xiqixzqe - - - J€nqnJCn+1,

11; = f'i)’il"2_,‘V2 - - - Fmym,

where each of the x.’s and y,’s is a string of zero or more characters and the q.’s and
r,’s are pointers.

A key observation is that any substring of s that is represented by characters (as

opposed to pointers) in either if, or u, must be represented by a pointer in the other.

This is true because of our definition of t, and u,« in terms ofa finest possible partition

of t and :4. Figure 1 suggests the structure of that portion of .9 represented by t, and

21,. Notice that for each i‘, 1 S 1' 5 n, q. represents at least the last character represented

by r.-, all ofy., and at least the first character represented by r.+1. Also, for 2 5 is m,

r, represents at least the last character represented by q._1, all of x., and at least the

first character represented by 41.. To verify the above facts, depicted in Figure 1, it is

sufficient to observe that except at the end, if q. starts within r,, then q. must go

beyond the end of r., since if q. ended earlier, then q.- would not be as long as possible

(as we assumed at the start of the proof), and if .1; ended at the same place, we would
not have the finest possible partition. Similarly, if r. starts within a q., then r. must go

beyond the end of q,, since to end earlier would imply a violation of the Lempel—Ziv

greedy rule, and to end in the same place would violate the finest partition.

Let us summarize some important observations about Figure 1:

(1) Either m = n or else m = n +1.

(2) For 1 S i S n + 1, |x.| .<_ p, or else we could replace 2:. with a pointer to some

earlier occurrence in s, thus reducing the length of r by at least one in contradic~
tion to our definition of t as a compressed form of minimal length.

(3) For 1 .<_ 1' < m, | y.| 5 p — 1, or else the Lempe1—Ziv algorithm would have used
a pointer instead of y,.

(4) lyml 5 P-

A number of cases now arise.

17

18

Data Compression via Textual Substitution 945

Case 1. Suppose that n = m. Since t, contains exactly :1 pointers and at least one

character from x;, we have |t,| 2 np + 1. Now consider 11,, which also has exactly n

pointers. Since each of the y, (except possibly y,,) has no more than p - 1 characters,

Iu,|Snp+(n— l)(p- 1)+p=n(2p— 1)+l.

Thus

I_aa.___.»P+*2 P .
|u,| n(2p-l)+l 2p-1

Case 2. Suppose that m = n + 1 and x,,+1 is the empty string. Thus both t, and

u_, end in a pointer. It is not hard to see that y,,,_1 must also be empty, or else the

Lempel—Ziv algorithm would have replaced the string represented by y,,,_1r,,. by a

single pointer. Thus it, contains exactly n + 1 pointers, | y,;] S p — l, for 1 S k

.<_ n — 1, and |y,,| = |y,,+1| = 0. Hence,

|u,|=(n+ l)p+(n— l)(p-— 1)=(2p— l)n+1.

Once again we have

[1,] n_p+l > p_._—>

|u,|—n(2p—l)+l_2p-1'

Case 3. Suppose that m = n + 1 and x,,+1 is not empty. By our definition of t and

u in terms of a finest possible partition, it must be the case that y,,+1 is the empty

string. Also, since the string represented by q,, extends at least (p + 1) - Ixnul

characters past y,., it must be that | y,.| < |xn+1|; otherwise, the presence of q,, implies

that the Len1pe1—Ziv algorithm must place a pointer directly after r,. (i.e., | y..| = 0).
Thus we have

lt_‘,_|2 np+|x,,+1]+l > np+l 2 p I
|u,| n(2p-1)+|y..|+l n(2p-l)+l 2p-l

In all of the above cases We have shown that |t,[/ | u,| 3: p/(Zp — 1). Since we are

using lefi pointers, it must be that t1 and :41 contain no pointers (and so |t1f - |u1|).

Thus ltl = |u| forp = l, and |tf|/|u| >p/(Zp — 1) forp >1.

For any p > 1, using only a two-symbol alphabet, we can approach the lower

bound of p/(Zp — 1) as follows. For k 2 0, let n = (p + l)2" — I and
""19

Sn= abr.-.+labn+l H (abn—labn-‘-L).t-U

It is easy to check that

|AopM/m/L(s,,)'[= (k + 2p + 1) + (n - p)(p + 1)
|ALZ(Sn)l (k + 2p + 1) + (n — p)2p

_ n(p + 1) + 0(p1og2(n))

' nap) + on 103201))

T as Hfiw.

For p = 1, p/(2p — l) = (p + l)/2p = 1, and asp gets large, both quantities converge
to 5. Nevertheless, for p > 1, p/(2; -— 1) is strictly less than (p + l)/2p, and so we are

left with a small “gap." At the time of the writing of this paper, this gap has not been
resolved. El

18

19

946 J. A. STORER AND T. G. SZYMANSKI

Theorem 10 shows that as p gets large, the worst-case performance of the

Lempel—Ziv algorithm does not compare favorably with that of Aopu/-m,;,. The next

theorem shows that if we compare the performance of the Lempel—Ziv algorithm

with that of Aom/L, the disparity becomes even greater.

THEOREM 11. For all strings and any pointer size p,

I AOPM/L(S) I
0 ——-———s 1,

< |A:.z(s)l

and the above bounds are tight.

PROOF. This is a direct consequence of Theorems 5 and 10. I3

Although the Lempel—Ziv algorithm is not optimal for the OPM/L scheme even

when it is restricted to topological recursion, the next theorem shows that a linear-

time algorithm does exist for optimally compressing strings using the OPM scheme

restricted to unidirectional pointers of any size (independent of whether topological

recursion is used). In view of the number of NP-completeness results presented thus

far, this is a pleasing result, especially since the OPM scheme has many practical

applications.

THEOREM 12. For any string 3, Ag;-M,UD{s) can be constructed in linear time (on a
RAM).

Pnoor. Given a string .9 = s, - - - s,., Aoprm_(s) may be computed by performing

the following steps (note that SI-IORT[] and MATCH[] are arrays of strings):

A: Let MATCH[k], l 5 k 5 n, be the longest string s. - -- 4:, such that 1 < k and s. - ~- .9, = s;, - - - st”-..
Also, let 9, denote a pointer to MATCI-I[Ic].

B: SHOR’I‘[n + l] - {empty string)
C: dot‘-n-ltolby—l',

if MATCH[r'] - (empty string) then Si-IORT[i] - s,SHORT[i + 1]
else SHOR'l'[i] = min(s.Sl-lOR’l‘[i + 1], q,SHORT[r' + |MATCH[i]|]}

D: AOPM/t.(.t') - SHORT[l]

The algorithm is a dynamic programming algorithm which utilizes the optimality

principle stated at the beginning of the proof of Theorem 10. Each string SHORT[i]

computed by the algorithm is the shortest compressed form for s. - -- s,., given that

s1 - - - s.-1 is available as a “dictionary.” By using the appropriate data structures,

step A can be performed in linear time using a slight generalization of the algorithm

described in [23]. To perform step C in linear time, we note that the array

SHORT can be represented by storing at SHORT[r']s.- (or q.-) followed by a pointer

to SHORT[i + 1] (or SHORT[i + |MATCH[i] |]). In step D we can easily write out

SHORT[l] in linear time by following the sequence of pointers through the array

SHORT. Hence the entire algorithm to compute AopM,1,(s) runs in linear time.

To compute AOPM/UD(S), we can compute AopM;R(s) using the above algorithm on
the reverse of s and then AOPM/1113(5) = min{AopM,L(s), AopM;n(S)}. E]

It should be noted that the Lempel-Ziv scheme uses the same decoding algorithm

as any other unidirectional 0PM scheme, and so the decoding complexity of our

method is the same as that of Lempel—Ziv.

5. Internal Versus External Schemes

Although a number of bounds have already been given on the relative performance

of various pairs of compression methods, we have yet to compare the effectiveness of

19

20

Data Compression via Textual Substitution 947

the external schemes to the internal schemes. We shall now present a few results of

this kind. In order to avoid trivial comparisons, we shall require that both schemes

under comparison allow recursion if either does (otherwise the relative performance

goes to zero). This will cause us to consider schemes that are not particularly natural

(internal schemes with nonoverlapping pointers, etc.). The purpose of comparing,

say, the EPM scheme without recursion or overlapping to the CPM scheme without

recursion and overlapping is not to propose the CPM scheme without recursion and

overlapping as a useful scheme, but rather to give some insight with regards to the

relative performance of internal and external schemes. The first theorem of this
section considers schemes without restrictions.

THEOREM 13. For all strings s,

(H) §|AcPM(—'~‘)| < |A2PM(S)| -<- |AcPM(S)l + p.
(5) t|AoPM(~V)i < |AoEPM(S)| 5 [AoPM(S)| + P:

regardless of whether topological recursion is assumed. Furthermore, for any real

It > 0, there are infinitely many strings over a two-symbol alphabetfor which the bound

of 1} + k can be achieved for (b) and infinitely many strings over a K 2 2 symbol

alphabetfor which the bound of (ZK — l)/(3K — 2) + It can be achievedfor (a).13

PROOF

(a) The proof of the second inequality is trivial since A(}pM(S) may be used as the

external dictionary. Let us now demonstrate the bound of 7?}. In what follows, for
strings in and vw (v may be the null string), uv — vw denotes w and uv + vw denotes

v. For a string s, consider AB;-M(s) = so#s1. Write So as So = H521 r.-, where r1 is the first
factor in so and r., 2 5 i 5 k, is r.-1 — z, where z is a substring of so satisfying the

following two conditions:

(1) z is a factor in so that either overlaps with r._1 or starts directly after r._1 (i.e., z
is a factor in So and rm - 2 is well defined).

(2) There is no other factor in so that satisfies condition 1 and extends further to the

right in so than 2.

Since (by definition) AEpM(S) is a minimal-length compressed form, the partition of
so as described above is well defined. Furthermore, by construction the following two
facts hold:

(1) The set {R} : r. is a compressed form for R.) is a set of nonoverlapping substrings
of s.

(2) Each factor in so is, for some 1', a substring of the string r,-, rm.

It is possible to construct a CPM compressed form t for s from .91 as follows:

All characters (t.e., nonpomters) in s, are left intact. Find a pointer q in s; with n as its target, and replace
2; by r; For 2 5 is k, find a pointer q in s. with a target z satisfying r, - r...; -- z, and replace 4' by q’r.,
where q’ is a pointer to r.-. + 2. All other pointers q in s. point to a substring of r.r...1 for some iand may
be replaced by two pointers in the obvious way.

It is possible that for some strings, the substitutions described above cause some

pointers to have targets of size p or smaller. If this is the case, we can reduce the size
oft by deleting pointers of this kind and substituting in the targets. Similarly, it may

be possible to reduce the size of t by finding adjacent pairs ofpointers that we created
as described above and find a new target such that the pair of pointers can be

'3 Note that this implies that the bound of 2/3 is tight for unbounded size alphabets.

20

21

948 J. A. sronnn AND '1". G. SZYMANSKI

replaced by a single pointer together with less than F characters. Since we are looking

for a worst-case ratio (which we show to be tight shortly), We can assume that it is

not possible to shorten t in the two ways described above. Having made this

assumption, it is not hard to show that for a worst-case ratio it must be that [sol 2 pn,

where n denotes the number of pointers in .91. Thus, if we let m denote the number
of characters in s1, we have

|AE1=M(S)|> E1-‘-I+:PM(~‘-")|> P" + m + |So|
|AcPM(s)|_ It! _2P"+m+lS0|

2r13_t_!:tfl_Z3_
2pn+|so[3

A more careful analysis shows that the above inequality must be a strict inequality
(i.e., >, not 2).

We now show the bound of g to be tight. Let us first see how a bound of :f~ may be
achieved with a two-symbol alphabet. For n a multiple of p let

n/P _ (1)
s = H a""b""’ P.

R i-1

Using the EPM scheme, s,, can be written as
nip

a"b"#H (n—tp+ l,n+p),1-1

and so it follows that |AE1>M(s..)| 5 3n. On the other hand, if we attempt to factor Sn

using the CPM scheme, a shortest compressed form for s,, is
n/p—1

a"b"([I q1,.q2,.)a"b".I-2

where :11, denotes a pointer into a” and qr,-,. denotes a pointer into b”. Hence

|AcpM(s..')| 2 4n + 0(1)), and a bound of 4} follows.

For a K 2 2-symbol alphabet we can generalize the above construction by definihgK-1 n

= «LP :1-U-lip ’Sn. PH] (1-1 a a +1)
and the bound of (2K — 1)/(3K — 2) follows. In addition, if we let K = f(n) for any

unbounded function f, then the bound of 5» follows for an unbounded alphabet size.

(b) For a string s we can consider Ao1gpM(s) = so#s1 and proceed in a fashion

analogous to the proof of part (a), the only difference being that this proof is a bit

simpler, since we cannot make any claims about |so|. This is because with original
pointers, pointers indicate the decompressed form of so, not so itself; thus so can be

very small compared to the number of pointers in s1. Hence, using the notation of

part (a),

IA0E1=~M(S)I > pr: __ I
|A0PM(S)| E — 5'

This bound may be shown tight (even for two-symbol alphabets), as follows. For
n > 0 let

n/p

Sn = H alpbn-(I-1)p_:---1

Using an external dictionary of a"b", it is easy to see that |AoEpM(s,.)| 5 n +

0(p log2(n)), regardless of whether topological recursion is used, whereas it is easy to

21

22

Data Compression via Textual Substitution 949

check that iAopM(s,.)| 2 Zn, regardless of whether topological recursion is used. Thus

the bound of A} is approached arbitrarily closely as it gets large. Cl

We now turn our attention to bounds concerning restricted schemes. In particular,

we consider overlapping and recursion restrictions.

THEOREM 14. Let Amr denote an internal scheme (CPM or 0PM) and Ag-xr an

external scheme (EPM or OEPM). Furthermore, if Arm and Asxr are used together,

then both refer to compressed pointer schemes or else both refer to original pointer

schemes. Thenfor all! strings s,

(a) 5 < |Aexr(s) | / I AmT(s)l E gwhert recursion isforbidden.
(b) 1 5 |Ar:xr-(s) | / I Amr(s)I 5 § when overlapping isforbidden or when both recursion

and overlapping areforbidden.

Furthermore, these bounds are tight.

PROOF

(a) When recursion is forbidden, compressed and original pointers are equivalent,

and so without loss of generality we consider the CPM scheme. The fact that i is a

tight lower bound follows from a proof very similar to that of Theorem 13. We now

show that g is a tight upper bound. It is not hard to show that we need only consider
strings s such that for some string r and integer k 2 1,h

ACPM(-5') = 1' H qt,t-l

where q, denotes a pointer to some snbstring of r. Using r as the dictionary for the

EPM scheme, 5 can be factored using k + 1 pointers. Thus we have

|AExr(~9)| _ |AEPM(S)| < M + (k 4' 1)]!
|A:m{s)| ' lAcm(s)l “ Irl + to

5|_'%_+_2r5:‘,
Ir|+r 3

The string 42"’ attains this bound.
(b) It is easy to see that 1 is a tight lower bound. Given Anx~r(s) = sa#s1, a

corresponding internal compressed form t for s may be formed by “hoisting up” so

into s, with the following algorithm (this works independently ofwhether topological

or nontopological recursion is present):

A: Let I = :1 and label all pointers “unmarked.”
B: while there is an unmarked pointer q in I do

Replace 9! by its target and replace all other unmarked pointers in t that have the same target as
.7 by a marked pointer to their target in t.

The (tight) bound of § follows by an argument similar to that given in the proof of
part (a). Cl

6. Conclusion

We have investigated various aspects of the macro model for performing data

compression by text substitution. Results have included NP-completeness theorems
on the complexity of finding the most compact encodings for several different macro

schemes, relative performance bounds on many pairs of schemes, and a linear-time

algorithm for performing optimum compressions for one of the more practical

22

23

950 J. A. sroiuzii AND T. G. SZYMANSKI

schemes. All of the schemes we have presented have efficient linear-time decoding

algorithms,” and many restricted forms of these schemes have real-time decoding

algorithms that require only a small amount of random access memory. The same

decoding algorithm may be used independently of whether the compressed form is
of minimal length. Thus, NP-completeness results indicated in this paper should not

discourage further investigation of these schemes. It seems likely that fast and

effective approximation algorithms for compressing strings exist for many of the

macro schemes with NP-complete encoding complexities. In addition, a number of

further results that we have not discussed in this paper lead to polynomial-time

compression algorithms for various restricted forms of these problems.

ACKNOWLEDGMENTS. The authors are grateful to J. D. Ullman for helpful comments

and to J. Gallant for his critical reading of the paper and for providing a shorter

proof of Theorem 2 for the case p = 1.

REFERENCES

1. AHO, A.V., Horcnorr, J.E , AND ULLMAN, J D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass, 1974.

2. BOYER, R.S. A fast string searching algorithm Commuri. ACM 20, 10 (Oct. 1977), 762-772.
3. COOK, S.A The complexity of theorem proving procedures. Proc. 3rd Ann. ACM Symp. on Theory

of Computing, Shaker Heights, Ohio, 1971, pp. 151-158.
4. GALLANT, J., MAIER, D., AND STORER, J.A. On finding minimal length superstrings. J. Comput. Syst.

Sci. 20 (1980), 50-58

5. GAREY, M.R., JOHNSON, D.S., AND STOCKMEYER, L. Some simplified NP-complete problems. Theor.
Comput. Sci’. 1 (1976), 237-267.

6. HAGAMEN, W.D., LINDEN, D.J., LONG, H.S., AND Wiaeiiii, J.C. Encoding verbal information as
unique numbers. IBM Syst. J. 11 (1972), 278-315.

7. HAHN, B. A new technique for compression and storage of data. Cammun. A CM 17, 8 (Aug. 1974),
434-436

8. HUFFMAN, D.A. A method for the construction ofminimum—redundancy codes, Proc. IRE 40 (1952),
1098-1101.

9. KARP, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.

10. KNUTH, D.E. T}ieArI' of Computer Programming, Vol. I: FundamerrtaIAIgor'i'thm.r, 2nd ed. Addison-
Wesley, Reading, Mass, 1973.

. KNUTH, D.E., Moitrus, J H., AND PRATT, V.R. Fast pattern matching in strings. SIAM J. Comput.
6, 2 (1977), 323-349.
LEMPEL, A , AND Zrv, J. On the complexity of finite sequences. IEEE Trans Inf Theory IT 22, 1
(1976), 75-81.

Lssrc, M.E. Compressed text storage. Unpublished Tech. Memo., Bell Laboratories, Murray Hill,
N.J., 1970

MCCARTHY, J.P. Automatic file compression. In International Computing Symposium, North-Hob
land, Amsterdam, 1973, pp 511-516.
MCCREIGHT, E M. A space-economical suffix tree construction algorithm. J. ACM 23, 2 (Apr. 1976),
262-272.

MAIER, D The complexity of some problems on subsequences and supersequences. Conf on
Theoretical Computer Science, University of Waterloo, Waterloo. 0nt., Can., 1977, pp. 120-129
MAIER, D., AND STORER, J.A. A note on the complexity of the superstring problem. Proc 1978 Cont".
on Information Sciences and Systems, Baltimore, Md., 1978, pp. 52-60.
MAJSTER, M E. Efficient on-line construction and correction of position trees. Tech. Rep. TR79-393,
Dep. of Computer Science, Cornell Univ., Ithaca, N.Y., 1979.
MARCH, B.A , AND Di-: MAINE, P.A.D. Automatic data compression. Commun. ACM 10, 11 (Nov.
1967), 7l1—7l5

. MAYNE, A., AND JAMES, E.B. Information compression by factorising common strings. Comput. J.
18, 2 (1975), 157-160

n-A i—

|~JI—Ii—I|--In--i—tI—II—II—=v=.w.~I.a~v-euro
*9 The decoding algorithms presented in Definitions 1-4 are used because they are simple to state, not
because they are the most efficient algorithms

23

24

Data Compression via Textual Substitution
21.

22

23.

24.

25
26

27.

28.

29.
30

31

32.

33.

34.

35.

36.

37.
38.

39.

951

MORRIS, R., AND THoM:i>soN, K. Webster‘s second on the head of a pin. Unpublished Tech. Memo,
Bell Laboratories, Murray Hill, NJ., 1974.
PRATT, V.R. Improvements and applications for the Weiner repetition finder. Lecture notes, 3rd
revision, 1975.

RODEH, M, PRATI, VR., AND EVEN, S A linear-time algorithm for finding repetitions and its
application to data compression, Tech Rep. No. 72, Dep of Computer Sci., Technicon, Israel, I976.
RODEH, M., PRATT, V.R., AND EVEN, S. Linear algorithm for data compression via string matching.
J. ACM 28, 1 (Jan 1981), 16-24.

RUBIN, F Experiments ‘in text file compression. Commun. ACM 19, 11 (Nov. 1976), 617-623.
RUTH, S S , AND KREUTZER, P.J. Data compression for large business files. Datamation I8, 9 (1972),
62-66

SEERY, J B., AND Ziv, J. A universal data compression algorithm‘ Description and preliminary
results. Unpublished Tech. Memo., Bell Laboratories, Murray Hill, N.I., 1977.
SEERY, J.B., AND Ziv, J. Further results on universal data compression. Unpublished Tech. Memo.,
Bell Laboratories, Murray Hill, N.J., 1978.
SEIFERAS, J. Subword trees Lecture notes, 1977

STORER, J.A NP-completeness results concerning data compression. Tech. Rep. 234, Dep. of
Electrical Engineering and Computer Science, Princeton Univ., Princeton, NJ., 1977.
STORER, J.A. Pl.CC—A compiler-compiler for PL1 and PLC users. Tech. Rep. 236, Dep. of
Electrical Engineering and Computer Science, Princeton Univ., Princeton, N.J., l9'.'7.
STCIRER, J.A. Data compression: Methods and complexity issues. Ph.D. Dissertation, Dep. of
Electrical Engineering and Computer Science, Princeton Univ , Princeton, 14.1., 1978.
STORER, J.A., AND SZYMANSKI, T.G. The macro model for data compression. Proc. 10th Ann. ACM
Symp. on Theory of Computing, San Diego, Calif, 1978 (extended abstract).
VISVALXNGAM, M. Indexing with coded deltas-—A data compaction technique. Sofiw. Pract. Exper
6 (1976), 397-403.
WAGNER, RA. Common phrases and minimum-space text storage. Commun. ACM 16, 3 (Mar.
1973), 148-152

WEINER, P Linear pattern matching algorithms. Proc. 14th Annual IEEE Symp. on Switching and
Automate. Theory, Ames, Iowa, 1973, pp. 1-11.
Ziv, J. Coding theorems for individual sequences IEEE Trans. Inf.’ Theory IT 24, 4 (1978) 405-412.
Ziv, J , AND LEMPEL, A. A universal algorithm for sequential data compression. IEEE Wans Inf
Theory IT 23, 3 (1977), 337-343.
Ziv, J , AND L]-3MP]:'.L, A. Compression of individual sequences viii variable-rate coding. IEEE Trans.
Inf Theory IT 24, 5 (1978), 530-536.

RECEIVED JULY 1979, REVISED JUNE 1980, ACCEPTED JUNE 1981

Journal of the Association for Computing Machinery, Vol 29, No 4, October 1982

24

