
1 APPLE 1013

US006158000A

Ulllted States Patent [19] [11] Patent Number: 6,158,000

Collins [45] Date of Patent: Dec. 5, 2000

rzmary xamLner— i iam rant54 SHARED MEMORY INITIALIZATION P ' E ' W'll' G

METHOD FOR SYSTEM HAVING MULTIPLE Assistant Examiner—Ronald D Hartman, Jr.

PROCESSOR CAPABILITY Attorney, Agent, or Firm—Conley, Rose & Tayon, P.C.;
. Michael F. Heim

[75] Inventor: David L. Collins, Magnolia, Tex.
[57] ABSTRACT

[73] Assignee: Compaq Computer Corporation,
Houston, Tex. A multiprocessor computer system is provided with a BIOS

that allows parallel execution of system initialization tasks

[21] Appl. No‘: 09/158,165 by at least two processors to reduce system boot-up time. At
. power-on, one of the processors is designated as a bootstrap

[22] Flledi Sell‘ 18! 1998 processor and the remaining processors are designates as

[51] Int. Cl.7 G06F 15/177; G06F 9/00; afipllzatlon processodrsi Tile profiessgrs are Coupged tflihaG061: 15/00 s are memory mo ue y a s are processor us. e

[52] U.S. Cl. 713/1; 713/2; 712/21 bootstrap Processor 15 Cflllflguled to msmlcl lheéppllcallon

[58] Field of Search 713/1, 2; 712/21 ptrlocegsor to test a(I:11d11nH:.‘111Ztehmt::m(t’rty locanons In thes are memory mo u e W i e e oo s rap processor pro-

[56] References Cited ceeds with other system initialization tasks ‘may
U S PATENT DOCUMENTS include determining the system configuration, initializing

' ' peripheral devices, testing the keyboard, and setting up the
4,235,207 11/1930 Rado et a1. . BIOS data area with configuration information. After com-
5,327,553 7/1994 Jewett et al. . pleting its tasks, the bootstrap processor determines whether

TCLIICR the application processor has Completed the Inefnory test’
597909850 8/1998 Nam """"" “ 395/652 and if so the bootstrap processor proceeds to locate and
5,904,733 5/1999 Jayakumar 713/2 t ’ t. t It. t d th tt t. d
5,933,624 8/1999 Balmer 395/553 ‘.°“".‘°’?’“.‘°’.a“ °l"’””“g.SyS em" 15. expece a ‘°1Sl“.g.a“
5,938,765 8/1999 Dove 713/1 rrrrlralrzrrrg rrrerrrery rrr Parallel Wrllr ellrer Syelerrr rrrrlralrZa'

OTHER PUBLICATIONS

A Technical Reference for Designing PCs and Peripherals
for the Microsoft Windows Family of Operating Systems,
PC98 System Design Guide, Version 1.0—Sep. 5, 1997.

POWER-ON

PROCESSORS
RESET

306

AM I BSP?
308 YES

CONF|G. MEM.
CONTROLLER

311 1INITIALIZE
BASE MEM.

tion tasks will advantageously reduce system boot-up time
in multiprocessor systems having large memories (e.g. 1-4
gigabytes).

25 Claims, 3 Drawing Sheets

SET UP SN“ INITIALIZE AP ,vC/ECDR2 332

314 YE 325 V /, v
MULTIPLE STAR‘ MEM. / GE;gE%T'jE'-R

PROC.? TEST/CLR AP fir:
316 o 326 V v

POST SYSTEM POST SYSTEM TE?/|TEflg§ARCOMPONENTS COMPONENTS
336313 323 <— v

NO

TEST 3 CLEAR AP DONE? V STORE RES-
MEMORY 330 YES \\ 333 V

320 ' ‘\ S|GNA_ TASKREPORT RES. (;oMP_ET|oN
3227 340
LOAD/RUN os HALT

3247 342

APPLE 1013

2

U.S. Patent Dec. 5,2000 Sheet 1 of3 6,158,000

0.!u..

____===================
@

100 FIG. 1

3

U.S. Patent Dec. 5,2000 Sheet 2 013 6,158,000

CPUO CPU1 CPU2 CPU3

HO

PROCESSOR BUS

BRIDGE 1 MEMORY BRIDGE 2

116 115 117

PRIMARY EXP. BUS 1 PRIMARY EXP. BUS 2

CONTROL BRIDGE

122 120

SECONDARY EXP. BSUPPLY 121

126

109 108 124

 INTERRUPTBUS

4

U.S. Patent Dec. 5,2000 Sheet 3 of3 6,158,000

EVENT

302

POWE R-ON

304

PROCESSORS

RESET

306

AM I BSP? NO HALT

308 YES 310

CONFIG. MEM.

CONTROLLER

311

INITIALIZE

BASE MEM.

312

SET UP SN“ INITIALIZE AP ,4 VECTOR
314 325 / 332

YES ,/
MULTIPLE START MEM. ’

PROC.? TEST/CLR AP

316 O 326

POST SYSTEM POST SYSTEM

COMPONENTS COMPONENTS

318 328

TEST & CLEAR AP DONE?

MEMORY 330 YES \

320 \\\
REPORT RES.

322

LOAD/RUN OS

324 342

GET TEST/CLR

ROUTINE

334

TEST & CLEAR

MEMORY

336

STORE RES.III Illgll

5

6,158,000

1
SHARED MEMORY INITIALIZATION

METHOD FOR SYSTEM HAVING MULTIPLE
PROCESSOR CAPABILITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to multiprocessor
computer systems that distribute system boot-up tasks
among the processors, and in particular, to a multiprocessor
computer system in which the memory initialization task is
assigned to one or more processors other than the bootstrap
processor.

2. Description of Related Art

Due to the advent of power management technology and
the more recent “instant-on” efforts, there are many ways in
which a computer may exist in the “OFF” state. Examples
include hard off (power is disconnected), soft off (power is
supplied only to components which monitor activity exter-
nal to the system), suspend mode (contents of memory are
stored on disk and current state of computer is preserved
while power consumption is reduced to a minimum level),
and sleep mode (the clock signal is reduced or halted to
some or all of the system components during periods of
inactivity). The sleep and suspend modes may each be
invoked at various levels, depending on the particular imple-
mentation of these modes, and recovery from these modes is
implementation specific.

Turning a computer “ON” from the hard-off or soft-off
states causes the computer to begin an initialization process
(often referred to as “boot-up”). In the initialization process,
a system reset signal is asserted and released. After the
de-assertion of the reset signal, many of the system periph-
eral components initialize themselves, retrieve configuration
information from dedicated electrically erasable program-
mable read-only memories (EEPROMs), and enter an ini-
tialized state. At the same time, the CPU resets itself and
searches for instructions on how to prepare the system for
operation. The initial instructions typically are included in
the basic input/output system (BIOS) which is executable
code stored in a nonvolatile memory such as a read-only
memory (ROM). The BIOS is built-in software that contains
low level code used to control the keyboard, display screen,
disk drives, serial communications, and a number of mis-
cellaneous functions. The BIOS also specifies a boot-up
sequence for the CPU to execute to make the computer ready
for operation. The CPU normally begins executing initial-
ization routines from the BIOS ROM, but subsequently
copies the BIOS code to main memory from which the BIOS
code may thereafter be executed during normal computer
operations.

Typically, the first thing that the BIOS instructs the CPU
to do is to perform what is called the Power-On Self-Test, or
POST for short. The POST is a built-in diagnostic program
that checks much of the computer’s hardware to ensure that
everything is present and functioning properly, before the
BIOS begins the actual initialization process. Some addi-
tional tests are performed later in the boot process. If any

10

15

20

25

30

35

40

45

50

55

60

65

2

fatal errors are encountered, the boot process stops. After the
initial POST, the BIOS instructs the CPU to locate the video
system’s built in BIOS program and to execute it to initialize
the video card. The CPU then displays the BIOS’s startup
screen, and looks for other devices to see if any of them have
initialization routines. If any other device initialization rou-
tines (e.g. IDE hard drive) are found, they are executed as
well.

The CPU then does more tests on the system, including
the memory count-up test which may be viewed on the video
display. In one form, the memory test may be performed by
writing a test pattern to every memory location and subse-
quently reading every memory location to verify that the test
pattern was correctly stored. A second test pattern may also
be employed so that each bit gets tested in both states.
Finally, some operating systems require that the memory be
zeroed out prior to loading and executing the operating
system software. Consequently, for each memory location
there may be up to five access operations during the memory
test (write pattern #1, read pattern #1, write pattern #2, read
pattern #2, write zeros). For a computer with one megabyte
of no-wait-state memory and a 12 MHz bus, the memory test
requires less than half a second.

If an error is encountered after the initialization of the

video system, a text error message will generally be dis-
played on the video display. As the initialization process
continues, progress is regularly reported on the screen. The
BIOS boot-up sequence also includes a “system inventory”
of sorts, performing more tests to determine what sort of
hardware is in the system. Modern BIOSes have many
automatic settings and may, among other things, automati-
cally determine memory timing based on what kind of
memory it finds. Many BIOSes can also dynamically set
hard drive parameters and access modes, and will determine
these at roughly this time. The BIOS will also now instruct
the CPU to search for and label logical devices (COM and
LPT ports). If the BIOS supports the Plug and Play standard,
the CPU will detect and configure Plug and Play devices at
this time and display a message on the screen for each one
it finds. The CPU will often display a summary screen about
the system configuration and begin a search for a boot
device. Some modern BIOSes contain a boot table that

specifies the order of devices which the system should try to
boot from. If a first target device is present and properly
configured for booting, the system will boot from this
device. If the target device that the system tries is not found,
the CPU will then try the next device in the boot table, and
continue until it finds a bootable device. If no boot device at

all can be found, the system will normally display an error
message and then freeze up the system.

Having identified a target boot drive, the BIOS instructs
the CPU to look for boot information to start the operating
system boot process. For example, with a hard disk, the CPU
may search for a master boot record at cylinder 0, head 0,
sector 1 (the first sector on the disk). If the CPU finds the
master boot record, the CPU starts the process of loading
and executing the operating system, using the information in
the boot sector. At this point, the code indicated by the boot
sector takes over from the BIOS.

The boot devices which are accessed during the above
boot-up sequence may include any nonvolatile storage
device. Floppy disks, hard disks, magnetic tape, CD-ROMs,
Flash ROMs, and network server disks are all examples of
devices which can serve as a boot device. In order for a

device to be a boot device, it must hold a copy of an
operating system, and typically it needs to include a “boot-
sector” that informs the CPU of the operating system’s exact

6

6,158,000

3

storage location. Typically, local devices (i.e. devices
included in the computer or directly connected to the
computer) are preferred over remote devices (i.e. devices
that need to be accessed via a network or shared commu-

nications link) for booting the system. A local device is
nearly always able to provide much quicker response when
operating system components need to be retrieved.

With the increasing sophistication of computers, a sub-
stantial increase in the time required for booting-up a
computer has occurred. One particular instance is the
memory test. Many computer workstations are being pro-
vided with 1-4 gigabytes of memory. Even with no-wait-
state memory and 100 MHz bus speed, a conventional
memory test may easily require over 60 seconds. When this
is added on to the time required for other initialization tasks,
the boot-up time may begin to annoy regular users.

Many variations exist for the boot-up sequence conducted
by the BIOS. In particular, efforts are being made to reduce
the time required for a computer to boot up. Since computer
hardware has become extremely reliable, a proposal has
been made to eliminate POST tests from the normal boot-up
sequence. In “Simple Boot Flag Specification: Version 1.0”,
Microsoft has proposed the use of a register to communicate
boot options to the system BIOS. The boot flags are PNPOS,
BOOTING, and DIAG. The PNPOS flag is asserted if the
operating system normally used by the computer is Plug-
and-Play capable. If this is the case, the BIOS doesn’t need
to spend time configuring components that the operating
system will configure. The DIAG flag is de-asserted if
hardware tests are considered unnecessary. In this case, the
BIOS can skip the POST. The BOOTING flag, if asserted,
indicates that the previous boot attempt did not successfully
complete and the BIOS may choose to ignore the other flags
and provide a complete system test and configuration
sequence.

In many systems, particularly those performing critical
roles, it is desirable to reduce boot-up time without sacri-
ficing the assurance provided by performing the POST on a
regular basis. Thus, a computer system is needed that
reduces the initialization time required by conventional
system implementations.

SUMMARY OF THE INVENTION

Accordingly, there is provided herein a multiprocessor
computer system having a bootstrap processor and an appli-
cation processor which concurrently perform system initial-
ization tasks to reduce the system boot-up time. In one
embodiment, the processors are coupled to a shared memory
module by a shared processor bus. The bootstrap processor
is configured to instruct the application processor to test
memory locations in the shared memory module while the
bootstrap processor proceeds with other system initialization
tasks which may include such tasks as determining the
system configuration, initializing peripheral devices, testing
the keyboard, and setting up the BIOS data area with
configuration information. After completing its tasks, the
bootstrap processor determines whether the application pro-
cessor has completed the memory test, and if so, the boot-
strap processor proceeds to locate and execute an operating
system. It is expected that testing and initializing memory in
parallel with other system initialization tasks will advanta-
geously reduce system boot-up time in multiprocessor sys-
tems having large memories (e.g. 1-4 gigabytes).

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

preferred embodiment is considered in conjunction with the
following drawing in which:

FIG. 1 shows a computer system;

FIG. 2 is a functional block diagram of a computer
system; and

FIG. 3 illustrates a method for booting-up a computer.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

In addition, certain terms are used throughout the follow-
ing description and claims to refer to particular system
components. This document does not intend to distinguish
between components that differ in name but not function. In
the following discussion and in the claims, the terms
“including” and “comprising” are used in an open-ended
fashion, and thus should be interpreted to mean “including,
but not limited to . . . ”. Also, the term “couple” or “couples”
is intended to mean either an indirect or direct electrical

connection. Thus, if a first device couples to a second device,
that connection may be through a direct electrical connec-
tion or through an indirect electrical connection via other
devices and connections.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Turning now to the figures, FIG. 1 shows a multiprocessor
computer system 100 that is advantageously configured with
a reduced boot-up time due to distribution of initialization
tasks to more than one processor. Computer system 100
comprises a computer chassis 102 coupled to a display
device 104 and a user input device 106. The computer
chassis 102 has a power button 108 and may also have a
power indicator 109 such as a light emitting diode (LED).
When the power button 108 is momentarily pressed, power
indicator 109 illuminates and computer system 100 boots
up. Pressing power button 108 a second time places the
computer system 100 in an OFF or SLEEP state.

FIG. 2 illustrates an exemplary architecture of multipro-
cessor computer system 100. Computer system 100 includes
at least two processors. The embodiment of FIG. 2, for
example, includes four processors 110-113 (CPU 0, CPU 1,
CPU 2, CPU 3). Computer system 100 also includes a shared
processor bus 114, main memory 115, a North bus bridge
116, a primary expansion bus 118, a South bus bridge 120,
a secondary expansion bus 121, an interrupt controller 122,
an interrupt bus 123, a BIOS ROM 124, and a power supply
126. Computer system 100 may further include a second
North bridge 117, a second primary expansion bus 119, and
a video card 125. Many other system configurations are also
contemplated.

Examples of suitable parts for system 100 include CPUs
such as Intel Pentium, Pentium II, or Pentium Pro
processors, and the North bridges 116, 117 may be RCC
Corporation’s LE bus bridge. Examples of suitable main
memory 115 parts include dynamic random access memory
(DRAM) and Synchronous DRAM. Main memory 115
preferably comprises 1-4 gigabytes (1 gigabyte=23° bytes).

Shared processor bus 114 couples the processors 110-113
to main memory 115 and North bridges 116, 117. Main

7

6,158,000

5

memory 115 is shared by the processors 110-113 for storing
and retrieving executable programs and data. Preferably,
processors 110-113 are Pentium Pro processors, and shared
processor bus 114 is a Pentium Pro bus. However, bus 114
may be any bus compatible with whatever processors are
chosen.

North bridges 116, 117 each interface the shared proces-
sor bus 114 to a primary expansion bus 118, 119. Various
system peripheral components may couple to either of the
expansion busses 118, 119. Examples of such peripherals
include graphics accelerators, video systems 125, sound
cards, network interfaces, and external bus interfaces such as
SCSI and IEEE 1394. In a preferred embodiment, the
expansion busses 118, 119 are PCI busses, but they may be
any suitable bus architecture.

The South bus bridge 120 interfaces one of the primary
expansion busses 118 to a secondary expansion bus 121.
Various system components may be coupled to the second-
ary expansion bus 121. Examples include hard disks, BIOS
ROMs 124, and I/O controllers. In a preferred embodiment,
the secondary expansion bus is an EISA bus, but may also
be any other suitable bus. The South bus bridge may further
interface with interrupt controller 122. Interrupt controller
122 monitors interrupt signals which may be provided from
the various system components and may communicate inter-
rupt messages to processors 110-113 via interrupt bus 123 in
response to assertions of the interrupt signals or other system
events. Any of the processors 110-113 may instruct the
interrupt controller to communicate an system management
interrupt (SMI) message via the interrupt bus 123 by writing
to an appropriate register in interrupt controller 122. After
recognizing an interrupt message, the processors may
receive a corresponding interrupt vector from interrupt con-
troller 122 that indicates the location of an associated

interrupt handler routine. The interrupt controller 122 may
further be configured to receive an interrupt signal from
power supply 126 and generate an interrupt message to one
or more of the processors to warn of an impending shut-
down. Power supply 126 provides power to all of the
computer components shown in FIG. 2 via connections not
specifically shown. The power supply 126 is coupled to
interrupt controller 122, power switch 108, and power
indicator 109, and is further coupled to an external power
source such as an electrical outlet (not specifically shown).
Power supply 126 includes a power converter and some
control circuitry for turning computer system 100 on and off
in response to operation of power switch 108. The control
circuitry may also generate logic signals such as a reset
signal and an interrupt signal. The reset signal is coupled to
each of the processors 110-113 and is asserted for a prede-
termined time after the computer system 100 is turned on.
The reset signal is preferably also coupled to other system
components.

Initialization of computer system 100 preferably includes
performing a sequence of tasks. This task sequence may
begin with causing every system component to enter an
initial state at power-on. The initial state is preferably
deterministic, that is, the initial state is predictable and
happens every time the system is reset. Asystem reset signal
may be used as an override signal to initialize all registers in
each component. The peripheral system components which
store configuration information in nonvolatile memory will
then proceed to initialize themselves according to that
configuration information. For example, video card 125 may
be configured as a PCI device. Every time the video card is
reset, it must configure some internal registers with identi-
fication and operational mode information.

10

15

20

25

30

35

40

45

50

55

60

65

6

When processors 110-113 are reset, an instruction pointer
register is set to provide an initial instruction address of an
instruction for the processor to execute, and this initial
instruction address normally addresses a basic input/output
system (BIOS) stored in BIOS ROM 124. The processor
consequently retrieves the BIOS from BIOS ROM 124 and
begins executing instructions therefrom.

The BIOS consists of multiple modules that usually
include POST, setup, and system-related modules. One of
the initial BIOS instructions executed by the processor
preferably is a jump to the entry point of the POST module.
The POST module is an executable program that may
perform multiple functions including testing various system
components, loading other modules into memory, and set-
ting up system data structures in memory. The Setup module
is an executable program which may be invoked to facilitate
user inspection and modification of the system configura-
tion. The System module is a set of interrupt service routines
(ISRs) which are stored in memory and are permanently
available while the computer is powered on. The System
module includes code for controlling the keyboard, display
screen, disk drives, serial communications and a number of
miscellaneous functions.

One implementation of the POST module preferably
causes one of the processors to perform the following tasks:
a BIOS checksum test, a keyboard controller test, a CMOS
register test, a system timer test, a memory refresh test, a
base memory test, a CMOS battery test, a display controller
test, a protected mode test, an address line test, a DMA
controller test, interrupt vector table creation, BIOS data
area setup, keyboard test, system configuration verification,
and bootstrap loading. The POST module may also cause the
processor to perform the following additional tasks: a pro-
cessor register test, a cache memory test, and a read/write
test of conventional and extended memory.

In conventional multiple processor systems similar to
system 100, one processor 113 is designated as the bootstrap
processor (BSP), and the remaining processors 110-112
assume the role of application processors Upon sys-
tem power up, each processor executes an arbitration
scheme designed to select one of the processors as the BSP.
Thus the arbitration scheme winner is not necessarily a
predetermined one of the processors 110-113. The arbitra-
tion scheme losers enter a wait state (i.e. go to sleep), while
the winner designates itself as the BSP and executes the
BIOS code. Conventionally, the BSP executes the above
described POST tasks and additional tasks, and may further
send an interprocessor interrupt (IPI) to the APs to have
them conduct local tasks (e.g. tests of the processor registers
and cache memory belonging to each The BSP con-
cludes the POST process by executing the bootstrap loader
to load and transfer control to the operating system.

In accordance with a preferred embodiment the time
required for system initialization is reduced by parallelizing
the boot-up process so that one processor is not burdened
with all of the non-local tasks. In particular, computer
system 100 assigns at least part of the memory read/write
test to an AP so that some memory testing may be conducted
in parallel with other POST tasks.

FIG. 3 is an illustrative flowchart of a boot process for a
multiprocessor system in accordance with a preferred
embodiment. Initially the system is in an OFF state. In step
302 a power-on event occurs, e.g. a power button is pressed
or a remote wake-up packet is sent. The event triggers a
power-on step 304 in which power is supplied to the various
system components and a system reset signal is momentarily

8

6,158,000

7

asserted. In response to the reset signal, the system proces-
sors 110-113 enter an initial state in step 306. In step 308 the
processors determine which of the processors will act as the
bootstrap processor BSP, perhaps according to an arbitration
process. The processors which are not the BSP halt at step
310 and wait for instructions from the BSP. The BSP

proceeds to steps 311 and 312 where it may perform some
initial POST tasks including, for example, configuring the
memory controller for memory 115 and initializing a base
portion of memory 115. Other tasks which may be per-
formed in steps 311 and 312 may include the system timer
test, the memory refresh test, and a base memory test. In one
implementation, the first megabyte (1048576 bytes) of
memory is tested and cleared by the BSP. Other base
memory sizes are also contemplated. Next, in state 314 the
BSP enables interprocessor communication which illustra-
tively may be implemented using system management inter-
rupts (SMI) and designated mailboxes in the initialized
memory.

SMIs are software-generated interrupts for various system
management functions including interprocessor
communication, and are well known to one skilled in the art

of multiprocessor system design. Further details on the use
of interrupts may be found in many standard reference texts,
including “VAX architecture handbook” published in 1981
by Digital Equipment Corporation, and “Assembly Lan-
guage & Systems Programming for the IBM PC and Com-
patibles” by Karen Lemone, published in 1985 by Little,
Brown & Company Limited.

Mailboxes are memory locations that are “owned” by one
of the processors. Other processors can send a message to
the owner of the mailbox by writing the message in the
owned memory locations. As a method of communication
between processors that operate in parallel, mailboxes are
well known to one skilled in the art of multiprocessor system
design. Further details on the use of mailboxes may be found
in many standard reference texts, including “Operating
System Concepts, 2ed” by James Peterson and Abraham
Silberschatz, reprinted in 1987 by Addison-Wesley Publish-
ing Company, Inc.

Atest for the presence of other processors is performed by
the BSP in step 316. This test may take many forms,
including sending a message to all processors asking them to
respond by writing a message to the BSP’s mailbox. A lack
of received messages after a suitable delay indicates that no
other processors are present. Messages which are received
may preferably include identification numbers of the pro-
cessors so that the BSP can determine how many processors
are present and where they are located. If the system does
not include multiple processors, the BSP performs the rest of
the POST tasks in step 318 and performs the memory
read/write test in step 320. If no fatal errors are encountered,
the BSP reports the results of the boot-up process in step 322
and executes the bootstrap loader in step 324, which locates
and executes the operating system software.

The POST tasks of step 318 (and step 328) may include
a variety of initialization tasks such as a processor register
test, a BIOS checksum test, a cache memory test, a keyboard
controller test, a CMOS register test, a CMOS battery test,
a display controller test, a protected mode test, an address
line test, a DMA controller test, interrupt vector table
creation, BIOS data area setup, a keyboard test, peripheral
device initialization, and system configuration verification.
Step 328 may further include instructing other APs to
perform tests of their registers and cache memory.

Step 320 (and 336) may preferably include writing test
patterns to memory 115 and reading back the contents of

10

15

20

25

30

35

40

45

50

55

60

65

8

memory 115 to verify correct operation of memory 115. Step
320 (and 336) may further include writing all-zero patterns
to memory 115 to initialize memory 115 to a cleared state.
In accordance with a preferred embodiment of the invention,
computer system 100 tests main memory 115 by writing a
known test pattern to each memory location and reading the
contents of each memory location to verify that the value
read from the memory is identical to the value written to the
location. For example, a suitable memory test may include
writing an alternating “1010 . . . ” bit pattern to that memory
location, reading the stored value to verify that it is correct,2:

writing the inverse alternating bit pattern “0101 . . . ,
reading the stored value to verify that it is correct, and
writing an all zero bit pattern “0000 . . . ” to clear the
memory location. To increase the speed of the memory test,
the memory locations may be tested in groups, i.e. write the
first pattern to each location in the group, read from each
location in the group, write the second pattern to each
location in the group, read from each location in the group,
and then clear each location in the group.

Returning to step 316, if a multiple processor environ-
ment is detected, then in step 325 the BSP may send an IPI
to the other APs to have them conduct local tasks (e.g. tests
of the processor registers and cache memory belonging to
each In step 326 the BSP instructs an AP to start
performing the memory test. In one implementation, the
BSP sends an interprocessor interrupt (IPI) to anAP with an
interrupt vector that points to an entry point in the BIOS
routine for performing the memory test. While the AP begins
performing the memory test, the BSP continues with other
POST tasks in step 328 before entering a wait loop 330. In
wait loop 330, the BSP checks to see if the memory task is
completed, and if so, the BSP proceeds to step 322 to do a
summary report of the POST and memory test results.

The AP which receives the IPI message loads the interrupt
vector into an instruction pointer register in step 332,
retrieves the memory test routine in step 334, and performs
a read/write test of the memory 115 in step 336. In step 336
the AP may also clear memory 115. In step 338 the test
results (i.e. passed or failed with failure details) are prepared
for communication to the BSP, which in one implementation
may be done by storing the results in a mailbox location for
the BSP. In step 340 the AP signals task completion to the
BSP and halts in step 342. In a preferred embodiment, the
AP causes a system management interrupt (SMI) to be sent
to the BSP to cause the BSP to check its mailbox location for

memory test results.
It may be desired for the progress of the memory test to

be displayed on the computer’s monitor. Since the BSP may
be printing system configuration information to the display
during the memory test, in one embodiment the AP accesses
the video display memory directly to control a specific
portion of the display screen.

System 100 may illustratively have 4 GB of memory 115,
and bus 114 may operate at 100 MHz. Although the memory
test may consequently require approximately a minute or
longer to complete, the test may be performed in parallel
with other initialization tasks to significantly reduce the
boot-up time.

Some initialization tasks may need to be delayed until the
memory test is complete. For example, the BSP may wait
until after detecting the completion of the memory test to
initialize some components such as a power management
unit or memory type and range registers (MTRRs) if they
could conceivably interfere with the memory test.

In one embodiment, the BSP instructs the AP to perform
a memory read/write test on at least a portion of the system

9

6,158,000

9

memory. For each memory location tested, this memory test
may comprise writing a first test pattern, reading to verify
correct retrieval of the first test pattern, writing a second test
pattern, and reading to verify correct retrieval of the second
test pattern. In this embodiment, the memory locations
tested by the AP may be subsequently cleared by the BSP.
Further, the clearing operation by the BSP may begin before
the AP has completed testing all the assigned memory
locations.

Hence, a method for reducing boot-up time in a multi-
processor system has been described. Numerous variations
and modifications will become apparent to those skilled in
the art once the above disclosure is fully appreciated. For
example, the POST tasks may be divided among three or
more processors, and additional tasks may be allocated to
other APs. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

What is claimed is:

1. A computer system which comprises:
a shared memory module that includes a plurality of

memory locations;
an application processor coupled to the shared memory

module by a shared processor bus; and
a bootstrap processor coupled to the memory module by

the shared processor bus and coupled to the application
processor,

wherein the bootstrap processor is configured to instruct
the application processor to test the plurality of
memory locations in the shared memory module after
system power-on,

wherein the bootstrap processor is configured to perform
a plurality of POST tasks while the application proces-
sor is testing the plurality of memory locations,

and wherein the bootstrap processor is further configured
to execute a bootstrap loader after determining that the
application processor has tested the plurality of
memory locations.

2. The computer system of claim 1, wherein said plurality
of POST tasks includes initializing peripheral devices.

3. The computer system of claim 2, wherein one of said
peripheral devices is a PCI device, and wherein said initial-
ization includes determining a PCI device address.

4. The computer system of claim 1, wherein said plurality
of POST tasks includes verifying the system configuration.

5. The computer system of claim 1, wherein said plurality
of POST tasks includes a keyboard test.

6. The computer system of claim 1, wherein said plurality
of POST tasks includes setting up a BIOS data area in the
shared memory module, and wherein said BIOS data area
stores system configuration information.

7. The computer system of claim 1, wherein said plurality
of POST tasks includes configuring a hard disk drive con-
troller.

8. The computer system of claim 1, wherein the applica-
tion processor is configured to test the plurality of memory
locations in response to an instruction from the bootstrap
processor, and further configured to store test results in the
shared memory module for the bootstrap processor to read.

9. The computer system of claim 1, wherein the plurality
of memory locations comprises all memory locations after a
first megabyte (1048576 bytes) of memory in the shared
memory module.

10. A method for booting-up a computer system, wherein
the method comprises:

resetting a plurality of processors;
determining a bootstrap processor from the plurality of

processors, wherein any remaining processors are des-
ignated as application processors;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

the bootstrap processor instructing an application proces-
sor to test a plurality of memory locations in a shared
memory module;
the bootstrap processor performing POST tasks while

the application processor tests the plurality of
memory locations; and

the bootstrap processor searching for an operating
system to load into the shared memory module after
the application processor finishes testing the plural-
ity of memory locations.

11. The method of claim 10, wherein the POST tasks
performed by the bootstrap processor while the application
processor tests the plurality of memory locations include
initializing peripheral devices.

12. The method of claim 10, wherein the POST tasks
performed by the bootstrap processor while the application
processor tests the plurality of memory locations include
verifying a system configuration.

13. The method of claim 10, wherein the plurality of
memory locations comprises all memory locations after a
first megabyte (1048576 bytes) of memory in the shared
memory module.

14. A multiprocessor system which comprises:

a shared memory module which requires initialization
after system power-on;

a plurality of processors coupled to the shared memory
module to store and retrieve executable programs and
data, wherein each of the plurality of processors is reset
after system power-on and thereafter participates in an
arbitration process to determine a bootstrap processor
from the plurality of processors, and wherein any
remaining processors from the plurality of processors
are designated as application processors; and

a nonvolatile memory coupled to the plurality of proces-
sors and configured to store a BIOS for retrieval by any
of the processors, wherein the BIOS includes instruc-
tions for the bootstrap processor to direct an application
processor to test a plurality of memory locations in the
shared memory module,

wherein the BIOS further includes instructions for the

bootstrap processor to conduct one or more POST tasks
while the application processor tests the plurality of
memory locations.

15. The multiprocessor system of claim 14, wherein the
one or more POST tasks includes initializing peripheral
devices.

16. The multiprocessor system of claim 14, wherein the
one or more POST tasks includes determining a system
configuration.

17. The multiprocessor system of claim 14, wherein the
plurality of memory locations comprises all memory loca-
tions after a first megabyte (1048576 bytes) of memory in
the shared memory module.

18. The multiprocessor system of claim 14, wherein the
BIOS further includes instructions for determining when the
application processor has finished testing the plurality of
memory locations, and includes instructions for the boot-
strap processor to locate and run an operating system after
the application processor has finished testing the plurality of
memory locations.

19. A computer system which comprises:

a volatile system memory having memory locations for
temporarily storing data;

at least two processors coupled to the system memory to
read and write said data;

a power switch;

10

6,158,000

11

a power supply coupled to the power switch to detect
operation of the power switch, and coupled to provide
power to the system memory and the processors in
response to operation of the power switch, wherein the
power supply is configured to assert a reset signal for
a predetermined time after an initial operation of the
power switch,

wherein the processors are configured to receive the reset
signal and configured to enter arbitration in response to
assertion of the reset signal to select one of the pro-
cessors as a bootstrap processor and to identify remain-
ing processors as application processors,

wherein the bootstrap processor is further configured to
instruct at least one application processor to test
memory locations in the system memory module,

wherein the bootstrap processor is further configured to
initialize peripheral devices while the memory is being
tested by at least one application processor.

20. The computer system of claim 19, wherein the pro-
cessors and system memory are coupled together by a shared
processor bus.

21. A computer system which comprises:

a shared memory module consisting of a base portion and
a remaining portion, each having a plurality of memory
locations;

an application processor coupled to the shared memory
module by a shared processor bus; and

10

15

20

25

10

12

a bootstrap processor coupled to the memory module by
the shared processor bus,

wherein after the bootstrap processor tests the base por-
tion of the shared memory module, the bootstrap pro-
cessor instructs the application processor to test the
remaining portion of the shared memory module,

wherein the bootstrap processor is configured to perform
a plurality of POST tasks while the application proces-
sor is testing the remaining portion of the shared
memory module.

22. The computer system of claim 21, wherein said
plurality of POST tasks includes initializing peripheral
devices.

23. The computer system of claim 21, wherein said
plurality of POST tasks includes verifying the system con-
figuration.

24. The computer system of claim 21, wherein the appli-
cation processor is configured to test the remaining portion
of the shared memory module in response to an instruction
from the bootstrap processor, and is further configured to
store test results in the shared memory module for the
bootstrap processor to read.

25. The computer system of claim 21, wherein the remain-
ing portion of the shared memory module comprises all
memory locations after a first megabyte (1048576 bytes) of
memory in the shared memory module.

* * * * *

