
1 Apple v. Realtime 
Proceeding No. IPR2016-01739 

APPLE 1036

United States Patent [19]

Misheski et at.

||||||||||||||||||||||||||||||||||||l||||||||||||||||||||||||||||||||||||||
U3005915252A

[11] Patent Number: 5,915,252

[45] Date of Patent: Jun. 22, 1999

 

 
 

[S4] OBJECT ORIENTED FRAMEWORK 5,390,310 211995 Welland 3951400
MECHANISM FOR DATA 'I‘MNSI’FIR 5,390,325 2.11995 Miller .. 3951575

~ 5,396,626 311995 Nguyen .. 3951700
QETWIE‘EN A DATA SOURCE AND A DATA 5,393,336 311995 'l‘antry et al. .. 3951600
LARGLT 5,418,949 511995 Suzuki .. 39516110

_ _ 5,581,722 1211995 Welland .. .. 395141?
[75] Inventors: David Joseph Mislleski,l’la1nv1ew; 5,542,511 611997 Chow etal. 39517111

Clifton Malcolm Nock, Rochester, both
01- Mim (mum PUBLICATIONS

[73! Assignee: International Business Machines Text of IBM Technical Disclosure Bulletin, vol. 37,
Corporation Armonk NY. DeBindcr el :11, Feb. 1994, “Results Folder Framework", pp.’ ’ 431—432.

1211 Appl- ”9-: 0317249570 (List continued on next page.)

[22] filed: Sep. 30, 1996 , , , ,
_ Pruning; bxnnrmer—l'liomas (1. Black

[51] Int. Cl.b ...................................................... GGISI“ 17109 Assistant Exmnincr—David Yink Jung
|52! U.S. Cl. ................................. 7071103; 70718; 7071111; Attorney, Agent, or Firm—Martin & Associated, 1..I..(f.;

3951683; 3951684; 3951685 Derek P. Marlin

[58] Field of Search ....................... 70711—206, 517—530; 57 ABSTRACT
7011201—205; 34-51961—970; 3951680—685; [ 1

7111 170—208 An object oriented framework mechanism for data transfer
between a data source and a data target provides an infra-

[56] References Cited structure that embodies the steps necessary to perform the

U.S. PA'I‘ENT DOCUMENTS

4,943,932 711996 Lark et al. 36141513
5,057,996 1011991 Cutler el al. ...... 3641200
5,101,364 311992 Davenport et al. 3951152
5,119,475 611992 Smith eta]. ...... 3.951156
5,181,162 111993 Smith et al. .. 3641419
5,195,172 3.11993 filad et al. .. 395,150
5,220,161 711993 Khoyi e1 :11. 3951651]
5,247,693 911993 Bristol 3951801}
5,249,271] 911993 Stewart et a1. 39512011
5,257,914 1011993 tr‘arrand cl at, 3951725
5,261,089 1111993 Khoyi ct at. ...... 395151111
5,274,572 1211993 O’Neill et a1. 36415511
5,276,775 111994 ., 395155
5,287,447 211994 . 3951157
5,293,385 311994 ' ...... 371119
5,293,471] 311994 Birch et al. 3951135
5,297,283 311994 Kelly. Jr, et al. . 39516511
5,315,703 511994 Matheny el al. .. 3951164
5,315,709 511994 Alston, Jr. et al. 3951111111
5,367,633 1111994 Matheny ct al. .. 3951164
5,369,766 1111994 Nakano et a1. 395171111
5,379,430 111995 Nguyen ............ 3951700
5,388,264 211995 'l'orhias, It ct al. 39516511

 
 
 
 

 
 
 

 
  
 

 
 
 

 

data transfer and a mechanism to extend the framework to lit

a particular data transfer environment. Certain core func-
tions are provided by the framework, which interact with
extensible functions provided by the framework user. The
architecture of the framework allows a developer to deter—
mine the conditions and parameters that apply to the data
transfer while allowing a user to interact with the framework
with an interface that is consistent regardless of the specific
combination of data source. data target, connection type, or
protocol. The extensible functions allow new data transfer
environments to be easily implemented using the frame-
work. 'Ihe framework thus allows a common user interface

for transferring data between any data source and any data
target, which may be easily customized to include data
sources, new data targets, new transfer protocols, etc. The
framework greatly simplifies the user‘s job of transferring
data since it provides a common interface, and greatly
simplifies the developer’s job of providing a user interface
for a new combination of hardware and1or software by
providing established classes that may be easily extended to
implement the desired data transfer environment.

32 Claims, 25 Drawing Sheets

 
1 Apple v. Realtime

Proceeding No. |PR2016-01739
APPLE 1036



2

5,915,252
Page 2
 

OTHER PUBLICATIONS

Text of IBM Technical Disclosure Bulletin, vol. 36, Coskun,

N., Jun. 1993, “Persistent Framework Independent Record!
Playback Framework", pp. 261-264.
Text of IBM Technical Disclosure Bulletin, Baker el al., Oct.

1991, “Model View Schema", pp. 321—322.
Text of IBM Technical Disclosure Bulletin, Baker el al., Oct.
1991, "Oflice Container Class", pp. 309—310.
Text of {BM Technical Disclosure Bulletin, Cavendish et al.,

Jul. 1991, “Icon Pane Class", pp. 118—119.
Text ofIBM Technical Disclosure Bulletin, Baker et al.,Jun.

1991, "Distribution List Class", p. 159.
Text of IBM Technical Disclosure Bulletin, Cavendish et al.,

Jun. 1991, “Objecb—Oriented Documentation Tool", pp.
50—51.

Text of IBM Technical Disclosure Bulletin, vol. 38, No. 1,
Jan. 1995, pp. 411—414, J. Knapman, “Generating Specific
Server Programs in Distributed Object—Oriented Customer
Information Control System".
Text of IBM Technical Disclosure Bulletin, vol. 37, No. 12,

Dec. 1994, pp. 19—20, Al—Karmi et al., “Events Set for Event
'l‘racing in Distributed Object—Oriented Systems”.
Text of IBM Technical Disclosure Bulletin, vol. 37, No. 12,
Dec. 1994, pp. 375—378, Acker et al., “Automatically Gen-
erating Formatted Documentation for Objecleriented
Class Libraries”.

Text of IBM Technical Disclosure Bulletin, vol. 37, No. 11,

Nov. 1994, pp. 7142, Behrs ct al., “Device Support Frame—
work to Support ISO DPA 10175 and POSIX 13874”.
Text of IBM Technical Disclosure Bulletin, vol. 37, No. 7,

Jul. 1994, pp. 145—146, Banda et al., “Exception Manage-
ment Algorithm for Multi—Threaded Method Invocation”.
Text of IBM Technical Disclosure Bulletin, vol. 37, N0. 63,

Jun. 1994, pp. 553—556, Gest el al., “Portable Object—Ori-
ented Event Manager".
Abstract for WIPO Patent Application No. WO 95104966, F.
T. Nguyen, Feb. 1.6, 1995, "Automatic Management of
Components in Object—Oriented System".
Abstract for US. Patent No. 5,388,264, Milne ct al., Feb. 7,
1995, “Object—Oriented Framework System for Enabling
Multimedia Presentation with Routing and Editing of MIDI
Information”.

Abstract for WIPO Patent Application No. W0 94i23364,
IIeninger el al., Oct. 13, 1994-, " Framework Processing
Apparatus for Application Software".
Abstract for U.S. Patent No. 5,369,766, IIeninger et al.,Nov.
29. 1994, “Object Oriented Application Processing Appara-
tus".

Abstract from WIPO Patent Application No. W0 9422081,
Sep. 29, 1994, “I-Iardware—Independent Interface for Inter-
rupt Processing”, G. 0. Norman et a1.
Abstract for WIPO Patent Application No. 94f19752, Ander-
son et al., Sep. 1, I994, “Concurrent Framework Processing
Apparatus for Two or More Users”.
Abstract forWIPO Patent Application No. 9411 9751 , Ander-
son et al., Sep. 1, 1994, "Concurrent Framework Processing
Apparatus for Application Users”.
Abstract for WIPO Patent Application No. 94119740, Gold-
smith et al., Sep. 1, 1994, “Framework Processor of
Object—Oriented Application".
Abstract from WIPO Patent Application No. WO 94115286,
Goldsmith et al., Jul. 7, 1994, “Object—Oriented Framework
for Object Operating System".

Abstract for WIPO PatentApplication No. 94;”15282, Ander-
son et al., Jul. 7, 1994, "Dialog System Object—Oriented
System Software Platform".
Abstract for WIPO Patent Application No. 94.115281, Ander-
son et al., Jul. 7, 1994, "Atomic Command Object—Oriented
System Software Platform”.
Abstract from WIPO Patent Application No. W0 9415285,
Jul. 7, 1994, "Object~Orienled Notification Framework Sys-
tem”, D. R. Anderson et al.
Abstract for US. Patent No. 5,119,475, Schoen et al., Jun.

2, 1992, “Object—Oriented Framework for Menu Defini—
tion".

Abstract for WIPO Patent Application No. 95101610, Koko
et al., Jan 12, 1995, "Object Oriented Product Structure
Management in Computer—Aided Product Design".
Abstract fpr WIPO Patent Application No. 95104967, Feb.
16, 1995, “Access Method to Data Held in Primary Memory
Based Data Base".

Abstract for WIPO Patent Application No. 95102219, IIel-
geson et al., Jan. 19, 1995, “Distributed Computation Based
on Movement, Execution and Insertion of Processes in
Networ "'.

Abstract from U.S. Patent No. 5,371,891, “Object Construc-
tions in Compiler in Object Oriented Programming Lan-
guage”, J. Gray et al., Dec. 6, 1994.
Abstract from EPO Patent Application No. EP 622730,
"Encapsulation of Extracted Portions of Documents Into
Objects". M. A. Malamud, Nov. 2, 1994.
Abstract for EPO Patent No. 619544, S. Danforth, Oct. 12,

1994, “Language—Neutral Object—Oriented Programming".
Abstract for WIPO Patent No. 94120912, Sep. 15, 1994,
“Object—Oriented System for Managing Financial Instru-
merits".

Inspec Abstract No. (3950444604143, Sells et al., 1995,
“Implementation of the Architecture for a Time—Domain
Dynamical System Simulation in a Very IIigh—Level Picto-
rial Object—Oriented".
Inspec Abstract No. C9504—7460—042, Coleman et al.,
1995, "An End—to—End Simulation of A Surveillance Sys-
tem Employing Architecture Independence, Variable Fidel-
ity Components and Software Reuse”.
Inspec Abstract No. C950346140D—045, Satoh et al., 1995,
“Process Algebra Semantics for a Real Time Object Ori-
ented Progamming Language”.
Inspec Abstract No. C9501—7160—DZO, C. Le Pape, 1993,
"The Cost of Genericity: Experiments With Constraint-
—Based Representations of Time—Tables".
Inspec Abstract No. C9501-6140D—005, S. Vi noski, 1994,
“Mapping CORBA IDI. Into C++".
Inspec Abstract No. C9501—733(t~(|07, Salminen et al.,
1994, “Modelling Trees Using an Object—Oriented
Scheme“.

Inspec Abstract No. (39412—61103—211, Berghel et al.,
1992, "A Generic Object—Oriented Concurrency Mecha-
nism for Extensibility and Reuse of Synchronization Corn-
ponents”.
Inspec Abstract No. 89412—62100—016, from Oingzhong et
al., 1992, "An Object—Oriented Model for Ingelligent Net—
works".

Inspec Abstract No. (29412—7810—003, from Jung et al.,
1993, “Development of an Object—Oriented Anthropometric
Database for an Ergonomic Mart Model”.
Inspec Abstract No. C9412—6110J—014 from Griss et al.,
1994, "Object—Oriented Reuse".



3

5,915,252
Page 3
 

Inspec Abstract No. C9411-6130B—108, from Mili et al.,
1992, "Building a Graphical Interface for a Reuse—Oriented
CASE Tool".

Inspec Abstract No. (79411—7100-029, from C. Le Pape,
1994, “Implementation of Resource Constraints in ILOG
Schedule: A Library for the Development of Constraint—
Based Scheduling Systems”.
Inspec Abstract No. C94] 1—6115—035, from Mili et al.,
1991, “Sol‘tClass: An Object—Oriented Tool for Software—
Reuse".

Inspec Abstract No. C9410—6180G—015, from Eichelbcrg et
al., 1993, “Integrating Interactive Hit—Graphics into an
Object—Oriented Application Framework".
Inspec Abstract No. B9409—6210M—025, from I-Iellemans et
al., 1994, “An Object—Oriented Approach to Dynamic Ser-
vice Deseriptions".
Inspec Abstract No. C9409—6180—059, from Wang et al.,
1993, “A Framework for User Customization“.
Inspec Abstract No. C9408—6llOB—016, from Chen et al.,
1994, “An Experimental Study of Using Reusable Software
Design Frameworks to Achieve Software Reuse".
Inspec Abstract No. C9408—7420—021, from Pirklbauer et
al., 1994, “Object—Oriented Process Control Software".
Inspec Abstract No. C94-(18—61101—011, from Gyu—Chung et
al., 1993, “System Methodologies of Object—Oriented Pro-
grams".
Inspec Abstract No. C9407-742OD-045, from Desai ct al.,
“Controller Structure Definition Via Intelligent Process Con-
trol“, 1994.

Inspec Abstract No. C9407-6140D—014, from Satoh et al.,
1994, Semantics for a Real—‘l‘nne Object—Oriented Pro-
gramming Language.
lnspcc Abstract No. C9406—6150N—015, from Schmidt et
al., 1994, “The Service Configurator Framework: An Exten-
sible Architecture for Dynamically Configuring Concurrent,
Multi—Service Network Daemons“.

Inspec Abstract No. C9405—61800—031, from Woyak et al.,
1993, "A Motif—Like Object—Oriented Interface Framework
Using PIIIGS”.
Inspec Abstract No. C9504—61308—049, from A. van Dam,
1995, “VR as a Forcing Function: Software Implications of
a New Paradigm".
Inspec Abstract No. C9504—6140D—024, from Sheffler et al.,
1995, “An Object—Oriented Approach to Nested Data Par—
atlelism”.

Inspec Abstract No. C9503—6110B—045, from Rosiene et al.,
1995, “A Data Modeling Framework for Queueing Network
Models”.

Inspec Abstract No. [39503—31 [OB—023, from Mautref et al.,
1995, "An Object—Oriented Framework for the Develop—
ment of Interactive Decision Support Systems".
Inspec Abstract No. C9502—7160—026, frorn Menga et al.,
1995, “Art Object—Oriented Framework for Enterprise Mod-
elling”.
Inspec Abstract No. C9502—6130vav006, "Support for
Enterprise Modelling in CSCW", P. I-Iennessy et al., 1994.
Inspec Abstract No. C9502—7810C—058, from Lin et al.,
1995, "Can CAL Software Be More Like Computer
Games'?".

lnspcc Abstract No. C9501—6115—(B9, from Elia et al.,
1993, "(i++: An Object Oriented Environment for Devel—
oping Distributed Applications".
Inspec Abstract No. C94l2—7330—186, from Righter et al.,
1994, “An Object—Oriented Characterization ofSpatiaI Eco-
system Information".

Inspec Abstract No. 09412—61601—025 from J . Livari, 1994,
"Object—Oriented Information Systems Analysis: A Com-
parison of Six Object—Oriented Analysis Methods”.
Inspec Abstract No. (29412—61101—006. from [.au et al.,
1993, “Using SOM for 1001 Integration".
Inspec Abstract No. C9411—61601—011, from ()dberg el al.,
1992, “A Framework for Managing Schema Versioning in
Object—Oriented Databases".
Inspec Abstract No. (79406—61 101—007, from J. I). Grimes,
1993, “Objects lUl—An Implementation View", Proceed-
ings ofCOMPCON 1994.
Inspec Abstract No. 4647921, from Uhorchak et al., 1993.
“An Object—Oriented Class Library for [Treating Engineer-
ing Graphs Using FHIGS”.
Inspec Abstract No. 4642214, from Marshall et al., 1992,
“Using VDM Within an Object—Oriented Framework".
Inspec Abstract No. 4626386, from Arora et al., 1993,
“Building Diverse Environments with PCTE. Workbench".
Inspec Abstract No. 4622794, from Campbell et al., [993,
“A Technique for Documenting the Framework of an
Object—Oriented System ".
Inspee Abstract No. 4618974, from Bowers, 1993, ”Some
Principles for the Encapsulation of the Bahaviour of Aggre~
gate Objects“.
lnspcc Abstract No. 461931, from Islan et a1, 1993, “Uni-
form Cry-Scheduling Using Object~0riented Design Tech-
niques”.
Inspec Abstract No. 46l3481. from Thieme el al., 1993,
“Schema Integration in Object—Oriented Databases".
Inspec Abstract No. 4603430, from G. Booch, 1994,
“Designing an Application Framework”.
Inspec Abstract No. 4596323, from Frank et al., 1993, “An
Integrated Environment for Designing Object-Oriented
Enterprise Models".
Inspec Abstract No. 4593721, Periyasamy et al., 1993, "A
Formal Framework for Design and Verification of Robotic
Agents”.
Inspec Abstract No. 4588839, from 1.. Fisher, 1992, “Con-
slrucling a Class Library for Microsoft Windows”.
Inspec Abstract No. 4588834, from G. Olandcr, 1992,
"Chembcnch: Redesign of a Large Commercial Application
Using Object-Oriented "l‘echniques".
Inspec Abstract No. 4566447, from J. Rossazza, 1992, “An
Object—Centered Fuzzy Representation”.
Inspec Abstract No. 4565630, from Karpovicb et al, 1993,
"A Parallel Object—Oriented Framework for Stencil Algo-
rithms“.

Inspec Abstract No. C9409.—6150(}-002, from Brucggc et
al., 1993, “A Framework for Dynamic Program Analyzers”.
Inspec Abstract No. 4550414, from Parrish et al., 1993,
"Automated Flovtr Graph—Based Testing of Object—Oriented
Software Modules".

Inspec Abstract No. 4540729, from Bailes et al., "The
Ecology of Class Refinement”, 1991.
Inspec Abstract No. 4534334, from Campbell et al., 1991,
“ATechnique for Documenting the Framework ofan Objec-
t-Orientcd System".
Inspec Abstract No. 4534330, from Istavrinos et al., 1992,
"Experiences with an Object—Oriented Mapper for Coherent
Distributed Shared Memory".
Inspec Abstract No. 4528985, from Benevcntano et al. , 1993
u'I"aitortomic Reasoning with Cycles in Logidata+”.
Inspec Abstract No. 4525743, from Hakimmdeh et al., 1993,
"Instance Variable Access Locking for Object—Oriented
Databases".



4

5,915,252
Page 4
 

Inspec Abstract No. 4512593, from H. Sakai, 1993, "A
Method for Contract Design and Delegation in Object
Behavior Modeling“.
Inspec Abstract No. BQ310—6210L—099, "Templates, Types
and Classes in Open Distributed Processing”, 1993.
Inspec Abstract No. 4459325, from Kesim et al., .1992, “On
the Evolution of Objects in a Logic Programming Frame-
work“.

Inspec Abstract No. 4447153, l‘rorn Klein et al., 1992, “An
Object—Oriented Framework for Curves and Surfaces".
Inspec Abstract No. 4426852, from Benveniste ct al., 1992,
“Concurrent Programming Notations in the Object—Oriented
Language Arche".
Inspec Abstract No. 4425343, from Demurjian et al., 1993,
“Programming Versus Databases in Object—Oriented Para-
digm”.
Inspec Abstract No. 4417604, from Kraiem et al., 1992,
"Mapping of Conceptual Specifications Into Object—Ori-
ented Programs".
Inspec Abstract No. 4417563, from E. Mairn, 1992. “Recv
ognizing Objects from Constraints”.
Inspec Abstract No. 4411998. from Yi Deng et al., 1992.
“Unifying Multi—Paradignis in Software System Design”.
Inspec Abstract No. 4408394, from Allen et al., 1992,
“GEM: Global Event Management in CAD Frameworks".
Inspec Abstract No. 4400350, from Y. Shoham, 1993,
"Agent-Oriented Programming”.
Inspec Abstract No. 4395549, from Hogstrom et al., 1992,
“Portability and Data Structures in Scientific Computing—
Object-Oriented Design of Utility Routines in Fortran".
Inspec Abstract No. 4391388, from Thomas et al., 1992, “A
Generic Object—Oriented Concurrency Mechanism for
Extensibility and Reuse of Synchronization Components”.
Inspec Abstract No. 4387201, from Chu et al., 1992, “A
Pattern Based Approach of Integrating Data and Knowledge
to Support Cooperative Query Answering”.
Inspec Abstract No. 4366189, from 11011 et al., 1992, “A
Framework for Using Formal Methods in Object—Oriented
Software Development".
Inspec Abstract No. 4356300, from Bertino et al., 1993,
"Path—Index: An Approach to the Efficient Execution of
Object-Oriented Queries”.
Inspec Abstract No. 4341376, from Bertino et al., 1992,
“Optimization of Object—Oriented Queries Using, Path Indi—
ces”.

Inspec Abstract No. 4331060, from I..au et al., 1992, “An
Object—Oriented Class Library for Scalable Parallel I-Ieuris-
tic Search".

Inspec Abstract No. 4318465, from P. Madany, 1992,
“Object—Oriented Framework for File Systems".
Inspec Abstract No. 4302722, from Eggenschwiler et al.,
1992, "E'l‘HSwapsManager: Using Object 'I‘eehnology in
the Financial Engineering Domain”.
Inspec Abstract No. 4298324, from S. Nichol, 1992,
"Extending Turbo Vision".
Inspec Abstract No. 4297404, from 'I'anaka et al., 1992,
"Two—I..evel Schemata and Generalized Links for Hypertext
Database Models".

lnspcc Abstract No. 4287814, from Natarajan et al., 1992,
“Issues in Building Dynamic Real—Time Systems”.
Inspec Abstract No. 4281362, from Marshall et al., 1991,
“Using VDM within an Object—Oriented Framework”.
Inspec Abstract No. 4275707, from Tsukarnoto et al., 1991 ,
"DOT: A Term Representation Using DOT Algebra for
Knowledge—Bases”.

Inspec Abstract No. 4275698, from Van den Bussche et al.,
1991, "Evaluation and Optimization of Complex Object
Selections”.

Inspec Abstract No. 4275693, from Giannotti et al., 1991,
“Non—Determinism in Deductive Databases".

Inspec Abstract No. 4270361, from Artale et al., 1991,
“Introducing Knowledge Representation Techniques in
Database Models”.

Inspec Abstract No. 4270125, from Becker et al., 1991,
"Reusable Object—Oriented Specifications for Decision Sup-
port Systems“.
Inspec Abstract No. 4258492, from M. Ball, 1992, “Inside
'I‘emplates: Implementing C++ Strategies”.
lnspee Abstract No. 4258051, from Rundensteiner et al.,
1992, “Set Operations in Object—Based Data Models”.
Inspec Abstract No. 4244023, from George et al., 1991, “An
Object—Oriented Data Model to Represent Uncertainty in
Coupled Artificial Intelligence—Database Systems".
Inspec Abstract No. 4324438, from Madany et al., [991,
“Organizing and Typing Persistent Objects Within an
Object—Oriented Framework”.
lnspec Abastract No. 4152687. from M. Wolczko, 1992,
“Encapsulation, Delegation and Inheritance in Object—Orb
ented Languages".
Inspec Abstract No. 4117514, t‘rorn Wuwongse et al., 1991,
"An Object—Oriented Approach to Model Management“.
Inspec Abstract No. C94204—6110J—017, "Choices, Frame—
works and Refinement", R. H. Campbell et al., 1991.
Inspec Abstract No. 4090970, from P. Kougiouris, 1991,
"Device Management Framework for an Object—Oriented
Operating System”.
Inspec Abstract No. 4077440, from A. Mahler, 1991, "Orga~
nizing Tools in a Uniform Environment Framework”.
Inspec Abstract No. 4067033, from Shaw et al., 1990.
"Experience with the ET++ Application Framework".
Inspec Abstract No. 4060084, from Muller et al., 1990,
“ODICE: Object—Oriented Hardware Description in CAD
Environment“.

Inspec Abstract No. 4050569, from Di Giovanni et al., 1990,
"HOOD Nets“.

Inspec Abstract No. (”91072815, from Holtkamp et al, 1990.
"DEMOM—A Description Based Media Object Data
Model”.

Inspec Abstract No. C91072016, from A. Lane, 1991,
“r’DOSf(T++—Application Frameworks”.
Inspec Abstract No. C91072574, from Hernery et al., “An
Analysis of Communication and Multiprogramming in the
Helios Operating System”, Sep. 199].
Inspec Abstract No. C9'10647S7, from Madany et a], 1989,
“A Class Hierarchy for Building Stream—Oriented File Sys—
tems”.

Inspec Abstract No. C91064580, from Gamma et al., 1989,
"Integration of a Programming Environment into ET++—A
Case Study".
Inspec Abstract No. C91058815, from Menga et al., 1990,
“G++: An Environment for Object Oriented Analysis and
Prototyping”.
Inspec Abstract No. B91052096, from Cusack et al., 1990,
"Object—Oriented Specification in LOTOS and Z, or My Cat
Really is Object—Orientedt".
Inspec Abstract No. (291053475, from Queinnec et al., 1988,
“An Open Ended Data Representation Model for
EU—IJSP".

Inspec Abstract No. C91053151, from E. Cusack, 1991,
"Refinement, Conformance and Inheritance".



5

5,915,252
Page 5
 

Inspec Abstract No. C91042802, from T. Yokoyama, 1990,
“An Object—Oriented and Constraint—Based Knowledge
Representation System for Design Object Modeling”.
Inspec Abstract No. (91041980, from Choi ct al., 1991,
"Graph Interpretation of Methods: A Unifying Framework
for Polymorphism in Object—Oriented Programming".
inspec Abstract No. C91042655,from Q. Li, 1991,“Extend-
ing Semantic Object Model: Towards More Unified View of
Information Objects”.
Inspec Abstract No. (391024852, from Pierra et al., 1.990,
"AD Object Oriented Approach to Ensure Portability of
CAD Standard Parts Libraries".

Inspec Abstract No. (91010951, from '1‘. I-Ielton, 1990,
"LevelS Object".
lnspec Abstract No. 1390075006, from Gossain el al., 1989,
“Designing a Class Hierarchy for Domain Representation
and Reusability".
Inspec Abstract No. (:91003997, from J. Muys—Vasovic,
1989, “MacApp: An Object—Oriented Application Frame-
work".

Inspec Abstract No. (91004708, from Bertino et al., 1990,
“Optimization of Queries Using Nested Indices”.
inspec Abstract No. C90052277, from 1. 'I‘ervonen, 1990,
"Object—Oriented Development as a Muiliview Software
Construction Methodology”.
Inspec Abstract No. C90052627, l'rorn Schrell et al., 1988,
"A Knowledge-Based Approach to Overcome Structural
Differences in Object Oriented Database Integration“.
Inspec Abstract No. C90047457, from Yokoyama et al.,
1990, "A Constraint-Based and Object—Oriented Knowln
edge Representation".
Inspec Abstract No. C90034818, from Q. Chen, 1988,
"Extending the Object—Oriented Paradigm for Supporting
Complex Objects".
Inspec Abstract No. C90030609, from Forde et al., 1990,
“Object—Oriented Finite Element Analysis”.
Inspec Abstract No. C90007733, from Weinand et al., 1989,
"Design and Implementation of ET++, A Seamless
Object—Oriented Application Framework”.

lnspec Abstract No. (789062837, from Pasquier—Boltuck et
al., 1988, “Prototyping an Interactive Electronic Book Sys-
tem Using an Object—Oriented Approach".
Inspec Abstract No. C89056727, from Campbell ct al., 1989,
“Principles of Object—Oriented Operating System Design".
lnspec Abstract No. (39056859, from Hull et a1, 1989, “On
Accessing Object—Oriented Databases: Expressive Power,
Complexity, and Restrictions“.

Inspec Abstract No. C89049257, from Madany et al., 1989,
"Class Hierarchy for Building Stream—Oriented File Sys-
tems”.

Inspec Abstract No. C89039001, from Brophy et al., 1989,
“A Framework for Multiple, Concurrent Graphical Repre—
sentalion".

Inspec Abstract No. C89033226, from (.‘orradi et al., 1988,
“PO: An Object Model to prress Parallelism ”.
Inspec Abstract No. C89014870, from R. King, 1988,
"Semantic and Object—Oriented Database Support for Softn
ware Environments“.

Inspec Abstract No. 89003142, from Tenma et al., 1986, “A
System [or Generating Language—Oriented Editors”.
Inspec Abstract No. (88013915, from Woelk et al., 1987
“Multimedia Information Management in an Object—Ori-
ented Database System".

Inspec Abstract No. (388007447, from P. Allen, 1987, “A
Framework for Implementing Multisensor Robotic Tasks".
lnspec Abstract No. (87007043, from Whittcd et al., 1986,
“Exploiting Classes in Modeling and Display Software”.
lnspec Abstract No. C86039588, from K. Fukunaga., 1985;
“Prompter‘. A Knowledge Based Support Tool for Code
Understanding”.

Inspec Abstract No. C86024804, from Greenspan ct al.,
1986, “A Requirements Modeling Language and its Logic".
Inspec Abstract No. C84005713, from Meyer et al., 1983,
“Towards a 'IWo—Dimensional Programming Environment".
Inspec Abstract No. (381005505, from Mylopoulos et al.,
1980, “Some Features of the TAXIS Data Model".



6

US. Patent Jun. 22, 1999 Sheet 1 0f 25 5,915,252

  
 

200

Administration 

 
 

 Zoo Keeper

Mechanism

 
 
 

Animal

Mechanism
 
 

 
 

Containment

UnitMechanism

E  

FIG. I



7

US. Patent Jun. 22, 1999 Sheet 2 0f 25 5,915,252

, Zoo Administrator \

\ (from 200 Administration) ’,w

I, ”

 

 
 

\ H.
\

\~.. fl/

/ f —. _ I -
x u

; Animal Reglstry I
1 (from Zoo Keeper Hechani 3m) /

’9 list_animals(} /x

.[ \

x x

‘N. h- I r

\ C xfl / .- --~- {/
_.. \ A __ _..— f. -— ....__/ \.

Hh_, /

C If Zoo Keepers 1
1(f mm Zoo Keeper Mechanism) /

/O_®
C \

\ x
X. I

W W E _,/
f, "x \ \M..__... h-

n /- ----.\.f \ \-..._“' x.
\

. \
I Anlmals C

\ (from Animal Mechanism) /

/.J I!
f x
l x
\ J

\H. x //



8

US. Patent Jun. 22, 1999 Sheet 3 of 25 5,915,252

 

/ ._
I

f Zoo Keeper Registry i

C L (from 200 Administration) "
®\i/ list_200 keepersi) /

\

'L \

\ / ’

(D/M J \M. I’M. fl /
r '— \

i Containment Unit Registry
—_—_____ i

\i from Zoo Keeper Mechanism) ;

®—C—/ 1ist____contunitsi) //

 

\

\\ \
i

m_\ C ___ /
\ -..._ ..... A I” /

\ ~.. / _.

" '" \

n / \
\f \

\

\

{ Containment Unit I
\ (from Containment /

/’ Unit Mechanism) x,
l \

\ i

x I



9

US. Patent Jun. 22, 1999 Sheet 4 of 25 5,915,252

 

/ \

I x

__ I s.

('- ‘\l x...

[I’D-5's, V \\
,’ Zoo Administrator 9

: (from 200 Administration) 1
|\ I,

,3 5_minute_timer() ,’
/ add/deletefian imal ()
{ add/delete_containment_unit()‘\
\\ add/deletefizoo_keeper() 1

‘~~ start_zoo_admin() f
l‘ I...”
\x A ,x

“"x. c / ‘--’

FIG. 3



10

5,915,252Sheets 0f25Jun.22,l999US. Patent

AVmeE_:mlxumzuLm-OLHcouMungmumnfimh

1

E,,52.3233_anfivmfime_:mlxumcu“Em“:mcumzLoammxDONEagbvgmgmammxCON5

AymmmeflzmrxumcuLemma;

10



11

US. Patent Jun. 22, 1999 Sheet 6 0f 25 5,915,252

 

/ N.
l \

I \
I’”"“\ I N

rr-fi'h. I “‘4 \

{I ’ Animals \

1’ {from Animal Mechanism) “

: Feed_fre0 :
v. Location f

{L Temp_Range I;
(r Vet_visit_frea /

f get_temp_range( ) \\
I feed()=0 n
\ needs_food( )=0 1

\ .. needs_vet_vlslt( )=0 ,'
‘1 vet__v!sit()=0 (5 /

I

N.._4—\ ”\h_”/’
Viv I;

I ’“x

z- ‘\ —- I \‘N.I ‘- ‘q’ \I
’_ s. rim..." ‘\ ’ ' \

1’ ’ ‘\ ,’ Reptlles ‘1
Name 1 s ’1 L Temp_ range I z

I L {z ’ get_temp_irange() /
I \ l \\
‘ ‘ X J
\x' )1 W E _. /

'1 x /

\ “W ’h—E‘II' ~1M_//N~I
\E __J

I’F‘\_‘
_..__/'—h""] \

..-. x I \

“4/ \ i! Herbivore l
I, - ..., x 5 feed() ,1

: Carnivore ‘1 / needs_food() \"
K feedU / x \

x ’ needs__ foam ) (f \ - _‘ E ,I
L x x , ’1

\_ ‘1 “wax / x

11



12

US. Patent Jun. 22, 1999 Sheet 7 of 25 5,915,252

ffi-i \l

/ Containment Unit ‘\
(from Containment ;

,. Unit Mechanism) /’
/ adjust_temp() \
i \

\ E i‘N /\ W ,..,
\__\ /f‘—_-/

12



13

5,915,252Sheets 0f25Jun.22,1999US. Patent

 
«mmLmummm_me_c<mayneg;

 um>as“mu:_>

(h.o_n_
.\Agmfimaficquumcuum

um_filmhmnmmxum

 

 
a

“muwwamm“mammxooN manpoumgumwc_eufl08m5mEmN
Avmgmammxnoowlum_fiufi

V

 

a
 

an

 
 

13



14

5,915,252Sheet 9 0f 25Jun. 22, 1999US. Patent

m»GE

53m5355

 
m

Aymacmu1aamulummuwmmcmglgemu"m/e
mamacow;

“amply?“My:EAv.meumzugawkQa:2:
 

:Edcoudfi_no
avm

mmcfilaefi“VH3”13E:um/
ommgmwmwammw_:=

 

avmmcmglaamwlumouofi

mmmmxmcmanysum

  

acme:_mu:ou

 

14



15

5,915,252Shcctlfl 0f25Jun.22,l999US. Patent

Loumflmmm_mafl:<

 HMZImHmeEmum
AEEmulwwzmum"NH

15



16

US. Patent Jun. 22, 1999 Sheet 11 of 25 5,915,252

820

—7
822 APPLICATION PROGRAMS

DATA TRANSFER
37° FRAMEWORK

82“ OBJECTS

826 DATA

828 OPERATING SYSTEM

Mass Storage HF! Terminal [IF Network I/F

Terminal

 
T 865

16



17

US. Patent Jun. 22, 1999 Sheet 12 0f 25 5,915,252

900

 

 
 
 
 
 

910

 
 

 
 
 

 

ReadiDirectory

0fDataSource

SelectData

to Transfer

Read Data from

Data Source

Validate Data

Map Data to

Data Target

Verify'rransfe

Condition

Hrite Data to

Data Target

920

930

940

950

 
 

960

  970

 

 
980

17



18

5,915,252Shcct13 0f25Jun.22,1999US. Patent

 

:o_HmucouLoymcmhh

O_.o_n_
 

Lm%mcmghmumm  me_wmmugzow

  

 

18



19

5,915,252Shect14 0f25Jun.22,1999US. Patent

d:.07.
1

.....r-\_.

nvmu_gzmgoymn=:ummeP—B__”VHfiquo%mn=AvmuHLszwym:avuwmmgmuym_av_fiqgmwum:fivczgfivgokmcmghmumnLawmcmhpmumn  
\\./I;\Ill.\\r./\:o_u:awgpm_nJ_mamxumm;vA!8.69:.\A,3.68;\

\IJ\ik,_x.2%v
19



20

US. Patent Jun. 22, 1999 Sheet 15 0f 25 5,915,252

source

C}* \W /fl_/

5..

(9‘ target / Place \/

 
 

Transfer \’
Condition L

Target \‘
. /

( Mapplng (\ ~—-——-—.

FIG. IIB \ El:
53/” H

20



21

5,915,252Sheet 16 0f 25Jun. 22, 1999US. Patent

\I!\l..I/\f\\.....\z;.all838\x@3522355\,EN33:3/cum:/
Cmgouuwl—HUCxumzu

82m\
Ill.\\

\JI\  
Illcl‘ -\1/

f

I...

8.5“SEES/.\ I...I....\

21



22

5,915,252Shcct17 0f25Jun.22,l999US. Patent

\uf.\m/

lit/Kill.
\  \

22



23

5,915,252

m_.o_n_

Sheet 18 0f 25Jun. 22, 1999US. Patent

 
32E8.50m\

II.

III

\

\lllll-K

\/

,xlx,\:\,\rxxF\;x\,g:32;858IV“SEE858JA$53mEE\r$33393\
Er

/:

......._...

:U:m>V

23



24

5,915,252Sheet 19 0f 25Jun. 22, 1999US. Patent

m

AvumwvmwwmmcoflwwucouLakmcmhh
1/  

Ill

It...\IIll-I“

Hmacm“ozr%_Lm%mcm_p
lax
/\

l.\\ \ 
\.r:\\r.I\mcwmwwz/L_gmymcmgh\/..\..l........\

I._

24



25

5,915,252Sheet 20 0f 25Jun. 22, 1999US. Patent

 
mcwaam:ummmeummmmmfinmh\IIIII

i

ll

25



26

US. Patent Jun. 22, 1999 Sheet 21 0f 25 5,915,252

main() data transfer: source place

Data Transfer :Place

I 1: run() I

m
|

|

2: beforeAll() :
El: .

I I
.3: directory()|

I

I

I

I

I

: a: (transfer each source)
I II:
I |

I I

I

I

I

|

I

l

5: afterAll() :
|

I

I]:

F:l(3. |€3

26



27

5,915,252Shect22 0f25Jun.22,l999US. Patent

Q

~___

“mum:.mEmzvmu_gzgmuymnfifi“_859%sz3238835

Ampm:.msmzv0H_L
_

_.__.3 .......___....._
C)v—uAHm>m4.~m>m4vumwhm_ummuw“__

“Amamzvxumzuum*_
  
 

 

—_._u-———

      

E_Amemzvxuucum 839.252.3265szameum_

 Amumn.msmz.Uw~m>ua_“Ha:mwmn.mEszummmgmu%mumPL

__________

__
_

__
_

___"“mymn.m5mzwummgnm*___

nE.amEmz.ummzwgovmnnm
82a.“836:8“338.:55:“.8.50m82%305:2»3mm"82m.$9.8Lfimcmb583Em:C85882m858CfimcmbEmu

27



28

US. Patent Jun. 22, 1999 Sheet 23 0f 25 5,915,252

Data Transfer \
/ —~~———______._____

/ (from Data Transfer) \
/ DataT ransfer( )

/

\ runU W
l|[ afterAll()

\ || afterReadU
“‘ II afterHriteU

\ H beforeAlm
\ u beforeRead{) .3 1
\ || beforeWriteU 1 1 “m/_ .._.
\ /

N

’ “‘5. \

// Beta Product \
K Internet Unload /
\ llafterAlH) (

\ IlheforeAIH) J
\ /'--——/

\//

 

FIG. I8A

28



29

5,915,252Sheet 24 0f 25Jun. 22, 1999US. Patent

III-5..

\1_x_.Vu__m>\m_amhmmwwmGHQx;_mm
\

fl\
r

In]...

...............

/l\\|llilrll.llll\.\\u/\n.:£\Ava_.z/Awumm.“.mhouumL_uavxuocumu_mHecLuuc_
Ill!-

\\\/\u:xggmu_.:/AuummLxxAUaLOHumL_uAvxumcu=5Hm>wm1:3......II}.It:\III.I\\

w|||||||;wAgoufl_mmugzomsag».
mme_.mv_hm

_Awuw_m>zrxj\Iall‘l/\1.1\...mp..zmyI\.Vumm.avxgopumLHu,/.qumzuAmumfimEDP:mum—n—
n."

III-IL

Ill11!x/5.3:...g/“gummgA.2LouumhficAvxumcu“oumfimeagvv
xx

mum?”—lz\IIIJIK
I..l.\

 

 

\E/
“magmu

/\I........\1°fi\\\\§i®
\\

\

29



30

US. Patent Jun. 22, 1999 Sheet 25 0f 25 5,915,252

 
 
 

 

”"1 —.._ / \
"-I-I H H

.___. f“

/ Tranafer \ /" “a .\
/ Conditlon / Transfer If I

\(from Transfer Condition)§‘—(\ —"°tEqual \
“~\ satisfied” / \satisfiednj

\W / "“"‘ “J" “-__’_ ./

0..1 /'-——..._/ \-_. “x

a” "' f \ -... / Embed License )
// Target \ / Code in Data /

Manning (I i
/ ———-— .H mam) \
{from Target Manning) } \ j/

FIG. IBC H‘x‘w map-11;, \ /"‘""--*~—

30



31

5,915,252

1

OBJECT ORIENTED FRAMEWORK
MECHANISM FOR DATA TRANSFER

BETWEEN A DATA SOURCE ANI) A DATA
TARGET

FIELD OI" THE INVENTION

The present invention relates in general to the data
processing field. More specifically, the present invention
relates to the field of Object Oriented framework mecha-
nisms.

BACKGROUND OF TIIE INVENTION

The development of the EDVAC computer system of
1948 is often cited as the beginning of the computer era.
Since that time, computer systems have evolved into
extremely sophisticated devices, and have widespread usage
in many different applications. Computers perform their
functions by transferring and manipulating data at high
speed. Thus, data transfer is a fundamental function accom-
plished in every computer. In a computer system there may
be many places where data may reside. If data is to be read
from a first device and written to a second device, the first
device is referred to herein as the data source, and the second
device is referred to herein as the data target. For example,
in a data transfer from Random Access Memory (RAM) to
a hard disk drive, the RAM is the data source and the hard
disk drive is the data target. Similarly, in a data transfer
between a hard disk drive and a tape drive unit, the hard disk
drive is the data source and the tape drive unit is the data
target. The term data source as used herein includes any and
all devices that are a part of a computer system or that may
be coupled to a computer system by any means from which
data may be read. In a similar manner, the term data target

as used herein includes any and all devices that are a part of ‘
a computer system of that may be coupled to a computer
system by any means to which data may be written.

Recent years have seen rapid growth in network
computing, especially on the Internet. Network computing
gives rise to more complex data transmission problems,
since a user that needs to transfer data to another user on the

network may not know the specific platform or protocol the
other user is using or expects to see. Some network protocols
such as Transmission Control Protocolr’l nternet Protocol

(’I‘CI’JII’) and File Transfer Protocol (FTP) provide ways for
different types of computers to interact and transfer data.
However, knOWn methods for transferring data within a
computer system or across a connection between computer
systems have significant limitations. For example, while
FTP provides a uniform protocol for sending and receiving
data, a software application that can transmit in FTP must be
running on the data source and a software application that
can receive and understand FTP must be running on the data
target for the transfer to occur. Each FI‘P software applica-
tion must be tailored to the specific computer system (i.e.,
platform) that it runs on, and must have a knowledge of
system-specific parameters. When a new device is devel-
oped that needs to be included as either a data source or a
data target (or both), a new application must be developed
that will allow the new device to communicate with other
devices.

Various software tools have been used to automate data

transfers. However, prior art software tools are written to
implement a specific data transfer protocol on a specific
platform. Although these tools perform similar functions,
their user interfaces are completely different. The problem of
special and incompatible tools becomes readily apparent in

ID

15

3o

40

50

55

60

65

31

2

the context of a software build, where a computer system
must interact with many different data sources and targets to
be configured with the correct software before the computer
system is shipped to a customer. A computer system may
need to access data on numerous different devices using
numerous different connection types and numerous different
protocols. Each different combination of devicctconnection
typer'protoool will generally have a different software tool.
Thus, an agent (whether machine or human) that manages
the software build process must have intimate knowledge
relating to the details of each needed data transfer. and must
make the data transfer perform correctly. When a new type
of transfer is needed, then either a new tool must be

developed or an existing 1001 must be updated to accom-
modate the new transfer. As updates to tools accumulate,
tools become very difficult to maintain and debug and they
lose all commonality, evolving into completely unique tools
that perform only their intended purpose.

With the proliferation of networks and, in particular, the
Internet, the need for better mechanisms for transferring data
within a computer system and across different computer
systems becomes more apparent and more acute. Without a
mechanism that can be readily customized and extended to
accommodate new data sources. new data targets, and new
protocols in a computer system, the rate of developing
computer software to accommodate new data transfer envi-
ronments will be impaired.

SUMMARY OF THE INVENTION

According to the present invention, an object oriented
framework mechanism for data transfer between a data

source and a data target provides an infrastructure that
embodies the steps necessary to perform the data transfer
and a mechanism to extend the framework to fit a particular
data transfer environment. Certain core functions are pro—
vided by the framework, which interact with extensible
functions provided by the framework user. The architecture
of the framework allows a developer to determine the
conditions and parameters that apply to the data transfer
while allowing a user to interact with the framework with an
interface that is consistent regardless of the specific combi—
nation of data source, data target. connection type, or
protocol. The extensible functions allow new data transfer
environments to be easily implemented using the frame-
work. The framework thus allows a common user interface

for transferring data between any data source and any data
target, which may be easily customized to include data
sources, new data targets, new transfer protocols, etc. The
framework greatly simplifies the user’s job of transferring
data since it provides a common interface, and greatly
simplifies the developer’s job of providing a user interface
for a new combination of hardware andr‘or software by
providing established classes that may be easily extended to
implement the desired data transfer environment.

The framework mechanism of the present invention was
designed and constructed using object-oriented technology.
Those who are unfamiliar with object-oriented technology,
or with object—oriented framework mechanisms, should read
the object-oriented overview section of the Description of
the Preferred Embodiments.

BRIEF DESCRIPTION OF TI IE DRAWINGS

FIG. 1 is a category diagram of an example framework
mechanism;

FIGS. 2 through 6 are class diagrams for the example
framework mechanism of FIG. 1;



32

5,915,252

3

FIG. 7 is an object diagram for the example framework
mechanism of FIGS. 1 through 6;

FIG. 8 is a block diagram of the computer system used in
the preferred embodiment;

l-"lG. 9 is a flow diagram showing steps in accordance with
the preferred embodiment to perform core functions of the
framework mechanism;

FIG. 10 is a category diagram of a framework mechanism
constructed in accordance with the teachings ofthe preferred
embodiment;

FIGS. 1145 are class diagrams of a framework mecha—
nism constructed in accordance with the teachings of the
preferred embodiment;

FIGS. 16 and 17 are interaction diagrams of the frame-
work mechanism of FIGS. 11—15; and

FIG. 18 is a class diagram showing the extension of the
framework to implement a specific data transfer environ-ment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Overview—Object-Oriented Technology
As discussed in the Summary section, the present invenw

tion was developed using Object-oriented (00) framework n
technology. Individuals skilled in the art of 00 framewrirk
technology may wish to proceed to the Detailed Description
section of this specification. I [owever, those individuals who
are new to framework technology, or new to 00 technology
in general, should read this overview section in order to best
understand the benefits and advantages ofthe present inven—
tion.

Object—Oriented Technology v. Procedural Technology
Though the present invention relates to a particular 00

technology (i.e., 00 framework technology), the reader .
must first understand that, in general, 00 technology is
significantly different than conventional, process-based
technology (often called procedural technology). While both
technologies can be used to solve the same problem, the
ultimate solutions to the problem are always quite different.
This difference stems from the fact that the design focus of
procedural technology is wholly different than that of 00
technology. The focus of processnbased design is on the
overall process that solves the problem; whereas, the focus
of 00 design is on how the problem can be broken down
into a set of autonomous entities that can work together to
provide a solution. The autonomous entities of 00 technol-
ogy are called objects. Said another way, 00 technology is
significantly different from procedural technology because
problems are broken down into sets of cooperating objects
instead of into hierarchies of nested computer programs or
procedures.
The Term Framework

There has been an evolution of terms and phrases which
have particular meaning to those skilled in the art of 00
design. However, the reader should note that one of loosest
definitions in the 00 art is the definition of the word

framework. The word framework means dilferent things to
different people. Therefore, when comparing the character-
istics of two supposed framework mechanisms. the reader
should take care to ensure that the comparison is indeed
"apples to apples." As will become more clear in the
forthcoming paragraphs, the term framework is used in this
specification to describe an ()0 mechanism that has been
designed to have core function and extensible function. The
core function is that part of the framework mechanism that
is not subject to modification by the framework purchaser.

IO

15

3o

40

50

55

60

65

32

4

The extensible function. on the other hand, is that part ofthe
framework mechanism that has been explicitly designed to
be customized and extended by the framework purchaser.
00 Framework Mechanisms

While in general terms an 00 framework mechanism can
be properly characterized as an 00 solution, there is nev-
ertheless a fundamental difference between a framework
mechanism and a basic ()0 solution. The diflerence is that

framework mechanisms are designed in a way that permits
and promotes customization and extension of certain aspects
of the solution. In other words, framework mechanisms
amount to more than just a solution to the problem. The
mechanisms provide a living solution that can be customized
and extended to address individualized requirements that
change over time. Of course, the customizationr'extension
quality of framework mechanisms is extremely valuable to
purchasers (referred to herein as frameWork consumers)
because the cost of customizing or extending a framework is
much less than the cost of a replacing or reworking an
existing solution.

Therefore, when framework designers set out to solve a
particular problem, they do more than merely design indi—
vidual objects and how those objects interrelate. They also
design the core function of the framework (i.e., that part of
the framework that is not to be subject to potential customi-
zation and extension by the frameWork consumer) and the
extensible function of the framework (i.e., that part of the
framework that is to be subject to potential customization
and extension). In the end, the ultimate worth of a frame-
work mechanism rests not only on the quality of the object
design, but also on the design choices involving which
aspects of the framework represent core function and which
aspects represent extensible function.
ZAF—An Illustrative Framework Mechanism

While those skilled in the art appreciate that framework
design is necessarily an intertwined and iterative process,
example design choices for a simplistic framework mecha-
nism are set forth in the paragraphs that follow. It should be
understood, though, that this is only an example framework
that is being used in this specification to illustrate and best
explain framework mechanisms such that the reader can
understand and appreciate the benefits and advantages of the
present invention.

Framework designers determine what objects are needed
for a framework mechanism by selecting objects from what
is called the problem domain. The problem domain is an
abstract view of the specific problem at hand. The example
problem domain chosen for this illustrative framework
mechanism is that of zoo administration. The specific prob-
lem is that ofdesigning a mechanism that assists zoo keepers
in the care and feeding of 200 animals. In our example of a
Zoo Administration Framework {ZAP}, an 00 framework
designer would look to the zoological problem domain and
decide that any ZAF would of necessity involve a mecha—
nism that represented the relationship between zoo keepers
and animals (i.e., to represent how zoo keepers care for
animals). The framework designer would also likely recog-
nize that zoo animals usually live in cages, pens, tanks, and
other sorts of containment units. Therefore, our framework
designer would start with the idea that the framework would
have to involve mechanisms that represented all of these
fundamental entities and relationships.
How ZAF is Designed

To begin the design process, our framework designer
would likely begin with what is called a category diagram.
Category diagrams are used to describe high level frame-
work mechanisms, and how those mechanisms relate to one



33

5,915,252

5

another. FIG. 1 is a category diagram for the example
framework ZAF. The notation used in FIG. I, and that used
in the other figures ofthis specification, is explained in detail
in the Notation section at the end of this specification (pages
37—43). Each mechanism in a category diagram represents
groupings of objects that perform a particular function. For
the purposes of illustration, assume that our framework
designer decides that ZAI’ should be made up of four high
level mechanisms: a zoo administration mechanism, a zoo
keeper mechanism. an animal mechanism, and a contain-
ment unit mechanism.

As shown in FIG. 1, the zoo administration mechanism

has been designed to use the zoo keeper mechanism to
administer the zoo. The zoo administration mechanism is

therefore said to have it using relationship with the zoo
keeper mechanism. (Again, please refer to the notation
section of this specification for an explanation of this
relationship and the other notation used in this
specification.)

As discussed, the zoo administration mechanism has been
designed to have responsibility for overall control of ZAF.
Accordingly, the zoo administration mechanism is respon—
sible for scheduling the operation of the zoo keeper mecha-
nism. Note also that our framework designer designed the
zoo administration mechanism to be a core function of ZAF, H
which means that it has been designed such that it will not
be subject to potential customization and extension. The C
in the category box denotes this fact. Please note further that
the uses relationship between the zoo administration mecha-
nism and the zoo keeper mechanism has also been designed
such that it is not available for ultimate customization by the
framework consumer.

The zoo keeper mechanism has been designed to be
generally responsible for the care and feeding of the zoo
animals. Accordingly, it uses the animal and containment .
unit mechanisms to perform its tasks. However, unlike the
design of the zoo administration mechanism, our framework
designer has designed the zoo keeper mechanism to be
extensible function, which again means that the zoo keeper
mechanism has been designed to be available for modifica-
tion andfor extension by the framework consumer to address
future care and feeding requirements. This fact is denoted by
the E in the zoo keeper mechanism category box.

Our framework designer has designed the animal mecha-
nism to represent the animal side of the interaction between
zoo animals and zoo keepers. Since the animal population in
the zoo is something that changes on a regular basis, the
animal mechanism has similarly been designed as an exten-
sible function. The containment unit mechanism interacts

with the zoo keeper mechanism by representing individual
containment units such as pens, tanks, and cages. Like the
animal mechanism, the containment unit mechanism has

been designed as an extensible function such that it can
handle future customization and extension requirements.
Please note here, however, that even though the zoo keeper,
zoo animal, and containment unit mechanisms have all been

designed as extensible function, the relationships between
the mechanisms have been designed to be a core function of
ZAF. In other words, even though it is desirable to give
ZAF’s consumers flexibility relative to the zoo keeper, zoo
animal, and containment unit mechanisms, it is not desirable

to allow ZAE's consumers to change how these mechanisms
relate to one another.

Our framework designer would next design the classes
and relationships that make up the mechanisms shown on
FIG. 1. A class is a delinition of a set of like objects. As such,
a class can be thought of as an abstraction of the objects or

ID

15

3o

40

50

55

60

65

33

6

as a delinition of a type of object. From the view of a
computer system, a single object represents an encapsulated
set of data and the operation or a group of operations that are
performed by a computer system upon that data. In fact, in
a secure computer system, the only access to the information
controlled by an object is via the object itself. ‘lhis is why
the information contained in an object is said to be encap—
sulated by the object.

Each class definition comprises data definitions that
define the information controlled by the object and operation
definitions that define the operation or operations performed
by objects on the data that each object controls. In other
words, a class definition defines how an object acts and
reacts to other objects by defining an operation or set of
operations that istarc performed on the defined data. (Please
note that operations are sometimes called methods, method
programs, andr’or member functions.) When taken together,
the defined operationlfs} and data are said to be the behavior
of the object. In essence, then, a class delinition defines the
behavior of its member object or objects.

FIG. 2 is an 00 class diagram that shows the fundamental
classes that our framework designer has designed for ZAP.
Each class representation includes its relationship to the
mechanisms shown on FIG. 1.1-‘or example, we can see that
the zoo keepers class is denoted as being from Zoo Keeper
Mechanism. The fundamental classes of ZAP include: the

zoo administrator class, which is part of the zoo adminis-
tration mechanism; the zoo keeper registry class, which is
also part of the zoo administration mechanism; the animal
registry class, which is part of the zoo keeper mechanism;
the zoo keepers class, which is also part of the zoo keeper
mechanism; the containment unit registry class, which is
also part of the zoo keeper mechanism; the animals class,
which is part ofthe animal mechanism; and the containment
unit class, which is part of the containment unit mechanism.

Please note again that the relationships between the
classes have been designed as core function of ZAI" such
that they are not available for ultimate modification by
ZAP’s consumers.

The zoo administrator class is the definition of the object
that is responsible for the overall control of ZAP. Again, 00
classes only define the objects that interact to provide a
solution to the problem. However, it is by exploring the
characteristics of the class definitions that we are able to

understand how the objects of the framework mechanism
have been designed to provide a living solution that can be
customized andtor extended to address future requirements.

The zoo administrator class has been designed to have a
uses relationship with the zoo keeper registry. Our frame-
work designer has designed the zoo administrator and zoo
registry classes to be a core function of ZAP because our
designer has decided that ZAF’s consumers should not be
allowed to modify the behavior of objects that are members
of these class definitions. The zoo keeper registry, which has
what is called 3 contains by reference relationship with the
zoo keeper class, is simply a class that defines an object that
is a container for all zoo keeper objects. Accordingly, the zoo
keeper registry includes a definition for a list_zoo_
keepers(} operation. As will be described later, this operation
is responsible for providing a list of zoo keeper objects to
other objects that request such a list.

FIG. 3 shows a lower level view of the zoo administrator

class. Since objects of type zoo administrator have respon—
sibility for overall control of ZAF, the zoo administrator
class has been designed to include operations that perform
tasks oriented towards zoo administration. The class defi-

nition includes the following five operations: 5_minute_



34

5,915,252

7

timerO, add_anirnal(), add_containment_unit(), add_
zoo_keeper(), and start_zoo_arlmin().

The start_zoo_admin() operation is responsible for start-
ing ZAF. That is, a user or system administrator will interact
with the start__zoo_adrnin() operation to begin administra—
tion of a zoo via ZAF. Once started, our framework designer
has designed the start_zoo_admin() operation to initiate the
5__minute__timer() operation. Every five minutes, the
5_rninute_timer() operation instructs the zoo keeper
objects to go out and check on the animals. The addt‘delete_
zoo_keeper operation is responsible for interacting with
users of ZAF to define additional zoo keepers (i.e., addi-
tional zoo keeper classes), to add additional zoo keepers
(i.e., zoo keeper objects), and to remove zoo keeper classes
andfor objects. As will become clear in the forthcoming
paragraphs, each zoo keeper object is responsible for per—
forming a particular zoo task. Therefore, it is natural that a
user of ZAP might well want to add a zoo keeper definition
and object to handle an additional zoo task or to remove a
definition or object that is no longer needed. As will be seen,
this flexibility is provided by designing the zoo keeper
mechanism as an extensible function.

Like the addt’delete zoo keeper operation, the add!
delete. .animalO operation is responsible for interacting with
users to define additional zoo animal classes and objects and z
to remove classes and objects that are no longer needed.
Again, it is quite natural for a zoo to need to add and remove
animals. The addr'delete__containment_unit() operation is
responsible for the definition of new containment unit
classes and objects and for removal of classes andior objects
that are no longer necessary. Again, our framework designer
has designed ZAP in a way that provides this flexibility by
designing the animal and containment unit mechanisms as
extensible functions.

Referring back to FIG. 2, the zoo keepers class definition .
has a uses relationship with the animal registry, animals,
containment unit registry, and containment units classes.
Since the value of ZAP is enhanced by allowing ZAI-"s
consumers to customize and extend the zoo keepers,
animals, and containment unit classes, these classes have
been designed as extensible function. However, changing
the behavior of the animal and containment unit registry
classes would disrupt the basic operation of ZAF. Therefore,
these classes have been designed to be core functions of
ZAP.

While the classes and categories within ZAP have been
described as either core functions or extensible functions, it
is important to note that the term "core function” as used
herein broadly relates to requirements that cause the frame-
work to operate in the desired manner. In simple terms, core
functions of a framework are the functions that any program
that uses the framework will perform. The requirements of
core functions may be imposed by the structure of the
framework (eg, by designating certain classes as core
functions) or may be imposed by functional requirements
that dictate how a framework consumer may utilize the
framework. Thus, core functions include not only the classes
and class relationships that are designated as core, but may
also include extensible classes that must be implemented in
particular ways for the framework to function properly. Said
another way, while extensible function is that part of the
framework that is designer] to be customized by the frame-
work consumer, the nature and extent of the customization

is governed by the requirements of the framework’s core
function (i.e., the overall framework function imposed by
the structure and functional requirements of the framework).
For example, the animals class has been designed as exten-

IO

15

3o

40

50

55

60

65

34

8
sible function of ZAF so that ZAF can be customized to

accommodate different types of animals. However, the abil-
ity to customize the extensible animals class does not imply
that the nature of the customization can violate the basic

structure imposed by the core function of ZAF (cg, by
customizing the animal class to the extent that it can no
longer be reasonably said to represent a type of animal).

FIG. 4 is a class diagram of the zoo keeper class.
However, before describing the details of FIG. 4, it is
worthwhile to point out that the class definitions shown on
FIG. 4 are ranked in a very simple ordering called a class
hierarchy. A class, like the zoo keeper class, that represents
the most generalizedlabstract class in a class hierarchy is
referred to as the base class ofthe hierarchy. The ordering of
classes in a class hierarchy goes from most general to least
general (i.c., from general to specific). Less general classes
(leg, the feeder class) are said to inherit characteristics from
the more general class or classes {i.e.. the zoo keeper class
in this case). As such, class definitions feeder, veterinarian,
and temperature controller are said to be subclasses of the
zoo keeper class. Inheritance mechanisms will be explored
in more detail in the discussion associated with FIG. 5.

As shown on FIG. 4, the zoo keeper class definition
contains a single operation definition, the check___animals()
operation definition. 'lhe reader should also note that the zoo
keepers class definition is marked as being an abstract class.
Abstract classes are not designed to have objects created as
their members, but are instead used to define a common
interfacefprotocol for their subclasses. A class is said to be
an abstract class when at least one of its operation definitions
is a pure virtual operation definition. Pure virtual operation
definitions are designed for the sole purpose of defining a
common interface for subclass definition of that operation.
In other words, the design of the actual behavior (i.e., the
data and operations) is left to the subclasses themselves. In
the case of the zoo keeper class definition, the feeder,
veterinarian, and temperature controller subclasses define
specific implementations of the pure virtual check._
animals() operation definition that is contained in the zoo
keeper class. An operation is marked as a pure virtual when
it is set equal to 0.

It is important to note, though, that the common interface
of a pure virtual operation definition must be honored by all
subclasses such that requesting objects (called client objects)
can use subclass member objects (called server objects)
without needing to know the particular subclassof the server
object. For example, whenever the object defined by the zoo
administrator class needs a particular action performed, it
interacts with a zoo keeper object. Because the interface to
these objects. was defined in abstract, base class zoo keeper
and preserved in the subclass definitions for the check_
animalsO operation, the zoo administrator object need not
have special knowledge about the subclasses of any of the
server objects. This has the effect of decoupling the need for
the action (i.e., on the part of the zoo administrator object)
from the way in which the action is carried out (i.c., by one
of the objects of the zoo keepers subclasses). Designs (like
the ZAI design) that take advantage of the characteristics of
abstract classes are said to be polymorphic.

Polymorphism is extremely important to 00 framework
design because it allows the way in which something is done
(called the implementation) to be changed or extended
without effecting the mechanisms that depend on the fact the
action is actually performed. In other words, client objects
need only understand that certain objects perform certain
functions. not how those functions are actually carried out.
This is one way in which a properly designed framework can
be readily customized and extended to satisfy future require-
ments.



35

5,915,252

9

As previously discussed, our framework designer has
designed ZAP such that zoo keeper objects interact with
animal and containment unit objects to perform their tasks.
FIG. 5 is a class diagram for the class hierarchy of the
abstract class animal. Since the animals class definition is

responsible for representing the characteristics and behavior
of zoo animals, the framework designer has designed
abstract class animal in a way that reflects this responsibility.
As shown, the example animal class definition includes data
definitions feed_freq, location, and temp_range and opera-
tion definitions get_temp_range(), fecd(). necds_food(),
needs_vet_visit(), and vet_visit().

For the purposes of this framework overview, it is not
necessary to explore each definition in detail. However, the
temp range data definition and the get temp rangeO and
fech operation definitions are good examples of well
thought out framework design choices.

The feed() operation definition is designed to perform the
actual feeding of the animals (i. e., through specific feeding
apparatus which is not shown}. The fcch operation is a pure
virtual operation. Again, this means that the design of the
class is such that the actual mechanism that performs the
needed function has been left to be defined by the sub-
classes. Requiring subclass definition is a good design
choice in cases like this where objects that are created as i
members of the subclasses have particularized needs. In
ZAF, for example, each type of animal is likely to have need
for a particularized feeding apparatus, which not only makes
definition of a generic feedO operation diflicult, but value-
less.

By way of comparison, the framework designer has
explicitly designed the get temp rangeO operation such
that it is not a pure virtual operation definition. This means
that get__temp__range0 has been generically defined as a
default operation. As such, it is considered a virtual opera- .
tion. Default operations are used to provide generic function
to subclasses. The subclasses can simply use the default
Operations or they can customize or extend the default
operations by redefinition. Redefinition of a default opera-
tion is called overriding the default operation.

Mammals is a subclass of class animals, and as such,
mammals inherits all of the characteristics of class animals.

Please note that class mammals is also designed as an
abstract class, which again means that it has not been
designed to have objects created as its members, but has
instead been designed to provide a common interface for its
subclasses. Subclass mammal is further subclassed into
classes carnivore and herbivore.

Since definition of the feed() operation has been left up to
the subclasses, subclasses carnivore and herbivore each have

their own definition of the feed() operation. Again, this is a
good design choice because meat eating carnivores are
going to have different needs than their plant eating counv
terparts.

Temp” range is a data definition [or the range of tem-
peratures that coincides with that of the specific animal’s
natural habitat and the get_temp__range() operation defini-
tion is designed to retrieve the temp_range for a specific
animal and return it to a requesting client object. Subclass
reptiles contains its own data definition for temp_.range and
its own definition for the get temp _range0 operation. ZAF
has been designed this way to point out that data definitions
can be overridden just like operation definitions. Since many
reptiles live in desert conditions, where nights can be very
cold and days very hot, the default temp_range definition
has been overridden in the reptiles class to include time and
temperature information (not explicitly shown on FIG. 5).

IO

15

3o

40

50

55

60

65

35

10

This is another good design choice because it allows ZAF to
treat reptile containment units differently than other con-
tainment units by allowing temperature adjustments to be
made based on the time of day as well as on the current
temperature of the containment unit itself.

FIG. 6 is a class diagram showing a lower level view of
the containment unit class. The containment unit class

contains virtual operation definition adjust_temp(). The
adjust_temp definition defines both the interface and
mechanism used to actually adjust the temperature in the
containment units of the zoo (i.e., via heating and cooling
mechanisms which are not shown).
How the ZAF Objects Interact

Beyond designing the objects that make up the solution to
the specific problem, our framework designer must also
design how the individual objects interrelate. in other words,
the objects must interrelate in way that takes advantage of
the manner in which they Were designed. As discussed, the
way in which the defined operations of an object operate on
the data defined for the object is called the object's behavior.
While objects may be characterized as autonomous entities,
it is still very important that each object exhibit a consistent
behavior when interrelating with other objects. Consistent
behavior is important because objects depend upon the
consistent behavior of other objects so that they themselves
can exhibit consistent behavior. In fact, consistent behavior
is so important that an object's behavior is often referred to
as the contract the object has with the other objects. When
an object does not exhibit a consistent behavior, it is said to
have violated its contract with the other objects.

When an operation of one object needs access to the data
controlled by a second object, it is considered to be a client
of the second object. to access the data controlled by the
second object, one of the operations of the client will call or
invoke one of the operations of the second object to gain
access to the data controlled by that object. One of the
operations of the called object (i.e., a server operation in this
case) is then executed to access andfor manipulate the data
controlled by the called object.

FIG. 7 is an object diagram showing how the example
objects of ZAP interact to assist zoo personnel in operating
the zoo. A detailed analysis of the interaction of all of the
ZAP- objects is unnecessary for the purposes of this over-
view. However, the reader should review the following
simple control flow to obtain a rudimentary understanding of
how objects interact to solve problems.

As mentioned, an object is created to be a member of a
particular class. Therefore, Zelda the Zoo Administrator
[object 796] is an object that is a member {actually the only
member) of the zoo administrator class. As such, object
Zelda is responsible for overall control of ZAP. All of the
zoo keeper objects have registered with the ho Keeper
Register object [object 700]. Therefore, object Zelda obtains
a List of the current zoo keepers by calling the list. zoo.
kcepcrsO operation [step 1] of the Zoo Keeper Register
object. The Zoo Keeper Register object has been created as
a member of the zoo keeper register class. For the purposes
of illustration, assume that this occurs every live minutes as
part of Zelda‘s 5__minutc_tirner() operation. The Zoo
Keeper Register object then responds with the zoo keepers
list [step 2]. The list of zoo keepers includes Tina the
Temperature Checker [object 714], Vince the Vet. [object
740], and Fred the Animal Feeder [object 752]. Each zoo
keeper has been created as a member of the zoo keepers
dates. to particular, objects Tim: the Temp. Checker, Vince
the Vet., and Fred the Feeder are respectively members of
the temperature controller, veterinarian, and feeder sub-
classes.



36

5,915,252

11

Once the list of current zoo keepers has been returned to
object Zelda, object Zelda instructs each mo keeper in the
list to check the animals by calling the check_animals{)
operation of each zoo keeper object [only the call to Tim: the
Temp. Checker is shown—step 3]. Please note that object
Zelda did not need to understand the types of zoo keepers
that were in the zoo keeper list. the number of zoo keeper
objects in the list, or the specialized characteristics of any
one zoo keeper object. Object Zelda uses the same interface
(i.e., the check_animals() operation) to communicate with
each zoo keeper object. It is then up to the individual zoo
keeper objects to perform the task for which they have been
created. Each zoo keeper object performs its assigned task
through use of its own check animalsO operation. For
example, object Tina’s check animals() operation retrieves
a list of current animals from the animal registry object by
calling the list__ animalsO operation [step 4] and then a list
of containment units from the containment unit register
object by calling the list__cont_units() operation [step 6].
Upon examining the animal list, object Tina’s check_
anitna]s(} operation determines that there are only two
animals currently registered in the zoo, Sam the Snake
[object 728] and Simba the Lion [object 718].

Object Tina’s check. animalst) operation then calls the
get___temp__range0 operations to get temperature ranges n
from objects Sam and Simba [steps 8 and 10]. Once the
temperature ranges have been returned, the check_
animals“ operation of object Tina determines which con-
tainment units house the respective animals (Le, Simha and
Sam) and then calls the adjust __ternp() operation of the
appropriate containment unit (i. e., Lion Cage 7 in the case
of object Simba and Snake Pit 3 in the case of object Sam)
to adjust the temperature of the containment units [steps 12
and 13].

The adjust tempo operation of each containment unit
then completes the control flow by proceeding to adjust the
temperature in a way that is. appropriate for the animals
contained in each containment unit. (’l'hat is, the temperature
is adjusted based on time and temperature for Snake Pit 3
and based on time alone for Lion Cage 7.) The reader should
note that the relationship between the check_animals{)
operation and the adjust tempo operations is polymorphic.
In other words, the check_.animals() operation of object
'I‘ina does not require specialized knowledge about how each
adjust. ternp{) operation performs its task. The check.
animals() operation merely had to abide by the interface and
call the adjust_temp() operations. After that, it is up to the
individual adjust_temp() operations to carry our their tasks
in the proper manner.

At this point, it is again worthwhile to point out that the
ZAP mechanism is an extremely simplistic framework
mechanism that has been presented here to help novice
readers understand some basic framework concepts so as to
best appreciate the benefits and advantages of the present
invention. These benelits and advantages will become more .
clear upon reference to the following Detailed Description.

DETAILED DESCRIPTI ON

FIG. 8 shows a block diagram of a computer system 800
in accordance with the present invention. The computer
system of the preferred embodiment is a computer system
such as an AIX platform. However, those skilled in the art
will appreciate that the mechanisms and apparatus of the
present invention apply equally to any computer system,
regardless of whether the computer system is a complicated
multi-user Computing apparatus or a single user workstation.
As shown in the exploded view of FIG. 8, computer system

5

15

3o

35

4t)

45

50

60

65

36

12

800 comprises main or central processing unit (CPU) 810
connected to main memory 820, mass storage interface 830,
terminal interface 840, and network interface 850. These
system components are interconnected through the use of a
system bus 860. Mass storage interface 830 is used to
connect mass storage devices (such as DASD device 855} to
computer system 800. One specific type of DASD device is
a floppy disk drive, which may store data to and read data
from a f10ppy diskette 895.

Main memory 820 contains application programs 822,
objects 824, data 826, and an operating system 828. Corn-
puter system 800 utilizes well known virtual addressing
mechanisms that allow the programs of computer system
800 to behave as if they only have access to a large, single
storage entity (referred to herein as computer system
memory) instead of access to multiple, smaller storage
entities such as main memory 820 and DASD device 855.
Therefore, while application programs 822, objects. 824, and
operating system 828 are shown to reside in main memory
820, those skilled in the art will recognize that these pro-
grams are not necessarily all completely contained in main
memory 820 at the same time. Note that the term "computer
system memory” is used herein to generically refer to the
entire virtual memory of computer system 800.

Operating system 828 is a suitable multitasking operating
system such as AIX; however, those skilled in the art will
appreciate that the spirit and scope of the present invention
is not limited to any one operating system. Operating system
828 preferably supports an object oriented programming
environment such as that provided, for example, by the C++
programming language. One or more application programs
822 provide a programming environment for computer
system 800, and include a data transfer framework mecha-
nism 870, which is preferably an object oriented framework
mechanism. Framework mechanism 870 contains instruc—

tions capable of being executed on CPU 810 and may exist
anywhere in the virtual memory space of computer 800. In
particular, data transfer framework mechanism 870 may
reside within operating system 828.

Although computer system 800 is shown to contain only
a single main CPU and a single system bus, those skilled in
the art will appreciate that the present invention may be
practiced using a computer system that has multiple CPUs
auditor multiple buses, whether contained in a single unit or
distributed across a distributed processing computer system.
In addition, the interfaces that are used in the preferred
embodiment each include separate. fully programmed
microprocessors that are used to off-load compute-intensive
processing from CPU 810. llowever, those skilled in the art
will appreciate that the present invention applies equally to
computer systems that simply use IEO adapters to perform
similar functions.

Terminal interface 840 is used to directly connect one or
more terminals 865 to computer system 800. These tenni-
nals 865. which may be non-intelligent or fully program-
mable workstations, are used to allow system administrators
and users to communicate with computer system 800.

Network interface 850 is used to connect other computer
systems andtor workstations (eg, 875 and 885 in FIG. 8) to
computer system 800 in networked fashion. The present
invention applies equally no matter how computer system
800 may be connected to other computer systems andi’or
workstations. regardless of whether the connection to the
network is made using present-day analog anchor digital
techniques or via some networking mechanism of the future.
It is also important to point out that the presence of network



37

5,915,252

13

interface 850 within computer system 800 means that com-
puter system 800 may engage in cooperative processing with
one or more other computer systems or workstations. Of
course, this in turn means that the programs shown in main
memory 820 need not necessarily all reside on computer
system 800. For example, one or more application programs
822 may reside on another system and engage in cooperative
processing with one or more programs that reside on com-
puter system 800. This cooperative prouessing could be
accomplished through use of one of the well known client-
server mechanisms such as remote procedure call (RFC).

At this point, it is important to note that while the present
invention has been (and will continue to be) described in the
context of a fully functional computer system, those skilled
in the art will appreciate that the present invention is capable
of being distributed as a program product via floppy disk
(e.g., 895 of FIG. 8), CD ROM, or other form of recordable
media, or via any type of electronic transmission mecha-
nism.
Data Transfer Framework Mechanism of the Present Inven-

tion
The data transfer framework mechanism disclosed herein

provides an architecture for transferring data from a data
source to a data target within a computer system. Extending
the framework to accommodate data transfer between a h

specific data source and a specific data target defines a “data
transfer environment.” For example, for computer system
800 of FIG. 8, if data needs to be transferred from work-
station 875 to DASD 855, a data transfer environment may
be created by extending the framework to define the data
source as workstation 875, the data target as DASI) 855, and
to define appropriate transfer parameters and protocols that
allow the data to be transferred. Note that the terms “data

source== and “data target" are encompassing terms that may
refer to any portion of a computer system that is capable of
sending or receiving data.

By providing framework mechanism 870 to perform data
transfers within computer system 800, a uniform interface
for all data transfer tools may be developed. Framework
mechanism 870 may replace all of the proprietary tools that
are currently used on modern computer systems to automate
data transfer tasks. This would allow common user interface

for virtually any type of data transfer activity, which would
greatly ease the burden of programming software applica-
tions that currently rely on different, incompatible tools for
their data transfer needs. Thus, one of the primary benefits
of the framework disclosed herein is the capability to
perform data transfer from any data source to any data target
within a computer system or between computer system
using a simple, easy to use interface defined by the frame-
work.

Once different data transfer environments are defined

within the framework by extending appropriate extensible
functions in the framework, data transfer may be performed
between any data source and data target that are defined in .
the framework and that may communicate with each other.
The communication may be performed over any suitable
communications medium, including hard-wired and wire—
less connections, and may be within a computer (e.g.,
between components on the same computer platform) or
may be across a distributed computer system (e.g., a local
area network (LAN) or the Internet). the framework 870 of
the present invention greatly improves the productivity of
programmers by providing a uniform interface for all data
transfer needs within a computer system.

Referring to FIG. 9, a framework in accordance with the
preferred embodiment performs steps that comprise a

it)

15

3o

35

4!)

45

50

60

65

37

14

method 900 for transferring data from a data source to a data
target. The first step is to read the directory ofthe data source
(step 910). The directory is used here to denote any listing
of data on the data source, and is not to be construed as a
limitation. Once the directory of data on the data source is
read, the appropriate data to transfer is selected (step 920),
and the data is read (step 930). For example, if the data
source is a DASD unit, and the directory is a list of files on
the DASI) unit, one of those files may be selected for
transfer (step 920), and the contents of the selected file is
then read (step 930). Once the data has been read, the data
is validated (step 940) to see if this selected data meets the
established criteria for being transferred. This validation
may be any type of screening of the data, including screen-
ing for specific file types or extensions, for specific data
within the files, or any other suitable validation criteria.

Once data has been validated (step 940), the data is
mapped to the appropriate data target (step 950). This
mapping may be used to convert tile formats from one type
understood by the data source to a different type understood
by the data target, or may be used to perform any other
suitable transformation on the data being transferred. Once
the mapping step is complete (step 950), the data is checked
to verify that it qualifies for transfer (step 960). One suitable
check is to see if the data already resides on the data target,
and if so, the date of the data on the data target is compared
to the date of the data on the data source. If the data on the

data source is newer than the data on the data target, the data
transfer would generally be allowed to take place. However,
if the data on the data source is older than the data that would

be overwritten on the data target, the transfer condition of
step 960 is not met, and the data transfer will not occur.

Assuming transfer condition in step 960 is met, the data
is written to the data target (step 970). At this point the
directory is checked to see if all data on the data source has
been processed (step 980). If yes, method 900 is complete.
If no, the next data is selected (step 920), and the process is
repeated until all data in data source has been processed
(step 980=YES). While the specific implementation of each
step of method 900 will vary according to the desired data
transfer environment and the specific extensible functions
provided by the framework user, method 900 is an illustra-
tion of several processing steps that may be performed for a
large number of different configu rations implemented with in
a single framework.

The fact that the preferred embodiment of the framework
is object oriented allows the user of the framework to easily
define the needed functions by subclassing from the classes
defined within the framework using known object oriented
programming environments, such as C++. The preferred
embodiment of the present invention is an object oriented
data transfer framework. While many different designs and
implementations are possible, one suitable example of an
object oriented data transfer framework is disclosed below
to illustrate the broad concepts of the present invention.
Class Definitions

FIG. ll] is a category diagram of the data transfer frame-
work mechanism 870 in accordance with the preferred
embodiment. Those skilled in the art will appreciate that the
categories illustrated in FIG. 10 represent collections of
object oriented programming (001’) classes that encapsulate
data attributes and behaviors (or methods). Objects instan»
tiated as members of these classes are stored in the main

memory 820 of computer system 800. These classes may be
implemented, for example, in a computer system operating
environment that supports the CH programming language.

The classes have been broken down into five categories:
the Data Transfer category, the Place category, the Source



38

5,915,252

15

Filter category, the Transfer Condition category, and the
Target Mapping category. All of these categories are exten-
sible categories [as indicated by the "E“ label), meaning that
users may extend the classes in these categories by defining
and implementing classes that are subclasses of framework»
defined classes. The Data Transfer category has a using
relationship with the other four categories. indicating that
classes within the Data Transfer category invoke the meth-
ods provided by the classes in these other categories. Note
that these relationships between categories are core relation-
ships {as indicated by the "C“ label}, meaning that the
framework user cannot modify these relationships.

FIG. 11 is a top level class diagram of the classes used to
implement data transfer framework 870. The Data Transfer
class belongs to the Data Transfer category. In like manner,
the Place class, the Source Filter class, the Transfer Condi—

tion class, and the Target Mapping class all belong to the
respective categories of the same name. The key methods
provided in each class are not shown in FIG. 11, but are
shown in subsequent figures. The remaining classes in FIG.
11 (i.c., Backup, Restore, Driver Build, Product Package,
Product Distribution, and File Shadow) are examples of
possible data transfer environments that a user could define
by appropriate subclassing of the Data Transfer class. For
example, the Backup class may define a data transfer envi- a
ronment that allows a hard disk drive to write data to a tape
drive unit. Each different subclass of the Data Transfer class

provides a different data processing environment that defines
how a specific data source may transfer data to a specific
data target. The unmarked classes of FIG. 11 illustrate that
many different subclasses could be defined to support a large
number of data transfer environments.

FIG. 11 illustrates the relationships of the Data Transfer
class to other classes in the framework. Data Transfer is an
extensible class that contains the methods shown. Data .
Transfer is a class that a user of the framework will extend

to define a specific data transfer environment that needs. to
be supported by the framework by subclassing the appro-
priate abstract classes (such as Place, Source Filter, etc.).
Data Transfer has a “has by reference” relationship to the
source Place class and the target Place class, indicating that
a data transfer environment will include one or more objects
from each of these classes. Data Transfer also has a “has by
reference” relationship to the Source Filter class, the Trans-
fer Condition class, and the Target Mapping class, indicating
that a suitable data transfer environment implemented by
appropriate subclassing of the framework may define zero,
one or many of each of these classes. All of the relationships
between classes in FIG. 11 are core relationships, that a user
of the framework may not alter.

An object instantiated undcr the Data Transfer class will
have the methods shown in FIG. 11. The DataTransferO
method and who method simply call methods in the other
extensible classes. The remaining methods (Le... afterAllO;
afterRead(); afterWrite(); beforeAll(); beforeReadO;
beforeWriteO) are all private methods that may be initially
implemented with no-ops, but may be overridden by sub-
classing from the Data Transfer class and by implementing
these methods in the subclass. These methods are private (as
marked by the two vertical lines), indicating that these
methods are available only to the methods within the Data
Transfer class, and cannot be invoked outside of Data

Transfer. The specific sequence of these methods will be
explained below in reference to the interaction diagrams of
FIGS. 16 and 17.

A class diagram of the classes in the Place category are
shown in FIG. 12. The Place class is an extensible abstract

10

15

3o

40

50

55

60

65

38

16

class, and has a "has“ relationship with the Directory class,
which is an extensible class. The Directory class has a “has"
relationship with the Name extensible class, with the 0. . . n
indicating that each directory may have zero, one, or many
Names. Each Name has associated Data, which has an

associated Level. One example for Place is a hard disk drive,
which contains a directory. The directory on a hard disk
drive has zero to It [lies (i.e., Names); each file has its
associated data (i.c., Data}; and the data typically has an
associated date stamp (i.e., Level). Note that the relation-
ships between these classcs are core relationships, those that
may not he changed by the user of the framework.

As described with reference to FIG. 11, a user of the

framework may extend the framework by subclassing from
the extensible classes. Thus, for the Place class in FIG. 12.
the following user—defined subclasses are provided as
examples: Internet Site, File System, Zip Archive, and
Storage Device. These user-defined Place subclasses may be
defined as a data source, a data target, or both, in one or more
data transfer environments. For the discussion herein, a
source place serves as a data source, and a target place serves
as a data target.

The extensible Place class in FIG. 12 defines a set of

methods which provide the functions needed for the frame
work to operate. Each of these methods correspond to
functions that may be performed during data transfer. These
methods provide extensible interfaces that allow a user of
the framework to take advantage of the flexibility and power
of the framework by easily adapting the framework to new
or different data transfer environments. The specific imple-
mentation shown in the figures for the classes are shown for
the purpose of illustration, and a framework user may select
alternative implementations by overriding extensible meth-
ods within the scope of the present invention.

The Place class has a checkO method. A Name is passed
as a parameter to the check() method, which causes the
check() method to return the Level associated with the Data
that corresponds to the Name passed. In this manner, the
cbeck() method is used to retrieve the Level corresponding
to a particular Name. The directory() method returns the
contents of the Directory class, which contains a list of all
the Names stored in the Place. The read() method reads the
data corresponding to a name passed to it, while the write{)
method writes a name and corresponding data to the Place.

Referring to FIG. 13, a Source Filter class is an extensible
abstract class of the framework. The Source l'I'ilter class has

a single method validO, which is passed a Name and its
associated Data. Valido is used to determine whether the
Name andi'or Data meet predeten'nined criteria for transfer.
For example, if a framework user wants to transfer only
executable files for a given data transfer environment,
validO may be programmed to return true if the file is an
executable, and false otherwise. This might be the case for
an Executable Source Filter, as shown in one of the possible
subclasses for Source Filter. In another example, valid()
might compare the name to a list of names in a name table
that specifies transfer candidates, and return true of the data
is listed in the table and return false otherwise. This could be

the case for the Table Based Source Filter, another possible
subclass for Source Filter. As illustrated by the empty
subclasses of FIG. 13, other numerous possible subclasses
for Source Filter may be implemented as well, and are
shown as examples of additional user—extended classes that
may be defined by subclassing from the Source Filter
abstract class.

Referring to FIG. 14, a Transfer Condition class is an
extensible abstract class of the framework. The Transfer



39

5,915,252

1'?

condition class has a single method satisfiedO, which com-
pares the Level of the data source to the Level of the data
target. SatisfiedO is used to determine whether the Levels of
data source and data target will allow the transfer. One
specific example is illustrated by the Transfer If Missing
subclass. For this specific example, if a framework user
wants to transfer the data only if the data is missing from the
data target, satisfied() may be programmed to retttrn true if
the file is missing on the data target, and false otherwise. In
another example, illustrated by the Transfer If Not Equal
subclass in FIG. 14, satisfied() might return true (i.e., allow
the transfer) if the levels between the data source and the
data target are not equal. As illustrated by the empty
subclasses of FIG. 14, other numerous possible subclasses
for Transfer Condition may be implemented as well, and are
shown as examples of additional user—extended classes that
may be defined by subclassing from the 'l‘ransfer condition
abstract class.

Referring to FIG. 15, a Target Mapping class is an
extensible abstract class of the framework. The Target -
Mapping class has a single method map(}, which is passed
a Name and associated Data for the data source and the

Name and associated Data for the data target. Map() is used
to specify certain parameters for operating on the Name
andr’or Data during a transfer. For example, a file on one o
particular data source may need to be reformatted to comply
with the file format for a dilferent data target. One specific
example, illustrated by the Table Based Target Mapping
subclass in FIG. 15, would format a name from the data
source to a different name on the data target. Another
example would format data from the data source into table
form, which is the form expected by the data target. As
illustrated by the empty subclasses of FIG. 15, other numer~
ous possible subclasses for Target Mapping may be imple-
mented as well, and are shown as examples of user-extended
classes that are defined by subclassing from the Target
Mapping abstract class.
Core Functions

FIG. 11 best distinguishes between core and extensible
functions in the data transfer framework of the present
invention. Specifically, as noted above, all of the classes in
this framework are extensible classes. All class relationships
shown in FIG. 11 are core relationships, and may not be
modified by the user of the framework. In fact, it is the fixed
character of these relationships between classes that char~
acterims a framework and makes it useful and powerful. The
core function of the data transfer framework is defined by
the core class relationships, along with functional require-
ments that cause the framework to behave in the desired

manner. AS described above with respect to FIG. 9, the
overall core function of the diagnostic framework includes
the steps of method 900.
Object Interaction

The operation of the framework of FIG. 11 may be best
understood by the interaction diagrams of FIGS. 16 and 17. .
A main program first invokes the Data Transfero method,
which is a constructor method. The five parameters (i.e., data
source place. data target place, source filter, transfer
condition, and target mapping) are specified as parameters
when the Data TransferO method is invoked. The Data
Transfer(_) method, as a constructor, builds the framework
according to the parameters passed. The main program then
invokes the run() method of the Data Transfer class just
created, which causes the framewurk to perform its desired
data transfer function. FIG. 16 shows the interaction dia-

gram for the overall framework operation that is initiated
when the run() method in the Data Transfer class is invoked

It)

15

so

35

4!)

45

50

60

65

39

18

(step 1). Data Transfer then invokes its own before/\IIO
method (step 2). Once beforeAllO is complete, Data Trans-
fer invokes the directory() method on the source place object
(step 3). The directory() method rctu ms the directory of data
on the source place object, and corresponds to step 910 in
method 900 of FIG. 9. Data Transfer then selects and

processes each piece of data in the source place directory
(step 4). The selection of data in step 4 corresponds to step
920 in FIG. 9. Once all data has been processor], the
afterAllO method is invoked (step 5), and the Data Transfer
function is complete.

The interaction diagram for the transfer of a single piece
of data is shown in FIG. 17. First, the Data Transfer object
invokes its own beforeReadO method {step 1). Next, Data
Transfer invokes the read() method of the Source Place
object to read the data corresponding to the Name passed to
the read() method (step 2). This step 2 corresponds to step
930 of FIG. 9. Next, Data Transfer invokes its own
afterRead() method. Next, it invokes the valid() method of
the Source Filter object (step 4}, which determines whether
the Name andfor Data are valid for transfer. This step 4
corresponds to the Validate Data step 940 of FIG. 9. Data
Transfer then invokes the map{) method of the Target
Mapping object (step 5), which performs any needed map
ping of data during the transfer (step 950 of FIG. 9). Data
Transfer then invokes the check() method of the Source
Place object (step 6), which determines the Level corre-
sponding to the Name on the Source Place object. In similar
fashion, Data Transfer then invokes the eheckO method of
the Target Place (step 7), which determines the Level
corresponding to the Name on the Target Place object. Next
the satisfiedO method on the Transfer Condition object is
invoked (step 8) to verify whether the data is to be trans
ferred based on the Level of the Name at the Source Place

object compared to the level ofthc Name at the Target Place
object (step 960 of FIG. 9). If the satisfich method returns
a true value, the beforeWriteO method is invoked (step 9).
Next, Data Transfer invokes the write() method of the target
place (step 10}, to write the data to the data target (step 970
of FIG. 9). After the write, Data Transfer invokes its own
afterWriteO method. At this point, Data Transfer continues
processing if additional data remains to be processed (if step
980 of FIG. 9 is true).

As discussed above, the private methods of the Data
Transfer class may be implemented with no—ops, or may
provide some function that a framework extender may need.
In either case, the private methods provided within the Data
Transfer class may be overridden to provide any desired
function at any time during the data transfer method. For
example, if the framework user desires to perform a par-
ticular function before each portion ofdata is read, the user
may implement the specific function by overriding the
beforeReadO method. If the user desires to perform a
particular function after each write, the afterWriteO method
would be overridden. If the user desires a particular function
after all data is transferred, the afterAllO method would be
overridden. These private methods greatly expand the flex-
ibility of the data processing framework by providing the
capability of adding features to the framework at a later date
by overriding the default methods without altering the basic
structure or function of the framework.

The detailed operation of framework 870 in accordance
with the present invention will now be illustrated with
reference to the specific data transfer environment shown in
FIG. 18. A data transfer environment generally contains a
specification of the following parameters: a source place; a
target place; a source filter (if applicable) to select specific



40

5,915,252

19

data on the data source to transfer, a transfer condition (if
applicable) to set conditions that govern whether or not the
data is transferred; and target mapping (if applicable} to
manipulate the name andi’or data during the transfer. The
example illustrated in FIG. 18 is referred to herein as the
Beta Product Internet Upload, which is specified as follows:
1) The source place is a File System
2) The target place is an Internet Site
3) Only the files in the Beta Release 'l‘able will be transferred
4) The files in the Beta Release Table will be transferred only

if the most recent file does not exist at the Internet Site

5) License Code will be embedded in the data during the
transfer

The class diagram for the Beta Product Internet Upload
example are shown in FIG. 18. Each of the classes shown
either correspond to classes defined and discussed above. or
are concrete subclasses of these classes. By defining a data
transfer environment in this manner, the operation of the
framework may be illustrated by referring to the interaction
diagrams of FIGS. 16 and 17.

First, the run() method of the Data Transfer object is
invoked (step 1, FIG. 16). Next, the beforeAllO method is
invoked (step 2), followed by invoking the directory()
method of the Source Place object (step 3). The directory()
method will return a directory listing of the File System. One H
of the files in the directory is selected for transfer (step 4).
At this point. we refer to FIG. 17 for the steps involved with
transferring a single piece of data. The beforeReadO method
is invoked (step .1), followed by the rcad() method (step 2),
which reads the data from the selected tile in File System.
The afterRead() method is invoked next (step 3). followed
by the validO method in the Source Filter object (step 4). If
the selected tile is listed in the Beta Release Table, valid()

returns true. Next. the map() method of the Target Mapping
object is invoked (step 5), which embeds license code into
the data being transferred. Next, the Level of the Source
Name is checked (step 6), the level of the Target Name is
checked (step 7), and the satistied() method of the 't‘ransfer
Condition object is invoked (step 8). For this particular
example, the transfer takes place if the levels are not equal.
Next, the beforeWrite() method is invoked (step 9), followed
by the write() method of the Target Place object (step 10).
which causes the file to be written to the Internet Site. The

afterWrite() method is then invoked (step 11). which con-
cludes the transfer for the selected piece of data. Once all
data has been processed (i.e., once all files in File System
that are in the Beta Release Table and that are not currently
on the Internet Site are written to the Internet Site with

License Code embedded), the al'terAllO method is invoked
(step 5 of FIG. 16}, and the data transfer is complete.

As the example above illustrates, the framework provides
an extremely flexible and powerful tool for implementing
any number of data transfer environments by simply definv
ing objects that implement the features specific to a particu—
lar data transfer environment.

The embodiments and examples set forth herein were
presented in order to best explain the present invention and
its practical application and to thereby enable those skilled
in the art to make and use the invention. However, those

skilled in the art will recognize that the foregoing descrip—
tion and examples have been presented for the purposes of
illustration and example only. The description as set forth is
not intended to be exhaustive or to limit the invention to the

precise form disclosed. Many modifications and variations
are possible in light of the above teaching without departing
from the spirit and scope of the forthcoming claims.
Notation

5

it)

15

En

35

4!)

45

50

60

65

40

20

There is, as yet, no uniformly accepted notation for
communicating object-oriented programming ideas. The
notation used in this specification is very similar to that
known in the programming industry as Booeh notation, after
Grady Booeh. Mr. Booeh is the author of Object-Oriented
Analysis and Design Milt Applications, 2nd ed. (1994).
available from The BenjamintCummings Publishing
Company. Inc. Use of Booeh notation concepts within this
specification should not be taken to imply any connection
between the inventors and-“or the assignee of this patent
application and Mr. Booeh or Mr. Boocb’s employer. The
notational system used by Mr. Booeh is more ally explained
at Chapter 5, pp. 171—228 of the aforementioned book. The
notational system used herein will be explained generally
below. Other notational conventions used herein will be

explained as needed.
A system that is modeled by an object-oriented frame-

work can be represented at a high level of abstraction by a
diagram called a top-level class diagram. FIG. 1 of the
drawings is an example of a top-level class diagram con-
taining boxes that represent abstractions of the modeled
system. The boxes are arranged in a hierarchy such that
boxes representing abstractions close to the physical com-
ponents ofthe system are at the lower levels of the diagram
and boxes representing more abstract, functional compo-
nents are closer to the top of the diagram. In FIG. 1, the
boxes are labeled as "mechanisms” to denote that the

abstractions comprise means for implementing modeled
system components. The boxes (mechanisms) can be
thought of as categories comprising groups of similar classes
defi ncd according to object-oriented programming concepts.
FIG. 1 represents a zoo administration model and therefore
the lower hierarchy boxes include a box called Animal
Mechanism, which represents animals within the zoo model,
and a box called Containment Unit Mechanism, which

represents animal pens and cages. At the highest level of
FIG. 1, the box called Zoo Administration represents a
functional abstraction that encompasses a variety of admin-
istrative tasks that are performed by personnel.

The boxes in a top-level class diagram represent the
system abstractions that provide the system behavior. The
system abstractions include classes and objects. Details of
the system classes are provided in a class diagram that is
used to show the class categories and to indicate the rela-
tionships and responsibilities of the classes. A class is
represented by an irregularly shaped, dashed-line icon com-
monly referred to a cloud. FIG. 2, for example, shows
several classes represented as clouds. Each class is identified
by a name that is unique to the associated class category and
also indicates the relationship of each class to one of the
mechanisms illustrator] in FIG. 1. Within a class icon, the

class name is listed above attribute names. operation names
follovwcd by parentheses, and constraints that are enclosed
within brackets. FIG. 3 illustrates the class Zoo Adminis—

trator in greater detail. FIG. 3 indicates that the Zoo Admin-
istrator class includes multiple operations, including ones
called “5_minute_timer()”, "add__animal()“. and "add__
containment_unit()”. Words in the operation names (and
class attribute names) are separated by an underscore for
easier reading. An example of a class attribute listing is
shown by the attributes called “feed _ freq" and “temp
range” in the class Animals illustrated in FIG. 5.

Connecting lines between mechanisms (FIG. 1) and
dams (FIG. 2) indicate the nature of the relationships
between such respective abstractions. Thus. connections
between the boxes in FIG. 1 represent relationships between
the various mechanisms. A straight connecting line, for



41

5,915,252

2]

example, represents a simple association relationship indi-
cating shared information. A“using” relationship is a refine-
ment ofa simple association whereby one abstraction that is
referred to as a server or supplier provides services to
another abstraction that is referred to as a client. Such a

relationship is indicated by an open circle at one end of a
simple association line, the open circle end designating the
client that “uses” the associated server.

Another refinement of a simple association between two
classes is a type referred to as an inheritance relationship.
Inheritance is a relationship among classes in which one
class shares the structure auditor behavior associated with
one or more other classes. An inheritance association is also

referred to as a “is a” relationship. Thus, given two classes
A and B, the class A has an inheritance relationship with the
class B ifA is an example of a B; Ais said to be a subclass
of B and B is said to be a superclass or parent of A. That is,
A "is a" B. An inheritance relationship is denoted with a
connecting line that includes. an arrowhead at one end to
indicate a subclass that derives its characteristics from a

parent class at the other end of the line.
Another refinement of class relationships is called an

aggregation relationship, which denotes an association
between a whole and its parts or attribute classes. In
notation, an aggregation relationship is indicated between a z
whole class and an attribute class connected with an asso-

ciation line by a solid circle at the whole class end, with an
attribute class at the other end.

Another relationship specified by a class diagram is an
instantiation relationship. An instantiation relationship rep-
resents an instance of a class such as a particular implemen—
tation of a class as supported by a programming language.
For example, a class called "animal” can have multiple
instantiations comprising lions, tigers, and bears. An instan-
tiation of a class is represented by a dashed association line ,
with an arrowhead pointing from an instance of a class to the
general class.

Finally, a class relationship referred to as a metaclass
denotes a relationship in which a class itself is treated as an
object that can be manipulated. That is, a metaclass is a class
whose instances are themselves classes. Some computer
languages, such as Small Talk, support the concept of a
metaclass. Such relationships are denoted by a shaded line
with an arrowhead pointing from an instance of a metaclass
to the general metaclass.

Classes can be parameterized, which denotes a family of
classes whose structure and behavior are defined indepen-
dently of its formal class parameters. A parameterized class
is represented by a cloud-shaped class icon with a rectan-
gular box placed over a portion of the cloud. The parameter
list is named within the rectangular box. An instantiated
class includes a parameter box. called an adornment. in
contrast to a dashed line box for a general class. The
instantiation relationship between a parameterizcd class and
its instantiated class is represented as a dashed line pointing
to the parameterized class. Typically, an instantiated class
requires a "using" relationship to another concrete class for
use as an actual parameter.

Properties of classes can be represented by class adorn-
ments that are enclosed within the class cloud icon. In

particular, an abstract class is denoted by an upper case
block “A" within a triangle that is placed within a cloud. An
abstract class is a class for which no instances may be
created. That is, it is a claSs of classes. Other class adorn-

ments are functions of the 00 implementation language. For
example, the C++ language permits special class qualifica-
tions that will be given special adornments. A static class is

it]

15

3n

4!)

50

55

60

65

41

22

represented by an upper case block “5“ within an adornment
triangle, a friend class is denoted by an upper case block “F"
within an adornment triangle, and a virtual class is repre-
sented by an upper case block “V” within an adornment
triangle.

In addition to defining classes, a designer of an object
oriented programming system must define objects (see page
136 of Booch). Objects are represented as solid line clouds
within which is placed the object name located above a list
of object attributes. An object is a tangible entity that
exhibits a well defined behavior. An object is intended to
represent some part ofa real system that is being represented
by the object oriented program. An object is characterized by
a state, a behavior, and an identity. An object can be thought
of as an instance of a class. The behavior of an object is an
indication of how the object acts and reacts in terms of its
state changes and its message-passing actions.

Objects and their interrelationships are represented in
object diagrams that comprise object icons having links that
indicate synchronization between objects. Links are sequen-
tially numbered to indicate the flow of operations. The
existence of a link between two objects indicates an asso—
ciation between their corresponding classes and denotes a
path of communication between them. Thus, a link between
two objects indicates that one object may send messages to
another. The direction of message transfer is indicated by
adorning a simple connecting line with an arrowhead that
points from an object that invokes an operation, referred to
as the client, to the object that provides the operation,
referred to as the supplier. Such a representation of a simple
synchronization relationship denotes the simplest form of
message-passing. Such an association can indicate, for
example, the invocation of an operation. Operation param-
eters can be indicated adjacent the linking line.

Some objects may be active, meaning that they embody
their own thread of control. That is, such objects are not
simply sequential. Active objects may have a variety of
concurrency characteristics. if an object has multiple threads
of control, then synchronization must be specified. Message
synchronization can be synchronous, meaning that the client
will wait until the supplier accepts the message. Synchro-
nous synchronization is indicated with an “X" with an
arrowhead. Synchronization can encompass balking
message-passing, meaning that the client will abandon the
message if the supplier cannot immediately service the
message. Balking is indicated with an arrowhead turned
back on itself. Synchronization can encompass a time-out
synchronization, meaning that the client will abandon the
message if the supplier cannot service the message within a
specified amount of time. Time-out synchronization is indi-
cated with a clock face representation adjacent a linking
arrowhead. Finally, synchronization can encompass an asyn-
chronous message, meaning that the client sends an event to
a supplier for processing, the supplier queues the message,
and the client then proceedswithout waiting for the supplier.
Those skilled in the art will appreciate that asynchronous
message synchronization is analogous to interrupt handling.
Asynchronous message synchronization is indicated with a
half arrowhead.

It bears mention that the Booch notation includes inter—

action diagrams that trace thc execution of objects and
classes. Interaction diagrams are essentially restructured
object diagrams. That is, interaction diagrams convey the
same information from that conveyed by object diagrams,
but simply present the same information in a different
format. The present specification makes use of both object
diagrams (for the ZAP example) and interaction diagrams



42

5,915,252

23

(for the description of the invention), and those skilled in the
art will recognize that they are equivalent and also will
understand how to convert from one to the other without

further explanation.
In F] G. 7, for example, the object called Zelda 706 obtains

a list of current zoo keepers by calling an operation called
List Zoo Keepers from the object called Zoo Keeper Reg—
ister. The second processing step is represented in FIG. 7 by
the Zoo Keeper Register object responding to the operation
call by passing a message to the Zelda object that comprises
the zoo keeper list. The zoo keeper objects include members
of the Zoo Keepers class called Tina, Vince, and Fred. The
third step indicated in the object diagram is for the object
Zelda to pass a message to each of the zoo keepers instruct-
ing them to check the animals by calling the respective
Check Animals operation of each zoo keeper object.

We claim:

1. A computer system, the computer system transferring
data from a data source to a data target, the computer system
comprising:

a central processing unit, and

a main memory coupled to the central processing unit, the
main memory containing a n object—oriented framework
mechanism that provides a user-extensible data transfer
mechanism that transfers data from the data source to “

the data target, the framework mechanism executing on
the central processing unit, the framework mechanism
including:
a user—extensible place class, the place class defining:

at least one place object corresponding to the data
source;

at least one plarx object corresponding to the data
target; and

a first set of object methods to transfer the data from
the data source to the data target;

a user-extensible source filter class, the source filter

class determining the data to be transferred from the
data source to the data target;

a user-extensible transfer condition class, the transfer
condition class determining at least one condition
that must be satisfied for the data to be transferred

from the data source to the data target; and
a user-extensible target mapping class, the target map

ping ciass determining at least one change to make to
the data being read from the data source before
writing the changed data to the data target.

2. The computer system of claim 1 wherein the frame-
work mechanism further comprises a data transfer class that
has a "has a” relationship with the at least one place object
corresponding to the data source and that has a "has a"
relationship with the at least one place object corresponding
to the data target, the data transfer class comprising an
extensible class of the framework mechanism, the data

transfer class defining a second set of object methods to
transfer the data from the data source to the data target.

3. The computer system of claim I wherein the frame-
work mechanism comprises:

at least one place object corresponding to the data source;
at least one place object corresponding to the data target;

the first set of object methods including at least one
method for reading the data from the data source and at
least one method for writing the data to the data target;

at least one data transfer object that defines at least one
user-defined data transfer environment, the data trans-
fer object including a second set of object methods to
transfer the data front the data source to the data target;

10

15

3o

40

50

55

60

65

42

24

at least one source filter object including a third set of
object methods that determine the data to be transferred
from the data source to the data target;

at least one transfer condition object including a fourth set
of object methods that determine at least one condition
that must be satisfied for data to be transferred from the

data source to the data target; and

at least one target mapping object including a fifth set of
object methods that determine at least one change to
make to the data being react from the data source before
writing the changed data to the data target.

4. A method for transferring data from a data source to a
data target, the method comprising the steps of:

providing a user-extensible object oriented framework
mechanism that performs the transfer of the data
according to extended portions of the framework
mechanism that are customized by a user to provide a
desired data transfer environment;

executing the object oriented framework mechanism on a
computer system;

extending the framework mechanism to define the desired
data transfer environment;

selecting at least one data source;

selecting at least one data target;

implementing the desired data transfer environment by
defining the extended portions in accordance with the
selected at least one data source and the selected at least

one data target;

selecting at least one source filter that defines the data to
be transferred from the data source to the data target;

selecting at least one transfer condition that must be
satisfied for the data to be transferred from the data

source to the data target;
the step of implementing the desired data transfer envi—

ronment including the step of defining the extended
portions in accordance with the selected at least one
source filter and the at least one transfer condition.

5. The method of claim 4 further including the steps of:
selecting at least one target mapping criterion for chang-

ing the data read from the data source before writing the
changed data to the data target;

the step of implementing the desired data transfer envi-
ronment further including the step of defining the
extended portions in accordance with the selected at
least one target mapping criterion.

6. The method of claim 4 further including the steps of:
reading from the data source a list of available data to

transfer;

the at least one source filter filtering the list of available
data and producing therefrom a list of valid data to be
transferred;

determining which of the list of available data satisfy the
selected at least one transfer condition; and

transferring the data that:
(1) satisfies the at least one transfer condition; and
(2) is on the list of valid data.

7. The method of claim 4 wherein the step of selecting at
least one source filter that defines the data to be transferred

from the data source to the data target includes the step of
defining data that match a predetermined selection criterion.

8. The method of claim 4 wherein the step of selecting at
least one transfer condition that must be satisfied for the data

to he transferred from the data source to the data target
includes the steps of:



43

5,915,252

25

comparing an identifier for the data on the data source
with a plurality of identifiers on the data target;

if matching identifiers are found, determining the date of
creation for the data on the data source and for the data

on the data target;
it' the date of creation for the data on the data source is

more recent than the date of creation for the corre-

sponding data on the data target, including the data on
the data source in the data to be transferred to the data

target;
ifthe date ofereation for the data on the data source is less

recent than the date of creation for the corresponding
data on the data target, not including the data on the
data source in the data to be transferred to the data

target.
9. A program product comprising:

(A) an object-oriented framework mechanism for trans-
ferring data, the framework mechanism inctuding a
user-extensible data transfer mechanism that transfers

data from a date source to a data target according to
extended portions of the framework mechanism. the
framework mechanism comprising:

a user-extensible place class, the place class defining:
at least one place object corresponding to the data s

source;

at least one place object corresponding to the data
target; and

a first set ofobject methods to transfer the data from the
data source to the data target;

a user-extensible source filter class, the source filter class

determining the data to be transferred from the data
source to the data target;

a user-extensible transfer condition class, the transfer
condition class determining at least one condition that ‘
must be satisfied for the data to be transferred from the

data source to the data target; and

a user-extensible target mapping class, the target mapping
class determining at least one change to make to the
data being read from the data source before writing the
changed data to the data target; and

(B) signal bearing media bearing the framework mecha—
nism.

10. The program product of claim 9 wherein the signal
bearing media comprises recordable media.

11. The program product of claim 9 wherein the signal
bearing media comprises transmission media.

12. A user-extensible object oriented framework mecha-
nism for use in a computer system that supports an object
oriented programming environment, the framework mecha-
nism comprising:

at least one place object corresponding to the data source;

at least one place object corresponding to the data target;

a first set of object methods including at least one method
for reading the data from the data source and at least
one method for writing the data to the data target;

at least one data transfer object that defines at least one
user-defined data transfer environment, the data trans-

fer object including a second set of object methods to
transfer the data from the data source to the data target;

at least one source filter object including a third set of
object methods that determine the data to be transferred
from the data source to the data target;

at least one transfer condition object including a fourth set
of object methods that determine at least one condition

10

15

3o

40

50

55

60

65

43

26
that must be satisfied for data to be transferred from the

data source to the data target; and

at least one target mapping object including a lifth set of
object methods that determine at least one change to
make to the data being read from the data source before
writing the changed data to the data target.

13. The object created framework mechanism of claim 12
wherein the at least one data transfer object invokes at least
one method from at least one of the first, third, fourth and
fifth sets of object methods.

14. The object oriented framework mechanism of claim
12 wherein the framework mechanism comprises:

at least one core function defined by relationships
between a plurality of classes within the framework
mechanism, wherein the implementation of the at least
one core function is defined by the framework mecha-
nism and cannot be modified by a user of the frame-
work mechanism; and

at least one extensible function defined by at least one
extensible class, wherein the implementation of the at
least one extensible fttnction is defined by the user of
the framework mechanism by extending the at least one
extensible class.

15. A method for performing data transfer from a data
source to a data target, the method comprising the steps of:

(A) providing at least one place object corresponding to at
least one data source, the place object including a lirst
set of object methods that read the data from the data
source;

(B) providing at least one place object corresponding to at
least one data target, the place object including the first
set of object methods that write the data to the data
target;

(C) providing at least one data transfer object that defines
at least one user-defined data transfer environment, the

data transfer object including a second set of object
methods to transfer the data from the data source to the

data target;

(D) providing at least one source filter object including a
third set ofobject methods that determine the data to be
transferred from the data source to the data target;

(E) providing at least one transfer condition object includ-
ing a fourth set of object methods that determine at least
one condition that must be satisfied for data to be

transferred from the data source to the data target;

(F) providing at least one target mapping object including
a fifth set of object methods that determine at least one
change to make to the data being read from the data
source before writing the changed data to the data
target;

(G) providing an object oriented framework mechanism
that comprises the at least one object corresponding to
the data source. the at least one object corresponding to
the data target, the at least one data transfer object, the
at least one source tiller object, the at least one transfer
condition object, and the at least one target mapping
object, and wherein the object oriented framework
mechanism performs the data transfer from the data
source to the data target according to extended portions
of the framework mechanism that are customized by a
user to provide the data transfer environment; and

(H) executing the object oriented framework mechanism
on a computer system to transfer the data from the data
source to the data target.



44

5,915,252

27

16. The method of claim 15 further including the step of:
extending the framework mechanism to define the data

transfer environment.

17. The method of claim 16 further including the steps of:
selecting at least one data source;
selecting at least one data target;
implementing the desired data transfer environment by

defining the extended portions in accordance with the
selected at least one data source and the selected at least

one data target.
18. The method of claim 17 further including the steps of:
selecting at least one source filter that defines the data to

be transferred from the data source to the data target;
selecting at least one transfer condition that must be

satisfied for the data to be transferred from the data

source to the data target;
the step of implementing the desired data transfer envi-

ronment including the step of defining the extended
portions in accordance with the selected at least one
source filter and the at least one transfer condition.

19. The method of claim 18 further including the steps of:
selecting at least one target mapping criterion for Chang

ing the data read from the data source before writing the
data to the data target;

the step of implementing the desired data transfer envi-
ronment further including the step of defining the
extended portions in accordance with the selected at
least one target mapping criterion.

20. The method of claim 18 further including the steps of:
reading from the data source a list of available data to

transfer;

the at least one source filter filtering the list of available
data and producing therefrom a list of valid data to be
transferred;

determining which of the list of available data satisfy the
selected at least one transfer condition; and

transferring the data that:
(1) satisfies the at least one transfer condition; and
(2) is on the list of valid data.

21. A program product comprising:
(A) an object oriented framework mechanism for trans-

ferring data from a data source to a data target, the
object oriented framework mechanism including at
least one place object corresponding to the data source
including a first set of object methods to read the data
from the data source, the object oriented framework
mechanism further including at least one place object
corresponding to the data target including the first set of
object methods to write the data to the data target, the
object oriented framework mechanism further includ-
ing at least one data transfer object including a second
set of object methods that define at least one user—
defined data transfer environment, the object oriented
framework mechanism further including at least one
source filter object including a third set of object
methods that determine the data to be transferred from

the data source to the data target, the object oriented
framework mechanism further including at least one
transfer condition object including a fourth set of object
methods that determine at least one condition that must
be satisfied for data to be transferred from the data

source to the data target, the object oriented framework
mechanism further including at least one target map-
ping object including a fifth set of object methods that
determine at least one change to make to the data being

it]

15

3o

40

50

55

60

65

44

28

read from the data source before writing the changed
data to the data target, wherein the object oriented
framework mechanism transfers the data from the data

source to the data target according to extended portions
of the framework mechanism that are customized by a
user to provide the desired data transfer environment;
and

(B) signal bearing media bearing the object oriented
framework mechanism.

22. The program product of claim 21 wherein the signal
bearing media comprises recordable media.

23. The program product of claim 21 wherein the signal
bearing media comprises transmission media.

24. The program product of claim 21 wherein the frame-
work mechanism comprises a place class, a data transfer
class, a source filter class, a transfer condition class, and a

target mapping class, and wherein the data transfer class has
a "has a" relationship with each of the place class, the source
filter class, the transfer condition class, and the target
mapping class.

25. The program product of claim 24 wherein the place
class, the source filter class, the transfer condition class, and

the target mapping class are extensible classes of the frame-
work mechanism, the implementation of which by a user
defines the at least one data transfer environment.

26. An object oriented framework mechanism that trans-
fers data from a data source to a data target, the framework
mechanism comprising:

at least one core function defined by relationships
between a plurality of classes within the framework
mechanism. wherein the implementation of the at least
one core function is defined by the framework mecha~
nism and cannot be modified by a user of the frame-
work mechanism;

at least one extensible class wherein the implementation
ot‘the at least one extensible class is defi ned by the user
of the framework mechanism, by extending the at least
one extensible class, thereby defining at least one
user-defined data transfer environment;

at least one place object corresponding to the data source;

at least one place object corresponding to the data target;
a first set of object methods including at least one method

for reading the data from the data source and at least
one method for writing the data to the data target;

at least one data transfer object that defines at least one
user-defined data transfer environment, the data trans-

fer object including a second set of object methods to
transfer the data from the data source to the data target;

at least one source filter object including a third set of
object methods that determine the data to be transferred
from the data source to the data target;

at least one transfer condition object including a fourth set
of object methods that determine at least one condition
that must be satisfied for data to be transferred from the

data source to the data target; and
at least one target mapping object including a fifth set of

object methods that determine at least one change to
make to the data being read from the data source before
writing the changed data to the data target.

27. The object oriented framework mechanism of claim
26 wherein the framework mechanism comprises a place
class, a data transfer class, a source filter class, a transfer

condition class, and a target mapping class, and wherein the
data transfer class has a "has a" relationship with each of the
place class, the source filter class, the translbr condition
class, and the target mapping class.



45

5,915,252

29

28. A method for transferring data from a data source to
a data target using a computer system having a central
processing unit and a main memory, the main memory
having an application program that provides an object
oriented programming environment, the method comprising
the steps of:

(A) providing in the program an object oriented frame-
work mechanism that performs the data transfer
according to extended portions of the framework
mechanism that are customized by a user to provide a
desired data transfer environment, the framework
mechanism including:
a set of core functions wherein the implementation of

the core functions is defined by the framework
mechanism and cannot be modified by a user of the
framework mechanism; and

a set of extensible functions wherein the implementa-
tion of the extensible functions is defined by the user
of the framework mechanism;

(B) extending the extensible functions in the framework
mechanism to define particular classes having prede-
termined protocols and defining particular object meth-
ods that perform the data transfer, the extensible func—
tions defining the desired data transfer environment;

(C) generating an executable data transfer system by
integrating together the extensible functions and the
core functions; and

(D) executing the executable data transfer system on the
computer system to perform the data transfer from the
data source to the data target.

29. The method of claim 28 further including the steps of:

identifying available data on the data source;

selecting from the available data a set of littered data
using at least one of a first set of selection criterion;

selecting from the set of filtered data a set of valid data
using at least one of a second set of selection criterion;

reading the valid data from the data source; and
writing the valid data to the data target.
30. A program product comprising:

(A) a user-extensible object oriented framework mecha-
nism for transferring data from a data source to a data
target, the framework mechanism including at least one
core function defined by relationships between a plu~
rality of classes within the framework mechanism,

10

15

3-0

.35

40

45

30

wherein the implementation of the at least one core
function is defined by the framework mechanism and
cannot be modified by a user of the framework
mechanism, the framework mechanism further includ—

ing at least one extensible function defined by at least
one extensible class, wherein the implementation of the
at least one extensible class is defined by the user of the
framework mechanism by extending the at least one
extensible class, thereby defining a user-defined data
transfer environment that governs the operation of the
framework mechanism, the framework mechanism
comprising:

at least one place object corresponding to the data source;
at least one place object corresponding to the data target;
a first set of object methods including at least one method

for reading the data from the data source and at least
one method for writing the data to the data target;

at least one data transfer object that defines at least one
user-defined data transfer environment, the data trans-
fer object including a second set of object methods to
transfer the data from the data source to the data target;

at least one source filter object including a third set of
object methods that determine the data to be transferred
from the data source to the data target;

at least one transfer condition object including a fourth set
of object methods that determine at least one condition
that must be satisfied for data to he transferred from the

data source to the data target; and

at least one target mapping object including a fifth set of
object methods that determine at least one change to
make to the data being read from the data source before
writing the changed data to the data target;

wherein the object oriented framework mechanism per-
forms the data transfcr from the data source to the data

target according to extended portions of the framework
mechanism that are customized by a user to provide a
desired data transfer environment; and

(B) signal bearing media bearing the object oriented
framework mechanism.

31. The program product of claim 30 wherein the signal
bearing media comprises recordable media.

32. The program product of claim 30 wherein the signal
bearing media comprises transmission media.

* ti: 3|! * 1t


