
1 Apple v. Realtime
Proceeding No. IPR2016-01739

APPLE 1031

United States Patent [19]

USOO6117187A

[11] Patent Number: 6,117,187

Staelin [45 J Date of Patent: *Sep. 12, 2000

[54] AUTOMATIC GENERATION OFA 5,721,824 2/1998 Taylor 709/203
SOFTWARE INSTALLATION PACKAGE 5,832,205 11/1998 Kelly et al. 714/53

5,835,777 11/1998 Staelin ., 395/712

[75] Inventor: Carl H. Staelin, Palo Alto, Calif. 5,860,012 1/1999 Luu ... 395/712

[73] Assignee: Hewlett-Packard Company, Palo Alto, Primary Examiner4<akali Chaki
Calif. Attorney, Agent, or Firm—Marc R. Mayer

[*] Notice: This patent is subject to a terminal dis- [57] ABSTRACT
I ' .

C a1mer A method of automatically generating a software installation
. package. The method operates on an application program

[21] Appl. No” 08/940’756 that has been ported to and debugged on a target computer
[22] Filed: Sep. 30, 1997 system. A manifest is automatically generated, listing all

7 application program files that must be installed on the target
[51] Int. Cl. .. G06F 9/445 computer system. Then the method automatically deter-
[52] U.S. Cl. .. 717/11, 717/1 mines Wthh resources, in particular shared libraries, are
[58] Field of Search 395/712, 701, needed by any of the listed files. Necessary filesets and

395/702, 703; 709/203, 220, 221, 222, subproducts are then automatically generated. Program files
223, 224; 713/1, 100; 707/200, 203, 204 are then automatically assigned to the filesets and filesets are

_ automatically assigned to the subproducts. The need for
[56] References Clted control scripts is automatically detected and control scripts

U.S. PATENT DOCUMENTS are automatlcally generated. Then the mstallation package 1s
generated by combmmg the llsted files, filesets, subproducts,

5,247,683 9/1993 Holmes et a1. 709/221 control scripts, the needed resources, and any related instal-

573617360 11/1994 I§higami et a1. .. 395/712 lation materials. The needed resources are determined by
57361686 1141994 Fisher et a1. ~~ 395/712 generating a dependency list, comparing it with existing
5’421’009 5/1995 Platt """"""" 709/221 software installation packages, and identifying any packages
5’473’772 12/1995 Halhwell et al' ' 395/712 that contain needed shared libraries as needed resources
5,493,682 2/1996 Tyra ct al. 395/703 '
5,555,416 9/1996 Owens et al. 395/712
5,634,114 5/1997 Shipley 395/500 18 Claims, 6 Drawing Sheets

pplieation Provide

Qy Software Engflififl\\

1 100
Port and Debug as

Needed \\ 200V

Generate
Manifest \\, 300, , xi

1 Determine

I RNeeded .\\esoiirces J 400v
Fileset and

Subpioduct \' ‘ \

Generation 500

’Tssigi'nm—i
* Files to Filesets l

and Filesets to ram), Subproduets lV ,,

Detect Need for l

Control Scripts r\

AWQ\,,,,,,,, l Interaction) W
\ c ' / \\x orrectinn 800

Error Checking A900
V

Generate Control

Scripts moolV
Generate Installation

Package 1i on

Apple v. Realtime

Proceeding No. |PR2016-01739
APPLE 1031

2

US. Patent Scp. 12, 2000 Sheet 1 0f 6 6,117,187

 pplication Provide-

y Software Enginee

100

200

________*‘ GenerateManifest _\300
; Detefime :
""""’ £33,215 700

5 r— Filesetand 1
""""* 22:22:20? 3x

L 500
Assignment of

l _______* Files to Filesets
and Filesets to d

 Subflfducts 600

‘L _______* Detect Need for
1 Control Scripts \
3 2 700

oftware Enginee
Interaction]

Correction

V

FlG.1 .
Error Checking /‘\

900

Generate Control /_\
scripts ‘ 1000

Generate Installation

Package 1 100

3

US. Patent Scp. 12, 2000

Save New Timestamp R
310

Install Application in

Testbed Computer \|
I 320

Select Directories

to be Searched

Use FIND -NEWERC to

‘Generate List of Installed Files

‘l 330
Delete Files Known to

be Spurious \
340

Check for

Spurious Files

350

FIG. 2

Sheet 2 0f 6 6,117,187

Select an

Executable File

410

Run CHATR to Create

List of Shared Libraries

420

 More

Executable

Files? 430

Yes

440

Identify Packages as
Needed Resources

450

List Any Needed
Shared Libraries

460

FIG. 3

4

US. Patent Scp. 12, 2000

% Select a File }\
i E 505

Scan Fileset Rules

for First Match \
510

 Generate Fileset /\525

530

!No

——> SelectaFileset b
i 535

,, , V

Scan Subproduct Rules

for First Match v 540

Subproduct
Exists?

Generate 7

Subproduct

More

Filesets?

_ Fileset and Subproduct
\ Generation Complete

FIG. 4

565

—> Select a File W

—> SelectaFileset —\

Sheet 3 0f 6 6,117,187

605
3

Scan Fileset Rules

for First Match W
610

I

Assign File

to Fileset \
615

Yes

620
No

625Y

Scan Subproduct Rules

for First Match \
630

First Match

Exists?

635

Assign Fileset

to Subproduct \
640

 More

Filesets?

 Assignment of Files to

(Filesets and Filesets to
\Subproducts Cornpilete 650

FIG. 5

5

US. Patent

k Select a File <—~—
702

Filename

n atches *Ietc/*7

No

704

ilename matches

Inewconfig/?

rYes Newconfig Control

ction for File Exists?

708

i No

l Create Newconfig
‘ c tl t' ’\
[onroAcIon 710

Sep. 12, 2000

eed for Control Scrip

Detection Complete
714

FIG. 6A

Sheet 4 0f 6

Select a File

702

Pathname

: atches *Ibinl*7
718

 IethPATH Action

or Pathname Exists?

Create [etc/PATH
(- .

722 Action for Pathname

athname matches

lmanlman?
724

 ANPATH action for

Pathname Exists?

Yes

728

Create MANPATH

Action for Pathname

ile is Share -

730

Yes HL|B_PATH Action
or Pathname Exists?

Create SHLIB_PATH J
Action for Pathname

6,117,187

 Need for Control

Script Detection

Complete

 714

6

US. Patent Scp. 12, 2000 Sheet 5 0f 6 6,117,187

/j Select a File Select a File eh
702 ' /

File in Default Set of

User IDs?

 742

 User ID Action

for File Exists?
roup ID Action

for File Exists?

746 758
Create User ID / Create Group ID d
Action for File Action for File

760

Need forControl

Script Detection

Complete

Need for Control

Script Detection

Complete

FIG. 6C FIG. 6D

7

US. Patent Scp. 12, 2000

FIG. 7

1010 1

"”L '

outine for

Control Action for Script

T pe Exists?

No

Retrieve Relevant

Parameters using Routine ;

 Fragment Template

y’

Select a Fileset R

\ SelectaScriptType 4—H

Select a Control Action 4“

Select Script $030

Sheet 6 0f 6

1005

Insert Parameters into Script

Fragment Template
A

 Template

7 4%

Collect Output of Script‘

1050 Fragment Template

1055

{ Output 0 No

@ript Fragment TemWExist?

Yes 1

l

 Postamble into Script File

Y

 Close Script File

Call Script Fragment /

‘_/

Open Script File /

Write Preamble, Output, &/

1040

1 045

060

1 065

1070

6,117,187

1085

i No Control Script

‘ Generation CompleteYes No 7' 9
\More Frlesets.

\<1080

8

6,117,187

1
AUTOMATIC GENERATION OF A

SOFTWARE INSTALLATION PACKAGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer sys-
tems and more particularly to a method of automatically
generating a software installation package that can be used
to install an application program in a user’s computer
system.

2. Description of the Related Art

There has been a continuing need for a simple and easy
way to install an application program in a user’s computer
system. At one time this was done manually. The user would
obtain an application program, typically on diskettes or
other magnetic media, and would manually copy the appli-
cation files from the magnetic media into one or more
directories in the user’s computer system. After this was
done, the user would manually configure the application. As '
applications acquired more capabilities and grew corre-
spondingly more complex, this installation process became
a time-consuming and error-prone ordeal that often ended in
an inoperative system and extreme frustration on the part of
the user.

Software publishers have devoted much effort to finding
a way to make it easier for users to install application
programs. These efforts have led to the development of
installation packages that take over the installation process
from the user. Such installation packages have been per-
fected to the point that now they can install an application
program almost completely automatically, ensuring that the
application will work as desired and relieving the user of this
burdensome chore.

Creating an installation package that can reliably install
an application program is not a trivial task. The installation
package must include all the files of the application program,
and these files must be properly configured for the target
computer system. In addition, the installation package
includes other materials such as data files, scripts, execut-
able programs, or the like. These materials operate more or
less automatically to carry out the installation of the appli—
cation program files. Depending on the operating system and
other characteristics of the computer system in which the
application is to be installed, creating a new installation
package generally requires creating some or all of such
materials anew, and this in turn may involve such tasks as
writing a new program or creating a complicated data file.
The burden of creating these materials falls on the software
engineer, who must devote many hours of meticulous effort
to this task.

Software tools that can create portions of installation
packages are known. However, such tools do not relieve the
software engineer of the considerable effort of creating the
complete package. For example, one such tool requires the
software engineer to manually create an arcane and com-
plicated configuration file specifying many of the details of
the installation.

A mass-marketed application program may sell hundreds
of thousands of copies and thereby generate sufficient rev-
enue to justify the extensive effort required to produce a
good installation package. But many applications, especially
those created for use by engineers and others who use
computer workstations in environments such as the UNIX®
operating system are distributed singly or in only a few
copies (UNIX is a registered trademark in the United States

10

15

25

30

35

40

45

50

55

60

65

2

and other countries licensed exclusively through X/Open
Company, Ltd.). It has not been economically justifiable to
spend the time necessary to develop good installation pack—
ages for such applications. The result has been either that
effort is expended out of all proportion to the value of the
application, or that the installation package does not get
developed at all, or that an inadequate package is prepared.
None of these outcomes is satisfactory.

One part of developing an installation procedure for a new
application is determining which files to install and where in
a target computer system to install them. A script has been
developed that attempts to do this by (1) saving a list of all
files in the system prior to installation of the new
application, (2) saving preselected configuration files prior
to installation, (3) installing the new application, (4) saving
a list of all files in the system after the installation, (5) saving
the preselected configuration files after installation, and (6)
comparing to make a list of added files and any configuration
changes. This script does not account for any files that are
modified during installation (except the preselected configu-
ration files). Thus, although the script performs one step in
the process of creating an installation package, most of the
work must still be done manually by the software engineer.

One method was developed to automatically generate
various parts of the software installation package, saving the
software engineer a great deal of time and effort. In copend-
ing US. patent application Ser. No. 08/619,876, now US
Pat. No. 5,835,777 entitled “Method of Automatically Gen-
erating a Software Installation Package,” assigned to the
assignee of the present invention and incorporated herein by
reference, there is described a method for automatically
generating a manifest that lists all application program files
which need to be installed, determining needed resources,
providing installation materials, and generating the installa-
tion package. The method described requires however, that
certain steps necessary to generate a software installation
package be done manually.

From the foregoing it will be apparent that there is a need
to automate the steps that are done manually in the method
described in copending US. patent application Ser. No.
08/619,876, now US. Pat. No. 5,835,777 in order to further
reduce software engineering effort and increase efficiency.

SUMMARY OF THE INVENTION

The present invention provides a method of automatically
creating a new software installation package that can cor-
rectly install an application program on a target computer
system. Using the method of the invention, a software
engineer can more easily and quickly create the installation
package than was possible in the past.

Briefly and in general terms, the method of the invention
begins with a new application program. The application
program may have been created by the same engineer who
wishes to use the method of the invention to create an

installation package, or it may have been created by others.
Once the application has been ported to the target computer
system and debugged so that it is operable on the target
system, the invention is used to generate the installation
package. This includes the steps of automatically generating
a manifest that lists all application program files which need
to be installed on the target system, automatically determin-
ing which resources are needed by those files, automatically
generating filesets and subproducts, automatically assigning
files to the filesets and filesets to the subproducts, automati-
cally determining a need for control scripts, automatically
generating the control scripts, and generating the installation

9

6,117,187

3

package by combining the listed files, any needed resources,
the filesets, the subproducts, and the control scripts.

The step of determining which resources are needed
preferably includes several substeps. The first substep is
automatically generating a dependency list of any shared
libraries referenced by any of the listed application program
files. The next substep is automatically determining which of
these shared libraries is already present in a preexisting
software installation package. Finally, if any shared libraries
are included in one or more preexisting software installation
packages, then such preexisting packages are identified as
needed resources.

The step of automatically detecting the need for control
scripts also preferably includes several substeps. The first
substep is automatically detecting the need for an add-new-
configuration-file control script. The next substep is auto-
matically detecting the need for an add-new-user control
script. Athird substep is automatically detecting the need for
an add-new-group control script. A final substep is auto-
matically detecting the need for an add-pathname-elements
control script. Additional substeps may also be included to
automatically detect the need for additional control scripts
beyond those listed here.

Optionally, a cross-reference to any listed shared library
that is not included in any of said preexisting installation
packages is also included in the software installation pro-
gram.

The new software installation package is typically dis-
tributed by recording on magnetic media, such as tape or
diskettes or by imprinting the data in optical media, such as
CD-rom or DVD. The magnetic or optical media can then be
reproduced and distributed to users as desired. Alternatively,
the package may be stored in a central location such as the
hard disk of a network server so that the application program
can be installed on any other computer having access to the
central location.

The step of generating the manifest preferably includes
saving a new timestamp, installing the application program
in a testbed computer, and generating a list of all files in the
testbed computer system having a timestamp more recent
than the saved timestamp. This will ensure that all necessary
files are identified. In one embodiment any file of a kind that
has been previously determined to be spurious is excluded.
The software engineer may review the list to delete any other
spurious files that may have crept in. In another embodiment
only files in certain preselected directory trees are consid-
ered.

Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart depicting in general outline the
method of the invention.

FIG. 2 is a flowchart depicting more details of a preferred
embodiment of the “generate manifest” block of FIG. 1.

FIG. 3 is a flowchart depicting more details of a preferred
embodiment of the “determine needed resources” block of
FIG. 1.

FIG. 4 is a flowchart depicting more details of a preferred
embodiment of the “fileset and subproduct generation”
block of FIG. 1.

FIG. 5 is a flowchart depicting more details of a preferred
embodiment of the “assignment of files to filesets and
filesets to subproducts” block of FIG. 1.

10

15

25

30

35

40

45

50

55

60

65

4

FIG. 6A is a flowchart depicting details of a first portion
of a preferred embodiment of the “detect control scripts”
block of FIG. 1.

FIG. 6B is a flowchart depicting details of a second
portion of a preferred embodiment of the “detect control
scripts” block of FIG. 1.

FIG. 6C is a flowchart depicting details of a third portion
of a preferred embodiment of the “detect control scripts”
block of FIG. 1.

FIG. 6D is a flowchart depicting details of a fourth portion
of a preferred embodiment of the “detect control scripts”
block of FIG. 1.

FIG. 7 is a flowchart depicting more details of a preferred
embodiment of the “generate control scripts” block of FIG.
1.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

As shown in the drawings for purposes of illustration, the
invention provides a method of automatically creating a new
software installation package that is used to install an
application program in a target computer. Software engi-
neers have had to create such installation packages
manually, a procedure that has required increasingly large
amounts of effort as application programs have grown larger
and more complex.

In accordance with the invention, when a new application
program has been ported to a target computer system and
debugged, the method of the invention automatically gen-
erates a manifest of files, a list of required shared libraries,
appropriate filesets and subproducts, and necessary control
scripts. The method of the invention also automatically
assigns each file to a fileset and assigns each fileset to a
subproduct. Using this information, an installation package
is assembled. This method enables the software engineer to
quickly and easily create an installation package that cor-
rectly installs even a very large and complex application
program.

A method of automatically generating a software instal-
lation package for installing an application program on a
target computer system according to the principles of the
invention is depicted in flowchart form in FIG. 1. Initially
the new application is provided, for example by a software
engineer or by a team of such engineers (block 100), and is
ported and debugged (block 200) so that it is operable on a
target system. This has been satisfactorily done if the soft-
ware is in such condition that the application program can be
installed on a testbed computer. For example, in a computer
system that uses the HP-UX operating system version 9.0,
distributed by Hewlett-Packard Company, often the appli-
cation is in satisfactory condition when the “MAKE
CLEAN”, “MAKE”, and “MAKE INSTALL” commands
build and install the application properly.

Starting with software that has been ported and debugged,
the first step of the invention is to automatically generate a
manifest that lists all files which must be installed on the

target computer system for the application program to func-
tion correctly (block 300). The next step is to automatically
determine which resources referenced by any of the listed
files are needed on the target computer system for the
application program to function correctly (block 400). Then,
filesets and subproducts needed on the target computer
system for the application program to function correctly are
automatically generated (block 500).

10

6,117,187

5

Filesets and subproducts are part of a hierarch of software
objects that make rip the applications or operating systems
on which Software Distributor-Unix (SD-UX) commands
work. Filesets include all the files an control scripts that
make up a product. The are the smallest selectable SD-UX
software object. Subproducts are used to group logically
related filesets within a product when the product contains
several filesets.

Following automatic generation of the filesets and
subproducts, each listed file is automatically assigned to an
appropriate fileset and each of the filesets is automatically
assigned to an appropriate subproduct (block 600). The next
step is automatically detecting a need for certain control
scripts that are necessary for installation on the target

computer to function correctly (block 700). A control script,
sometime known as a macro or batch file, is a list of
commands that can be executed without user interaction. A

software engineer then views the results of the steps which '
have already been performed according to the invention and
provides information regarding any necessary corrections or
additions to the invention (block 800). If the software
engineer has directed that changes or additions are needed,
the previous steps (block 200 through block 700) may be
repeated as necessary. Otherwise, error checking is per—
formed to ensure the previous steps have functioned prop-
erly (block 900). Next, the control scripts necessary for
installation on the target computer to function correctly are
generated (block 1000). The last step is generating an
installation package by combining the listed application
program files, any needed resources, the filesets, the
subproducts, and the control scripts (block 1100).

The step of generating the installation package typically
includes recording the listed files and other subject matter on
media, such as tape, floppy diskettes, CD-rom, and DVD, for
distribution to a user of the target computer system. These
files and other subject matter may also be placed in an
accessible location on a computer system, for example the
hard disk of a network server, that is in electrical commu—

nication with the target computer system. The target system
can run the installation package directly from the server or
it can download the installation package and then run the
installation program locally.

FIG. 2 illustrates an example of how to generate the
manifest. A new timestamp is generated and saved (block
310). Then the application program is installed in a testbed
computer system (block 320). In the HP-UX 9.0 environ-
ment this may be done by running the “MAKE” and
“MAKE INSTALL” commands. Typically the testbed is a
system similar to the target systems on which the installation
package will later be run. Then all files in the testbed
computer system having a timestamp more recent than the
saved timestamp are listed (block 330). In the HP—UX 9.0
environment this may be done by using the “-NEWERC”
option with the “FIND” command.

Depending on the operating system, it may be necessary
to attach the new timestamp to each of the application
program files prior to installing the application on the
testbed computer. In the HP-UX 9.0 environment this is not
necessary because the files will automatically receive new
timestamps when they are copied during the installation
process.

10

15

25

30

35

40

45

50

55

60

65

10

6

In one embodiment the file list is filtered to remove any
file of a kind which has been predetermined as indicative of
a spurious file (block 340). This may be done, for example,
by searching for all files having a certain name or a certain
character string in their name. Such files may have been
generated or modified by system daemons. Such filtering
can be done during the generation of the list, such that the
unwanted files are never added to the list, or afterwards by
deleting the unwanted files from the list. Optionally, the
software engineer then manually reviews the file list to
remove any other unwanted files (block 350).

In another embodiment, only files in predetermined direc-
tory trees are checked and, if their timestamps are newer

than the saved timestamp, are placed on the list (block 360).
This can shorten the time required to prepare the list if the
software engineer knows ahead of time which directories
need not be checked, for example because it is known that
no new program files will be inserted in such directories.

The step of determining which resources are needed
(block 400) preferably comprises automatically generating a
dependency list that lists any shared libraries referenced by
any of the listed object files, automatically determining
which of the listed shared libraries are already included in
one or more preexisting software installation packages, and
identifying each such preexisting software installation pack-
age as a needed resource. An example of how these steps
preferably are carried out is given in FIG. 3. An executable

file is selected from the manifest (block 410). This file is
then examined to determine which shared libraries it uses

and a list of these libraries is prepared (block 420). In the
HP-UX 9.0 environment this is conveniently done by means
of the “CHATR” command. If there are more executable

files the procedure is repeated, once [or each executable file,
and any shared libraries are added to the list (block 430).

The list of shared library dependencies is compared with
those libraries already present in preexisting software instal-
lation packages (block 440). Alist of any needed preexisting
software installation packages results from this comparison
(block 450) and is used in generating the new software
installation package.

In one embodiment the new software installation package
also includes a cross-reference to any shared libraries which
are needed by the new package but which have not been
found in any preexisting software installation packages
(block 460).

The step of automatically generating filesets and subprod-
ucts (block 500) preferably includes the substeps of auto-
matically comparing each file against a set of fileset rules,
determining which filesets need to be generated, generating
the needed filesets, comparing each fileset to a set of
subproduct rules, determining which subproducts need to be
generated, and generating the necessary subproducts.

One possible set of fileset rules includes the following
individual rules:

11

{{\.s1$} 3 {-SHLIBS}}
{{/h'h[/]*_[0—9]$} 3 {—smms}}
{{/include/} 5 {-INC}}
{{/man/man} 5 {-MAN}}
{{/man/fr,FR\.i5088591} 0 {-FRE-I-MAN}}
{{/man/friFR\.roman} 0 {AFREARAMANH
{{/man/friFR} 0 {-FRE-MAN}}
{{/1nau/f1-,CA\.i5088591} 0 {-CFR-I-MAN}}
{{/mau/fI,CA\.roman} 0 {-CFR—R-MAN}}
{{/man/fr,CA} 0 {-CFR—MAN}}
{{/help/deiDE\.iso} 0 {-GER-I-HELP}}
{{/help/deiDE\.rohelp} D {-GER-R-HELP}}
{{/he1p/de,L)E} 0 {-GER-HELP}}
{{/msg/C}~ s {-MSG}}
{{/msg/fi,FR\.isosss91} 0 {-FRE-I-MSG}}

6,117,187

{{/man/deiDE\.iso} 0 {-GER-I-MAN}}
{{/man/de7DF.\.roman} 0 {-GFR-R-MAN}}
{{/man/deiDE} 0 {-GER—MAN}}
{{/he1p/C/} 5 {—HELP}}
{{/help/friFRMisoSSSQl} 0 {-FRE-I—HELP}}
{{/help/friFR\.rohelp} 0 {AFREARAHELPH
{{/hc1p/fr,FR} 0 {-FRE-HELP}}
{{/help/fr,CA\.i5088591} 0 {-CFR-I-HELP}}
{{/help/friCA\.rohelp} 0 {-CFR-R—HELP}}
{{/he1p/fr,CA} 0 {-CFR-HELP}}
{{/msg/friCA\.roman} 0 {-CFR-R-MSG}}
{{ansg/fLCA} 0 {-CFR-MSG}}
{{lmsg/deiDELiso} 0 {-GER-I—MSG}}
{{/msg/deiDE\.roman} 0 {-GER-R-MSG}}
{{/msg/de,DE} 0 {-GER-MSG}}

{{/msg/friFR\.roman} 0 {-FRE-R-MSG}}
{{/msg/fi,FR} 0 {-FRE—MSG}}
{{/msg/fr7CA\.is088591} 0 {-CFR—I—MSG}}

Each of these rules is composed of three fields, the regexp,
threshold and the name of the rule. The regexp is a regular
expression used to match against filenames. The threshold is
a minimum number of files which need to match the pattern
defined by the regexp before the fileset is created. The name
field, defines a string that is appended to the product name
to create the fileset name.

It is understood that these rules serve only as an example
of the set of fileset rules, and that numerous other forms of
fileset rules may be substituted for the listed fileset rules.
Alternatively, the set of fileset rules may include fileset rules
in addition to the above-listed fileset rules, a subset of the
above-listed fileset rules, or some combination thereof.

Similarly, one possible set of subproduct rules includes
the following individual rules:

{{-RUN$} {Runtime}}
{{-MIN$} {Runtime}}
{{-AUX$} {Runtime}}
{{-SHLIBS$} {Runtime}}
{{-KRN$} {Runtime}}
{{-MIN$}
{MmirnumRuntime}}
{{-SHLIBS$}
{MmirnumRuntimeH
{{-KRN$}
{MmirnumRuntime}}
{{-NOTES$} {ReleaseNotes}}
{{-DEMO$} {Demonstration}}
{{-PRG$} {Development}}
{{-INC$} {Development}}

{{ [-]*-MAN$} {Manuals}}
{{-...-MAN$} {ManualsByLang}}
{{1...A-.-MAN$} {ManualsByLang}}
{{ I -]*-HELP$}{He1p}}
{{-...-HELP$} {HelpByLang}}
{{Z...h-.-HELP$} {HelpByLang}}
{{ [-]*-MSG$} {Messages}}
{{-...-MSG$} {MessagesByLang}}
{{-...-.-MSG$} {MessagesByLang}}

The subproduct rules are composed of two fields, a regexp
and a subproduct name. In this case the regexp is used to
match against fileset names. As with the fileset rules, these
subproduct rules serve as an example of possible subproduct
rules and numerous other subproduct rules may be substi-
tuted for these subproduct rules. Alternatively, the set of
subproduct rules may include subproduct rules in addition to
the above-listed subproduct rules, a subset of the above-
listed subproduct rules, or some combination thereof.

An example of how these steps preferably are carried out
is given in FIG. 4. First, a file is selected from the manifest
(block 505). The fileset rules for the file are then scanned for
a first match (block 510). If a first match does exists (block
515) and thc filcsct defined by the first match does not
already exist (block 520) then the fileset defined by the first
match is generated (block 525). Otherwise, the step of fileset
generation (block 525) is bypassed. The next step is then to

25

30

35

40

45

50

55

60

65

11

check if the manifest contains files which have not yet been
checked (block 530). If it does, then the steps above (blocks
505 to 530) are repeated until the entire manifest has been
checked.

In a similar fashion, a fileset is selected (block 535) from
a list of all the filesets which were generated (block 525).
The subproduct rules for the fileset are then scanned for a
first match (block 540). If a first match exists (block 545)
and the subproduct defined by the first match does not
already exist (block 550) then the subproduct defined by the
first match is generated (block 555). Otherwise, the step of
subproduct generation (block 555) is bypassed. The next
step is then to check for other filesets that have not yet been
checked (block 560). If there are more filesets, then the steps
above (blocks 535 to 560) are repeated until all the filesets
have been checked. Once this has been completed, fileset
and subproduct generation is complete (block 565).

Once the filesets and subproducts are generated, the next
step is automatically assigning files to filesets and filesets to
subproducts (block 600). An example of how this step is
preferably accomplished is depicted in FIG. 5. First, a file
from the manifest is selected (block 605). The fileset rules
for the file are then scanned for a first match (block 610) and
the file is then assigned to the fileset defined by the first
match (block 615). The manifest is next checked for more
files (block 620). If more files exist on the manifest, the
above steps (blocks 605 through 620) are repeated. Once
there are no more files on the manifest, a fileset is selected
(block 625) from a list of all the filesets. The subproduct
rules for the fileset are then scanned for a first match (block
630). If a first match exists (block 635) then the fileset is
assigned to the subproduct defined by the first match (block
640). If more filesets are detected (block 645), then the steps
starting with selecting a fileset (block 625) are repeated until
all the filesets have been run through the process. Once no
more filesets are detected, assignment of files to filesets and
filesets to subproducts is complete (block 650).

The next step is the automatic detection of a need for
control scripts in the installation package (block 700). There
are numerous types of control scripts which may be neces—
sary in any particular installation package. Some of these
include:

1) newconfig—a control script for adding a new config
files (/etc/);

2) user—a control script for adding a new user ID;
3) group—a control script for adding a new group ID;
4) pathfile—a control script for adding new elements to

configuration path files;

12

6,117,187

9

5) crontab—a control script for modifying crontab, a file
that controls the time that certain files are executed;

6) fragment—a control script that modifies config files;
7) kernel—a control script that adds or modifies kernel

driver parameters;
8) obsolete—a control script that removes obsolete files

from the system; and
9) daemon—a control script that starts system daemons.
The need for many of these control scripts may be

automatically dctcctcd (block 700). For cxamplc, in a pro-
ferred embodiment of the invention, the need for newconfig,
pathfile, user and group control scripts is automatically
detected. One way the need for each of these control scripts
may bc dctcctcd is illustrated in FIGS. 6A, 6B, 6C and 6D
respectively. It is noted that each of the methods illustrated
in FIGS. 6A, 6B, 6C, and 6D begins at the same point,
selecting a file (block 702) and ends at the same point, need
for control script detection complete (block 714). It can be
appreciated, therefore, that need for each control script can
be detected simultaneously and in parallel. Alternatively, the
need for each control script may be detected serially, in any
order.

Detecting the need for a newconfig control script, as
shown in FIG. 6A, begins by selecting a file from the file
manifest (block 702). The filename of the selected file is then
compared to the each of the config files, */etc/*, on the
testbed computer (block 704). If a config file exists that
matches the filename of the selected file, then this config file
will need to be duplicated on the target computer using a
newconfig control script. Next, the filename of the selected
file is compared to each of the newconfig files,
/newconfig/, on the testbed computer (block 706) to
determine if an appropriate newconfig control script already
exists. If a newconfig control script does not exist, the next
step is to determine if a newconfig control action for this file
already exists (block 708). A control action is a type of
indicator that an appropriate control script needs to be
generated. If the newconfig control action for this file does
not exist, then the newconfig control action for the file is
created (block 710). Whether or not a newconfig control
action was created, the manifest is next inspected to deter-
mine if it contains files which have not yet been checked
(block 712). If it does, then the above described steps for
automatically determining a need for a newconfig control
scripts (blocks 702 through 712) are repeated until the every
file on the manifest has been checked. Once this is done, the
detection of the need for newconfig control scripts is com-
pete (block 714).

Dctccting thc nccd for pathfilc control scripts, as shown in
FIG. 6B, actually involves detecting the need for three
different types of pathfile control scripts, each of which can
add one of three different types of elements to the configu—
ration path files on the target computer. These elements are
/etc/PATH, /etc/MANPATH, and /etc/SHLIB PATH. The
detection process begins by selecting a file from the file
manifest (block 702). The pathname associated with the file
is then compared to the each of the pathfile elements,
/bin/, on the testbed computer (block 718). If such a
pathfile element exists that matches the pathname associated
with the selected file, then the pathfile element will need to
be duplicated on the target computer using a pathfile control
script, /etc/PATH. Next, a check is done to determine if a
/etc/PATH control action for the pathname associated with
the file already exists (block 720). If the /etc/PATH control
action for this pathnamc docs not exist, then it is crcatcd
(block 722).

Similarly, the pathname associated with the file is next
compared to the each of the pathfile elements, */man/man*,

10

15

25

30

35

40

45

50

55

60

65

12

10

on the testbed computer (block 724). If such a pathfile
element exists that matches the pathname associated with
the selected file, then the pathfile element will need to be
duplicated on the target computer using a pathfile control
script, /etc/MANPATH. Next, a check is done to determine
if a /etc/MANPATH control action for the pathname asso-
ciated with the file already exists (block 726). If the /etc/
MANPATH control action for this pathname does not exist,
then it is created (block 728).

Next, the file is inspected to determine if it is a shared
library (block 730). If the file is a shared library, then its
directory should be added to /etc/SHLIBiPATH using the
pathfilc control script. cht, a chcck is donc to dctcrminc if
a /etc/SHLIBiPATH control action for the pathname asso-
ciated with the file already exists (block 732). If the /etc/
SHLIBiPATH control action for this pathname does not
exist, then it is created (block 734). Finally, the manifest is
inspected to determine if it contains files which have not yet
been checked (block 736). If it does, then the above
described steps for automatically determining a need for a
pathfile control scripts (blocks 702 through 736) are
repeated until the every file on the manifest has been
checked. Once this is done, the detection of the need for the
pathfile control scripts is compete (block 714).

Detecting the need for a user control script, as shown in
FIG. 6C, begins by selecting a file from the file manifest
(block 702). The user ID associated with the selected file is
then compared to each of the user IDs within the default set
of user IDs on the testbed computer (block 742). If the user
ID associated with the file is not found in the default set of

user IDs, then a new user ID must be added on the target
computer using a user control script. Next, a check is done
to determine if a user ID control action for this file already
exists (block 744). If the user ID control action for this file
does not exist, then the user ID control action for the file is

created (block 746). The manifest is next inspected to
determine if it contains files which have not yet been
checked (block 748). If it does, then the above described
steps for automatically determining a need for user control
scripts (blocks 702 through 748) are repeated until the every
file on the manifest has been checked. Once this is done, the
detection of the need for user control scripts is compete
(block 714).

Detecting the need for a group control script, as shown in
FIG. 6D, begins by selecting a file from the file manifest
(block 702). The group ID associated with the selected file
is then compared to each of the group IDs within the default
set of group IDs on tho tcstbcd computcr (block 754). If the
group ID associated with the file is not found in the default
set of group IDs, then a new group ID must be added on the
target computer using a group control script. Next, a check
is done to determine if a group ID control action for this file
already exists (block 756). If the group ID control action for
this file does not exist, then the group ID control action for
the file is created (block 758). The manifest is next inspected
to determine if it contains files which have not yet been
checked (block 760). If it does, then the above described
steps for automatically determining a need for group control
scripts (blocks 702 through 760) are repeated until the every
file on the manifest has been checked. Once this is done, the
detection of the need for group control scripts is compete
(block 714).

Once all the needs for control scripts have been automati-
cally dctcctcd, thc softwarc cnginccr is provided with infor-
mation regarding the steps which have been automatically
performed up to this point by the method according to the
invention. After reviewing this information, the software

13

6,117,187

11

engineer may elect to make modifications to the application
which was originally provided. This may require that the
step of porting and debugging the software be repeated
(block 200). Alternatively, such changes may require that
any or all of the previously completed steps be repeated. In
these cases, the software engineer may direct which steps
shall be repeated.

In a preferred embodiment of the invention, the software
engineer may also decide that the installation package
should include certain control scripts in addition to those
control scripts, a need for which was automatically detected
(block 700).

After the changes directed by the software engineer are
made and any necessary steps are repeated, automatic error
checking is performed (block 900). Errors that may have
occurred during any of the previous steps are detected, and,
in some cases, automatically corrected. One way in which
errors can be checked is to inspect for common errors such
as missing or invalid control script parameters.

The next step is to generate the control scripts (block '
1000). This includes not only generating the control scripts,
the need for which was detected automatically (block 700),
but also the control scripts which the software engineer
added (block 800). Control scripts include a preamble, a
body and a postamble. The preamble and postamble are
typically consistent between control scripts of a particular
type. The body of the control script, however, typically
varies from one control script to another, even between
control scripts of the same type. A script fragment template
is often used to guide the creation of the body of the control
script fragment. The script fragment template provides a
general outline of the body of the script, but contains blanks
which need to be filled in with desired control script param-
eters to create control script body that functions in the
desired manner.

FIG. 7 illustrates an example of how to generate the
control scripts. First, a fileset is selected from the list of
filesets previously generated (block 1005). Next, a specific
type of control script is selected from a list of possible
control scripts (block 1010). Acontrol action is then selected
from a list of all the control actions that direct the creation

of the particular type of control script just selected (block
1015).

Aroutine corresponding to the control action for the type
of control script selected is then sought (block 1020). If such
a routine is found, it is run to retrieve relevant control script
parameters (block 1025). Next a script fragment template
corresponding to the previously sclcctcd type of control
script is taken from a set of script fragment templates (block
1030). The relevant control script parameters that were
retrieved are then inserted into the control script fragment
template (block 1035), and the completed control script
fragment template is called (block 1040). This results in a
control script fragment template output. The control script
fragment template output is then collected and saved for
future use (block 1045). The list of the control actions that
direct the creation of the particular type of control script
selected is next inspected to determine if it contains control
actions that have not yet been checked (block 1050). If it
does, then the above described steps for creating a control
script fragment template output (blocks 1015 through 1050)
are repeated until the every control action on the list for that
particular type of control script has been checked.

The next step is to see if any control script fragment
template outputs exist (block 1055). If they do, then a script
file is opened (block 1060), a script consisting of a preamble,
the control script fragment template output, and the post-

10

15

25

30

35

40

45

50

55

60

65

13

12

amble are written into the script file (block 1065), and the
script file is closed (block 1070). Next, the list of possible
control scripts is checked to determine if additional types of
control scripts need be generated within this particular fileset
(block 1075). If more control scripts do need to be
generated, the above described steps for generating the
control scripts (blocks 1010 through 1075) are repeated until
all the control scripts for a particular fileset are generated.
Finally, the list of generated filesets is checked to determine
if additional filesets need to have control scripts generated
(block 1080). If more filesets do need to have control scripts
generated, the above described steps for generating the
control scripts (blocks 1005 through 1080) are repeated until
all the filesets have had control scripts generated. Once this
is completed, control script generation is complete (block
1085).

The final step is generating an installation package by
combining the application program files listed on the
manifest, any needed resources, the filesets, the subproducts,
and the control scripts (block 1100).

The method of the invention is carried out automatically
by computer. The software which carries out the steps of the
invention may be recorded on magnetic media, such as tape
or diskettes, or on optical media, such as CD—rom or DVD.
Alternatively, the software which carries out the steps of the
invention may be stored in computer memory, or otherwise
made available for use by software engineers in creating
installation programs.

From the foregoing it will be appreciated that the method
of the invention provides a fast and easy way for a software
engineer to create an installation program and thereby
generate an installation package for an application program.
The invention eliminates both the considerable effort and the

frequent errors that resulted from attempts to create an
installation program manually. Once created, the installation
package may be used by computer system users to install the
application program on their computer systems.

Although a specific embodiment of the invention has been
described and illustrated, the invention is not to be limited
to the specific forms or arrangements of parts so described
and illustrated. The invention is limited only by the claims.

I claim:

1. A method of automatically generating a new software
installation package for installing an application program on
a target computer system, the application having been ported
to the target system and debugged so that it is operable
thereon the method comprising:

(a) providing a list of files of an application program
which must be installed on the target computer system
in order for the application program to function cor-
rectly;

(b) automatically generating filesets which must be
installed on the target computer system in order for the
application program to function correctly;

(c) automatically generating subproducts which must be
installed on the target computer system in order for the
application program to function correctly;

(d) automatically assigning each of the listed application
program files to one the filesets;

(e) automatically assigning each of the filesets to one of
the subproducts;

(f) automatically determining which resources needed by
any of the listed application program files must be
installed on the target computer system in order for the
application program to function correctly;

(g) automatically generating a dependency list that lists
any shared libraries needed by any of the listed appli-
cation program files but not included in the application
program;

14

6,117,187

13

(h) automatically determining which of the listed shared
libraries are already included in one or more preexist-
ing software installation packages;

(i) automatically identifying said preexisting software
installation packages as needed resources; and

(j) generating the new software installation package by
associating the listed application program files, the
filesets, subproducts, and the resources determined to
be needed by the application program files.

2. A method as in claim 1 wherein step (j) additionally
comprises associating a cross—reference to any listed shared
library that is not included in any of said preexisting
installation packages.

3. A method as in claim 1 and further comprising, after
step (j), the step of placing the new software installation
package in an accessible location on a computer system that
is in communication with the target computer system.

4. A method as in claim 1 and further comprising, after
step (i), the step of recording the new software installation
package on magnetic media for distribution to a user of the
target computer system.

5. A method as in claim 1 and further comprising, after
step (j), the step of recording the new software installation
package on optical media for distribution to a user of the
target computer system.

6. A method as in claim 1 wherein step (a) comprises:

saving a new timestamp;

installing the application program in a testbed computer
system; and

providing a list of files in the testbed computer system
having a timestamp more recent than the saved times-
tamp.

7. A method as in claim 1 wherein step (a) comprises:

saving a new timestamp;

installing the application program in a testbed computer
system; and

providing a list of files, except any file of a kind which has
been predetermined as indicative of a spurious file, in
the testbed computer system having a timestamp more
recent than the saved timestamp.

8. A method as in claim 1 wherein step (a) comprises:
saving a new timestamp;

installing the application program in a testbed computer
system; and

generating a list of all files in a predetermined directory
tree of the testbed computer system having a timestamp
more recent than the saved timestamp.

9. A method of automatically generating a new software
installation package for installing an application program on
a target computer system, the application having been ported
to the target system and debugged so that it is operable
thereon, the method comprising:

(a) generating a list of all files of the application program
which must be installed on the target computer system
in order for the application program to function cor-
rectly;

(b) automatically detecting the need for control scripts in
the new software installation package in order for the
application program to install to the target computer
properly;

(c) automatically generating the control scripts; and

(d) generating the new software installation package by
associating the application program files, and the con-
trol scripts.

10

15

25

30

35

40

45

50

55

60

65

14

14

10. A method as in claim 9, additionally comprising
before step (d):

au omatically determining which resources needed by any
of the listed files must be installed on the target
computer system in order for the application program
0 function properly; and

wherein step (d) includes associating the resources deter-
nined to be needed by the application program files.

11. A method as in claim 10, wherein the step of auto—
matically determining needed resources includes:

an omatically generating a dependency list that lists any
shared libraries needed by any of the listed files but not
included in the application program,

au omatically determining which of the listed shared
libraries are already included in one or more prccxist-
ing software installation packages, and

au omatically identifying said preexisting software instal-
lation packages as needed resources; and

wherein step (d) additionally comprises associating a
cross—reference to any listed shared library that is not
included in any of said preexisting installation pack-
ages.

12. A method as in claim 9 wherein step (b) comprises:
automatically detecting the need for an add-new-

configuration-file control script;
automatically detecting the need for an add-ncw-uscr

control script;
automatically detecting the need for an add-new-group

control script; and
automatically detecting the need for an add-pathname-

elements control script.
13. A method as in claim 9 wherein step (a) comprises:
saving a new timestamp;
installing the application program in a testbed computer

system; and
generating a list of all files in a predetermined directory

tree of the testbed computer system having a timestamp
more recent than the saved timestamp.

14. A method of automatically generating a new software
installation package for installing an application program on
a target computer system, the application having been ported
to the target system and debugged so that it is operable
thereon, the method comprising:

(a) generating a list of all files of the application program
which must be installed on the target computer system
in order for the application program to function cor-
rectly;

(b) automatically generating filesets which must be
installed on the target computer system in order for the
application program to function correctly;

(c) automatically generating subproducts which must be
installed on the target computer system in order for the
application program to function correctly;

(d) automatically assigning each of the application pro-
gram files to one of the filesets;

(e) automatically assigning each of the filesets to one of
the subproducts;

(f) automatically detecting the need for control scripts in
the new software installation package in order for the
application program to install to the target computer
properly;

(g) automatically generating the control scripts; and
(h) generating the new software installation package by

associating the application program files, the filesets,
the subproducts, and the control scripts.

15

6,117,187

15

15. A method as in claim 14, additionally comprising
before step (h):

automatically determining which resources needed by any
of the listed files must be installed on the target
computer system in order for the application program
to function properly; and

wherein step (h) includes associating the resources deter-
mined to be needed by the application program files.

16. A method as in claim 15, wherein the step of auto-
matically determining needed resources additionally
includes:

automatically generating a dependency list that lists any
shared libraries needed by any of the listed files but not
included in the application program,

automatically determining which of the listed shared
libraries are already included in one or more preexist-
ing software installation packages, and

automatically identifying said preexisting software instal-
lation packages as needed resources; and

wherein step (h) additionally comprises associating a
cross-reference to any listed shared library that is not
included in any of said preexisting installation pack-
ages.

10

15

20

15

16

17. A method as in claim 14 wherein step (f) comprises:

automatically detecting the need for an add-new-
configuration-file control script;

automatically detecting the need for an add-new-user
control script;

automatically detecting the need for an add-new-group
control script; and

automatically detecting the need for an add-pathname-
elements control script.

18. A method as in claim 14 wherein step (a) comprises:

saving a new timestamp;

installing the application program in a testbed computer
system; and

generating a list of all files in a predetermined directory
tree of the testbed computer system having a timestamp
more recent than the saved timestamp.

