
Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 42 of 53

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Magstar, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Magstar discloses this limitation:

See Claims 15 and 22 above.

2001

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 43 of 53

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Magstar, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Magstar discloses this limitation:

See Claims 16 and 22 above.

2002

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.1
“a boot device” Page 44 of 53

27.1 a boot device.. Magstar, as evidenced by the example
citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Magstar discloses this limitation:

See Claim 1 above.

2003

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.2
“a processor” Page 45 of 53

27.2 a processor.. Magstar, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Magstar discloses this limitation:

See Claim 1.2 above.

2004

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.3
“cache memory” Page 46 of 53

27.3 cache memory; and. Magstar, as evidenced by the example
citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Magstar discloses this limitation:

See Claims 1.3 and 1.4 above.

2005

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 47 of 53

27.4 non-volatile memory for storing
logic code for use by the processor,..

Magstar, as evidenced by the example
citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Magstar discloses this limitation:

See Claim 1.1 and 1.3 above.

2006

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 48 of 53

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Magstar, as evidenced by the example
citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Magstar discloses this limitation:

See Claim 1.1 above.

2007

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 49 of 53

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Magstar, as evidenced by the example
citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Magstar discloses this limitation:

See Claim 1.3 above.

2008

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 50 of 53

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Magstar, as evidenced by the example
citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Magstar discloses this limitation:

See Claim 1.4 above.

2009

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 51 of 53

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Magstar, as evidenced by the example
citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Magstar discloses this limitation:

See Claims 4, 10, and 11 above.

2010

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 52 of 53

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Magstar, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Magstar discloses this limitation:

See Claims 15 and 27 above.

2011

Appendix A33
Invalidity of U.S. Patent 7,181,608 based on Magstar

	

Magstar Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 53 of 53

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Magstar, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Magstar discloses this limitation:

See Claims 16 and 27 above.

2012

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey
 Page 1 of 46

The publication Mealey, B, IBM, An IP.com Prior Art Database Technical Disclosure,
January, 1992 (“Mealey”) invalidates claims 1-13, 15-16, 19-20, 22, 24-25, 27, and 29-30
of United States Patent No. 7,181,608 (“the ’608 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’608 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2013

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 2 of 46

1 (Preamble) A method for providing
accelerated loading of an operating
system, comprising the steps of:

Mealey, as evidenced by the exemplary
citations below, discloses “a method for
providing accelerated loading of an
operating system, comprising the steps
of:”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, accelerated loading of an operating system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2014

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 3 of 46

1.1 maintaining a list of boot data used for
booting a computer system;

Mealey, as evidenced by the example
citations below, discloses “maintaining a
list of boot data used for booting a
computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2015

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 4 of 46

1.2 initializing a central processing unit of
the computer system;

Mealey, as evidenced by the example
citations below, discloses “initializing a
central processing unit of the computer
system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2016

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 5 of 46

1.3 preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and

Mealey, as evidenced by the example
citations below, discloses
“preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the boot data into a cache memory prior
to completion of initialization of the central processing unit of the computer system,
wherein preloading the boot data comprises accessing compressed boot data from a boot
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2017

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 6 of 46

1.4 servicing requests for boot data from
the computer system using the preloaded
boot data after completion of the
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.

Mealey, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded boot
data after completion of the initialization
of the central processing unit of the
computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded boot data after completion of the initialization of the central
processing unit of the computer system, wherein servicing requests comprises accessing
compressed boot data from the cache and decompressing the compressed boot data at a
rate that increases the effective access rate of the cache), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2018

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 7 of 46

2. The method of claim 1, wherein the
boot data comprises program code
associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.

Mealey, as evidenced by the example
citations below, discloses
“wherein the boot data comprises program
code associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2019

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 8 of 46

3. The method of claim 1, wherein the
preloading is performed by a data storage
controller connected to the boot device.

Mealey, as evidenced by the example
citations below, discloses
“wherein the preloading is performed by a
data storage controller connected to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the preloading is performed by a data storage
controller connected to the boot device), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 1.3, and 1.4 above.

See also

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2020

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 9 of 46

4. The method of claim 1, further
comprising updating the list of boot data.

Mealey, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.1 above.

See also

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2021

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 5
“The method of claim 4, wherein the step of updating comprises adding to the list any boot data

requested by the computer system not previously stored in the list.” Page 10 of 46

5. The method of claim 4, wherein the
step of updating comprises adding to the
list any boot data requested by the
computer system not previously stored in
the list.

Mealey, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
adding to the list any boot data requested
by the computer system not previously
stored in the list.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1 and 4 above.

2022

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 6
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 11 of 46

6. The method of claim 4, wherein the
step of updating comprises removing from
the list any boot data previously stored in
the list and not requested by the computer
system.

Mealey, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
removing from the list any boot data
previously stored in the list and not
requested by the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the step of updating comprises removing
from the list any boot data previously stored in the list and not requested by the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1 and 4 above.

2023

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7 (Preamble)
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 12 of 46

7. (Preamble) A system for providing
accelerated loading of an operating system
of a host system comprising:

Mealey, as evidenced by the example
citations below, discloses
“a system for providing accelerated
loading of an operating system of a host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a system for providing accelerated loading of an
operating system of a host system), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 1 (Preamble) above.

2024

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7.1
“a digital signal processor (DSP) or controller” Page 13 of 46

7.1 a digital signal processor (DSP) or
controller;

Mealey, as evidenced by the example
citations below, discloses
“a digital signal processor (DSP) or
controller.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a digital signal processor (DSP) or controller), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.2, 1.3, and 1.4 above.

2025

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7.2
“a cache memory device” Page 14 of 46

7.2 a cache memory device; and; Mealey, as evidenced by the example
citations below, discloses
“a cache memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a cache memory device), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2026

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7.3.1
“a non-volatile memory device, for storing logic code associated with the DSP or controller,
wherein the logic code comprises instructions executable by the DSP or controller for

maintaining a list of boot data used for booting the host system” Page 15 of 46

7.3.1 a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host system

Mealey, as evidenced by the example
citations below, discloses
“a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic code comprises instructions
executable by the DSP or controller for maintaining a list of boot data used for booting
the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1, 1.3, 2, 3, and 7.1 above.

2027

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7.3.2
“for preloading the compressed boot data into the cache memory device prior to completion of

 initialization of the central processing unit of the host system” Page 16 of 46

7.3.2 for preloading the compressed boot
data into the cache memory device prior
to completion of initialization of the
central processing unit of the host system

Mealey, as evidenced by the example
citations below, discloses
“for preloading the compressed boot data
into the cache memory device prior to
completion of initialization of the central
processing unit of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the compressed boot data into the cache
memory device prior to completion of initialization of the central processing unit of the
host system), Apple contends that one of skill in the art would understand the operation
of booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3, and 1.4 above.

2028

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 7.3.3
“and for decompressing the preloaded compressed boot data, at a rate that increases the effective access
rate of the cache, to service requests for boot data from the host system after completion of initialization

of the central processing unit of the host system” Page 17 of 46

7.3.3 and for decompressing the preloaded
compressed boot data, at a rate that
increases the effective access rate of the
cache, to service requests for boot data
from the host system after completion of
initialization of the central processing unit
of the host system

Mealey, as evidenced by the example
citations below, discloses
“decompressing the preloaded compressed
boot data, at a rate that increases the
effective access rate of the cache, to
service requests for boot data from the
host system after completion of
initialization of the central processing unit
of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing the preloaded compressed boot data,
at a rate that increases the effective access rate of the cache, to service requests for boot
data from the host system after completion of initialization of the central processing unit
of the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3, and 1.4 above.

2029

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 18 of 46

8. The system of claim 7, wherein the
logic code in the non-volatile memory
device further comprises program
instructions executable by the DSP or
controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.

Mealey, as evidenced by the example
citations below, discloses
“wherein the logic code in the non-
volatile memory device further comprises
program instructions executable by the
DSP or controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the logic code in the non-volatile memory
device further comprises program instructions executable by the DSP or controller for
maintaining a list of application data associated with an application program; preloading
the application data upon launching the application program, and servicing requests for
the application data from the host system using the preloaded application data), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1, 1.3, 1.4, 2, 3, and 7 above.

2030

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 9.1
“maintaining a list of application data associated with an application

program” Page 19 of 46

9.1 maintaining a list of application data
associated with an application program;

Mealey, as evidenced by the example
citations below, discloses “maintaining a
list of application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of application data associated with
an application program), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.1, 2, and 8 above.

2031

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 9.2
“preloading the application data into the cache memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing compressed application data from a boot

device” Page 20 of 46

9.2 preloading the application data into
the cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device; and

Mealey, as evidenced by the example
citations below, discloses “preloading the
application data into the cache memory
prior to completion of initialization of the
central processing unit of the computer
system, wherein preloading the
application data comprises accessing
compressed application data from a boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the application data into the cache
memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing
compressed application data from a boot device), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 1.3, 2, and 8 above.

2032

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 21 of 46

9.3 servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.

Mealey, as evidenced by the example
citations below, discloses “servicing
requests for application data from the
computer system using the preloaded
application data after completion of
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
application data from the cache and
decompressing the compressed
application data.”.

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for application data from the
computer system using the preloaded application data after completion of initialization
of the central processing unit of the computer system, wherein servicing requests
comprises accessing compressed application data from the cache and decompressing the
compressed application data), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 1.4, 2, and 8 above.

2033

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 22 of 46

10. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.

Mealey, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data and the data compression engine
provides the compressed boot data to the boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2034

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 23 of 46

11. The method of claim 1, wherein the
decompressing is provided by a data
compression engine.

Mealey, as evidenced by the example
citations below, discloses
“decompressing is provided by a data
compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing is provided by a data compression
engine), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

“Disclosed is an approach that reduces resources and time required for
system initialization. This is accomplished by applying a data compression
algorithm to the text and data of a boot-image.
The boot-image is divided into two portions: text and data. The text is
compressed and bound with a decompression program. It is decompressed
immediately after being loaded.
The data portion is a RAM disk file system. The file system is compressed
at the block level. It is accessed by a pseudo device driver that compresses
on writes and decompresses on reads. The file system remains compressed
during system initialization reducing the amount of memory required to
hold it.
Applying compression to a boot image can produce a significant time
savings when booting from a slow device, such as a busy LAN or floppy
disk. It also reduces the size of the media required to hold the image.
Finally, it can reduce the amount of memory required to hold the boot
image until system initialization is complete.”

Mealey, 1.

2035

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 12
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data, the data compression engine provides the compressed boot data to the boot device, and the decompressing is

provided by the data compression engine.” Page 24 of 46

12. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.

Mealey, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data, the data compression engine
provides the compressed boot data to the boot device, and the decompressing is provided
by the data compression engine), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 10 and 11 above.

2036

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 13
“The method of claim 1, wherein the compressed boot data is accessed via direct memory

access..” Page 25 of 46

13. The method of claim 1, wherein the
compressed boot data is accessed via
direct memory access.

Mealey, as evidenced by the example
citations below, discloses
“the compressed boot data is accessed via
direct memory access.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the compressed boot data is accessed via direct
memory access), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3 and 1.4 above.

2037

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 26 of 46

15. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Mealey, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3 and 1.4 above.

2038

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 27 of 46

16. The method of claim 1, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Mealey, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3, 1.4, and 15 above.

2039

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 19
“The method of claim 7, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 28 of 46

19. The method of claim 7, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Mealey, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3 and 1.4, 7, and 15 above.

2040

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 20
“The method of claim 7, wherein a plurality of encoders are utilized to provide the compressed boot

data” Page 29 of 46

20. The method of claim 7, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Mealey, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3 and 1.4, 7, and 16 above.

2041

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 22.1
“maintaining a list of boot data used for booting a computer system” Page 30 of 46

22.1 maintaining a list of boot data used
for booting a computer system;.

Mealey, as evidenced by the example
citations below, discloses
“maintaining a list of boot data used for
booting a computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.1 above.

2042

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 22.2
“initializing a central processing unit of the computer system” Page 31 of 46

22.2 initializing a central processing unit
of the computer system;.

Mealey, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.2 above.

2043

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 22.3
“preloading boot data in compressed form, based on the list of boot data, from a boot device into a

cache memory prior to completion of initialization of the central processing unit;” Page 32 of 46

22.3 preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit;.

Mealey, as evidenced by the example
citations below, discloses
“preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading boot data in compressed form, based on
the list of boot data, from a boot device into a cache memory prior to completion of
initialization of the central processing unit), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claim 1.3 above.

2044

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 22.4
“servicing requests for boot data from the computer system using the preloaded compressed boot data
after completion of initialization of the central processing unit, wherein servicing requests comprises

accessing the compressed boot data from the cache and decompressing the compressed boot data” Page 33 of 46

22.4 servicing requests for boot data from
the computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data

Mealey, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded compressed boot data after completion of initialization of the
central processing unit, wherein servicing requests comprises accessing the compressed
boot data from the cache and decompressing the compressed boot data), Apple contends
that one of skill in the art would understand the operation of booting a computer system
to include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.4 above.

2045

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 22.5
“with a data compression engine and the data compression engine being operable to compress

 additional boot data and store the additional compressed boot data to the boot device” Page 34 of 46

22.5 with a data compression engine and
the data compression engine being
operable to compress additional boot data
and store the additional compressed boot
data to the boot device.

Mealey, as evidenced by the example
citations below, discloses
“with a data compression engine and the
data compression engine being operable to
compress additional boot data and store
the additional compressed boot data to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, with a data compression engine and the data
compression engine being operable to compress additional boot data and store the
additional compressed boot data to the boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claims 4, 10 and 11 above.

2046

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 35 of 46

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Mealey, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 15 and 22 above.

2047

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 36 of 46

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Mealey, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claims 16 and 22 above.

2048

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.1
“a boot device” Page 37 of 46

27.1 a boot device.. Mealey, as evidenced by the example
citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1 above.

2049

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.2
“a processor” Page 38 of 46

27.2 a processor.. Mealey, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claim 1.2 above.

2050

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.3
“cache memory” Page 39 of 46

27.3 cache memory; and. Mealey, as evidenced by the example
citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claims 1.3 and 1.4 above.

2051

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 40 of 46

27.4 non-volatile memory for storing
logic code for use by the processor,..

Mealey, as evidenced by the example
citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.1 and 1.3 above.

2052

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 41 of 46

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Mealey, as evidenced by the example
citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.1 above.

2053

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 42 of 46

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Mealey, as evidenced by the example
citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.3 above.

2054

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 43 of 46

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Mealey, as evidenced by the example
citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Mealey discloses this limitation:

See Claim 1.4 above.

2055

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 44 of 46

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Mealey, as evidenced by the example
citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 4, 10, and 11 above.

2056

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 45 of 46

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Mealey, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Mealey discloses this limitation:

See Claims 15 and 27 above.

2057

Appendix A34
Invalidity of U.S. Patent 7,181,608 based on Mealey

	

Mealey Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 46 of 46

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Mealey, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Mealey discloses this limitation:

See Claims 16 and 27 above.

2058

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon
 Page 1 of 51

The publication Menon, A performance comparison of RAID-5 and log-structured arrays,
IBM Almaden Research Center, (“Menon”) invalidates claims 1-13, 15-16, 19-20, 22, 24-
25, 27, and 29-30 of United States Patent No. 7,181,608 (“the ’608 Patent”) pursuant to 35
U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art
references, and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’608 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2059

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 2 of 51

1 (Preamble) A method for providing
accelerated loading of an operating
system, comprising the steps of:

Menon, as evidenced by the exemplary
citations below, discloses “a method for
providing accelerated loading of an
operating system, comprising the steps
of:”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, accelerated loading of an operating system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

“In addition to improved transfer times, performance benefits result from
the fact that by storing compressed data in the subsystem cache, we get
an effectively larger cache.”

Menon, 167.

“A related parameter is the compression ratio. Improved compression
ratios help in two ways. First, the better the compression ratio the greater
the free space and, hence, the better the performance. Second, the better
the compression ratio, the better the cache hit Iatios. This second factor
aEects performance quite significantly, particularly at low 1/0 rates where
it has a bigger impact than the first factor.”

Menon, 173.

“LSA has an advantage over standard RAID-5 in that the data is
compressed in the controller cache, so it appears to have an effectively
larger cache. It is also possible to implement a version of RAID-5 in
which data is stored compressed in cache. The approach would be as
follows. When a record is written by the system, store it in compressed
form in the cache. When the record is written to disk, write it in
compressed form, but leave enough pad after it to be able to store the full
uncompressed form of the record. This ensures that we can always do
update-in-place. With this approach, no disk space is saved and :io LSA
directory is needed, but improved performance or lower cost is possible
because the data is stored compressed in cache. We call this approach
RAID-5 with compression.”

Menon, 174.

2060

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 3 of 51

“In understanding these comparisons, keep in nind the following
assumptions: (1) the storing of old data for RAID- 5 and the LSA
directory for LSA are both assurned to take 17% of the cache, so only
83?0 of the cache is used for other purposes (2) schemes that store
compressed data in cache have an effectkcly larger cache (3) RAID-5 has
flat skew within an array but has some skew between arrays, LSA has no
skew within or across arrays (4) Only LSA gets better transfer times due
to compressed data on disk (5) RAID-5 has better seek affinity than
LSA.”

Menon, 175.

2061

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 4 of 51

1.1 maintaining a list of boot data used for
booting a computer system;

Menon, as evidenced by the example
citations below, discloses “maintaining a
list of boot data used for booting a
computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

2062

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 5 of 51

1.2 initializing a central processing unit of
the computer system;

Menon, as evidenced by the example
citations below, discloses “initializing a
central processing unit of the computer
system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

2063

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 6 of 51

1.3 preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and

Menon, as evidenced by the example
citations below, discloses
“preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the boot data into a cache memory prior
to completion of initialization of the central processing unit of the computer system,
wherein preloading the boot data comprises accessing compressed boot data from a boot
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

“In addition to improved transfer times, performance benefits result from
the fact that by storing compressed data in the subsystem cache, we get
an effectively larger cache.”

Menon, 167.

“The RAID controller is assumed to have a read and write cache built
from Non-Volatile Storage (NVS).”

Menon, 167.”

“In LSA, data is stored on disks in compressed form. After a piece of data
is updated, it may not compress as well as it did before it was updated, so
it may not fit back into the space that had been allocated for it bcfore the
update.”

Menon, 169.

“The record is compressed as soon as it reaches the subsystem.
Compressed records are stored in the controller cache.”

Menon, 169.

“We assume a Non-Volatile cache and the use of Fast Write (as for

2064

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 7 of 51

RAID-5).”

Menon, 169.

“When the host system tries to read a record, we fetch the entire logical
track containing that record from disk. This entire track is stored in the
controller cache; the requested record alone is decompressed and sent to
the host.”

Menon, 169.

“On a write hit or miss, the data block is accepted from the system and
placed in the Non-Volatile cache after which the write is considered
’done”.”

Menon, 170.

“LSA has an advantage over standard RAID-5 in that the data is
compressed in the controller cache, so it appears to have an effectively
larger cache. It is also possible to implement a version of RAID-5 in
which data is stored compressed in cache. The approach would be as
follows. When a record is written by the system, store it in compressed
form in the cache. When the record is written to disk, write it in
compressed form, but leave enough pad after it to be able to store the full
uncompressed form of the record. This ensures that we can always do
update-in-place. With this approach, no disk space is saved and :io LSA
directory is needed, but improved performance or lower cost is possible
because the data is stored compressed in cache. We call this approach
RAID-5 with compression.”

Menon, 174.

2065

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 8 of 51

1.4 servicing requests for boot data from
the computer system using the preloaded
boot data after completion of the
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.

Menon, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded boot
data after completion of the initialization
of the central processing unit of the
computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded boot data after completion of the initialization of the central
processing unit of the computer system, wherein servicing requests comprises accessing
compressed boot data from the cache and decompressing the compressed boot data at a
rate that increases the effective access rate of the cache), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

“In addition to improved transfer times, performance benefits result from
the fact that by storing compressed data in the subsystem cache, we get
an effectively larger cache.”

Menon, 167.

“When the host system tries to read a record, we fetch the entire logical
track containing that record from disk. This entire track is stored in the
controller cache; the requested record alone is decompressed and sent to
the host.”

Menon, 169.

“A related parameter is the compression ratio. Improved compression
ratios help in two ways. First, the better the compression ratio the greater
the free space and, hence, the better the performance. Second, the better
the compression ratio, the better the cache hit Iatios. This second factor
aEects performance quite significantly, particularly at low 1/0 rates where

2066

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 9 of 51

it has a bigger impact than the first factor.”

Menon, 173.

“LSA has an advantage over standard RAID-5 in that the data is
compressed in the controller cache, so it appears to have an effectively
larger cache. It is also possible to implement a version of RAID-5 in
which data is stored compressed in cache. The approach would be as
follows. When a record is written by the system, store it in compressed
form in the cache. When the record is written to disk, write it in
compressed form, but leave enough pad after it to be able to store the full
uncompressed form of the record. This ensures that we can always do
update-in-place. With this approach, no disk space is saved and :io LSA
directory is needed, but improved performance or lower cost is possible
because the data is stored compressed in cache. We call this approach
RAID-5 with compression.”

Menon, 174.

“In understanding these comparisons, keep in nind the following
assumptions: (1) the storing of old data for RAID- 5 and the LSA
directory for LSA are both assurned to take 17% of the cache, so only
83?0 of the cache is used for other purposes (2) schemes that store
compressed data in cache have an effectkcly larger cache (3) RAID-5 has
flat skew within an array but has some skew between arrays, LSA has no
skew within or across arrays (4) Only LSA gets better transfer times due
to compressed data on disk (5) RAID-5 has better seek affinity than
LSA.”

Menon, 175.

“Our results for IMS workloads may be summarized as follows. RAID-5
with compression has better response time and throughput than RAID-5
without compression, so we should try to do the former whenever
possible.”

Menon, 176.

2067

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 10 of 51

2. The method of claim 1, wherein the
boot data comprises program code
associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.

Menon, as evidenced by the example
citations below, discloses
“wherein the boot data comprises program
code associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2068

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 11 of 51

3. The method of claim 1, wherein the
preloading is performed by a data storage
controller connected to the boot device.

Menon, as evidenced by the example
citations below, discloses
“wherein the preloading is performed by a
data storage controller connected to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the preloading is performed by a data storage
controller connected to the boot device), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 1.3, and 1.4 above.

See also

“In this paper, we compare the performance of the well-known RAIDS
arrays to that of log-structured arrays (LSA), on transaction-processing
workloads. LSA borrows heavily from the log-structured file system
(LFS) approach, but is executed in an outboard disk controller.”

Menon, 167.

“The RAID controller is assumed to have a read and write cache built
from Non-Volatile Storage (NVS).”

Menon, 167.

“The array uses Fast Write; When a disk block to be written is received,
the block is first stored in 2 separate NVS memory locations in the array
controller (to avoid single points of failure). At this point, the disk array
controller signals successful completion of the write to the host. Disk
blocks in array controller cache memory that need to be written to disk
are called dirty. Disk blocks in cache memory that are identical to their
counterparts on disk are called clean.”

Menon, 167. See also Menon, 167-167 (Analysis of Cached RAIDs), 168 (Disk,
Controller, and Channel Parameters).

“When the host system tries to read a record, we fetch the entire logical
track containing that record from disk. This entire track is stored in the

2069

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 12 of 51

controller cache; the requested record alone is decompressed and sent to
the host.”
Menon, 169.

“The memory segment is a section of controller memory, logically
organized as N + 1 segment-columns called memory segment -columns;
N data memory segment-columns and 1 parity memory segment-
column.”

Menon, 170.

“As for RAID-5, we assume that the controller consists of multiple (p)
processors.”

Menon, 170.

2070

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 13 of 51

4. The method of claim 1, further
comprising updating the list of boot data.

Menon, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.1 above.

2071

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 5
“The method of claim 4, wherein the step of updating comprises adding to the list any boot data

requested by the computer system not previously stored in the list.” Page 14 of 51

5. The method of claim 4, wherein the
step of updating comprises adding to the
list any boot data requested by the
computer system not previously stored in
the list.

Menon, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
adding to the list any boot data requested
by the computer system not previously
stored in the list.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1 and 4 above.

2072

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 6
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 15 of 51

6. The method of claim 4, wherein the
step of updating comprises removing from
the list any boot data previously stored in
the list and not requested by the computer
system.

Menon, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
removing from the list any boot data
previously stored in the list and not
requested by the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the step of updating comprises removing
from the list any boot data previously stored in the list and not requested by the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1 and 4 above.

2073

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7 (Preamble)
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 16 of 51

7. (Preamble) A system for providing
accelerated loading of an operating system
of a host system comprising:

Menon, as evidenced by the example
citations below, discloses
“a system for providing accelerated
loading of an operating system of a host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a system for providing accelerated loading of an
operating system of a host system), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 1 (Preamble) above.

2074

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.1
“a digital signal processor (DSP) or controller” Page 17 of 51

7.1 a digital signal processor (DSP) or
controller;

Menon, as evidenced by the example
citations below, discloses
“a digital signal processor (DSP) or
controller.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a digital signal processor (DSP) or controller), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.2, 1.3, and 1.4 above.

See also

“In this paper, we compare the performance of the well-known RAIDS
arrays to that of log-structured arrays (LSA), on transaction-processing
workloads. LSA borrows heavily from the log-structured file system
(LFS) approach, but is executed in an outboard disk controller.”

Menon, 167.

“The RAID controller is assumed to have a read and write cache built
from Non-Volatile Storage (NVS).”

Menon, 167.

“The array uses Fast Write; When a disk block to be written is received,
the block is first stored in 2 separate NVS memory locations in the array
controller (to avoid single points of failure). At this point, the disk array
controller signals successful completion of the write to the host. Disk
blocks in array controller cache memory that need to be written to disk
are called dirty. Disk blocks in cache memory that are identical to their
counterparts on disk are called clean.”

Menon, 167. See also Menon, 167-167 (Analysis of Cached RAIDs), 168 (Disk,
Controller, and Channel Parameters).

“When the host system tries to read a record, we fetch the entire logical
track containing that record from disk. This entire track is stored in the
controller cache; the requested record alone is decompressed and sent to
the host.”
Menon, 169.

2075

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.1
“a digital signal processor (DSP) or controller” Page 18 of 51

“The memory segment is a section of controller memory, logically
organized as N + 1 segment-columns called memory segment -columns;
N data memory segment-columns and 1 parity memory segment-
column.”

Menon, 170.

“As for RAID-5, we assume that the controller consists of multiple (p)
processors.”

Menon, 170.

2076

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.2
“a cache memory device” Page 19 of 51

7.2 a cache memory device; and; Menon, as evidenced by the example
citations below, discloses
“a cache memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a cache memory device), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2077

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.3.1
“a non-volatile memory device, for storing logic code associated with the DSP or controller,
wherein the logic code comprises instructions executable by the DSP or controller for

maintaining a list of boot data used for booting the host system” Page 20 of 51

7.3.1 a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host system

Menon, as evidenced by the example
citations below, discloses
“a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic code comprises instructions
executable by the DSP or controller for maintaining a list of boot data used for booting
the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1, 1.3, 2, 3, and 7.1 above.

2078

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.3.2
“for preloading the compressed boot data into the cache memory device prior to completion of

 initialization of the central processing unit of the host system” Page 21 of 51

7.3.2 for preloading the compressed boot
data into the cache memory device prior
to completion of initialization of the
central processing unit of the host system

Menon, as evidenced by the example
citations below, discloses
“for preloading the compressed boot data
into the cache memory device prior to
completion of initialization of the central
processing unit of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the compressed boot data into the cache
memory device prior to completion of initialization of the central processing unit of the
host system), Apple contends that one of skill in the art would understand the operation
of booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3, and 1.4 above.

2079

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 7.3.3
“and for decompressing the preloaded compressed boot data, at a rate that increases the effective access
rate of the cache, to service requests for boot data from the host system after completion of initialization

of the central processing unit of the host system” Page 22 of 51

7.3.3 and for decompressing the preloaded
compressed boot data, at a rate that
increases the effective access rate of the
cache, to service requests for boot data
from the host system after completion of
initialization of the central processing unit
of the host system

Menon, as evidenced by the example
citations below, discloses
“decompressing the preloaded compressed
boot data, at a rate that increases the
effective access rate of the cache, to
service requests for boot data from the
host system after completion of
initialization of the central processing unit
of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing the preloaded compressed boot data,
at a rate that increases the effective access rate of the cache, to service requests for boot
data from the host system after completion of initialization of the central processing unit
of the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3, and 1.4 above.

2080

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 23 of 51

8. The system of claim 7, wherein the
logic code in the non-volatile memory
device further comprises program
instructions executable by the DSP or
controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.

Menon, as evidenced by the example
citations below, discloses
“wherein the logic code in the non-
volatile memory device further comprises
program instructions executable by the
DSP or controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the logic code in the non-volatile memory
device further comprises program instructions executable by the DSP or controller for
maintaining a list of application data associated with an application program; preloading
the application data upon launching the application program, and servicing requests for
the application data from the host system using the preloaded application data), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1, 1.3, 1.4, 2, 3, and 7 above.

2081

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 9.1
“maintaining a list of application data associated with an application

program” Page 24 of 51

9.1 maintaining a list of application data
associated with an application program;

Menon, as evidenced by the example
citations below, discloses “maintaining a
list of application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of application data associated with
an application program), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.1, 2, and 8 above.

2082

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 9.2
“preloading the application data into the cache memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing compressed application data from a boot

device” Page 25 of 51

9.2 preloading the application data into
the cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device; and

Menon, as evidenced by the example
citations below, discloses “preloading the
application data into the cache memory
prior to completion of initialization of the
central processing unit of the computer
system, wherein preloading the
application data comprises accessing
compressed application data from a boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the application data into the cache
memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing
compressed application data from a boot device), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 1.3, 2, and 8 above.

2083

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 26 of 51

9.3 servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.

Menon, as evidenced by the example
citations below, discloses “servicing
requests for application data from the
computer system using the preloaded
application data after completion of
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
application data from the cache and
decompressing the compressed
application data.”.

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for application data from the
computer system using the preloaded application data after completion of initialization
of the central processing unit of the computer system, wherein servicing requests
comprises accessing compressed application data from the cache and decompressing the
compressed application data), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 1.4, 2, and 8 above.

2084

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 27 of 51

10. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.

Menon, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data and the data compression engine
provides the compressed boot data to the boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

“The record is compressed as soon as it reaches the subsystem.
Compressed records are stored in the controller cache.”

Menon, 169.

“In LSA, data is stored on disks in compressed form. After a piece of data
is updated, it may not compress as well as it did before it was updated, so
it may not fit back into the space that had been allocated for it bcfore the
update.”

Menon, 169.

2085

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 28 of 51

11. The method of claim 1, wherein the
decompressing is provided by a data
compression engine.

Menon, as evidenced by the example
citations below, discloses
“decompressing is provided by a data
compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing is provided by a data compression
engine), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

“When the host system tries to read a record, we fetch the entire logical
track containing that record from disk. This entire track is stored in the
controller cache; the requested record alone is decompressed and sent to
the host.”

Menon, 169.

2086

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 12
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data, the data compression engine provides the compressed boot data to the boot device, and the decompressing is

provided by the data compression engine.” Page 29 of 51

12. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.

Menon, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data, the data compression engine
provides the compressed boot data to the boot device, and the decompressing is provided
by the data compression engine), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 10 and 11 above.

2087

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 13
“The method of claim 1, wherein the compressed boot data is accessed via direct memory

access..” Page 30 of 51

13. The method of claim 1, wherein the
compressed boot data is accessed via
direct memory access.

Menon, as evidenced by the example
citations below, discloses
“the compressed boot data is accessed via
direct memory access.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the compressed boot data is accessed via direct
memory access), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3 and 1.4 above.

2088

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 31 of 51

15. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Menon, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3 and 1.4 above.

2089

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 32 of 51

16. The method of claim 1, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Menon, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3, 1.4, and 15 above.

2090

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 19
“The method of claim 7, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 33 of 51

19. The method of claim 7, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Menon, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3 and 1.4, 7, and 15 above.

2091

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 20
“The method of claim 7, wherein a plurality of encoders are utilized to provide the compressed boot

data” Page 34 of 51

20. The method of claim 7, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Menon, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3 and 1.4, 7, and 16 above.

2092

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 22.1
“maintaining a list of boot data used for booting a computer system” Page 35 of 51

22.1 maintaining a list of boot data used
for booting a computer system;.

Menon, as evidenced by the example
citations below, discloses
“maintaining a list of boot data used for
booting a computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.1 above.

2093

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 22.2
“initializing a central processing unit of the computer system” Page 36 of 51

22.2 initializing a central processing unit
of the computer system;.

Menon, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.2 above.

2094

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 22.3
“preloading boot data in compressed form, based on the list of boot data, from a boot device into a

cache memory prior to completion of initialization of the central processing unit;” Page 37 of 51

22.3 preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit;.

Menon, as evidenced by the example
citations below, discloses
“preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading boot data in compressed form, based on
the list of boot data, from a boot device into a cache memory prior to completion of
initialization of the central processing unit), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claim 1.3 above.

2095

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 22.4
“servicing requests for boot data from the computer system using the preloaded compressed boot data
after completion of initialization of the central processing unit, wherein servicing requests comprises

accessing the compressed boot data from the cache and decompressing the compressed boot data” Page 38 of 51

22.4 servicing requests for boot data from
the computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data

Menon, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded compressed boot data after completion of initialization of the
central processing unit, wherein servicing requests comprises accessing the compressed
boot data from the cache and decompressing the compressed boot data), Apple contends
that one of skill in the art would understand the operation of booting a computer system
to include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.4 above.

2096

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 22.5
“with a data compression engine and the data compression engine being operable to compress

 additional boot data and store the additional compressed boot data to the boot device” Page 39 of 51

22.5 with a data compression engine and
the data compression engine being
operable to compress additional boot data
and store the additional compressed boot
data to the boot device.

Menon, as evidenced by the example
citations below, discloses
“with a data compression engine and the
data compression engine being operable to
compress additional boot data and store
the additional compressed boot data to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, with a data compression engine and the data
compression engine being operable to compress additional boot data and store the
additional compressed boot data to the boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claims 4, 10 and 11 above.

2097

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 40 of 51

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Menon, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 15 and 22 above.

2098

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 41 of 51

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Menon, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claims 16 and 22 above.

2099

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.1
“a boot device” Page 42 of 51

27.1 a boot device.. Menon, as evidenced by the example
citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claim 1 above.

2100

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.2
“a processor” Page 43 of 51

27.2 a processor.. Menon, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claim 1.2 above.

2101

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.3
“cache memory” Page 44 of 51

27.3 cache memory; and. Menon, as evidenced by the example
citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claims 1.3 and 1.4 above.

2102

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 45 of 51

27.4 non-volatile memory for storing
logic code for use by the processor,..

Menon, as evidenced by the example
citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.1 and 1.3 above.

2103

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 46 of 51

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Menon, as evidenced by the example
citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.1 above.

2104

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 47 of 51

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Menon, as evidenced by the example
citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.3 above.

2105

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 48 of 51

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Menon, as evidenced by the example
citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Menon discloses this limitation:

See Claim 1.4 above.

2106

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 49 of 51

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Menon, as evidenced by the example
citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 4, 10, and 11 above.

2107

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 50 of 51

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Menon, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Menon discloses this limitation:

See Claims 15 and 27 above.

2108

Appendix A35
Invalidity of U.S. Patent 7,181,608 based on Menon

	

Menon Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 51 of 51

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Menon, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Menon discloses this limitation:

See Claims 16 and 27 above.

2109

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini
 Page 1 of 54

The publication Rubini, Booting the Kernel, Linux Journal, Jan. 1997, (“Rubini”)
invalidates claims 1-13, 15-16, 19-20, 22, 24-25, 27, and 29-30 of United States Patent No.
7,181,608 (“the ’608 Patent”) pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either
alone or in combination with other prior art references, and/or in combination with the
knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’608 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2110

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 2 of 54

1 (Preamble) A method for providing
accelerated loading of an operating
system, comprising the steps of:

Rubini, as evidenced by the exemplary
citations below, discloses “a method for
providing accelerated loading of an
operating system, comprising the steps
of:”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, accelerated loading of an operating system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

Fig. 1.

“In order to be able to use the computer when the power is turned on, the
processor begins execution from the system's firmware. The firmware is
“unmovable software” found in ROM; some manufacturers call it the
Basic Input-Output System (BIOS) to underline its software role, some
call it PROM or “flash” to stress its hardware implementation, while
others call it “console” to focus on user interaction.

The firmware usually checks the hardware's functionality, retrieves part
(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole

2111

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 3 of 54

system.”

Rubini, 1.

2112

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 4 of 54

1.1 maintaining a list of boot data used for
booting a computer system;

Rubini, as evidenced by the example
citations below, discloses “maintaining a
list of boot data used for booting a
computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

“In order to be able to use the computer when the power is turned on, the
processor begins execution from the system's firmware. The firmware is
“unmovable software” found in ROM; some manufacturers call it the
Basic Input-Output System (BIOS) to underline its software role, some
call it PROM or “flash” to stress its hardware implementation, while
others call it “console” to focus on user interaction.

The firmware usually checks the hardware's functionality, retrieves part
(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole
system.”

Rubini, 1.

“The file called zImage is the compressed kernel image that resides in
arch/i386/boot after either make zImage or make boot is executed—the
latter invocation is the one I prefer, as it works unchanged on other
platforms. If you built a “big zImage” instead, the kernel file created is
called bzImage and resides in the same directory.”

Rubini, 2.

2113

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 5 of 54

1.2 initializing a central processing unit of
the computer system;

Rubini, as evidenced by the example
citations below, discloses “initializing a
central processing unit of the computer
system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

“In order to be able to use the computer when the power is turned on, the
processor begins execution from the system's firmware. The firmware is
“unmovable software” found in ROM; some manufacturers call it the
Basic Input-Output System (BIOS) to underline its software role, some
call it PROM or “flash” to stress its hardware implementation, while
others call it “console” to focus on user interaction.

The firmware usually checks the hardware's functionality, retrieves part
(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole
system.”

Rubini, 1.

“When the x86 processor is turned on, it is a 16-bit processor that sees
only 1MB of RAM. This environment is known as “real mode” and is
dictated by compatibility with older processors of the same family.”

Rubini, 1.

“Then code at 0x90200 (defined in setup.S) takes care of some hardware
initialization and allows the default text mode (video.S) to be changed.
Text mode selection is a compile-time option from 2.1.9 onwards.”

Rubini, 2.

2114

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 6 of 54

1.3 preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and

Rubini, as evidenced by the example
citations below, discloses
“preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the boot data into a cache memory prior
to completion of initialization of the central processing unit of the computer system,
wherein preloading the boot data comprises accessing compressed boot data from a boot
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

The firmware usually checks the hardware's functionality, retrieves part
(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole
system.”

Rubini, 1.

“When the x86 processor is turned on, it is a 16-bit processor that sees
only 1MB of RAM. This environment is known as “real mode” and is
dictated by compatibility with older processors of the same family.”

Rubini, 1.

“To make things difficult, the PC firmware loads only half a kilobyte of
code and establishes its own memory layout before loading this first
sector. Whatever the boot media, the first sector of the boot partition is
loaded into memory at the address 0x7c00, where execution begins. What
happens at 0x7c00 depends on the boot loader being used; we examine
three situations here: no boot-loader, LILO, Loadlin.”

Rubini, 2.

“Booting zImage and bzImage

2115

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 7 of 54

Even though it's rare to boot the system without a boot loader, it is still
possible to do so by copying the raw kernel to a floppy disk. The
command cat zImage >/dev/fd0 works perfectly on Linux, although some
other Unix systems can do the task reliably only by using the dd
command. Without going into detail, the raw floppy image created by
zImage can then be configured using the rdev program.

The file called zImage is the compressed kernel image that resides in
arch/i386/boot after either make zImage or make boot is executed—the
latter invocation is the one I prefer, as it works unchanged on other
platforms. If you built a “big zImage” instead, the kernel file created is
called bzImage and resides in the same directory.

Booting an x86 kernel is a tricky task because of the limited amount of
available memory. The Linux kernel tries to maximize usage of the low
640 kilobytes by moving itself around several times. Let's look at the
steps performed by a zImage kernel in detail; all of the following path
names are relative to the arch/i386/boot directory.

 The first sector (executing at 0x7c00) moves itself to 0x90000 and loads
subsequent sectors after itself, getting them from the boot device using
the firmware's functions to access the disk. The rest of the kernel is then
loaded to address 0x10000, allowing for a maximum size of half a
megabyte of data—remember, this is the compressed image. The boot
sector code lives in bootsect.S, a real-mode assembly file.

 Then code at 0x90200 (defined in setup.S) takes care of some hardware
initialization and allows the default text mode (video.S) to be changed.
Text mode selection is a compile-time option from 2.1.9 onwards.

 Later, all the kernel is moved from 0x10000 (64K) to 0x1000 (4K). This
move overwrites BIOS data stored in RAM, so BIOS calls can no longer
be performed. The first physical page is not touched because it is the so-
called “zero-page”, used in handling virtual memory.

 At this point, setup.S enters protected mode and jumps to 0x1000, where
the kernel lives. All the available memory can be accessed now, and the
system can begin to run.”

Rubini, 2-3.

“The boot steps shown above rely on the assumption that the compressed
kernel can fit in half a megabyte of space. While this is true most of the
time, a system stuffed with device drivers might not fit into this space.
For example, kernels used in installation disks can easily outgrow the
available space. Some new method is needed to solve the problem—this
new method is called bzImage and was introduced in kernel version

2116

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 8 of 54

1.3.73.

A bzImage is generated by issuing make bzImage from the top level
Linux source directory. This kind of kernel image boots similarly to
zImage, with a few changes:

 When the system is loaded to address 0x10000, a little helper routine is
called after loading each 64K data block. The helper routine moves the
data block to high memory by using a special BIOS call. Only the newer
BIOS versions implement this functionality, and so, make boot still builds
the conventional zImage, though this may change in the near future.

 setup.S doesn't move the system back to 0x1000 (4K) but, after entering
protected mode, jumps instead directly to address 0x100000 (1MB)
where data has been moved by the BIOS in the previous step.”

Rubini, 3-4.

“The rule for building the big compressed image can be read from
Makefile; it affects several files in arch/i386/boot. One good point of
bzImage is that when kernel/head.S is called, it doesn't notice the extra
work, and everything goes forward as usual.”

Rubini, 4.	

2117

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 9 of 54

1.4 servicing requests for boot data from
the computer system using the preloaded
boot data after completion of the
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.

Rubini, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded boot
data after completion of the initialization
of the central processing unit of the
computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded boot data after completion of the initialization of the central
processing unit of the computer system, wherein servicing requests comprises accessing
compressed boot data from the cache and decompressing the compressed boot data at a
rate that increases the effective access rate of the cache), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

“Booting zImage and bzImage

Even though it's rare to boot the system without a boot loader, it is still
possible to do so by copying the raw kernel to a floppy disk. The
command cat zImage >/dev/fd0 works perfectly on Linux, although some
other Unix systems can do the task reliably only by using the dd
command. Without going into detail, the raw floppy image created by
zImage can then be configured using the rdev program.

The file called zImage is the compressed kernel image that resides in
arch/i386/boot after either make zImage or make boot is executed—the
latter invocation is the one I prefer, as it works unchanged on other
platforms. If you built a “big zImage” instead, the kernel file created is
called bzImage and resides in the same directory.

Booting an x86 kernel is a tricky task because of the limited amount of
available memory. The Linux kernel tries to maximize usage of the low
640 kilobytes by moving itself around several times. Let's look at the
steps performed by a zImage kernel in detail; all of the following path

2118

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 10 of 54

names are relative to the arch/i386/boot directory.

 The first sector (executing at 0x7c00) moves itself to 0x90000 and loads
subsequent sectors after itself, getting them from the boot device using
the firmware's functions to access the disk. The rest of the kernel is then
loaded to address 0x10000, allowing for a maximum size of half a
megabyte of data—remember, this is the compressed image. The boot
sector code lives in bootsect.S, a real-mode assembly file.

 Then code at 0x90200 (defined in setup.S) takes care of some hardware
initialization and allows the default text mode (video.S) to be changed.
Text mode selection is a compile-time option from 2.1.9 onwards.

 Later, all the kernel is moved from 0x10000 (64K) to 0x1000 (4K). This
move overwrites BIOS data stored in RAM, so BIOS calls can no longer
be performed. The first physical page is not touched because it is the so-
called “zero-page”, used in handling virtual memory.

 At this point, setup.S enters protected mode and jumps to 0x1000, where
the kernel lives. All the available memory can be accessed now, and the
system can begin to run.”

Rubini, 2-3.

“The steps just described were once the whole story of booting when the
kernel was small enough to fit in half a megabyte of memory—the
address range between 0x10000 and 0x90000. As features were added
to the system, the kernel became larger than half a megabyte and could
no longer be moved to 0x1000. Thus, code at 0x1000 is no longer th
Linux kernel, instead the “gunzip” part of the gzip program resides at
that address. The following additional steps are now needed t
uncompress the kernel and execute it:

 head.S in the compressed directory is at 0x1000, and is in charge of
“gunzipping” the kernel; it calls the function decompress_kernel,
defined in compressed/misc.c, which in turns calls inflate which writes
its output starting at address 0x100000 (1MB). High memory can now
be accessed, because the processor is definitely out of its limited boot
environment—the “real” mode.

 After decompression, head.S jumps to the actual beginning of the
kernel. The relevant code is in ../kernel/head.S, outside of the boot
directory.

The boot process is now over, and head.S (i.e., the code found at
0x100000 that used to be at 0x1000 before introducing compressed
boots) can complete processor initialization and call start_kernel().
Code for all functions after this step is written in C.”

2119

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 11 of 54

Rubini, 3.

“The decompresser found at 1MB writes the uncompressed kernel
image into low memory until it is exhausted, and then into high memory
after the compressed image. The two pieces are then reassembled to the
address 0x100000 (1MB). Several memory moves are needed to
perform the task correctly.”

Rubini, 4.

2120

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 12 of 54

2. The method of claim 1, wherein the
boot data comprises program code
associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.

Rubini, as evidenced by the example
citations below, discloses
“wherein the boot data comprises program
code associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2121

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 13 of 54

3. The method of claim 1, wherein the
preloading is performed by a data storage
controller connected to the boot device.

Rubini, as evidenced by the example
citations below, discloses
“wherein the preloading is performed by a
data storage controller connected to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the preloading is performed by a data storage
controller connected to the boot device), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 1.3, and 1.4 above.

2122

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 14 of 54

4. The method of claim 1, further
comprising updating the list of boot data.

Rubini, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.1 above.

“Later, all the kernel is moved from 0x10000 (64K) to 0x1000 (4K).
This move overwrites BIOS data stored in RAM, so BIOS calls can no
longer be performed. The first physical page is not touched because it is
the so-called “zero-page”, used in handling virtual memory.”

Rubini, 2.

2123

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 5
“The method of claim 4, wherein the step of updating comprises adding to the list any boot data

requested by the computer system not previously stored in the list.” Page 15 of 54

5. The method of claim 4, wherein the
step of updating comprises adding to the
list any boot data requested by the
computer system not previously stored in
the list.

Rubini, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
adding to the list any boot data requested
by the computer system not previously
stored in the list.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1 and 4 above.

2124

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 6
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 16 of 54

6. The method of claim 4, wherein the
step of updating comprises removing from
the list any boot data previously stored in
the list and not requested by the computer
system.

Rubini, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
removing from the list any boot data
previously stored in the list and not
requested by the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the step of updating comprises removing
from the list any boot data previously stored in the list and not requested by the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1 and 4 above.

2125

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7 (Preamble)
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 17 of 54

7. (Preamble) A system for providing
accelerated loading of an operating system
of a host system comprising:

Rubini, as evidenced by the example
citations below, discloses
“a system for providing accelerated
loading of an operating system of a host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a system for providing accelerated loading of an
operating system of a host system), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 1 (Preamble) above.

2126

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7.1
“a digital signal processor (DSP) or controller” Page 18 of 54

7.1 a digital signal processor (DSP) or
controller;

Rubini, as evidenced by the example
citations below, discloses
“a digital signal processor (DSP) or
controller.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a digital signal processor (DSP) or controller), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.2, 1.3, and 1.4 above.

2127

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7.2
“a cache memory device” Page 19 of 54

7.2 a cache memory device; and; Rubini, as evidenced by the example
citations below, discloses
“a cache memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a cache memory device), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2128

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7.3.1
“a non-volatile memory device, for storing logic code associated with the DSP or controller,
wherein the logic code comprises instructions executable by the DSP or controller for

maintaining a list of boot data used for booting the host system” Page 20 of 54

7.3.1 a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host system

Rubini, as evidenced by the example
citations below, discloses
“a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic code comprises instructions
executable by the DSP or controller for maintaining a list of boot data used for booting
the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1, 1.3, 2, 3, and 7.1 above.

2129

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7.3.2
“for preloading the compressed boot data into the cache memory device prior to completion of

 initialization of the central processing unit of the host system” Page 21 of 54

7.3.2 for preloading the compressed boot
data into the cache memory device prior
to completion of initialization of the
central processing unit of the host system

Rubini, as evidenced by the example
citations below, discloses
“for preloading the compressed boot data
into the cache memory device prior to
completion of initialization of the central
processing unit of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the compressed boot data into the cache
memory device prior to completion of initialization of the central processing unit of the
host system), Apple contends that one of skill in the art would understand the operation
of booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3, and 1.4 above.

2130

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 7.3.3
“and for decompressing the preloaded compressed boot data, at a rate that increases the effective access
rate of the cache, to service requests for boot data from the host system after completion of initialization

of the central processing unit of the host system” Page 22 of 54

7.3.3 and for decompressing the preloaded
compressed boot data, at a rate that
increases the effective access rate of the
cache, to service requests for boot data
from the host system after completion of
initialization of the central processing unit
of the host system

Rubini, as evidenced by the example
citations below, discloses
“decompressing the preloaded compressed
boot data, at a rate that increases the
effective access rate of the cache, to
service requests for boot data from the
host system after completion of
initialization of the central processing unit
of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing the preloaded compressed boot data,
at a rate that increases the effective access rate of the cache, to service requests for boot
data from the host system after completion of initialization of the central processing unit
of the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3, and 1.4 above.

2131

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 23 of 54

8. The system of claim 7, wherein the
logic code in the non-volatile memory
device further comprises program
instructions executable by the DSP or
controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.

Rubini, as evidenced by the example
citations below, discloses
“wherein the logic code in the non-
volatile memory device further comprises
program instructions executable by the
DSP or controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the logic code in the non-volatile memory
device further comprises program instructions executable by the DSP or controller for
maintaining a list of application data associated with an application program; preloading
the application data upon launching the application program, and servicing requests for
the application data from the host system using the preloaded application data), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1, 1.3, 1.4, 2, 3, and 7 above.

2132

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 9.1
“maintaining a list of application data associated with an application

program” Page 24 of 54

9.1 maintaining a list of application data
associated with an application program;

Rubini, as evidenced by the example
citations below, discloses “maintaining a
list of application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of application data associated with
an application program), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.1, 2, and 8 above.

2133

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 9.2
“preloading the application data into the cache memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing compressed application data from a boot

device” Page 25 of 54

9.2 preloading the application data into
the cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device; and

Rubini, as evidenced by the example
citations below, discloses “preloading the
application data into the cache memory
prior to completion of initialization of the
central processing unit of the computer
system, wherein preloading the
application data comprises accessing
compressed application data from a boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the application data into the cache
memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing
compressed application data from a boot device), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 1.3, 2, and 8 above.

2134

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 26 of 54

9.3 servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.

Rubini, as evidenced by the example
citations below, discloses “servicing
requests for application data from the
computer system using the preloaded
application data after completion of
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
application data from the cache and
decompressing the compressed
application data.”.

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for application data from the
computer system using the preloaded application data after completion of initialization
of the central processing unit of the computer system, wherein servicing requests
comprises accessing compressed application data from the cache and decompressing the
compressed application data), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 1.4, 2, and 8 above.

2135

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 27 of 54

10. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.

Rubini, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data and the data compression engine
provides the compressed boot data to the boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

Fig. 1.

“In order to be able to use the computer when the power is turned on, the
processor begins execution from the system's firmware. The firmware is
“unmovable software” found in ROM; some manufacturers call it the
Basic Input-Output System (BIOS) to underline its software role, some
call it PROM or “flash” to stress its hardware implementation, while
others call it “console” to focus on user interaction.

The firmware usually checks the hardware's functionality, retrieves part

2136

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 28 of 54

(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole
system.”

Rubini, 1.

“The file called zImage is the compressed kernel image that resides in
arch/i386/boot after either make zImage or make boot is executed—the
latter invocation is the one I prefer, as it works unchanged on other
platforms. If you built a “big zImage” instead, the kernel file created is
called bzImage and resides in the same directory.”

Rubini, 2.

“The boot steps shown above rely on the assumption that the compressed
kernel can fit in half a megabyte of space. While this is true most of the
time, a system stuffed with device drivers might not fit into this space.
For example, kernels used in installation disks can easily outgrow the
available space. Some new method is needed to solve the problem—this
new method is called bzImage and was introduced in kernel version
1.3.73.

A bzImage is generated by issuing make bzImage from the top level
Linux source directory. This kind of kernel image boots similarly to
zImage, with a few changes:

 When the system is loaded to address 0x10000, a little helper routine is
called after loading each 64K data block. The helper routine moves the
data block to high memory by using a special BIOS call. Only the newer
BIOS versions implement this functionality, and so, make boot still builds
the conventional zImage, though this may change in the near future.

 setup.S doesn't move the system back to 0x1000 (4K) but, after entering
protected mode, jumps instead directly to address 0x100000 (1MB)
where data has been moved by the BIOS in the previous step.”

Rubini, 3-4.

“The rule for building the big compressed image can be read from
Makefile; it affects several files in arch/i386/boot. One good point of
bzImage is that when kernel/head.S is called, it doesn't notice the extra
work, and everything goes forward as usual.”

Rubini, 4.

2137

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 29 of 54

11. The method of claim 1, wherein the
decompressing is provided by a data
compression engine.

Rubini, as evidenced by the example
citations below, discloses
“decompressing is provided by a data
compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing is provided by a data compression
engine), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

“The firmware usually checks the hardware's functionality, retrieves part
(or all) of the kernel from a storage medium and executes it. This first
part of the kernel must load the rest of itself and initialize the whole
system.”

Rubini, 1.

“Booting zImage and bzImage

Even though it's rare to boot the system without a boot loader, it is still
possible to do so by copying the raw kernel to a floppy disk. The
command cat zImage >/dev/fd0 works perfectly on Linux, although some
other Unix systems can do the task reliably only by using the dd
command. Without going into detail, the raw floppy image created by
zImage can then be configured using the rdev program.

The file called zImage is the compressed kernel image that resides in
arch/i386/boot after either make zImage or make boot is executed—the
latter invocation is the one I prefer, as it works unchanged on other
platforms. If you built a “big zImage” instead, the kernel file created is
called bzImage and resides in the same directory.

Booting an x86 kernel is a tricky task because of the limited amount of
available memory. The Linux kernel tries to maximize usage of the low
640 kilobytes by moving itself around several times. Let's look at the
steps performed by a zImage kernel in detail; all of the following path
names are relative to the arch/i386/boot directory.

 The first sector (executing at 0x7c00) moves itself to 0x90000 and loads
subsequent sectors after itself, getting them from the boot device using
the firmware's functions to access the disk. The rest of the kernel is then
loaded to address 0x10000, allowing for a maximum size of half a

2138

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 30 of 54

megabyte of data—remember, this is the compressed image. The boot
sector code lives in bootsect.S, a real-mode assembly file.

 Then code at 0x90200 (defined in setup.S) takes care of some hardware
initialization and allows the default text mode (video.S) to be changed.
Text mode selection is a compile-time option from 2.1.9 onwards.

 Later, all the kernel is moved from 0x10000 (64K) to 0x1000 (4K). This
move overwrites BIOS data stored in RAM, so BIOS calls can no longer
be performed. The first physical page is not touched because it is the so-
called “zero-page”, used in handling virtual memory.

 At this point, setup.S enters protected mode and jumps to 0x1000, where
the kernel lives. All the available memory can be accessed now, and the
system can begin to run.”

Rubini, 2-3.

“The steps just described were once the whole story of booting when the
kernel was small enough to fit in half a megabyte of memory—the
address range between 0x10000 and 0x90000. As features were added
to the system, the kernel became larger than half a megabyte and could
no longer be moved to 0x1000. Thus, code at 0x1000 is no longer th
Linux kernel, instead the “gunzip” part of the gzip program resides at
that address. The following additional steps are now needed t
uncompress the kernel and execute it:

 head.S in the compressed directory is at 0x1000, and is in charge of
“gunzipping” the kernel; it calls the function decompress_kernel,
defined in compressed/misc.c, which in turns calls inflate which writes
its output starting at address 0x100000 (1MB). High memory can now
be accessed, because the processor is definitely out of its limited boot
environment—the “real” mode.

 After decompression, head.S jumps to the actual beginning of the
kernel. The relevant code is in ../kernel/head.S, outside of the boot
directory.

The boot process is now over, and head.S (i.e., the code found at
0x100000 that used to be at 0x1000 before introducing compressed
boots) can complete processor initialization and call start_kernel().
Code for all functions after this step is written in C.”

Rubini, 3.

“The decompresser found at 1MB writes the uncompressed kernel
image into low memory until it is exhausted, and then into high memory
after the compressed image. The two pieces are then reassembled to the

2139

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 31 of 54

address 0x100000 (1MB). Several memory moves are needed to
perform the task correctly.”

Rubini, 4.

2140

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 12
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data, the data compression engine provides the compressed boot data to the boot device, and the decompressing is

provided by the data compression engine.” Page 32 of 54

12. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.

Rubini, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data, the data compression engine
provides the compressed boot data to the boot device, and the decompressing is provided
by the data compression engine), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 10 and 11 above.

2141

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 13
“The method of claim 1, wherein the compressed boot data is accessed via direct memory

access..” Page 33 of 54

13. The method of claim 1, wherein the
compressed boot data is accessed via
direct memory access.

Rubini, as evidenced by the example
citations below, discloses
“the compressed boot data is accessed via
direct memory access.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the compressed boot data is accessed via direct
memory access), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3 and 1.4 above.

2142

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 34 of 54

15. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Rubini, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3 and 1.4 above.

2143

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 35 of 54

16. The method of claim 1, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Rubini, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3, 1.4, and 15 above.

2144

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 19
“The method of claim 7, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 36 of 54

19. The method of claim 7, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Rubini, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3 and 1.4, 7, and 15 above.

2145

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 20
“The method of claim 7, wherein a plurality of encoders are utilized to provide the compressed boot

data” Page 37 of 54

20. The method of claim 7, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Rubini, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3 and 1.4, 7, and 16 above.

2146

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 22.1
“maintaining a list of boot data used for booting a computer system” Page 38 of 54

22.1 maintaining a list of boot data used
for booting a computer system;.

Rubini, as evidenced by the example
citations below, discloses
“maintaining a list of boot data used for
booting a computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.1 above.

2147

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 22.2
“initializing a central processing unit of the computer system” Page 39 of 54

22.2 initializing a central processing unit
of the computer system;.

Rubini, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.2 above.

2148

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 22.3
“preloading boot data in compressed form, based on the list of boot data, from a boot device into a

cache memory prior to completion of initialization of the central processing unit;” Page 40 of 54

22.3 preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit;.

Rubini, as evidenced by the example
citations below, discloses
“preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading boot data in compressed form, based on
the list of boot data, from a boot device into a cache memory prior to completion of
initialization of the central processing unit), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claim 1.3 above.

2149

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 22.4
“servicing requests for boot data from the computer system using the preloaded compressed boot data
after completion of initialization of the central processing unit, wherein servicing requests comprises

accessing the compressed boot data from the cache and decompressing the compressed boot data” Page 41 of 54

22.4 servicing requests for boot data from
the computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data

Rubini, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded compressed boot data after completion of initialization of the
central processing unit, wherein servicing requests comprises accessing the compressed
boot data from the cache and decompressing the compressed boot data), Apple contends
that one of skill in the art would understand the operation of booting a computer system
to include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.4 above.

2150

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 22.5
“with a data compression engine and the data compression engine being operable to compress

 additional boot data and store the additional compressed boot data to the boot device” Page 42 of 54

22.5 with a data compression engine and
the data compression engine being
operable to compress additional boot data
and store the additional compressed boot
data to the boot device.

Rubini, as evidenced by the example
citations below, discloses
“with a data compression engine and the
data compression engine being operable to
compress additional boot data and store
the additional compressed boot data to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, with a data compression engine and the data
compression engine being operable to compress additional boot data and store the
additional compressed boot data to the boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claims 4, 10 and 11 above.

2151

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 43 of 54

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Rubini, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 15 and 22 above.

2152

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 44 of 54

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Rubini, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claims 16 and 22 above.

2153

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.1
“a boot device” Page 45 of 54

27.1 a boot device.. Rubini, as evidenced by the example
citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1 above.

2154

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.2
“a processor” Page 46 of 54

27.2 a processor.. Rubini, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claim 1.2 above.

2155

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.3
“cache memory” Page 47 of 54

27.3 cache memory; and. Rubini, as evidenced by the example
citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claims 1.3 and 1.4 above.

2156

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 48 of 54

27.4 non-volatile memory for storing
logic code for use by the processor,..

Rubini, as evidenced by the example
citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.1 and 1.3 above.

2157

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 49 of 54

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Rubini, as evidenced by the example
citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.1 above.

2158

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 50 of 54

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Rubini, as evidenced by the example
citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.3 above.

2159

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 51 of 54

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Rubini, as evidenced by the example
citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rubini discloses this limitation:

See Claim 1.4 above.

2160

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 52 of 54

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Rubini, as evidenced by the example
citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 4, 10, and 11 above.

2161

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 53 of 54

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Rubini, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rubini discloses this limitation:

See Claims 15 and 27 above.

2162

Appendix A36
Invalidity of U.S. Patent 7,181,608 based on Rubini

	

Rubini Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 54 of 54

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Rubini, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rubini discloses this limitation:

See Claims 16 and 27 above.

2163

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn
 Page 1 of 81

Wynn, et al. "The effect of compression on performance in a demand paging operating
system," The Journal of Systems and Software (2000) (“Wynn Article”) and Wynn, “The
Effect of Compression on Performance in a Demand Paging Operating System,” 1997
(“Wynn Thesis”) (collectively, “Wynn”), alone or in combination, invalidate claims 1-13,
15-16, 19-20, 22, 24-25, 27, and 29-30 of United States Patent No. 7,181,608 (“the ’608
Patent”) pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination
with other prior art references, and/or in combination with the knowledge of a person of
ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’608 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2164

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 2 of 81

1 (Preamble) A method for providing
accelerated loading of an operating
system, comprising the steps of:

Wynn, as evidenced by the exemplary
citations below, discloses “a method for
providing accelerated loading of an
operating system, comprising the steps
of:”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, accelerated loading of an operating system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 2.2

Wynn Article, 3.4

2165

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 3 of 81

Wynn Thesis, Abstract

Wynn Thesis, 4.2

Wynn Thesis, 5.5

2166

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 4 of 81

2167

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 5 of 81

1.1 maintaining a list of boot data used for
booting a computer system;

Wynn, as evidenced by the example
citations below, discloses “maintaining a
list of boot data used for booting a
computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, 2.2

Wynn Article, 3.4

2168

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 6 of 81

Wynn Article, 3.8

Wynn Thesis, 4.2

Wynn Thesis, 5.5

2169

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 7 of 81

Wynn Thesis, 5.9

2170

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 8 of 81

1.2 initializing a central processing unit of
the computer system;

Wynn, as evidenced by the example
citations below, discloses “initializing a
central processing unit of the computer
system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 3.8

Wynn Article, 3.9

2171

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 9 of 81

Wynn Thesis, 5.9

Wynn Thesis, 5.10

2172

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 10 of 81

1.3 preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and

Wynn, as evidenced by the example
citations below, discloses
“preloading the boot data into a cache
memory prior to completion of
initialization of the central processing
unit of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the boot data into a cache memory prior
to completion of initialization of the central processing unit of the computer system,
wherein preloading the boot data comprises accessing compressed boot data from a boot
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 2.2

2173

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 11 of 81

Wynn Article, 3.1

Wynn Article, 3.2

Wynn Article, 3.4

Wynn Article, 4.3

See also, Wynn Article, Table 3 and Fig. 2

2174

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 12 of 81

Wynn Thesis, Abstract

Wynn Thesis, 4.2

2175

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 13 of 81

Wynn Thesis, 5.1

Wynn Thesis, 5.2

Wynn Thesis, 5.5

2176

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 14 of 81

Wynn Thesis, 6.3

Wynn Thesis, 6.3

Wynn Thesis, 7.2

See also Wynn Thesis, Table 2-4, Fig. 7

2177

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 15 of 81

1.4 servicing requests for boot data from
the computer system using the preloaded
boot data after completion of the
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective access
rate of the cache.

Wynn, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
boot data after completion of the
initialization of the central processing
unit of the computer system, wherein
servicing requests comprises accessing
compressed boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective
access rate of the cache.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded boot data after completion of the initialization of the central
processing unit of the computer system, wherein servicing requests comprises accessing
compressed boot data from the cache and decompressing the compressed boot data at a
rate that increases the effective access rate of the cache), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 2.2

2178

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 16 of 81

Wynn Article, 3.1

Wynn Article, 3.2

Wynn Article, 3.4

Wynn Article, 4.3

See also, Wynn Article, Table 3 and Fig. 2

2179

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 17 of 81

Wynn Thesis, Abstract

Wynn Thesis, 4.2

2180

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 18 of 81

Wynn Thesis, 5.1

Wynn Thesis, 5.2

Wynn Thesis, 5.5

2181

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 19 of 81

Wynn Thesis, 6.3

Wynn Thesis, 6.3

Wynn Thesis, 7.2

See also Wynn Thesis, Table 2-4, Fig. 7

2182

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 20 of 81

2. The method of claim 1, wherein the boot
data comprises program code associated
with one of an operating system of the
computer system, an application program,
and a combination thereof.

Wynn, as evidenced by the example
citations below, discloses
“wherein the boot data comprises
program code associated with one of an
operating system of the computer
system, an application program, and a
combination thereof.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Wynn Article, 4.3

Wynn Article, 2.2

Wynn Article, 3.2

2183

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 21 of 81

Wynn Article, 3.8

Wynn Article, 4.3

Wynn Article, 1.2

2184

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 22 of 81

Wynn Thesis, 2.1

2185

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 23 of 81

3. The method of claim 1, wherein the
preloading is performed by a data storage
controller connected to the boot device.

Wynn, as evidenced by the example
citations below, discloses
“wherein the preloading is performed by
a data storage controller connected to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the preloading is performed by a data storage
controller connected to the boot device), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 1.3, and 1.4 above.

Wynn Thesis, 2.3

Wynn Article, 3.6

2186

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 24 of 81

4. The method of claim 1, further
comprising updating the list of boot data.

Wynn, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.1 above.

Wynn Article, Abstract

Wynn Article, 2.2

Wynn Article, 3.1

2187

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 25 of 81

Wynn Article, 3.2

Wynn Article, 3.4

Wynn Article, 4.3

See also, Wynn Article, Table 3 and Fig. 2

2188

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 26 of 81

Wynn Thesis, Abstract

Wynn Thesis, 4.2

2189

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 27 of 81

Wynn Thesis, 5.1

Wynn Thesis, 5.2

Wynn Thesis, 5.5

2190

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 28 of 81

Wynn Thesis, 6.3

Wynn Thesis, 6.3

Wynn Thesis, 7.2

See also Wynn Thesis, Table 2-4, Fig. 7

2191

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 5
“The method of claim 4, wherein the step of updating comprises adding to the list any boot data

requested by the computer system not previously stored in the list.” Page 29 of 81

5. The method of claim 4, wherein the
step of updating comprises adding to the
list any boot data requested by the
computer system not previously stored in
the list.

Wynn, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
adding to the list any boot data requested
by the computer system not previously
stored in the list.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1 and 4 above.

2192

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 6
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 30 of 81

6. The method of claim 4, wherein the
step of updating comprises removing from
the list any boot data previously stored in
the list and not requested by the computer
system.

Wynn, as evidenced by the example
citations below, discloses
“wherein the step of updating comprises
removing from the list any boot data
previously stored in the list and not
requested by the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the step of updating comprises removing
from the list any boot data previously stored in the list and not requested by the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1 and 4 above.

2193

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7 (Preamble)
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 31 of 81

7. (Preamble) A system for providing
accelerated loading of an operating system
of a host system comprising:

Wynn, as evidenced by the example
citations below, discloses
“a system for providing accelerated
loading of an operating system of a host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a system for providing accelerated loading of an
operating system of a host system), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 1 (Preamble) above.

2194

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7.1
“a digital signal processor (DSP) or controller” Page 32 of 81

7.1 a digital signal processor (DSP) or
controller;

Wynn, as evidenced by the example
citations below, discloses
“a digital signal processor (DSP) or
controller.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a digital signal processor (DSP) or controller), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.2, 1.3, and 1.4 above.

Wynn Thesis, 2.3

Wynn Article, 3.6

2195

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7.2
“a cache memory device” Page 33 of 81

7.2 a cache memory device; and; Wynn, as evidenced by the example
citations below, discloses
“a cache memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a cache memory device), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2196

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7.3.1
“a non-volatile memory device, for storing logic code associated with the DSP or controller,
wherein the logic code comprises instructions executable by the DSP or controller for

maintaining a list of boot data used for booting the host system” Page 34 of 81

7.3.1 a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host system

Wynn, as evidenced by the example
citations below, discloses
“a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic code comprises instructions
executable by the DSP or controller for maintaining a list of boot data used for booting
the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1, 1.3, 2, 3, and 7.1 above.

2197

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7.3.2
“for preloading the compressed boot data into the cache memory device prior to completion of

 initialization of the central processing unit of the host system” Page 35 of 81

7.3.2 for preloading the compressed boot
data into the cache memory device prior
to completion of initialization of the
central processing unit of the host system

Wynn, as evidenced by the example
citations below, discloses
“for preloading the compressed boot data
into the cache memory device prior to
completion of initialization of the central
processing unit of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the compressed boot data into the cache
memory device prior to completion of initialization of the central processing unit of the
host system), Apple contends that one of skill in the art would understand the operation
of booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3, and 1.4 above.

2198

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 7.3.3
“and for decompressing the preloaded compressed boot data, at a rate that increases the effective access
rate of the cache, to service requests for boot data from the host system after completion of initialization

of the central processing unit of the host system” Page 36 of 81

7.3.3 and for decompressing the preloaded
compressed boot data, at a rate that
increases the effective access rate of the
cache, to service requests for boot data
from the host system after completion of
initialization of the central processing unit
of the host system

Wynn, as evidenced by the example
citations below, discloses
“decompressing the preloaded compressed
boot data, at a rate that increases the
effective access rate of the cache, to
service requests for boot data from the
host system after completion of
initialization of the central processing unit
of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing the preloaded compressed boot data,
at a rate that increases the effective access rate of the cache, to service requests for boot
data from the host system after completion of initialization of the central processing unit
of the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3, and 1.4 above.

2199

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 37 of 81

8. The system of claim 7, wherein the
logic code in the non-volatile memory
device further comprises program
instructions executable by the DSP or
controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.

Wynn, as evidenced by the example
citations below, discloses
“wherein the logic code in the non-
volatile memory device further comprises
program instructions executable by the
DSP or controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the logic code in the non-volatile memory
device further comprises program instructions executable by the DSP or controller for
maintaining a list of application data associated with an application program; preloading
the application data upon launching the application program, and servicing requests for
the application data from the host system using the preloaded application data), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1, 1.3, 1.4, 2, 3, and 7 above.

Wynn Article, 4.3

Wynn Article, 2.2

Wynn Article, 3.2

2200

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 38 of 81

Wynn Article, 3.8

Wynn Article, 4.3

Wynn Article, 1.2

2201

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 39 of 81

Wynn Thesis, 2.1

2202

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 9.1
“maintaining a list of application data associated with an application

program” Page 40 of 81

9.1 maintaining a list of application data
associated with an application program;

Wynn, as evidenced by the example
citations below, discloses “maintaining a
list of application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of application data associated with
an application program), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.1, 2, and 8 above.

2203

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 9.2
“preloading the application data into the cache memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing compressed application data from a boot

device” Page 41 of 81

9.2 preloading the application data into
the cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device; and

Wynn, as evidenced by the example
citations below, discloses “preloading the
application data into the cache memory
prior to completion of initialization of the
central processing unit of the computer
system, wherein preloading the
application data comprises accessing
compressed application data from a boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the application data into the cache
memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing
compressed application data from a boot device), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 1.3, 2, and 8 above.

2204

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 42 of 81

9.3 servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.

Wynn, as evidenced by the example
citations below, discloses “servicing
requests for application data from the
computer system using the preloaded
application data after completion of
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
application data from the cache and
decompressing the compressed
application data.”.

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for application data from the
computer system using the preloaded application data after completion of initialization
of the central processing unit of the computer system, wherein servicing requests
comprises accessing compressed application data from the cache and decompressing the
compressed application data), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 1.4, 2, and 8 above.

Wynn Article, 4.3

Wynn Article, 2.2

Wynn Article, 3.2

2205

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 43 of 81

Wynn Article, 3.8

Wynn Article, 4.3

Wynn Article, 1.2

2206

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 44 of 81

Wynn Thesis, 2.1

2207

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 45 of 81

10. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.

Wynn, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and
the data compression engine provides the
compressed boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data and the data compression engine
provides the compressed boot data to the boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 2.2

2208

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 46 of 81

Wynn Article, 3.1

Wynn Article, 3.2

Wynn Article, 3.4

Wynn Article, 3.8

Wynn Article, 3.9

2209

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 47 of 81

Wynn Article, 4.3

See also, Wynn Article, Table 3 and Fig. 2

Wynn Thesis, Abstract

2210

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 48 of 81

Wynn Thesis, 4.2

Wynn Thesis, 5.1

Wynn Thesis, 5.2

2211

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 49 of 81

Wynn Thesis, 5.5

Wynn Thesis, 5.9

2212

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 50 of 81

Wynn Thesis, 5.10

Wynn Thesis, 6.3

Wynn Thesis, 6.3

Wynn Thesis, 7.2

2213

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 51 of 81

See also Wynn Thesis, Table 2-4, Fig. 7

2214

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 52 of 81

11. The method of claim 1, wherein the
decompressing is provided by a data
compression engine.

Wynn, as evidenced by the example
citations below, discloses
“decompressing is provided by a data
compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing is provided by a data compression
engine), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

Wynn Article, Abstract

Wynn Article, 2.2

Wynn Article, 3.1

2215

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 53 of 81

Wynn Article, 3.2

Wynn Article, 3.4

Wynn Article, 4.3

See also, Wynn Article, Table 3 and Fig. 2

2216

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 54 of 81

Wynn Thesis, Abstract

Wynn Thesis, 4.2

2217

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 55 of 81

Wynn Thesis, 5.1

Wynn Thesis, 5.2

Wynn Thesis, 5.5

2218

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 56 of 81

Wynn Thesis, 6.3

Wynn Thesis, 6.3

Wynn Thesis, 7.2

See also Wynn Thesis, Table 2-4, Fig. 7

2219

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 12
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data, the data compression engine provides the compressed boot data to the boot device, and the decompressing is

provided by the data compression engine.” Page 57 of 81

12. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.

Wynn, as evidenced by the example
citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data, the data compression engine
provides the compressed boot data to the boot device, and the decompressing is provided
by the data compression engine), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 10 and 11 above.

2220

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 13
“The method of claim 1, wherein the compressed boot data is accessed via direct memory

access..” Page 58 of 81

13. The method of claim 1, wherein the
compressed boot data is accessed via direct
memory access.

Wynn, as evidenced by the example
citations below, discloses
“the compressed boot data is accessed
via direct memory access.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the compressed boot data is accessed via direct
memory access), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3 and 1.4 above.

Wynn Article, 1.1

Wynn Article, 1.2

2221

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 59 of 81

15. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to provide
the compressed boot data..

Wynn, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3 and 1.4 above.

Wynn Article, 5.1

Wynn Article, 1.2

Wynn Article, 2.1

2222

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 60 of 81

Wynn Article, 2.1

Wynn Thesis, 5.2

2223

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 61 of 81

16. The method of claim 1, wherein a
plurality of encoders are utilized to provide
the compressed boot data.

Wynn, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3, 1.4, and 15 above.

Wynn Article, 3.2

2224

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 62 of 81

Wynn Thesis, 5.3

2225

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 19
“The method of claim 7, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 63 of 81

19. The method of claim 7, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Wynn, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3 and 1.4, 7, and 15 above.

2226

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 20
“The method of claim 7, wherein a plurality of encoders are utilized to provide the compressed boot

data” Page 64 of 81

20. The method of claim 7, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Wynn, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3 and 1.4, 7, and 16 above

2227

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 22.1
“maintaining a list of boot data used for booting a computer system” Page 65 of 81

22.1 maintaining a list of boot data used
for booting a computer system;.

Wynn, as evidenced by the example
citations below, discloses
“maintaining a list of boot data used for
booting a computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.1 above

2228

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 22.2
“initializing a central processing unit of the computer system” Page 66 of 81

22.2 initializing a central processing unit
of the computer system;.

Wynn, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.2 above

2229

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 22.3
“preloading boot data in compressed form, based on the list of boot data, from a boot device into a

cache memory prior to completion of initialization of the central processing unit;” Page 67 of 81

22.3 preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit;.

Wynn, as evidenced by the example
citations below, discloses
“preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading boot data in compressed form, based on
the list of boot data, from a boot device into a cache memory prior to completion of
initialization of the central processing unit), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claim 1.3 above

2230

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 22.4
“servicing requests for boot data from the computer system using the preloaded compressed boot data
after completion of initialization of the central processing unit, wherein servicing requests comprises

accessing the compressed boot data from the cache and decompressing the compressed boot data” Page 68 of 81

22.4 servicing requests for boot data from
the computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data

Wynn, as evidenced by the example
citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded compressed boot data after completion of initialization of the
central processing unit, wherein servicing requests comprises accessing the compressed
boot data from the cache and decompressing the compressed boot data), Apple contends
that one of skill in the art would understand the operation of booting a computer system
to include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.4 above

2231

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 22.5
“with a data compression engine and the data compression engine being operable to compress

 additional boot data and store the additional compressed boot data to the boot device” Page 69 of 81

22.5 with a data compression engine and
the data compression engine being
operable to compress additional boot data
and store the additional compressed boot
data to the boot device.

Wynn, as evidenced by the example
citations below, discloses
“with a data compression engine and the
data compression engine being operable to
compress additional boot data and store
the additional compressed boot data to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, with a data compression engine and the data
compression engine being operable to compress additional boot data and store the
additional compressed boot data to the boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claims 4, 10 and 11 above

2232

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 70 of 81

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Wynn, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 15 and 22 above

2233

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 71 of 81

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Wynn, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claims 16 and 22 above

2234

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.1
“a boot device” Page 72 of 81

27.1 a boot device.. Wynn, as evidenced by the example
citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1 above

2235

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.2
“a processor” Page 73 of 81

27.2 a processor.. Wynn, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claim 1.2 above

2236

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.3
“cache memory” Page 74 of 81

27.3 cache memory; and. Wynn, as evidenced by the example
citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claims 1.3 and 1.4 above

2237

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 75 of 81

27.4 non-volatile memory for storing
logic code for use by the processor,..

Wynn, as evidenced by the example
citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.1 and 1.3 above

2238

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 76 of 81

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Wynn, as evidenced by the example
citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.1 above

2239

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 77 of 81

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Wynn, as evidenced by the example
citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.3 above

2240

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 78 of 81

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Wynn, as evidenced by the example
citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Wynn discloses this limitation:

See Claim 1.4 above

2241

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 79 of 81

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Wynn, as evidenced by the example
citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 4, 10, and 11 above

2242

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 80 of 81

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Wynn, as evidenced by the example
citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Wynn discloses this limitation:

See Claims 15 and 27 above

2243

Appendix A37
Invalidity of U.S. Patent 7,181,608 based on Wynn

	

Wynn Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 81 of 81

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Wynn, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Wynn discloses this limitation:

See Claims 16 and 27 above

2244

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel
 Page 1 of 100

Red Hat Linux 5.0, The Official Red Hat Linux Installation Guide (1995) (“Linux Redhat”)
and M. Beck, et. al, “Linux Kernel Internals” Addison Wesley Longman (1996) (“Beck”)
(collectively, “Linux Kernel”), alone or in combination, invalidate claims 1-13, 15-16, 19-
20, 22, 24-25, 27, and 29-30 of United States Patent No. 7,181,608 (“the ’608 Patent”)
pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with
other prior art references, and/or in combination with the knowledge of a person of ordinary
skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’608 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2245

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 2 of 100

1 (Preamble) A method for providing
accelerated loading of an operating
system, comprising the steps of:

Linux Kernel, as evidenced by the
exemplary citations below, discloses “a
method for providing accelerated loading
of an operating system, comprising the
steps of:”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, accelerated loading of an operating system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2246

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 3 of 100

Linux Redhat, at 6.1.1

Beck, at Preface

2247

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1 (Preamble)
“A method for providing accelerated loading of an operating system, comprising the steps

of:” Page 4 of 100

Beck, at 3.2.3

2248

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 5 of 100

1.1 maintaining a list of boot data used for
booting a computer system;

Linux Kernel, as evidenced by the
example citations below, discloses
“maintaining a list of boot data used for
booting a computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2249

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 6 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2250

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 7 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2251

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 8 of 100

Linux Redhat, at Appendix D.3

Linux Redhat, at Appendix D.5.2

2252

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 9 of 100

Linux Redhat, at Appendix D5.5

2253

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 10 of 100

Linux Redhat, at Appendix E.6.2

Beck, at Preface

2254

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 11 of 100

Beck, at 2.2

Beck, at 2.2

2255

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 12 of 100

Beck, at Appendix D

Beck, at Appendix D.1

2256

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 13 of 100

Beck, at Appendix D.1

Beck, at Appendix D.2.1

2257

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.1
“maintaining a list of boot data used for booting a computer system;”

 Page 14 of 100

Beck, at Appendix D.2.4

2258

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 15 of 100

1.2 initializing a central processing unit of
the computer system;

Linux Kernel, as evidenced by the
example citations below, discloses
“initializing a central processing unit of
the computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1.1

Linux Redhat, at Appendix D.5.2

2259

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 16 of 100

Linux Redhat, at Appendix D5.5

2260

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 17 of 100

Linux Redhat, at Appendix E.6.2

Beck, at 3.2.3

2261

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 18 of 100

Beck, at Appendix D

Beck, at Appendix D.1

2262

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.2
“initializing a central processing unit of the computer system;”

 Page 19 of 100

Beck, at Appendix D.1

2263

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 20 of 100

1.3 preloading the boot data into a cache
memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and

Linux Kernel, as evidenced by the
example citations below, discloses
“preloading the boot data into a cache
memory prior to completion of
initialization of the central processing
unit of the computer system, wherein
preloading the boot data comprises
accessing compressed boot data from a
boot device; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the boot data into a cache memory prior
to completion of initialization of the central processing unit of the computer system,
wherein preloading the boot data comprises accessing compressed boot data from a boot
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2264

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 21 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2265

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 22 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2266

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 23 of 100

Linux Redhat, at Appendix D.3

Linux Redhat, at Appendix D.5.2

2267

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 24 of 100

Linux Redhat, at Appendix D5.5

2268

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 25 of 100

Linux Redhat, at Appendix E.6.2

Beck, at Preface

2269

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 26 of 100

Beck, at 2.2

Beck, at 2.2

2270

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 27 of 100

Beck, at 3.2.3

Beck, at Appendix D

2271

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 28 of 100

Beck, at Appendix D.1

Beck, at Appendix D.1

2272

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.3
“preloading the boot data into a cache memory prior to completion of initialization of the central processing unit of the computer
system, wherein preloading the boot data comprises accessing compressed boot data from a boot device; and”

 Page 29 of 100

Beck, at Appendix D.2.1

Beck, at Appendix D.2.4

2273

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 30 of 100

1.4 servicing requests for boot data from
the computer system using the preloaded
boot data after completion of the
initialization of the central processing unit
of the computer system, wherein servicing
requests comprises accessing compressed
boot data from the cache and
decompressing the compressed boot data at
a rate that increases the effective access
rate of the cache.

Linux Kernel, as evidenced by the
example citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
boot data after completion of the
initialization of the central processing
unit of the computer system, wherein
servicing requests comprises accessing
compressed boot data from the cache and
decompressing the compressed boot data
at a rate that increases the effective
access rate of the cache.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded boot data after completion of the initialization of the central
processing unit of the computer system, wherein servicing requests comprises accessing
compressed boot data from the cache and decompressing the compressed boot data at a
rate that increases the effective access rate of the cache), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2274

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 31 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2275

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 32 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2276

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 33 of 100

Linux Redhat, at Appendix D.3

Linux Redhat, at Appendix D.5.2

2277

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 34 of 100

Linux Redhat, at Appendix D5.5

2278

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 35 of 100

Linux Redhat, at Appendix E.6.2

Beck, at Preface

2279

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 36 of 100

Beck, at 2.2

Beck, at 2.2

2280

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 37 of 100

Beck, at 3.2.3

Beck, at Appendix D

2281

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 38 of 100

Beck, at Appendix D.1

Beck, at Appendix D.1

2282

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 1.4
“servicing requests for boot data from the computer system using the preloaded boot data after completion of the initialization of the
central processing unit of the computer system, wherein servicing requests comprises accessing compressed boot data from the cache
and decompressing the compressed boot data at a rate that increases the effective access rate of the

cache.” Page 39 of 100

Beck, at Appendix D.2.1

Beck, at Appendix D.2.4

2283

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 2
“The method of claim 1, wherein the boot data comprises program code associated with one
of an operating system of the computer system, an application program, and a combination

thereof.” Page 40 of 100

2. The method of claim 1, wherein the
boot data comprises program code
associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.

Linux Kernel, as evidenced by the
example citations below, discloses
“wherein the boot data comprises program
code associated with one of an operating
system of the computer system, an
application program, and a combination
thereof.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2284

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 3
“The method of claim 1, wherein the preloading is performed by a data storage controller

connected to the boot device.” Page 41 of 100

3. The method of claim 1, wherein the
preloading is performed by a data storage
controller connected to the boot device.

Linux Kernel, as evidenced by the
example citations below, discloses
“wherein the preloading is performed by a
data storage controller connected to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the preloading is performed by a data storage
controller connected to the boot device), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3, and 1.4 above.

2285

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 42 of 100

4. The method of claim 1, further
comprising updating the list of boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.1 above.

See also

Linux Redhat, at 6.1

2286

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 43 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2287

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 44 of 100

Linux Redhat, at 6.1.1

Beck, at Preface

2288

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 4
“The method of claim 1, further comprising updating the list of boot

data.” Page 45 of 100

Beck, at 2.2

Beck, at 2.2

2289

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 5
“The method of claim 4, wherein the step of updating comprises adding to the list any boot data

requested by the computer system not previously stored in the list.” Page 46 of 100

5. The method of claim 4, wherein the
step of updating comprises adding to the
list any boot data requested by the
computer system not previously stored in
the list.

Linux Kernel, as evidenced by the
example citations below, discloses
“wherein the step of updating comprises
adding to the list any boot data requested
by the computer system not previously
stored in the list.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, boot data that comprises program code associated
with one of an operating system of the computer system, an application program, and a
combination thereof), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1 and 4 above.

2290

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 6
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 47 of 100

6. The method of claim 4, wherein the
step of updating comprises removing from
the list any boot data previously stored in
the list and not requested by the computer
system.

Linux Kernel, as evidenced by the
example citations below, discloses
“wherein the step of updating comprises
removing from the list any boot data
previously stored in the list and not
requested by the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the step of updating comprises removing
from the list any boot data previously stored in the list and not requested by the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1 and 4 above.

2291

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7 (Preamble)
“The method of claim 4, wherein the step of updating comprises removing from the
list any boot data previously stored in the list and not requested by the computer

system.” Page 48 of 100

7. (Preamble) A system for providing
accelerated loading of an operating system
of a host system comprising:

Linux Kernel, as evidenced by the
example citations below, discloses
“a system for providing accelerated
loading of an operating system of a host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a system for providing accelerated loading of an
operating system of a host system), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 1 (Preamble) above.

2292

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7.1
“a digital signal processor (DSP) or controller” Page 49 of 100

7.1 a digital signal processor (DSP) or
controller;

Linux Kernel, as evidenced by the
example citations below, discloses
“a digital signal processor (DSP) or
controller.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a digital signal processor (DSP) or controller), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.2, 1.3, and 1.4 above.

2293

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7.2
“a cache memory device” Page 50 of 100

7.2 a cache memory device; and; Linux Kernel, as evidenced by the
example citations below, discloses
“a cache memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a cache memory device), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2294

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7.3.1
“a non-volatile memory device, for storing logic code associated with the DSP or controller,
wherein the logic code comprises instructions executable by the DSP or controller for

maintaining a list of boot data used for booting the host system” Page 51 of 100

7.3.1 a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host system

Linux Kernel, as evidenced by the
example citations below, discloses
“a non-volatile memory device, for
storing logic code associated with the
DSP or controller, wherein the logic code
comprises instructions executable by the
DSP or controller for maintaining a list of
boot data used for booting the host
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic code comprises instructions
executable by the DSP or controller for maintaining a list of boot data used for booting
the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1, 1.3, 2, 3, and 7.1 above.

2295

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7.3.2
“for preloading the compressed boot data into the cache memory device prior to completion of

 initialization of the central processing unit of the host system” Page 52 of 100

7.3.2 for preloading the compressed boot
data into the cache memory device prior
to completion of initialization of the
central processing unit of the host system

Linux Kernel, as evidenced by the
example citations below, discloses
“for preloading the compressed boot data
into the cache memory device prior to
completion of initialization of the central
processing unit of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the compressed boot data into the cache
memory device prior to completion of initialization of the central processing unit of the
host system), Apple contends that one of skill in the art would understand the operation
of booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3, and 1.4 above.

2296

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 7.3.3
“and for decompressing the preloaded compressed boot data, at a rate that increases the effective access
rate of the cache, to service requests for boot data from the host system after completion of initialization

of the central processing unit of the host system” Page 53 of 100

7.3.3 and for decompressing the preloaded
compressed boot data, at a rate that
increases the effective access rate of the
cache, to service requests for boot data
from the host system after completion of
initialization of the central processing unit
of the host system

Linux Kernel, as evidenced by the
example citations below, discloses
“decompressing the preloaded compressed
boot data, at a rate that increases the
effective access rate of the cache, to
service requests for boot data from the
host system after completion of
initialization of the central processing unit
of the host system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing the preloaded compressed boot data,
at a rate that increases the effective access rate of the cache, to service requests for boot
data from the host system after completion of initialization of the central processing unit
of the host system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3, and 1.4 above.

2297

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 8
“The system of claim 7, wherein the logic code in the non-volatile memory device further comprises program instructions executable
by the DSP or controller for maintaining a list of application data associated with an application program; preloading the application
data upon launching the application program, and servicing requests for the application data from the host system using the preloaded

application data” Page 54 of 100

8. The system of claim 7, wherein the
logic code in the non-volatile memory
device further comprises program
instructions executable by the DSP or
controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.

Linux Kernel, as evidenced by the
example citations below, discloses
“wherein the logic code in the non-
volatile memory device further comprises
program instructions executable by the
DSP or controller for maintaining a list of
application data associated with an
application program; preloading the
application data upon launching the
application program, and servicing
requests for the application data from the
host system using the preloaded
application data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein the logic code in the non-volatile memory
device further comprises program instructions executable by the DSP or controller for
maintaining a list of application data associated with an application program; preloading
the application data upon launching the application program, and servicing requests for
the application data from the host system using the preloaded application data), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1, 1.3, 1.4, 2, 3, and 7 above.

2298

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 9.1
“maintaining a list of application data associated with an application

program” Page 55 of 100

9.1 maintaining a list of application data
associated with an application program;

Linux Kernel, as evidenced by the
example citations below, discloses
“maintaining a list of application data
associated with an application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of application data associated with
an application program), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.1, 2, and 8 above.

2299

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 9.2
“preloading the application data into the cache memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing compressed application data from a boot

device” Page 56 of 100

9.2 preloading the application data into
the cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device; and

Linux Kernel, as evidenced by the
example citations below, discloses
“preloading the application data into the
cache memory prior to completion of
initialization of the central processing unit
of the computer system, wherein
preloading the application data comprises
accessing compressed application data
from a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading the application data into the cache
memory prior to completion of initialization of the central processing unit of the
computer system, wherein preloading the application data comprises accessing
compressed application data from a boot device), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3, 2, and 8 above.

2300

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 9.3
“servicing requests for application data from the computer system using the preloaded application data after completion of
initialization of the central processing unit of the computer system, wherein servicing requests comprises accessing compressed
application data from the cache and decompressing the compressed application

data” Page 57 of 100

9.3 servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.

Linux Kernel, as evidenced by the
example citations below, discloses
“servicing requests for application data
from the computer system using the
preloaded application data after
completion of initialization of the central
processing unit of the computer system,
wherein servicing requests comprises
accessing compressed application data
from the cache and decompressing the
compressed application data.”.

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for application data from the
computer system using the preloaded application data after completion of initialization
of the central processing unit of the computer system, wherein servicing requests
comprises accessing compressed application data from the cache and decompressing the
compressed application data), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 1.4, 2, and 8 above.

2301

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 58 of 100

10. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and the
data compression engine provides the
compressed boot data to the boot device.

Linux Kernel, as evidenced by the
example citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data and
the data compression engine provides the
compressed boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data and the data compression engine
provides the compressed boot data to the boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2302

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 59 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2303

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 60 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2304

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 61 of 100

Linux Redhat, at Appendix D.3

Linux Redhat, at Appendix D.5.2

2305

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 62 of 100

Linux Redhat, at Appendix D5.5

2306

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 63 of 100

Linux Redhat, at Appendix E.6.2

Beck, at Preface

2307

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 64 of 100

Beck, at 2.2

Beck, at 2.2

2308

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 65 of 100

Beck, at Appendix D

Beck, at Appendix D.1

2309

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 66 of 100

Beck, at Appendix D.1

Beck, at Appendix D.2.1

2310

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 10
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data and the data compression engine provides the compressed boot data to the boot

device” Page 67 of 100

Beck, at Appendix D.2.4

2311

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 68 of 100

11. The method of claim 1, wherein the
decompressing is provided by a data
compression engine.

Linux Kernel, as evidenced by the
example citations below, discloses
“decompressing is provided by a data
compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, decompressing is provided by a data compression
engine), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

Linux Redhat, at 6.1

2312

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 69 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2313

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 70 of 100

Linux Redhat, at 6.1.1

Linux Redhat, at 6.1.1

2314

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 71 of 100

Linux Redhat, at Appendix D.3

Linux Redhat, at Appendix D.5.2

2315

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 72 of 100

Linux Redhat, at Appendix D5.5

2316

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 73 of 100

Linux Redhat, at Appendix E.6.2

Beck, at Preface

2317

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 74 of 100

Beck, at 2.2

Beck, at 2.2

2318

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 75 of 100

Beck, at Appendix D

Beck, at Appendix D.1

2319

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 76 of 100

Beck, at Appendix D.1

Beck, at Appendix D.2.1

2320

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 11
“The method of claim 1, wherein the decompressing is provided by a data compression

engine.” Page 77 of 100

Beck, at Appendix D.2.4

2321

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 12
“The method of claim 1, further comprising a data compression engine for compressing, wherein the compressing provides the
compressed boot data, the data compression engine provides the compressed boot data to the boot device, and the decompressing is

provided by the data compression engine.” Page 78 of 100

12. The method of claim 1, further
comprising a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.

Linux Kernel, as evidenced by the
example citations below, discloses
“a data compression engine for
compressing, wherein the compressing
provides the compressed boot data, the
data compression engine provides the
compressed boot data to the boot device,
and the decompressing is provided by the
data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for compressing, wherein
the compressing provides the compressed boot data, the data compression engine
provides the compressed boot data to the boot device, and the decompressing is provided
by the data compression engine), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 10 and 11 above.

2322

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 13
“The method of claim 1, wherein the compressed boot data is accessed via direct memory

access..” Page 79 of 100

13. The method of claim 1, wherein the
compressed boot data is accessed via
direct memory access.

Linux Kernel, as evidenced by the
example citations below, discloses
“the compressed boot data is accessed via
direct memory access.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the compressed boot data is accessed via direct
memory access), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3 and 1.4 above.

2323

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 15
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 80 of 100

15. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Linux Kernel, as evidenced by the
example citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3 and 1.4 above.

See also

Beck, at Preface

2324

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 16
“The method of claim 1, wherein a plurality of encoders are utilized to provide the compressed boot

data.” Page 81 of 100

16. The method of claim 1, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3, 1.4, and 15 above.

See also

Beck, at Preface

2325

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 19
“The method of claim 7, wherein Lempel-Ziv encoding is utilized to provide the compressed boot

data.” Page 82 of 100

19. The method of claim 7, wherein
Lempel-Ziv encoding is utilized to
provide the compressed boot data..

Linux Kernel, as evidenced by the
example citations below, discloses
“Lempel-Ziv encoding is utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3 and 1.4, 7, and 15 above.

2326

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 20
“The method of claim 7, wherein a plurality of encoders are utilized to provide the compressed boot

data” Page 83 of 100

20. The method of claim 7, wherein a
plurality of encoders are utilized to
provide the compressed boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“a plurality of encoders are utilized to
provide the compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide the
compressed boot data), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3 and 1.4, 7, and 16 above

2327

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 22.1
“maintaining a list of boot data used for booting a computer system” Page 84 of
100

22.1 maintaining a list of boot data used
for booting a computer system;.

Linux Kernel, as evidenced by the
example citations below, discloses
“maintaining a list of boot data used for
booting a computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.1 above

2328

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 22.2
“initializing a central processing unit of the computer system” Page 85 of
100

22.2 initializing a central processing unit
of the computer system;.

Linux Kernel, as evidenced by the
example citations below, discloses
“initializing a central processing unit of
the computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of the computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.2 above

2329

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 22.3
“preloading boot data in compressed form, based on the list of boot data, from a boot device into a

cache memory prior to completion of initialization of the central processing unit;” Page 86 of
100

22.3 preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit;.

Linux Kernel, as evidenced by the
example citations below, discloses
“preloading boot data in compressed
form, based on the list of boot data, from a
boot device into a cache memory prior to
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading boot data in compressed form, based on
the list of boot data, from a boot device into a cache memory prior to completion of
initialization of the central processing unit), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claim 1.3 above

2330

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 22.4
“servicing requests for boot data from the computer system using the preloaded compressed boot data
after completion of initialization of the central processing unit, wherein servicing requests comprises

accessing the compressed boot data from the cache and decompressing the compressed boot data” Page 87 of
100

22.4 servicing requests for boot data from
the computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data

Linux Kernel, as evidenced by the
example citations below, discloses
“servicing requests for boot data from the
computer system using the preloaded
compressed boot data after completion of
initialization of the central processing
unit, wherein servicing requests comprises
accessing the compressed boot data from
the cache and decompressing the
compressed boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for boot data from the computer
system using the preloaded compressed boot data after completion of initialization of the
central processing unit, wherein servicing requests comprises accessing the compressed
boot data from the cache and decompressing the compressed boot data), Apple contends
that one of skill in the art would understand the operation of booting a computer system
to include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.4 above

2331

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 22.5
“with a data compression engine and the data compression engine being operable to compress

 additional boot data and store the additional compressed boot data to the boot device” Page 88 of
100

22.5 with a data compression engine and
the data compression engine being
operable to compress additional boot data
and store the additional compressed boot
data to the boot device.

Linux Kernel, as evidenced by the
example citations below, discloses
“with a data compression engine and the
data compression engine being operable to
compress additional boot data and store
the additional compressed boot data to the
boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, with a data compression engine and the data
compression engine being operable to compress additional boot data and store the
additional compressed boot data to the boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 4, 10 and 11 above

2332

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 24
“The method of claim 22, wherein Lempel-Ziv is utilized by the data compression engine to

compress the additional boot data” Page 89 of
100

24. The method of claim 22, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 15 and 22 above

2333

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 25
“The method of claim 22, wherein a plurality of encoders are utilized by the data compression engine

to compress the additional boot data.” Page 90 of
100

25. The method of claim 22, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data..

Linux Kernel, as evidenced by the
example citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 16 and 22 above

2334

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.1
“a boot device” Page 91 of
100

27.1 a boot device.. Linux Kernel, as evidenced by the
example citations below, discloses
“a boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a boot device), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1 above

2335

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.2
“a processor” Page 92 of
100

27.2 a processor.. Linux Kernel, as evidenced by the
example citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claim 1.2 above

2336

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.3
“cache memory” Page 93 of
100

27.3 cache memory; and. Linux Kernel, as evidenced by the
example citations below, discloses
“cache memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, cache memory), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 1.3 and 1.4 above

2337

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.4
“non-volatile memory for storing logic code for use by the processor,” Page 94 of
100

27.4 non-volatile memory for storing
logic code for use by the processor,..

Linux Kernel, as evidenced by the
example citations below, discloses
“non-volatile memory for storing logic
code for use by the processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, non-volatile memory for storing logic code for use
by the processor), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.1 and 1.3 above

2338

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.5
“the logic code being used for: maintaining a list associated with boot data,

wherein the boot data is used in booting a first system” Page 95 of 100

27.5 the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system

Linux Kernel, as evidenced by the
example citations below, discloses
“the logic code being used for:
maintaining a list associated with boot
data, wherein the boot data is used in
booting a first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, the logic code being used for: maintaining a list
associated with boot data, wherein the boot data is used in booting a first system;), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.1 above

2339

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.6
“preloading compressed boot data associated to the list into the cache memory prior to

 completion of initialization of a central processing unit of the first system” Page 96 of
100

27.6 preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system; and

Linux Kernel, as evidenced by the
example citations below, discloses
“preloading compressed boot data
associated to the list into the cache
memory prior to completion of
initialization of a central processing unit
of the first system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading compressed boot data associated to the
list into the cache memory prior to completion of initialization of a central processing
unit of the first system), Apple contends that one of skill in the art would understand the
operation of booting a computer system to include the element that is missing similar to
the manner in which the patentee relied upon such knowledge of skill in the art during
prosecution. See Sections VI. and VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.3 above

2340

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.7
“servicing requests for the compressed boot data from the first system after completion of

 initialization of the central processing unit” Page 97 of
100

27.7 servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit; and

Linux Kernel, as evidenced by the
example citations below, discloses
“servicing requests for the compressed
boot data from the first system after
completion of initialization of the central
processing unit.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, servicing requests for the compressed boot data from
the first system after completion of initialization of the central processing unit), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claim 1.4 above

2341

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 27.8
“a data compression engine for decompressing the compressed boot data accessed from the cache memory
for use in responding to the servicing requests and for compressing additional boot data and storing

 the additional compressed boot data to the boot device” Page 98 of
100

27.8 a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device

Linux Kernel, as evidenced by the
example citations below, discloses
“a data compression engine for
decompressing the compressed boot data
accessed from the cache memory for use
in responding to the servicing requests
and for compressing additional boot data
and storing the additional compressed
boot data to the boot device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for decompressing the
compressed boot data accessed from the cache memory for use in responding to the
servicing requests and for compressing additional boot data and storing the additional
compressed boot data to the boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 4, 10, and 11 above

2342

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 29
“The system of claim 27, wherein Lempel-Ziv is utilized by the data compression engine

to compress the additional boot data” Page 99 of
100

29. The system of claim 27, wherein
Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“Lempel-Ziv is utilized by the data
compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv is utilized by the data compression
engine to compress the additional boot data), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Linux Kernel discloses this limitation:

See Claims 15 and 27 above

2343

Appendix A38
Invalidity of U.S. Patent 7,181,608 based on Linux Kernel

	

Linux Kernel Claim 30
“The system of claim 27, wherein a plurality of encoders are utilized by the data compression engine

 to compress the additional boot data” Page 100 of
100

30. The system of claim 27, wherein a
plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.

Linux Kernel, as evidenced by the
example citations below, discloses
“a plurality of encoders are utilized by the
data compression engine to compress the
additional boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized by the data
compression engine to compress the additional boot data), Apple contends that one of
skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Linux Kernel discloses this limitation:

See Claims 16 and 27 above

2344

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani
 Page 1 of 38

U.S. Patent Nos. 6,434,695 to Esfahani (“Esfahani ’695) and 6,732,265 to Esfahani
(“Esfahani ’265”), alone or in combination, invalidate claims 1-6, 8-9, 11-13, and 15-16 of
United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102 and/or
35 U.S.C. § 103 either alone or in combination with other prior art references, and/or in
combination with the knowledge of a person of ordinary skill.

In addition, the prior art New World Mac operating system disclosed in Esfahani (“New
World Mac System”) invalidates claims 1-6, 8-9, 11-13, and 15-16 of the ’936 Patent
pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 because the system was on sale or in
public use more than one year prior to the filing date of the ‘936 patent. Esfahani ’695,
Esfahani ’265, and the New World Mac System are collectively referred to herein as
“Esfahani.”

Additionally, Apple intends to provide and seek discovery related to this system to obtain
copies of relevant materials, including but not limited to, architectural documents, design
documents, implementation documents, internal publications, patent applications and
business records relating to this product and will supplement these contentions after those
materials are discovered or received. Apple also reserves its rights to rely on any additional
New World Mac System materials, either individually or collectively, as prior art
publications to the ‘936 patent.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2345

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 38

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Esfahani, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

A computer OS using a compressed ROM image in RAM is described.
In brief, the low-level portion of an OS of a computer is designed to be
separate from the intermediate-level portion of the OS. The low-level
portion, which includes hardware-specific code, is stored in a relatively
small Boot ROM, while at least part of the intermediate-level portion is
stored as a compressed ROM image on a disk or other mass storage
device. The mass storage device may be located remotely from the
computer system, such as in a file server. Upon power-up or reset of the
computer system, the code in the boot ROM is executed to read the
compressed ROM image into RAM, i.e., system memory, of the
computer system. The compressed image is then decompressed and
executed as part of the boot sequence.

Esfahani 695, 2:54-67; also Esfahani ’265, 2:58-3:4.

Referring now to FIG. 4, in the improved OS, the low-level (hardware-
specific) OS code 31 resides in firmware, in order to handle start-up
activities of the computer system. This code fits into one, relatively
small ROM, referred to as the Boot ROM 11. Thus, Boot ROM 11
includes all of the hardware-specific code and tables needed to start up
the computer as well as to boot the OS and provide common hardware
access services the OS might require. Note that the Boot ROM code is
not specific to the MacOS or to any other OS. All higher-level software
resides elsewhere, as will now be described.

2346

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 38

Prior to start-up, the mid-level portion 32 of OS 30 (which corresponds
to part of the ToolBox ROM of earlier Macintosh computers) resides in
compressed form in a file 40, referred to as Boot Info file 40.

Esfahani ’695, 5:7-23; also Esfahani ’265, 5:10-24.

During start-up, the Boot Info file 40 is loaded into RAM 12, and the
compressed mid-level OS 32 is decompressed. Hence, the mid-level OS
32 is essentially a compressed ROM image. The mid-level OS 32 is
inserted into the memory map of the computer system as if it were
firmware in ROM. That is, the ROM image can be write-protected in
the memory map.

Esfahani ’695, 5:44-51; also Esfahani ’265, 5:48-54.

Referring now to FIG. 5, the low-level OS portion 31 and the Boot Info
file 40 are illustrated in greater detail. The low-level portion 31 stored in
Boot ROM 11 contains the code needed to start up the computer,
initialize and examine the hardware, provide a Device Tree (per Open
Firmware) to describe the hardware, provide hardware access services,
and transfer control to the OS. In one embodiment, the components of
the low-level portion 31 include:

code for performing Power-On Self Test (POST), including code
for performing diagnostics, generating a boot beep and an error
beep;

Open Firmware code;

hardware-specific Mac OS drivers (“ndrv's”) that are needed at
boot time (drivers needed at boot time, e.g.,video drivers,
network drivers, or disk drivers, are loaded from the Device
Tree);

HardwareInit code (i.e., the lowest-level code for initializing the
CPU, RAM, clock, system bus, etc.) without Mac OS-specific
code;

code for performing Run-Time Abstraction Services (RTAS).
Certain hardware devices differ from machine to machine, but
provide similar functions. RTAS provides such functions,
including functions for accessing the real-time clock, NVRAM
20, restart, shutdown, and PCI configuration cycles. The I/O

2347

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 38

primitives for these functions in the ROM Image make use of
RTAS.

Esfahani ’695, 6:29-54; also Esfahani ’265, 6:31-57.

The Boot Info file 40 will now be described in greater detail. The Boot
Info file 40 may be stored in the System Folder of the start-up volume.
Alternatively, the Boot Info file 40 may be provided by a network
server using, for example, the Bootstrap Protocol (BootP), which is
described in B. Croft et al., Network Working Group Request for
Comments (RFC) 951, September 1985. Referring to FIG. 5, the Boot
Info file 40 includes Open Firmware-specific Mac OS code 52, referred
to as the “Trampoline code”; an Open Firmware header 51, which
includes a Forth script that performs operations necessary to the start-up
of the OS, including validation tests and transfer of control to the
Trampoline code; and a compressed ROM Image 53, which represents
the mid-level portion 32 of the OS 30. The purpose of the header 51 is,
generally, to specify the locations of the other components of the Boot
Info file 40. The purpose of the Trampoline code 53 generally is to
handle the transition between the Open Firmware code in the Boot Rom
11 and the ROM Image 52, as will be described in greater detail below.

Esfahani ’695, 7:5-24; also Esfahani ’265, 7:9:28.

Note that in alternative embodiments of the OS 30, some or all of the
above mentioned components of the ROM image 53 may be provided as
separate, compressed elements. These separate elements may be
embodied in separate Boot Info files or in a single Boot Info file. This
approach would allow the OS components that are required for a given
machine to be individually selected, decompressed as part of the ROM
image, and used as part of the OS 30, while unnecessary components
could be ignored.

Esfahani ’695, 7:43-51; also Esfahani ’265, 7:47-55.

The Boot Info file 40 resides on the boot device (e.g., a disk, or on a
network) and has a localizable name.

Esfahani ’695, 7:66-67; also Esfahani ’265, 8:3-4.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2348

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 38

1.2 initializing a central processing unit of
said computer system;

Esfahani, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

The low-level portion, including hardware-specific code, is stored in a
relatively small read-only memory (ROM), while at least part of the
intermediate-level portion is stored as a compressed ROM image on a
disk or other mass storage device, which may be located remotely from
the computer system. Upon power-up or reset of the computer system,
the code in the ROM is executed to read the compressed ROM image
into random access memory (RAM) of the computer system. The
compressed image is then decompressed and executed as part of the
boot sequence. Once decompressed, the portion of RAM storing the
intermediate-level code is write-protected in the memory map, and the
code in boot ROM is deleted from the memory map. Memory space in
RAM that is allocated to the intermediate-level code but not used is
returned to the operating system for use as part of system RAM.

Esfahani ’695 [Abstract]

During start-up, the Boot Info file 40 is loaded into RAM 12, and the
compressed mid-level OS 32 is decompressed. Hence, the mid-level OS
32 is essentially a compressed ROM image. The mid-level OS 32 is
inserted into the memory map of the computer system as if it were
firmware in ROM. That is, the ROM image can be write-protected in
the memory map.

Esfahani ’695, 5:44-51; also Esfahani ’265, 5:48-54.

Referring now to FIG. 5, the low-level OS portion 31 and the Boot Info
file 40 are illustrated in greater detail. The low-level portion 31 stored in
Boot ROM 11 contains the code needed to start up the computer,
initialize and examine the hardware, provide a Device Tree (per Open
Firmware) to describe the hardware, provide hardware access services,

2349

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 38

and transfer control to the OS. In one embodiment, the components of
the low-level portion 31 include:

code for performing Power-On Self Test (POST), including code
for performing diagnostics, generating a boot beep and an error
beep;

Open Firmware code;

hardware-specific Mac OS drivers (“ndrv's”) that are needed at
boot time (drivers needed at boot time, e.g.,video drivers,
network drivers, or disk drivers, are loaded from the Device
Tree);

HardwareInit code (i.e., the lowest-level code for initializing the
CPU, RAM, clock, system bus, etc.) without Mac OS-specific
code;

code for performing Run-Time Abstraction Services (RTAS).
Certain hardware devices differ from machine to machine, but
provide similar functions. RTAS provides such functions,
including functions for accessing the real-time clock, NVRAM
20, restart, shutdown, and PCI configuration cycles. The I/O
primitives for these functions in the ROM Image make use of
RTAS.

Esfahani ’695, 6:29-54; also Esfahani ’265, 6:31-57.

The Boot Info file 40 will now be described in greater detail. The Boot
Info file 40 may be stored in the System Folder of the start-up volume.
Alternatively, the Boot Info file 40 may be provided by a network
server using, for example, the Bootstrap Protocol (BootP), which is
described in B. Croft et al., Network Working Group Request for
Comments (RFC) 951, September 1985. Referring to FIG. 5, the Boot
Info file 40 includes Open Firmware-specific Mac OS code 52, referred
to as the “Trampoline code”; an Open Firmware header 51, which
includes a Forth script that performs operations necessary to the start-up
of the OS, including validation tests and transfer of control to the
Trampoline code; and a compressed ROM Image 53, which represents
the mid-level portion 32 of the OS 30. The purpose of the header 51 is,
generally, to specify the locations of the other components of the Boot
Info file 40. The purpose of the Trampoline code 53 generally is to
handle the transition between the Open Firmware code in the Boot Rom
11 and the ROM Image 52, as will be described in greater detail below.

2350

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 38

Esfahani ’695, 7:5-24; also Esfahani ’265, 7:9:28.

Overall Boot Process

Referring now to FIGS. 5, 6A and 6B, the overall boot process of the
improved OS 30 will now be described. In response to power on or reset
at block 601 (FIG. 6A), the POST code executes (preliminary
diagnostics, boot beep, initialization) at 602. At 603, the Open Firmware
routine initializes and begins execution, including building the
expanded Device Tree and the Interrupt Trees. At 604, the Open
Firmware locates the Boot Info file 40, based on defaults and NVRAM
settings, and loads the Boot Info file 40 into RAM 12. At 605, the Open
Firmware executes the Forth script in the Boot Info file 40, which
contains information about the rest of the file (offsets, etc.) and
instructions to read both the Trampoline code 52 and the compressed
ROM Image 53, and places them into a temporary place in RAM 12. At
606, the Open Firmware transfers control to the Trampoline code 52. At
607, the Trampoline code 52 decompresses the ROM Image 53 in RAM
12. In addition, the Trampoline code reallocates any unused memory
space in the ROM Image 52; gathers information about the system from
Open Firmware; creates data structures based on this information;
terminates Open Firmware, and rearranges the contents of memory to an
interim location in physical memory space. At 608, the Trampoline code
52 transfers control to the HardwareInit routine of the (now
decompressed) ROM Image 53. At 609, the HardwareInit routine copies
data structures to their correct places in memory and then calls the
kernel of the OS. Next, at 610 the kernel fills in its data structures and
then calls the 68K Emulator. At 611, the 68K Emulator initializes itself
and then transfers control to the StartInit routine. At 612, the StartInit
routine begins execution, initializing data structures and managers, and
booting the MacOS (the high-level portion of the OS). Note that blocks
609 through 612, above, are specific to a Mac OS.

Esfahani ’695, 9:38-10:6; also Esfahani ’265, 8:42-9:10.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2351

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 38

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Esfahani, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

The low-level portion, including hardware-specific code, is stored in a
relatively small read-only memory (ROM), while at least part of the
intermediate-level portion is stored as a compressed ROM image on a
disk or other mass storage device, which may be located remotely from
the computer system. Upon power-up or reset of the computer system,
the code in the ROM is executed to read the compressed ROM image
into random access memory (RAM) of the computer system. The
compressed image is then decompressed and executed as part of the
boot sequence. Once decompressed, the portion of RAM storing the
intermediate-level code is write-protected in the memory map, and the
code in boot ROM is deleted from the memory map. Memory space in
RAM that is allocated to the intermediate-level code but not used is
returned to the operating system for use as part of system RAM.

Esfahani ’695 [Abstract]

A method and apparatus for use in booting a computer system are
provided. The method includes loading a compressed image of a first
portion of the OS of the computer system into a storage device of the
computer system, which may be RAM, for example. The compressed
image of the first portion of the OS is then decompressed and executed
as part of the boot sequence of the computer system.

Esfahani ’695 2:6-12; also Esfahani ’265, 2:10-17.

In particular embodiments, the first portion of the operating system may
include an intermediate-level portion of the operating system, while a
second, low-level portion of the operating system containing hardware
specific aspects are stored in read-only memory. The process of

2352

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 38

transferring the first portion from non-volatile storage to volatile storage
and decompressing the first portion may be initiated by the low-level
portion stored in the read-only memory. Once decompressed, the
portion of memory storing the first portion of the operating system may
be write-protected, and this read-only memory portion may be mapped
out of the address space of RAM used by the operating system.

Esfahani 695 2:13-25; also Esfahani ’265, 2:18-29.

A computer OS using a compressed ROM image in RAM is described.
In brief, the low-level portion of an OS of a computer is designed to be
separate from the intermediate-level portion of the OS. The low-level
portion, which includes hardware-specific code, is stored in a relatively
small Boot ROM, while at least part of the intermediate-level portion is
stored as a compressed ROM image on a disk or other mass storage
device. The mass storage device may be located remotely from the
computer system, such as in a file server. Upon power-up or reset of the
computer system, the code in the boot ROM is executed to read the
compressed ROM image into RAM, i.e., system memory, of the
computer system. The compressed image is then decompressed and
executed as part of the boot sequence.

Esfahani 695, 2:54-67; also Esfahani ’265, 2:58-3:4.

Referring now to FIG. 4, in the improved OS, the low-level (hardware-
specific) OS code 31 resides in firmware, in order to handle start-up
activities of the computer system. This code fits into one, relatively
small ROM, referred to as the Boot ROM 11. Thus, Boot ROM 11
includes all of the hardware-specific code and tables needed to start up
the computer as well as to boot the OS and provide common hardware
access services the OS might require. Note that the Boot ROM code is
not specific to the MacOS or to any other OS. All higher-level software
resides elsewhere, as will now be described.

Prior to start-up, the mid-level portion 32 of OS 30 (which corresponds
to part of the ToolBox ROM of earlier Macintosh computers) resides in
compressed form in a file 40, referred to as Boot Info file 40.

Esfahani ’695, 5:7-23; also Esfahani ’265, 5:10-24.

During start-up, the Boot Info file 40 is loaded into RAM 12, and the
compressed mid-level OS 32 is decompressed. Hence, the mid-level OS
32 is essentially a compressed ROM image. The mid-level OS 32 is
inserted into the memory map of the computer system as if it were

2353

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 38

firmware in ROM. That is, the ROM image can be write-protected in
the memory map.

Esfahani ’695, 5:44-51; also Esfahani ’265, 5:48-54.

Referring now to FIG. 5, the low-level OS portion 31 and the Boot Info
file 40 are illustrated in greater detail. The low-level portion 31 stored in
Boot ROM 11 contains the code needed to start up the computer,
initialize and examine the hardware, provide a Device Tree (per Open
Firmware) to describe the hardware, provide hardware access services,
and transfer control to the OS. In one embodiment, the components of
the low-level portion 31 include:

code for performing Power-On Self Test (POST), including code
for performing diagnostics, generating a boot beep and an error
beep;

Open Firmware code;

hardware-specific Mac OS drivers (“ndrv's”) that are needed at
boot time (drivers needed at boot time, e.g.,video drivers,
network drivers, or disk drivers, are loaded from the Device
Tree);

HardwareInit code (i.e., the lowest-level code for initializing the
CPU, RAM, clock, system bus, etc.) without Mac OS-specific
code;

code for performing Run-Time Abstraction Services (RTAS).
Certain hardware devices differ from machine to machine, but
provide similar functions. RTAS provides such functions,
including functions for accessing the real-time clock, NVRAM
20, restart, shutdown, and PCI configuration cycles. The I/O
primitives for these functions in the ROM Image make use of
RTAS.

Esfahani ’695, 6:29-54; also Esfahani ’265, 6:31-57.

Note that in alternative embodiments of the OS 30, some or all of the
above mentioned components of the ROM image 53 may be provided as
separate, compressed elements. These separate elements may be
embodied in separate Boot Info files or in a single Boot Info file. This
approach would allow the OS components that are required for a given
machine to be individually selected, decompressed as part of the ROM

2354

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 38

image, and used as part of the OS 30, while unnecessary components
could be ignored.

Esfahani ’695, 7:43-51; also Esfahani ’265, 7:47-55.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2355

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 38

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Esfahani, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

The low-level portion, including hardware-specific code, is stored in a
relatively small read-only memory (ROM), while at least part of the
intermediate-level portion is stored as a compressed ROM image on a
disk or other mass storage device, which may be located remotely from
the computer system. Upon power-up or reset of the computer system,
the code in the ROM is executed to read the compressed ROM image
into random access memory (RAM) of the computer system. The
compressed image is then decompressed and executed as part of the
boot sequence. Once decompressed, the portion of RAM storing the
intermediate-level code is write-protected in the memory map, and the
code in boot ROM is deleted from the memory map. Memory space in
RAM that is allocated to the intermediate-level code but not used is
returned to the operating system for use as part of system RAM.

Esfahani ’695 [Abstract]

A method and apparatus for use in booting a computer system are
provided. The method includes loading a compressed image of a first
portion of the OS of the computer system into a storage device of the
computer system, which may be RAM, for example. The compressed
image of the first portion of the OS is then decompressed and executed
as part of the boot sequence of the computer system.

Esfahani ’695 2:6-12; also Esfahani ’265, 2:10-17.

In particular embodiments, the first portion of the operating system may
include an intermediate-level portion of the operating system, while a
second, low-level portion of the operating system containing hardware
specific aspects are stored in read-only memory. The process of
transferring the first portion from non-volatile storage to volatile storage

2356

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 38

and decompressing the first portion may be initiated by the low-level
portion stored in the read-only memory. Once decompressed, the
portion of memory storing the first portion of the operating system may
be write-protected, and this read-only memory portion may be mapped
out of the address space of RAM used by the operating system.

Esfahani 695 2:13-25; also Esfahani ’265, 2:18-29.

A computer OS using a compressed ROM image in RAM is described.
In brief, the low-level portion of an OS of a computer is designed to be
separate from the intermediate-level portion of the OS. The low-level
portion, which includes hardware-specific code, is stored in a relatively
small Boot ROM, while at least part of the intermediate-level portion is
stored as a compressed ROM image on a disk or other mass storage
device. The mass storage device may be located remotely from the
computer system, such as in a file server. Upon power-up or reset of the
computer system, the code in the boot ROM is executed to read the
compressed ROM image into RAM, i.e., system memory, of the
computer system. The compressed image is then decompressed and
executed as part of the boot sequence.

Esfahani 695, 2:54-67; also Esfahani ’265, 2:58-3:4.

Referring now to FIG. 4, in the improved OS, the low-level (hardware-
specific) OS code 31 resides in firmware, in order to handle start-up
activities of the computer system. This code fits into one, relatively
small ROM, referred to as the Boot ROM 11. Thus, Boot ROM 11
includes all of the hardware-specific code and tables needed to start up
the computer as well as to boot the OS and provide common hardware
access services the OS might require. Note that the Boot ROM code is
not specific to the MacOS or to any other OS. All higher-level software
resides elsewhere, as will now be described.

Prior to start-up, the mid-level portion 32 of OS 30 (which corresponds
to part of the ToolBox ROM of earlier Macintosh computers) resides in
compressed form in a file 40, referred to as Boot Info file 40.

Esfahani ’695, 5:7-23; also Esfahani ’265, 5:10-24.

During start-up, the Boot Info file 40 is loaded into RAM 12, and the
compressed mid-level OS 32 is decompressed. Hence, the mid-level OS
32 is essentially a compressed ROM image. The mid-level OS 32 is
inserted into the memory map of the computer system as if it were
firmware in ROM. That is, the ROM image can be write-protected in
the memory map.

2357

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 14 of 38

Esfahani ’695, 5:44-51; also Esfahani ’265, 5:48-54.

Referring now to FIG. 5, the low-level OS portion 31 and the Boot Info
file 40 are illustrated in greater detail. The low-level portion 31 stored in
Boot ROM 11 contains the code needed to start up the computer,
initialize and examine the hardware, provide a Device Tree (per Open
Firmware) to describe the hardware, provide hardware access services,
and transfer control to the OS. In one embodiment, the components of
the low-level portion 31 include:

code for performing Power-On Self Test (POST), including code
for performing diagnostics, generating a boot beep and an error
beep;

Open Firmware code;

hardware-specific Mac OS drivers (“ndrv's”) that are needed at
boot time (drivers needed at boot time, e.g.,video drivers,
network drivers, or disk drivers, are loaded from the Device
Tree);

HardwareInit code (i.e., the lowest-level code for initializing the
CPU, RAM, clock, system bus, etc.) without Mac OS-specific
code;

code for performing Run-Time Abstraction Services (RTAS).
Certain hardware devices differ from machine to machine, but
provide similar functions. RTAS provides such functions,
including functions for accessing the real-time clock, NVRAM
20, restart, shutdown, and PCI configuration cycles. The I/O
primitives for these functions in the ROM Image make use of
RTAS.

Esfahani ’695, 6:29-54; also Esfahani ’265, 6:31-57.

Note that in alternative embodiments of the OS 30, some or all of the
above mentioned components of the ROM image 53 may be provided as
separate, compressed elements. These separate elements may be
embodied in separate Boot Info files or in a single Boot Info file. This
approach would allow the OS components that are required for a given
machine to be individually selected, decompressed as part of the ROM
image, and used as part of the OS 30, while unnecessary components
could be ignored.

2358

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 15 of 38

Esfahani ’695, 7:43-51; also Esfahani ’265, 7:47-55.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2359

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 16 of 38

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Esfahani, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

The low-level portion, including hardware-specific code, is stored in a
relatively small read-only memory (ROM), while at least part of the
intermediate-level portion is stored as a compressed ROM image on a
disk or other mass storage device, which may be located remotely from
the computer system. Upon power-up or reset of the computer system,
the code in the ROM is executed to read the compressed ROM image
into random access memory (RAM) of the computer system. The
compressed image is then decompressed and executed as part of the
boot sequence. Once decompressed, the portion of RAM storing the
intermediate-level code is write-protected in the memory map, and the
code in boot ROM is deleted from the memory map. Memory space in
RAM that is allocated to the intermediate-level code but not used is
returned to the operating system for use as part of system RAM.

Esfahani ’695 [Abstract]

A method and apparatus for use in booting a computer system are
provided. The method includes loading a compressed image of a first
portion of the OS of the computer system into a storage device of the
computer system, which may be RAM, for example. The compressed
image of the first portion of the OS is then decompressed and executed
as part of the boot sequence of the computer system.

Esfahani ’695 2:6-12; also Esfahani ’265, 2:10-17.

In particular embodiments, the first portion of the operating system may
include an intermediate-level portion of the operating system, while a

2360

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 17 of 38

second, low-level portion of the operating system containing hardware
specific aspects are stored in read-only memory. The process of
transferring the first portion from non-volatile storage to volatile storage
and decompressing the first portion may be initiated by the low-level
portion stored in the read-only memory. Once decompressed, the
portion of memory storing the first portion of the operating system may
be write-protected, and this read-only memory portion may be mapped
out of the address space of RAM used by the operating system.

Esfahani 695 2:13-25; also Esfahani ’265, 2:18-29.

A computer OS using a compressed ROM image in RAM is described.
In brief, the low-level portion of an OS of a computer is designed to be
separate from the intermediate-level portion of the OS. The low-level
portion, which includes hardware-specific code, is stored in a relatively
small Boot ROM, while at least part of the intermediate-level portion is
stored as a compressed ROM image on a disk or other mass storage
device. The mass storage device may be located remotely from the
computer system, such as in a file server. Upon power-up or reset of the
computer system, the code in the boot ROM is executed to read the
compressed ROM image into RAM, i.e., system memory, of the
computer system. The compressed image is then decompressed and
executed as part of the boot sequence.

Esfahani 695, 2:54-67; also Esfahani ’265, 2:58-3:4.

Note that in alternative embodiments of the OS 30, some or all of the
above mentioned components of the ROM image 53 may be provided as
separate, compressed elements. These separate elements may be
embodied in separate Boot Info files or in a single Boot Info file. This
approach would allow the OS components that are required for a given
machine to be individually selected, decompressed as part of the ROM
image, and used as part of the OS 30, while unnecessary components
could be ignored.

Esfahani ’695, 7:43-51; also Esfahani ’265, 7:47-55.

Overall Boot Process

Referring now to FIGS. 5, 6A and 6B, the overall boot process of the
improved OS 30 will now be described. In response to power on or reset
at block 601 (FIG. 6A), the POST code executes (preliminary
diagnostics, boot beep, initialization) at 602. At 603, the Open Firmware
routine initializes and begins execution, including building the
expanded Device Tree and the Interrupt Trees. At 604, the Open

2361

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 38

Firmware locates the Boot Info file 40, based on defaults and NVRAM
settings, and loads the Boot Info file 40 into RAM 12. At 605, the Open
Firmware executes the Forth script in the Boot Info file 40, which
contains information about the rest of the file (offsets, etc.) and
instructions to read both the Trampoline code 52 and the compressed
ROM Image 53, and places them into a temporary place in RAM 12. At
606, the Open Firmware transfers control to the Trampoline code 52. At
607, the Trampoline code 52 decompresses the ROM Image 53 in RAM
12. In addition, the Trampoline code reallocates any unused memory
space in the ROM Image 52; gathers information about the system from
Open Firmware; creates data structures based on this information;
terminates Open Firmware, and rearranges the contents of memory to an
interim location in physical memory space. At 608, the Trampoline code
52 transfers control to the HardwareInit routine of the (now
decompressed) ROM Image 53. At 609, the HardwareInit routine copies
data structures to their correct places in memory and then calls the
kernel of the OS. Next, at 610 the kernel fills in its data structures and
then calls the 68K Emulator. At 611, the 68K Emulator initializes itself
and then transfers control to the StartInit routine. At 612, the StartInit
routine begins execution, initializing data structures and managers, and
booting the MacOS (the high-level portion of the OS). Note that blocks
609 through 612, above, are specific to a Mac OS.

Esfahani ’695, 9:38-10:6; also Esfahani ’265, 8:42-9:10.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2362

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 19 of 38

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Esfahani, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2363

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 20 of 38

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Esfahani, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Refer now to FIG. 2, which illustrates the structure of a traditional
Macintosh OS. The OS 22 provides an interface between the hardware
23 of the computer system and the software applications 21. The OS
includes the so-called MacOS 22A, which is the high-level portion of
the OS 22. In this context, “high-level” refers to the portion of the OS
22 which is least hardware-specific and has the greatest degree of
abstraction. Traditionally, this file would reside on disk or other mass
storage device and would typically be the last portion of the OS22 to be
invoked during the boot process. The (traditional Macintosh) OS22 also
includes the so-called ToolBox ROM code 22B. The ToolBox ROM
code 22B is firmware that resides in a ROM. The ToolBox ROM code
22B represents the middle- or intermediate-level and low-level portions
of the OS22. In this context, “low-level” refers to the portion of the OS
which is most hardware-specific and has the smallest degree of
abstraction. The middle-level portion has degrees of hardware-
dependence and abstraction lower than those of the high-level OS22A
and greater than those of the low-level OS.

Esfahani, ’695, 4:1-20; Esfahani ’265, 4:5-25

See also Esfahani Fig. 2

2364

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 21 of 38

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Esfahani, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Refer now to FIG. 2, which illustrates the structure of a traditional
Macintosh OS. The OS 22 provides an interface between the hardware
23 of the computer system and the software applications 21. The OS
includes the so-called MacOS 22A, which is the high-level portion of
the OS 22. In this context, “high-level” refers to the portion of the OS
22 which is least hardware-specific and has the greatest degree of
abstraction. Traditionally, this file would reside on disk or other mass
storage device and would typically be the last portion of the OS22 to be
invoked during the boot process. The (traditional Macintosh) OS22 also
includes the so-called ToolBox ROM code 22B. The ToolBox ROM
code 22B is firmware that resides in a ROM. The ToolBox ROM code
22B represents the middle- or intermediate-level and low-level portions
of the OS22. In this context, “low-level” refers to the portion of the OS
which is most hardware-specific and has the smallest degree of
abstraction. The middle-level portion has degrees of hardware-
dependence and abstraction lower than those of the high-level OS22A
and greater than those of the low-level OS.

Esfahani, ’695, 4:1-20; Esfahani ’265, 4:5-25

See also Esfahani Fig. 2

2365

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 22 of 38

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Esfahani, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

FIG. 1 illustrates a computer system 1 in which the present invention
may be implemented. Note that while FIG. 1 illustrates the major
components of a computer system, it is not intended to represent any
particular architecture or manner of interconnecting the component;
such details are not germane to the present invention. The computer
system of FIG. 1 may be, for example, an Apple Macintosh computer,
such as an Apple iMac computer. As shown, the computer system 1 of
FIG. 1 includes a microprocessor 10, a read-only memory (ROM) 11,
random access memory (RAM) 12, each connected to a bus system 18.
The bus system 18 may include one or more buses connected to each
other through various bridges, controllers and/or adapters, such as are
well-known in the art. For example, the bus system may include a
“system bus” that is connected through an adapter to one or more
expansion buses, such as a Peripheral Component Interconnect (PCI)
bus, or the like. Also coupled to the bus system 18 are a mass storage
device 13, a display device 14, a keyboard 15, a pointing device 16, a
communication device 17, and non-volatile RAM (NVRAM) 20. A
cache memory 19 is coupled to the microprocessor 10.

Esfahani, ’695, 3:1-22; Esfahani ’265, 3:4-26

Operation of the Trampoline code is described now in further detail
with reference to FIGS. 7A through 7D. At 701, the debugging level for
subsequent messages, if any, is determined. More specifically, a node in
the Device Tree is checked for a specific property, and if the property
exists, then its value is used to determine the debugging level. At 702, it

2366

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 23 of 38

is determined whether to create the read/write Debug ROM Image
aperture (a specific level of debugging will cause the Debug ROM
Image aperture to be created), and at 703 the presence of the appropriate
copyright notice in the Boot ROM 11 is verified. At 704, the memory
controller and the main memory node are located. At 705, the
Trampoline code allocates RAM for the RTAS and instantiates the
RTAS. At 706, an appropriate amount of RAM (e.g., 768K in one
embodiment) is allocated for a Work Area that will contain the Device
Tree and various other data structures. At this point, in certain
embodiments, information on the hardware configuration of the system
(e.g., processor, memory devices, etc.) may be gathered from the Device
Tree and saved in one or more records. At 707, space is allocated in
RAM for the ROM Image 53, and the ROM Image 53 is then
decompressed from the Boot Info file into the allocated space.

Esfahani, ’695, 9:53-10:8; Esfahani ’265, 9:57-10:11

At 712, the interrupt controller(s) are initialized, and at 713 the memory
map is built. At 714, the ROM Image checksum is verified, and at 715,
the physical addresses of the data structures in the Work Area are
determined in preparation for moving these data structured to their
proper locations. At 716, the Trampoline code causes Open Firmware to
quiesce, while allowing Open Firmware to shut down any active
hardware that might be performing DMA or interrupts. At 717, the
Trampoline code switches from virtual to real mode, moves the ROM
Image to its permanent location in RAM, and moves the contents of the
Work Area to interim locations. At 718, control is transferred to the
HardwareInit routine of the ROM Image. At 719, the Work Area data
structures are moved to the their permanent locations, and at 720,
control is transferred from the HardwareInit code to the kernel.

Esfahani, ’695, 10:21-35; Esfahani ’265, 10:25-40

See also Esfahani Fig. 1

2367

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 24 of 38

6. The method of claim 1, further
comprising updating the list of boot data.

Esfahani, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Referring now to FIG. 4, in the improved OS, the low-level (hardware-
specific) OS code 31 resides in firmware, in order to handle start-up
activities of the computer system. This code fits into one, relatively
small ROM, referred to as the Boot ROM 11. Thus, Boot ROM 11
includes all of the hardware-specific code and tables needed to start up
the computer as well as to boot the OS and provide common hardware
access services the OS might require. Note that the Boot ROM code is
not specific to the MacOS or to any other OS. All higher-level software
resides elsewhere, as will now be described.

Prior to start-up, the mid-level portion 32 of OS 30 (which corresponds
to part of the ToolBox ROM of earlier Macintosh computers) resides in
compressed form in a file 40, referred to as Boot Info file 40.

Esfahani ’695, 5:7-23; also Esfahani ’265, 5:10-24.

During start-up, the Boot Info file 40 is loaded into RAM 12, and the
compressed mid-level OS 32 is decompressed. Hence, the mid-level OS
32 is essentially a compressed ROM image. The mid-level OS 32 is
inserted into the memory map of the computer system as if it were
firmware in ROM. That is, the ROM image can be write-protected in
the memory map.

Esfahani ’695, 5:44-51; also Esfahani ’265, 5:48-54.

Referring now to FIG. 5, the low-level OS portion 31 and the Boot Info
file 40 are illustrated in greater detail. The low-level portion 31 stored in
Boot ROM 11 contains the code needed to start up the computer,
initialize and examine the hardware, provide a Device Tree (per Open

2368

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 25 of 38

Firmware) to describe the hardware, provide hardware access services,
and transfer control to the OS. In one embodiment, the components of
the low-level portion 31 include:

code for performing Power-On Self Test (POST), including code
for performing diagnostics, generating a boot beep and an error
beep;

Open Firmware code;

hardware-specific Mac OS drivers (“ndrv's”) that are needed at
boot time (drivers needed at boot time, e.g.,video drivers,
network drivers, or disk drivers, are loaded from the Device
Tree);

HardwareInit code (i.e., the lowest-level code for initializing the
CPU, RAM, clock, system bus, etc.) without Mac OS-specific
code;

code for performing Run-Time Abstraction Services (RTAS).
Certain hardware devices differ from machine to machine, but
provide similar functions. RTAS provides such functions,
including functions for accessing the real-time clock, NVRAM
20, restart, shutdown, and PCI configuration cycles. The I/O
primitives for these functions in the ROM Image make use of
RTAS.

Esfahani ’695, 6:29-54; also Esfahani ’265, 6:31-57.

The Boot Info file 40 will now be described in greater detail. The Boot
Info file 40 may be stored in the System Folder of the start-up volume.
Alternatively, the Boot Info file 40 may be provided by a network
server using, for example, the Bootstrap Protocol (BootP), which is
described in B. Croft et al., Network Working Group Request for
Comments (RFC) 951, September 1985. Referring to FIG. 5, the Boot
Info file 40 includes Open Firmware-specific Mac OS code 52, referred
to as the “Trampoline code”; an Open Firmware header 51, which
includes a Forth script that performs operations necessary to the start-up
of the OS, including validation tests and transfer of control to the
Trampoline code; and a compressed ROM Image 53, which represents
the mid-level portion 32 of the OS 30. The purpose of the header 51 is,
generally, to specify the locations of the other components of the Boot
Info file 40. The purpose of the Trampoline code 53 generally is to
handle the transition between the Open Firmware code in the Boot Rom
11 and the ROM Image 52, as will be described in greater detail below.

2369

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 26 of 38

Esfahani ’695, 7:5-24; also Esfahani ’265, 7:9:28.

Note that in alternative embodiments of the OS 30, some or all of the
above mentioned components of the ROM image 53 may be provided as
separate, compressed elements. These separate elements may be
embodied in separate Boot Info files or in a single Boot Info file. This
approach would allow the OS components that are required for a given
machine to be individually selected, decompressed as part of the ROM
image, and used as part of the OS 30, while unnecessary components
could be ignored.

Esfahani ’695, 7:43-51; also Esfahani ’265, 7:47-55.

The Boot Info file 40 resides on the boot device (e.g., a disk, or on a
network) and has a localizable name.

Esfahani ’695, 7:66-67; also Esfahani ’265, 8:3-4.

See also Esfahani, Figs. 1, 4, 5, 6A, and 6B.

2370

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 27 of 38

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Esfahani, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The ROM Image 53 of the improved OS 30 is similar to the ToolBox
ROM code of the earlier Macintosh OS, in that it has a similar layout
and contains many of the same components. The image may be
compressed using a known compression algorithm, such as LZSS, for
example. The ROM Image 53 may also be encoded, if desired.

Esfahani, ’695, 8:32-37; Esfahani ’265, 8:36-41

2371

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 28 of 38

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Esfahani, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The ROM Image 53 of the improved OS 30 is similar to the ToolBox
ROM code of the earlier Macintosh OS, in that it has a similar layout
and contains many of the same components. The image may be
compressed using a known compression algorithm, such as LZSS, for
example. The ROM Image 53 may also be encoded, if desired.

Esfahani, ’695, 8:32-37; Esfahani ’265, 8:36-41

2372

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.1
“A system comprising: a processor;”

 Page 29 of 38

11.1. a processor;

Esfahani, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Esfahani discloses this limitation:

See Claim 1.2 above.

2373

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.2
“a memory”

 Page 30 of 38

11.2. a memory; and

Esfahani, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Esfahani discloses this limitation:

See Claims 1.3, and 1.4 above.

2374

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 31 of 38

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Esfahani, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

In particular embodiments, the first portion of the operating system may
include an intermediate-level portion of the operating system, while a
second, low-level portion of the operating system containing hardware
specific aspects are stored in read-only memory. The process of
transferring the first portion from non-volatile storage to volatile storage
and decompressing the first portion may be initiated by the low-level
portion stored in the read-only memory. Once decompressed, the
portion of memory storing the first portion of the operating system may
be write-protected, and this read-only memory portion may be mapped
out of the address space of RAM used by the operating system.

Esfahani, ’695, 2:14-25; Esfahani ’265, 2:17-29

FIG. 1 illustrates a computer system 1 in which the present invention
may be implemented. Note that while FIG. 1 illustrates the major
components of a computer system, it is not intended to represent any
particular architecture or manner of interconnecting the component;
such details are not germane to the present invention. The computer

2375

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 32 of 38

system of FIG. 1 may be, for example, an Apple Macintosh computer,
such as an Apple iMac computer. As shown, the computer system 1 of
FIG. 1 includes a microprocessor 10, a read-only memory (ROM) 11,
random access memory (RAM) 12, each connected to a bus system 18.
The bus system 18 may include one or more buses connected to each
other through various bridges, controllers and/or adapters, such as are
well-known in the art. For example, the bus system may include a
“system bus” that is connected through an adapter to one or more
expansion buses, such as a Peripheral Component Interconnect (PCI)
bus, or the like. Also coupled to the bus system 18 are a mass storage
device 13, a display device 14, a keyboard 15, a pointing device 16, a
communication device 17, and non-volatile RAM (NVRAM) 20. A
cache memory 19 is coupled to the microprocessor 10.

Esfahani, ’695, 3:1-22; Esfahani ’265, 3:4-26

The Boot Info file 40 resides on the boot device (e.g., a disk, or on a
network) and has a localizable name. Identification information that
leads to the file's path may be stored in NVRAM 20 or another suitable
location, and the search algorithm for a usable Boot Info file parallels
the search mechanism across SCSI, ATA, etc., used in the earlier
Macintosh OS's StartSearch routine. By default, the Boot Info file 40 is
located by using the current, active System folder's dirID (directory ID)
in the boot block of each partition of the Hierarchical File System (HFS)
and then searching for a file with a predetermined file type. Searching
by file type is done to allow localization of the file.

Esfahani, ’695, 7:66-8:10; Esfahani ’265, 8:3-14

See also Esfahani Fig. 1

2376

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 33 of 38

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Esfahani, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2377

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 34 of 38

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Esfahani, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1 and 1.5 above.

2378

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 35 of 38

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Esfahani, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2379

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 36 of 38

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Esfahani, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2380

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 37 of 38

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Esfahani, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1, 8, and 11 above.

2381

Appendix B1
Invalidity of U.S. Patent 8,090,936 based on Esfahani

	

Esfahani Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 38 of 38

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Esfahani, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Esfahani discloses this limitation:

See Claims 1, 9, and 11 above.

2382

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich
 Page 1 of 31

U.S. Patent Nos. 5,619,698 to Lillich (“Lillich ’698) and 5,790,856 to Lillich (“Lillich
’856”), alone or in combination, invalidate claims 1-6, 8-9, 11-13, and 15-16 of United
States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102 and/or 35
U.S.C. § 103 either alone or in combination with other prior art references, and/or in
combination with the knowledge of a person of ordinary skill.

In addition, the prior art 68k operating system disclosed in Lillich (see Lillich ’856, 1:20-
5:55, and Lillich ’698, 1:10-5:30) (“68k System”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of the ’936 Patent pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 because the
system was on sale or in public use more than one year prior to the filing date of the ‘936
patent. Lillich ’698, Lillich ’856, and the 68k System are collectively referred to herein
as “Lillich.”

Additionally, Apple intends to provide and seek discovery related to this system to obtain
copies of relevant materials, including but not limited to, architectural documents, design
documents, implementation documents, internal publications, patent applications and
business records relating to this product and will supplement these contentions after those
materials are discovered or received. Apple also reserves its rights to rely on any additional
68k System materials, either individually or collectively, as prior art publications to the
‘936 patent.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2383

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 31

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Lillich, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this claim limitation:

Lillich, Fig. 2

“With reference to FIG. 2. the well known 68K patching paradigm 100
will be described. By way of background. The 68K patching paradigm
100 is implemented by versions of the Macintosh® Operating system

2384

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 31

designed for the Motorola 68K series of microprocessors. Which
operating system is hereinafter referred to as the “68K operating
system.” The paradigm 100 is implemented on a computer system such
as computer system 50 of FIG. 1. wherein a CPU 52 includes one of the
Motorola 68K series microprocessors or microcontrollers as well as
other components necessary to properly interface with and control other
devices coupled with the CPU 52.”

Lillich ’856, 1:40-51; also Lillich ’698, 2:1-12.

“The system routines for the 68K operating system reside mainly in
ROM. However. to provide flexibility for any subsequent development.
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM.

Lillich ’856, 1:52-58, also Lillich ’698, 2:14:20.

“While the operating system routines reside mainly in ROM 120 (in
their original state) information regarding the locations of the operating
system routines is encoded in compressed form within ROM 120. Upon
system start up. this information is decompressed and the trap table 110
is formed in RAM 130.”

Lillich ’856, 1:66-2:4, also Lillich, 2:28-33.

2385

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 31

1.2 initializing a central processing unit of
said computer system;

Lillich, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lillich discloses this claim limitation:

Lillich, Fig. 1.

“By way of example, a representative computer system 50 is illustrated
schematically in FIG. 1.”

Lillich ’856, 8:44-46; also Lillich ’698, 9:39-41.

2386

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 31

Lillich ’698, Fig 3.

“Next, in reference to FIG. 3, one method for installing patches in the
68K operating system will be described. In an initial step 200, the
computer boot process is started. Then, in a step 202, the ROM boot is
performed. In ROM boot step 202, initialization procedures such as
expanding the trap table from ROM into RAM are performed. Next, in a
step 204, the disk operating system boot is performed. At this point any
system patches are also installed.”

Lillich ’698, 3:52-59.

2387

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 31

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Lillich, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this claim limitation:

Lillich, Fig. 1.

“By way of example, a representative computer system 50 is illustrated
schematically in FIG. 1.”

Lillich ’856, 8:44-46; also Lillich ’698, 9:39-41.

2388

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 31

Lillich ’698, Fig 3.

“Next, in reference to FIG. 3, one method for installing patches in the
68K operating system will be described. In an initial step 200, the
computer boot process is started. Then, in a step 202, the ROM boot is
performed. In ROM boot step 202, initialization procedures such as
expanding the trap table from ROM into RAM are performed. Next, in a
step 204, the disk operating system boot is performed. At this point any
system patches are also installed.”

Lillich ’698, 3:52-59.

Lillich, Fig. 2

2389

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 31

“With reference to FIG. 2. the well known 68K patching paradigm 100
will be described. By way of background. The 68K patching paradigm
100 is implemented by versions of the Macintosh® Operating system
designed for the Motorola 68K series of microprocessors. Which
operating system is hereinafter referred to as the “68K operating
system.” The paradigm 100 is implemented on a computer system such
as computer system 50 of FIG. 1. wherein a CPU 52 includes one of the
Motorola 68K series microprocessors or microcontrollers as well as
other components necessary to properly interface with and control other
devices coupled with the CPU 52.”

Lillich ’856, 1:40-51; also Lillich ’698, 2:1-12.

“The system routines for the 68K operating system reside mainly in
ROM. However. to provide flexibility for any subsequent development.
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM.

Lillich ’856, 1:52-58, also Lillich ’698, 2:14:20.

“While the operating system routines reside mainly in ROM 120 (in
their original state) information regarding the locations of the operating
system routines is encoded in compressed form within ROM 120. Upon
system start up. this information is decompressed and the trap table 110
is formed in RAM 130.”

Lillich ’856, 1:66-2:4, also Lillich, 2:28-33.

2390

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 31

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Lillich, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory;
and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this claim limitation:

Lillich, Fig. 2

“With reference to FIG. 2. the well known 68K patching paradigm 100
will be described. By way of background. The 68K patching paradigm
100 is implemented by versions of the Macintosh® Operating system
designed for the Motorola 68K series of microprocessors. Which
operating system is hereinafter referred to as the “68K operating
system.” The paradigm 100 is implemented on a computer system such
as computer system 50 of FIG. 1. wherein a CPU 52 includes one of the
Motorola 68K series microprocessors or microcontrollers as well as

2391

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 31

other components necessary to properly interface with and control other
devices coupled with the CPU 52.”

Lillich ’856, 1:40-51; also Lillich ’698, 2:1-12.

“The system routines for the 68K operating system reside mainly in
ROM. However. to provide flexibility for any subsequent development.
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM.

Lillich ’856, 1:52-58, also Lillich ’698, 2:14:20.

“While the operating system routines reside mainly in ROM 120 (in
their original state) information regarding the locations of the operating
system routines is encoded in compressed form within ROM 120. Upon
system start up. this information is decompressed and the trap table 110
is formed in RAM 130.”

Lillich ’856, 1:66-2:4, also Lillich, 2:28-33.

2392

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 31

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Lillich, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this claim limitation:

Lillich, Fig. 2

“With reference to FIG. 2. the well known 68K patching paradigm 100
will be described. By way of background. The 68K patching paradigm
100 is implemented by versions of the Macintosh® Operating system
designed for the Motorola 68K series of microprocessors. Which
operating system is hereinafter referred to as the “68K operating
system.” The paradigm 100 is implemented on a computer system such

2393

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 12 of 31

as computer system 50 of FIG. 1. wherein a CPU 52 includes one of the
Motorola 68K series microprocessors or microcontrollers as well as
other components necessary to properly interface with and control other
devices coupled with the CPU 52.”

Lillich ’856, 1:40-51; also Lillich ’698, 2:1-12.

“The system routines for the 68K operating system reside mainly in
ROM. However. to provide flexibility for any subsequent development.
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM.

Lillich ’856, 1:52-58, also Lillich ’698, 2:14:20.

“While the operating system routines reside mainly in ROM 120 (in
their original state) information regarding the locations of the operating
system routines is encoded in compressed form within ROM 120. Upon
system start up. this information is decompressed and the trap table 110
is formed in RAM 130.”

Lillich ’856, 1:66-2:4, also Lillich, 2:28-33.

2394

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 13 of 31

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Lillich, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2395

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 31

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Lillich, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The system routines for the 68K operating system reside mainly in
ROM. However, to provide flexibility for any subsequent development,
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM. This indirect mechanism permits the ROM addressing
of system routines to vary, or to be replaced by patch routines, without
affecting the operation of applications which utilize the system routines.

Lillich ’856, 1:52-61; also Lillich ’698, 2:14-23

Additionally, when new applications are launched they too can load
new versions of individual routines into RAM and then patch the trap
table in order to redirect any calls to the original system routine to the
new versions.

Lillich ’856, 2:60-64; also Lillich ’698, 3:34-37

In the world of Macintosh®, DLLs can be loosely divided into three
different categories: applications, import libraries, and extensions.
Typically, applications are fragments which have a user interface and
are designed to function interactively with the user. Often applications
do not export symbols to other fragments but rather serve as a root
fragments, providing some root functionality and importing other
necessary functionality.

2396

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 15 of 31

. . .

Once an application has been launched and the binding manager has
completed preparation, the end result is a new, self-sufficient executable
process with an associated data closure. The closure contains a root
fragment as well as instances of all the import libraries required to
resolve all the import symbols present in both the root fragment and the
import libraries. In explanation, the root fragment is the fragment which
includes some root functionality as well as a list of import symbols.

Lillich ’856, 3:40-4:9

As discussed previously, new versions of individual system routines
may be loaded into RAM and the trap table patched in order to redirect
any calls to the original system routine to the new versions. After this is
complete, the operating system boot procedure is complete in a step
206. In a next step 208, the application "Finder" is launched. As will be
appreciated by those skilled in the art, the Finder is the primal
application which performs critical tasks such as displaying the
Macintosh® desktop and launching other applications at the request of
the user. Once the Finder is running, in a step 210 other applications
may be launched and in turn any patches necessary for the other
applications may be installed.

Lillich ’698, 3:60-4:5

2397

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 16 of 31

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Lillich, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The system routines for the 68K operating system reside mainly in
ROM. However, to provide flexibility for any subsequent development,
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM. This indirect mechanism permits the ROM addressing
of system routines to vary, or to be replaced by patch routines, without
affecting the operation of applications which utilize the system routines.

Lillich ’856, 1:52-61; also Lillich ’698, 2:14-23

Additionally, when new applications are launched they too can load
new versions of individual routines into RAM and then patch the trap
table in order to redirect any calls to the original system routine to the
new versions.

Lillich ’856, 2:60-64; also Lillich ’698, 3:34-37

In the world of Macintosh®, DLLs can be loosely divided into three
different categories: applications, import libraries, and extensions.
Typically, applications are fragments which have a user interface and
are designed to function interactively with the user. Often applications
do not export symbols to other fragments but rather serve as a root

2398

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 17 of 31

fragments, providing some root functionality and importing other
necessary functionality.

. . .

Once an application has been launched and the binding manager has
completed preparation, the end result is a new, self-sufficient executable
process with an associated data closure. The closure contains a root
fragment as well as instances of all the import libraries required to
resolve all the import symbols present in both the root fragment and the
import libraries. In explanation, the root fragment is the fragment which
includes some root functionality as well as a list of import symbols.

Lillich ’856, 3:40-4:9

As discussed previously, new versions of individual system routines
may be loaded into RAM and the trap table patched in order to redirect
any calls to the original system routine to the new versions. After this is
complete, the operating system boot procedure is complete in a step
206. In a next step 208, the application "Finder" is launched. As will be
appreciated by those skilled in the art, the Finder is the primal
application which performs critical tasks such as displaying the
Macintosh® desktop and launching other applications at the request of
the user. Once the Finder is running, in a step 210 other applications
may be launched and in turn any patches necessary for the other
applications may be installed.

Lillich ’698, 3:60-4:5

2399

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 18 of 31

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Lillich, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

As will be appreciated by those skilled in the art, CPU 52 includes a
microprocessor and any additional circuitry and/or device drivers
necessary to control the computer system. For instance, the CPU 52
may include a keyboard controller which provides an interface between
the microprocessor and the keyboard 62. ROM 64 is typically persistent
memory accessible by the CPU 52 which contains the operating system
instructions either in an executable format or in a compressed format
which is expanded when the computer system 50 boots. RAM 56 is
typically transient memory and is used as "scratch pad" memory by the
operating system and/or any applications implemented on the computer
system 50. For example, if a portion of the operating system present in
ROM 64 is in compressed format, it may be expanded and stored into
RAM 56.

Lillich ’856, 8:53-67; also Lillich ’698, 9:48-63

2400

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 19 of 31

6. The method of claim 1, further
comprising updating the list of boot data.

Lillich, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Lillich, Fig. 2

“With reference to FIG. 2. the well known 68K patching paradigm 100
will be described. By way of background. The 68K patching paradigm
100 is implemented by versions of the Macintosh® Operating system
designed for the Motorola 68K series of microprocessors. Which
operating system is hereinafter referred to as the “68K operating
system.” The paradigm 100 is implemented on a computer system such
as computer system 50 of FIG. 1. wherein a CPU 52 includes one of the
Motorola 68K series microprocessors or microcontrollers as well as

2401

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 20 of 31

other components necessary to properly interface with and control other
devices coupled with the CPU 52.”

Lillich ’856, 1:40-51; also Lillich ’698, 2:1-12.

“The system routines for the 68K operating system reside mainly in
ROM. However. to provide flexibility for any subsequent development.
application code written for execution within the 68K operating system
must be kept free of any specific ROM addresses. For this reason, all
calls to system routines are passed indirectly through a trap table
resident in RAM.

Lillich ’856, 1:52-58, also Lillich ’698, 2:14:20.

“While the operating system routines reside mainly in ROM 120 (in
their original state) information regarding the locations of the operating
system routines is encoded in compressed form within ROM 120. Upon
system start up. this information is decompressed and the trap table 110
is formed in RAM 130.”

Lillich ’856, 1:66-2:4, also Lillich, 2:28-33.

“Because the trap table 110 is resident in RAM 130. individual entries in
the trap table 110 can be changed to point to addresses other than the
original ROM addresses. This allows the system routines to be replaced
or augmented by patches. At startup time the system can load new
versions of individual routines (e.g. from the System file or from a
floppy disk) into RAM and then patch the trap table in order to redirect
any calls to the original system routine to the new versions.”

Lillich ’856, 2:52-60, also Lillich ’698, 3:26-34.

2402

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 21 of 31

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Lillich, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2403

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 22 of 31

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Lillich, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2404

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 11.1
“A system comprising: a processor;”

 Page 23 of 31

11.1. a processor;

Lillich, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lillich discloses this limitation:

See Claim 1.2 above.

2405

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 11.2
“a memory”

 Page 24 of 31

11.2. a memory; and

Lillich, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lillich discloses this limitation:

See Claims 1.3, and 1.4 above.

2406

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 25 of 31

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Lillich, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

Mass storage device 60 is coupled with CPU 52 and may be any mass
storage device such as a hard disk system, a floptical disk system, a tape
drive or the like. Mass storage device 60 generally includes code
fragments such as applications, import libraries, and extensions which
are not currently in use by the system. I/O device 66 is coupled to the
CPU 52 and may be a network card, a printer port, modem, etc.
Additionally there may be a multiplicity of I/O devices such as I/O
device 66 coupled to the computer system 50. Design and construction
of computer systems such as computer system 50 will be well known to
those skilled in the art.

Lillich ’856, 9:7-18; also Lillich ’698, 10:3-14

2407

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 26 of 31

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Lillich, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2408

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 27 of 31

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Lillich, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1 and 1.5 above.

2409

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 28 of 31

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Lillich, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lillich discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2410

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 29 of 31

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Lillich, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2411

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 30 of 31

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Lillich, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1, 8, and 11 above.

2412

Appendix B2
Invalidity of U.S. Patent 8,090,936 based on Lillich

	

Lillich Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 31 of 31

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Lillich, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lillich discloses this limitation:

See Claims 1, 9, and 11 above.

2413

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard
 Page 1 of 42

U.S. Patent No. 5,933,630 to Ballard (“Ballard”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2414

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 42

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Ballard, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

2415

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 42

Ballard, Fig. 4

Ballard, Fig. 5

Ballard, Fig. 6

2416

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 42

It is common for an application program for a personal computer to be
stored in multiple files on the secondary storage device. There often is an
executable file, a preferences file and many other files. Some programs
include a data base file or a default data file. During a launch of the
program multiple files are opened and select portions are moved from the
secondary storage device into the primary storage device. When
purchasing a computer program the packaging often specifies the amount
of RAM address space (i.e., primary storage device address space)
required to be allocated to the program while active. By active it is meant
that the program has been launched and is currently processing or is
currently able to accept input commands.

Ballard, 1:51-63

According to another aspect of the invention, the launch access log is
processed by identifying all the file portions accessed during the launch,
eliminating any duplicate cluster accesses, then sorting the remaining
accesses. According to one approach the disk access log entries are sorted
by physical address. According to another approach the disk access log
entries are grouped by file, then organized by logical address within each
group. The processed log file then is stored with the application program.

Ballard, 2:22-30

The primary storage device 14 typically is a storage device having a faster
access time than that of the secondary storage device. An exemplary
primary storage device 14 is random access memory (RAM). All or a
portion of the RAM serves as a RAM cache 15. Portions of a computer
program and/or data files are loaded into the RAM cache 15 to speed up
execution of the program and processing of data. Mass produced
computer software typically include specifications requiring a minimum
amount of RAM required to run the program on a given computer system.
During a launch sequence for starting such a computer program, portions
of the program are copied from the secondary storage device into RAM.

A launch sequence as used herein means the sequence of steps executed
by the computer system during the launch time which pertain to starting
up a given computer program and getting the computer ready to accept
input commands for the computer program. A launch sequence is
executed for a computer program. Different computer programs have
different launch sequences. Steps included in a launch sequence include
copying portions of the computer program being launched from the
secondary storage device to the primary storage device. Other steps may
include allocating a port or device to serve as an input source and/or
output receptor. The method of this invention for accelerating a program

2417

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 42

launch is directed to improving the speed for accessing the secondary
storage device during a launch sequence.

Ballard, 3:40-67

The log file corresponds to a specific computer program--the one being
launched that triggered such log file to be created. When multiple
programs are being launched at the same time, a log file is created for
each such program. The interrupt service routine then sets a flag at step
78 to indicate that logging is enabled for such program. At step 80 the
program returns. If the trigger for calling the routine 70 was for a
secondary storage device access, then the steps at FIG. 4 also are
performed before returning.

Log File System Activity

Once the launch of a computer program is detected and a log file is
opened, all file system activity is monitored. Specifically, for each
operating system call to the file system the call is analyzed to determine
to which application being launched, if any, does the call pertain.
Exemplary operating system calls to the file system are OPEN, READ,
WRITE, and CLOSE. Referring to FIG. 4 routine 82 is entered at step 84
when both file system activity is detected and logging is enabled. If the
call pertains to a computer program being launched, then an entry is
appended to the appropriate log file (step 86). The routine 82 then returns
at step 88.

The log entry includes a file identifier, the logical address(es) specified
in the call and the time of access (e.g., system time; index value).
Alternatively, the physical memory address(es) corresponding to the
logical address(es) are stored in the log entry. In some embodiments, the
operating system has already caused the physical addresses to be
generated. If not, then the physical addresses are derived from the logical
addresses using the operating system's file allocation table to translate the
logical address into the physical address.

A logical address (also referred to as a virtual address) is the address
which the computer program uses to access memory. A memory
management unit translates this address into a physical address before the
actual memory is read or written. A physical address is a memory location
on the secondary storage device 16.

Ballard, 5:1-37

2418

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 42

Detect Launch Completion

When completion of a launch sequence occurs and logging is enabled,
then routine 90 is executed. Referring to FIG. 5, the routine enters at step
92. Conventional operating systems have a specific function that is called
when a program is ready for normal execution. Under the Macintosh
operating system, the function "Get Next Event" is called. For a computer
program running under such operating system, such function is called by
the computer program when the launch sequence is complete. According
to one embodiment of this invention, step 92 is implemented by an
interrupt service routine which is called whenever a computer program
calls such function. The interrupt service routine clears the logging
enabled flag for the corresponding application program.

In an alternative embodiment, access activity to the secondary storage
device 16 is monitored to determine when activity has ceased for a
threshold length of time (e.g., 3 seconds). Alternatively or in addition
activity is monitored to determine when activity has gone below a
threshold data throughput rate (e.g., 50 kilobytes per second) for a
threshold period of time (e.g., 5 seconds). When there is insufficient
activity for such threshold time, then the program launch is considered to
be complete. The routine 90 then is executed.

Modify and Sort Log File

Once the launch sequence is determined to have been completed, then the
log entry order is re-organized. The purpose is to eliminate redundant
accesses to the same memory block and to optimize access time for the
secondary storage device. If accesses occur faster, then the launch time
(i.e., time elapsed from start to finish of launch sequence is less) is
reduced. Thus, the launch of the computer program is accelerated.

Referring to FIG. 5, at step 94 the log file is processed to eliminate log
entries or log entry portions to redundant memory blocks.

Ballard, 5:55-6:23

Note in this example that the log includes redundant entries. Entry h2 is
a subset of entry d. Entry i2 is the same as entry f. Entry l2 is the same as
entry a. It is expected that a redundant access request results from a
computer program launch sequence access specifying a different address
in the same block as previously accessed.

Frequently the log file will include an entry specifying a single address.
Even though only one address is specified, an entire memory block will

2419

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 7 of 42

be accessed (read or written). This is because the minimum file allocation
unit is a memory block cluster. Thus, the smallest portion of the computer
program than can be accessed is the cluster size (i.e., cluster size). Entries
in the log file are tested at step 94 to identify any redundant accesses to
portions of the computer program. To determine whether a later entry is
an access to a redundant portion of the computer program, the cluster
address for the access is identified. The cluster address is either stored in
the log file or is derived from the address stored in the log file. For a FAT
drive the cluster size is stored in the drive's boot sector. The boot sector
includes information about the layout of the file system used for the drive
partition. Following the boot sector are several reserved sectors.
Following the reserved sectors is the file allocation table (FAT).
Following the FAT are one or more backup copies of the FAT. Following
the backup copies is the root directory. The size of the root directory is
specified in the boot sector. After the root directory are the user's file and
directory area. This is the area divided into clusters. Thus, from the
information in the boot sector the starting address of cluster space is
determined, along with the size of a cluster. Thus, the address boundaries
for each cluster are known.

The address for any given cluster x is given by Ax+B, where A and B are
constants determined from the boot partition. Thus, for any given file
system call the cluster boundaries for such address are determinable. The
log file stores either the accessed address, the cluster number (i.e., x) or
the cluster address (e.g., start address, end address or some other
identifying address) for each cluster accessed.

Ballard, 6:44-7:14

Following is a description of the redundancy testing. Consider the
following access sequence: address 139, address 119, address 110,
addresses 120-133, and addresses 138-140. Also consider that the
memory block and cluster size is 10 addresses, and that blocks are located
at 100-109, 110-119, 120-129, 130-139, 140-149. When address 139 is
accessed the contents within the block of addresses 130-139 is accessed.
For an embodiment which stores a starting address of the cluster as the
cluster address, the log entry includes address 130. When address 119 is
accessed the contents within the block of addresses 110-119 is accessed.
The log entry for such access includes address 110. The next access in
the launch sequence specifies address 110, causing the block 110-119 to
be accessed. The cluster address is 110 which is already in the log. This
access is a redundant access to a cluster already specified. The redundant
access is eliminated by deleting the log entry for address 110. The next
access specifies addresses 120-133. This access spans two clusters 120-
129 and 130-139. The accesses are logged separately. The log entry for

2420

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 8 of 42

cluster address 120 is not redundant. The log entry for cluster address
130, however, is redundant because the first log entry for address 139
encompasses the memory block of addresses 130-139. To eliminate the
redundancy, the log entry for address 139 is removed. The next access
specifies addresses 139-140. This access also spans two clusters with two
log entries. The first of the two is for cluster 130-139. This is a redundant
entry and thus is removed from the log fie. The second of the two entries
is for cluster 140-149. This is a nonredundant access. When the end of
the log file is reached then redundancy testing (step 94) is complete.

In many instances the redundant accesses are eliminated from
consideration by a cache operation performed by the computer instead of
by step 94. Specifically, when caching is performed the second access to
the same cluster will not result in a call to the hard drive because the data
is in the cache. The cache will satisfy the request. Requests satisfied by
the cache are ignored for purposes of creating a log of accesses. Thus,
redundant entries do not get logged.

Ballard, 7:15-53.

See also Ballard, Tables B-C

2421

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 9 of 42

1.2 initializing a central processing unit of
said computer system;

Ballard, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

The log file corresponds to a specific computer program--the one being
launched that triggered such log file to be created. When multiple
programs are being launched at the same time, a log file is created for
each such program. The interrupt service routine then sets a flag at step
78 to indicate that logging is enabled for such program. At step 80 the
program returns. If the trigger for calling the routine 70 was for a
secondary storage device access, then the steps at FIG. 4 also are
performed before returning.

Log File System Activity

Once the launch of a computer program is detected and a log file is
opened, all file system activity is monitored. Specifically, for each
operating system call to the file system the call is analyzed to determine
to which application being launched, if any, does the call pertain.
Exemplary operating system calls to the file system are OPEN, READ,
WRITE, and CLOSE. Referring to FIG. 4 routine 82 is entered at step 84
when both file system activity is detected and logging is enabled. If the
call pertains to a computer program being launched, then an entry is
appended to the appropriate log file (step 86). The routine 82 then returns
at step 88.

The log entry includes a file identifier, the logical address(es) specified
in the call and the time of access (e.g., system time; index value).
Alternatively, the physical memory address(es) corresponding to the
logical address(es) are stored in the log entry. In some embodiments, the
operating system has already caused the physical addresses to be
generated. If not, then the physical addresses are derived from the logical
addresses using the operating system's file allocation table to translate the
logical address into the physical address.

2422

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 10 of 42

A logical address (also referred to as a virtual address) is the address
which the computer program uses to access memory. A memory
management unit translates this address into a physical address before the
actual memory is read or written. A physical address is a memory location
on the secondary storage device 16.

Ballard, 5:1-37

Detect Launch Completion

When completion of a launch sequence occurs and logging is enabled,
then routine 90 is executed. Referring to FIG. 5, the routine enters at step
92. Conventional operating systems have a specific function that is called
when a program is ready for normal execution. Under the Macintosh
operating system, the function "Get Next Event" is called. For a computer
program running under such operating system, such function is called by
the computer program when the launch sequence is complete. According
to one embodiment of this invention, step 92 is implemented by an
interrupt service routine which is called whenever a computer program
calls such function. The interrupt service routine clears the logging
enabled flag for the corresponding application program.

In an alternative embodiment, access activity to the secondary storage
device 16 is monitored to determine when activity has ceased for a
threshold length of time (e.g., 3 seconds). Alternatively or in addition
activity is monitored to determine when activity has gone below a
threshold data throughput rate (e.g., 50 kilobytes per second) for a
threshold period of time (e.g., 5 seconds). When there is insufficient
activity for such threshold time, then the program launch is considered to
be complete. The routine 90 then is executed.

Modify and Sort Log File

Once the launch sequence is determined to have been completed, then the
log entry order is re-organized. The purpose is to eliminate redundant
accesses to the same memory block and to optimize access time for the
secondary storage device. If accesses occur faster, then the launch time
(i.e., time elapsed from start to finish of launch sequence is less) is
reduced. Thus, the launch of the computer program is accelerated.

Referring to FIG. 5, at step 94 the log file is processed to eliminate log

2423

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 11 of 42

entries or log entry portions to redundant memory blocks.

Ballard, 5:55-6:23

Note in this example that the log includes redundant entries. Entry h2 is
a subset of entry d. Entry i2 is the same as entry f. Entry l2 is the same as
entry a. It is expected that a redundant access request results from a
computer program launch sequence access specifying a different address
in the same block as previously accessed.

Frequently the log file will include an entry specifying a single address.
Even though only one address is specified, an entire memory block will
be accessed (read or written). This is because the minimum file allocation
unit is a memory block cluster. Thus, the smallest portion of the computer
program than can be accessed is the cluster size (i.e., cluster size). Entries
in the log file are tested at step 94 to identify any redundant accesses to
portions of the computer program. To determine whether a later entry is
an access to a redundant portion of the computer program, the cluster
address for the access is identified. The cluster address is either stored in
the log file or is derived from the address stored in the log file. For a FAT
drive the cluster size is stored in the drive's boot sector. The boot sector
includes information about the layout of the file system used for the drive
partition. Following the boot sector are several reserved sectors.
Following the reserved sectors is the file allocation table (FAT).
Following the FAT are one or more backup copies of the FAT. Following
the backup copies is the root directory. The size of the root directory is
specified in the boot sector. After the root directory are the user's file and
directory area. This is the area divided into clusters. Thus, from the
information in the boot sector the starting address of cluster space is
determined, along with the size of a cluster. Thus, the address boundaries
for each cluster are known.

The address for any given cluster x is given by Ax+B, where A and B are
constants determined from the boot partition. Thus, for any given file
system call the cluster boundaries for such address are determinable. The
log file stores either the accessed address, the cluster number (i.e., x) or
the cluster address (e.g., start address, end address or some other
identifying address) for each cluster accessed.

Ballard, 6:44-7:14

Following is a description of the redundancy testing. Consider the
following access sequence: address 139, address 119, address 110,
addresses 120-133, and addresses 138-140. Also consider that the
memory block and cluster size is 10 addresses, and that blocks are located

2424

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 12 of 42

at 100-109, 110-119, 120-129, 130-139, 140-149. When address 139 is
accessed the contents within the block of addresses 130-139 is accessed.
For an embodiment which stores a starting address of the cluster as the
cluster address, the log entry includes address 130. When address 119 is
accessed the contents within the block of addresses 110-119 is accessed.
The log entry for such access includes address 110. The next access in
the launch sequence specifies address 110, causing the block 110-119 to
be accessed. The cluster address is 110 which is already in the log. This
access is a redundant access to a cluster already specified. The redundant
access is eliminated by deleting the log entry for address 110. The next
access specifies addresses 120-133. This access spans two clusters 120-
129 and 130-139. The accesses are logged separately. The log entry for
cluster address 120 is not redundant. The log entry for cluster address
130, however, is redundant because the first log entry for address 139
encompasses the memory block of addresses 130-139. To eliminate the
redundancy, the log entry for address 139 is removed. The next access
specifies addresses 139-140. This access also spans two clusters with two
log entries. The first of the two is for cluster 130-139. This is a redundant
entry and thus is removed from the log fie. The second of the two entries
is for cluster 140-149. This is a nonredundant access. When the end of
the log file is reached then redundancy testing (step 94) is complete.

In many instances the redundant accesses are eliminated from
consideration by a cache operation performed by the computer instead of
by step 94. Specifically, when caching is performed the second access to
the same cluster will not result in a call to the hard drive because the data
is in the cache. The cache will satisfy the request. Requests satisfied by
the cache are ignored for purposes of creating a log of accesses. Thus,
redundant entries do not get logged.

Ballard, 7:15-53.

See also Ballard, Abstract, Tables B-C, Figs. 4-6.

2425

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 13 of 42

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Ballard, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

It is common for an application program for a personal computer to be
stored in multiple files on the secondary storage device. There often is an
executable file, a preferences file and many other files. Some programs
include a data base file or a default data file. During a launch of the
program multiple files are opened and select portions are moved from the
secondary storage device into the primary storage device. When
purchasing a computer program the packaging often specifies the amount
of RAM address space (i.e., primary storage device address space)
required to be allocated to the program while active. By active it is meant
that the program has been launched and is currently processing or is

2426

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 14 of 42

currently able to accept input commands.

Ballard, 1:51-63

According to another aspect of the invention, the launch access log is
processed by identifying all the file portions accessed during the launch,
eliminating any duplicate cluster accesses, then sorting the remaining
accesses. According to one approach the disk access log entries are sorted
by physical address. According to another approach the disk access log
entries are grouped by file, then organized by logical address within each
group. The processed log file then is stored with the application program.

Ballard, 2:22-30

The primary storage device 14 typically is a storage device having a faster
access time than that of the secondary storage device. An exemplary
primary storage device 14 is random access memory (RAM). All or a
portion of the RAM serves as a RAM cache 15. Portions of a computer
program and/or data files are loaded into the RAM cache 15 to speed up
execution of the program and processing of data. Mass produced
computer software typically include specifications requiring a minimum
amount of RAM required to run the program on a given computer system.
During a launch sequence for starting such a computer program, portions
of the program are copied from the secondary storage device into RAM.

A launch sequence as used herein means the sequence of steps executed
by the computer system during the launch time which pertain to starting
up a given computer program and getting the computer ready to accept
input commands for the computer program. A launch sequence is
executed for a computer program. Different computer programs have
different launch sequences. Steps included in a launch sequence include
copying portions of the computer program being launched from the
secondary storage device to the primary storage device. Other steps may
include allocating a port or device to serve as an input source and/or
output receptor. The method of this invention for accelerating a program
launch is directed to improving the speed for accessing the secondary
storage device during a launch sequence.

Ballard, 3:40-67

Following is a description of the redundancy testing. Consider the
following access sequence: address 139, address 119, address 110,
addresses 120-133, and addresses 138-140. Also consider that the
memory block and cluster size is 10 addresses, and that blocks are
located at 100-109, 110-119, 120-129, 130-139, 140-149. When address

2427

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 15 of 42

139 is accessed the contents within the block of addresses 130-139 is
accessed. For an embodiment which stores a starting address of the
cluster as the cluster address, the log entry includes address 130. When
address 119 is accessed the contents within the block of addresses 110-
119 is accessed. The log entry for such access includes address 110. The
next access in the launch sequence specifies address 110, causing the
block 110-119 to be accessed. The cluster address is 110 which is
already in the log. This access is a redundant access to a cluster already
specified. The redundant access is eliminated by deleting the log entry
for address 110. The next access specifies addresses 120-133. This
access spans two clusters 120-129 and 130-139. The accesses are
logged separately. The log entry for cluster address 120 is not
redundant. The log entry for cluster address 130, however, is redundant
because the first log entry for address 139 encompasses the memory
block of addresses 130-139. To eliminate the redundancy, the log entry
for address 139 is removed. The next access specifies addresses 139-
140. This access also spans two clusters with two log entries. The first
of the two is for cluster 130-139. This is a redundant entry and thus is
removed from the log fie. The second of the two entries is for cluster
140-149. This is a nonredundant access. When the end of the log file is
reached then redundancy testing (step 94) is complete.

In many instances the redundant accesses are eliminated from
consideration by a cache operation performed by the computer instead
of by step 94. Specifically, when caching is performed the second
access to the same cluster will not result in a call to the hard drive
because the data is in the cache. The cache will satisfy the request.
Requests satisfied by the cache are ignored for purposes of creating a
log of accesses. Thus, redundant entries do not get logged.

Ballard, 7:15-53.

2428

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 16 of 42

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Ballard, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

A general purpose personal computer typically has many interactive
application computer programs installed. A user is able to start-up
multiple programs. With regard to an interactive computer program, the
term "launch time", as used herein, means the time from when a processor
receives a command to start the computer program until the time that the
computer program is ready to accept input commands (e.g., user interface
commands, batch-entry commands). The term "launch" as used herein
means the process performed during the launch time to start up the
computer program and get the computer ready to accept input commands
for the computer progra[m].

Ballard, 1:38-50

According to another aspect of the invention, the launch access log is
processed by identifying all the file portions accessed during the launch,

2429

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 17 of 42

eliminating any duplicate cluster accesses, then sorting the remaining
accesses. According to one approach the disk access log entries are sorted
by physical address. According to another approach the disk access log
entries are grouped by file, then organized by logical address within each
group. The processed log file then is stored with the application program.

Ballard, 2:22-30

The primary storage device 14 typically is a storage device having a faster
access time than that of the secondary storage device. An exemplary
primary storage device 14 is random access memory (RAM). All or a
portion of the RAM serves as a RAM cache 15. Portions of a computer
program and/or data files are loaded into the RAM cache 15 to speed up
execution of the program and processing of data. Mass produced
computer software typically include specifications requiring a minimum
amount of RAM required to run the program on a given computer system.
During a launch sequence for starting such a computer program, portions
of the program are copied from the secondary storage device into RAM.

A launch sequence as used herein means the sequence of steps executed
by the computer system during the launch time which pertain to starting
up a given computer program and getting the computer ready to accept
input commands for the computer program. A launch sequence is
executed for a computer program. Different computer programs have
different launch sequences. Steps included in a launch sequence include
copying portions of the computer program being launched from the
secondary storage device to the primary storage device. Other steps may
include allocating a port or device to serve as an input source and/or
output receptor. The method of this invention for accelerating a program
launch is directed to improving the speed for accessing the secondary
storage device during a launch sequence.

Ballard, 3:40-67

2430

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 42

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Ballard, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

It is common for an application program for a personal computer to be
stored in multiple files on the secondary storage device. There often is an
executable file, a preferences file and many other files. Some programs
include a data base file or a default data file. During a launch of the
program multiple files are opened and select portions are moved from the
secondary storage device into the primary storage device. When
purchasing a computer program the packaging often specifies the amount
of RAM address space (i.e., primary storage device address space)
required to be allocated to the program while active. By active it is meant
that the program has been launched and is currently processing or is
currently able to accept input commands.

2431

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 19 of 42

Ballard, 1:51-63

According to another aspect of the invention, the launch access log is
processed by identifying all the file portions accessed during the launch,
eliminating any duplicate cluster accesses, then sorting the remaining
accesses. According to one approach the disk access log entries are sorted
by physical address. According to another approach the disk access log
entries are grouped by file, then organized by logical address within each
group. The processed log file then is stored with the application program.

Ballard, 2:22-30

The primary storage device 14 typically is a storage device having a faster
access time than that of the secondary storage device. An exemplary
primary storage device 14 is random access memory (RAM). All or a
portion of the RAM serves as a RAM cache 15. Portions of a computer
program and/or data files are loaded into the RAM cache 15 to speed up
execution of the program and processing of data. Mass produced
computer software typically include specifications requiring a minimum
amount of RAM required to run the program on a given computer system.
During a launch sequence for starting such a computer program, portions
of the program are copied from the secondary storage device into RAM.

A launch sequence as used herein means the sequence of steps executed
by the computer system during the launch time which pertain to starting
up a given computer program and getting the computer ready to accept
input commands for the computer program. A launch sequence is
executed for a computer program. Different computer programs have
different launch sequences. Steps included in a launch sequence include
copying portions of the computer program being launched from the
secondary storage device to the primary storage device. Other steps may
include allocating a port or device to serve as an input source and/or
output receptor. The method of this invention for accelerating a program
launch is directed to improving the speed for accessing the secondary
storage device during a launch sequence.

Ballard, 3:40-67

Following is a description of the redundancy testing. Consider the
following access sequence: address 139, address 119, address 110,
addresses 120-133, and addresses 138-140. Also consider that the
memory block and cluster size is 10 addresses, and that blocks are
located at 100-109, 110-119, 120-129, 130-139, 140-149. When address
139 is accessed the contents within the block of addresses 130-139 is
accessed. For an embodiment which stores a starting address of the

2432

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 20 of 42

cluster as the cluster address, the log entry includes address 130. When
address 119 is accessed the contents within the block of addresses 110-
119 is accessed. The log entry for such access includes address 110. The
next access in the launch sequence specifies address 110, causing the
block 110-119 to be accessed. The cluster address is 110 which is
already in the log. This access is a redundant access to a cluster already
specified. The redundant access is eliminated by deleting the log entry
for address 110. The next access specifies addresses 120-133. This
access spans two clusters 120-129 and 130-139. The accesses are
logged separately. The log entry for cluster address 120 is not
redundant. The log entry for cluster address 130, however, is redundant
because the first log entry for address 139 encompasses the memory
block of addresses 130-139. To eliminate the redundancy, the log entry
for address 139 is removed. The next access specifies addresses 139-
140. This access also spans two clusters with two log entries. The first
of the two is for cluster 130-139. This is a redundant entry and thus is
removed from the log fie. The second of the two entries is for cluster
140-149. This is a nonredundant access. When the end of the log file is
reached then redundancy testing (step 94) is complete.

In many instances the redundant accesses are eliminated from
consideration by a cache operation performed by the computer instead
of by step 94. Specifically, when caching is performed the second
access to the same cluster will not result in a call to the hard drive
because the data is in the cache. The cache will satisfy the request.
Requests satisfied by the cache are ignored for purposes of creating a
log of accesses. Thus, redundant entries do not get logged.

Ballard, 7:15-53.

2433

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 21 of 42

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Ballard, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2434

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 22 of 42

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Ballard, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

A general purpose personal computer typically has many interactive
application computer programs installed. A user is able to start-up
multiple programs. With regard to an interactive computer program, the
term "launch time", as used herein, means the time from when a processor
receives a command to start the computer program until the time that the
computer program is ready to accept input commands (e.g., user interface
commands, batch-entry commands). The term "launch" as used herein
means the process performed during the launch time to start up the
computer program and get the computer ready to accept input commands

2435

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 23 of 42

for the computer program.

It is common for an application program for a personal computer to be
stored in multiple files on the secondary storage device. There often is an
executable file, a preferences file and many other files. Some programs
include a data base file or a default data file. During a launch of the
program multiple files are opened and select portions are moved from the
secondary storage device into the primary storage device. When
purchasing a computer program the packaging often specifies the amount
of RAM address space (i.e., primary storage device address space)
required to be allocated to the program while active. By active it is meant
that the program has been launched and is currently processing or is
currently able to accept input commands.

Ballard, 1:38-63

The processor 12 serves to execute an operating system and one or more
application computer programs. In some embodiments there are multiple
processors for executing the operating system and application programs.
System utilities and/or operating system extension programs also are
executed according to some computer system 10 embodiments.
Conventional operating systems include DOS, Windows, Windows NT,
MacOS, OS/2 and various UNIX-based operating systems. The display
device 18 and input devices 20 enable interaction between a user and the
computer system 10. The computer system 10 in the process of executing
the operating system and zero or more computer programs defines an
operating environment for a user to interact with the computer, operating
system and executing computer program. The display device 18 serves as
an output device. Exemplary display devices include a CRT monitor or
flat panel display. The user inputs commands and data to the computer
system 10 via the input devices. Exemplary input devices include a
keyboard, a pointing device and a clicking device. Data also is input to
the computer via transportable disks or through I/O ports (not shown).

Ballard, 3:10-30.

Log File System Activity

Once the launch of a computer program is detected and a log file is
opened, all file system activity is monitored. Specifically, for each
operating system call to the file system the call is analyzed to determine
to which application being launched, if any, does the call pertain.
Exemplary operating system calls to the file system are OPEN, READ,
WRITE, and CLOSE. Referring to FIG. 4 routine 82 is entered at step 84
when both file system activity is detected and logging is enabled. If the

2436

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 24 of 42

call pertains to a computer program being launched, then an entry is
appended to the appropriate log file (step 86). The routine 82 then returns
at step 88.

The log entry includes a file identifier, the logical address(es) specified
in the call and the time of access (e.g., system time; index value).
Alternatively, the physical memory address(es) corresponding to the
logical address(es) are stored in the log entry. In some embodiments, the
operating system has already caused the physical addresses to be
generated. If not, then the physical addresses are derived from the logical
addresses using the operating system's file allocation table to translate the
logical address into the physical address.

A logical address (also referred to as a virtual address) is the address
which the computer program uses to access memory. A memory
management unit translates this address into a physical address before the
actual memory is read or written. A physical address is a memory location
on the secondary storage device 16.

Ballard, 5:1-37

2437

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 25 of 42

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Ballard, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

A general purpose personal computer typically has many interactive
application computer programs installed. A user is able to start-up
multiple programs. With regard to an interactive computer program, the
term "launch time", as used herein, means the time from when a processor
receives a command to start the computer program until the time that the
computer program is ready to accept input commands (e.g., user interface
commands, batch-entry commands). The term "launch" as used herein
means the process performed during the launch time to start up the
computer program and get the computer ready to accept input commands

2438

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 26 of 42

for the computer program.

It is common for an application program for a personal computer to be
stored in multiple files on the secondary storage device. There often is an
executable file, a preferences file and many other files. Some programs
include a data base file or a default data file. During a launch of the
program multiple files are opened and select portions are moved from the
secondary storage device into the primary storage device. When
purchasing a computer program the packaging often specifies the amount
of RAM address space (i.e., primary storage device address space)
required to be allocated to the program while active. By active it is meant
that the program has been launched and is currently processing or is
currently able to accept input commands.

Ballard, 1:38-63

The processor 12 serves to execute an operating system and one or more
application computer programs. In some embodiments there are multiple
processors for executing the operating system and application programs.
System utilities and/or operating system extension programs also are
executed according to some computer system 10 embodiments.
Conventional operating systems include DOS, Windows, Windows NT,
MacOS, OS/2 and various UNIX-based operating systems. The display
device 18 and input devices 20 enable interaction between a user and the
computer system 10. The computer system 10 in the process of executing
the operating system and zero or more computer programs defines an
operating environment for a user to interact with the computer, operating
system and executing computer program. The display device 18 serves as
an output device. Exemplary display devices include a CRT monitor or
flat panel display. The user inputs commands and data to the computer
system 10 via the input devices. Exemplary input devices include a
keyboard, a pointing device and a clicking device. Data also is input to
the computer via transportable disks or through I/O ports (not shown).

Ballard, 3:10-30.

Log File System Activity

Once the launch of a computer program is detected and a log file is
opened, all file system activity is monitored. Specifically, for each
operating system call to the file system the call is analyzed to determine
to which application being launched, if any, does the call pertain.
Exemplary operating system calls to the file system are OPEN, READ,
WRITE, and CLOSE. Referring to FIG. 4 routine 82 is entered at step 84
when both file system activity is detected and logging is enabled. If the

2439

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 27 of 42

call pertains to a computer program being launched, then an entry is
appended to the appropriate log file (step 86). The routine 82 then returns
at step 88.

The log entry includes a file identifier, the logical address(es) specified
in the call and the time of access (e.g., system time; index value).
Alternatively, the physical memory address(es) corresponding to the
logical address(es) are stored in the log entry. In some embodiments, the
operating system has already caused the physical addresses to be
generated. If not, then the physical addresses are derived from the logical
addresses using the operating system's file allocation table to translate the
logical address into the physical address.

A logical address (also referred to as a virtual address) is the address
which the computer program uses to access memory. A memory
management unit translates this address into a physical address before the
actual memory is read or written. A physical address is a memory location
on the secondary storage device 16.

Ballard, 5:1-37

2440

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 28 of 42

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Ballard, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2441

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 29 of 42

6. The method of claim 1, further
comprising updating the list of boot data.

Ballard, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Ballard discloses this limitation:

Launch time for a computer program is reduced by logging hard disk
accesses during an initial launch, then processing the log file to accelerate
subsequent launches. The log file is processed by identifying all the file
portions accessed during the launch, eliminating any duplicate cluster
accesses, then sorting the remaining accesses. The disk access log entries
are sorted by physical address or are grouped by file, then organized by
logical address within each group. The processed log file is stored with
the application program. When the application program is launched
thereafter, the processed log file is accessed first. All the disk accesses in
the log file are performed moving all the data into RAM cache. When the
program launch resumes, the launch occurs faster because all the data is
already in cache.

Ballard, Abstract

According to another aspect of the invention, the launch access log is
processed by identifying all the file portions accessed during the launch,
eliminating any duplicate cluster accesses, then sorting the remaining
accesses. According to one approach the disk access log entries are sorted
by physical address. According to another approach the disk access log
entries are grouped by file, then organized by logical address within each
group. The processed log file then is stored with the application program.

Ballard, 2:22-30

Following is a description of the redundancy testing. Consider the
following access sequence: address 139, address 119, address 110,

2442

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 30 of 42

addresses 120-133, and addresses 138-140. Also consider that the
memory block and cluster size is 10 addresses, and that blocks are
located at 100-109, 110-119, 120-129, 130-139, 140-149. When address
139 is accessed the contents within the block of addresses 130-139 is
accessed. For an embodiment which stores a starting address of the
cluster as the cluster address, the log entry includes address 130. When
address 119 is accessed the contents within the block of addresses 110-
119 is accessed. The log entry for such access includes address 110. The
next access in the launch sequence specifies address 110, causing the
block 110-119 to be accessed. The cluster address is 110 which is
already in the log. This access is a redundant access to a cluster already
specified. The redundant access is eliminated by deleting the log entry
for address 110. The next access specifies addresses 120-133. This
access spans two clusters 120-129 and 130-139. The accesses are
logged separately. The log entry for cluster address 120 is not
redundant. The log entry for cluster address 130, however, is redundant
because the first log entry for address 139 encompasses the memory
block of addresses 130-139. To eliminate the redundancy, the log entry
for address 139 is removed. The next access specifies addresses 139-
140. This access also spans two clusters with two log entries. The first
of the two is for cluster 130-139. This is a redundant entry and thus is
removed from the log fie. The second of the two entries is for cluster
140-149. This is a nonredundant access. When the end of the log file is
reached then redundancy testing (step 94) is complete.

In many instances the redundant accesses are eliminated from
consideration by a cache operation performed by the computer instead
of by step 94. Specifically, when caching is performed the second
access to the same cluster will not result in a call to the hard drive
because the data is in the cache. The cache will satisfy the request.
Requests satisfied by the cache are ignored for purposes of creating a
log of accesses. Thus, redundant entries do not get logged.

The modified log file next is sorted at step 96. In one embodiment the
log entries are grouped according to the file. Each access resulting in a
log entry specifies a file and an address. All entries for a given file are
grouped together, then arranged within the group by logical address.
The groups are arranged chronologically according to which file is
specified first in the log file. Alternatively other criteria for ordering the
groups is used. In an alternative embodiment instead of grouping the
entries by file, all the log entries are sorted according to physical
address to optimize access time to the secondary storage device 16. In
one embodiment the log entries define a queue processed according to
the methods disclosed in U.S. patent application Ser. No. 08/656,372
filed May 31, 1996 for "Estimating Access Time for Hard Drive I/O

2443

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 31 of 42

Requests." The contents of such application are incorporated herein by
reference and made a part hereof. The log entries are rearranged in an
order to optimize access time as described therein.

Ballard, 7:15-8:4.

See also Ballard, 5:1-7:14, Figs. 4-6

2444

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 32 of 42

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Ballard, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2445

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 33 of 42

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Ballard, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2446

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 11.1
“A system comprising: a processor;”

 Page 34 of 42

11.1. a processor;

Ballard, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ballard discloses this limitation:

See Claim 1.2 above.

2447

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 11.2
“a memory”

 Page 35 of 42

11.2. a memory; and

Ballard, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ballard discloses this limitation:

See Claims 1.3, and 1.4 above.

2448

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 36 of 42

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Ballard, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

The secondary storage device 16 serves as a permanent storage memory
for one or more computer programs 24 to be executed by the processor
12. The secondary storage device 16 also stores data files for use with
the application computer programs. Exemplary secondary storage
devices include a hard disk drive, floppy disk drive, CD-ROM drive,
bernoulli disk drive or other drive system for accessing permanent or
replaceable disks, such as floppy disks, magnetic disks, magneto-optical
disks, or optical disks.

Ballard, 3:31-39

2449

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 37 of 42

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Ballard, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2450

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 38 of 42

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Ballard, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1 and 1.5 above.

2451

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 39 of 42

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Ballard, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ballard discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2452

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 40 of 42

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Ballard, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2453

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 41 of 42

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Ballard, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1, 8, and 11 above.

2454

Appendix B3
Invalidity of U.S. Patent 8,090,936 based on Ballard

	

Ballard Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 42 of 42

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Ballard, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ballard discloses this limitation:

See Claims 1, 9, and 11 above.

2455

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum
 Page 1 of 30

U.S. Patent No. 5,307,497 to Feigenbaum (“Feigenbaum”) invalidates claims 1-6, 8-9, 11-
13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35
U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2456

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 30

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Feigenbaum, as evidenced by the
exemplary citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

It is also known that the speed at which a ROM can be accessed is several
orders of magnitude faster than the speed at which a hard disk or a floppy
diskette can be accessed. The invention takes advantage of this known speed
difference by storing portions of DOS in a ROM where such portions can be
accessed at a speed much faster than the speed at which DOS could be accessed
if such portions of DOS were stored on a hard disk or floppy diskette. However,
the invention is more than simply substituting a ROM for a disk because of
several problems. A first thought that might occur to many persons is that by
storing DOS in a ROM, DOS can then be executed directly from the ROM.
However, while certain portions of DOS, such as commands in the
COMMAND.COM program, can be executed directly from ROM, other
portions, such as IBMBIO.COM and IBMDOS.COM are altered and cannot be
used in a read only device which precludes any alteration.

Feigenbaum, 1:40-57

2457

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 3 of 30

1.2 initializing a central processing unit of
said computer system;

Feigenbaum, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

A data processing system, such as a personal computer, contains bootable DOS
programs that are stored in a ROM as an alternate file system in which the files
are stored in packed format. When the system is powered on, the programs are
rapidly booted up or loaded from ROM into RAM and executed to "instantly"
(as it appears to the user) place the system in operation.

Feigenbaum, Abstract

Referring now to the drawings, and first to FIG. 1, the invention is embodied in
a personal computer system 10, and resides in the manner in which such system
is programmed and operated. It is to be appreciated that such computers are
complex and include many components and data processing devices, such as
device controllers and adapters, which have been omitted from the drawings for
simplicity of illustration. The description provided herein is limited to only
those items which are useful in understanding the invention. System 10
includes a microprocessor 12, such as an Intel 80286 microprocessor, which is
commercially available and functions in a known manner to execute programs
stored in a RAM 14 and a ROM 16. Such ROM preferably comprises a
plurality of ROM units which together form ROM 16 and provide sufficient
storage capacity for all of the stored information described in more detail
below.

Feigenbaum, 4:10-27

With reference to FIG. 2, a memory map 39 is illustrated based on the full
address space of sixteen megabytes (MB) using the twenty-four bit addressing
capability of microprocessor 12. The lowest 640 kilobytes (KB) are assigned to
RAM 14 and form a storage area, known as the DOS address space, for
containing DOS programs in the lowest portion thereof and application
programs in the upper or top portion thereof. Addresses immediately below the
one megabyte (MB) region are assigned to that portion of ROM 20 containing

2458

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 30

POST 38 and BIOS 40. A video buffer occupies the space immediately above
the DOS address space beginning at hex address A0000 H. ROM DOS 34
occupies a 256KB region at the top of the 16 MB address space beginning at
hex address FC0000 H. Thus, the lowest one MB region is assigned to the same
addresses and functions as such region is used in the prior art, while ROM DOS
34 is assigned to an address space which is not immediately addressable by
DOS nor application programs running in the DOS address space. The
remaining regions are unused memory addresses. Further, the low 1MB address
range is accessible in the real mode of operation of microprocessor 12, while
the address range above the real mode range is accessible in protected mode.

Feigenbaum, 5:26-49

The steps are performed by microprocessor 12 operating under program control
to control the operation of the various components within system 10.

Feigenbaum, 8:34-37

2459

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 30

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Feigenbaum, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

A data processing system, such as a personal computer, contains bootable DOS
programs that are stored in a ROM as an alternate file system in which the files
are stored in packed format. When the system is powered on, the programs are
rapidly booted up or loaded from ROM into RAM and executed to "instantly"
(as it appears to the user) place the system in operation.

Feigenbaum, Abstract

When such personal computers are powered up, a power on self test (POST)
routine or program is first executed, such program being stored in ROM. Upon
the successful completion of such test, portions of DOS are read into the system
memory from a hard disk or a floppy diskette and the system is booted up and
initialized. The test, booting and initialization process can take many seconds.
The present invention is directed to an improvement by which such process is
significantly shortened in time. It is also common to start a personal computer by
turning on not only a system unit but also a display, and the invention has an
objective of accomplishing the start up process so that the system is available for
use within the time required to warm up the display. That is, as soon as the system
is turned on, the first screen becomes immediately visible on a display and gives
the user the appearance of an "instant" load and initialization.

Feigenbaum, 1:22-39

It is also known that the speed at which a ROM can be accessed is several orders
of magnitude faster than the speed at which a hard disk or a floppy diskette can
be accessed. The invention takes advantage of this known speed difference by
storing portions of DOS in a ROM where such portions can be accessed at a
speed much faster than the speed at which DOS could be accessed if such
portions of DOS were stored on a hard disk or floppy diskette. However, the

2460

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 30

invention is more than simply substituting a ROM for a disk because of several
problems. A first thought that might occur to many persons is that by storing
DOS in a ROM, DOS can then be executed directly from the ROM. However,
while certain portions of DOS, such as commands in the COMMAND.COM
program, can be executed directly from ROM, other portions, such as
IBMBIO.COM and IBMDOS.COM are altered and cannot be used in a read only
device which precludes any alteration.

Feigenbaum, 1:40-57

System 10 is further provided with a DOS 32 that comprises two major portions,
ROM DOS 34 and DISK DOS 36 respectively stored in ROM 16 and disk 24.
ROM DOS 34 includes the programs that are booted into the RAM when the
system is initially powered on or when the system is reset, which programs
provide the minimum level of operating system support to make system 10
operational to the user. The remaining portions of DOS, i.e. those programs and
files that together form a complete DOS, are included in DISK DOS 36. DISK
DOS 36 further includes DOS programs similar to those in ROM DOS so that
the system can be booted up and operated from disk 24 at the option of the user,
as described in more detail hereafter. Also stored in ROM 16 are a basic
input/output system (BIOS) 38 and a power on self test (POST) routine 40. When
system 10 is first turned on, or when it is restarted, POST 40 first performs the
test and upon successful completion, it boots or loads a portion of DOS and
transfers control to it in the manner described in detail below. Except for ROM
DOS 34, the system as thus far described is constructed and operates in
accordance with known principles of the prior art.

Feigenbaum, 5:3-25

FIG. 3 also illustrates another facet of the invention which is that the data and
programs of ROM DOS 34 are stored in ROM 16 in a file system using a packed
format. In contrast, any data and files stored on disk 24, including those in RAM
DOS 36, are stored in the conventional DOS FAT file system in which
information is stored in clusters and sectors. In the FAT file system, if a particular
program doesn't have the same number of bytes as are in a sector or cluster, space
is wasted. On the average, about one half the number of bytes in a cluster or in a
sector are wasted for each file. Since ROM units are more expensive than disk
storage, any wasted space is inefficient. Thus, in ROM 16, the ROM DOS 34
files are stored beginning at a segment address, each segment being sixteen bytes.
Each succeeding file begins immediately at the next segment location following
the end of a preceding file so that on average only eight bytes per file would be
wasted, such number being far less than the average waste in a FAT file system.
By way of example, suppose file 50 begins at ROM segment X and ends at Y.
Then, the succeeding file 52 begins at segment Y+n, where n is less than sixteen.

2461

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 30

The other files are similarly stored.

Feigenbaum, 6:60-7:15

When system 11 is turned on, the general sequence of operations that occur are
BIOSPOST 64, ROMBOOT 65, IBMINIT 66, SYSINIT 67, and COMMAND
68. BIOSPOST 64 first performs a power on self test 70 which is the same as or
similar to what is done within the prior art. Upon successful completion of such
test, step 72 then checks flag 58 to see if the fast boot process of the invention
has been selected. If it has not, then the system would boot from disk 24 in
accordance with the prior art. If such selection was made, then step 74 copies the
first 512 bytes of ROM DOS 34 into RAM 14 at the top of such memory, the
bytes thus copied including ROMBOOT 48. Control is then passed via step 75
to ROMBOOT 65 by jumping from POST to instruction 44 and then to the start
of ROMBOOT program 48.

Feigenbaum, 8:37-52

ROMBOOT 65 first loads IBMBIO.COM 50, including RAM LOADER 51,
from ROM 16 into RAM 14 by step 76. IBMBIO.COM includes two code
segments, IBMINIT and SYSINIT. Step 78 then transfers control to IBMINIT
66. Step 80 initializes the system device drivers and hardware. Step 81 provides
or sets up a hook into interrupt handler INT 2BH for the RAM LOADER. Step
82 relocates the initialization routine of IBMBIO.COM 50 to predetermined
locations at the top of the DOS address space in RAM 16. Next, step 84 transfers
control to SYSINIT 67 which first, by step 86, loads IBMDOS.COM 52 from
ROM 16 into RAM 14. Step 88 then executes the initialization routine of
IBMDOS.COM. Afterwards, step 90 attaches the IFS Handler as the next
available drive which is drive D: because system 10 includes a fixed disk drive.
Next, step 91 selects the ROM drive created by the IFS handler, as the defualt
drive.

Feigenbaum, 8:53-9:2

In summary, the invention of a ROM based DOS provides several features and
advantages. DOS is rapidly loaded from ROM and executed in RAM to instantly
boot up and present the user with a screen from a graphical user interface. Once
booted, ROM DOS executes normally and acts the same as standard disk DOS
and has the same system compatibility as disk DOS. Further, no DOS installation
is required to be done by a user, and the user has no diskette dependencies. The
invention is further advantageous by virtue of using the IFS interface and
allowing the ROM to appear as a "drive", since this minimizes the number of
changes to the basic DOS programs, which reduced developement time and
minimized the possibility of error being introduced by new code.

2462

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 30

Feigenbaum, 10:18-33

2463

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 30

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Feigenbaum, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

A data processing system, such as a personal computer, contains bootable DOS
programs that are stored in a ROM as an alternate file system in which the files
are stored in packed format. When the system is powered on, the programs are
rapidly booted up or loaded from ROM into RAM and executed to "instantly"
(as it appears to the user) place the system in operation.

Feigenbaum, Abstract

When such personal computers are powered up, a power on self test (POST)
routine or program is first executed, such program being stored in ROM. Upon
the successful completion of such test, portions of DOS are read into the system
memory from a hard disk or a floppy diskette and the system is booted up and
initialized. The test, booting and initialization process can take many seconds.
The present invention is directed to an improvement by which such process is
significantly shortened in time. It is also common to start a personal computer by
turning on not only a system unit but also a display, and the invention has an
objective of accomplishing the start up process so that the system is available for
use within the time required to warm up the display. That is, as soon as the system
is turned on, the first screen becomes immediately visible on a display and gives
the user the appearance of an "instant" load and initialization.

Feigenbaum, 1:22-39

System 10 is further provided with a DOS 32 that comprises two major portions,
ROM DOS 34 and DISK DOS 36 respectively stored in ROM 16 and disk 24.
ROM DOS 34 includes the programs that are booted into the RAM when the
system is initially powered on or when the system is reset, which programs
provide the minimum level of operating system support to make system 10
operational to the user. The remaining portions of DOS, i.e. those programs and
files that together form a complete DOS, are included in DISK DOS 36. DISK

2464

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 30

DOS 36 further includes DOS programs similar to those in ROM DOS so that
the system can be booted up and operated from disk 24 at the option of the user,
as described in more detail hereafter. Also stored in ROM 16 are a basic
input/output system (BIOS) 38 and a power on self test (POST) routine 40. When
system 10 is first turned on, or when it is restarted, POST 40 first performs the
test and upon successful completion, it boots or loads a portion of DOS and
transfers control to it in the manner described in detail below. Except for ROM
DOS 34, the system as thus far described is constructed and operates in
accordance with known principles of the prior art.

Feigenbaum, 5:3-25

When system 10 is first setup, it is desireable to customize the system in a manner
similar to that in which IBM PS/2 systems are configured. During the course of
such customization the user has to make decisions and define what features are
to be used. The primary decision pertinent to the invention is whether to boot the
system from ROM, in accordance with the invention, or to boot the system from
disk 24 in the manner of the prior art. The selection of the option is then coded
into a flag 58 which is stored during customization in CMOS RAM 20. Other
options for the user are whether the system will be started by using the ROM
based CONFIG.SYS 62 and/or AUTOEXEC.BAT 61, or the user defined
CONFIG.SYS 102 or AUTOEXEC.BAT 102 files stored on disk 24. Flag 58 will
also be set to reflect such other options. Default values are provided for such
options so that in the absence of selecting other options, the system will
automatically boot from ROM 16 and process the AUTOEXEC.BAT and
CONFIG.SYS files therein.

Feigenbaum, 7:15-35

2465

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 30

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Feigenbaum, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

When such personal computers are powered up, a power on self test (POST)
routine or program is first executed, such program being stored in ROM. Upon
the successful completion of such test, portions of DOS are read into the system
memory from a hard disk or a floppy diskette and the system is booted up and
initialized. The test, booting and initialization process can take many seconds.
The present invention is directed to an improvement by which such process is
significantly shortened in time. It is also common to start a personal computer
by turning on not only a system unit but also a display, and the invention has an
objective of accomplishing the start up process so that the system is available
for use within the time required to warm up the display. That is, as soon as the
system is turned on, the first screen becomes immediately visible on a display
and gives the user the appearance of an "instant" load and initialization.

Feigenbaum, 1:22-39

One of the objects of the invention is to provide a ROM based DOS that rapidly
tests, boots, and initializes a personal computer and appears to the user to
"instantly" start up when the computer is turned on.

Feigenbaum, 3:30-33

When switch 35 is initially turned on, display 30 warms up within a relatively
short period and the ROM based booting and system initialization, described in
detail below, occurs within the period required for the display to warm up so
that at the end of such period, the display screen becomes visible to the user to
give the appearance of an instant startup.

2466

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 12 of 30

Feigenbaum, 4:63-5:2

In summary, the invention of a ROM based DOS provides several features and
advantages. DOS is rapidly loaded from ROM and executed in RAM to
instantly boot up and present the user with a screen from a graphical user
interface. Once booted, ROM DOS executes normally and acts the same as
standard disk DOS and has the same system compatibility as disk DOS.
Further, no DOS installation is required to be done by a user, and the user has
no diskette dependencies. The invention is further advantageous by virtue of
using the IFS interface and allowing the ROM to appear as a "drive", since this
minimizes the number of changes to the basic DOS programs, which reduced
developement time and minimized the possibility of error being introduced by
new code.

Feigenbaum, 10:18-33

2467

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 13 of 30

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Feigenbaum, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2468

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 30

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Feigenbaum, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

With reference to FIG. 2, a memory map 39 is illustrated based on the full
address space of sixteen megabytes (MB) using the twenty-four bit addressing
capability of microprocessor 12. The lowest 640 kilobytes (KB) are assigned to
RAM 14 and form a storage area, known as the DOS address space, for
containing DOS programs in the lowest portion thereof and application
programs in the upper or top portion thereof. Addresses immediately below the
one megabyte (MB) region are assigned to that portion of ROM 20 containing
POST 38 and BIOS 40. A video buffer occupies the space immediately above
the DOS address space beginning at hex address A0000 H. ROM DOS 34
occupies a 256KB region at the top of the 16 MB address space beginning at
hex address FC0000 H. Thus, the lowest one MB region is assigned to the same
addresses and functions as such region is used in the prior art, while ROM DOS
34 is assigned to an address space which is not immediately addressable by
DOS nor application programs running in the DOS address space. The
remaining regions are unused memory addresses. Further, the low 1MB address
range is accessible in the real mode of operation of microprocessor 12, while
the address range above the real mode range is accessible in protected mode.

Feigenbaum, 5:26-49

IBMDOS.COM provides application support.

Feigenbaum, 6:11

RAM LOADER 51, IFS HANDLER 53, and CHECKC.COM 63 are new with
the invention, while the remaining programs stored in ROM 16 perform
functions previously commercially available. ROM 16 may optionally be of a

2469

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 15 of 30

larger size to store additional programs such as a code page switching program,
a program providing extended keyboard layout, support for other national
languages, etc. It may also contain alternative AUTOEXEC.BAT and
CONFIG.SYS files 102 and 104 oriented to the use of such additional
programs. The size of ROM 16 may thus vary dependent upon the size of and
how many additional support programs are stored. Preferably, those items
shown in FIG. 3 are stored in a 128K ROM unit and the additional programs
are stored in a second 128 K ROM unit.

Feigenbaum, 6:45-59

FIG. 4 illustrates the relative position and use of IFS HANDLER 53. Within the
prior art, an application program 110 can be thought of as sitting on top of FAT
file system 112, which in turn sits on top of disk/diskette driver 114 which
overlies the disk 24 containing the actual files and data. Application 110 uses
interrupt INT 21H to access the file system through IBMDOS.COM, which acts
through IBMBIO.COM to access the disk. In accordance with the invention,
IFS HANDLER 53 is interposed at the file system level in the INT 21H process
and decides in step 116 whether the desired file system access is to be made to
ROM DISK D:. If not, the system proceeds as in the prior art to access the FAT
file system. If the desired access is to be made to ROM DISK D:, it is done
through the ROM file system 118 and RAM LOADER 51 by programs
IBMDOS.COM 52 and IBMBIO.COM 50. The term "ROM DISK" is defined
hereby to mean a ROM unit containing images of files storable on a hard disk
or floppy diskette, which images are stored in a packed format in a ROM file
system, that is different from the FAT file system used to store files on a disk or
diskette.

Feigenbaum, 9:39-60

2470

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 16 of 30

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Feigenbaum, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

With reference to FIG. 2, a memory map 39 is illustrated based on the full
address space of sixteen megabytes (MB) using the twenty-four bit addressing
capability of microprocessor 12. The lowest 640 kilobytes (KB) are assigned to
RAM 14 and form a storage area, known as the DOS address space, for
containing DOS programs in the lowest portion thereof and application
programs in the upper or top portion thereof. Addresses immediately below the
one megabyte (MB) region are assigned to that portion of ROM 20 containing
POST 38 and BIOS 40. A video buffer occupies the space immediately above
the DOS address space beginning at hex address A0000 H. ROM DOS 34
occupies a 256KB region at the top of the 16 MB address space beginning at
hex address FC0000 H. Thus, the lowest one MB region is assigned to the same
addresses and functions as such region is used in the prior art, while ROM DOS
34 is assigned to an address space which is not immediately addressable by
DOS nor application programs running in the DOS address space. The
remaining regions are unused memory addresses. Further, the low 1MB address
range is accessible in the real mode of operation of microprocessor 12, while
the address range above the real mode range is accessible in protected mode.

Feigenbaum, 5:26-49

IBMDOS.COM provides application support.

Feigenbaum, 6:11

RAM LOADER 51, IFS HANDLER 53, and CHECKC.COM 63 are new with
the invention, while the remaining programs stored in ROM 16 perform

2471

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 17 of 30

functions previously commercially available. ROM 16 may optionally be of a
larger size to store additional programs such as a code page switching program,
a program providing extended keyboard layout, support for other national
languages, etc. It may also contain alternative AUTOEXEC.BAT and
CONFIG.SYS files 102 and 104 oriented to the use of such additional
programs. The size of ROM 16 may thus vary dependent upon the size of and
how many additional support programs are stored. Preferably, those items
shown in FIG. 3 are stored in a 128K ROM unit and the additional programs
are stored in a second 128 K ROM unit.

Feigenbaum, 6:45-59

FIG. 4 illustrates the relative position and use of IFS HANDLER 53. Within the
prior art, an application program 110 can be thought of as sitting on top of FAT
file system 112, which in turn sits on top of disk/diskette driver 114 which
overlies the disk 24 containing the actual files and data. Application 110 uses
interrupt INT 21H to access the file system through IBMDOS.COM, which acts
through IBMBIO.COM to access the disk. In accordance with the invention,
IFS HANDLER 53 is interposed at the file system level in the INT 21H process
and decides in step 116 whether the desired file system access is to be made to
ROM DISK D:. If not, the system proceeds as in the prior art to access the FAT
file system. If the desired access is to be made to ROM DISK D:, it is done
through the ROM file system 118 and RAM LOADER 51 by programs
IBMDOS.COM 52 and IBMBIO.COM 50. The term "ROM DISK" is defined
hereby to mean a ROM unit containing images of files storable on a hard disk
or floppy diskette, which images are stored in a packed format in a ROM file
system, that is different from the FAT file system used to store files on a disk or
diskette.

Feigenbaum, 9:39-60

2472

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 18 of 30

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Feigenbaum, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Referring now to the drawings, and first to FIG. 1, the invention is embodied in
a personal computer system 10, and resides in the manner in which such system
is programmed and operated. It is to be appreciated that such computers are
complex and include many components and data processing devices, such as
device controllers and adapters, which have been omitted from the drawings for
simplicity of illustration. The description provided herein is limited to only
those items which are useful in understanding the invention. System 10
includes a microprocessor 12, such as an Intel 80286 microprocessor, which is
commercially available and functions in a known manner to execute programs
stored in a RAM 14 and a ROM 16. Such ROM preferably comprises a
plurality of ROM units which together form ROM 16 and provide sufficient
storage capacity for all of the stored information described in more detail
below.

Feigenbaum, 4:10-27

The steps are performed by microprocessor 12 operating under program control
to control the operation of the various components within system 10.

Feigenbaum, 8:34-37

2473

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 19 of 30

6. The method of claim 1, further
comprising updating the list of boot data.

Feigenbaum, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Another solution that might occur would be to create the ROM within the DOS
address space, or within the first one megabyte of memory mapped space, and
then load or copy DOS into a RAM (random access memory) within such address
space to occupy and execute from the same space in RAM and operate in the
same manner as DOS currently does. The disadvantage of such a solution is that
two copies of DOS would then exist in such limited address space, one copy
being the unalterable ROM DOS and the other copy being the alterable one that
is stored in and executed from the RAM. Having two copies of essentially the
same program in such a limited address space would not be efficient use of
memory nor acceptable by many users.

Feigenbaum, 1:58-2:3

2474

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 20 of 30

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Feigenbaum, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2475

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 21 of 30

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Feigenbaum, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2476

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 11.1
“A system comprising: a processor;”

 Page 22 of 30

11.1. a processor;

Feigenbaum, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Feigenbaum discloses this limitation:

See Claim 1.2 above.

2477

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 11.2
“a memory”

 Page 23 of 30

11.2. a memory; and

Feigenbaum, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Feigenbaum discloses this limitation:

See Claims 1.3, and 1.4 above.

2478

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 24 of 30

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Feigenbaum, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

System 10 also includes a circuit or bus network 18 operatively interconnecting
the various elements of the system. A complementary metal oxide semi-
conductor (CMOS) RAM 20 is connected to and backed up by a battery 22 to
provide non-volatile storage. A disk drive 26 includes a fixed disk 24 for storing
information in a FAT file system. Drive 26 and CMOS RAM 20 are also
connected to bus 18.

Feigenbaum, 4:54-5:2

2479

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 25 of 30

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Feigenbaum, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2480

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 26 of 30

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Feigenbaum, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1 and 1.5 above.

2481

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 27 of 30

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Feigenbaum, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2482

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 28 of 30

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Feigenbaum, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2483

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 29 of 30

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Feigenbaum, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1, 8, and 11 above.

2484

Appendix B4
Invalidity of U.S. Patent 8,090,936 based on Feigenbaum

	

Feigenbaum Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 30 of 30

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Feigenbaum, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Feigenbaum discloses this limitation:

See Claims 1, 9, and 11 above.

2485

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene
 Page 1 of 29

U.S. Patent No. 5,836,013 to Greene (“Greene”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2486

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 29

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Greene, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

Greene, Fig. 5.

“A chipset (platform)-independent method and apparatus for
compressing and decompressing a system ROM of a computer (e.g.,
BIOS, setup program, and one or more option ROMs) are disclosed.

2487

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 29

The setup program, option ROM, and part of the BIOS are compressed
using a lossless compression algorithm. A non-compressible portion of
the BIOS includes a decompression algorithm and a shadow RAM
block table of chipset-specific registers and bit patterns to write-enable
and read-enable shadow RAM (RAM that is mapped to the ROM
address space). The compressed data is stored in a compressed data
block format with the associated location in memory to decompress the
compressed data.”

Greene, Abstract. See also 1:40-1:63.

“During the BIOS Power-On Self-Test (POST) process of the target
computer, the compressed system ROM image is copied to conventional
memory (e.g., RAM), and the decompression program is executed. The
decompression program write-enables shadow RAM (with reference to
the chipset-specific information in the shadow RAM block table),
copies the non-compressible BIOS code image from conventional
memory to shadow RAM, and read-enable shadow RAM. The
decompression program scans the compressed system ROM image for
compressed data blocks and decompresses the compressed data therein
to the associated locations in memory.”

Greene, 1:64-2:8.

“The setup program code, option ROM code, compressible BIOS code,
and non-compressible BIOS code are compiled or assembled and linked
to create a modified system ROM image. The starting address of the
non-compressible BIOS code image in the modified system ROM
image is stored. A lossless compression algorithm is used to compress
the modified system ROM image (up to the non-compressible BIOS
code image address), thereby generating a compressed system ROM
image. Compressed data is stored in a compressed data block
comprising the compressed data and various associated information
including the location in memory to place the compressed data when
decompressed. The compressed system ROM is stored in ROM of a
target computer.”

Greene, 1:50-63.

“BIOS code 410, and optionally setup program code 430, and one or
more option ROM code modules 432, are each developed, written (e.g.,
in any computer language such as C or Assembly language) and saved
in a computer file. Code and data, as referred to herein, are used
interchangeably and comprise computer code and/or data. BIOS code
410 is separated 412 into compressible BIOS code 414 and non-

2488

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 29

compressible BIOS code 420. Non-compressible BIOS code 420
comprises compression-related information table 424, decompression
program 422, and shadow RAM block table 1104.”

Greene, 3:42-52.

“Continuing with FIG. 4, compressible BIOS code 414, non-
compressible BIOS code 420 (comprising decompression program 422
(1102, 1106, 1108), compression-related information table 424, and
shadow RAM block table 1104), and optionally setup program code
430, and option ROM code module(s) 432, are compiled or assembled
and linked 434 to generate a modified system ROM image 440.”

Greene, 4:64-5:3.

“Compression-related information table 424, comprises, for example, a
preferred compression algorithm to use when compressing system ROM
image 440 (see below step 630). In a preferred embodiment,
compression algorithm is a lossless decompression algorithm, for
example, LZSS or LZARI, which are commercially available
compression/ decompression algorithms.”

Greene, 3:53-59.

“Referring now to FIG. 6, modified system ROM image 440 is input to
compression utility 600. Compression utility 600 uses compression-
related information table 424 (in modified system ROM image 440) to
determine 610 a compression algorithm 612 to use in compressing
modified system ROM image 440. As discussed above, compression
algorithm 612 can be any lossless compression algorithm, but must
correspond to the decompression algorithm (1102 below) used in the
system ROM.”

Greene, 5:19-27, Fig. 6.

“Knowing the location of non-compressible BIOS code image 520 in
modified system ROM image 440, compression utility 600 uses
compression algorithm 612 to compress 630 each compressible image
(514, 530, 532) in modified system ROM image 440. Each compressed
image is stored in a compressed data block 700.”

Greene, 5:31-36.

2489

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 29

1.2 initializing a central processing unit of
said computer system;

Greene, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

Greene, Fig. 5.

“A chipset (platform)-independent method and apparatus for
compressing and decompressing a system ROM of a computer (e.g.,
BIOS, setup program, and one or more option ROMs) are disclosed.
The setup program, option ROM, and part of the BIOS are compressed
using a lossless compression algorithm. A non-compressible portion of
the BIOS includes a decompression algorithm and a shadow RAM
block table of chipset-specific registers and bit patterns to write-enable
and read-enable shadow RAM (RAM that is mapped to the ROM

2490

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 29

address space). The compressed data is stored in a compressed data
block format with the associated location in memory to decompress the
compressed data.”

Greene, Abstract. See also 1:40-1:63.

“During the BIOS Power-On Self-Test (POST) process, the compressed
system ROM is copied to conventional memory, and the decompression
program is executed.”

Greene, Abstract. See also 1:64-2:13.

“System ROM 210 comprises BIOS (Basic Input/Output System) 310,
and optionally setup program 320, and one or more option ROM images
for input/output (I/O) devices associated with the computer 332. An
"image" is a binary representation of code and/or data of a computer
file. BIOS 310 comprises a plurality of routines that initialize the
computer hardware and provide primitive I/O services that the operating
system and application programs use to manipulate hardware associated
with the computer. System setup program 320 is a utility that allows the
end user to configure BIOS 310.”

Greene, 3:16-28, Fig. 3.

2491

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 29

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Greene, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

“The compressed data is stored in a compressed data block format with
the associated location in memory to decompress the compressed data.
Thus, the data can be decompressed anywhere in memory of a target
computer. For example, the BIOS is decompressed to shadow RAM and
the setup program is decompressed to conventional memory.”

Greene, Abstract.

“The decompression program scans the compressed system ROM for
compressed data blocks and decompresses the compressed data therein to
the associated locations in memory. If compressed data is located in
shadow RAM, shadow RAM is enabled for writing and reading with
reference to the chipset-specific information in the shadow RAM block
table. If compressed data was decompressed to conventional memory
space, this space is cleared before exiting the POST process.”

Greene, Abstract.

“Compressed data is stored in a compressed data block comprising the
compressed data and various associated information including the
location in memory to place the compressed data when decompressed.
The compressed system ROM is stored in ROM of a target computer.”

Greene, 1:58-63.

“During the BIOS Power-On Self-Test (POST) process of the target
computer, the compressed system ROM image is copied to conventional
memory (e.g., RAM), and the decompression program is executed. The
decompression program write-enables shadow RAM (with reference to

2492

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 29

the chipset-specific information in the shadow RAM block table),
copies the non-compressible BIOS code image from conventional
memory to shadow RAM, and read-enable shadow RAM. The
decompression program scans the compressed system ROM image for
compressed data blocks and decompresses the compressed data therein
to the associated locations in memory.”

Greene, 1:64-2:8.

“Compressed system ROM image 632 is copied 802 from ROM 130 to
conventional memory 110, (e.g., RAM 112).”

Greene, 7:27-29, Fig. 8a.

2493

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 29

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Greene, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

“The compressed data is stored in a compressed data block format with
the associated location in memory to decompress the compressed data.
Thus, the data can be decompressed anywhere in memory of a target
computer. For example, the BIOS is decompressed to shadow RAM and
the setup program is decompressed to conventional memory.”

Greene, Abstract.

“The decompression program scans the compressed system ROM for
compressed data blocks and decompresses the compressed data therein to
the associated locations in memory. If compressed data is located in
shadow RAM, shadow RAM is enabled for writing and reading with
reference to the chipset-specific information in the shadow RAM block
table. If compressed data was decompressed to conventional memory
space, this space is cleared before exiting the POST process.”

Greene, Abstract.

“During the BIOS Power-On Self-Test (POST) process of the target
computer, the compressed system ROM image is copied to conventional
memory (e.g., RAM), and the decompression program is executed. The
decompression program write-enables shadow RAM (with reference to
the the chipset-specific information in the shadow RAM block table),
copies the non-compressible BIOS code image from conventional
memory to shadow RAM, and read-enables shadow RAM. The
decompression program scans the compressed system ROM image for
compressed data blocks and decompresses the compressed data therein to
the associated locations in memory. If data is located in shadow RAM,
shadow RAM is write-enabled and read-enabled (with reference to the
chipset-specific information in the shadow RAM block table). If

2494

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 29

compressed data was decompressed to conventional memory, this space
is cleared before exiting the POST process.”

Greene, 1:64-2:13.

“Referring to FIG. 10, decompression program 422 comprises a
decompression algorithm 1102. Decompression algorithm 1102
corresponds to the compression algorithm used (e.g., LZSS or LZARI).”

Greene, 3:66-4:2.

“Compressed system ROM 632 image must be decompressed before the
compressed data therein can be used on the target computer. In a preferred
embodiment, decompression is done early in the POST process.”

Greene, 7:21-24.

“Program execution control is transferred 804 to decompression program
422 (in non-compressible BIOS code image 520 of compressed system
ROM image 632).”

Greene, 7:29-32, Fig. 8a. See also 7:33-7:64.

“The decompression scan process repeats 832 until each compressed data
block 700 in compressed system ROM image 632 is decompressed. In a
preferred embodiment, program execution control is then transferred 834
to BIOS 310, now running in shadow RAM 202. In one embodiment, if
data was decompressed to conventional (RAM) memory 110,
conventional memory 110 is cleared 836 at the end of the POST process
and before the operating system is booted (for compatibility reasons).”

Greene, 7:65-8:21.

2495

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 29

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Greene, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

“During the BIOS Power-On Self-Test (POST) process of the target
computer, the compressed system ROM image is copied to conventional
memory (e.g., RAM), and the decompression program is executed. The
decompression program write-enables shadow RAM (with reference to
the the chipset-specific information in the shadow RAM block table),
copies the non-compressible BIOS code image from conventional
memory to shadow RAM, and read-enables shadow RAM. The
decompression program scans the compressed system ROM image for
compressed data blocks and decompresses the compressed data therein to
the associated locations in memory. If data is located in shadow RAM,
shadow RAM is write-enabled and read-enabled (with reference to the
chipset-specific information in the shadow RAM block table). If
compressed data was decompressed to conventional memory, this space
is cleared before exiting the POST process.”

Greene, 1:64-2:13.

“Referring to FIG. 10, decompression program 422 comprises a
decompression algorithm 1102. Decompression algorithm 1102
corresponds to the compression algorithm used (e.g., LZSS or LZARI).”

Greene, 3:66-4:2.

“Compressed system ROM 632 image must be decompressed before the
compressed data therein can be used on the target computer. In a preferred
embodiment, decompression is done early in the POST process.”

2496

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 12 of 29

Greene, 7:21-24.

“Program execution control is transferred 804 to decompression program
422 (in non-compressible BIOS code image 520 of compressed system
ROM image 632).”

Greene, 7:29-32, Fig. 8a. See also 7:33-7:64.

“The decompression scan process repeats 832 until each compressed data
block 700 in compressed system ROM image 632 is decompressed. In a
preferred embodiment, program execution control is then transferred 834
to BIOS 310, now running in shadow RAM 202. In one embodiment, if
data was decompressed to conventional (RAM) memory 110,
conventional memory 110 is cleared 836 at the end of the POST process
and before the operating system is booted (for compatibility reasons).”

Greene, 7:65-8:21.

2497

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 13 of 29

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Greene, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2498

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 29

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Greene, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“BIOS 310 comprises a plurality of routines that initialize the computer
hardware and provide primitive I/O services that the operating system and
application programs use to manipulate hardware associated with the
computer.”

Greene, 3:21-25

“Conventional memory 110 comprises a random access memory (RAM)
112 address space that is set aside for use by operating systems and
application programs.”

Greene, 2:50-53.

2499

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 15 of 29

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Greene, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“BIOS 310 comprises a plurality of routines that initialize the computer
hardware and provide primitive I/O services that the operating system and
application programs use to manipulate hardware associated with the
computer.”

Greene, 3:21-25

“Conventional memory 110 comprises a random access memory (RAM)
112 address space that is set aside for use by operating systems and
application programs.”

Greene, 2:50-53.

2500

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 16 of 29

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Greene, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2501

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 17 of 29

6. The method of claim 1, further
comprising updating the list of boot data.

Greene, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2502

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 18 of 29

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Greene, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A lossless compression algorithm is used to compress the modified
system ROM image (up to the non-compressible BIOS code image
address), thereby generating a compressed system ROM image.”

Greene, 1:54-58.

“In a preferred embodiment, compression algorithm is a lossless
decompression algorithm, for example, LZSS or LZARI, which are
commercially available compression/ decompression algorithms. In
general, LZSS decompresses faster than LZARI. LZARI generally
compresses data better (smaller) than LZSS. For performance reasons, it
is suggested that LZARI decompression code be used with an Intel 80486
or better CPU.”

Greene, 3:56-63.

“Referring to FIG. 10, decompression program 422 comprises a
decompression algorithm 1102. Decompression algorithm 1102
corresponds to the compression algorithm used (e.g., LZSS or LZARI).”

Greene, 3:66-4:2.

“As discussed above, compression algorithm 612 can be any lossless
compression algorithm, but must correspond to the decompression
algorithm (1102 below) used in the system ROM.”

2503

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 19 of 29

Greene, 5:24-27.

2504

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 20 of 29

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Greene, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A lossless compression algorithm is used to compress the modified
system ROM image (up to the non-compressible BIOS code image
address), thereby generating a compressed system ROM image.”

Greene, 1:54-58.

“Referring now to FIG. 6, modified system ROM image 440 is input to
compression utility 600. Compression utility 600 uses compression-
related information table 424 (in modified system ROM image 440) to
determine 610 a compression algorithm 612 to use in compressing
modified system ROM image 440. As discussed above, compression
algorithm 612 can be any lossless compression algorithm, but must
correspond to the decompression algorithm (1102 below) used in the
system ROM.”

Greene, 5:19-27, Fig. 6.

2505

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 11.1
“A system comprising: a processor;”

 Page 21 of 29

11.1. a processor;

Greene, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Greene discloses this limitation:

See Claim 1.2 above.

2506

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 11.2
“a memory”

 Page 22 of 29

11.2. a memory; and

Greene, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Greene discloses this limitation:

See Claims 1.3, and 1.4 above.

2507

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 23 of 29

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Greene, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2508

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 24 of 29

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Greene, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2509

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 25 of 29

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Greene, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1 and 1.5 above.

2510

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 26 of 29

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Greene, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Greene discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2511

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 27 of 29

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Greene, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Greene discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2512

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 28 of 29

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Greene, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

See Claims 1, 8, and 11 above.

2513

Appendix B5
Invalidity of U.S. Patent 8,090,936 based on Greene

	

Greene Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 29 of 29

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Greene, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Greene discloses this limitation:

See Claims 1, 9, and 11 above.

2514

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis
 Page 1 of 28

U.S. Patent No. 6,421,776 to Hillis (“Hillis”) invalidates claims 1-6, 8-9, 11-13, and 15-16
of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2515

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 28

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Hillis, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

“To increase the effective capacity of BIOS, an initial portion of the
power on system reset (POST) code that is required to enable the system
memory is stored in ROM in uncompressed form, and substantially the
remaining portion of the BIOS code is stored in compressed form.”

Hillis, Abstract.

“After locating a disk with a valid boot record, the BIOS program reads
the data stored on the first sector of the disk, and copies that data to
specific locations in RAM. This information, found in the same location
on every formatted disk, constitutes the DOS boot record. The BIOS
then passes control to the boot record which instructs the PC on how to
load the two hidden operating system files to RAM (the files named
IBMBIO.COM and IBMDOS.COM on IBM computers). After loading
other operating system files into RAM to carry out the rest of the boot
up sequence, the boot record is no longer needed.”

Hillis, 1:46-56.

“In accordance with an important aspect of the invention, an initial
portion of the BIOS code that is required to enable the system memory is
in uncompressed form and a remaining portion thereof for carrying out
prescribed functions including converting operating signals developed by
an operating system executed by the CPU into electrical signals

2516

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 28

compatible with devices that are responsive to signals provided by the
CPU to the system bus, is in compressed form.”

Hillis, 3:36-43.

“The next layers of the BIOS ROM consist of compressed set-up data,
including descriptive text, and compressed setup code. Next, all but the
initial portion of the power on system test (POST) code (termed “phase 2
POST herein”) is stored in compressed form, the initial portion of POST
(termed “phase 1 POST”) being stored in the next lower layer of BIOS
ROM.”

Hillis, 5:35-41.

“As shall be described in more detail hereinafter, upon system
initialization (bootstrapping), an image of the BIOS ROM is copied to the
upper 128 kbyte region of system memory, or shadow RAM, from where
system execution takes place for higher operating speed. Shadowing of
the BIOS is well known. In accordance with the invention, however, most
of the BIOS code is stored in ROM in compressed form.”

Hillis, 6:1-8.

“As has been described, this invention enables compression of most of
the contents of the BIOS ROM and boot	strapping of the system upon
BIOS code decompression, by storing only the initial portion of the POST
code in BIOS ROM, sufficient to enable the system memory.”

Hillis, 7:66-8:3.

2517

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 28

1.2 initializing a central processing unit of
said computer system;

Hillis, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

“Upon system initialization during a cold boot, the uncompressed portion
of POST is executed from the ROM to enable the system memory, and
then an image of the BIOS code is written to shadow memory.”

Hillis, Abstract.

“In accordance with an aspect of the invention, the portion of the BIOS
code that is uncompressed in ROM includes an initial portion of a power
on system test (POST) code which is sufficient to enable the system
memory, a remaining portion of which is compressed.”

Hillis, 3:44-48.

“Upon cold boot, the initial portion POST is read directly from ROM to
enable the system memory, and then an image of the entire BIOS code,
the major portion of which is in compressed form, is written to RAM in
the system memory, and control is transferred to the image.”

Hillis, 3:54-58.

“The phase 1 POST code, which is stored in uncompressed (unpacked)
form, consists of only that portion of POST that is necessary to enable the
system memory. That is, under conventional BIOS protocol, the initial
portion of POST is first read from the BIOS ROM to enable or “wake up”
the system memory, usually composed of CMOS type random access
semiconductor memory.”

Hillis, 3:42-48.

2518

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 28

As shall be described in more detail hereinafter, upon system
initialization (bootstrapping), an image of the BIOS ROM is copied to the
upper 128 kbyte region of system memory, or shadow RAM, from Where
system execution takes place for higher operating speed.”

Hillis: 6:1-4.

See also Hillis, 6:16-49.

2519

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 28

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Hillis, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

“To increase the effective capacity of BIOS, an initial portion of the
power on system reset (POST) code that is required to enable the system
memory is stored in ROM in uncompressed form, and substantially the
remaining portion of the BIOS code is stored in compressed form.”

Hillis, Abstract.

“Upon system initialization during a cold boot, the uncompressed portion
of POST is executed from the ROM to enable the system memory, and
then an image of the BIOS code is written to shadow memory.”

Hillis, Abstract.

“In accordance with an important aspect of the invention, an initial
portion of the BIOS code that is required to enable the system memory is
in uncompressed form and a remaining portion thereof for carrying out
prescribed functions including converting operating signals developed by
an operating system executed by the CPU into electrical signals
compatible with devices that are responsive to signals provided by the
CPU to the system bus, is in compressed form.”

Hillis, 3:36-43.

“To reduce the time required for decompression of BIOS code, the code
is transferred from ROM to the system memory in compressed form.”

Hillis, 3:49-51.

“Upon cold boot, the initial portion POST is read directly from ROM to

2520

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 28

enable the system memory, and then an image of the entire BIOS code,
the major portion of which is in compressed form, is written to RAM in
the system memory, and control is transferred to the image.”

Hillis, 3:54-58.

“The next layers of the BIOS ROM consist of compressed set-up data,
including descriptive text, and compressed setup code. Next, all but the
initial portion of the power on system test (POST) code (termed “phase 2
POST herein”) is stored in compressed form, the initial portion of POST
(termed “phase 1 POST”) being stored in the next lower layer of BIOS
ROM.”

Hillis, 5:35-41.

“Then, all the remaining portion of POST and other BIOS code are copied
to memory in a region thereof termed “shadow RAM” or “shadow
memory.”

Hillis, 5:48-55.

“As shall be described in more detail hereinafter, upon system
initialization (bootstrapping), an image of the BIOS ROM is copied to the
upper 128 kbyte region of system memory, or shadow RAM, from where
system execution takes place for higher operating speed. Shadowing of
the BIOS is well known. In accordance with the invention, however, most
of the BIOS code is stored in ROM in compressed form.”

Hillis, 6:1-8.

“Next, for improved performance the entire ROM image is transferred to
the system memory (step 50) and the microprocessor cache is turned on
(step 52). Control of the system is now transferred to the RAM image of
POST, shown in FIG. 4 (step 54).”

Hillis, 6:50-54.

“Next, the uncompressed images are copied from the current region of
system RAM back into the shadow RAM (step 58)”

Hillis, 6:61-63.

“As has been described, this invention enables compression of most of
the contents of the BIOS ROM and boot	strapping of the system upon
BIOS code decompression, by storing only the initial portion of the POST

2521

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 28

code in BIOS ROM, sufficient to enable the system memory.”

Hillis, 7:66-8:3.

2522

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 28

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Hillis, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

“As BIOS code is needed during the remainder of the boot, the code is
selectively decompressed from the shadow memory to another region of
the system memory to which control is transferred.”

Hillis, Abstract.

“A further advantage is in performing BIOS code decompression under
different boot sceneries, cold and warm, and upon memory conditions of
real and protect.”

Hillis, 3:21-24.

“Then, after a jump from one location of the system memory to another,
decompression of the code takes place.”

Hillis, 3:51-53.

“As needed, portions of the BIOS code including POST, Setup (if
invoked) and then other BIOS routines are selectively decompressed
from the shadow memory to another location of the system memory.
Normal execution of POST and BIOS then proceeds until the boot is
completed.”

Hillis, 3:58-63.

“Mapping from the BIOS ROM to the system memory is followed by
decompression only of those BIOS routines that are necessary. Referring
to FIG. 5 depicting the BIOS decompressed shadow RAM image, the
upper 64K of shadow memory contains decompressed BIOS code, the
lowest 32K portion of the upper 128 kbyte block contains decompressed

2523

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 28

phase 2 POST code, decompressed set-up data and code reside at the
lowest 128K in system memory, and decompressed video and SES reside
as shown.”

Hillis, 6:8-16.

“As BIOS routines are needed, they are now selectively decompressed
from system RAM to system RAM (step 56). The POST may be
decompressed into any other region of RAM within or outside the system
RAM range of addresses including the region ultimately to be occupied
by the operating system.”

Hillis, 6:55-60.

“Decompression occurs selectively in a similar manner for other
compressed images of the BIOS code, other than setup which in this
example has not yet been called (step 60). Control of the system is
transferred to the shadow image of POST (step 62).”

Hillis, 6:63-67.

“As has been described, this invention enables compression of most of
the contents of the BIOS ROM and boot	strapping of the system upon
BIOS code decompression, by storing only the initial portion of the POST
code in BIOS ROM, sufficient to enable the system memory.”

Hillis, 7:66-8:3.

2524

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 28

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Hillis, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

“A further advantage is in performing BIOS code decompression under
different boot sceneries, cold and warm, and upon memory conditions of
real and protect.”

Hillis, 3:21-24.

“As needed, portions of the BIOS code including POST, Setup (if
invoked) and then other BIOS routines are selectively decompressed
from the shadow memory to another location of the system memory.
Normal execution of POST and BIOS then proceeds until the boot is
completed.”

Hillis, 3:58-63.

“As BIOS routines are needed, they are now selectively decompressed
from system RAM to system RAM (step 56). The POST may be
decompressed into any other region of RAM within or outside the system
RAM range of addresses including the region ultimately to be occupied
by the operating system.”

Hillis, 6:55-60.

“Decompression occurs selectively in a similar manner for other
compressed images of the BIOS code, other than setup which in this
example has not yet been called (step 60). Control of the system is
transferred to the shadow image of POST (step 62).”

2525

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 12 of 28

Hillis, 6:63-67.

“As has been described, this invention enables compression of most of
the contents of the BIOS ROM and boot	strapping of the system upon
BIOS code decompression, by storing only the initial portion of the POST
code in BIOS ROM, sufficient to enable the system memory.”

Hillis, 7:66-8:3.

2526

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 13 of 28

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Hillis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2527

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 28

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Hillis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also Look for additional references to application programs

2528

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 15 of 28

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Hillis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also Look for additional references to application programs

2529

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 16 of 28

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Hillis, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also Look for additional references to controller

2530

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 17 of 28

6. The method of claim 1, further
comprising updating the list of boot data.

Hillis, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also add disclosure from 862 patent on updating

2531

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 18 of 28

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Hillis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also add disclosure on Lempel-Ziv

2532

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 19 of 28

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Hillis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also add disclosure on a plurality of encoders

2533

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 11.1
“A system comprising: a processor;”

 Page 20 of 28

11.1. a processor;

Hillis, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hillis discloses this limitation:

See Claim 1.2 above.

2534

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 11.2
“a memory”

 Page 21 of 28

11.2. a memory; and

Hillis, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hillis discloses this limitation:

See Claims 1.3, and 1.4 above.

2535

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 22 of 28

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Hillis, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also add disclosure of non-volatile memory to the extent not in claim 1 already

2536

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 23 of 28

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Hillis, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2537

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 24 of 28

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Hillis, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1 and 1.5 above.

2538

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 25 of 28

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Hillis, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hillis discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2539

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 26 of 28

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Hillis, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2540

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 27 of 28

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Hillis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1, 8, and 11 above.

2541

Appendix B6
Invalidity of U.S. Patent 8,090,936 based on Hillis

	

Hillis Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 28 of 28

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Hillis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hillis discloses this limitation:

See Claims 1, 9, and 11 above.

2542

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning
 Page 1 of 30

U.S. Patent No. 5,420,998 to Horning (“Horning”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2543

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 30

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Horning, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

“The hard disk 42 data source provides persistent or nonvolatile data
storage together with the necessary data accessing mechanisms and logic
for reading and writing data. The buffer memory 50 is preferably solid
state memory providing data storage plus data transfer rates much higher
than the hard disk 42, in fact, preferably rates greater than the transfer
rate of the host 18. Thus, both the cache memory 54 and the SSD memory
58 are intended to supply storage for those data items that are accessed
frequently by the host 18. The cache memory 54 stores frequently
accessed copies of hard disk 42 data items, preferably without any control
bits relating to hard disk 42 data formatting. The SSD memory 58 stores
frequently accessed data items in a “disk-like” format.”

Horning, 5:17-31.

“Depending on the dual disk drive 10 configuration, the microcode
instructions for the processor 30 can reside in either a read only memory
(ROM) associated with processor 30 or, alternatively, the microcode can
reside on the hard disk 42.”

Horning, 7:46-50, Fig. 2.

“In step 68, the processor 30 requests the disk data transfer unit 38 to
retrieve the SSD memory 58, or more generally the buffer memory 50,
configuration parameter values from a manufacturer specified location on

2544

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 30

the hard disk 42.”

Horning, 7:59-63. See also Horning, 7:59-8:2.

“The configuring is similar to step 220 in Fig. 4 in that it includes
providing the cache/SSD data transfer unit 46 with: (i) the number of
blocks to be read, “blk_cnt,” (ii) the initial header location address, in the
SSD memory 58 where the data is to be read as determined from the
physical address established in step 312 above, (iii) the expected value of
the sector header at this location, and (iv) a signal indicating that the data
to be received from the SSD memory 58 is to be transferred to the host
18 without header and error correction bits.”

Horning, 13:2-12.

2545

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 30

1.2 initializing a central processing unit of
said computer system;

Horning, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

Horning, Fig. 1.

“Additional software is also provided to initialize the dual disk drive and
to assure SSD data integrity upon power failure. To make the
initialization of the dual disk drive as simple as possible for system
administration personnel, the initialization procedure has been
constructed so that the dual disk drive can be initialized comparable to a
conventional hard disk drive. In this case, the parameters for configuring
the dual disk drive are supplied with default values during dual disk drive

2546

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 30

initialization.”

Horning, 3:19-28. See also, Horning, 3:28-35.

“Returning to the controller 22, it includes: a host interface 26, a buffer
controller 34, a disk data transfer unit 38 and a processor 30.”

Horning, 5:49-52.

“Referring now to FIG. 2, a preferred procedure is presented for
initialization of the dual disk drive 10. In step 60 a user physically
switches on power to the dual disk drive 10. Assuming the data
connection between the dual disk drive 10 and the host 18 has been
physically established, the user preferably activates all further
initialization tasks from the host 18. In step 64, both the hard disk 42 and
the processor 30 become fully functional. That is, the hard disk 42 is
directed to spin-up (i.e. accelerate rotation of its included magnetic
storage disk until the proper rotation rate is attained to allow data to be
transferred) and the processor 30 is directed to boot-up.”

Horning, 7:34-46, Fig. 2.

“If the microcode resides in ROM, then the processor 30 can boot-up
simultaneously with the hard disk 42 spin-up. Otherwise, the processor
30 boot-up will occur immediately after spin-up and the microcode is
downloaded into processor 30.”

Horning, 7:50-55.

“Upon completion of the SSD memory 58 formatting, the cache/SSD data
transfer unit 46 interrupts the processor 30 signaling that SSD memory
58 initialization is complete.”

Horning, 8:16-19.

2547

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 30

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Horning, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

“The hard disk 42 data source provides persistent or nonvolatile data
storage together with the necessary data accessing mechanisms and logic
for reading and writing data. The buffer memory 50 is preferably solid
state memory providing data storage plus data transfer rates much higher
than the hard disk 42, in fact, preferably rates greater than the transfer
rate of the host 18. Thus, both the cache memory 54 and the SSD memory
58 are intended to supply storage for those data items that are accessed
frequently by the host 18. The cache memory 54 stores frequently
accessed copies of hard disk 42 data items, preferably without any control
bits relating to hard disk 42 data formatting. The SSD memory 58 stores
frequently accessed data items in a “disk-like” format.”

Horning, 5:17-31.

“If the data transfer is directed to a hard disk 42 location, then preferably
the transfer must be through the cache memory 54 regardless of whether
the host request is a read or write. That is, if a data read is requested then
a- valid copy of the requested data must either reside in the cache memory
54 or be transferred into the cache memory 54 from the hard disk 42 via
the disk data transfer unit 38, the buffer controller 34 and the cache/SSD
data transfer unit 46. In any case, the requested data is subsequently
transferred from the cache memory 54 to the host 18, via the cache/SSD
data transfer unit 46, the buffer controller 34 and the host interface 26.”

Horning, 6:33-45.

“If the microcode resides in ROM, then the processor 30 can boot-up
simultaneously with the hard disk 42 spin-up. Otherwise, the processor

2548

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 30

30 boot-up will occur immediately after spin-up and the microcode is
downloaded into processor 30.”

Horning, 7:50-55.

“In step 68, the processor 30 requests the disk data transfer unit 38 to
retrieve the SSD memory 58, or more generally the buffer memory 50,
configuration parameter values from a manufacturer specified location on
the hard disk 42.”

Horning, 7:59-63. See also Horning, 7:59-8:2.

“Referring to FIG. 5B, in step 324 the processor 30 configures the host
interface 26 and the buffer controller 34 to transfer “blk_” number of data
blocks from the cache/SSD data transfer unit 46 to the host 18. In step
328, the processor 30 instructs the host interface 26, the buffer controller
34 and the cache/SSD data transfer unit 46 to transfer data from the SSD
memory 58 to the host 19. The requested data is transferred from the
SSD memory 58 through the cache/SSD data transfer unit 46 a sector at
a time.”

Horning, 13:12-22.

“In this step the processor 30 determines whether or not a current
version of the data to be read is in the cache 54. If so, then in step 344,
the processor assigns the address of the data cache location to the
variable, -“cache_loc.” In step 348, the processor 30 configures the
cache/SSD data transfer unit 46 to read “blk_cnt” data blocks from the
cache 54 and transfer them to the buffer controller 34 without any
modification or formatting. In step 352, the processor 30 configures the
host interface 26 and the buffer controller 34 to transfer “blk_cnt”
number of data blocks from the cache/SSD data transfer unit 46 to the
host 18. Referring to FIG. SC, in step 356, the processor 30 instructs
the host interface 26, the buffer controller 34 and the cache/SSD data
transfer unit 46 to transfer the data blocks from the cache 54 to the host
18.”

Horning, 13:47-62, Fig. 5A-5C.

“In step 364, the processor 30 determines a cache location where the data
can be written from the hard disk 42 and assigns the address of this
location to “cache__loc.” In step 368, the processor 30 configures the
buffer controller 34 and the cache/SSD data transfer unit 46 to transfer
“blk_cnt” number of data blocks from the disk data transfer unit 38 to the
cache 54. Note, in this step, the cache/SSD data transfer unit 46 is

2549

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 30

configured to write the data to the cache 54 without any modification or
formatting. In step 372, the processor 30 waits for an interrupt from the
disk data transfer unit 38 indicating the seek command has completed and
successfully located the data to be read. In step 376, the processor
instructs the disk transfer unit 38, the buffer controller 34 and the
cache/SSD data transfer unit 42 to transfer the data located on the hard
disk 42 to the cache 54. Preferably after a predetermined number of data
bytes have been transferred to the cache 54, the host interface 26, the
buffer controller 34 and the cache/SSD data transfer unit 46 will
commence multiplexing the data transfer to the cache 54 with an
additional data transfer of this same data from the cache 54 to the host
18.”

Horning, 14:1-23, Fig. 5A-5C.

2550

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 30

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Horning, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

“The hard disk 42 data source provides persistent or nonvolatile data
storage together with the necessary data accessing mechanisms and logic
for reading and writing data. The buffer memory 50 is preferably solid
state memory providing data storage plus data transfer rates much higher
than the hard disk 42, in fact, preferably rates greater than the transfer
rate of the host 18. Thus, both the cache memory 54 and the SSD memory
58 are intended to supply storage for those data items that are accessed
frequently by the host 18. The cache memory 54 stores frequently
accessed copies of hard disk 42 data items, preferably without any control
bits relating to hard disk 42 data formatting. The SSD memory 58 stores
frequently accessed data items in a “disk-like” format.”

Horning, 5:17-31.

“If the data transfer is directed to a hard disk 42 location, then preferably
the transfer must be through the cache memory 54 regardless of whether
the host request is a read or write. That is, if a data read is requested then
a- valid copy of the requested data must either reside in the cache memory
54 or be transferred into the cache memory 54 from the hard disk 42 via
the disk data transfer unit 38, the buffer controller 34 and the cache/SSD
data transfer unit 46. In any case, the requested data is subsequently
transferred from the cache memory 54 to the host 18, via the cache/SSD
data transfer unit 46, the buffer controller 34 and the host interface 26.”

Horning, 6:33-45.

“If the microcode resides in ROM, then the processor 30 can boot-up
simultaneously with the hard disk 42 spin-up. Otherwise, the processor
30 boot-up will occur immediately after spin-up and the microcode is
downloaded into processor 30.”

2551

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 30

Horning, 7:50-55.

“In step 68, the processor 30 requests the disk data transfer unit 38 to
retrieve the SSD memory 58, or more generally the buffer memory 50,
configuration parameter values from a manufacturer specified location on
the hard disk 42.”

Horning, 7:59-63. See also Horning, 7:59-8:2.

“Referring to FIG. 5B, in step 324 the processor 30 configures the host
interface 26 and the buffer controller 34 to transfer “blk_” number of data
blocks from the cache/SSD data transfer unit 46 to the host 18. In step
328, the processor 30 instructs the host interface 26, the buffer controller
34 and the cache/SSD data transfer unit 46 to transfer data from the SSD
memory 58 to the host 19. The requested data is transferred from the
SSD memory 58 through the cache/SSD data transfer unit 46 a sector at
a time.”

Horning, 13:12-22.

“In this step the processor 30 determines whether or not a current
version of the data to be read is in the cache 54. If so, then in step 344,
the processor assigns the address of the data cache location to the
variable, -“cache_loc.” In step 348, the processor 30 configures the
cache/SSD data transfer unit 46 to read “blk_cnt” data blocks from the
cache 54 and transfer them to the buffer controller 34 without any
modification or formatting. In step 352, the processor 30 configures the
host interface 26 and the buffer controller 34 to transfer “blk_cnt”
number of data blocks from the cache/SSD data transfer unit 46 to the
host 18. Referring to FIG. SC, in step 356, the processor 30 instructs
the host interface 26, the buffer controller 34 and the cache/SSD data
transfer unit 46 to transfer the data blocks from the cache 54 to the host
18.”

Horning, 13:47-62, Fig. 5A-5C.

“In step 364, the processor 30 determines a cache location where the data
can be written from the hard disk 42 and assigns the address of this
location to “cache__loc.” In step 368, the processor 30 configures the
buffer controller 34 and the cache/SSD data transfer unit 46 to transfer
“blk_cnt” number of data blocks from the disk data transfer unit 38 to the
cache 54. Note, in this step, the cache/SSD data transfer unit 46 is
configured to write the data to the cache 54 without any modification or

2552

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 11 of 30

formatting. In step 372, the processor 30 waits for an interrupt from the
disk data transfer unit 38 indicating the seek command has completed and
successfully located the data to be read. In step 376, the processor
instructs the disk transfer unit 38, the buffer controller 34 and the
cache/SSD data transfer unit 42 to transfer the data located on the hard
disk 42 to the cache 54. Preferably after a predetermined number of data
bytes have been transferred to the cache 54, the host interface 26, the
buffer controller 34 and the cache/SSD data transfer unit 46 will
commence multiplexing the data transfer to the cache 54 with an
additional data transfer of this same data from the cache 54 to the host
18.”

Horning, 14:1-23, Fig. 5A-5C.

2553

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 12 of 30

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

REFERENCE, as evidenced by the
example citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

“Referring to FIG. 5B, in step 324 the processor 30 configures the host
interface 26 and the buffer controller 34 to transfer “blk_” number of data
blocks from the cache/SSD data transfer unit 46 to the host 18. In step
328, the processor 30 instructs the host interface 26, the buffer controller
34 and the cache/SSD data transfer unit 46 to transfer data from the SSD
memory 58 to the host 19. The requested data is transferred from the
SSD memory 58 through the cache/SSD data transfer unit 46 a sector at
a time.”

Horning, 13:12-22.

“In this step the processor 30 determines whether or not a current
version of the data to be read is in the cache 54. If so, then in step 344,
the processor assigns the address of the data cache location to the
variable, -“cache_loc.” In step 348, the processor 30 configures the
cache/SSD data transfer unit 46 to read “blk_cnt” data blocks from the
cache 54 and transfer them to the buffer controller 34 without any
modification or formatting. In step 352, the processor 30 configures the
host interface 26 and the buffer controller 34 to transfer “blk_cnt”
number of data blocks from the cache/SSD data transfer unit 46 to the
host 18. Referring to FIG. SC, in step 356, the processor 30 instructs
the host interface 26, the buffer controller 34 and the cache/SSD data
transfer unit 46 to transfer the data blocks from the cache 54 to the host
18.”

Horning, 13:47-62, Fig. 5A-5C.

2554

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 13 of 30

“In step 364, the processor 30 determines a cache location where the data
can be written from the hard disk 42 and assigns the address of this
location to “cache__loc.” In step 368, the processor 30 configures the
buffer controller 34 and the cache/SSD data transfer unit 46 to transfer
“blk_cnt” number of data blocks from the disk data transfer unit 38 to the
cache 54. Note, in this step, the cache/SSD data transfer unit 46 is
configured to write the data to the cache 54 without any modification or
formatting. In step 372, the processor 30 waits for an interrupt from the
disk data transfer unit 38 indicating the seek command has completed and
successfully located the data to be read. In step 376, the processor
instructs the disk transfer unit 38, the buffer controller 34 and the
cache/SSD data transfer unit 42 to transfer the data located on the hard
disk 42 to the cache 54. Preferably after a predetermined number of data
bytes have been transferred to the cache 54, the host interface 26, the
buffer controller 34 and the cache/SSD data transfer unit 46 will
commence multiplexing the data transfer to the cache 54 with an
additional data transfer of this same data from the cache 54 to the host
18.”

Horning, 14:1-23, Fig. 5A-5C.

2555

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 14 of 30

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Horning, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2556

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 15 of 30

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Horning, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“In particular, since most of the information for anticipating future data
requirements of host applications reside in the host, for most efficient
cache use, the host must make decisions as to what data should be
retained in the cache.”

Horning, 1:31-35.

“The embodiment described hereinabove is further intended to explain
the best mode presently known of practicing the invention and to enable
other skilled in the art to utilized the invention is such, or other
embodiments, and with the various modifications required by their
particular application or uses of the invention. It is intended that the
appended claims be construed to include alternative embodiments to the
extent permitted by the prior art.”

Horning, 14:47-55.

2557

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 16 of 30

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Horning, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“In particular, since most of the information for anticipating future data
requirements of host applications reside in the host, for most efficient
cache use, the host must make decisions as to what data should be
retained in the cache.”

Horning, 1:31-35.

“The embodiment described hereinabove is further intended to explain
the best mode presently known of practicing the invention and to enable
other skilled in the art to utilized the invention is such, or other
embodiments, and with the various modifications required by their
particular application or uses of the invention. It is intended that the
appended claims be construed to include alternative embodiments to the
extent permitted by the prior art.”

Horning, 14:47-55.

2558

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 17 of 30

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Horning, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Horning, Fig. 1. See also Fig. 4B, 4C, 5B, 5C.

“The disk controller, therefore, is left with the responsibility of managing

2559

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 18 of 30

the data transfer between the cache, the hard disk and the host. In such
cases the controller usually supplies a relatively simple, and less than
optimal, data caching strategy such as the strategy where the most
recently accessed data is always stored in the cache regardless of the
access frequency.”

Horning, 1:42-49. See also Horning, 2:14-26, 3:50-51, 4:4-6, 5:5-17, 5:42-6:10, 6:37-
7:18, 10:37-14:29.

2560

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 19 of 30

6. The method of claim 1, further
comprising updating the list of boot data.

Horning, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2561

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 20 of 30

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Horning, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2562

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 21 of 30

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Horning, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2563

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 11.1
“A system comprising: a processor;”

 Page 22 of 30

11.1. a processor;

Horning, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Horning discloses this limitation:

See Claim 1.2 above.

2564

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 11.2
“a memory”

 Page 23 of 30

11.2. a memory; and

Horning, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Horning discloses this limitation:

See Claims 1.3, and 1.4 above.

2565

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 24 of 30

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Horning, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2566

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 25 of 30

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Horning, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2567

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 26 of 30

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Horning, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1 and 1.5 above.

2568

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 27 of 30

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Horning, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Horning discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2569

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 28 of 30

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Horning, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Horning discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2570

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 29 of 30

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Horning, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

See Claims 1, 8, and 11 above.

2571

Appendix B7
Invalidity of U.S. Patent 8,090,936 based on Horning

	

Horning Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 30 of 30

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Horning, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Horning discloses this limitation:

See Claims 1, 9, and 11 above.

2572

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis
 Page 1 of 28

U.S. Patent No. 5,812,817 to Hovis (“Hovis”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2573

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 28

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Hovis, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

Hovis, Fig. 1. Hovis, 2:34-43.

“The architecture includes a cache section, a setup table, and a
compressed storage, all of which are partitioned from a computer
memory. The cache section is used for storing uncompressed data and is
a fast access memory for data which is frequently referenced. The
compressed storage is used for storing compressed data. The setup table
is used for specifying locations of compressed data stored within the

2574

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 28

compressed storage.”

Hovis, Abstract. Hovis, 1:39-51, 2:18-24.

“The function of the setup table 14 is to provide a directory for the
memory locations which are in the compressed storage 16. When an
access to the memory 10 misses the cache 12, it generates an access to
the setup table 14. The data from this access contains the location of the
data within compressed storage 16. The address results in an access to the
compressed storage 16 which in turn results in compressed data being
accessed and processed by the compression engine 28, which performs
compression and decompression on the data. The now uncompressed data
is placed in the uncompressed cache 12 and transferred to the requesting
element (for a fetch), or updated and maintained within the uncompressed
cache 12 (for a store).”

Hovis, 3:3-15. See also Fig. 2, 3:23-38.

“Fig. 4 shows a basic dataflow structure of the memory 10 with a
hardware assist compression engine 28. A memory control 24 interfaces
with the memory 10, compression engine 28, and processor units 22. The
purpose of a hardware based compression engine 28 is to provide the
necessary bandwidth and latency required by memory entities that reside
close to the processor data/instruction units (i.e. L1, L2, L3). Typical
software based compression techniques have limited bandwidth and
significantly greater latency which would substantially degrade the
processor performance.”

Hovis, 3:39-50, Fig. 4.

“When an access to memory misses the uncompressed cache 12, it results
in an access to the setup table 14 in order to fetch pointer information for
indicating where the compressed data resides in the compressed storage
16. This data is sent to the compression engine which in turn uses the
addresses to fetch the necessary compressed data from compressed
storage 16. The data is then uncompressed and sent back to the requesting
element and uncompressed cache in the memory by the compression
engine 28.”

Hovis, 3:63-4:4.

“Also, the directory for the uncompressed cache must be updated when
new locations are added or when old (the least recently used) locations
are removed to compressed memory 16.”

2575

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 28

Hovis, 4:18-21.

“If the cache was not full, the system uses the setup table to retrieve the
compressed data (34) and sends the compressed data to a compression
engine for decompressing (38). The system continues as if data was in the
cache.”

Hovis, 4:40-44.

“Aspects of the control of the hardware assisted memory compression
can be implemented either by hardware, software (operating system,
namely memory management), or a combination of both. The present
invention is not dependent upon a particular hardware or software control
scheme. The compression engine is preferably implemented in hardware
in order to perform the compression and decompression in a timely
fashion and with sufficient bandwidth.”

Hovis, 5:4-11.

“The implementation involves a hardware compression engine and the
control can be via hardware, software, or a combination of both.”

Hovis, 5:27-30.

2576

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 28

1.2 initializing a central processing unit of
said computer system;

Hovis, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

2577

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 28

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Hovis, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

“The architecture includes a cache section, a setup table, and a
compressed storage, all of which are partitioned from a computer
memory. The cache section is used for storing uncompressed data and is
a fast access memory for data which is frequently referenced. The
compressed storage is used for storing compressed data. The setup table
is used for specifying locations of compressed data stored within the
compressed storage. A high speed uncompressed cache directory is
coupled to the memory for determining if data is stored in the cache
section or compressed storage and for locating data in the cache.”

Hovis, Abstract. Hovis, 1:39-51, 2:18-24, 2:34-43.

“The function of the setup table 14 is to provide a directory for the
memory locations which are in the compressed storage 16. When an
access to the memory 10 misses the cache 12, it generates an access to
the setup table 14. The data from this access contains the location of the
data within compressed storage 16. The address results in an access to the
compressed storage 16 which in turn results in compressed data being
accessed and processed by the compression engine 28, which performs
compression and decompression on the data. The now uncompressed data
is placed in the uncompressed cache 12 and transferred to the requesting
element (for a fetch), or updated and maintained within the uncompressed
cache 12 (for a store).”

Hovis, 3:3-15.

“When an access to memory misses the uncompressed cache 12, it results
in an access to the setup table 14 in order to fetch pointer information for
indicating where the compressed data resides in the compressed storage

2578

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 28

16. This data is sent to the compression engine which in turn uses the
addresses to fetch the necessary compressed data from compressed
storage 16. The data is then uncompressed and sent back to the requesting
element and uncompressed cache in the memory by the compression
engine 28.”

Hovis, 3:63-4:4.

“If the cache was not full, the system uses the setup table to retrieve the
compressed data (34) and sends the compressed data to a compression
engine for decompressing (38). The system continues as if data was in the
cache.”

Hovis, 4:40-44.

2579

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 28

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Hovis, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

“The architecture includes a cache section, a setup table, and a
compressed storage, all of which are partitioned from a computer
memory. The cache section is used for storing uncompressed data and is
a fast access memory for data which is frequently referenced. The
compressed storage is used for storing compressed data. The setup table
is used for specifying locations of compressed data stored within the
compressed storage. A high speed uncompressed cache directory is
coupled to the memory for determining if data is stored in the cache
section or compressed storage and for locating data in the cache.”

Hovis, Abstract. Hovis, 1:39-51, 2:18-24, 2:34-43.

“The function of the setup table 14 is to provide a directory for the
memory locations which are in the compressed storage 16. When an
access to the memory 10 misses the cache 12, it generates an access to
the setup table 14. The data from this access contains the location of the
data within compressed storage 16. The address results in an access to the
compressed storage 16 which in turn results in compressed data being
accessed and processed by the compression engine 28, which performs
compression and decompression on the data. The now uncompressed data
is placed in the uncompressed cache 12 and transferred to the requesting
element (for a fetch), or updated and maintained within the uncompressed
cache 12 (for a store).”

Hovis, 3:3-15.

“When an access to memory misses the uncompressed cache 12, it results
in an access to the setup table 14 in order to fetch pointer information for
indicating where the compressed data resides in the compressed storage

2580

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 28

16. This data is sent to the compression engine which in turn uses the
addresses to fetch the necessary compressed data from compressed
storage 16. The data is then uncompressed and sent back to the requesting
element and uncompressed cache in the memory by the compression
engine 28.”

Hovis, 3:63-4:4.

“If the cache was not full, the system uses the setup table to retrieve the
compressed data (34) and sends the compressed data to a compression
engine for decompressing (38). The system continues as if data was in the
cache.”

Hovis, 4:40-44.

2581

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 10 of 28

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Hovis, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

“The function of the setup table 14 is to provide a directory for the
memory locations which are in the compressed storage 16. When an
access to the memory 10 misses the cache 12, it generates an access to
the setup table 14. The data from this access contains the location of the
data within compressed storage 16. The address results in an access to the
compressed storage 16 which in turn results in compressed data being
accessed and processed by the compression engine 28, which performs
compression and decompression on the data. The now uncompressed data
is placed in the uncompressed cache 12 and transferred to the requesting
element (for a fetch), or updated and maintained within the uncompressed
cache 12 (for a store).”

Hovis, 3:3-15.

“When an access to memory misses the uncompressed cache 12, it results
in an access to the setup table 14 in order to fetch pointer information for
indicating where the compressed data resides in the compressed storage
16. This data is sent to the compression engine which in turn uses the
addresses to fetch the necessary compressed data from compressed
storage 16. The data is then uncompressed and sent back to the requesting
element and uncompressed cache in the memory by the compression
engine 28.”

Hovis, 3:63-4:4.

“If the cache was not full, the system uses the setup table to retrieve the
compressed data (34) and sends the compressed data to a compression

2582

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 28

engine for decompressing (38). The system continues as if data was in the
cache.”

Hovis, 4:40-44.

2583

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 12 of 28

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Hovis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2584

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 13 of 28

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Hovis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2585

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 14 of 28

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Hovis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2586

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 15 of 28

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Hovis, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2587

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 16 of 28

6. The method of claim 1, further
comprising updating the list of boot data.

Hovis, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The function of the setup table 14 is to provide a directory for the
memory locations which are in the compressed storage 16. When an
access to the memory 10 misses the cache 12, it generates an access to
the setup table 14. The data from this access contains the location of the
data within compressed storage 16. The address results in an access to the
compressed storage 16 which in turn results in compressed data being
accessed and processed by the compression engine 28, which performs
compression and decompression on the data. The now uncompressed data
is placed in the uncompressed cache 12 and transferred to the requesting
element (for a fetch), or updated and maintained within the uncompressed
cache 12 (for a store).”

Hovis, 3:3-15. See also Fig. 2, 3:23-38.

“Also, the directory for the uncompressed cache must be updated when
new locations are added or when old (the least recently used) locations
are removed to compressed memory 16.”

Hovis, 4:18-21.

2588

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 17 of 28

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Hovis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

“A compression technique is typically used With this memory
architecture. For example, loss-less compression techniques used with the
present invention could provide a two times or greater improvement in
real memory capacity. This gain is dependent on both data patterns and
the chosen compression algorithm. The present invention is not
dependent on any particular compression algorithm; it can use any
lossless compression algorithm in general.”

Hovis, 2:23-30.

2589

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 18 of 28

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Hovis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A compression technique is typically used with this memory
architecture. For example, loss-less compression techniques used with the
present invention could provide a two times or greater improvement in
real memory capacity. This gain is dependent on both data patterns and
the chosen compression algorithm. The present invention is not
dependent on any particular compression algorithm; it can use any
lossless compression algorithm in general.”

Hovis, 2:23-30.

“The address results in an access to the compressed storage 16 Which in
turn results in compressed data being accessed and processed by the
compression engine 28, Which performs compression and decompression
on the data.”

Hovis, 3:8-12.

“FIG. 4 shows a basic data flow structure of the memory 10 with a
hardware assist compression engine 28. A memory control 24 interfaces
With the memory 10, compression engine 28, and processor units 22. The
purpose of a hardware based compression engine 28 is to provide the
necessary bandwidth and latency required by memory entities that reside
close to the processor data/instruction units (i.e. L1,L2,L3).”

Hovis, 3:41-46

2590

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 19 of 28

“The data is then uncompressed and sent back to the requesting element
and uncompressed cache in the memory by the compression engine 28.”

Hovis, 4:2-4.

“If the cache is full, then the system must do a cast out and transfer the
least recently used data element in the cache to the compressed storage
(48), Which requires sending the data to the compression engine for
compressing (46). The system then updates the data element in the cache
(50) and continues as if the cache Was not full. If the cache Was not full,
the system uses the setup table to retrieve the compressed data (34) and
sends the compressed data to a compression engine for decompressing
(38).”

Hovis, 4:34-44.

“Aspects of the control of the hardware assisted memory compression
can be implemented either by hardware, software (operating system,
namely memory management), or a combination of both. The present
invention is not dependent upon a particular hardware or software control
scheme. The compression engine is preferably implemented in hardware
in order to perform the compression and decompression in a timely
fashion and With sufficient bandwidth.”

Hovis, 5:4-11.

“The implementation involves a hardware compression engine and the
control can be via hardware, software, or a combination of both.”

Hovis, 5:27-30.

2591

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 11.1
“A system comprising: a processor;”

 Page 20 of 28

11.1. a processor;

Hovis, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hovis discloses this limitation:

See Claim 1.2 above.

2592

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 11.2
“a memory”

 Page 21 of 28

11.2. a memory; and

Hovis, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hovis discloses this limitation:

See Claims 1.3, and 1.4 above.

2593

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 22 of 28

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Hovis, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2594

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 23 of 28

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Hovis, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2595

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 24 of 28

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Hovis, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1 and 1.5 above.

2596

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 25 of 28

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Hovis, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Hovis discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2597

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 26 of 28

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Hovis, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2598

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 27 of 28

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Hovis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1, 8, and 11 above.

2599

Appendix B8
Invalidity of U.S. Patent 8,090,936 based on Hovis

	

Hovis Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 28 of 28

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Hovis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Hovis discloses this limitation:

See Claims 1, 9, and 11 above.

2600

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar
 Page 1 of 26

G.B. Patent No. 2276257 to Ingvar (“Ingvar”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2601

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 26

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Ingvar, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

“A method for enabling the transfer of stored firmware during start-up
of a computer, comprising the steps of reading configuration
information stored in a air configuration table in the first memory
device (40), transferring selected software modules from the first
memory device to a second memory device (130, 60, 50), and storing
the selected software modules at selected address areas in the second
memory device; in all accordance with the configuration information.”

Ingvar, Abstract.

“The memory device 40 may include firmware, such as startup software
and BIOS program modules. According to the invention, certain software
modules may be stored in a compressed form in the memory device 40.
A compressed data packet which includes one or more software modules
will take up less memory space than that taken up by a corresponding
amount of data or information stored in an uncompressed state, as is well
known to the person skilled in this art.”

Ingvar at 10.

“The resultant configuration data or information can be stored in a
configuration table which will thus disclose those program modules
which are required by the computer system in respect of the current

2602

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 26

configuration of said system.”

Ingvar at 11-12. See also Ingvar at 12, ¶¶ 1-2.

“The area c may include the aforesaid configuration table containing
information as to which software modules shall be used, and information
as to which addresses and software modules respectively shall be work-
stored.”

Ingvar at 13.

“In Step S150, the startup program can use the information in the
configuration table to decide which of the program modules shall be used
in the computer system and to obtain information as to where, i.e. at
which addresses, respective software modules shall be placed in the
working memory 130 for future use, until the computer unit is stopped
and restarted.”

Ingvar at 14-15.

“According to this embodiment, when the configuration table is stored in
a compressed state in the memory device 40, the reconfiguration
command can provide access to the decompressed configuration table in
the working memory 130. According to this latter embodiment of the
invention, the user is able to initiate compression and storage of the
modified table in the permanent memory device 40.”

Ingvar at 17.

“Steps S220 and S230 The selected software is compressed in Step S220
and is stored in Step S230 in a selected memory area in the first memory
device 40, which will retain its data content in the absence of an applied
voltage.”

Ingvar at 18.

“Step S250 According to one embodiment of the invention, there is
inserted in Step S250 configuration information which may also be stored
in the first memory device. The configuration information may have the
form of a data table which discloses, among other things, the memory
addresses at which the various software modules shall be stored when
decompressed. The table may also include information as to which
software modules shall be work-stored in the working memory and/or the
addresses at which the modules shall be work-stored when carrying out

2603

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 26

the first method according to the invention, as described above.”

Ingvar at 18.

“According to another embodiment of the invention, the software
modules are stored in the permanent memory device 40 in an
uncompressed state, together with the aforesaid configuration
information and startup program.”

Ingvar at 19.

2604

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 26

1.2 initializing a central processing unit of
said computer system;

Ingvar, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

“According to one aspect on the present invention there is provided a
method for use when starting up a computer system arrangement, the
arrangement comprising at least one computer unit and at least one first
memory device which includes at least one first data block with
information stored as firmware, the method including the step of
initiating the start of the computer unit and the step of transferring
software modules from the first memory device to a second memory
device, characterized by the steps of reading changeable configuration
information stored in a configuration table in the first memory device;
transferring selected modules among said software modules from the first
memory device to the second memory device, and storing the selected
software modules at selected address areas in the second memory device
in accordance with the configuration information.”

Ingvar at 10.

“When starting-up the computer unit 20, the data processing device 30
reads information contained in a memory device 40.”

Ingvar at 10.

“Step S120 and S130 In Step S120, the data processing unit 30 included
in the computer unit executes a first startup program. This startup
program can be executed and when executed, the first startup program
may include a routine which requires a check to be made as to which
peripheral units are included in the hardware included in the computer
system, as illustrated by Step S130 in Fig. 2.”

Ingvar at 11.

2605

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 26

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Ingvar, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

“A method for enabling the transfer of stored firmware during start-up
of a computer, comprising the steps of reading configuration
information stored in a air configuration table in the first memory
device (40), transferring selected software modules from the first
memory device to a second memory device (130, 60, 50), and storing
the selected software modules at selected address areas in the second
memory device; in all accordance with the configuration information.”

Ingvar, Abstract.

“The memory device 40 may include firmware, such as startup software
and BIOS program modules. According to the invention, certain software
modules may be stored in a compressed form in the memory device 40.
A compressed data packet which includes one or more software modules
will take up less memory space than that taken up by a corresponding
amount of data or information stored in an uncompressed state, as is well
known to the person skilled in this art.”

Ingvar at 10.

“Steps S220 and S230 The selected software is compressed in Step S220
and is stored in Step S230 in a selected memory area in the first memory
device 40, which will retain its data content in the absence of an applied
voltage.”

Ingvar at 18.

2606

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 26

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Ingvar, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

“Step 5140 In Step S140, the first startup program summons a
decompression or decompaction program which unpacks or
decompresses the firmware modules that are given in the configuration
table and that are stored in a compressed state. According to another
embodiment of the inventive method, the first decompression program
decompresses all firmware modules stored in the memory device 40,
wherein the choice of those modules that shall be used is made in
accordance with the configuration table after said decompression.”

Ingvar at 12.

“Step S240 In Step S240, there is inserted a decompression program,
which can also be stored in the first memory device 40.”

Ingvar at 18.

2607

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 8 of 26

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Ingvar, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

“Step 5140 In Step S140, the first startup program summons a
decompression or decompaction program which unpacks or
decompresses the firmware modules that are given in the configuration
table and that are stored in a compressed state. According to another
embodiment of the inventive method, the first decompression program
decompresses all firmware modules stored in the memory device 40,
wherein the choice of those modules that shall be used is made in
accordance with the configuration table after said decompression.”

Ingvar at 12.

“Step S240 In Step S240, there is inserted a decompression program,
which can also be stored in the first memory device 40.”

Ingvar at 18.

2608

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 9 of 26

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Ingvar, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2609

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 10 of 26

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Ingvar, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Another object of the present invention is to-enable the selection of
which software modules shall be placed in which memory positions
with the aid of software.”

Ingvar at 7.

“According to one aspect on the present invention there is provided a
method for use when starting up a computer system arrangement, the
arrangement comprising at least one computer unit and at least one first
memory device which includes at least one first data block with
information stored as firmware, the method including the step of
initiating the start of the computer unit and the step of transferring
software modules from the first memory device to a second memory
device, characterized by the steps of reading changeable configuration
information stored in a configuration table in the first memory device;
transferring selected modules among said software modules from the
first memory device to the second memory device, and storing the
selected software modules at selected address areas in the second
memory device in accordance with the configuration information.”

Ingvar at 10.

“The invention also relates to a method of storing firmware in a
computer unit so that software modules stored as firmware can be easily
made movable to selected addresses in the working memory 130.”

2610

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 11 of 26

Ingvar at 18.

2611

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 12 of 26

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Ingvar, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Another object of the present invention is to-enable the selection of
which software modules shall be placed in which memory positions
with the aid of software.”

Ingvar at 7.

“According to one aspect on the present invention there is provided a
method for use when starting up a computer system arrangement, the
arrangement comprising at least one computer unit and at least one first
memory device which includes at least one first data block with
information stored as firmware, the method including the step of
initiating the start of the computer unit and the step of transferring
software modules from the first memory device to a second memory
device, characterized by the steps of reading changeable configuration
information stored in a configuration table in the first memory device;
transferring selected modules among said software modules from the
first memory device to the second memory device, and storing the
selected software modules at selected address areas in the second
memory device in accordance with the configuration information.”

Ingvar at 10.

2612

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 13 of 26

“The invention also relates to a method of storing firmware in a
computer unit so that software modules stored as firmware can be easily
made movable to selected addresses in the working memory 130.”

Ingvar at 18.

2613

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 14 of 26

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Ingvar, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2614

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 15 of 26

6. The method of claim 1, further
comprising updating the list of boot data.

Ingvar, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A further object of the present invention is to provide a method to
enable program modules or data tables which are stored as firmware
when starting-up the computer system to be repositioned such that the
remaining unoccupied memory space can be readily utilized.”

Ingvar at 7.

2615

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 16 of 26

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Ingvar, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The memory area c may also include the aforesaid decompression
program, which can be used to decompress compressed data. The
memory area d may be a memory area which contains compressed
software modules.”

Ingvar at 13.

2616

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 17 of 26

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Ingvar, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Yet another object is to reduce the amount of hardware required by a
computer system, for instance such hardware as address decoders,
jumpers, permanent memory sockets, etc.”

Ingvar at 8.

“The memory area c may also include the aforesaid decompression
program, which can be used to decompress compressed data. The
memory area d may be a memory area which contains compressed
software modules.”

Ingvar at 13.

“According to this embodiment, when the configuration table is stored in
a compressed state in the memory device 40, the reconfiguration
command can provide access to the decompressed configuration table in
the working memory 130. According to this latter embodiment of the
invention, the user is able to initiate compression and storage of the
modified table in the permanent memory device 40.”

Ingvar at 17.

2617

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 11.1
“A system comprising: a processor;”

 Page 18 of 26

11.1. a processor;

Ingvar, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ingvar discloses this limitation:

See Claim 1.2 above.

2618

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 11.2
“a memory”

 Page 19 of 26

11.2. a memory; and

Ingvar, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ingvar discloses this limitation:

See Claims 1.3, and 1.4 above.

2619

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 20 of 26

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Ingvar, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

“Permanent Memory A memory which will retain stored data even in the
absence of power supply.”

Ingvar at 7.

“The memory means 40 may be a permanent memory. According to one
embodiment of the invention, the permanent memory 40 is a FLASH-
memory device. According to another embodiment of the invention, the
permanent memory 40 is a conventional EEPROM.”

Ingvar at 10.

2620

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 21 of 26

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Ingvar, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2621

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 22 of 26

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Ingvar, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1 and 1.5 above.

2622

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 23 of 26

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Ingvar, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2623

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 24 of 26

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Ingvar, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2624

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 25 of 26

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Ingvar, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1, 8, and 11 above.

2625

Appendix B9
Invalidity of U.S. Patent 8,090,936 based on Ingvar

	

Ingvar Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 26 of 26

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Ingvar, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Ingvar discloses this limitation:

See Claims 1, 9, and 11 above.

2626

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis
 Page 1 of 35

PCT Application No. WO 94/19768 to Kikinis (“Kikinis”) invalidates claims 1-6, 8-9, 11-
13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35
U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art
references, and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2627

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 35

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Kikinis, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this claim limitation:

A means of providing a BIOS routine from an EPROM to RAM in a
general purpose computer, where the BIOS routine is greater in number
of lines of code than the line capacity of the EPROM is provided. The
BIOS routine is stored in EPROM in three portions (11). A first portion
(13) is uncompressed, and loadable and operable by the CPU of the
computer to initialize RAM. A second portion (17) is compressed by
one of a number of schemes. A third portion (15) is a decompression
utility loadable and operable by the computer CPU to decompress the
compressed portion from EPROM and copy the resulting code to RAM,
resulting in a BIOS in RAM (4).

Kikinis, Abstract

2628

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 35

Kikinis, Fig. 1

Kikinis, Fig 2

As is well known in the art, a computer system, to be of any use, must
comprise all the computer hardware, such as the CPU, memory devices,
communication buses, and so forth. There must also be instruction sets

2629

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 35

(programs/software) for the CPU to follow to accomplish tasks. The
programmed information (application software) is typically stored on an
internal or peripheral memory device to be accessed by the CPU as
needed.

Kikinis, 1

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for a general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatile
memory device, and a BIOS routine stored on the programmable non-
volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access
memory in the general-purpose computer, and a decompression utility
code operable by the CPU to load the compressed portion, decompress
it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device

Kikinis, 2-3

In most BIOS systems for general purpose computers, the BIOS is
stored in an EPROM device as described in the background section
above. Upon power up the BIOS initializes the system, doing basic
tasks like accessing and checking the operation of on-board random-
access memory RAM, and typically, somewhere during the
initialization, at least a part of the BIOS code is copied (the BIOS copies
itself) into a portion of the on-board RAM.

Kikinis, 4

In typical general-purpose computers, as soon as the system receives
power, the BIOS tests and initializes system RAM, then copies
(shadows) itself from the EPROM to the RAM. The BIOS continues to
run in RAM. The purpose of shadowing the BIOS in RAM is to give the
CPU microprocessor much faster access to the BIOS code than it would
have by accessing the EPROM every time a BIOS code sequence is
needed in continuing operations.

Kikinis, 4

The present invention comprises a means of compressing at least a
significant portion of the BIOS code, storing all of the BIOS code,
including the compressed portion, in EPROM, and releasing the

2630

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 35

compressed code on powerup, so all of the code is available for the
computer to use. Also on powerup, the entire code is shadowed to RAM

Kikinis, 4-5

Fig. 1 is a diagrammatical representation of a compressed BIOS 11
according to the present invention. There are three different portions of
the code. Portion 13 is code to perform all operations to initialize and
test the system RAM, and make it ready for use, and is a familiar
portion of conventional BIOS routines. This portion in some
applications needs to perform such functions as initializing and testing a
memory controller and cache controllers and cache memory. Portion 15
is a decompression utility. Portion 17 represents the balance of the
BIOS code in compressed form. It will be apparent to those with skill in
the art that there are a number of compression schemes and related
decompression routines that might be used.

Kikins 5

Fig. 2 is a flow chart showing the operation of a computer from startup
following a BIOS routine according to the present invention. From
powerup signal 19, which is typically derived from the act of closing the
power on switch, operation goes to initialization operation 21, during
which system RAM is initialized. In operation 21, the system runs
portion 13 of Fig. 1.

Next, decompression utility 15 (Fig. 1) is accessed and run in operation
23. The decompression utility processes the balance of the BIOS code
(compressed), translates it into operable code, and shadows it to system
RAM. Although such decompression utilities are available, the code
pointing to the compressed portion of the BIOS, and that which causes
the decompressed code to be shadowed to RAM is not a part of a
conventional decompression routine. These commands are added to the
BIOS of the invention.

After the BIOS is shadowed operation continues (25) from the BIOS in
system RAM. All remaining BIOS processes, including testing and
initializing the remainder of the computer subsystems are accomplished
in this operating portion.

Kikinis, 5-6

One means by which the BIOS code may be compressed is based on the
fact that BIOS routines, as is common in most other coded instruction
sets, make use of frequently repeated code sequences. EPROMs used

2631

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 35

for BIOS are typically byte-wide devices, that is, the device can store
"words" of 8 bits. A sixteen bit word requires, then, two lines of BIOS
code.

Kikinis, 6

Fig. 3 is a diagrammatical representation of the token decompression
scheme described above. After the BIOS according to the embodiment
of the invention has initialized and tested the RAM, the decompression
utility is booted, and begins to read the compressed portion of the BIOS
at Start 27. At 29 the decompression utility loads the first/next byte
from the compressed portion of
the EPROM BIOS. If this byte is hex FF (31), it is recognized as a
token, and control goes to 33,. where the system reads the byte
following the token flag. This byte is always a pointer to a code
sequence.

Kikinis, 7

See also Kikinis Fig. 3.

2632

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 35

1.2 initializing a central processing unit of
said computer system;

Kikinis, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Kikinis discloses this claim limitation:

A means of providing a BIOS routine from an EPROM to RAM in a
general purpose computer, where the BIOS routine is greater in number
of lines of code than the line capacity of the EPROM is provided. The
BIOS routine is stored in EPROM in three portions (11). A first portion
(13) is uncompressed, and loadable and operable by the CPU of the
computer to initialize RAM. A second portion (17) is compressed by
one of a number of schemes. A third portion (15) is a decompression
utility loadable and operable by the computer CPU to decompress the
compressed portion from EPROM and copy the resulting code to RAM,
resulting in a BIOS in RAM (4).

Kikinis, Abstract

As is well known in the art, a computer system, to be of any use, must
comprise all the computer hardware, such as the CPU, memory devices,
communication buses, and so forth. There must also be instruction sets
(programs/software) for the CPU to follow to accomplish tasks. The
programmed information (application software) is typically stored on an
internal or peripheral memory device to be accessed by the CPU as
needed.

Kikinis, 1

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for a general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatile
memory device, and a BIOS routine stored on the programmable non-
volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access
memory in the general-purpose computer, and a decompression utility
code operable by the CPU to load the compressed portion, decompress

2633

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 8 of 35

it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device

Kikinis, 2-3

In most BIOS systems for general purpose computers, the BIOS is
stored in an EPROM device as described in the background section
above. Upon power up the BIOS initializes the system, doing basic
tasks like accessing and checking the operation of on-board random-
access memory RAM, and typically, somewhere during the
initialization, at least a part of the BIOS code is copied (the BIOS copies
itself) into a portion of the on-board RAM.

Kikinis, 4

In typical general-purpose computers, as soon as the system receives
power, the BIOS tests and initializes system RAM, then copies
(shadows) itself from the EPROM to the RAM. The BIOS continues to
run in RAM. The purpose of shadowing the BIOS in RAM is to give the
CPU microprocessor much faster access to the BIOS code than it would
have by accessing the EPROM every time a BIOS code sequence is
needed in continuing operations.

Kikinis, 4

Fig. 1 is a diagrammatical representation of a compressed BIOS 11
according to the present invention. There are three different portions of
the code. Portion 13 is code to perform all operations to initialize and
test the system RAM, and make it ready for use, and is a familiar
portion of conventional BIOS routines. This portion in some
applications needs to perform such functions as initializing and testing a
memory controller and cache controllers and cache memory. Portion 15
is a decompression utility. Portion 17 represents the balance of the
BIOS code in compressed form. It will be apparent to those with skill in
the art that there are a number of compression schemes and related
decompression routines that might be used.

Kikins 5

Fig. 2 is a flow chart showing the operation of a computer from startup
following a BIOS routine according to the present invention. From
powerup signal 19, which is typically derived from the act of closing the
power on switch, operation goes to initialization operation 21, during

2634

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 9 of 35

which system RAM is initialized. In operation 21, the system runs
portion 13 of Fig. 1.

Next, decompression utility 15 (Fig. 1) is accessed and run in operation
23. The decompression utility processes the balance of the BIOS code
(compressed), translates it into operable code, and shadows it to system
RAM. Although such decompression utilities are available, the code
pointing to the compressed portion of the BIOS, and that which causes
the decompressed code to be shadowed to RAM is not a part of a
conventional decompression routine. These commands are added to the
BIOS of the invention.

After the BIOS is shadowed operation continues (25) from the BIOS in
system RAM. All remaining BIOS processes, including testing and
initializing the remainder of the computer subsystems are accomplished
in this operating portion.

Kikinis, 5-6

See also Kikinis Fig. 1-3.

2635

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 35

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Kikinis, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this claim limitation:

A means of providing a BIOS routine from an EPROM to RAM in a
general purpose computer, where the BIOS routine is greater in number
of lines of code than the line capacity of the EPROM is provided. The
BIOS routine is stored in EPROM in three portions (11). A first portion
(13) is uncompressed, and loadable and operable by the CPU of the
computer to initialize RAM. A second portion (17) is compressed by
one of a number of schemes. A third portion (15) is a decompression
utility loadable and operable by the computer CPU to decompress the
compressed portion from EPROM and copy the resulting code to RAM,
resulting in a BIOS in RAM (4).

Kikinis, Abstract

As is well known in the art, a computer system, to be of any use, must
comprise all the computer hardware, such as the CPU, memory devices,
communication buses, and so forth. There must also be instruction sets
(programs/software) for the CPU to follow to accomplish tasks. The
programmed information (application software) is typically stored on an
internal or peripheral memory device to be accessed by the CPU as
needed.

Kikinis, 1

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for a general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatile
memory device, and a BIOS routine stored on the programmable non-
volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access

2636

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 35

memory in the general-purpose computer, and a decompression utility
code operable by the CPU to load the compressed portion, decompress
it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device

Kikinis, 2-3

In most BIOS systems for general purpose computers, the BIOS is
stored in an EPROM device as described in the background section
above. Upon power up the BIOS initializes the system, doing basic
tasks like accessing and checking the operation of on-board random-
access memory RAM, and typically, somewhere during the
initialization, at least a part of the BIOS code is copied (the BIOS copies
itself) into a portion of the on-board RAM.

Kikinis, 4

In typical general-purpose computers, as soon as the system receives
power, the BIOS tests and initializes system RAM, then copies
(shadows) itself from the EPROM to the RAM. The BIOS continues to
run in RAM. The purpose of shadowing the BIOS in RAM is to give the
CPU microprocessor much faster access to the BIOS code than it would
have by accessing the EPROM every time a BIOS code sequence is
needed in continuing operations.

Kikinis, 4

The present invention comprises a means of compressing at least a
significant portion of the BIOS code, storing all of the BIOS code,
including the compressed portion, in EPROM, and releasing the
compressed code on powerup, so all of the code is available for the
computer to use. Also on powerup, the entire code is shadowed to RAM

Kikinis, 4-5

Fig. 1 is a diagrammatical representation of a compressed BIOS 11
according to the present invention. There are three different portions of
the code. Portion 13 is code to perform all operations to initialize and
test the system RAM, and make it ready for use, and is a familiar
portion of conventional BIOS routines. This portion in some
applications needs to perform such functions as initializing and testing a
memory controller and cache controllers and cache memory. Portion 15
is a decompression utility. Portion 17 represents the balance of the
BIOS code in compressed form. It will be apparent to those with skill in

2637

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 12 of 35

the art that there are a number of compression schemes and related
decompression routines that might be used.

Kikins 5

Fig. 2 is a flow chart showing the operation of a computer from startup
following a BIOS routine according to the present invention. From
powerup signal 19, which is typically derived from the act of closing the
power on switch, operation goes to initialization operation 21, during
which system RAM is initialized. In operation 21, the system runs
portion 13 of Fig. 1.

Next, decompression utility 15 (Fig. 1) is accessed and run in operation
23. The decompression utility processes the balance of the BIOS code
(compressed), translates it into operable code, and shadows it to system
RAM. Although such decompression utilities are available, the code
pointing to the compressed portion of the BIOS, and that which causes
the decompressed code to be shadowed to RAM is not a part of a
conventional decompression routine. These commands are added to the
BIOS of the invention.

After the BIOS is shadowed operation continues (25) from the BIOS in
system RAM. All remaining BIOS processes, including testing and
initializing the remainder of the computer subsystems are accomplished
in this operating portion.

Kikinis, 5-6

One means by which the BIOS code may be compressed is based on the
fact that BIOS routines, as is common in most other coded instruction
sets, make use of frequently repeated code sequences. EPROMs used
for BIOS are typically byte-wide devices, that is, the device can store
"words" of 8 bits. A sixteen bit word requires, then, two lines of BIOS
code.

Kikinis, 6

See also Kikinis Fig. 1-3.

2638

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 35

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Kikinis, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this claim limitation:

A means of providing a BIOS routine from an EPROM to RAM in a
general purpose computer, where the BIOS routine is greater in number
of lines of code than the line capacity of the EPROM is provided. The
BIOS routine is stored in EPROM in three portions (11). A first portion
(13) is uncompressed, and loadable and operable by the CPU of the
computer to initialize RAM. A second portion (17) is compressed by
one of a number of schemes. A third portion (15) is a decompression
utility loadable and operable by the computer CPU to decompress the
compressed portion from EPROM and copy the resulting code to RAM,
resulting in a BIOS in RAM (4).

Kikinis, Abstract

As is well known in the art, a computer system, to be of any use, must
comprise all the computer hardware, such as the CPU, memory devices,
communication buses, and so forth. There must also be instruction sets
(programs/software) for the CPU to follow to accomplish tasks. The
programmed information (application software) is typically stored on an
internal or peripheral memory device to be accessed by the CPU as
needed.

Kikinis, 1

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for a general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatile
memory device, and a BIOS routine stored on the programmable non-
volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access
memory in the general-purpose computer, and a decompression utility

2639

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 14 of 35

code operable by the CPU to load the compressed portion, decompress
it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device

Kikinis, 2-3

In most BIOS systems for general purpose computers, the BIOS is
stored in an EPROM device as described in the background section
above. Upon power up the BIOS initializes the system, doing basic
tasks like accessing and checking the operation of on-board random-
access memory RAM, and typically, somewhere during the
initialization, at least a part of the BIOS code is copied (the BIOS copies
itself) into a portion of the on-board RAM.

Kikinis, 4

In typical general-purpose computers, as soon as the system receives
power, the BIOS tests and initializes system RAM, then copies
(shadows) itself from the EPROM to the RAM. The BIOS continues to
run in RAM. The purpose of shadowing the BIOS in RAM is to give the
CPU microprocessor much faster access to the BIOS code than it would
have by accessing the EPROM every time a BIOS code sequence is
needed in continuing operations.

Kikinis, 4

The present invention comprises a means of compressing at least a
significant portion of the BIOS code, storing all of the BIOS code,
including the compressed portion, in EPROM, and releasing the
compressed code on powerup, so all of the code is available for the
computer to use. Also on powerup, the entire code is shadowed to RAM

Kikinis, 4-5

Fig. 2 is a flow chart showing the operation of a computer from startup
following a BIOS routine according to the present invention. From
powerup signal 19, which is typically derived from the act of closing the
power on switch, operation goes to initialization operation 21, during
which system RAM is initialized. In operation 21, the system runs
portion 13 of Fig. 1.

Next, decompression utility 15 (Fig. 1) is accessed and run in operation
23. The decompression utility processes the balance of the BIOS code
(compressed), translates it into operable code, and shadows it to system

2640

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 15 of 35

RAM. Although such decompression utilities are available, the code
pointing to the compressed portion of the BIOS, and that which causes
the decompressed code to be shadowed to RAM is not a part of a
conventional decompression routine. These commands are added to the
BIOS of the invention.

After the BIOS is shadowed operation continues (25) from the BIOS in
system RAM. All remaining BIOS processes, including testing and
initializing the remainder of the computer subsystems are accomplished
in this operating portion.

Kikinis, 5-6

Fig. 3 is a diagrammatical representation of the token decompression
scheme described above. After the BIOS according to the embodiment
of the invention has initialized and tested the RAM, the decompression
utility is booted, and begins to read the compressed portion of the BIOS
at Start 27. At 29 the decompression utility loads the first/next byte
from the compressed portion of
the EPROM BIOS. If this byte is hex FF (31), it is recognized as a
token, and control goes to 33,. where the system reads the byte
following the token flag. This byte is always a pointer to a code
sequence.

Kikinis, 7

See also Kikinis Fig. 1-3.

2641

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 16 of 35

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Kikinis, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this claim limitation:

A means of providing a BIOS routine from an EPROM to RAM in a
general purpose computer, where the BIOS routine is greater in number
of lines of code than the line capacity of the EPROM is provided. The
BIOS routine is stored in EPROM in three portions (11). A first portion
(13) is uncompressed, and loadable and operable by the CPU of the
computer to initialize RAM. A second portion (17) is compressed by
one of a number of schemes. A third portion (15) is a decompression
utility loadable and operable by the computer CPU to decompress the
compressed portion from EPROM and copy the resulting code to RAM,
resulting in a BIOS in RAM (4).

Kikinis, Abstract

As is well known in the art, a computer system, to be of any use, must
comprise all the computer hardware, such as the CPU, memory devices,
communication buses, and so forth. There must also be instruction sets
(programs/software) for the CPU to follow to accomplish tasks. The
programmed information (application software) is typically stored on an
internal or peripheral memory device to be accessed by the CPU as
needed.

Kikinis, 1

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for a general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatile
memory device, and a BIOS routine stored on the programmable non-

2642

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 17 of 35

volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access
memory in the general-purpose computer, and a decompression utility
code operable by the CPU to load the compressed portion, decompress
it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device

Kikinis, 2-3

In most BIOS systems for general purpose computers, the BIOS is
stored in an EPROM device as described in the background section
above. Upon power up the BIOS initializes the system, doing basic
tasks like accessing and checking the operation of on-board random-
access memory RAM, and typically, somewhere during the
initialization, at least a part of the BIOS code is copied (the BIOS copies
itself) into a portion of the on-board RAM.

Kikinis, 4

In typical general-purpose computers, as soon as the system receives
power, the BIOS tests and initializes system RAM, then copies
(shadows) itself from the EPROM to the RAM. The BIOS continues to
run in RAM. The purpose of shadowing the BIOS in RAM is to give the
CPU microprocessor much faster access to the BIOS code than it would
have by accessing the EPROM every time a BIOS code sequence is
needed in continuing operations.

Kikinis, 4

The present invention comprises a means of compressing at least a
significant portion of the BIOS code, storing all of the BIOS code,
including the compressed portion, in EPROM, and releasing the
compressed code on powerup, so all of the code is available for the
computer to use. Also on powerup, the entire code is shadowed to RAM

Kikinis, 4-5

Fig. 2 is a flow chart showing the operation of a computer from startup
following a BIOS routine according to the present invention. From
powerup signal 19, which is typically derived from the act of closing the
power on switch, operation goes to initialization operation 21, during
which system RAM is initialized. In operation 21, the system runs
portion 13 of Fig. 1.

2643

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 35

Next, decompression utility 15 (Fig. 1) is accessed and run in operation
23. The decompression utility processes the balance of the BIOS code
(compressed), translates it into operable code, and shadows it to system
RAM. Although such decompression utilities are available, the code
pointing to the compressed portion of the BIOS, and that which causes
the decompressed code to be shadowed to RAM is not a part of a
conventional decompression routine. These commands are added to the
BIOS of the invention.

After the BIOS is shadowed operation continues (25) from the BIOS in
system RAM. All remaining BIOS processes, including testing and
initializing the remainder of the computer subsystems are accomplished
in this operating portion.

Kikinis, 5-6

Fig. 3 is a diagrammatical representation of the token decompression
scheme described above. After the BIOS according to the embodiment
of the invention has initialized and tested the RAM, the decompression
utility is booted, and begins to read the compressed portion of the BIOS
at Start 27. At 29 the decompression utility loads the first/next byte
from the compressed portion of
the EPROM BIOS. If this byte is hex FF (31), it is recognized as a
token, and control goes to 33,. where the system reads the byte
following the token flag. This byte is always a pointer to a code
sequence.

Kikinis, 7

See also Kikinis Fig. 1-3.

2644

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 19 of 35

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Kikinis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2645

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 20 of 35

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Kikinis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2646

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 21 of 35

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Kikinis, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2647

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 22 of 35

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Kikinis, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Fig. 1 is a diagrammatical representation of a compressed BIOS 11
according to the present invention. There are three different portions of
the code. Portion 13 is code to perform all operations to initialize and
test the system RAM, and make it ready for use, and is a familiar
portion of conventional BIOS routines. This portion in some
applications needs to perform such functions as initializing and testing a
memory controller and cache controllers and cache memory. Portion 15
is a decompression utility. Portion 17 represents the balance of the
BIOS code in compressed form. It will be apparent to those with skill in
the art that there are a number of compression schemes and related
decompression routines that might be used.

Kikinis, 5

2648

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 23 of 35

6. The method of claim 1, further
comprising updating the list of boot data.

Kikinis, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

2649

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 24 of 35

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Kikinis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

In a particular compression scheme compression is accomplished by a
substituting a two line token for a longer sequence, where the longer
sequence is a sequence often repeated in the BIOS. The value of the first
line is a flag to the decompression routine that the next line is to be used
to correlate to the longer sequence and copy that longer sequence in
decompression.

Kikinis, 3

It is also true that there are a truly large number of compression
schemes that might be employed to compress a portion of the BIOS.
The invention should not be limited by the specific code relationship
determined to compress the BIOS code.

Kikinis, 8

2650

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 25 of 35

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Kikinis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

In a particular compression scheme compression is accomplished by a
substituting a two line token for a longer sequence, where the longer
sequence is a sequence often repeated in the BIOS. The value of the first
line is a flag to the decompression routine that the next line is to be used
to correlate to the longer sequence and copy that longer sequence in
decompression.

Kikinis, 3

It is also true that there are a truly large number of compression
schemes that might be employed to compress a portion of the BIOS.
The invention should not be limited by the specific code relationship
determined to compress the BIOS code.

Kikinis, 8

2651

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.1
“A system comprising: a processor;”

 Page 26 of 35

11.1. a processor;

Kikinis, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Kikinis discloses this limitation:

See Claim 1.2 above.

2652

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.2
“a memory”

 Page 27 of 35

11.2. a memory; and

Kikinis, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Kikinis discloses this limitation:

See Claims 1.3, and 1.4 above.

2653

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 28 of 35

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Kikinis, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

Most BIOS implementations in general purpose computers are
implemented in single chip erasable programmable non-volatile
(EPROM) memory devices resident on a "motherboard" in the
computer. There are other suitable non-volatile memory devices,
however, which have been or may be used, including but not limited to
EEPROM devices, "Flash Card" memories known in the art, masked
ROM devices, CMOS RAM with a battery backup, and magnetic
bubble memory.

Kikinis, 2

A firmware device according to a preferred embodiment of the
invention provides a BIOS routine for α general-purpose computer
having a CPU microprocessor, comprising a programmable non-volatiJe
memory device, and a BIOS routine stored on the programmable non-
volatile memory device. The BIOS routine has a compressed portion, an
uncompressed portion operable by the CPU to initialize random access

2654

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 29 of 35

memory in the general-purpose computer, and a decompression utility
code operable by the CPU to load the compressed portion, decompress
it, and copy the decompressed code to the random access memory. In a
preferred embodiment the programmable memory device is an EPROM
device.

Kikinis, 2-3

For example, there are many non-volatile memories in which a
compressed BIOS may be stored, retrieved, and decompressed, and
several of these have been listed above. The fact of compressing the
routines in the BIOS, including a loadable decompression routine,
extends the capacity of any such finite non-volatile memory devices and
hence the size of a BIOS routine that may be stored thereon.

Kikinis, 7-8

2655

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 30 of 35

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Kikinis, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2656

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 31 of 35

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Kikinis, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1 and 1.5 above.

2657

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 32 of 35

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Kikinis, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2658

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 33 of 35

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Kikinis, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2659

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 34 of 35

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Kikinis, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1, 8, and 11 above.

2660

Appendix B10
Invalidity of U.S. Patent 8,090,936 based on Kikinis

	

Kikinis Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 35 of 35

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Kikinis, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Kikinis discloses this limitation:

See Claims 1, 9, and 11 above.

2661

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker
 Page 1 of 30

U.S. Patent No. 6,073,232 to Krocker (“Krocker”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2662

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 30

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Krocker, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

2663

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 30

Kroeker, Fig. 3.

“A method for increasing boot speed of a host computer with associated
hard disk drive generates a prefetch table that contains pointers to disk
locations and lengths of the records of an application program requested
by the host computer during an initial power-on/reset.”

Kroeker, Abstract.

“The present invention relates generally to peripheral storage apparatus
for computers, and more particularly to shortening the load time of
computer programs from a hard disk drive to a host computer.”

Kroeker, 1:9-12.

“In accordance with the present invention, steps executed by the digital
processing apparatus include, after an initial power-up or reset of the hard
disk drive and a host computer associated with the drive, receiving an
initial read command from the host computer for transferring to the host

2664

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 30

computer a plurality of data records of a program stored on the disk. A
prefetch table is then generated, with the table representing a disk location
and length of each data record requested by the initial read command.”

Kroeker, 2:20-37.

“When the command is a read command, code means generate a prefetch
table representative of at least the disk location of the records requested
by the read command for transfer of the records from the disk to the cache
for a subsequent power-on or reset of the host computer. Moreover, code
means are provided for determining whether the records have been stored
in the cache in response to a previous power-on or reset of the host
computer, and the records are communicated to the host computer in
response.”

Kroeker, 3:21-29.

“As discussed further below, the prefetch table contains a listing of the
disk locations and lengths of data records that were requested by the host
computer 14 in the immediately previous power-on/reset. Additionally, a
copy of a prefetch flag, if enabled by the user, is created and set active at
block 28.”

Kroeker, 3:3-9. See also Kroeker, 3:9-16.

2665

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 30

1.2 initializing a central processing unit of
said computer system;

Krocker, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

Kroeker, Fig. 3.

“During the next power-on/reset, before the host computer is ready for
data but after the disk drive has completed its reset routine, using the
prefetch table the disk drive accesses the previously requested data and
copies it onto the cache of the disk drive, from where it is transferred to

2666

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 30

the host computer when the host computer requests it.”

Kroeker, Abstract.

“Then, after a subsequent power-on or reset of the hard disk drive, and
during a second power-on or reset of the host computer, the prefetch table
is accessed to read into the data cache the data records.”

Kroeker, 2:37-40.

“As disclosed in detail below, these code means are for enhanced loading
of the program from the hard disk drive to the host computer during
power-on or reset of the host computer. In accordance with the present
invention, code means receive a command from the host computer during
a power-up or reset of the host computer.”

Kroeker, 3:15-20.

“Commencing at start state 26, the process moves to block 28, wherein a
prefetch table is read from a reserved area of the disks 16 into the RAM
cache 18.”

Kroeker, 5:1-3.

2667

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 30

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Krocker, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

“During the next power-on/reset, before the host computer is ready for
data but after the disk drive has completed its reset routine, using the
prefetch table the disk drive accesses the previously requested data and
copies it onto the cache of the disk drive, from where it is transferred to
the host computer when the host computer requests it.”

Kroeker, Abstract.

“This invention is realized in a critical machine component that causes a
digital processing apparatus to adaptively store a computer program on
the cache of the hard disk drive and communicate the program to the host
computer.”

Kroeker, 2:23-26.

“Then, after a subsequent power-on or reset of the hard disk drive, and
during a second power-on or reset of the host computer, the prefetch table
is accessed to read into the data cache the data records.”

Kroeker, 2:37-40.

“In still another aspect, a computer hard disk drive includes at least one
data storage disk and a data storage cache. Furthermore, the hard disk
drive includes means for recording onto the cache, immediately after a
hardware reset of the hard disk drive, data on the disk that has been
requested by a host computer during a first hardware reset of the host
computer.”

2668

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 30

Kroeker, 3:30-36.

“From block 44, or from decision diamonds 38 or 42 when the decisions
there are negative, the process moves to decision diamond 46 to
determine whether the requested data exists in cache.”

Kroeker, 5:65-6:1.

“From block 50, or from decision diamond 46 if it was determined that
the requested data exists in cache, the process moves to block 52 to
transfer the record from cache 18 to the host computer 14.”

Kroeker, 5:65-6:1.

2669

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 30

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Krocker, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

“In response to a subsequent read command from the host computer, it is
determined whether records requested by the subsequent read command
are stored in the data cache. If they are, the records are communicated
from the cache to the host computer; otherwise, the records are
communicated from the disk to the host computer.”

Kroeker, 2:40-46.

“Preferably, the accessing and determining steps are repeated for each
power-on or reset of the host computer.”

Kroeker, 2:47-48.

“Additionally, the disk drive includes means for communicating the data
from the cache to the host computer during a second hardware reset of
the host computer.”

Kroeker, 3:36-38.

“If it is active, the logic, at block 56, uses the next entry in the prefetch
table to build a task control block (TCB) to fetch data into the same
segment of the cache 18 that the just-transferred record had occupied
prior to being communicated to the host computer 14. In accordance with
the present invention, the TCB in block 50 is activated as though a
command otherwise was received across the device/file interface. In other
words, when the host computer 14 is a PC, the TCB in block 50 is
activated as though a command otherwise was received across the SCSI
(or IDE)--disk drive interface. In this way, the relatively small amount of
cache storage space can be optimally used during the adaptive caching
process until all records designated in the prefetch table have been loaded

2670

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 30

into cache and then transferred to the host computer 14.”

Kroeker, 6:16-31.

2671

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 30

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Krocker, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

2672

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 12 of 30

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Krocker, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2673

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 13 of 30

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Krocker, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A method for increasing boot speed of a host computer with associated
hard disk drive generates a prefetch table that contains pointers to disk
locations and lengths of the records of an application program requested
by the host computer during an initial power-on/reset.”

Kroeker, Abstract.

“As recognized by the present invention, however, it is possible to
provide, without operating system intervention, a method for adaptively
preparing a disk drive to effect rapid application program loading to a
host computer.”

Kroeker, 1:55-58.

“And, the hard disk drive 12 can be any hard disk drive suitable for
computer applications, provided that the hard disk drive 12 includes at
least one, and typically a plurality of, data storage disks 16 and an on-
board, solid state, random access memory (RAM) data cache 18.”

Kroeker, 4:5:10.

2674

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 14 of 30

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Krocker, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A method for increasing boot speed of a host computer with associated
hard disk drive generates a prefetch table that contains pointers to disk
locations and lengths of the records of an application program requested
by the host computer during an initial power-on/reset.”

Kroeker, Abstract.

“As recognized by the present invention, however, it is possible to
provide, without operating system intervention, a method for adaptively
preparing a disk drive to effect rapid application program loading to a
host computer.”

Kroeker, 1:55-58.

“And, the hard disk drive 12 can be any hard disk drive suitable for
computer applications, provided that the hard disk drive 12 includes at
least one, and typically a plurality of, data storage disks 16 and an on-
board, solid state, random access memory (RAM) data cache 18.”

Kroeker, 4:5:10.

2675

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 15 of 30

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Krocker, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also Look for additional references to controller

2676

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 16 of 30

Kroeker, Fig. 1.

“Indeed, the host computer 14 can be an embedded controller that is
part of a music synthesizer, or part of an industrial instrument.”

Kroeker, 4:3-6.

“As shown in FIG. 1, the hard disk drive 12 also includes an onboard
controller 20. In accordance with principles well-known in the art, the
onboard controller 20 is a digital processor Which, among other things,
controls read heads 22 in the disk drive 12 for effecting data transfer to
and from the disks 16.”

Kroeker, 4:11-16.

“Additionally, as intended by the present invention the onboard
controller 20 includes an adaptive cache module 24. Per the present
invention, the adaptive cache module 24 is executed by the onboard

2677

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 17 of 30

controller 20 as a series of computer-executable instructions. These
instructions are embodied as microcode in a memory, e.g., read-only
memory (ROM) of the onboard controller 20. Such a ROM is indicated
by reference numeral 21 in FIG. 2.”

Kroeker, 4:17-24.

“Manifestly, the invention may be practiced in its essential embodiment
by a machine component, embodied by the ROM 21,that renders the
computer program code elements in a form that instructs a digital
processing apparatus (e.g., the onboard controller 20) to perform a
sequence of function steps corresponding to those shown in the Figures.
The machine component is shown in FIGS. 1 and 2 as a combination of
program code elements A—C in computer readable form that are
embodied in a computer usable data medium (the ROM 21) of the
onboard controller 20.”

Kroeker, 4:43-53, Fig. 3.

2678

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 18 of 30

6. The method of claim 1, further
comprising updating the list of boot data.

Krocker, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The prefetch table is updated to reflect disk location changes for the
various records, or to reflect new records that were requested by the host
computer but not found in cache during the previous power-on/reset.”

Kroeker, Abstract.

“In accordance with the present invention, steps executed by the digital
processing apparatus include, after an initial power-up or reset of the hard
disk drive and a host computer associated with the drive, receiving an
initial read command from the host computer for transferring to the host
computer a plurality of data records of a program stored on the disk. A
prefetch table is then generated, with the table representing a disk location
and length of each data record requested by the initial read command.”

Kroeker, 2:20-37.

“Additionally, the steps further include updating the data prefetch table,
communicating the records from the disk to the host computer when the
read counter exceeds a predetermined threshold, and setting a prefetch
flag to inactive when the read counter exceeds the predetermined
threshold.”

Kroeker, 2:59-64.

“When the command is a read command, code means generate a prefetch
table representative of at least the disk location of the records requested
by the read command for transfer of the records from the disk to the cache
for a subsequent power-on or reset of the host computer. Moreover, code
means are provided for determining whether the records have been stored

2679

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 19 of 30

in the cache in response to a previous power-on or reset of the host
computer, and the records are communicated to the host computer in
response.”

Kroeker, 3:21-29.

“As discussed further below, the prefetch table contains a listing of the
disk locations and lengths of data records that were requested by the host
computer 14 in the immediately previous power-on/reset. Additionally, a
copy of a prefetch flag, if enabled by the user, is created and set active at
block 28.”

Kroeker, 3:3-9. See also Kroeker, 3:9-16.

2680

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 20 of 30

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Krocker, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2681

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 21 of 30

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Krocker, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2682

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 11.1
“A system comprising: a processor;”

 Page 22 of 30

11.1. a processor;

Krocker, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Krocker discloses this limitation:

See Claim 1.2 above.

2683

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 11.2
“a memory”

 Page 23 of 30

11.2. a memory; and

Krocker, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Krocker discloses this limitation:

See Claims 1.3, and 1.4 above.

2684

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 24 of 30

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Krocker, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2685

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 25 of 30

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Krocker, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2686

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 26 of 30

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Krocker, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1 and 1.5 above.

2687

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 27 of 30

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Krocker, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Krocker discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2688

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 28 of 30

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Krocker, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2689

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 29 of 30

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Krocker, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1, 8, and 11 above.

2690

Appendix B11
Invalidity of U.S. Patent 8,090,936 based on Krocker

	

Krocker Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 30 of 30

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Krocker, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Krocker discloses this limitation:

See Claims 1, 9, and 11 above.

2691

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee
 Page 1 of 31

U.S. Patent Application Publication No. 2001/0039612 Lee (“Lee”) invalidates claims 1-
6, 8-9, 11-13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant
to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior
art references, and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2692

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 31

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Lee, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

2693

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 31

Lee, Fig.2.

2694

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 31

Lee, Fig. 3.

“The ROM-based code attempts to establish communication with a so-
called “boot device”. A boot device holds information that is necessary
to boot the system. In attempting to establish communication with a
boot device, the ROM-based code operates according to a so-called
“boot order.””

2695

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 31

Lee, ¶ 0012.

“More particularly, the ROM-based code attempts to retrieve a so-called
“master boot record” from a particular sector of the diskette. If the
communication attempt is successful, the ROM-based code uses that
device as the boot device. If not, the ROM-based code proceeds to
attempt communication With a device of the next boot order, e.g., local
media.”

Lee, ¶ 0012.

“In order to attain the above objects, according to an aspect of the present
invention, there is provided a computer system having a central
processing unit; a main and/or auxiliary power supply for supplying main
and/or auxiliary power of the computer system; a boot image storing
device for storing a boot image of the computer system; a main memory
for storing the boot image from the boot image storing device by
receiving the auxiliary power when the main power is shut off; and a
composition memory for setting an instruction pointer of the central
processing unit to a specific region of the main memory storing the boot
image; wherein the central processing unit loads the boot image from the
specific region of the main memory in response to the instruction pointer,
thereby an operating system program can perform control functions.”

Lee, ¶ 0025.	See also Lee, ¶ 0026.

“The boot image memory 108 is capable of containing a non-volatile
memory such as a flash memory to store a compressed boot image data.
The boot image data can be obtained by compressing an initial storing
state of the main memory 104 as a data format.”

Lee, ¶ 0038.

“The BIOS ROM 106 and the boot image memory 108 are capable of
setting and storing an initial state of main memory by a manufacturer or
a user. Thus, the CPU 102 can reduce a device drive loading time by
reading out the compressed boot image from the boot image memory 108
and loading the boot image after decompressing, when boot image is
loaded to the main memory 104.”

Lee, ¶ 0040.

“In other words, at the step S142, the CPU 102 executes the operating
system if a successful boot is detected through a POST routine. Therefore,
a certain application program can be executed in the operating system

2696

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 31

environment.”

Lee, ¶ 0042.

“At step S148, the generated boot image is stored to the boot image
memory 108 after compressing, and then the computer system 100 is
rebooted.”

Lee, ¶ 0043.

“FIG. 5 is a flow chart for illustrating a method for booting the computer
system 200 shown in FIG. 4. The control flow is a program stored in the
BIOS ROM 210, and is executed by the CPU 202 according to processing
steps of the BIOS.”

Lee, ¶ 0050. See also Lee, ¶ 0053.

“Continually, at step S224, a compressed boot image 216 is loaded from
the CD-ROM 214, and the boot image is loaded to the main memory 206
after decompressing in step S226. At step S228, an instruction pointer
204 of the CPU 202 is set to a specific region 208 of the main memory
206 being loaded the boot image. At step S230, the operating system is
executed by reading out the boot image from the specific region 208 of
the main memory 206. As a result, the operating system can perform
control functions.”

Lee, ¶ 0051.

2697

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 31

1.2 initializing a central processing unit of
said computer system;

Lee, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

“When power is applied to a computer system, a portion of the computer
system typically called the “initialization hardware” electronically
detects the “power-on” condition and, in response to such a detection,
forces certain circuitry of the system to a known state. For example, the
CPU typically includes an instruction pointer (IP), which holds a memory
address from which the CPU fetches an instruction to be executed by the
CPU. The initialization hardware typically electronically forces the IP to
an initial address so that the CPU may begin fetching and executing
instructions from this initial address. The ROM is prerecorded With
computer instructions, referred to below as the “ROM-based code.” As a
result, shortly after power on, the CPU begins executing the ROM-based
code.”

Lee, ¶ 0011.

“The BIOS ROM 106 controls POST routine, interrupt processing, and
system environment setting, according to initializing steps of the
computer system 100. Especially, the BIOS ROM 106 sets the instruction
pointer (IP).”

Lee, ¶ 0039.

“In other words, at the step S142, the CPU 102 executes the operating
system if a successful boot is detected through a POST routine. Therefore,
a certain application program can be executed in the operating system
environment.”

Lee, ¶ 0042.

“Referring to FIG. 3, the computer system 100 is powered on in step

2698

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 8 of 31

S160, and POST routine is performed in step S162.”

Lee, ¶ 0045. See also Lee, ¶ 0051.

2699

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 31

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Lee, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

“The ROM-based code attempts to establish communication with a so-
called “boot device”. A boot device holds information that is necessary
to boot the system. In attempting to establish communication with a
boot device, the ROM-based code operates according to a so-called
“boot order.””

Lee, ¶ 0012.

“More particularly, the ROM-based code attempts to retrieve a so-called
“master boot record” from a particular sector of the diskette. If the
communication attempt is successful, the ROM-based code uses that
device as the boot device. If not, the ROM-based code proceeds to
attempt communication With a device of the next boot order, e.g., local
media.”

Lee, ¶ 0012.

“Assuming that the correct first diskette is inserted into the system, the
ROM-based code retrieves the master boot record from sector 0 of the
first diskette.”

Lee, ¶ 0014.

“The ROM-based code then copies the OS loader into RAM from the first
diskette, starting at the address indicated in the master boot record and
continuing for a length indicated by the offset provided by the master boot
record. After copying the OS loader into RAM, the ROM-based code
jumps to the OS loader.”

2700

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 31

Lee, ¶ 0014.

“The OS loader is more sophisticated than the ROM-based code and
performs certain preliminary functions, such as sizing memory. After
performing preliminary functions, the OS loader copies into RAM a
portion of the operating system known as the “kernel.””

Lee, ¶ 0015.

“In order to attain the above objects, according to an aspect of the present
invention, there is provided a computer system having a central
processing unit; a main and/or auxiliary power supply for supplying main
and/or auxiliary power of the computer system; a boot image storing
device for storing a boot image of the computer system; a main memory
for storing the boot image from the boot image storing device by
receiving the auxiliary power when the main power is shut off; and a
composition memory for setting an instruction pointer of the central
processing unit to a specific region of the main memory storing the boot
image; wherein the central processing unit loads the boot image from the
specific region of the main memory in response to the instruction pointer,
thereby an operating system program can perform control functions.”

Lee, ¶ 0025.	See also Lee, ¶ 0026.

“The boot image memory 108 is capable of containing a non-volatile
memory such as a flash memory to store a compressed boot image data.
The boot image data can be obtained by compressing an initial storing
state of the main memory 104 as a data format.”

Lee, ¶ 0038.

“The BIOS ROM 106 and the boot image memory 108 are capable of
setting and storing an initial state of main memory by a manufacturer or
a user. Thus, the CPU 102 can reduce a device drive loading time by
reading out the compressed boot image from the boot image memory 108
and loading the boot image after decompressing, when boot image is
loaded to the main memory 104.”

Lee, ¶ 0040.

“Continually, at step S164, the compressed boot image is read out. At
step S166, the compressed boot image is loaded to the main memory 104
after decompressing. At step S168, an instruction pointer (IP) of the CPU
102 is set to a specific region of the main memory 104 being loaded the
boot image. And then at step S170, the operating system is executed by

2701

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 31

reading out the boot image from the specific region.”

Lee, ¶ 0045. See also Lee, ¶ 0048.

“Continually, at step S224, a compressed boot image 216 is loaded from
the CD-ROM 214, and the boot image is loaded to the main memory 206
after decompressing in step S226. At step S228, an instruction pointer
204 of the CPU 202 is set to a specific region 208 of the main memory
206 being loaded the boot image. At step S230, the operating system is
executed by reading out the boot image from the specific region 208 of
the main memory 206. As a result, the operating system can perform
control functions.”

Lee, ¶ 0051.

“The CPU 302 reads out the boot image 324 from the hard disk drive 320
and loads it to the main memory 304, under control of the BIOS. In other
words, the CPU 302 decompresses the compressed boot image from the
specific region of the hard disk drive 320, and loads it to a specific region
of the main memory 304. The CPU 302 reads out the location information
of the boot image from the BIOS ROM 306, and then reads out the boot
image from the specific region of the main memory 304 according to the
information. Thus, the operating system can perform control functions 15
by setting the IP of the CPU 302 to the specific region of the main
memory 304.”

Lee, ¶ 0054.

2702

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 31

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Lee, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

“The BIOS ROM 106 and the boot image memory 108 are capable of
setting and storing an initial state of main memory by a manufacturer or
a user. Thus, the CPU 102 can reduce a device drive loading time by
reading out the compressed boot image from the boot image memory 108
and loading the boot image after decompressing, when boot image is
loaded to the main memory 104.”

Lee, ¶ 0040.

“Continually, at step S164, the compressed boot image is read out. At
step S166, the compressed boot image is loaded to the main memory 104
after decompressing. At step S168, an instruction pointer (IP) of the CPU
102 is set to a specific region of the main memory 104 being loaded the
boot image. And then at step S170, the operating system is executed by
reading out the boot image from the specific region.”

Lee, ¶ 0045. See also Lee, ¶ 0048.

“Continually, at step S224, a compressed boot image 216 is loaded from
the CD-ROM 214, and the boot image is loaded to the main memory 206
after decompressing in step S226. At step S228, an instruction pointer
204 of the CPU 202 is set to a specific region 208 of the main memory
206 being loaded the boot image. At step S230, the operating system is
executed by reading out the boot image from the specific region 208 of
the main memory 206. As a result, the operating system can perform
control functions.”

Lee, ¶ 0051.

“The CPU 302 reads out the boot image 324 from the hard disk drive 320

2703

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 31

and loads it to the main memory 304, under control of the BIOS. In other
words, the CPU 302 decompresses the compressed boot image from the
specific region of the hard disk drive 320, and loads it to a specific region
of the main memory 304. The CPU 302 reads out the location information
of the boot image from the BIOS ROM 306, and then reads out the boot
image from the specific region of the main memory 304 according to the
information. Thus, the operating system can perform control functions 15
by setting the IP of the CPU 302 to the specific region of the main
memory 304.”

Lee, ¶ 0054.

2704

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 14 of 31

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Lee, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

“The BIOS ROM 106 and the boot image memory 108 are capable of
setting and storing an initial state of main memory by a manufacturer or
a user. Thus, the CPU 102 can reduce a device drive loading time by
reading out the compressed boot image from the boot image memory 108
and loading the boot image after decompressing, when boot image is
loaded to the main memory 104.”

Lee, ¶ 0040.

“Continually, at step S164, the compressed boot image is read out. At
step S166, the compressed boot image is loaded to the main memory 104
after decompressing. At step S168, an instruction pointer (IP) of the CPU
102 is set to a specific region of the main memory 104 being loaded the
boot image. And then at step S170, the operating system is executed by
reading out the boot image from the specific region.”

Lee, ¶ 0045. See also Lee, ¶ 0048.

“Continually, at step S224, a compressed boot image 216 is loaded from
the CD-ROM 214, and the boot image is loaded to the main memory 206
after decompressing in step S226. At step S228, an instruction pointer
204 of the CPU 202 is set to a specific region 208 of the main memory
206 being loaded the boot image. At step S230, the operating system is
executed by reading out the boot image from the specific region 208 of
the main memory 206. As a result, the operating system can perform
control functions.”

2705

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 15 of 31

Lee, ¶ 0051.

“The CPU 302 reads out the boot image 324 from the hard disk drive 320
and loads it to the main memory 304, under control of the BIOS. In other
words, the CPU 302 decompresses the compressed boot image from the
specific region of the hard disk drive 320, and loads it to a specific region
of the main memory 304. The CPU 302 reads out the location information
of the boot image from the BIOS ROM 306, and then reads out the boot
image from the specific region of the main memory 304 according to the
information. Thus, the operating system can perform control functions 15
by setting the IP of the CPU 302 to the specific region of the main
memory 304.”

Lee, ¶ 0054.

2706

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 16 of 31

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Lee, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2707

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 17 of 31

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Lee, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The initial storing state is capable of executing a certain application
program in an operating system program environment.”

Lee, ¶ 0038.

“In other words, at the step S142, the CPU 102 executes the operating
system if a successful boot is detected through a POST routine.
Therefore, a certain application program can be executed in the
operating system environment.”

Lee, ¶ 0042.

2708

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 18 of 31

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Lee, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The initial storing state is capable of executing a certain application
program in an operating system program environment.”

Lee, ¶ 0038.

“In other words, at the step S142, the CPU 102 executes the operating
system if a successful boot is detected through a POST routine.
Therefore, a certain application program can be executed in the
operating system environment.”

Lee, ¶ 0042.

2709

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 19 of 31

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Lee, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The computer system 100 is an IBM compatible computer system,
Which includes a plurality of controllers(for example, an input/output
(I/O) controller 110, a hard disk drive (HDD) controller 112, and a
floppy disk drive(EDD) controller 114), input devices including a
keyboard 118 and a mouse 120, and auxiliary storing devices including
a hard disk drive (HDD) 122, a CD-ROM drive 124, a floppy disk drive
(FDD) 126, and so on. Further, the computer system 100 includes a
video controller 116, and a display 128.”

Lee, ¶ 0037.

“In addition, the computer system 300 further includes a hard disk
controller 308, and a hard disk drive (HDD) 320 storing an operating
system program 322 and boot image 324.”

Lee, ¶ 0052.

2710

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 20 of 31

6. The method of claim 1, further
comprising updating the list of boot data.

Lee, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2711

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 21 of 31

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Lee, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2712

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 22 of 31

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Lee, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“At step S148, the generated boot image is stored to the boot image
memory 108 after compressing, and then the computer system 100 is
rebooted.”

Lee, ¶ 0043.

2713

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 11.1
“A system comprising: a processor;”

 Page 23 of 31

11.1. a processor;

Lee, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lee discloses this limitation:

See Claim 1.2 above.

2714

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 11.2
“a memory”

 Page 24 of 31

11.2. a memory; and

Lee, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lee discloses this limitation:

See Claims 1.3, and 1.4 above.

2715

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 25 of 31

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Lee, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

“The boot image memory 108 is capable of containing a non-volatile
memory such as a flash memory to store a compressed boot image data.
The boot image data can be obtained by compressing an initial storing
state of the main memory 104 as a data format.”

Lee, ¶ 0038.

2716

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 26 of 31

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Lee, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2717

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 27 of 31

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Lee, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1 and 1.5 above.

2718

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 28 of 31

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Lee, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Lee discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2719

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 29 of 31

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Lee, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Lee discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2720

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 30 of 31

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Lee, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

See Claims 1, 8, and 11 above.

2721

Appendix B12
Invalidity of U.S. Patent 8,090,936 based on Lee

	

Lee Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 31 of 31

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Lee, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Lee discloses this limitation:

See Claims 1, 9, and 11 above.

2722

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen
 Page 1 of 39

U.S. Patent No. 6,237,080 to Makinen (“Makinen”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2723

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 39

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Makinen, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the

2724

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 39

microprocessor together with device drivers, libraries, and user
applications.

Makinen, 1:10-19

According to a first aspect of the present invention there is provided a
method of operating apparatus having a central processing unit (CPU)
with a reduced instruction set computer (RISC) architecture, and a read
only memory (ROM), the method comprising reading a set of
compressed RISC operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions.

Makinen, 1:63-2:4

According to a second aspect of the present invention there is provided
a method of operating apparatus having a central processing unit (CPU)
and a read only memory (ROM), the method comprising reading a set of
compressed operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions, the method further comprising generating one or more
replacement or additional compressed instructions in the CPU and
writing the compressed instruction(s) to the ROM.

The above second aspect of the present invention makes it possible to
amend the stored compressed instructions in a dynamic manner. This
may, for example, allow a user to configure the computer according to
his specific needs.

Preferably, the method comprises the step of reading a set of operating
instructions from the ROM into the CPU, which instructions define a
program for compressing said replacement or additional instruction(s).
More preferably, the instructions defining the compression program
form part of said set of compressed operating instructions.

Makinen, 2:18-39

Preferably, the method of the above first or second aspect of the
invention comprises writing the decompressed instruction set to a
random access memory (RAM). Thereafter, the decompressed
instructions are read from the RAM by the CPU. It is noted that RAM
typically offers high access speeds compared to slow (e.g. flash) ROM
memory, giving a significant increase in system performance. In this

2725

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 39

case, increased speed also offers reduced power consumption compared
to systems which use slow ROM memory and in which power is
consumed even when the system is waiting to access the ROM.

Makinen, 2:40-50

According to a third aspect of the present invention there is provided
apparatus having a central processing unit (CPU) a reduced instruction
set computer (RISC) architecture, and a read only memory (ROM),
there being stored in the ROM a set of compressed RISC operating
instructions, the CPU being arranged in use to read the compressed
instructions from the ROM, to decompress these instructions, and
subsequently to operate the apparatus in accordance with the
decompressed instructions.

Makinen, 2:51-59

According to a fourth aspect of the present invention there is provided
apparatus comprising a central processing unit (CPU), a read only
memory (ROM), and a set of compressed operating instructions stored
in the ROM, the CPU being arranged in use to read the compressed
instructions from the ROM, decompress the compressed instructions,
and thereafter operate the apparatus in accordance with the
decompressed instructions, the apparatus being further arranged in use
to compress replacement or additional operating instructions and to
write these compressed instructions to the ROM.

Makinen, 2:60-3:3:2

The flash ROM 4 is used to store a set of RISC operating instructions
which define the basic input/output system (BIOS) of the
microprocessor as well as the device drivers, libraries, and user
applications. The instructions are in compressed form, having
previously been compressed using the Pkzip compression program

Makinen, 3:45-50

In order to enable the microprocessor 1 to decompress the stored
compressed instructions, the flash ROM 4 additionally stores a set of
instructions, in uncompressed form, which define the Pkzip
decompression program. FIG. 2 shows a memory map of the ROM 4
prior to booting the computer, where a part of the memory space is
occupied by the compressed instructions 6 and a part is occupied by the
uncompressed Pkzip instructions 7. In FIG. 2, the ROM 4 is shown

2726

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 39

coupled to the microprocessor 1, as is the RAM 3 which at this stage
remains empty.

Makinen, 3:56-65

Upon booting of the computer, the microprocessor 1 is directed by
hardwired logic to read the first instruction of the decompressed
instruction set 7, from the ROM 4. Thereafter the microprocessor is
directed, by the decompressed set, to read and decompress the
compressed instruction set 6. The expanded instruction set 6′ is then
stored in the RAM 3 as shown in FIG. 3. The last operation that the set
of decompression instructions perform is to cause the microprocessor 1
to jump to the first instruction in the decompressed code. Thereafter, the
computer is operated in accordance with the decompressed operating
instructions 6′.

Makinen, 3:66-4:9

It will be appreciated that the operating system of the computer may be
altered by directly accessing the flash ROM 5 to erase and/or rewrite
compressed instructions 6 stored therein. However, in some
circumstances it may be desirable for the end-user to be able to alter the
compressed operating instructions 6, or indeed for the computer itself to
be able to ‘dynamically’ alter the instructions. To this end, the Pkzip
compression method may also be stored in the flash ROM 4.

Makinen, 4:10-17

In order to reduce memory requirements, the corresponding Pkzip
instructions may be stored in compressed form 8 as illustrated in FIG. 4.
During booting, the compressed Pkzip instructions 8 are read from the
flash ROM 4 by the microprocessor 1, decompressed, and stored in the
RAM 3 as decompressed instructions 8′ together with the decompressed
operating instructions 6′ (FIG. 4). Alternatively, the compressed Pkzip
instructions 8 may only be read from the flash ROM 4, and
subsequently decompressed, when a specific request is made to alter the
compressed instructions 6,8. In either case, the microprocessor 1
employs the decompressed Pkzip method to compress an amended
version of the operating instructions 6′,8′ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen, 4:18-32

2727

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 39

1.2 initializing a central processing unit of
said computer system;

Makinen, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the
microprocessor together with device drivers, libraries, and user
applications.

Makinen, 1:10-19

Upon booting of the computer, the microprocessor 1 is directed by
hardwired logic to read the first instruction of the decompressed

2728

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 39

instruction set 7, from the ROM 4. Thereafter the microprocessor is
directed, by the decompressed set, to read and decompress the
compressed instruction set 6. The expanded instruction set 6′ is then
stored in the RAM 3 as shown in FIG. 3. The last operation that the set
of decompression instructions perform is to cause the microprocessor 1
to jump to the first instruction in the decompressed code. Thereafter, the
computer is operated in accordance with the decompressed operating
instructions 6′.

Makinen, 3:66-4:9

See also Makinen, Fig. 3

2729

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 39

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Makinen, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the
microprocessor together with device drivers, libraries, and user
applications.

Makinen, 1:10-19

2730

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 39

According to a first aspect of the present invention there is provided a
method of operating apparatus having a central processing unit (CPU)
with a reduced instruction set computer (RISC) architecture, and a read
only memory (ROM), the method comprising reading a set of
compressed RISC operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions.

Makinen, 1:63-2:4

According to a second aspect of the present invention there is provided
a method of operating apparatus having a central processing unit (CPU)
and a read only memory (ROM), the method comprising reading a set of
compressed operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions, the method further comprising generating one or more
replacement or additional compressed instructions in the CPU and
writing the compressed instruction(s) to the ROM.

The above second aspect of the present invention makes it possible to
amend the stored compressed instructions in a dynamic manner. This
may, for example, allow a user to configure the computer according to
his specific needs.

Preferably, the method comprises the step of reading a set of operating
instructions from the ROM into the CPU, which instructions define a
program for compressing said replacement or additional instruction(s).
More preferably, the instructions defining the compression program
form part of said set of compressed operating instructions.

Makinen, 2:18-39

Preferably, the method of the above first or second aspect of the
invention comprises writing the decompressed instruction set to a
random access memory (RAM). Thereafter, the decompressed
instructions are read from the RAM by the CPU. It is noted that RAM
typically offers high access speeds compared to slow (e.g. flash) ROM
memory, giving a significant increase in system performance. In this
case, increased speed also offers reduced power consumption compared
to systems which use slow ROM memory and in which power is
consumed even when the system is waiting to access the ROM.

Makinen, 2:40-50

2731

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 39

According to a third aspect of the present invention there is provided
apparatus having a central processing unit (CPU) a reduced instruction
set computer (RISC) architecture, and a read only memory (ROM),
there being stored in the ROM a set of compressed RISC operating
instructions, the CPU being arranged in use to read the compressed
instructions from the ROM, to decompress these instructions, and
subsequently to operate the apparatus in accordance with the
decompressed instructions.

Makinen, 2:51-59

According to a fourth aspect of the present invention there is provided
apparatus comprising a central processing unit (CPU), a read only
memory (ROM), and a set of compressed operating instructions stored
in the ROM, the CPU being arranged in use to read the compressed
instructions from the ROM, decompress the compressed instructions,
and thereafter operate the apparatus in accordance with the
decompressed instructions, the apparatus being further arranged in use
to compress replacement or additional operating instructions and to
write these compressed instructions to the ROM.

Makinen, 2:60-3:3:2

The flash ROM 4 is used to store a set of RISC operating instructions
which define the basic input/output system (BIOS) of the
microprocessor as well as the device drivers, libraries, and user
applications. The instructions are in compressed form, having
previously been compressed using the Pkzip compression program

Makinen, 3:45-50

In order to enable the microprocessor 1 to decompress the stored
compressed instructions, the flash ROM 4 additionally stores a set of
instructions, in uncompressed form, which define the Pkzip
decompression program. FIG. 2 shows a memory map of the ROM 4
prior to booting the computer, where a part of the memory space is
occupied by the compressed instructions 6 and a part is occupied by the
uncompressed Pkzip instructions 7. In FIG. 2, the ROM 4 is shown
coupled to the microprocessor 1, as is the RAM 3 which at this stage
remains empty.

Makinen, 3:56-65

2732

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 39

Upon booting of the computer, the microprocessor 1 is directed by
hardwired logic to read the first instruction of the decompressed
instruction set 7, from the ROM 4. Thereafter the microprocessor is
directed, by the decompressed set, to read and decompress the
compressed instruction set 6. The expanded instruction set 6′ is then
stored in the RAM 3 as shown in FIG. 3. The last operation that the set
of decompression instructions perform is to cause the microprocessor 1
to jump to the first instruction in the decompressed code. Thereafter, the
computer is operated in accordance with the decompressed operating
instructions 6′.

Makinen, 3:66-4:9

In order to reduce memory requirements, the corresponding Pkzip
instructions may be stored in compressed form 8 as illustrated in FIG. 4.
During booting, the compressed Pkzip instructions 8 are read from the
flash ROM 4 by the microprocessor 1, decompressed, and stored in the
RAM 3 as decompressed instructions 8′ together with the decompressed
operating instructions 6′ (FIG. 4). Alternatively, the compressed Pkzip
instructions 8 may only be read from the flash ROM 4, and
subsequently decompressed, when a specific request is made to alter the
compressed instructions 6,8. In either case, the microprocessor 1
employs the decompressed Pkzip method to compress an amended
version of the operating instructions 6′,8′ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen, 4:18-32

See also Makinen, Figs. 2-4

2733

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 39

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Makinen, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the
microprocessor together with device drivers, libraries, and user
applications.

Makinen, 1:10-19

2734

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 39

According to a first aspect of the present invention there is provided a
method of operating apparatus having a central processing unit (CPU)
with a reduced instruction set computer (RISC) architecture, and a read
only memory (ROM), the method comprising reading a set of
compressed RISC operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions.

Makinen, 1:63-2:4

According to a second aspect of the present invention there is provided
a method of operating apparatus having a central processing unit (CPU)
and a read only memory (ROM), the method comprising reading a set of
compressed operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions, the method further comprising generating one or more
replacement or additional compressed instructions in the CPU and
writing the compressed instruction(s) to the ROM.

The above second aspect of the present invention makes it possible to
amend the stored compressed instructions in a dynamic manner. This
may, for example, allow a user to configure the computer according to
his specific needs.

Preferably, the method comprises the step of reading a set of operating
instructions from the ROM into the CPU, which instructions define a
program for compressing said replacement or additional instruction(s).
More preferably, the instructions defining the compression program
form part of said set of compressed operating instructions.

Makinen, 2:18-39

Preferably, the method of the above first or second aspect of the
invention comprises writing the decompressed instruction set to a
random access memory (RAM). Thereafter, the decompressed
instructions are read from the RAM by the CPU. It is noted that RAM
typically offers high access speeds compared to slow (e.g. flash) ROM
memory, giving a significant increase in system performance. In this
case, increased speed also offers reduced power consumption compared
to systems which use slow ROM memory and in which power is
consumed even when the system is waiting to access the ROM.

Makinen, 2:40-50

2735

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 14 of 39

According to a third aspect of the present invention there is provided
apparatus having a central processing unit (CPU) a reduced instruction
set computer (RISC) architecture, and a read only memory (ROM),
there being stored in the ROM a set of compressed RISC operating
instructions, the CPU being arranged in use to read the compressed
instructions from the ROM, to decompress these instructions, and
subsequently to operate the apparatus in accordance with the
decompressed instructions.

Makinen, 2:51-59

According to a fourth aspect of the present invention there is provided
apparatus comprising a central processing unit (CPU), a read only
memory (ROM), and a set of compressed operating instructions stored
in the ROM, the CPU being arranged in use to read the compressed
instructions from the ROM, decompress the compressed instructions,
and thereafter operate the apparatus in accordance with the
decompressed instructions, the apparatus being further arranged in use
to compress replacement or additional operating instructions and to
write these compressed instructions to the ROM.

Makinen, 2:60-3:3:2

The flash ROM 4 is used to store a set of RISC operating instructions
which define the basic input/output system (BIOS) of the
microprocessor as well as the device drivers, libraries, and user
applications. The instructions are in compressed form, having
previously been compressed using the Pkzip compression program

Makinen, 3:45-50

In order to enable the microprocessor 1 to decompress the stored
compressed instructions, the flash ROM 4 additionally stores a set of
instructions, in uncompressed form, which define the Pkzip
decompression program. FIG. 2 shows a memory map of the ROM 4
prior to booting the computer, where a part of the memory space is
occupied by the compressed instructions 6 and a part is occupied by the
uncompressed Pkzip instructions 7. In FIG. 2, the ROM 4 is shown
coupled to the microprocessor 1, as is the RAM 3 which at this stage
remains empty.

Makinen, 3:56-65

2736

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 15 of 39

Upon booting of the computer, the microprocessor 1 is directed by
hardwired logic to read the first instruction of the decompressed
instruction set 7, from the ROM 4. Thereafter the microprocessor is
directed, by the decompressed set, to read and decompress the
compressed instruction set 6. The expanded instruction set 6′ is then
stored in the RAM 3 as shown in FIG. 3. The last operation that the set
of decompression instructions perform is to cause the microprocessor 1
to jump to the first instruction in the decompressed code. Thereafter, the
computer is operated in accordance with the decompressed operating
instructions 6′.

Makinen, 3:66-4:9

In order to reduce memory requirements, the corresponding Pkzip
instructions may be stored in compressed form 8 as illustrated in FIG. 4.
During booting, the compressed Pkzip instructions 8 are read from the
flash ROM 4 by the microprocessor 1, decompressed, and stored in the
RAM 3 as decompressed instructions 8′ together with the decompressed
operating instructions 6′ (FIG. 4). Alternatively, the compressed Pkzip
instructions 8 may only be read from the flash ROM 4, and
subsequently decompressed, when a specific request is made to alter the
compressed instructions 6,8. In either case, the microprocessor 1
employs the decompressed Pkzip method to compress an amended
version of the operating instructions 6′,8′ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen, 4:18-32

See also Makinen, Figs. 2-4

2737

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 16 of 39

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Makinen, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the
microprocessor together with device drivers, libraries, and user
applications.

2738

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 17 of 39

Makinen, 1:10-19

According to a first aspect of the present invention there is provided a
method of operating apparatus having a central processing unit (CPU)
with a reduced instruction set computer (RISC) architecture, and a read
only memory (ROM), the method comprising reading a set of
compressed RISC operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions.

Makinen, 1:63-2:4

According to a second aspect of the present invention there is provided
a method of operating apparatus having a central processing unit (CPU)
and a read only memory (ROM), the method comprising reading a set of
compressed operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions, the method further comprising generating one or more
replacement or additional compressed instructions in the CPU and
writing the compressed instruction(s) to the ROM.

The above second aspect of the present invention makes it possible to
amend the stored compressed instructions in a dynamic manner. This
may, for example, allow a user to configure the computer according to
his specific needs.

Preferably, the method comprises the step of reading a set of operating
instructions from the ROM into the CPU, which instructions define a
program for compressing said replacement or additional instruction(s).
More preferably, the instructions defining the compression program
form part of said set of compressed operating instructions.

Makinen, 2:18-39

Preferably, the method of the above first or second aspect of the
invention comprises writing the decompressed instruction set to a
random access memory (RAM). Thereafter, the decompressed
instructions are read from the RAM by the CPU. It is noted that RAM
typically offers high access speeds compared to slow (e.g. flash) ROM
memory, giving a significant increase in system performance. In this
case, increased speed also offers reduced power consumption compared
to systems which use slow ROM memory and in which power is
consumed even when the system is waiting to access the ROM.

2739

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 39

Makinen, 2:40-50

According to a third aspect of the present invention there is provided
apparatus having a central processing unit (CPU) a reduced instruction
set computer (RISC) architecture, and a read only memory (ROM),
there being stored in the ROM a set of compressed RISC operating
instructions, the CPU being arranged in use to read the compressed
instructions from the ROM, to decompress these instructions, and
subsequently to operate the apparatus in accordance with the
decompressed instructions.

Makinen, 2:51-59

According to a fourth aspect of the present invention there is provided
apparatus comprising a central processing unit (CPU), a read only
memory (ROM), and a set of compressed operating instructions stored
in the ROM, the CPU being arranged in use to read the compressed
instructions from the ROM, decompress the compressed instructions,
and thereafter operate the apparatus in accordance with the
decompressed instructions, the apparatus being further arranged in use
to compress replacement or additional operating instructions and to
write these compressed instructions to the ROM.

Makinen, 2:60-3:3:2

The flash ROM 4 is used to store a set of RISC operating instructions
which define the basic input/output system (BIOS) of the
microprocessor as well as the device drivers, libraries, and user
applications. The instructions are in compressed form, having
previously been compressed using the Pkzip compression program

Makinen, 3:45-50

In order to enable the microprocessor 1 to decompress the stored
compressed instructions, the flash ROM 4 additionally stores a set of
instructions, in uncompressed form, which define the Pkzip
decompression program. FIG. 2 shows a memory map of the ROM 4
prior to booting the computer, where a part of the memory space is
occupied by the compressed instructions 6 and a part is occupied by the
uncompressed Pkzip instructions 7. In FIG. 2, the ROM 4 is shown
coupled to the microprocessor 1, as is the RAM 3 which at this stage
remains empty.

Makinen, 3:56-65

2740

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 19 of 39

Upon booting of the computer, the microprocessor 1 is directed by
hardwired logic to read the first instruction of the decompressed
instruction set 7, from the ROM 4. Thereafter the microprocessor is
directed, by the decompressed set, to read and decompress the
compressed instruction set 6. The expanded instruction set 6′ is then
stored in the RAM 3 as shown in FIG. 3. The last operation that the set
of decompression instructions perform is to cause the microprocessor 1
to jump to the first instruction in the decompressed code. Thereafter, the
computer is operated in accordance with the decompressed operating
instructions 6′.

Makinen, 3:66-4:9

In order to reduce memory requirements, the corresponding Pkzip
instructions may be stored in compressed form 8 as illustrated in FIG. 4.
During booting, the compressed Pkzip instructions 8 are read from the
flash ROM 4 by the microprocessor 1, decompressed, and stored in the
RAM 3 as decompressed instructions 8′ together with the decompressed
operating instructions 6′ (FIG. 4). Alternatively, the compressed Pkzip
instructions 8 may only be read from the flash ROM 4, and
subsequently decompressed, when a specific request is made to alter the
compressed instructions 6,8. In either case, the microprocessor 1
employs the decompressed Pkzip method to compress an amended
version of the operating instructions 6′,8′ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen, 4:18-32

See also Makinen, Figs. 2-4

2741

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 20 of 39

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Makinen, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2742

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 21 of 39

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Makinen, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

At the heart of most modern electronic devices is a microprocessor or central
processing unit which operates in accordance with a set of software operating
instructions which together form an executable program. The instructions are
stored in a digital memory which may be internal to the microprocessor or, as is
more usually the case, externally connected to the microprocessor. The set of
operating instructions generally define the basic input/output system (BIOS) of
the microprocessor together with device drivers, libraries, and user applications.

Makinen, 1:10-19

The flash ROM 4 is used to store a set of RISC operating instructions which
define the basic input/output system (BIOS) of the microprocessor as well as
the device drivers, libraries, and user applications. The instructions are in
compressed form, having previously been compressed using the Pkzip
compression program. The compressed instructions occupy considerably less
flash ROM space than would the corresponding uncompressed instructions, e.g.
½ to ⅕ of the memory space. Such a high compression ratio results from the
particular structure of RISC instructions.

Makinen, 3:46-55

2743

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 22 of 39

2744

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 23 of 39

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Makinen, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

At the heart of most modern electronic devices is a microprocessor or central
processing unit which operates in accordance with a set of software operating
instructions which together form an executable program. The instructions are
stored in a digital memory which may be internal to the microprocessor or, as is
more usually the case, externally connected to the microprocessor. The set of
operating instructions generally define the basic input/output system (BIOS) of
the microprocessor together with device drivers, libraries, and user applications.

Makinen, 1:10-19

The flash ROM 4 is used to store a set of RISC operating instructions which
define the basic input/output system (BIOS) of the microprocessor as well as
the device drivers, libraries, and user applications. The instructions are in
compressed form, having previously been compressed using the Pkzip
compression program. The compressed instructions occupy considerably less
flash ROM space than would the corresponding uncompressed instructions, e.g.
½ to ⅕ of the memory space. Such a high compression ratio results from the
particular structure of RISC instructions.

Makinen, 3:46-55

2745

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 24 of 39

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Makinen, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Upon booting of the computer, the microprocessor 1 is directed by hardwired
logic to read the first instruction of the decompressed instruction set 7, from the
ROM 4. Thereafter the microprocessor is directed, by the decompressed set, to
read and decompress the compressed instruction set 6. The expanded
instruction set 6’ is then stored in the RAM 3 as shown in FIG. 3. The last
operation that the set of decompression instructions perform is to cause the
microprocessor 1 to jump to the first instruction in the decompressed code.
Thereafter, the computer is operated in accordance with the decompressed
operating instructions 6’.

Makinen 3:66-4:28

In order to reduce memory requirements, the corresponding Pkzip instructions
may be stored in compressed form 8 as illustrated in FIG. 4. During booting,
the compressed Pkzip instructions 8 are read from the flash ROM 4 by the
microprocessor 1, decompressed, and stored in the RAM 3 as decompressed
instructions 8’ together with the decompressed operating instructions 6’ (FIG.
4). Alternatively, the compressed Pkzip instructions 8 may only be read from
the flash ROM 4, and subsequently decompressed, when a specific request is
made to alter the compressed instructions 6, 8. In either case, the
microprocessor 1 employs the decompressed Pkzip method to compress an
amended version of the operating instructions 6’, 8’ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen 4:18-37

2746

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 25 of 39

6. The method of claim 1, further
comprising updating the list of boot data.

Makinen, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Makinen discloses this claim limitation:

A computer having a reduced instruction computer (RISC) architecture
has a RISC central processing unit (CPU)(1) coupled to a RAM
memory (3) and to a flash ROM memory (4). A set of compressed
operating instructions (6,8), including a subset defining a compression
method (8), are stored in the flash ROM (4) together with a set of
uncompressed instructions (7) defining a compression algorithm. Upon
booting of the computer, the uncompressed instructions (7) are read
from the ROM (4) by the CPU (1) which then also reads the compressed
instructions (6,8), decompresses them according to the decompression
process (7), and writes the decompressed instructions (6′,8′) to the RAM
(3). The compressed instructions (6,8) can be dynamically altered by the
CPU (1), by generating an altered set of uncompressed instructions,
compressing these in accordance with the now decompressed
compression method (8′), and writing these to the flash ROM (4).

Makinen, Abstract

At the heart of most modern electronic devices is a microprocessor or
central processing unit which operates in accordance with a set of
software operating instructions which together form an executable
program. The instructions are stored in a digital memory which may be
internal to the microprocessor or, as is more usually the case, externally
connected to the microprocessor. The set of operating instructions
generally define the basic input/output system (BIOS) of the
microprocessor together with device drivers, libraries, and user
applications.

Makinen, 1:10-19

2747

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 26 of 39

According to a first aspect of the present invention there is provided a
method of operating apparatus having a central processing unit (CPU)
with a reduced instruction set computer (RISC) architecture, and a read
only memory (ROM), the method comprising reading a set of
compressed RISC operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions.

Makinen, 1:63-2:4

According to a second aspect of the present invention there is provided
a method of operating apparatus having a central processing unit (CPU)
and a read only memory (ROM), the method comprising reading a set of
compressed operating instructions from the ROM into the CPU,
decompressing the compressed instructions in the CPU, and thereafter
operating the apparatus in accordance with the decompressed
instructions, the method further comprising generating one or more
replacement or additional compressed instructions in the CPU and
writing the compressed instruction(s) to the ROM.

The above second aspect of the present invention makes it possible to
amend the stored compressed instructions in a dynamic manner. This
may, for example, allow a user to configure the computer according to
his specific needs.

Preferably, the method comprises the step of reading a set of operating
instructions from the ROM into the CPU, which instructions define a
program for compressing said replacement or additional instruction(s).
More preferably, the instructions defining the compression program
form part of said set of compressed operating instructions.

Makinen, 2:18-39

Preferably, the method of the above first or second aspect of the
invention comprises writing the decompressed instruction set to a
random access memory (RAM). Thereafter, the decompressed
instructions are read from the RAM by the CPU. It is noted that RAM
typically offers high access speeds compared to slow (e.g. flash) ROM
memory, giving a significant increase in system performance. In this
case, increased speed also offers reduced power consumption compared
to systems which use slow ROM memory and in which power is
consumed even when the system is waiting to access the ROM.

2748

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 27 of 39

Makinen, 2:40-50

According to a third aspect of the present invention there is provided
apparatus having a central processing unit (CPU) a reduced instruction
set computer (RISC) architecture, and a read only memory (ROM),
there being stored in the ROM a set of compressed RISC operating
instructions, the CPU being arranged in use to read the compressed
instructions from the ROM, to decompress these instructions, and
subsequently to operate the apparatus in accordance with the
decompressed instructions.

Makinen, 2:51-59

According to a fourth aspect of the present invention there is provided
apparatus comprising a central processing unit (CPU), a read only
memory (ROM), and a set of compressed operating instructions stored
in the ROM, the CPU being arranged in use to read the compressed
instructions from the ROM, decompress the compressed instructions,
and thereafter operate the apparatus in accordance with the
decompressed instructions, the apparatus being further arranged in use
to compress replacement or additional operating instructions and to
write these compressed instructions to the ROM.

Makinen, 2:60-3:3:2

It will be appreciated that the operating system of the computer may be
altered by directly accessing the flash ROM 5 to erase and/or rewrite
compressed instructions 6 stored therein. However, in some
circumstances it may be desirable for the end-user to be able to alter the
compressed operating instructions 6, or indeed for the computer itself to
be able to ‘dynamically’ alter the instructions. To this end, the Pkzip
compression method may also be stored in the flash ROM 4.

Makinen, 4:10-17

In order to reduce memory requirements, the corresponding Pkzip
instructions may be stored in compressed form 8 as illustrated in FIG. 4.
During booting, the compressed Pkzip instructions 8 are read from the
flash ROM 4 by the microprocessor 1, decompressed, and stored in the
RAM 3 as decompressed instructions 8′ together with the decompressed
operating instructions 6′ (FIG. 4). Alternatively, the compressed Pkzip
instructions 8 may only be read from the flash ROM 4, and
subsequently decompressed, when a specific request is made to alter the
compressed instructions 6,8. In either case, the microprocessor 1
employs the decompressed Pkzip method to compress an amended

2749

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 28 of 39

version of the operating instructions 6′,8′ and writes the compressed
instructions to the corresponding areas of the flash ROM.

Makinen, 4:18-32

See also Makinen, Figs. 2-4

2750

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 29 of 39

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Makinen, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The flash ROM 4 is used to store a set of RISC operating instructions which
define the basic input/output system (BIOS) of the microprocessor as well as the
device drivers, libraries, and user applications. The instructions are in
compressed form, having previously been compressed using the Pkzip
compression program. The compressed instructions occupy considerably less
flash ROM space than would the corresponding uncompressed instructions, e.g.
½ to ⅕ of the memory space. Such a high compression ratio results from the
particular structure of RISC instructions.

3:46-55

It will be appreciated by the person of skill in the art that other modifications may
be made to the embodiments described above without departing from the scope
of the present invention. For example, compression algorithms other than Pkzip
may be used, including Gzip-9, Zoo-a, and Arj-a. Compression methods may
also be optimised for ARM (Trade Mark) processors.

4:38-45

2751

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 30 of 39

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Makinen, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Compared to conventional ROM, flash ROM remains expensive. There
therefore exists a desire to reduce the amount of flash ROM used in individual
products. Furthermore, accessing flash ROM is relatively slow, significantly
reducing the performance of electronic devices. Conventional computer
architectures rely upon a complex instruction set computer (CISC) architecture.
This utilises a large number (e.g. 1000) of instructions which define very
specific tasks. The instructions are of variable length and are decoded by the
computer's CPU before execution. There is described in Japanese non-
examined patent publication no. 55-131848 a data processing unit which
comprises a central processing unit, a main memory unit, and an external
memory unit. A compressed program is stored in the external memory unit and,
before commencing processing operations, the compressed program is read
from the external memory unit in blocks and decompressed. The decompressed
program is then written to the main memory unit. However, the compression
ratio which can be achieved with CISC code is relatively low and it is not
believed that the disclosure of JP-131848 has been widely used.

Makinen, 1:34-55

2752

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 11.1
“A system comprising: a processor;”

 Page 31 of 39

11.1. a processor;

Makinen, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Makinen discloses this limitation:

See Claim 1.2 above.

2753

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 11.2
“a memory”

 Page 32 of 39

11.2. a memory; and

Makinen, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Makinen discloses this limitation:

See Claims 1.3, and 1.4 above.

2754

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 33 of 39

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Makinen, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

Software instructions defining the basic operation of a microprocessor are
usually stored in non-volatile read only memory (ROM). Until recently, the
preferred choice for storing operating instructions was UV light erasable
programmable read only memory. More recently however, the preferred choice
for storing operating instructions, especially in embedded devices (e.g. mobile
phones, personal digital assistants, etc) has become flash ROM. Flash ROM is
both non-volatile and electrically erasable and is used, to a large extent, because
it can be programmed following assembly of the PCB containing the flash
ROM oar of the completed device. A further advantage is that it is possible to
upgrade operating instruction stored in the flash ROM at some future date.

Makinen, 1:20-33

2755

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 34 of 39

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Makinen, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2756

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 35 of 39

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Makinen, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1 and 1.5 above.

2757

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 36 of 39

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Makinen, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Makinen discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2758

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 37 of 39

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Makinen, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2759

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 38 of 39

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Makinen, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1, 8, and 11 above.

2760

Appendix B13
Invalidity of U.S. Patent 8,090,936 based on Makinen

	

Makinen Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 39 of 39

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Makinen, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Makinen discloses this limitation:

See Claims 1, 9, and 11 above.

2761

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll
 Page 1 of 27

U.S. Patent No. 5,793,943 to Noll (“Noll”) invalidates claims 1-6, 8-9, 11-13, and 15-16
of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2762

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 27

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Noll, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

“A computer system includes a dual basic input-output system (BIOS)
read-only memory (ROM) system to initialize the computer. When the
computer is first powered on or reset, the primary BIOS ROM is initially
enabled. The computer analyzes the entire program contents of the
primary BIOS memory to detect data errors. If a data error is detected, a
chip enable circuit disables the primary BIOS ROM and enables a
secondary BIOS ROM containing essentially the same initialization
instructions as the primary BIOS ROM. If no errors are detected in the
secondary BIOS ROM, the initialization of the computer proceeds using
the secondary BIOS ROM. As part of the initialization procedure, the
contents of the secondary BIOS ROM are copied to a random access
memory. The primary BIOS ROM can then be reprogrammed with the
contents of the secondary BIOS ROM using the copy in random access
memory, or from the secondary BIOS ROM itself.”

Noll, Abstract.

“The present invention is embodied in a system for the automatic
recovery of a BIOS ROM failure. In one embodiment, the system
includes a first BIOS memory that contains a series of computer
instructions to initialize the computer. The first BIOS memory has a chip
enable input that is initially enabled. An error detection circuit analyzes
data contained within the first BIOS memory and detects errors therein.
The error detection circuit generates an error signal upon detection of

2763

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 27

errors in the first BIOS memory. The system also includes a second BIOS
memory containing the series of computer instructions to initialize the
computer and also having a chip enable input. An enabling circuit is
included to disable the first BIOS memory chip enable input and to enable
the second BIOS memory chip enable input in response to the error
signal. This effectively causes the computer system to switch to the
second BIOS memory so that the series of computer instructions to
initialize the computer are executed from the second BIOS memory rather
the first BIOS memory.”

Noll, 1:44-63.

“Another reason that the primary BIOS ROM 22 is copied into the
RAM 14 is that some data in the primary BIOS ROM may be in a
compressed format and must be decompressed before the CPU 12 can
use it.”

Noll, 4:66-5:2.

2764

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 27

1.2 initializing a central processing unit of
said computer system;

Noll, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

“A computer system includes a dual basic input-output system (BIOS)
read-only memory (ROM) system to initialize the computer. When the
computer is first powered on or reset, the primary BIOS ROM is initially
enabled. The computer analyzes the entire program contents of the
primary BIOS memory to detect data errors. If a data error is detected, a
chip enable circuit disables the primary BIOS ROM and enables a
secondary BIOS ROM containing essentially the same initialization
instructions as the primary BIOS ROM. If no errors are detected in the
secondary BIOS ROM, the initialization of the computer proceeds using
the secondary BIOS ROM. As part of the initialization procedure, the
contents of the secondary BIOS ROM are copied to a random access
memory. The primary BIOS ROM can then be reprogrammed with the
contents of the secondary BIOS ROM using the copy in random access
memory, or from the secondary BIOS ROM itself.”

Noll, Abstract.

 “For example, when the computer is first powered up or reset, a software
program, typically designated as a "basic input-output system" (BIOS)
initializes the computer and permits the startup of an operating system,
such as Microsoft MS-DOS®. The BIOS program typically resides in a
read-only memory (ROM). If the BIOS ROM is defective for any reason,
the computer will not function properly. Therefore, it can be appreciated
that there is a significant need for a system to recover from a BIOS ROM
failure in a manner that does not require user intervention. The present
invention provides this and other advantages as will be apparent from the
following detailed description and accompanying figures.”

Noll, 1:29-42.

2765

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 27

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Noll, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

“A computer system includes a dual basic input-output system (BIOS)
read-only memory (ROM) system to initialize the computer. When the
computer is first powered on or reset, the primary BIOS ROM is initially
enabled. The computer analyzes the entire program contents of the
primary BIOS memory to detect data errors. If a data error is detected, a
chip enable circuit disables the primary BIOS ROM and enables a
secondary BIOS ROM containing essentially the same initialization
instructions as the primary BIOS ROM. If no errors are detected in the
secondary BIOS ROM, the initialization of the computer proceeds using
the secondary BIOS ROM. As part of the initialization procedure, the
contents of the secondary BIOS ROM are copied to a random access
memory. The primary BIOS ROM can then be reprogrammed with the
contents of the secondary BIOS ROM using the copy in random access
memory, or from the secondary BIOS ROM itself.”

Noll, Abstract.

“The present invention is embodied in a system for the automatic
recovery of a BIOS ROM failure. In one embodiment, the system
includes a first BIOS memory that contains a series of computer
instructions to initialize the computer. The first BIOS memory has a chip
enable input that is initially enabled. An error detection circuit analyzes
data contained within the first BIOS memory and detects errors therein.
The error detection circuit generates an error signal upon detection of
errors in the first BIOS memory. The system also includes a second BIOS
memory containing the series of computer instructions to initialize the
computer and also having a chip enable input. An enabling circuit is
included to disable the first BIOS memory chip enable input and to enable
the second BIOS memory chip enable input in response to the error

2766

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 27

signal. This effectively causes the computer system to switch to the
second BIOS memory so that the series of computer instructions to
initialize the computer are executed from the second BIOS memory rather
the first BIOS memory.”

Noll, 1:44-63.

2767

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 27

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Noll, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

“A computer system includes a dual basic input-output system (BIOS)
read-only memory (ROM) system to initialize the computer. When the
computer is first powered on or reset, the primary BIOS ROM is initially
enabled. The computer analyzes the entire program contents of the
primary BIOS memory to detect data errors. If a data error is detected, a
chip enable circuit disables the primary BIOS ROM and enables a
secondary BIOS ROM containing essentially the same initialization
instructions as the primary BIOS ROM. If no errors are detected in the
secondary BIOS ROM, the initialization of the computer proceeds using
the secondary BIOS ROM. As part of the initialization procedure, the
contents of the secondary BIOS ROM are copied to a random access
memory. The primary BIOS ROM can then be reprogrammed with the
contents of the secondary BIOS ROM using the copy in random access
memory, or from the secondary BIOS ROM itself.”

Noll, Abstract.

 “For example, when the computer is first powered up or reset, a software
program, typically designated as a "basic input-output system" (BIOS)
initializes the computer and permits the startup of an operating system,
such as Microsoft MS-DOS®. The BIOS program typically resides in a
read-only memory (ROM). If the BIOS ROM is defective for any reason,
the computer will not function properly. Therefore, it can be appreciated
that there is a significant need for a system to recover from a BIOS ROM
failure in a manner that does not require user intervention. The present
invention provides this and other advantages as will be apparent from the

2768

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 27

following detailed description and accompanying figures.”

Noll, 1:29-42.

“Another reason that the primary BIOS ROM 22 is copied into the
RAM 14 is that some data in the primary BIOS ROM may be in a
compressed format and must be decompressed before the CPU 12 can
use it.”

Noll, 4:66-5:2.

2769

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 9 of 27

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Noll, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

“A computer system includes a dual basic input-output system (BIOS)
read-only memory (ROM) system to initialize the computer. When the
computer is first powered on or reset, the primary BIOS ROM is initially
enabled. The computer analyzes the entire program contents of the
primary BIOS memory to detect data errors. If a data error is detected, a
chip enable circuit disables the primary BIOS ROM and enables a
secondary BIOS ROM containing essentially the same initialization
instructions as the primary BIOS ROM. If no errors are detected in the
secondary BIOS ROM, the initialization of the computer proceeds using
the secondary BIOS ROM. As part of the initialization procedure, the
contents of the secondary BIOS ROM are copied to a random access
memory. The primary BIOS ROM can then be reprogrammed with the
contents of the secondary BIOS ROM using the copy in random access
memory, or from the secondary BIOS ROM itself.”

Noll, Abstract.

 “For example, when the computer is first powered up or reset, a software
program, typically designated as a "basic input-output system" (BIOS)
initializes the computer and permits the startup of an operating system,
such as Microsoft MS-DOS®. The BIOS program typically resides in a
read-only memory (ROM). If the BIOS ROM is defective for any reason,
the computer will not function properly. Therefore, it can be appreciated
that there is a significant need for a system to recover from a BIOS ROM
failure in a manner that does not require user intervention. The present
invention provides this and other advantages as will be apparent from the

2770

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 10 of 27

following detailed description and accompanying figures.”

Noll, 1:29-42.

“Another reason that the primary BIOS ROM 22 is copied into the
RAM 14 is that some data in the primary BIOS ROM may be in a
compressed format and must be decompressed before the CPU 12 can
use it.”

Noll, 4:66-5:2.

2771

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 11 of 27

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Noll, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2772

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 12 of 27

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Noll, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2773

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 13 of 27

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Noll, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2774

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 14 of 27

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Noll, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The computer 10 also includes a chip enable circuit 36 that selectively enables
and disables the primary BIOS ROM 22 and the secondary BIOS ROM 30.
When the computer 10 is first powered up, the chip enable circuit 36 activates a
ROMSEL1 control line 40 and a ROMSEL2 control line 42 by setting both of
these control lines to a high logic level. The ROMSEL1 control line 40 and the
ROMSEL2 control line 42 serve as inputs to an AND gate 44 whose output is
coupled to the chip enable input 24 on the primary BIOS ROM 22. Thus, the
chip enable circuit 36 initially activates the chip enable input 24 on the primary
BIOS ROM 22.

Noll, 3:25-37

The ROMSEL2 control line 42 is also coupled to the input of an inverter 48
whose output is coupled to the input of an AND gate 50. The ROMSEL1
control line 40 serves as another input to the AND gate 50. The output of the
AND gate 50 is coupled to the chip enable input 32 of the secondary BIOS
ROM 30. The inversion of the ROMSEL2 control line 42 assures that the
secondary BIOS ROM 30 is initially disabled when the computer 10 is first
powered up, or reset. In the event that the computer 10 detects an error in the
primary BIOS ROM 22, the chip enable circuit 36 causes the ROMSEL2
control line 42 to change to a low logic level. This disables the primary BIOS
ROM 22, while also enabling the secondary BIOS ROM 30.

Noll, 3:38-50

The chip enable circuit 36 may be virtually any type of data storage element,
such as a register, that can be controlled by the CPU 12. In the presently
preferred embodiment, the chip enable circuit 36 is part of a peripheral

2775

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 15 of 27

component interconnect (PCI) local bus to an industry standard architecture
(ISA) bus bridge chip (not shown). The computer 10 switches between the
primary BIOS ROM 22 and the secondary BIOS ROM 30 by toggling the
ROMSEL to control line 42 in the PCI to ISA bridge chip (not shown).
However, those of ordinary skill in the art will readily recognize that any
programmable register will operate satisfactorily with the computer 10.

Noll, 3:50-61

2776

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 16 of 27

6. The method of claim 1, further
comprising updating the list of boot data.

Noll, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2777

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 17 of 27

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Noll, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2778

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 18 of 27

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Noll, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2779

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 11.1
“A system comprising: a processor;”

 Page 19 of 27

11.1. a processor;

Noll, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Noll discloses this limitation:

See Claim 1.2 above.

2780

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 11.2
“a memory”

 Page 20 of 27

11.2. a memory; and

Noll, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Noll discloses this limitation:

See Claims 1.3, and 1.4 above.

2781

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 21 of 27

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Noll, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2782

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 22 of 27

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Noll, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2783

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 23 of 27

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Noll, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1 and 1.5 above.

2784

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 24 of 27

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Noll, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Noll discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2785

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 25 of 27

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Noll, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Noll discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2786

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 26 of 27

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Noll, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

See Claims 1, 8, and 11 above.

2787

Appendix B14
Invalidity of U.S. Patent 8,090,936 based on Noll

	

Noll Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 27 of 27

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Noll, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Noll discloses this limitation:

See Claims 1, 9, and 11 above.

2788

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce
 Page 1 of 26

U.S. Patent No. 5,828,877 to Pearce (“Pearce”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2789

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 26

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Pearce, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

“During compression of the main memory, the record containing the
identity of the allocable units compressed is also stored for use by the
main memory restoration method detailed in FIG. 5.”

Pearce, 8:27-30, Fig. 5.

“As a part of the block 515, the units previously allocated to the reducing
task are marked as unallocated and therefore free for subsequent
allocation by the operating system.”

Pearce, 8:67-9:3, Fig. 5.

See also Pearce 4:16-22.

2790

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 3 of 26

1.2 initializing a central processing unit of
said computer system;

Pearce, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

“The most effective solution to power saving following a long period of
user inactivity is to turn off the PC completely. However, it is
unacceptable simply to interrupt has not yet been stored in non-volatile
memory, particularly the hard disk drive. Rather, it is advantageous to
store the contents of the volatile main memory of the PC as an image in
the nonvolatile secondary storage device (a so-called “suspend-to-disk”
or “STD”). When the user restores power to the PC, the image is restored
to the main memory (a “resume-from-disk” or “RFD”), placing the PC in
exactly the same functional state as it was when power was interrupted.”

Pearce, 1:65-2:10.

2791

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 4 of 26

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Pearce, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

“The most effective solution to power saving following a long period of
user inactivity is to turn off the PC completely. However, it is
unacceptable simply to interrupt has not yet been stored in non-volatile
memory, particularly the hard disk drive. Rather, it is advantageous to
store the contents of the volatile main memory of the PC as an image in
the nonvolatile secondary storage device (a so-called “suspend-to-disk”
or “STD”). When the user restores power to the PC, the image is restored
to the main memory (a “resume-from-disk” or “RFD”), placing the PC in
exactly the same functional state as it was when power was interrupted.”

Pearce, 1:65-2:10.

“Accordingly, a first embodiment of the present invention provides, in a
computer system having a CPU, a main memory (either real or virtual)
divisible into allocable units, a secondary storage unit and an operating
system for allocating the allocable units to tasks for use thereby, a
suspend circuit for creating an optimized compressed image of data in the
main memory.”

Pearce, 2:36-43.

“Once the contents of main memory have been compressed and stored as
an image in the secondary storage device, power to the computer system
is interrupted.”

Pearce, 2:57-59.

“The present invention is designed to conserve computer power by
storing the pertinent contents of the main memory 210 as a compressed

2792

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 26

image in the nonvolatile secondary storage device 260, allowing power
to be interrupted to the portable PC 100 in its entirety. When the user so
directs, power is restored to the PC, and the image is decompressed back
into the main memory 210, allowing the CPU 200 to continue processing
at the point where it stopped prior to interruption of power.”

Pearce, 5:36-44.

“Execution begins in a start block 500 wherein the portable PC 100 boots,
loading initial portions of code commonly stored in nonvolatile memory
within the portable PC 100.”

Pearce, 8:39-41, Fig. 5.

2793

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 6 of 26

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Pearce, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

“The most effective solution to power saving following a long period of
user inactivity is to turn off the PC completely. However, it is
unacceptable simply to interrupt has not yet been stored in non-volatile
memory, particularly the hard disk drive. Rather, it is advantageous to
store the contents of the volatile main memory of the PC as an image in
the nonvolatile secondary storage device (a so-called “suspend-to-disk”
or “STD”). When the user restores power to the PC, the image is restored
to the main memory (a “resume-from-disk” or “RFD”), placing the PC in
exactly the same functional state as it Was When power was interrupted.”

Pearce, 1:65-2:10.

“Accordingly, a first embodiment of the present invention provides, in a
computer system having a CPU, a main memory (either real or virtual)
divisible into allocable units, a secondary storage unit and an operating
system for allocating the allocable units to tasks for use thereby, a
suspend circuit for creating an optimized compressed image of data in the
main memory.”

Pearce, 2:36-43.

“In a preferred embodiment, the suspend circuit further comprises a
circuit for restoring the main memory by decompressing the compressed
image into the main memory. The allocable units allocated to the
reducing task are designated as unallocated units in the decompressed
image.”

Pearce, 3:47-52.

“The present invention is designed to conserve computer power by

2794

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 26

storing the pertinent contents of the main memory 210 as a compressed
image in the nonvolatile secondary storage device 260, allowing power
to be interrupted to the portable PC 100 in its entirety. When the user so
directs, power is restored to the PC, and the image is decompressed back
into the main memory 210, allowing the CPU 200 to continue processing
at the point where it stopped prior to interruption of power.”

Pearce, 5:36-44.

“If a compressed image file is detected, execution proceeds to a block
515, Wherein a corresponding (e.g., run length decoding) decompression
routine decompresses and restores the main memory 210 to the state in
which it was prior to shutdown. In the first embodiment, the units
previously allocated to the reducing task remain filled with the bit pattern.
In the second embodiment, the stored record is retrieved and used as a
guide by the decompression routine to restore the compressed allocable
units to their proper position in main memory.”

Pearce, 8:52-61, Fig. 5.

2795

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 8 of 26

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Pearce, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

“The most effective solution to power saving following a long period of
user inactivity is to turn off the PC completely. However, it is
unacceptable simply to interrupt has not yet been stored in non-volatile
memory, particularly the hard disk drive. Rather, it is advantageous to
store the contents of the volatile main memory of the PC as an image in
the nonvolatile secondary storage device (a so-called “suspend-to-disk”
or “STD”). When the user restores power to the PC, the image is restored
to the main memory (a “resume-from-disk” or “RFD”), placing the PC in
exactly the same functional state as it Was When power was interrupted.”

Pearce, 1:65-2:10.

“In a preferred embodiment, the suspend circuit further comprises a
circuit for restoring the main memory by decompressing the compressed
image into the main memory. The allocable units allocated to the
reducing task are designated as unallocated units in the decompressed
image.”

Pearce, 3:47-52.

“The present invention is designed to conserve computer power by
storing the pertinent contents of the main memory 210 as a compressed
image in the nonvolatile secondary storage device 260, allowing power
to be interrupted to the portable PC 100 in its entirety. When the user so
directs, power is restored to the PC, and the image is decompressed back
into the main memory 210, allowing the CPU 200 to continue processing

2796

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 9 of 26

at the point where it stopped prior to interruption of power.”

Pearce, 5:36-44.

“If a compressed image file is detected, execution proceeds to a block
515, wherein a corresponding (e.g., run length decoding) decompression
routine decompresses and restores the main memory 210 to the state in
which it was prior to shutdown. In the first embodiment, the units
previously allocated to the reducing task remain filled with the bit pattern.
In the second embodiment, the stored record is retrieved and used as a
guide by the decompression routine to restore the compressed allocable
units to their proper position in main memory.”

Pearce, 8:52-61, Fig. 5.

See also Pearce 4:16-22.

2797

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 10 of 26

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Pearce, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2798

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 11 of 26

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Pearce, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“One of the purposes of the operating system is to allocate resources to
tasks (or “application programs,” such as Word processors,
spreadsheets, communications programs, database managers, games and
the like and their associated data) as they are executed on the portable
PC 100.”

Pearce, 5:55-61.

“The user again loads an application task and begins to edit a document.
For purposes of this example, it is again assumed that the user leaves the
portable PC 100 Without saving the document. A period of inactivity
thus begins.”

Pearce, 7:65-8:3.

2799

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 12 of 26

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Pearce, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“One of the purposes of the operating system is to allocate resources to
tasks (or “application programs,” such as Word processors,
spreadsheets, communications programs, database managers, games and
the like and their associated data) as they are executed on the portable
PC 100.”

Pearce, 5:55-61.

“The user again loads an application task and begins to edit a document.
For purposes of this example, it is again assumed that the user leaves the
portable PC 100 Without saving the document. A period of inactivity
thus begins.”

Pearce, 7:65-8:3.

2800

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 13 of 26

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Pearce, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“A bus controller 250 manages communication of data between the
relatively fast local bus 240 and a relatively slow expansion bus 290 via
lines 251, 252, respectively.”

Pearce, 5:17-19.

2801

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 14 of 26

6. The method of claim 1, further
comprising updating the list of boot data.

Pearce, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“In a preferred embodiment, the suspend circuit further comprises a
circuit for restoring the main memory by decompressing the compressed
image into the main memory. The allocable units allocated to the
reducing task are designated as unallocated units in the decompressed
image.”

Pearce, 3:47-52.

“As a part of the block 515, the units previously allocated to the reducing
task are marked as unallocated and therefore free for subsequent
allocation by the operating system.”

Pearce, 8:67-9:3, Fig. 5.

See also Pearce 4:16-22.

2802

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 15 of 26

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Pearce, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“There are a wide variety of conventional data compression algorithms
that are suitable to compress the contents of main memory to create a
compressed image to be stored in the secondary storage device. Those
skilled in the art are familiar With standard compression algorithms such
as run length encoding, adaptive pattern substitution, variable length
character encoding (such as Huffman coding), restricted variability
codes, dictionary substitution, differencing and ordered data schemes.”

Pearce, 7:11-19.

2803

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 16 of 26

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Pearce, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“(3) a circuit for executing the data compression process to store a
compressed image of the main memory in the secondary storage unit, the
bit pattern allowing a size of the compressed image to be reduced and a
time required to compress and store the compressed image to be
minimized.”

Pearce, 2:49-53. See also Pearce, 3:36-42, 9:25-31.

2804

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.1
“A system comprising: a processor;”

 Page 17 of 26

11.1. a processor;

Pearce, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Pearce discloses this limitation:

See Claim 1.2 above.

2805

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.2
“a memory”

 Page 18 of 26

11.2. a memory; and

Pearce, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Pearce discloses this limitation:

See Claims 1.3, and 1.4 above.

2806

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 19 of 26

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Pearce, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also add disclosure of non-volatile memory to the extent not in claim 1 already

“The present invention is directed, in general, to computer systems and, more
particularly, to a circuit and method for conserving power used by the computer system
by storing a compressed image of the contents of the computer system’s main memory
on a nonvolatile secondary storage device, allowing power to the main memory to be
interrupted.”

Pearce, 1:6-11.

“However, it is unacceptable simply to interrupt power, because the user may have been
engaged in work that has not yet been stored in non-volatile memory, particularly the
hard disk drive. Rather, it is advantageous to store the contents of the volatile main
memory of the PC as an image in the nonvolatile secondary storage device (a so-called
“suspend-to-disk” or “STD”).”

Pearce, 1:67-2:6.

“In a preferred embodiment, the secondary storage device is a

2807

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 20 of 26

conventional, nonvolatile hard disk drive.”

Pearce, 3:4-5.

“The expansion bus 290 couples at least one nonvolatile secondary
storage device 260 (such as a floppy, Bernoulli, magneto-optical, CD-
ROM or hard disk drive), expansion slots 270 (capable or receiving
daughter-cards providing functions such as facsimile or modem, network
interface or sound) and ports 280 (for coupling a printer or serial devices
to the portable PC 100) via lines 261, 271, 281, respectively.”

Pearce, 5:19-26.

“The present invention is designed to conserve computer power by
storing the pertinent contents of the main memory 210 as a compressed
image in the nonvolatile secondary storage device 260, allowing power
to be interrupted to the portable PC 100 in its entirety.”

Pearce, 5:35-39.

2808

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 21 of 26

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Pearce, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2809

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 22 of 26

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Pearce, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1 and 1.5 above.

2810

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 23 of 26

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Pearce, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Pearce discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2811

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 24 of 26

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Pearce, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2812

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 25 of 26

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Pearce, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1, 8, and 11 above.

2813

Appendix B15
Invalidity of U.S. Patent 8,090,936 based on Pearce

	

Pearce Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 26 of 26

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Pearce, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Pearce discloses this limitation:

See Claims 1, 9, and 11 above.

2814

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman
 Page 1 of 27

U.S. Patent No. 5,901,310 Rahman (“Rahman”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2815

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 27

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Rahman, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

2816

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 27

Rahman, Fig. 1.

“Initializing and configuring computer hardware with firmware stored in
compressed form in nonvolatile semiconductor memory. Upon startup of
the computer hardware, decompression software decompress the
firmware, which is then stored in another memory. The computer
hardware may be an adapter board (e.g., a graphics board connected to
PCI bus), the nonvolatile semiconductor memory may be physically
located on the adapter board, and the firmware may be firmware for
initializing and configuring the adapter board.”

Rahman, Abstract.

“The firmware may be the BIOS for initializing and configuring a
personal computer.”

Rahman, 2:1-2.

“Devices that connect to the PCI bus provide initialization code and
runtime code for the device. This code resides in ROM 24 on the device.
When the computer system starts up or initializes, it detects the device,
reads the code from ROM into the host system memory, such as a RAM
or dynamic random access memory 26 (DRAM), and interprets the code.”

Rahman, 2:51-57.

“When the computer system starts up or initializes, it detects the adapter
board connected to the PCI bus. It then locates the decompression code
29 in the adapter board's ROM. The computer system processor runs an
FCode interpreter, which interprets the instructions in the decompression
program as it reads the code from the adapter board's ROM. The
compressed code 28 is decompressed, using the computer system's
memory (such as RAM or DRAM 26) to store the image. After the image
is decompressed, the system recognizes the decompressed image as a
device driver that configures and initializes the adapter board, and
supplies the runtime set of instructions for the adapter board.”

Rahman, 2:66-3:11.

“Other embodiments are within the scope of the following claims. For
example, a personal computer's basic input/output system (BIOS) is
firmware stored in ROM and could be stored in a compressed format.
Furthermore, other types of nonvolatile semiconductor memory, such as
programmable ROMs (PROMS) and erasable programmable ROMs

2817

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 27

(EPROMs), could be used to store the compressed firmware.”

Rahman, 4:63-5:3.

2818

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 27

1.2 initializing a central processing unit of
said computer system;

Rahman, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

Rahman, Fig. 1.

“Initializing and configuring computer hardware with firmware stored in
compressed form in nonvolatile semiconductor memory. Upon startup of
the computer hardware, decompression software decompress the
firmware, which is then stored in another memory. The computer
hardware may be an adapter board (e.g., a graphics board connected to
PCI bus), the nonvolatile semiconductor memory may be physically
located on the adapter board, and the firmware may be firmware for

2819

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 27

initializing and configuring the adapter board.”

Rahman, Abstract.

“The firmware may be the BIOS for initializing and configuring a
personal computer.”

Rahman, 2:1-2.

“Devices that connect to the PCI bus provide initialization code and
runtime code for the device. This code resides in ROM 24 on the device.
When the computer system starts up or initializes, it detects the device,
reads the code from ROM into the host system memory, such as a RAM
or dynamic random access memory 26 (DRAM), and interprets the code.”

Rahman, 2:51-57.

“When the computer system starts up or initializes, it detects the adapter
board connected to the PCI bus. It then locates the decompression code
29 in the adapter board's ROM. The computer system processor runs an
FCode interpreter, which interprets the instructions in the decompression
program as it reads the code from the adapter board's ROM. The
compressed code 28 is decompressed, using the computer system's
memory (such as RAM or DRAM 26) to store the image. After the image
is decompressed, the system recognizes the decompressed image as a
device driver that configures and initializes the adapter board, and
supplies the runtime set of instructions for the adapter board.”

Rahman, 2:66-3:11.

“Other embodiments are within the scope of the following claims. For
example, a personal computer's basic input/output system (BIOS) is
firmware stored in ROM and could be stored in a compressed format.
Furthermore, other types of nonvolatile semiconductor memory, such as
programmable ROMs (PROMS) and erasable programmable ROMs
(EPROMs), could be used to store the compressed firmware.”

Rahman, 4:63-5:3.

2820

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 27

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Rahman, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

“Initializing and configuring computer hardware with firmware stored in
compressed form in nonvolatile semiconductor memory.”

Rahman, Abstract.

“When the computer system starts up or initializes, it detects the adapter
board connected to the PCI bus. It then locates the decompression code
29 in the adapter board's ROM. The computer system processor runs an
FCode interpreter, which interprets the instructions in the decompression
program as it reads the code from the adapter board's ROM. The
compressed code 28 is decompressed, using the computer system's
memory (such as RAM or DRAM 26) to store the image. After the image
is decompressed, the system recognizes the decompressed image as a
device driver that configures and initializes the adapter board, and
supplies the runtime set of instructions for the adapter board.”

Rahman, 2:66-3:11.

“Other embodiments are within the scope of the following claims. For
example, a personal computer's basic input/output system (BIOS) is
firmware stored in ROM and could be stored in a compressed format.
Furthermore, other types of nonvolatile semiconductor memory, such as
programmable ROMs (PROMS) and erasable programmable ROMs
(EPROMs), could be used to store the compressed firmware.”

Rahman, 4:63-5:3.

2821

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 27

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Rahman, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

“Initializing and configuring computer hardware with firmware stored in
compressed form in nonvolatile semiconductor memory.”

Rahman, Abstract.

“Upon startup of the computer hardware, decompression software
decompress the firmware, which is then stored in another memory.”

Rahman, Abstract.

“The invention virtually increases the size of the nonvolatile
semiconductor memory (e.g., a ROM) available for storing firmware by
storing the firmware in compressed form and quickly decompressing it
on startup. This permits the firmware memory to hold more instructions
than would otherwise be possible. The invention is able to decompress
firmware quickly, reliably, and fully automatically, so that the fact of
the firmware being compressed is substantially invisible to the end-
user.”

Rahman, 1:48-56.

“When the computer system starts up or initializes, it detects the adapter
board connected to the PCI bus. It then locates the decompression code
29 in the adapter board's ROM. The computer system processor runs an
FCode interpreter, which interprets the instructions in the decompression
program as it reads the code from the adapter board's ROM. The
compressed code 28 is decompressed, using the computer system's
memory (such as RAM or DRAM 26) to store the image. After the image
is decompressed, the system recognizes the decompressed image as a
device driver that configures and initializes the adapter board, and

2822

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 27

supplies the runtime set of instructions for the adapter board.”

Rahman, 2:66-3:11.

“Other embodiments are within the scope of the following claims. For
example, a personal computer's basic input/output system (BIOS) is
firmware stored in ROM and could be stored in a compressed format.
Furthermore, other types of nonvolatile semiconductor memory, such as
programmable ROMs (PROMS) and erasable programmable ROMs
(EPROMs), could be used to store the compressed firmware.”

Rahman, 4:63-5:3.

2823

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 10 of 27

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Rahman, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

“Initializing and configuring computer hardware with firmware stored in
compressed form in nonvolatile semiconductor memory.”

Rahman, Abstract.

“Upon startup of the computer hardware, decompression software
decompress the firmware, which is then stored in another memory.”

Rahman, Abstract.

“The invention virtually increases the size of the nonvolatile
semiconductor memory (e.g., a ROM) available for storing firmware by
storing the firmware in compressed form and quickly decompressing it
on startup. This permits the firmware memory to hold more instructions
than would otherwise be possible. The invention is able to decompress
firmware quickly, reliably, and fully automatically, so that the fact of
the firmware being compressed is substantially invisible to the end-
user.”

Rahman, 1:48-56.

“The firmware may be the BIOS for initializing and configuring a
personal computer.”

Rahman, 2:1-2.

“When the computer system starts up or initializes, it detects the adapter

2824

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 27

board connected to the PCI bus. It then locates the decompression code
29 in the adapter board's ROM. The computer system processor runs an
FCode interpreter, which interprets the instructions in the decompression
program as it reads the code from the adapter board's ROM. The
compressed code 28 is decompressed, using the computer system's
memory (such as RAM or DRAM 26) to store the image. After the image
is decompressed, the system recognizes the decompressed image as a
device driver that configures and initializes the adapter board, and
supplies the runtime set of instructions for the adapter board.”

Rahman, 2:66-3:11.

“Other embodiments are within the scope of the following claims. For
example, a personal computer's basic input/output system (BIOS) is
firmware stored in ROM and could be stored in a compressed format.
Furthermore, other types of nonvolatile semiconductor memory, such as
programmable ROMs (PROMS) and erasable programmable ROMs
(EPROMs), could be used to store the compressed firmware.”

Rahman, 4:63-5:3.

2825

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 12 of 27

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Rahman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2826

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 13 of 27

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Rahman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2827

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 14 of 27

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Rahman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2828

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 15 of 27

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Rahman, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Rahman, Fig. 1.

“The processor accesses devices connected to the PCI local bus 12
through a bridge/memory controller 18.”

Rahman, 2:47-48.

2829

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 16 of 27

6. The method of claim 1, further
comprising updating the list of boot data.

Rahman, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2830

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 17 of 27

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Rahman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

“The compression technique used may include both run-length encoding
and pattern compression, and may operate at the bit level.”

Rahman, Abstract.

“Compression techniques using both run-length encoding and pattern
compression may be used (e.g., the Ross Compression technique). The
compression technique may scan an input file. First, it may determine if
it can perform run-length-encoding compression on the current character.
If not, the compression technique may determine if it can compress a
pattern of characters. If the run-length-encoding and pattern matching
Were not successful, the compression technique may copy the character
directly to the compressed file.”

Rahman, 2:7-16.

“The compression and decompression techniques utilize four 3-byte
formats. FIG. 3 illustrates the formats, which are a short run-length-
encoded format 30, a long run-length encoded format 32, a short
patterned format 34, and a long patterned format 36.”

Rahman, 3:12-16. See also 3:17-17, Appendix.

2831

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 18 of 27

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Rahman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

“The compression technique used may include both run-length encoding
and pattern compression, and may operate at the bit level.”

Rahman, Abstract.

“Compression techniques using both run-length encoding and pattern
compression may be used (e.g., the Ross Compression technique). The
compression technique may scan an input file. First, it may determine if
it can perform run-length-encoding compression on the current character.
If not, the compression technique may determine if it can compress a
pattern of characters. If the run-length-encoding and pattern matching
Were not successful, the compression technique may copy the character
directly to the compressed file.”

Rahman, 2:7-16.

“The compression and decompression techniques utilize four 3-byte
formats. FIG. 3 illustrates the formats, which are a short run-length-
encoded format 30, a long run-length encoded format 32, a short
patterned format 34, and a long patterned format 36.”

Rahman, 3:12-16. See also 3:17-17, Appendix.

2832

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 11.1
“A system comprising: a processor;”

 Page 19 of 27

11.1. a processor;

Rahman, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rahman discloses this limitation:

See Claim 1.2 above.

2833

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 11.2
“a memory”

 Page 20 of 27

11.2. a memory; and

Rahman, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rahman discloses this limitation:

See Claims 1.3, and 1.4 above.

2834

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 21 of 27

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Rahman, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2835

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 22 of 27

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Rahman, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2836

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 23 of 27

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Rahman, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1 and 1.5 above.

2837

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 24 of 27

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Rahman, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Rahman discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2838

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 25 of 27

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Rahman, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2839

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 26 of 27

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Rahman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1, 8, and 11 above.

2840

Appendix B16
Invalidity of U.S. Patent 8,090,936 based on Rahman

	

Rahman Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 27 of 27

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Rahman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Rahman discloses this limitation:

See Claims 1, 9, and 11 above.

2841

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu
 Page 1 of 45

U.S. Patent No. 6,374,353 to Settsu (“Settsu”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

In addition, Apple incorporates by reference, as if set forth fully herein, all arguments
related to Settsu in pending inter partes review petitions IPR2016-01737, IPR2016-
01738, and IPR2016-01739

2842

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 45

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Settsu, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this claim limitation:

Referring next to FIG. 1, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a first
embodiment of th present invention. In the figure, reference numeral 1
denotes a ROM of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes 5 a boot
device of the information processing apparatus, 4 denotes a boot block
in the boot device 3, 5 denotes a file system I the boot device 3, and 6
denotes a firmware or FI/W code module stored in the ROM 1. The
FI/W code module 6 is directly executed on the ROM 1 so as to load
data from the boot block 4 in the boot device 3 into the memory 2 and
then assume that the loaded data is a code and execute the code after
setting up and running diagnostic checks on a hardware or H/W register.
Further, reference numeral 7 denotes a mini operating system (OS)
module complied and liked in the same way as ordinary program files
and located in the boot block 4 within the boot device, the mini OS
module having OS functions required for bootstrap processing, and 8
denotes an OS main body module located in the file system 5 within the
boot device and provided with OS functions except the OS functions
included in the mini OS module 7. When the information processing
apparatus is powered on, it goes through initialization and transfers
control to the F/W code module 6 stored in the ROM 1.

2843

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 45

Referring next to FIG. 2, there is illustrated a diagram showing the
structure of the mini OS module 7 stored in the boot block of the boot
device of the information processing apparatus according to the first
embodiment of the present invention. As shown in the figure, the mini
OS module 7 consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing I/O operations
on the boot device 3, and an OS loading and initialization processing
module 11 for loading the OS main body module 8 from the boot device
3 into the memory 2 and for executing the initialization of the OS main
body module 8.

Settsu, 7:65-8:35

Settsu, Fig. 12

Referring next to FIG. 12, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a
fourth embodiment of the present invention. In the figure, the same
reference numerals as shown in FIG. 5 designate the same or like
elements, and therefore the description of those elements will be
omitted hereinafter. Like the OS of the second embodiment, the OS of
the second embodiment is divided into a mini OS module 7 and a main
body of the OS, and the main body is further divided into a plurality of
functional modules, such as a system call processing module 17, a
process management module 18, a common memory management
module 19, a message management module 20, a signal management
module 21, a virtual memory processing module 22, and a device driver
module 16. The plurality of functional modules are separately stored as
compressed files in a file system 5 of a boot device 3.

2844

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 45

Settsu, 13:55-65

Settsu, Fig. 13.

Referring next to FIG. 13, there is illustrated a block diagram showing
the structure of the mini OS module 7 of the information processing
apparatus according to the fourth embodiment of the present invention.
Like the mini OS module 7 of the second embodiment as shown in FIG.
6, the mini OS module 7 of the fourth embodiment is provided with a
mini kernel module 9, a boot device driver module 10, and an OS
initialization processing module 31. The mini OS module 7 of the fourth
embodiment further comprises an OS loading and decompression
processing module 50 having a function of decompressing a loaded
functional module in addition to the function of the OS load processing
module 30 of the second embodiment, instead of the OS load processing
module 30.

Settsu, 13:66-14:12

See also Settsu, 16:7-17:62, and Figs. 1-4, 6-9, 14, 20 & 35-36.

2845

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 45

1.2 initializing a central processing unit of
said computer system;

Settsu, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Settsu discloses this claim limitation:

A method of booting up an information processing apparatus is
provided. An operating system is divided into a mini operating system
(OS) module having a function of bootstrap and an OS main body
module having functions other than the function of bootstrap. The mini
OS module can be located in a boot block of a boot device, whereas the
OS main body module can be located in a file system of the boot device.
A firmware or F/W code module stored in a ROM loads the mini OS
module into memory when booting up the information processing
apparatus. The mini OS module then loads the OS main body module
into memory and then initializes the OS main body module.

Settsu, Abstract

The present invention relates to an information processing apparatus
capable of reducing the time required for booting itself when it is
powered on, and a method of booting an information processing
apparatus at a high speed.

Settsu, 1:8-12.

Referring next to FIG. 1, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a first
embodiment of th present invention. In the figure, reference numeral 1
denotes a ROM of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes 5 a boot
device of the information processing apparatus, 4 denotes a boot block
in the boot device 3, 5 denotes a file system I the boot device 3, and 6
denotes a firmware or FI/W code module stored in the ROM 1. The
FI/W code module 6 is directly executed on the ROM 1 so as to load
data from the boot block 4 in the boot device 3 into the memory 2 and

2846

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 45

then assume that the loaded data is a code and execute the code after
setting up and running diagnostic checks on a hardware or H/W register.
Further, reference numeral 7 denotes a mini operating system (OS)
module complied and liked in the same way as ordinary program files
and located in the boot block 4 within the boot device, the mini OS
module having OS functions required for bootstrap processing, and 8
denotes an OS main body module located in the file system 5 within the
boot device and provided with OS functions except the OS functions
included in the mini OS module 7. When the information processing
apparatus is powered on, it goes through initialization and transfers
control to the F/W code module 6 stored in the ROM 1.

Referring next to FIG. 2, there is illustrated a diagram showing the
structure of the mini OS module 7 stored in the boot block of the boot
device of the information processing apparatus according to the first
embodiment of the present invention. As shown in the figure, the mini
OS module 7 consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing I/O operations
on the boot device 3, and an OS loading and initialization processing
module 11 for loading the OS main body module 8 from the boot device
3 into the memory 2 and for executing the initialization of the OS main
body module 8.

Settsu, 7:65-8:35

Referring next to FIG. 3, there is illustrated a diagram showing the
structure of the OS main body module 8 of the information processing
apparatus according to the first embodiment of the present invention. As
shown in the figure, the OS main body module 8 consists of a kernel
module 15 having kernel functions except the functions included in the
mini kernel module 9 of FIG. 2, and a device driver module 16 for
performing I/O operations on devices (not shown) except the boot
device 3. . . . The OS main body module 8 is located within the file
system 5 of the boot device 3 and is loaded into the memory 2 by the
mini OS module 7. The OS main body module 8 then goes through
initialization.

Settsu, 8:47-9:3

Referring next to FIG. 4, there is illustrated a flow chart showing
operations of the mini OS module 7 of the information processing
apparatus according to the first embodiment of the present invention.
The F/W code module 6 loads the mini OS module 7 into the memory 2
and transfers control to the mini OS module 7. The mini OS module 7
then, in step ST101, executes initialization of the mini kernel module 9.

2847

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 45

In this case, the thread management module 12, the I/O management
module 13, and the thread communication management module 14 are
initialized and their functions are available now. Next, the mini OS
module 7, in step ST102, executes initialization of the boot device
driver module 10. The boot device driver module 10 registers an
interrupt request from the boot device into an interrupt table of the I/O
management module 13 so as to handle the interrupt request, and
generates and starts execution of a thread for boot device I/O processing
by using the thread management module 12.

Settsu, 9:7-21.

The mini OS module 7, in step ST103, generates a thread for the OS
loading and initialization processing module 11 by using the thread
management module 12. The mini OS module 7 further, in step ST104,
starts execution of the thread by using the thread management module
12. The OS loading and initialization processing module 11 is thus
started up as the thread. After that, the mini OS module 7 transfers
control to the OS loading and initialization processing module 11.

Settsu, 9:30-39.

As previously mentioned, in accordance with the second embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body of the OS. Further, the plurality of functional modules
are separately stored in the file system 5. In addition, the OS load
processing and the OS initialization processing can be performed in
parallel with each other after any one of the plurality of functional
modules of the OS main body is loaded into the memory. As a result,
while the CPU waits for the occurrence of an event in performing the
OS load or initialization processing, the CPU does not idle but the CPU
performs another processing. Accordingly, the second embodiment of
the present invention provides an advantage of being able to further
reduce the time required for booting up the information processing
apparatus.

Settsu, 12:1-16.

Referring next to FIG. 13, there is illustrated a block diagram showing
the structure of the mini OS module 7 of the information processing
apparatus according to the fourth embodiment of the present invention.
Like the mini OS module 7 of the second embodiment as shown in FIG.
6, the mini OS module 7 of the fourth embodiment is provided with a
mini kernel module 9, a boot device driver module 10, and an OS

2848

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 8 of 45

initialization processing module 31. The mini OS module 7 of the fourth
embodiment further comprises an OS loading and decompression
processing module 50 having a function of decompressing a loaded
functional module in addition to the function of the OS load processing
module 30 of the second embodiment, instead of the OS load processing
module 30.

Settsu, 13:66-14:12

See also Figs. 1-4, 6-9, 12-14, 20 & 35-36.

2849

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 45

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Settsu, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this claim limitation:

A method of booting up an information processing apparatus is
provided. An operating system is divided into a mini operating system
(OS) module having a function of bootstrap and an OS main body
module having functions other than the function of bootstrap. The mini
OS module can be located in a boot block of a boot device, whereas the
OS main body module can be located in a file system of the boot device.
A firmware or F/W code module stored in a ROM loads the mini OS
module into memory when booting up the information processing
apparatus. The mini OS module then loads the OS main body module
into memory and then initializes the OS main body module.

Settsu, Abstract

The present invention relates to an information processing apparatus
capable of reducing the time required for booting itself when it is
powered on, and a method of booting an information processing
apparatus at a high speed.

Settsu, 1:8-12.

In accordance with an aspect of the present invention, there is provided
an information processing apparatus comprising: a boot device divided
into a boot block in which a mini operating system (OS) module having
a function required for bootstrap processing is located and a file system

2850

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 45

in which an operating system (OS) main body module having functions
other than the function of bootstrap. . . .

Settsu, 1:51-57

In accordance with another preferred embodiment of the present
invention, the plurality of functional modules, into which the OS main
body module is divided, are stored as compressed files in the file system
and the loading and initialization processing module of the mini OS
module is divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini OS module
generates and starts execution of a thread for the OS loading and
decompression processing module after the mini OS module initializes
the mini kernel module and the boot device driver module. After the
thread for the OS loading and decompression processing module is
started, the OS loading and decompression processing module loads
each of the plurality of functional modules into the memory and
decompresses the loaded functional module, and then generates and
starts execution of a thread for the OS initialization module. After the
thread for the OS initialization module is executed, the OS initialization
module initializes each of the plurality of functional modules loaded
into the memory and decompressed.

Settsu, 3:6-25

Referring next to FIG. 1, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a first
embodiment of th present invention. In the figure, reference numeral 1
denotes a ROM of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes 5 a boot
device of the information processing apparatus, 4 denotes a boot block
in the boot device 3, 5 denotes a file system I the boot device 3, and 6
denotes a firmware or FI/W code module stored in the ROM 1. The
FI/W code module 6 is directly executed on the ROM 1 so as to load
data from the boot block 4 in the boot device 3 into the memory 2 and
then assume that the loaded data is a code and execute the code after
setting up and running diagnostic checks on a hardware or H/W register.
Further, reference numeral 7 denotes a mini operating system (OS)
module complied and liked in the same way as ordinary program files
and located in the boot block 4 within the boot device, the mini OS
module having OS functions required for bootstrap processing, and 8
denotes an OS main body module located in the file system 5 within the
boot device and provided with OS functions except the OS functions
included in the mini OS module 7. When the information processing

2851

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 45

apparatus is powered on, it goes through initialization and transfers
control to the F/W code module 6 stored in the ROM 1.

Referring next to FIG. 2, there is illustrated a diagram showing the
structure of the mini OS module 7 stored in the boot block of the boot
device of the information processing apparatus according to the first
embodiment of the present invention. As shown in the figure, the mini
OS module 7 consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing I/O operations
on the boot device 3, and an OS loading and initialization processing
module 11 for loading the OS main body module 8 from the boot device
3 into the memory 2 and for executing the initialization of the OS main
body module 8.

Settsu, 7:65-8:35

Referring next to FIG. 3, there is illustrated a diagram showing the
structure of the OS main body module 8 of the information processing
apparatus according to the first embodiment of the present invention. As
shown in the figure, the OS main body module 8 consists of a kernel
module 15 having kernel functions except the functions included in the
mini kernel module 9 of FIG. 2, and a device driver module 16 for
performing I/O operations on devices (not shown) except the boot
device 3. . . . The OS main body module 8 is located within the file
system 5 of the boot device 3 and is loaded into the memory 2 by the
mini OS module 7. The OS main body module 8 then goes through
initialization.

Settsu, 8:47-9:3

Referring next to FIG. 4, there is illustrated a flow chart showing
operations of the mini OS module 7 of the information processing
apparatus according to the first embodiment of the present invention.
The F/W code module 6 loads the mini OS module 7 into the memory 2
and transfers control to the mini OS module 7. The mini OS module 7
then, in step ST101, executes initialization of the mini kernel module 9.
In this case, the thread management module 12, the I/O management
module 13, and the thread communication management module 14 are
initialized and their functions are available now. Next, the mini OS
module 7, in step ST102, executes initialization of the boot device
driver module 10. The boot device driver module 10 registers an
interrupt request from the boot device into an interrupt table of the I/O
management module 13 so as to handle the interrupt request, and
generates and starts execution of a thread for boot device I/O processing
by using the thread management module 12.

2852

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 12 of 45

Settsu, 9:7-21.

The mini OS module 7, in step ST103, generates a thread for the OS
loading and initialization processing module 11 by using the thread
management module 12. The mini OS module 7 further, in step ST104,
starts execution of the thread by using the thread management module
12. The OS loading and initialization processing module 11 is thus
started up as the thread. After that, the mini OS module 7 transfers
control to the OS loading and initialization processing module 11.

Settsu, 9:30-39.

As previously mentioned, in accordance with the second embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body of the OS. Further, the plurality of functional modules
are separately stored in the file system 5. In addition, the OS load
processing and the OS initialization processing can be performed in
parallel with each other after any one of the plurality of functional
modules of the OS main body is loaded into the memory. As a result,
while the CPU waits for the occurrence of an event in performing the
OS load or initialization processing, the CPU does not idle but the CPU
performs another processing. Accordingly, the second embodiment of
the present invention provides an advantage of being able to further
reduce the time required for booting up the information processing
apparatus.

Settsu, 12:1-16.

Settsu, Fig. 12

2853

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 13 of 45

Referring next to FIG. 12, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a
fourth embodiment of the present invention. In the figure, the same
reference numerals as shown in FIG. 5 designate the same or like
elements, and therefore the description of those elements will be
omitted hereinafter. Like the OS of the second embodiment, the OS of
the second embodiment is divided into a mini OS module 7 and a main
body of the OS, and the main body is further divided into a plurality of
functional modules, such as a system call processing module 17, a
process management module 18, a common memory management
module 19, a message management module 20, a signal management
module 21, a virtual memory processing module 22, and a device driver
module 16. The plurality of functional modules are separately stored as
compressed files in a file system 5 of a boot device 3.

Settsu, 13:55-65

Referring next to FIG. 13, there is illustrated a block diagram showing
the structure of the mini OS module 7 of the information processing
apparatus according to the fourth embodiment of the present invention.
Like the mini OS module 7 of the second embodiment as shown in FIG.
6, the mini OS module 7 of the fourth embodiment is provided with a
mini kernel module 9, a boot device driver module 10, and an OS
initialization processing module 31. The mini OS module 7 of the fourth
embodiment further comprises an OS loading and decompression
processing module 50 having a function of decompressing a loaded
functional module in addition to the function of the OS load processing
module 30 of the second embodiment, instead of the OS load processing
module 30.

Settsu, 13:66-14:12

Referring next to FIG. 14, there is illustrated a flow chart showing
operations of the OS loading and decompression processing module 50
of the information processing apparatus according to the fourth
embodiment of the present invention. The OS loading and
decompression processing module 50 to which control from the mini
OS module 7 has been transferred, in step ST181, loads the main body
of the OS stored in the file system 5 of the boot device 3, such as the
system call processing module 17, the process management module 18,
the common memory management module 19, the message
management module 20, the signal management module 21, the virtual
memory processing module 22, and the device driver module 16, into
the memory 2. In performing step ST181, the OS loading and
decompression processing module 50 loads any one of those functional

2854

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 14 of 45

modules 16 to 22 first. The OS loading and decompression processing
module 50 then, in step ST182, decompresses one functional module
loaded into the memory. Since the plurality of functional modules 16 to
22 are stored as compresses files in the file system 5 of the boot device,
the functional module loaded into the memory 2 is compressed data.
Therefore, in performing step ST182, the OS loading and
decompression processing module 50 decompresses the compressed
data so as to convert it into executable code and data.

Settsu, 14:13-37

As previously mentioned, in accordance with the fourth embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body, and the plurality of functional modules are stored as
compressed files in the file system 5 of the boot device. Further, the OS
loading and decompression processing module 50 decompresses each of
the plurality of functional modules each time it loads each of them into
memory. As a result, the time required for I/O processing can be
reduced. Accordingly, the fourth embodiment of the present invention
provides an advantage of being able to further reduce the time required
for booting up the information processing apparatus.

Settsu, 14:58-15:5

See also Settsu, 8:21-35, 8:66-9:11, 11:7-9, 11:18-39, 13:49-15:5, 16:7-17:62, and Figs.
1-4, 6-9, 13-14, 20 & 35-36.

2855

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 15 of 45

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Settsu, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this claim limitation:

A method of booting up an information processing apparatus is
provided. An operating system is divided into a mini operating system
(OS) module having a function of bootstrap and an OS main body
module having functions other than the function of bootstrap. The mini
OS module can be located in a boot block of a boot device, whereas the
OS main body module can be located in a file system of the boot device.
A firmware or F/W code module stored in a ROM loads the mini OS
module into memory when booting up the information processing
apparatus. The mini OS module then loads the OS main body module
into memory and then initializes the OS main body module.

Settsu, Abstract

The present invention relates to an information processing apparatus
capable of reducing the time required for booting itself when it is
powered on, and a method of booting an information processing
apparatus at a high speed.

Settsu, 1:8-12.

In accordance with an aspect of the present invention, there is provided
an information processing apparatus comprising: a boot device divided
into a boot block in which a mini operating system (OS) module having
a function required for bootstrap processing is located and a file system

2856

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 16 of 45

in which an operating system (OS) main body module having functions
other than the function of bootstrap. . . .

Settsu, 1:51-57

In accordance with another preferred embodiment of the present
invention, the plurality of functional modules, into which the OS main
body module is divided, are stored as compressed files in the file system
and the loading and initialization processing module of the mini OS
module is divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini OS module
generates and starts execution of a thread for the OS loading and
decompression processing module after the mini OS module initializes
the mini kernel module and the boot device driver module. After the
thread for the OS loading and decompression processing module is
started, the OS loading and decompression processing module loads
each of the plurality of functional modules into the memory and
decompresses the loaded functional module, and then generates and
starts execution of a thread for the OS initialization module. After the
thread for the OS initialization module is executed, the OS initialization
module initializes each of the plurality of functional modules loaded
into the memory and decompressed.

Settsu, 3:6-25

Referring next to FIG. 1, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a first
embodiment of th present invention. In the figure, reference numeral 1
denotes a ROM of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes 5 a boot
device of the information processing apparatus, 4 denotes a boot block
in the boot device 3, 5 denotes a file system I the boot device 3, and 6
denotes a firmware or FI/W code module stored in the ROM 1. The
FI/W code module 6 is directly executed on the ROM 1 so as to load
data from the boot block 4 in the boot device 3 into the memory 2 and
then assume that the loaded data is a code and execute the code after
setting up and running diagnostic checks on a hardware or H/W register.
Further, reference numeral 7 denotes a mini operating system (OS)
module complied and liked in the same way as ordinary program files
and located in the boot block 4 within the boot device, the mini OS
module having OS functions required for bootstrap processing, and 8
denotes an OS main body module located in the file system 5 within the
boot device and provided with OS functions except the OS functions
included in the mini OS module 7. When the information processing

2857

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 17 of 45

apparatus is powered on, it goes through initialization and transfers
control to the F/W code module 6 stored in the ROM 1.

Referring next to FIG. 2, there is illustrated a diagram showing the
structure of the mini OS module 7 stored in the boot block of the boot
device of the information processing apparatus according to the first
embodiment of the present invention. As shown in the figure, the mini
OS module 7 consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing I/O operations
on the boot device 3, and an OS loading and initialization processing
module 11 for loading the OS main body module 8 from the boot device
3 into the memory 2 and for executing the initialization of the OS main
body module 8.

Settsu, 7:65-8:35

Referring next to FIG. 3, there is illustrated a diagram showing the
structure of the OS main body module 8 of the information processing
apparatus according to the first embodiment of the present invention. As
shown in the figure, the OS main body module 8 consists of a kernel
module 15 having kernel functions except the functions included in the
mini kernel module 9 of FIG. 2, and a device driver module 16 for
performing I/O operations on devices (not shown) except the boot
device 3. . . . The OS main body module 8 is located within the file
system 5 of the boot device 3 and is loaded into the memory 2 by the
mini OS module 7. The OS main body module 8 then goes through
initialization.

Settsu, 8:47-9:3

Referring next to FIG. 4, there is illustrated a flow chart showing
operations of the mini OS module 7 of the information processing
apparatus according to the first embodiment of the present invention.
The F/W code module 6 loads the mini OS module 7 into the memory 2
and transfers control to the mini OS module 7. The mini OS module 7
then, in step ST101, executes initialization of the mini kernel module 9.
In this case, the thread management module 12, the I/O management
module 13, and the thread communication management module 14 are
initialized and their functions are available now. Next, the mini OS
module 7, in step ST102, executes initialization of the boot device
driver module 10. The boot device driver module 10 registers an
interrupt request from the boot device into an interrupt table of the I/O
management module 13 so as to handle the interrupt request, and
generates and starts execution of a thread for boot device I/O processing
by using the thread management module 12.

2858

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 18 of 45

Settsu, 9:7-21.

The mini OS module 7, in step ST103, generates a thread for the OS
loading and initialization processing module 11 by using the thread
management module 12. The mini OS module 7 further, in step ST104,
starts execution of the thread by using the thread management module
12. The OS loading and initialization processing module 11 is thus
started up as the thread. After that, the mini OS module 7 transfers
control to the OS loading and initialization processing module 11.

Settsu, 9:30-39.

As previously mentioned, in accordance with the second embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body of the OS. Further, the plurality of functional modules
are separately stored in the file system 5. In addition, the OS load
processing and the OS initialization processing can be performed in
parallel with each other after any one of the plurality of functional
modules of the OS main body is loaded into the memory. As a result,
while the CPU waits for the occurrence of an event in performing the
OS load or initialization processing, the CPU does not idle but the CPU
performs another processing. Accordingly, the second embodiment of
the present invention provides an advantage of being able to further
reduce the time required for booting up the information processing
apparatus.

Settsu, 12:1-16.

Settsu, Fig. 12

2859

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 19 of 45

Referring next to FIG. 12, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a
fourth embodiment of the present invention. In the figure, the same
reference numerals as shown in FIG. 5 designate the same or like
elements, and therefore the description of those elements will be
omitted hereinafter. Like the OS of the second embodiment, the OS of
the second embodiment is divided into a mini OS module 7 and a main
body of the OS, and the main body is further divided into a plurality of
functional modules, such as a system call processing module 17, a
process management module 18, a common memory management
module 19, a message management module 20, a signal management
module 21, a virtual memory processing module 22, and a device driver
module 16. The plurality of functional modules are separately stored as
compressed files in a file system 5 of a boot device 3.

Settsu, 13:55-65

Referring next to FIG. 13, there is illustrated a block diagram showing
the structure of the mini OS module 7 of the information processing
apparatus according to the fourth embodiment of the present invention.
Like the mini OS module 7 of the second embodiment as shown in FIG.
6, the mini OS module 7 of the fourth embodiment is provided with a
mini kernel module 9, a boot device driver module 10, and an OS
initialization processing module 31. The mini OS module 7 of the fourth
embodiment further comprises an OS loading and decompression
processing module 50 having a function of decompressing a loaded
functional module in addition to the function of the OS load processing
module 30 of the second embodiment, instead of the OS load processing
module 30.

Settsu, 13:66-14:12

Referring next to FIG. 14, there is illustrated a flow chart showing
operations of the OS loading and decompression processing module 50
of the information processing apparatus according to the fourth
embodiment of the present invention. The OS loading and
decompression processing module 50 to which control from the mini
OS module 7 has been transferred, in step ST181, loads the main body
of the OS stored in the file system 5 of the boot device 3, such as the
system call processing module 17, the process management module 18,
the common memory management module 19, the message
management module 20, the signal management module 21, the virtual
memory processing module 22, and the device driver module 16, into
the memory 2. In performing step ST181, the OS loading and
decompression processing module 50 loads any one of those functional

2860

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 20 of 45

modules 16 to 22 first. The OS loading and decompression processing
module 50 then, in step ST182, decompresses one functional module
loaded into the memory. Since the plurality of functional modules 16 to
22 are stored as compresses files in the file system 5 of the boot device,
the functional module loaded into the memory 2 is compressed data.
Therefore, in performing step ST182, the OS loading and
decompression processing module 50 decompresses the compressed
data so as to convert it into executable code and data.

Settsu, 14:13-37

As previously mentioned, in accordance with the fourth embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body, and the plurality of functional modules are stored as
compressed files in the file system 5 of the boot device. Further, the OS
loading and decompression processing module 50 decompresses each of
the plurality of functional modules each time it loads each of them into
memory. As a result, the time required for I/O processing can be
reduced. Accordingly, the fourth embodiment of the present invention
provides an advantage of being able to further reduce the time required
for booting up the information processing apparatus.

Settsu, 14:58-15:5

See also Settsu, 8:21-35, 8:66-9:11, 11:7-9, 11:18-39, 13:49-15:5, 16:7-17:62, and Figs.
1-4, 6-9, 13-14, 20 & 35-36.

2861

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 21 of 45

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Settsu, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this claim limitation:

A method of booting up an information processing apparatus is
provided. An operating system is divided into a mini operating system
(OS) module having a function of bootstrap and an OS main body
module having functions other than the function of bootstrap. The mini
OS module can be located in a boot block of a boot device, whereas the
OS main body module can be located in a file system of the boot device.
A firmware or F/W code module stored in a ROM loads the mini OS
module into memory when booting up the information processing
apparatus. The mini OS module then loads the OS main body module
into memory and then initializes the OS main body module.

Settsu, Abstract

The present invention relates to an information processing apparatus
capable of reducing the time required for booting itself when it is
powered on, and a method of booting an information processing
apparatus at a high speed.

Settsu, 1:8-12.

In accordance with an aspect of the present invention, there is provided
an information processing apparatus comprising: a boot device divided
into a boot block in which a mini operating system (OS) module having
a function required for bootstrap processing is located and a file system

2862

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 22 of 45

in which an operating system (OS) main body module having functions
other than the function of bootstrap. . . .

Settsu, 1:51-57

In accordance with another preferred embodiment of the present
invention, the plurality of functional modules, into which the OS main
body module is divided, are stored as compressed files in the file system
and the loading and initialization processing module of the mini OS
module is divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini OS module
generates and starts execution of a thread for the OS loading and
decompression processing module after the mini OS module initializes
the mini kernel module and the boot device driver module. After the
thread for the OS loading and decompression processing module is
started, the OS loading and decompression processing module loads
each of the plurality of functional modules into the memory and
decompresses the loaded functional module, and then generates and
starts execution of a thread for the OS initialization module. After the
thread for the OS initialization module is executed, the OS initialization
module initializes each of the plurality of functional modules loaded
into the memory and decompressed.

Settsu, 3:6-25

Referring next to FIG. 1, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a first
embodiment of th present invention. In the figure, reference numeral 1
denotes a ROM of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes 5 a boot
device of the information processing apparatus, 4 denotes a boot block
in the boot device 3, 5 denotes a file system I the boot device 3, and 6
denotes a firmware or FI/W code module stored in the ROM 1. The
FI/W code module 6 is directly executed on the ROM 1 so as to load
data from the boot block 4 in the boot device 3 into the memory 2 and
then assume that the loaded data is a code and execute the code after
setting up and running diagnostic checks on a hardware or H/W register.
Further, reference numeral 7 denotes a mini operating system (OS)
module complied and liked in the same way as ordinary program files
and located in the boot block 4 within the boot device, the mini OS
module having OS functions required for bootstrap processing, and 8
denotes an OS main body module located in the file system 5 within the
boot device and provided with OS functions except the OS functions
included in the mini OS module 7. When the information processing

2863

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 23 of 45

apparatus is powered on, it goes through initialization and transfers
control to the F/W code module 6 stored in the ROM 1.

Referring next to FIG. 2, there is illustrated a diagram showing the
structure of the mini OS module 7 stored in the boot block of the boot
device of the information processing apparatus according to the first
embodiment of the present invention. As shown in the figure, the mini
OS module 7 consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing I/O operations
on the boot device 3, and an OS loading and initialization processing
module 11 for loading the OS main body module 8 from the boot device
3 into the memory 2 and for executing the initialization of the OS main
body module 8.

Settsu, 7:65-8:35

Referring next to FIG. 3, there is illustrated a diagram showing the
structure of the OS main body module 8 of the information processing
apparatus according to the first embodiment of the present invention. As
shown in the figure, the OS main body module 8 consists of a kernel
module 15 having kernel functions except the functions included in the
mini kernel module 9 of FIG. 2, and a device driver module 16 for
performing I/O operations on devices (not shown) except the boot
device 3. . . . The OS main body module 8 is located within the file
system 5 of the boot device 3 and is loaded into the memory 2 by the
mini OS module 7. The OS main body module 8 then goes through
initialization.

Settsu, 8:47-9:3

Referring next to FIG. 4, there is illustrated a flow chart showing
operations of the mini OS module 7 of the information processing
apparatus according to the first embodiment of the present invention.
The F/W code module 6 loads the mini OS module 7 into the memory 2
and transfers control to the mini OS module 7. The mini OS module 7
then, in step ST101, executes initialization of the mini kernel module 9.
In this case, the thread management module 12, the I/O management
module 13, and the thread communication management module 14 are
initialized and their functions are available now. Next, the mini OS
module 7, in step ST102, executes initialization of the boot device
driver module 10. The boot device driver module 10 registers an
interrupt request from the boot device into an interrupt table of the I/O
management module 13 so as to handle the interrupt request, and
generates and starts execution of a thread for boot device I/O processing
by using the thread management module 12.

2864

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 24 of 45

Settsu, 9:7-21.

The mini OS module 7, in step ST103, generates a thread for the OS
loading and initialization processing module 11 by using the thread
management module 12. The mini OS module 7 further, in step ST104,
starts execution of the thread by using the thread management module
12. The OS loading and initialization processing module 11 is thus
started up as the thread. After that, the mini OS module 7 transfers
control to the OS loading and initialization processing module 11.

Settsu, 9:30-39.

As previously mentioned, in accordance with the second embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body of the OS. Further, the plurality of functional modules
are separately stored in the file system 5. In addition, the OS load
processing and the OS initialization processing can be performed in
parallel with each other after any one of the plurality of functional
modules of the OS main body is loaded into the memory. As a result,
while the CPU waits for the occurrence of an event in performing the
OS load or initialization processing, the CPU does not idle but the CPU
performs another processing. Accordingly, the second embodiment of
the present invention provides an advantage of being able to further
reduce the time required for booting up the information processing
apparatus.

Settsu, 12:1-16.

Settsu, Fig. 12

2865

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 25 of 45

Referring next to FIG. 12, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a
fourth embodiment of the present invention. In the figure, the same
reference numerals as shown in FIG. 5 designate the same or like
elements, and therefore the description of those elements will be
omitted hereinafter. Like the OS of the second embodiment, the OS of
the second embodiment is divided into a mini OS module 7 and a main
body of the OS, and the main body is further divided into a plurality of
functional modules, such as a system call processing module 17, a
process management module 18, a common memory management
module 19, a message management module 20, a signal management
module 21, a virtual memory processing module 22, and a device driver
module 16. The plurality of functional modules are separately stored as
compressed files in a file system 5 of a boot device 3.

Settsu, 13:55-65

Settsu, Fig. 13.

Referring next to FIG. 13, there is illustrated a block diagram showing
the structure of the mini OS module 7 of the information processing
apparatus according to the fourth embodiment of the present invention.
Like the mini OS module 7 of the second embodiment as shown in FIG.
6, the mini OS module 7 of the fourth embodiment is provided with a
mini kernel module 9, a boot device driver module 10, and an OS
initialization processing module 31. The mini OS module 7 of the fourth
embodiment further comprises an OS loading and decompression
processing module 50 having a function of decompressing a loaded
functional module in addition to the function of the OS load processing
module 30 of the second embodiment, instead of the OS load processing
module 30.

Settsu, 13:66-14:12

2866

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 26 of 45

Referring next to FIG. 14, there is illustrated a flow chart showing
operations of the OS loading and decompression processing module 50
of the information processing apparatus according to the fourth
embodiment of the present invention. The OS loading and
decompression processing module 50 to which control from the mini
OS module 7 has been transferred, in step ST181, loads the main body
of the OS stored in the file system 5 of the boot device 3, such as the
system call processing module 17, the process management module 18,
the common memory management module 19, the message
management module 20, the signal management module 21, the virtual
memory processing module 22, and the device driver module 16, into
the memory 2. In performing step ST181, the OS loading and
decompression processing module 50 loads any one of those functional
modules 16 to 22 first. The OS loading and decompression processing
module 50 then, in step ST182, decompresses one functional module
loaded into the memory. Since the plurality of functional modules 16 to
22 are stored as compresses files in the file system 5 of the boot device,
the functional module loaded into the memory 2 is compressed data.
Therefore, in performing step ST182, the OS loading and
decompression processing module 50 decompresses the compressed
data so as to convert it into executable code and data.

Settsu, 14:13-37

As previously mentioned, in accordance with the fourth embodiment of
the present invention, the main body of the OS is divided into a plurality
of functional modules according a plurality of functions to be performed
by the main body, and the plurality of functional modules are stored as
compressed files in the file system 5 of the boot device. Further, the OS
loading and decompression processing module 50 decompresses each of
the plurality of functional modules each time it loads each of them into
memory. As a result, the time required for I/O processing can be
reduced. Accordingly, the fourth embodiment of the present invention
provides an advantage of being able to further reduce the time required
for booting up the information processing apparatus.

Settsu, 14:58-15:5

See also Settsu, 8:21-35, 8:66-9:11, 11:7-9, 11:18-39, 13:49-15:5, 16:7-17:62, and
Figs. 1-4, 6-9, 14, 20 & 35-36.

2867

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 27 of 45

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Settsu, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2868

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 28 of 45

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Settsu, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The present invention is made to overcome the above problems. It is
therefore an object of the present invention to provide an information
processing apparatus and a method capable of reducing the time
required for booting up itself when it is powered on, and also reducing
the time required to start execution of applications to be started
automatically when the information processing apparatus is booted up.

Settsu, 1:44-50

In accordance with another preferred embodiment of the present
invention, the OS loading processing module of the mini OS module is
an application (AP) execution and OS loading processing module for
starting execution of at least a predetermined application module which
is located in the file system and which can automatically be started and
run on the operating system when booting up the information processing
apparatus, and for loading each of the plurality of functional modules
into the memory. Further, the predetermined application module
includes a function definition file in which some functional modules
required for the application module to run on the operating system are
listed. After the mini OS module is loaded into the memory, the mini
OS module initializes the mini kernel module and the boot device driver
module and then generates and starts execution of a thread for the AP
execution and OS loading processing module. After the thread for the
AP execution and OS loading processing module is started, the AP
execution and OS loading processing module loads the application

2869

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 29 of 45

nodule from the file system into the memory and further loads some
functional modules required for the application module into the memory
according to the function definition file included in the application
module, and then generates and starts execution of a thread for the OS
initialization module. After the thread for the OS initialization module is
started, the OS initialization module then initializes each of the some
functional modules loaded into the memory. And, after the initialization
of all of the some functional modules is completed, the application
execution and OS loading processing module further loads the
remainder of all functional modules included in the OS main body
module into the memory and initializes the remainder using the OS
initialization processing module while starting execution of the
application module as a process.

Settsu, 3:48-4:14

Settsu, Fig. 18.

2870

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 30 of 45

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Settsu, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The present invention is made to overcome the above problems. It is
therefore an object of the present invention to provide an information
processing apparatus and a method capable of reducing the time
required for booting up itself when it is powered on, and also reducing
the time required to start execution of applications to be started
automatically when the information processing apparatus is booted up.

Settsu, 1:44-50

In accordance with another preferred embodiment of the present
invention, the OS loading processing module of the mini OS module is
an application (AP) execution and OS loading processing module for
starting execution of at least a predetermined application module which
is located in the file system and which can automatically be started and
run on the operating system when booting up the information processing
apparatus, and for loading each of the plurality of functional modules
into the memory. Further, the predetermined application module
includes a function definition file in which some functional modules
required for the application module to run on the operating system are
listed. After the mini OS module is loaded into the memory, the mini
OS module initializes the mini kernel module and the boot device driver
module and then generates and starts execution of a thread for the AP
execution and OS loading processing module. After the thread for the
AP execution and OS loading processing module is started, the AP

2871

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 31 of 45

execution and OS loading processing module loads the application
nodule from the file system into the memory and further loads some
functional modules required for the application module into the memory
according to the function definition file included in the application
module, and then generates and starts execution of a thread for the OS
initialization module. After the thread for the OS initialization module is
started, the OS initialization module then initializes each of the some
functional modules loaded into the memory. And, after the initialization
of all of the some functional modules is completed, the application
execution and OS loading processing module further loads the
remainder of all functional modules included in the OS main body
module into the memory and initializes the remainder using the OS
initialization processing module while starting execution of the
application module as a process.

Settsu, 3:48-4:14

Settsu, Fig. 18.

2872

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 32 of 45

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Settsu, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2873

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 33 of 45

6. The method of claim 1, further
comprising updating the list of boot data.

Settsu, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

A method of booting up an information processing apparatus is
provided. An operating system is divided into a mini operating system
(OS) module having a function of bootstrap and an OS main body
module having functions other than the function of bootstrap. The mini
OS module can be located in a boot block of a boot device, whereas the
OS main body module can be located in a file system of the boot device.
A firmware or F/W code module stored in a ROM loads the mini OS
module into memory when booting up the information processing
apparatus. The mini OS module then loads the OS main body module
into memory and then initializes the OS main body module.

Settsu, Abstract

In accordance with another preferred embodiment of the present
invention, the mini OS module further includes an address resolve table
used for linking the mini OS module with the OS main body module.
Further, after the mini OS module generates and starts execution of a
thread for the OS loading and initialization processing module, the OS
loading and initialization processing module loads the OS main body
module into the memory and then initializes it, loads a first process to be
executed first, into the memory, loads code portions of the mini kernel
module and the boot device driver module into the memory, and writes
addresses of the code portions loaded into the memory into the address
resolve table.

Settsu, 5:39-51

2874

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 34 of 45

Settsu, Fig. 12

Referring next to FIG. 12, there is illustrated a block diagram showing
the structure of an information processing apparatus according to a
fourth embodiment of the present invention. In the figure, the same
reference numerals as shown in FIG. 5 designate the same or like
elements, and therefore the description of those elements will be
omitted hereinafter. Like the OS of the second embodiment, the OS of
the second embodiment is divided into a mini OS module 7 and a main
body of the OS, and the main body is further divided into a plurality of
functional modules, such as a system call processing module 17, a
process management module 18, a common memory management
module 19, a message management module 20, a signal management
module 21, a virtual memory processing module 22, and a device driver
module 16. The plurality of functional modules are separately stored as
compressed files in a file system 5 of a boot device 3.

Settsu, 13:55-65

The OS loading and decompression processing module 50 then, in step
ST185, checks whether or not the whole of the main body of the OS has
been loaded, that is, whether or not all the functional modules 16 to 22
have been loaded into the memory 2. If all the functional modules 16 to
22 have not been loaded into the memory 2 yet, the OS loading and
decompression processing module 50 returns to step ST181 in which it
continues to load the remaining functional modules of the OS main body.

Settsu, 14:44-52

 See also Settsu, 16:7-17:62 and Figs. 1-4, 6-9, 13-14, 20 & 35-36.

2875

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 35 of 45

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Settsu, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

In accordance with another preferred embodiment of the present
invention, the plurality of functional modules, into which the OS main
body module is divided, are stored as compressed files in the file system
and the loading and initialization processing module of the mini OS
module is divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini OS module
generates and starts execution of a thread for the OS loading and
decompression processing module after the mini OS module initializes
the mini kernel module and the boot device driver module. After the
thread for the OS loading and decompression processing module is
started, the OS loading and decompression processing module loads
each of the plurality of functional modules into the memory and
decompresses the loaded functional module, and then generates and
starts execution of a thread for the OS initialization module. After the
thread for the OS initialization module is executed, the OS initialization
module initializes each of the plurality of functional modules loaded
into the memory and decompressed.

Settsu, 3:6-25

2876

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 36 of 45

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Settsu, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

In accordance with another preferred embodiment of the present
invention, the plurality of functional modules, into which the OS main
body module is divided, are stored as compressed files in the file system
and the loading and initialization processing module of the mini OS
module is divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini OS module
generates and starts execution of a thread for the OS loading and
decompression processing module after the mini OS module initializes
the mini kernel module and the boot device driver module. After the
thread for the OS loading and decompression processing module is
started, the OS loading and decompression processing module loads
each of the plurality of functional modules into the memory and
decompresses the loaded functional module, and then generates and
starts execution of a thread for the OS initialization module. After the
thread for the OS initialization module is executed, the OS initialization
module initializes each of the plurality of functional modules loaded
into the memory and decompressed.

Settsu, 3:6-25

2877

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 11.1
“A system comprising: a processor;”

 Page 37 of 45

11.1. a processor;

Settsu, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Settsu discloses this limitation:

See Claim 1.2 above.

2878

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 11.2
“a memory”

 Page 38 of 45

11.2. a memory; and

Settsu, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Settsu discloses this limitation:

See Claims 1.3, and 1.4 above.

2879

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 39 of 45

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Settsu, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2880

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 40 of 45

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Settsu, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2881

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 41 of 45

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Settsu, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1 and 1.5 above.

2882

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 42 of 45

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Settsu, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Settsu discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2883

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 43 of 45

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Settsu, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2884

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 44 of 45

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Settsu, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1, 8, and 11 above.

2885

Appendix B17
Invalidity of U.S. Patent 8,090,936 based on Settsu

	

Settsu Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 45 of 45

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Settsu, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Settsu discloses this limitation:

See Claims 1, 9, and 11 above.

2886

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo
 Page 1 of 30

U.S. Patent No. 5,269,022 to Shinjo (“Shinjo”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2887

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 30

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Shinjo, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

The present invention relates to a method and an apparatus for booting a
computer system.

Shinjo, 1:9-10

In a computer system, generally, whenever the system is booted, a boot process
for loading firmware, an initial program loader (IPL) program and an initialize
(INZ) program, an initial program loader process, and an initialization process
are executed.

Shinjo, 1:11-16

According to one aspect of the present invention, there is provided a method for
booting a computer system, the method comprising the steps of: setting a boot
mode for booting the computer system; determining whether or not the set boot
mode is a normal mode; determining whether or not a flag is set when the boot
mode is the normal mode, the flag representing whether or not backup data is
restorable; storing main memory data to be stored in a main memory
immediately after the computer system is booted, as the backup data, into a
backup memory when the flag is reset; and restoring the backup data stored in
the backup memory, as the main memory data, into the main memory when the
flag is set.

Shinjo, 1:35-48

According to another aspect of the present invention, there is provided an
apparatus for booting a computer system, the apparatus comprising: a main

2888

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 30

memory for storing main memory data; means for setting a boot mode for
booting the computer system; determining means for determining whether or
not the boot mode is a normal mode; a flag to be set/reset in accordance with a
determination result by the determining means; and a backup memory for
storing the main memory data to be stored in the main memory immediately
after the computer system is booted, as backup data when the boot mode is the
normal mode and the flag is reset, and wherein the backup data stored in the
backup memory is restored as the main memory data into the main memory
when the boot mode is the normal mode and the flag is set.

Shinjo, 1:49-64

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-68

When a boot command is output from the boot mode setting unit 17 to the CPU
11, an operation using the initial program loader (IPL) program is started by the
CPU 11.

Shinjo, 3:4-7

In step S1, it is determined whether or not the boot mode designated by the boot
command output from the boot mode setting unit 17 is the maintenance mode.
If the boot mode is not the maintenance mode, i.e., if it is the normal mode, it is
determined whether or not the backup flag 15 of the backup memory 13 is set
(step S2). That is, it is determined whether a boot process is executed in the
quick start mode or saving mode.

Shinjo, 3:8-15

In step S2, when the backup flag 15 is reset, it is determined that the backup
data stored in the backup memory 13 cannot be restored. Since this
determination is made in the first boot process, the same boot process as a
conventional one is executed. In other words, the operating system (OS)
initialization process and the application initialization process are executed by
the initialization program (steps S4 and S5).

Shinjo, 3:16-23

2889

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 30

Since the backup flag 15 has been set, the boot process is started in the quick
start mode through steps S1 and S2 after the reboot. That is, in step S6, the
backup data stored in the backup memory 13 is restored into the main memory
12 as the main memory data. Since the computer system is thus restored to the
state immediately after the boot process and the running environment is set, the
boot process of the computer system can be completed without executing the
OS initialization process of step S3 or the application initialization process of
step S4.

Shinjo, 3:35-45

In the computer system according to the first embodiment wherein the main
memory data stored in the main memory 12 is saved into the backup memory
13 as the backup data, when the system power source is turned off, the backup
data is erased. It is thus necessary to boot the system in the same manner as the
conventional apparatus and save the main memory data stored in the main
memory 12 into the backup memory 13 as the backup data immediately after
the system is booted. By backing up the backup memory 13 by a battery or the
like, such boot process in the system is executed only at the first time.

Shinjo, 3:65-4:8

As described above, according to the present invention, when the system is first
booted, the saving mode is selected. Immediately after the system is booted, the
main memory data stored in the main memory is saved as backup data into the
backup memory (backup file), and the backup flag is set. The system is then
rebooted. Therefore, when the system is next booted in the normal mode, the
quick start mode is selected and the backup data saved into the backup memory
(backup file) is restored as the main memory data in the main memory. The
boot process of the system is completed only by the above process, and the
state immediately after the system is booted is restored.

Shinjo, 4:45-67

2890

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 30

1.2 initializing a central processing unit of
said computer system;

Shinjo, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

The CPU 11 controls the entire computer system.
Shinjo, 2:32

When a boot command is output from the boot mode setting unit 17 to the CPU
11, an operation using the initial program loader (IPL) program is started by the
CPU 11.

Shijno, 3:4-7

2891

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 30

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Shinjo, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

In the initialization process, a resident load module is loaded into a main memory,
various control blocks are produced, the running environment of an operating
system (OS) is set, and the running environment of an application system is set
(for example, a control process is produced).

Shinjo, 1:16-21

According to one aspect of the present invention, there is provided a method for
booting a computer system, the method comprising the steps of: setting a boot
mode for booting the computer system; determining whether or not the set boot
mode is a normal mode; determining whether or not a flag is set when the boot
mode is the normal mode, the flag representing whether or not backup data is
restorable; storing main memory data to be stored in a main memory immediately
after the computer system is booted, as the backup data, into a backup memory
when the flag is reset; and restoring the backup data stored in the backup
memory, as the main memory data, into the main memory when the flag is set.

Shinjo, 1:35-48

In step S7, when the designated boot mode is not the maintenance mode, i.e.,
when it is the normal mode, the saving mode is selected, and the main memory
data stored in the main memory 12 is saved into the backup memory 13 as the
backup data and the backup flag 15 of the backup memory 13 is set (step S8).
The process of step S8 is completed and then a reboot is executed.

Shinjo, 3:28-34

Since the backup flag 15 has been set, the boot process is started in the quick start
mode through steps S1 and S2 after the reboot. That is, in step S6, the backup
data stored in the backup memory 13 is restored into the main memory 12 as the
main memory data. Since the computer system is thus restored to the state
immediately after the boot process and the running environment is set, the boot

2892

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 30

process of the computer system can be completed without executing the OS
initialization process of step S3 or the application initialization process of step
S4.

Shinjo, 3:35-45

2893

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 30

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Shinjo, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

In a computer system, when the system is first booted in a normal mode, main
memory data stored in a main memory immediately after the system is booted, is
stored as backup data in a backup memory or the like. A backup flag representing
whether or not the backup data can be restored is set and the system is rebooted.
When the system is next booted in the normal mode, the backup data stored in
the backup memory or the like is restored as the main memory data in the main
memory. The backup flag is automatically reset in a maintenance mode.

Shinjo, Abstract

According to one aspect of the present invention, there is provided a method for
booting a computer system, the method comprising the steps of: setting a boot
mode for booting the computer system; determining whether or not the set boot
mode is a normal mode; determining whether or not a flag is set when the boot
mode is the normal mode, the flag representing whether or not backup data is
restorable; storing main memory data to be stored in a main memory immediately
after the computer system is booted, as the backup data, into a backup memory
when the flag is reset; and restoring the backup data stored in the backup
memory, as the main memory data, into the main memory when the flag is set.

Shinjo, 1:32-48

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the

2894

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 30

normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-2:68

In the computer system according to the first embodiment wherein the main
memory data stored in the main memory 12 is saved into the backup memory 13
as the backup data, when the system power source is turned off, the backup data
is erased. It is thus necessary to boot the system in the same manner as the
conventional apparatus and save the main memory data stored in the main
memory 12 into the backup memory 13 as the backup data immediately after the
system is booted. By backing up the backup memory 13 by a battery or the like,
such boot process in the system is executed only at the first time.

Shinjo, 3:65-4:8

Since the backup flag 15 has been set, the boot process is started in the quick start
mode through steps S1 and S2 after the reboot. That is, in step S6, the backup
data stored in the backup memory 13 is restored into the main memory 12 as the
main memory data. Since the computer system is thus restored to the state
immediately after the boot process and the running environment is set, the boot
process of the computer system can be completed without executing the OS
initialization process of step S3 or the application initialization process of step
S4.

Shinjo, 3:35-45

A disk unit 19 of a computer system according to the second embodiment as
shown in FIG. 3 can be used in place of the backup memory 13 shown in FIG. 1.
The disk unit 19 includes a backup file 23 for storing the main memory data
stored in the main memory 12 as backup data and a backup flag 25. Even through
the system power source is turned off, the backup data stored in the backup file
23 is not erased. In the system according to the second embodiment, since the
backup data as the main memory data is saved and restored between the main
memory 12 and disk unit 19, disk access occurs. Therefore, the time required for
the boot process of the system according to the first embodiment is longer than
the time required for that of the system according to the first embodiment.

Shinjo, 4:9-24

2895

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 10 of 30

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Shinjo, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-2:68

Since the backup flag 15 has been set, the boot process is started in the quick
start mode through steps S1 and S2 after the reboot. That is, in step S6, the
backup data stored in the backup memory 13 is restored into the main memory
12 as the main memory data. Since the computer system is thus restored to the
state immediately after the boot process and the running environment is set, the
boot process of the computer system can be completed without executing the
OS initialization process of step S3 or the application initialization process of
step S4.

Shinjo, 3:35-45

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as

2896

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 30

replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-2:68

In step S7, when the designated boot mode is not the maintenance mode, i.e.,
when it is the normal mode, the saving mode is selected, and the main memory
data stored in the main memory 12 is saved into the backup memory 13 as the
backup data and the backup flag 15 of the backup memory 13 is set (step S8).
The process of step S8 is completed and then a reboot is executed.

Shinjo, 3:28-34

In a system according to the third embodiment as shown in FIG. 4, the memory
14 includes the backup memory 13, and the disk unit 19 includes the backup
file 23. In the saving mode, therefore, the main memory data stored in the main
memory 12 can be saved as backup data into the backup memory 13 and
backup file 23, and the backup flags 15 and 25 can be set.

Shinjo, 4:24-31

2897

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 12 of 30

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Shinjo, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2898

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 13 of 30

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Shinjo, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-2:68

After the backup flag 15 is reset in step S3, the boot process is executed as in
the conventional system, i.e., the OS initialization process and the application
initialization process are executed (steps S4 and S5).

Shinjo, 3:54-57

In the conventional system, a very large number of times of disk access are
necessary for the OS initialization process such as setting of the running
environment of an OS and for the application initialization process such as
setting of the running environment of an application program, and long time is
required for the boot process. In the present invention, however, the system can
be booted at high speed.

Shinjo, 4:58-65

2899

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 30

2900

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 15 of 30

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Shinjo, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:51-2:68

After the backup flag 15 is reset in step S3, the boot process is executed as in
the conventional system, i.e., the OS initialization process and the application
initialization process are executed (steps S4 and S5).

Shinjo, 3:54-57

In the conventional system, a very large number of times of disk access are
necessary for the OS initialization process such as setting of the running
environment of an OS and for the application initialization process such as
setting of the running environment of an application program, and long time is
required for the boot process. In the present invention, however, the system can
be booted at high speed.

2901

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 16 of 30

Shinjo, 4:58-65

2902

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 17 of 30

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Shinjo, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

In the initialization process, a resident load module is loaded into a main memory,
various control blocks are produced, the running environment of an operating
system (OS) is set, and the running environment of an application system is set
(for example, a control process is produced).

Shinjo, 1:16-21

2903

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 18 of 30

6. The method of claim 1, further
comprising updating the list of boot data.

Shinjo, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The boot mode setting unit 17 is constituted of, for example, a service
processor (SVP) and used to set a boot mode in the computer system. The boot
mode includes a maintenance mode for software maintenance such as
replacement of the programs and patch and a mode (normal mode) other than
the maintenance mode. The normal mode includes a quick start mode in which
a high speed boot can be executed using the backup data and a saving mode in
which the main memory data stored in the main memory 12 is saved in the
backup memory 13 as the backup data, immediately after a normal boot is
executed. It depends upon the set/reset state of the backup flag 15 which of the
quick start mode and the saving mode is selected. More specifically, in the
normal mode, when the backup flag 15 is set, the quick start mode is selected
and, when the backup flag 15 is reset, the saving mode is selected.

Shinjo, 2:52-68

When software maintenance such as replacement of programs and patch is
performed, the boot process is executed in the maintenance mode and thus the
backup data cannot be automatically restored. When the system is next booted,
the saving mode is selected again. Therefore, the update backup data can
always be stored in the backup memory (backup file).

Shinjo, 5:3-9

2904

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 19 of 30

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Shinjo, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2905

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 20 of 30

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Shinjo, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2906

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.1
“A system comprising: a processor;”

 Page 21 of 30

11.1. a processor;

Shinjo, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shinjo discloses this limitation:

See Claim 1.2 above.

2907

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.2
“a memory”

 Page 22 of 30

11.2. a memory; and

Shinjo, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shinjo discloses this limitation:

See Claims 1.3, and 1.4 above.

2908

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 23 of 30

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Shinjo, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also add disclosure of non-volatile memory to the extent not in claim 1 already

The disk unit 16 is constituted of, for example, a magnetic disk unit and stores
various programs, data or the like which are to be booted.

Shinjo, 2:48-51

A disk unit 19 of a computer system according to the second embodiment as
shown in FIG. 3 can be used in place of the backup memory 13 shown in FIG.
1. The disk unit 19 includes a backup file 23 for storing the main memory data
stored in the main memory 12 as backup data and a backup flag 25. Even
through the system power source is turned off, the backup data stored in the
backup file 23 is not erased. In the system according to the second embodiment,
since the backup data as the main memory data is saved and restored between
the main memory 12 and disk unit 19, disk access occurs. Therefore, the time
required for the boot process of the system according to the first embodiment is
longer than the time required for that of the system according to the first
embodiment.

Shinjo, 4:9-23

2909

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 24 of 30

2910

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 25 of 30

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Shinjo, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2911

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 26 of 30

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Shinjo, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1 and 1.5 above.

2912

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 27 of 30

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Shinjo, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2913

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 28 of 30

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Shinjo, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2914

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 29 of 30

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Shinjo, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1, 8, and 11 above.

2915

Appendix B18
Invalidity of U.S. Patent 8,090,936 based on Shinjo

	

Shinjo Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 30 of 30

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Shinjo, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shinjo discloses this limitation:

See Claims 1, 9, and 11 above.

2916

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman
 Page 1 of 49

U.S. Patent No. 5,671,413 to Shipman (“Shipman”) invalidates claims 1-6, 8-9, 11-13, and
15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. §
102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2917

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 49

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Shipman, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

2918

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 49

Shipman, Fig. 1

In IBM compatible personal computers a set of programs called basic
input/output system (BIOS) are encoded in read-only memory (ROM).
The BIOS facilitates the transfer of data and instructions between a
central processing unit (CPU) and peripheral devices such as disk
drives. Computer systems are designed to perform functional tests of the
BIOS every time the computer is turned on. When the computer is
turned on, BIOS is copied to an area of random access memory (RAM)
set aside for it. Since a RAM is much faster acting than a ROM,
accessing the BIOS code from RAM results in much faster initialization
of the computer.

Shipman, 1:12-22

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the

2919

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 49

service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and removing the
dispatched service components when they are no longer needed. As a
result, the service components may be stored in a non-volatile storage in
a compressed state, allowing more services to be implemented without
requiring more non-volatile storage.

More specifically, different basic input/output system (BIOS) functions
are split into components, or objects, and selected ones of the
components are stored in a compressed state and these compressed
components are only decompressed and executed when needed. A
decompression dispatcher software takes a request from currently
executing BIOS code to decompress another portion of BIOS code that
may be needed. The requester can specify whether or not to just
decompress the portion of code into memory or to decompress and
initialize the decompressed BIOS. The decompression dispatcher can be
used to dispatch different portions of BIOS code to different processors
in a multi-processor system.

Shipman, 1:35-59

The BIOS stored in a read only memory (ROM) is organized into a set
of components, each being dispatched as an independent executable
object after being copied to a shadow memory portion of a random
access memory (RAM). Three types of components are defined,
initialization components, runtime components and functional
components. The initialization components are dispatched during a
Power On Self Test (POST) cycle such that the initialization
components are active during initialization. The initialization
components are terminated prior to loading an operating system. The
runtime components are maintained in the uncompressed/decompressed
state and executable after loading of the operating system. The
functional components are decompressed and dispatched on an as
needed basis.

Shipman, 1:60-2:7

When dispatching components the decompression dispatcher works
from a packing list provided in the ROM image by a BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
packing list provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

2920

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 49

Shipman, 2:14-22

Refer to FIG. 1 which is a block diagram of a computer system in which
the present invention is embodied. The computer includes a read only
memory, or ROM, (10), a dynamic random access memory, or DRAM,
(22), a system memory cache (24), a cache/DRAM controller (20), and
central processing units (28, 30). A set of programs called basic
input/output system (BIOS) are encoded in ROM (10). The BIOS
facilitates the transfer of data and instructions between the central
processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32
through 54), each of which is capable of being dispatched as an
independent executable object. Each BIOS component is a self-
contained (link independent) binary image that performs a certain task
or function. The BIOS components fall into three major types:
initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

Compressed code is the code that resides in the ROM in a compressed
state. Decompressed code is code that has been decompressed from its
compressed state inside the ROM and now resides in DRAM (22)
shadowed memory, in a decompressed state. Uncompressed code is
code that resides inside the ROM in an uncompressed state. This is code
that was never compressed.

Shipman, 3:22-28

FIG. 13 is a flow diagram of a BIOS build process that automates
compressing and packing components into a final ROM binary image.
A list of binary images and associated attributes to include in the final
ROM image (1300) and a number of binary image files (1302) are
provided to a ROM Packing Utility (1304). The ROM Packing Utility
(1304) creates a packed ROM image (1306) and a packing list (1308)
that are merged by a merge utility (1310) into a final ROM image
(1312) and a packing map (1314) that are stored in the ROM (10)
shown in FIG. 1.

Shipman, 3:55-65

Packing List--The Packing List is generated by the Packing Utility and
describes all the attributes of the packed ROM image. This list is used
by the decompression dispatcher to dispatch components.

2921

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 49

Shipman, 4:33-36

Component Dispatching

Components are dispatched through a utility called the decompression
dispatcher. There are two types of dispatching supported by the
decompression dispatcher, active and passive.

. . .

When dispatching components the decompression dispatcher works
from a Packing List provided in the ROM image by the BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
Packing List provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 5:3-34

Refer to FIG. 3 which is a flow diagram of initializing the
decompression dispatcher of FIG. 2. The dispatcher data and executable
code is copied (302) from the ROM to the RAM. The dispatcher
interrupt vector is installed (304), the memory allocation table is cleared
(306) and the component handle table is cleared (308). The compressed
BIOS component information in the packing list is fetched from RAM
(310). The relocation type field is examined to find what type of
relocation is supported, below 1 meg. (312, 314), above 1 meg. (316,
318), or anywhere (320). If the required size is not available (322)
allocation error flags are set (324). If the specified load address is not
available (326) allocation error flags are set (328).

If the required size is available (322), then the memory allocation table
is updated (330). If the end of the component list in the packing list has
not been reached (332), then the flow returns to block (310). If the end
of the component list in the packing list has been reached (332), then the
flow ends (334).

Shipman, 12:17-35

Refer to FIG. 5 which is a flow diagram of how components are
dispatched. The dispatcher assumes only one component from a class is
being loaded, and hence the count of components is set to 1. The
counter is used as an index into the packing list. The component of a
class might contain a number of components referenced by a subclass

2922

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 7 of 49

identifier. A check (504) is made to determine if all components of the
class are to be loaded. If yes, then the first subclass identifier is fetched
(506) as described in FIG. 7. If the subclass is found in the packing list
(508) then the count of the subclass index counter is incremented (510).
If the subclass is not found in the packing list (508), then the count of
the subclass index counter is not incremented and the flow proceeds to
get packing information for the component indexed by the count of the
component counter (512). The procedure next decompresses the
component at the index count and places the decompressed Code in
RAM (514). The details of block (514) are shown in more detail in FIG.
12. At the end of the decompressing procedure, a check (516) is made to
determine if there are more components in this class to decompressed. If
yes, the component index counter is decremented (518). If no, a check
(520) is made to determine if this is the last component actively
dispatched or if an option ROM is present. If not, the flow ends (524). If
yes, then the return address is adjusted to execute the dispatched
component (522).

Shipman, 12:49-13:7

Refer to FIG. 12 which is a flow diagram of the procedure for getting a
specified component transferred and stored in RAM in an uncompressed
and executable state.

A RAM memory block large enough to hold the specified component is
found (1202) and allocated. After the memory space is allocated (1204),
the size field in the packing list is accessed to get the size information
(1206). The compressed and decompressed size information is obtained
from the packing list entry (1206). The Compressed Size field specifies
the amount of space (in bytes) consumed by a component when it is in
the ROM image. Unitialized Data components use this field to specify
the maximum amount of memory required and that they be aligned on a
64K boundary. The Decompressed Size field specifies the amount of
space (in bytes) consumed by a component after it has been
decompressed and dispatched. As described earlier, components that are
placed in the ROM uncompressed have identical Compressed and
Decompressed sizes. Unitialized Data components specify this field to
be identical to the Compressed Size field.

If the component is not compressed, then the component is copied
(1212) to RAM from the non-volatile storage device used to store the
compressed or uncompressed BIOS code. If the component is
compressed, then the component is decompressed (1210), stored in an
uncompressed state in the shadowed memory portion of RAM, and the
procedure stops (1216).

2923

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 8 of 49

Shipman, 14:15-41

See also Shipman, Figs. 2-13

2924

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 9 of 49

1.2 initializing a central processing unit of
said computer system;

Shipman, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

In IBM compatible personal computers a set of programs called basic
input/output system (BIOS) are encoded in read-only memory (ROM).
The BIOS facilitates the transfer of data and instructions between a
central processing unit (CPU) and peripheral devices such as disk
drives. Computer systems are designed to perform functional tests of the
BIOS every time the computer is turned on. When the computer is
turned on, BIOS is copied to an area of random access memory (RAM)
set aside for it. Since a RAM is much faster acting than a ROM,
accessing the BIOS code from RAM results in much faster initialization
of the computer.

Shipman, 1:12-22

The BIOS stored in a read only memory (ROM) is organized into a set
of components, each being dispatched as an independent executable
object after being copied to a shadow memory portion of a random
access memory (RAM). Three types of components are defined,
initialization components, runtime components and functional

2925

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 10 of 49

components. The initialization components are dispatched during a
Power On Self Test (POST) cycle such that the initialization
components are active during initialization. The initialization
components are terminated prior to loading an operating system. The
runtime components are maintained in the uncompressed/decompressed
state and executable after loading of the operating system. The
functional components are decompressed and dispatched on an as
needed basis.

Shipman, 1:60-2:7

Refer to FIG. 1 which is a block diagram of a computer system in which
the present invention is embodied. The computer includes a read only
memory, or ROM, (10), a dynamic random access memory, or DRAM,
(22), a system memory cache (24), a cache/DRAM controller (20), and
central processing units (28, 30). A set of programs called basic
input/output system (BIOS) are encoded in ROM (10). The BIOS
facilitates the transfer of data and instructions between the central
processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32
through 54), each of which is capable of being dispatched as an
independent executable object. Each BIOS component is a self-
contained (link independent) binary image that performs a certain task
or function. The BIOS components fall into three major types:
initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

See also Shipman, Figs. 1-13

2926

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 49

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Shipman, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

In IBM compatible personal computers a set of programs called basic
input/output system (BIOS) are encoded in read-only memory (ROM).
The BIOS facilitates the transfer of data and instructions between a
central processing unit (CPU) and peripheral devices such as disk
drives. Computer systems are designed to perform functional tests of the
BIOS every time the computer is turned on. When the computer is
turned on, BIOS is copied to an area of random access memory (RAM)
set aside for it. Since a RAM is much faster acting than a ROM,
accessing the BIOS code from RAM results in much faster initialization
of the computer.

Shipman, 1:12-22

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with

2927

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 12 of 49

a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and removing the
dispatched service components when they are no longer needed. As a
result, the service components may be stored in a non-volatile storage in
a compressed state, allowing more services to be implemented without
requiring more non-volatile storage.

More specifically, different basic input/output system (BIOS) functions
are split into components, or objects, and selected ones of the
components are stored in a compressed state and these compressed
components are only decompressed and executed when needed. A
decompression dispatcher software takes a request from currently
executing BIOS code to decompress another portion of BIOS code that
may be needed. The requester can specify whether or not to just
decompress the portion of code into memory or to decompress and
initialize the decompressed BIOS. The decompression dispatcher can be
used to dispatch different portions of BIOS code to different processors
in a multi-processor system.

Shipman, 1:35-59

The BIOS stored in a read only memory (ROM) is organized into a set
of components, each being dispatched as an independent executable
object after being copied to a shadow memory portion of a random
access memory (RAM). Three types of components are defined,
initialization components, runtime components and functional
components. The initialization components are dispatched during a
Power On Self Test (POST) cycle such that the initialization
components are active during initialization. The initialization
components are terminated prior to loading an operating system. The
runtime components are maintained in the uncompressed/decompressed
state and executable after loading of the operating system. The
functional components are decompressed and dispatched on an as
needed basis.

Shipman, 1:60-2:7

When dispatching components the decompression dispatcher works
from a packing list provided in the ROM image by a BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
packing list provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

2928

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 13 of 49

Shipman, 2:14-22

Refer to FIG. 1 which is a block diagram of a computer system in which
the present invention is embodied. The computer includes a read only
memory, or ROM, (10), a dynamic random access memory, or DRAM,
(22), a system memory cache (24), a cache/DRAM controller (20), and
central processing units (28, 30). A set of programs called basic
input/output system (BIOS) are encoded in ROM (10). The BIOS
facilitates the transfer of data and instructions between the central
processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32
through 54), each of which is capable of being dispatched as an
independent executable object. Each BIOS component is a self-
contained (link independent) binary image that performs a certain task
or function. The BIOS components fall into three major types:
initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

Compressed code is the code that resides in the ROM in a compressed
state. Decompressed code is code that has been decompressed from its
compressed state inside the ROM and now resides in DRAM (22)
shadowed memory, in a decompressed state. Uncompressed code is
code that resides inside the ROM in an uncompressed state. This is code
that was never compressed.

Shipman, 3:22-28

FIG. 13 is a flow diagram of a BIOS build process that automates
compressing and packing components into a final ROM binary image.
A list of binary images and associated attributes to include in the final
ROM image (1300) and a number of binary image files (1302) are
provided to a ROM Packing Utility (1304). The ROM Packing Utility
(1304) creates a packed ROM image (1306) and a packing list (1308)
that are merged by a merge utility (1310) into a final ROM image
(1312) and a packing map (1314) that are stored in the ROM (10)
shown in FIG. 1.

Shipman, 3:55-65

Packing List--The Packing List is generated by the Packing Utility and
describes all the attributes of the packed ROM image. This list is used
by the decompression dispatcher to dispatch components.

2929

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 14 of 49

Shipman, 4:33-36

Component Dispatching

Components are dispatched through a utility called the decompression
dispatcher. There are two types of dispatching supported by the
decompression dispatcher, active and passive.

. . .

When dispatching components the decompression dispatcher works
from a Packing List provided in the ROM image by the BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
Packing List provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 5:3-34

Refer to FIG. 3 which is a flow diagram of initializing the
decompression dispatcher of FIG. 2. The dispatcher data and executable
code is copied (302) from the ROM to the RAM. The dispatcher
interrupt vector is installed (304), the memory allocation table is cleared
(306) and the component handle table is cleared (308). The compressed
BIOS component information in the packing list is fetched from RAM
(310). The relocation type field is examined to find what type of
relocation is supported, below 1 meg. (312, 314), above 1 meg. (316,
318), or anywhere (320). If the required size is not available (322)
allocation error flags are set (324). If the specified load address is not
available (326) allocation error flags are set (328).

If the required size is available (322), then the memory allocation table
is updated (330). If the end of the component list in the packing list has
not been reached (332), then the flow returns to block (310). If the end
of the component list in the packing list has been reached (332), then the
flow ends (334).

Shipman, 12:17-35

Refer to FIG. 5 which is a flow diagram of how components are
dispatched. The dispatcher assumes only one component from a class is
being loaded, and hence the count of components is set to 1. The
counter is used as an index into the packing list. The component of a

2930

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 15 of 49

class might contain a number of components referenced by a subclass
identifier. A check (504) is made to determine if all components of the
class are to be loaded. If yes, then the first subclass identifier is fetched
(506) as described in FIG. 7. If the subclass is found in the packing list
(508) then the count of the subclass index counter is incremented (510).
If the subclass is not found in the packing list (508), then the count of
the subclass index counter is not incremented and the flow proceeds to
get packing information for the component indexed by the count of the
component counter (512). The procedure next decompresses the
component at the index count and places the decompressed Code in
RAM (514). The details of block (514) are shown in more detail in FIG.
12. At the end of the decompressing procedure, a check (516) is made to
determine if there are more components in this class to decompressed. If
yes, the component index counter is decremented (518). If no, a check
(520) is made to determine if this is the last component actively
dispatched or if an option ROM is present. If not, the flow ends (524). If
yes, then the return address is adjusted to execute the dispatched
component (522).

Shipman, 12:49-13:7

Refer to FIG. 12 which is a flow diagram of the procedure for getting a
specified component transferred and stored in RAM in an uncompressed
and executable state.

A RAM memory block large enough to hold the specified component is
found (1202) and allocated. After the memory space is allocated (1204),
the size field in the packing list is accessed to get the size information
(1206). The compressed and decompressed size information is obtained
from the packing list entry (1206). The Compressed Size field specifies
the amount of space (in bytes) consumed by a component when it is in
the ROM image. Unitialized Data components use this field to specify
the maximum amount of memory required and that they be aligned on a
64K boundary. The Decompressed Size field specifies the amount of
space (in bytes) consumed by a component after it has been
decompressed and dispatched. As described earlier, components that are
placed in the ROM uncompressed have identical Compressed and
Decompressed sizes. Unitialized Data components specify this field to
be identical to the Compressed Size field.

If the component is not compressed, then the component is copied
(1212) to RAM from the non-volatile storage device used to store the
compressed or uncompressed BIOS code. If the component is
compressed, then the component is decompressed (1210), stored in an

2931

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 16 of 49

uncompressed state in the shadowed memory portion of RAM, and the
procedure stops (1216).

Shipman, 14:15-41

See also Shipman, Figs. 1-13

2932

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 17 of 49

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Shipman, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

In IBM compatible personal computers a set of programs called basic
input/output system (BIOS) are encoded in read-only memory (ROM).
The BIOS facilitates the transfer of data and instructions between a
central processing unit (CPU) and peripheral devices such as disk
drives. Computer systems are designed to perform functional tests of the
BIOS every time the computer is turned on. When the computer is
turned on, BIOS is copied to an area of random access memory (RAM)
set aside for it. Since a RAM is much faster acting than a ROM,
accessing the BIOS code from RAM results in much faster initialization
of the computer.

Shipman, 1:12-22

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the

2933

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 18 of 49

service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and removing the
dispatched service components when they are no longer needed. As a
result, the service components may be stored in a non-volatile storage in
a compressed state, allowing more services to be implemented without
requiring more non-volatile storage.

More specifically, different basic input/output system (BIOS) functions
are split into components, or objects, and selected ones of the
components are stored in a compressed state and these compressed
components are only decompressed and executed when needed. A
decompression dispatcher software takes a request from currently
executing BIOS code to decompress another portion of BIOS code that
may be needed. The requester can specify whether or not to just
decompress the portion of code into memory or to decompress and
initialize the decompressed BIOS. The decompression dispatcher can be
used to dispatch different portions of BIOS code to different processors
in a multi-processor system.

Shipman, 1:35-59

The BIOS stored in a read only memory (ROM) is organized into a set
of components, each being dispatched as an independent executable
object after being copied to a shadow memory portion of a random
access memory (RAM). Three types of components are defined,
initialization components, runtime components and functional
components. The initialization components are dispatched during a
Power On Self Test (POST) cycle such that the initialization
components are active during initialization. The initialization
components are terminated prior to loading an operating system. The
runtime components are maintained in the uncompressed/decompressed
state and executable after loading of the operating system. The
functional components are decompressed and dispatched on an as
needed basis.

Shipman, 1:60-2:7

When dispatching components the decompression dispatcher works
from a packing list provided in the ROM image by a BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
packing list provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

2934

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 19 of 49

Shipman, 2:14-22

Refer to FIG. 1 which is a block diagram of a computer system in which
the present invention is embodied. The computer includes a read only
memory, or ROM, (10), a dynamic random access memory, or DRAM,
(22), a system memory cache (24), a cache/DRAM controller (20), and
central processing units (28, 30). A set of programs called basic
input/output system (BIOS) are encoded in ROM (10). The BIOS
facilitates the transfer of data and instructions between the central
processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32
through 54), each of which is capable of being dispatched as an
independent executable object. Each BIOS component is a self-
contained (link independent) binary image that performs a certain task
or function. The BIOS components fall into three major types:
initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

Compressed code is the code that resides in the ROM in a compressed
state. Decompressed code is code that has been decompressed from its
compressed state inside the ROM and now resides in DRAM (22)
shadowed memory, in a decompressed state. Uncompressed code is
code that resides inside the ROM in an uncompressed state. This is code
that was never compressed.

Shipman, 3:22-28

FIG. 13 is a flow diagram of a BIOS build process that automates
compressing and packing components into a final ROM binary image.
A list of binary images and associated attributes to include in the final
ROM image (1300) and a number of binary image files (1302) are
provided to a ROM Packing Utility (1304). The ROM Packing Utility
(1304) creates a packed ROM image (1306) and a packing list (1308)
that are merged by a merge utility (1310) into a final ROM image
(1312) and a packing map (1314) that are stored in the ROM (10)
shown in FIG. 1.

Shipman, 3:55-65

Packing List--The Packing List is generated by the Packing Utility and
describes all the attributes of the packed ROM image. This list is used
by the decompression dispatcher to dispatch components.

2935

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 20 of 49

Shipman, 4:33-36

Component Dispatching

Components are dispatched through a utility called the decompression
dispatcher. There are two types of dispatching supported by the
decompression dispatcher, active and passive.

. . .

When dispatching components the decompression dispatcher works
from a Packing List provided in the ROM image by the BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
Packing List provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 5:3-34

Refer to FIG. 3 which is a flow diagram of initializing the
decompression dispatcher of FIG. 2. The dispatcher data and executable
code is copied (302) from the ROM to the RAM. The dispatcher
interrupt vector is installed (304), the memory allocation table is cleared
(306) and the component handle table is cleared (308). The compressed
BIOS component information in the packing list is fetched from RAM
(310). The relocation type field is examined to find what type of
relocation is supported, below 1 meg. (312, 314), above 1 meg. (316,
318), or anywhere (320). If the required size is not available (322)
allocation error flags are set (324). If the specified load address is not
available (326) allocation error flags are set (328).

If the required size is available (322), then the memory allocation table
is updated (330). If the end of the component list in the packing list has
not been reached (332), then the flow returns to block (310). If the end
of the component list in the packing list has been reached (332), then the
flow ends (334).

Shipman, 12:17-35

Refer to FIG. 5 which is a flow diagram of how components are
dispatched. The dispatcher assumes only one component from a class is
being loaded, and hence the count of components is set to 1. The
counter is used as an index into the packing list. The component of a
class might contain a number of components referenced by a subclass

2936

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 21 of 49

identifier. A check (504) is made to determine if all components of the
class are to be loaded. If yes, then the first subclass identifier is fetched
(506) as described in FIG. 7. If the subclass is found in the packing list
(508) then the count of the subclass index counter is incremented (510).
If the subclass is not found in the packing list (508), then the count of
the subclass index counter is not incremented and the flow proceeds to
get packing information for the component indexed by the count of the
component counter (512). The procedure next decompresses the
component at the index count and places the decompressed Code in
RAM (514). The details of block (514) are shown in more detail in FIG.
12. At the end of the decompressing procedure, a check (516) is made to
determine if there are more components in this class to decompressed. If
yes, the component index counter is decremented (518). If no, a check
(520) is made to determine if this is the last component actively
dispatched or if an option ROM is present. If not, the flow ends (524). If
yes, then the return address is adjusted to execute the dispatched
component (522).

Shipman, 12:49-13:7

Refer to FIG. 12 which is a flow diagram of the procedure for getting a
specified component transferred and stored in RAM in an uncompressed
and executable state.

A RAM memory block large enough to hold the specified component is
found (1202) and allocated. After the memory space is allocated (1204),
the size field in the packing list is accessed to get the size information
(1206). The compressed and decompressed size information is obtained
from the packing list entry (1206). The Compressed Size field specifies
the amount of space (in bytes) consumed by a component when it is in
the ROM image. Unitialized Data components use this field to specify
the maximum amount of memory required and that they be aligned on a
64K boundary. The Decompressed Size field specifies the amount of
space (in bytes) consumed by a component after it has been
decompressed and dispatched. As described earlier, components that are
placed in the ROM uncompressed have identical Compressed and
Decompressed sizes. Unitialized Data components specify this field to
be identical to the Compressed Size field.

If the component is not compressed, then the component is copied
(1212) to RAM from the non-volatile storage device used to store the
compressed or uncompressed BIOS code. If the component is
compressed, then the component is decompressed (1210), stored in an
uncompressed state in the shadowed memory portion of RAM, and the
procedure stops (1216).

2937

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 22 of 49

Shipman, 14:15-41

See also Shipman, Figs. 1-13

2938

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 23 of 49

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Shipman, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

In IBM compatible personal computers a set of programs called basic
input/output system (BIOS) are encoded in read-only memory (ROM).
The BIOS facilitates the transfer of data and instructions between a
central processing unit (CPU) and peripheral devices such as disk
drives. Computer systems are designed to perform functional tests of the
BIOS every time the computer is turned on. When the computer is
turned on, BIOS is copied to an area of random access memory (RAM)
set aside for it. Since a RAM is much faster acting than a ROM,
accessing the BIOS code from RAM results in much faster initialization
of the computer.

Shipman, 1:12-22

2939

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 24 of 49

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and removing the
dispatched service components when they are no longer needed. As a
result, the service components may be stored in a non-volatile storage in
a compressed state, allowing more services to be implemented without
requiring more non-volatile storage.

More specifically, different basic input/output system (BIOS) functions
are split into components, or objects, and selected ones of the
components are stored in a compressed state and these compressed
components are only decompressed and executed when needed. A
decompression dispatcher software takes a request from currently
executing BIOS code to decompress another portion of BIOS code that
may be needed. The requester can specify whether or not to just
decompress the portion of code into memory or to decompress and
initialize the decompressed BIOS. The decompression dispatcher can be
used to dispatch different portions of BIOS code to different processors
in a multi-processor system.

Shipman, 1:35-59

The BIOS stored in a read only memory (ROM) is organized into a set
of components, each being dispatched as an independent executable
object after being copied to a shadow memory portion of a random
access memory (RAM). Three types of components are defined,
initialization components, runtime components and functional
components. The initialization components are dispatched during a
Power On Self Test (POST) cycle such that the initialization
components are active during initialization. The initialization
components are terminated prior to loading an operating system. The
runtime components are maintained in the uncompressed/decompressed
state and executable after loading of the operating system. The
functional components are decompressed and dispatched on an as
needed basis.

Shipman, 1:60-2:7

When dispatching components the decompression dispatcher works
from a packing list provided in the ROM image by a BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The

2940

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 25 of 49

packing list provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 2:14-22

Refer to FIG. 1 which is a block diagram of a computer system in which
the present invention is embodied. The computer includes a read only
memory, or ROM, (10), a dynamic random access memory, or DRAM,
(22), a system memory cache (24), a cache/DRAM controller (20), and
central processing units (28, 30). A set of programs called basic
input/output system (BIOS) are encoded in ROM (10). The BIOS
facilitates the transfer of data and instructions between the central
processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32
through 54), each of which is capable of being dispatched as an
independent executable object. Each BIOS component is a self-
contained (link independent) binary image that performs a certain task
or function. The BIOS components fall into three major types:
initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

Compressed code is the code that resides in the ROM in a compressed
state. Decompressed code is code that has been decompressed from its
compressed state inside the ROM and now resides in DRAM (22)
shadowed memory, in a decompressed state. Uncompressed code is
code that resides inside the ROM in an uncompressed state. This is code
that was never compressed.

Shipman, 3:22-28

FIG. 13 is a flow diagram of a BIOS build process that automates
compressing and packing components into a final ROM binary image.
A list of binary images and associated attributes to include in the final
ROM image (1300) and a number of binary image files (1302) are
provided to a ROM Packing Utility (1304). The ROM Packing Utility
(1304) creates a packed ROM image (1306) and a packing list (1308)
that are merged by a merge utility (1310) into a final ROM image
(1312) and a packing map (1314) that are stored in the ROM (10)
shown in FIG. 1.

Shipman, 3:55-65

2941

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 26 of 49

Packing List--The Packing List is generated by the Packing Utility and
describes all the attributes of the packed ROM image. This list is used
by the decompression dispatcher to dispatch components.

Shipman, 4:33-36

Component Dispatching

Components are dispatched through a utility called the decompression
dispatcher. There are two types of dispatching supported by the
decompression dispatcher, active and passive.

. . .

When dispatching components the decompression dispatcher works
from a Packing List provided in the ROM image by the BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
Packing List provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 5:3-34

Refer to FIG. 3 which is a flow diagram of initializing the
decompression dispatcher of FIG. 2. The dispatcher data and executable
code is copied (302) from the ROM to the RAM. The dispatcher
interrupt vector is installed (304), the memory allocation table is cleared
(306) and the component handle table is cleared (308). The compressed
BIOS component information in the packing list is fetched from RAM
(310). The relocation type field is examined to find what type of
relocation is supported, below 1 meg. (312, 314), above 1 meg. (316,
318), or anywhere (320). If the required size is not available (322)
allocation error flags are set (324). If the specified load address is not
available (326) allocation error flags are set (328).

If the required size is available (322), then the memory allocation table
is updated (330). If the end of the component list in the packing list has
not been reached (332), then the flow returns to block (310). If the end
of the component list in the packing list has been reached (332), then the
flow ends (334).

Shipman, 12:17-35

2942

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 27 of 49

Refer to FIG. 5 which is a flow diagram of how components are
dispatched. The dispatcher assumes only one component from a class is
being loaded, and hence the count of components is set to 1. The
counter is used as an index into the packing list. The component of a
class might contain a number of components referenced by a subclass
identifier. A check (504) is made to determine if all components of the
class are to be loaded. If yes, then the first subclass identifier is fetched
(506) as described in FIG. 7. If the subclass is found in the packing list
(508) then the count of the subclass index counter is incremented (510).
If the subclass is not found in the packing list (508), then the count of
the subclass index counter is not incremented and the flow proceeds to
get packing information for the component indexed by the count of the
component counter (512). The procedure next decompresses the
component at the index count and places the decompressed Code in
RAM (514). The details of block (514) are shown in more detail in FIG.
12. At the end of the decompressing procedure, a check (516) is made to
determine if there are more components in this class to decompressed. If
yes, the component index counter is decremented (518). If no, a check
(520) is made to determine if this is the last component actively
dispatched or if an option ROM is present. If not, the flow ends (524). If
yes, then the return address is adjusted to execute the dispatched
component (522).

Shipman, 12:49-13:7

Refer to FIG. 12 which is a flow diagram of the procedure for getting a
specified component transferred and stored in RAM in an uncompressed
and executable state.

A RAM memory block large enough to hold the specified component is
found (1202) and allocated. After the memory space is allocated (1204),
the size field in the packing list is accessed to get the size information
(1206). The compressed and decompressed size information is obtained
from the packing list entry (1206). The Compressed Size field specifies
the amount of space (in bytes) consumed by a component when it is in
the ROM image. Unitialized Data components use this field to specify
the maximum amount of memory required and that they be aligned on a
64K boundary. The Decompressed Size field specifies the amount of
space (in bytes) consumed by a component after it has been
decompressed and dispatched. As described earlier, components that are
placed in the ROM uncompressed have identical Compressed and
Decompressed sizes. Unitialized Data components specify this field to
be identical to the Compressed Size field.

2943

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 28 of 49

If the component is not compressed, then the component is copied
(1212) to RAM from the non-volatile storage device used to store the
compressed or uncompressed BIOS code. If the component is
compressed, then the component is decompressed (1210), stored in an
uncompressed state in the shadowed memory portion of RAM, and the
procedure stops (1216).

Shipman, 14:15-41

See also Shipman, Figs. 1-13

2944

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 29 of 49

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Shipman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2945

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 30 of 49

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Shipman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

As more new features are designed into computers, more code has to be stored
into the BIOS stored on the ROM. The size of the ROM must be increased to
accommodate the additional code, resulting in additional manufacturing costs. It
is desirable to decreases product cost by reducing the size of a ROM required to
store the BIOS and all of its components. This can be done by decompressing the
code as it is stored on the ROM and then decompressing the code at the time it is
copied to the RAM.

Shipman, 1:23-32

2946

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 31 of 49

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Shipman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

As more new features are designed into computers, more code has to be stored
into the BIOS stored on the ROM. The size of the ROM must be increased to
accommodate the additional code, resulting in additional manufacturing costs. It
is desirable to decreases product cost by reducing the size of a ROM required to
store the BIOS and all of its components. This can be done by decompressing the
code as it is stored on the ROM and then decompressing the code at the time it is
copied to the RAM.

Shipman, 1:23-32

2947

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 32 of 49

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Shipman, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

Refer to FIG. 1 which is a block diagram of a computer system in which the
present invention is embodied. The computer includes a read only memory, or
ROM, (10), a dynamic random access memory, or DRAM, (22), a system
memory cache (24), a cache/DRAM controller (20), and central processing units
(28, 30). A set of programs called basic input/output system (BIOS) are encoded
in ROM (10). The BIOS facilitates the transfer of data and instructions between
the central processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32 through 54),
each of which is capable of being dispatched as an independent executable object.
Each BIOS component is a self-contained (link independent) binary image that
performs a certain task or function. The BIOS components fall into three major
types: initialization components, runtime components and functional
components.

Shipman, 2:63-3:12

Refer to FIG. 1 which is a block diagram of a computer system in which the
present invention is embodied. The computer includes a read only memory, or
ROM, (10), a dynamic random access memory, or DRAM, (22), a system
memory cache (24), a cache/DRAM controller (20), and central processing units
(28, 30). A set of programs called basic input/output system (BIOS) are encoded
in ROM (10). The BIOS facilitates the transfer of data and instructions between
the central processing units (28, 30) and peripheral devices. In the present
invention the BIOS is organized into a set of BIOS components (32 through 54),
each of which is capable of being dispatched as an independent executable object.
Each BIOS component is a self-contained (link independent) binary image that
performs a certain task or function. The BIOS components fall into three major
types: initialization components, runtime components and functional

2948

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 33 of 49

components.

Shipman, 2:63-3:12

System random access memory, RAM, (22) and system memory cache (24) am
connected to the Cache/DRAM Controller (20) via a local memory bus. The CPU
1 (28) and the CPU 2 (30) is connected to the host to PCI bridge device (18) via
the Host CPU Bus (26).

Shipman, 3:50-54

2949

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 34 of 49

6. The method of claim 1, further
comprising updating the list of boot data.

Shipman, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

The services to be provided by a basic input/output system (BIOS) of a
computer system are implemented via a number of independently
executable service components. Additionally, the BIOS is provided with
a decompression dispatcher for decompressing and dispatching the
service components into random access memory (RAM) of the
computer system for execution on an as needed basis, and optionally
removing the dispatched service components when they are no longer
needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

When dispatching components the decompression dispatcher works
from a packing list provided in the ROM image by a BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
packing list provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 2:14-22

FIG. 13 is a flow diagram of a BIOS build process that automates
compressing and packing components into a final ROM binary image.
A list of binary images and associated attributes to include in the final
ROM image (1300) and a number of binary image files (1302) are
provided to a ROM Packing Utility (1304). The ROM Packing Utility
(1304) creates a packed ROM image (1306) and a packing list (1308)
that are merged by a merge utility (1310) into a final ROM image

2950

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 35 of 49

(1312) and a packing map (1314) that are stored in the ROM (10)
shown in FIG. 1.

Shipman, 3:55-65

Packing List--The Packing List is generated by the Packing Utility and
describes all the attributes of the packed ROM image. This list is used
by the decompression dispatcher to dispatch components.

Shipman, 4:33-36

Component Dispatching

Components are dispatched through a utility called the decompression
dispatcher. There are two types of dispatching supported by the
decompression dispatcher, active and passive.

. . .

When dispatching components the decompression dispatcher works
from a Packing List provided in the ROM image by the BIOS build
process. To optimize device usage, the binary images that comprise the
different components are packed into the final ROM image. The
Packing List provides a detailed description of the packing as well as
other important pieces of information regarding the types of
components that have been packed into the ROM.

Shipman, 5:3-34

Refer to FIG. 3 which is a flow diagram of initializing the
decompression dispatcher of FIG. 2. The dispatcher data and executable
code is copied (302) from the ROM to the RAM. The dispatcher
interrupt vector is installed (304), the memory allocation table is cleared
(306) and the component handle table is cleared (308). The compressed
BIOS component information in the packing list is fetched from RAM
(310). The relocation type field is examined to find what type of
relocation is supported, below 1 meg. (312, 314), above 1 meg. (316,
318), or anywhere (320). If the required size is not available (322)
allocation error flags are set (324). If the specified load address is not
available (326) allocation error flags are set (328).

If the required size is available (322), then the memory allocation table
is updated (330). If the end of the component list in the packing list has
not been reached (332), then the flow returns to block (310). If the end

2951

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 36 of 49

of the component list in the packing list has been reached (332), then the
flow ends (334).

Shipman, 12:17-35

Refer to FIG. 5 which is a flow diagram of how components are
dispatched. The dispatcher assumes only one component from a class is
being loaded, and hence the count of components is set to 1. The
counter is used as an index into the packing list. The component of a
class might contain a number of components referenced by a subclass
identifier. A check (504) is made to determine if all components of the
class are to be loaded. If yes, then the first subclass identifier is fetched
(506) as described in FIG. 7. If the subclass is found in the packing list
(508) then the count of the subclass index counter is incremented (510).
If the subclass is not found in the packing list (508), then the count of
the subclass index counter is not incremented and the flow proceeds to
get packing information for the component indexed by the count of the
component counter (512). The procedure next decompresses the
component at the index count and places the decompressed Code in
RAM (514). The details of block (514) are shown in more detail in FIG.
12. At the end of the decompressing procedure, a check (516) is made to
determine if there are more components in this class to decompressed. If
yes, the component index counter is decremented (518). If no, a check
(520) is made to determine if this is the last component actively
dispatched or if an option ROM is present. If not, the flow ends (524). If
yes, then the return address is adjusted to execute the dispatched
component (522).

Shipman, 12:49-13:7

Refer to FIG. 12 which is a flow diagram of the procedure for getting a
specified component transferred and stored in RAM in an uncompressed
and executable state.

A RAM memory block large enough to hold the specified component is
found (1202) and allocated. After the memory space is allocated (1204),
the size field in the packing list is accessed to get the size information
(1206). The compressed and decompressed size information is obtained
from the packing list entry (1206). The Compressed Size field specifies
the amount of space (in bytes) consumed by a component when it is in
the ROM image. Unitialized Data components use this field to specify
the maximum amount of memory required and that they be aligned on a
64K boundary. The Decompressed Size field specifies the amount of
space (in bytes) consumed by a component after it has been
decompressed and dispatched. As described earlier, components that are

2952

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 37 of 49

placed in the ROM uncompressed have identical Compressed and
Decompressed sizes. Unitialized Data components specify this field to
be identical to the Compressed Size field.

If the component is not compressed, then the component is copied
(1212) to RAM from the non-volatile storage device used to store the
compressed or uncompressed BIOS code. If the component is
compressed, then the component is decompressed (1210), stored in an
uncompressed state in the shadowed memory portion of RAM, and the
procedure stops (1216).

Shipman, 14:15-41

See also Shipman, Figs. 1-13

2953

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 38 of 49

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Shipman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2954

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 39 of 49

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Shipman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2955

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.1
“A system comprising: a processor;”

 Page 40 of 49

11.1. a processor;

Shipman, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shipman discloses this limitation:

See Claim 1.2 above.

2956

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.2
“a memory”

 Page 41 of 49

11.2. a memory; and

Shipman, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shipman discloses this limitation:

See Claims 1.3, and 1.4 above.

2957

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 42 of 49

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Shipman, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

The services to be provided by a basic input/output system (BIOS) of a computer
system are implemented via a number of independently executable service
components. Additionally, the BIOS is provided with a decompression
dispatcher for decompressing and dispatching the service components into
random access memory (RAM) of the computer system for execution on an as
needed basis, and optionally removing the dispatched service components when
they are no longer needed. As a result, the service components may be stored in
a non-volatile storage in a compressed state, allowing more services to be
implemented without requiring more non-volatile storage.

Shipman, Abstract

The services to be provided by a basic input/output system (BIOS) of a computer
system are implemented via a number of independently executable service
components. Additionally, the BIOS is provided with a decompression
dispatcher for decompressing and dispatching the service components into
random access memory (RAM) of the computer system for execution on an as
needed basis, and removing the dispatched service components when they are no
longer needed. As a result, the service components may be stored in a non-
volatile storage in a compressed state, allowing more services to be implemented

2958

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 43 of 49

without requiring more non-volatile storage.

Shipman, 1:35-46

The ROM (10) is a non-volatile device used to store the BIOS components, some
in a compressed state and some in an uncompressed state. The DRAM (22) stores
a shadow RAM binary image of selected components stored in the ROM. For
those components stored in the compressed state, they are decompressed before
storing in the shadow RAM. In Intel 80386 and 80486 computers, shadow RAM
is a portion of upper memory area set aside for programs retrieved from ROM.

Shipman, 3:13-21

If the component is not compressed, then the component is copied (1212) to
RAM from the non-volatile storage device used to store the compressed or
uncompressed BIOS code. If the component is compressed, then the component
is decompressed (1210), stored in an uncompressed state in the shadowed
memory portion of RAM, and the procedure stops (1216).

Shipman, 14:35-41

2959

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 44 of 49

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Shipman, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2960

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 45 of 49

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Shipman, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1 and 1.5 above.

2961

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 46 of 49

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Shipman, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Shipman discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2962

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 47 of 49

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Shipman, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2963

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 48 of 49

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Shipman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1, 8, and 11 above.

2964

Appendix B19
Invalidity of U.S. Patent 8,090,936 based on Shipman

	

Shipman Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 49 of 49

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Shipman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Shipman discloses this limitation:

See Claims 1, 9, and 11 above.

2965

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa
 Page 1 of 33

U.S. Patent No. 5,860,083 to Sukegawa (“Sukegawa”) invalidates claims 1-6, 8-9, 11-13,
and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C.
§ 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art references,
and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

In addition, Apple incorporates by reference, as if set forth fully herein, all arguments
related to Sukegawa in pending inter partes review petitions IPR2016-1365, IPR2016-
01366, IPR2016-01737, and IPR2016-01738.

2966

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 33

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Sukegawa, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this claim limitation:

Sukegawa, Fig. 1

2967

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 33

“(Data Storage System)
It is assumed that the data storage system of the present invention is
applied to a computer system such as a personal computer. Thus, as
shown in FIG. 1, this data storage system has a flash memory unit 1
constituted by a flash EEPROM, a disk drive or an HDD (Hard Disk
Drive) 2, and a controller. The controller includes a cache system
controller 3 (hereinafter called "controller") for performing a cache
function of using the flash memory unit 1 as a cache memory, and a
device driver (software) 5 with no cache function.

The device driver 5 has a function of controlling the flash memory unit
1 under the management of the OS (Operation System) of a host system
4. In this invention, in particular, the device driver 5 performs the access
control (to be described later) of a highspeed access area lOB or a
specific storage area in the flash memory unit 1. The controller 3
performs data input/output control (including cache operation control)
for the flash memory unit 1 and HDD 2 via respective device drivers
(i.e. a flash memory driver and a hard disk driver).”

Sukegawa, 4:1-21.

“The host system 4 refers to a computer body comprising a CPU of the
computer system, a main memory storing the OS and an application
program (AP), and other various structural elements. The controller 3 is
provided between the host system 4 and the storage units 1 and 2. The
controller 3 controls the flash memory unit 1 and HDD 2, as an
integrated storage system, in accordance with access requests
(read/write commands) issued from the host system 4 to the HDD.”

Sukegawa, 4:22-30.

“According to this system, for example, control information necessary
for starting an application program (AP) and an OS, which are
frequently used, is stored in the first storage area. Thus, the storage area
of the flash memory can be effectively used in accordance with the
function and the condition of use of data.”

Sukegawa, 2:65-3:3.

“(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area lOA of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of

2968

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 33

operations from the turn-on of power to the completion of the starting
operation.”

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

Sukegawa, 6:45-58.

see also Sukegawa 5:1-7:2, 7:28-55, 9:1-10, 10:33-52, 11:7-19, Fig. 4, Fig. 5.

2969

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 33

1.2 initializing a central processing unit of
said computer system;

Sukegawa, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this claim limitation:

“The host system 4 refers to a computer body comprising a CPU of the
computer system, a main memory storing the OS and an application
program (AP), and other various structural elements. The controller 3 is
provided between the host system 4 and the storage units 1 and 2. The
controller 3 controls the flash memory unit 1 and HDD 2, as an integrated
storage system, in accordance with access requests (read/write
commands) issued from the host system 4 to the HDD.”

Sukegawa, 4:22-30.

“(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area lOA of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of
operations from the turn-on of power to the completion of the starting
operation.”

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

2970

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 33

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

Sukegawa, 6:45-58.

See also Sukegawa, 6:19-58.

2971

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 33

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Sukegawa, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this claim limitation:

“(Data Storage System)
It is assumed that the data storage system of the present invention is
applied to a computer system such as a personal computer. Thus, as
shown in FIG. 1, this data storage system has a flash memory unit 1
constituted by a flash EEPROM, a disk drive or an HDD (Hard Disk
Drive) 2, and a controller. The controller includes a cache system
controller 3 (hereinafter called "controller") for performing a cache
function of using the flash memory unit 1 as a cache memory, and a
device driver (software) 5 with no cache function.

The device driver 5 has a function of controlling the flash memory unit
1 under the management of the OS (Operation System) of a host system
4. In this invention, in particular, the device driver 5 performs the access
control (to be described later) of a highspeed access area lOB or a
specific storage area in the flash memory unit 1. The controller 3
performs data input/output control (including cache operation control)
for the flash memory unit 1 and HDD 2 via respective device drivers
(i.e. a flash memory driver and a hard disk driver).”

Sukegawa, 4:1-21.

“The first embodiment relates to a system wherein the permanent
storage area 10A of flash memory unit 1 is used as a cache memory
area.”

Sukegawa, 5:10-12.

“(First Modification of the First Embodiment)

2972

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 33

FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area lOA of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of
operations from the turn-on of power to the completion of the starting
operation.”

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

Sukegawa, 6:45-58.

“In the system of the present invention, when the host system 4 issues
the read command to the HDD 2, the controller 3 determines whether
the data to be accessed (e.g. AP control information as mentioned
above) is stored in the permanent storage area 10A or non-volatile cache
area 10C, which is the cache memory area (or whether the cache
memory area is "hit") (steps S20 and S21), as shown in FIGS. 5. If the
data to be accessed is "hit", the controller 3 reads the data from the
permanent storage area 10A or non-volatile cache area 10 and transfers
the read-out data to the host system 4 ("YES" in step S21; step S25).
On the other hand, if the cache memory area is not "hit", the controller
3 accesses the HDD 2, reads out the data to be accessed and transfers
the read-out data to the host system 4. In this case, as described above,

2973

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 33

if the data to be accessed is the permanent data designated by the user,
the controller 3 stores it in the permanent storage area 10A ("NO" in
step S21; steps S22 and 23). If the data to be accessed is not the
permanent data designated by the user, the controller 3 stores the data in
the non-volatile cache area 10C which is used as an ordinary cache
memory area ("NO" in step S22; step S24). Thus, the data read out from
the HDD 2 is stored at least once in the permanent storage area 10A and
nonvolatile cache area 10C in flash memory unit 1. In particular, it is
assumed that the non-volatile cache area 10C is used independently by
the controller 3 and not directly used by
the user's intent.”

Sukegawa, 7:28-55

see also Sukegawa 5:1-7:2, 9:1-10, 10:33-52, 11:7-19, Fig 1, Fig. 4, Fig. 5.

2974

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 33

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Sukegawa, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this claim limitation:

“According to this system, for example, control information necessary
for starting an application program (AP) and an OS, which are
frequently used, is stored in the first storage area. Thus, the storage area
of the flash memory can be effectively used in accordance with the
function and the condition of use of data.”

Sukegawa, 2:65-3:3.

“(Data Storage System)
It is assumed that the data storage system of the present invention is
applied to a computer system such as a personal computer. Thus, as
shown in FIG. 1, this data storage system has a flash memory unit 1
constituted by a flash EEPROM, a disk drive or an HDD (Hard Disk
Drive) 2, and a controller. The controller includes a cache system
controller 3 (hereinafter called "controller") for performing a cache
function of using the flash memory unit 1 as a cache memory, and a
device driver (software) 5 with no cache function.

The device driver 5 has a function of controlling the flash memory unit
1 under the management of the OS (Operation System) of a host system
4. In this invention, in particular, the device driver 5 performs the access
control (to be described later) of a highspeed access area lOB or a
specific storage area in the flash memory unit 1. The controller 3
performs data input/output control (including cache operation control)
for the flash memory unit 1 and HDD 2 via respective device drivers
(i.e. a flash memory driver and a hard disk driver).

The host system 4 refers to a computer body comprising a CPU of the
computer system, a main memory storing the OS and an application

2975

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 11 of 33

program (AP), and other various structural elements. The controller 3 is
provided between the host system 4 and the storage units 1 and 2. The
controller 3 controls the flash memory unit 1 and HDD 2, as an
integrated storage system, in accordance with access requests
(read/write commands) issued from the host system 4 to the HDD.”

Sukegawa, 4:1-30.

“The first embodiment relates to a system wherein the permanent
storage area 10A of flash memory unit 1 is used as a cache memory
area.”

Sukegawa, 5:10-12.

“(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area lOA of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of
operations from the turn-on of power to the completion of the starting
operation.”

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

2976

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 33

Sukegawa, 6:45-58.

See also Sukegawa 5:1-7:2, 7:28-55, 9:1-10, 10:33-52, 11:7-19, Fig 1, Fig. 4, Fig. 5.

2977

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 13 of 33

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Sukegawa, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this claim limitation:

“(Data Storage System)
It is assumed that the data storage system of the present invention is
applied to a computer system such as a personal computer. Thus, as
shown in FIG. 1, this data storage system has a flash memory unit 1
constituted by a flash EEPROM, a disk drive or an HDD (Hard Disk
Drive) 2, and a controller. The controller includes a cache system
controller 3 (hereinafter called "controller") for performing a cache
function of using the flash memory unit 1 as a cache memory, and a
device driver (software) 5 with no cache function.

The device driver 5 has a function of controlling the flash memory unit
1 under the management of the OS (Operation System) of a host system
4. In this invention, in particular, the device driver 5 performs the access
control (to be described later) of a highspeed access area lOB or a
specific storage area in the flash memory unit 1. The controller 3
performs data input/output control (including cache operation control)
for the flash memory unit 1 and HDD 2 via respective device drivers
(i.e. a flash memory driver and a hard disk driver).

The host system 4 refers to a computer body comprising a CPU of the
computer system, a main memory storing the OS and an application
program (AP), and other various structural elements. The controller 3 is
provided between the host system 4 and the storage units 1 and 2. The
controller 3 controls the flash memory unit 1 and HDD 2, as an
integrated storage system, in accordance with access requests
(read/write commands) issued from the host system 4 to the HDD.”

2978

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 14 of 33

Sukegawa, 4:1-30.

“The first embodiment relates to a system wherein the permanent
storage area 10A of flash memory unit 1 is used as a cache memory
area.”

Sukegawa, 5:10-12.

“(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area lOA of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of
operations from the turn-on of power to the completion of the starting
operation.”

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

Sukegawa, 6:45-58.

See also Sukegawa 5:1-7:2, 7:28-55, 9:1-10, 10:33-52, 11:7-19, Fig 1, Fig. 4, Fig. 5.

2979

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 15 of 33

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Sukegawa, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

2980

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 16 of 33

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Sukegawa, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The first embodiment relates to a system wherein the permanent storage
area lOA of flash memory unit 1 is used as a cache memory area. In this
embodiment, it is supposed that the user desires to start a frequently used
application program (AP) at high speed at all times.

The user starts a data storage utility program of the cache system
controller 3 via a user interface provided in the host system 4 (step S1).
The data storage utility program reads specified data from the HDD 2 and
stores the read data in a specified storage area in the flash memory unit 1.
In this case, it is assumed that the user sets the permanent storage area
10A in the flash memory unit 1 as the data storage area, at the time of
instructing the start of the data storage utility program (step S2).

Then, the user instructs the host system 4 to start the AP (step S3). The
host system 4, upon receiving the AP start instruction, issues a read
command to the controller 3 in order to read control information
necessary for the start of the AP from the HDD 2.

The controller 3 controls the HDD 2, reads out the control information
necessary for the start of the AP and transfers the read-out control
information to the host system 4 (step S4). At this time, according to the
started-up data storage utility program, the controller 3 stores the AP
control information read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step S5). When the AP has been
prepared to start, the data storage utility program is stopped by the

2981

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 17 of 33

instruction from the user ("YES" in step S6; step S7). Through these
operations, the control information necessary for starting the AP is stored
in the permanent storage area 10A in the flash memory unit 1.

Sukegawa 5:10-40

2982

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 18 of 33

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Sukegawa, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The first embodiment relates to a system wherein the permanent storage
area lOA of flash memory unit 1 is used as a cache memory area. In this
embodiment, it is supposed that the user desires to start a frequently used
application program (AP) at high speed at all times.

The user starts a data storage utility program of the cache system
controller 3 via a user interface provided in the host system 4 (step S1).
The data storage utility program reads specified data from the HDD 2 and
stores the read data in a specified storage area in the flash memory unit 1.
In this case, it is assumed that the user sets the permanent storage area
10A in the flash memory unit 1 as the data storage area, at the time of
instructing the start of the data storage utility program (step S2).

Then, the user instructs the host system 4 to start the AP (step S3). The
host system 4, upon receiving the AP start instruction, issues a read
command to the controller 3 in order to read control information
necessary for the start of the AP from the HDD 2.

The controller 3 controls the HDD 2, reads out the control information
necessary for the start of the AP and transfers the read-out control
information to the host system 4 (step S4). At this time, according to the
started-up data storage utility program, the controller 3 stores the AP
control information read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step S5). When the AP has been

2983

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 19 of 33

prepared to start, the data storage utility program is stopped by the
instruction from the user ("YES" in step S6; step S7). Through these
operations, the control information necessary for starting the AP is stored
in the permanent storage area 10A in the flash memory unit 1.

Sukegawa 5:10-40

2984

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 20 of 33

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Sukegawa, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

It is assumed that the data storage system of the present invention is
applied to a computer system such as a personal computer. Thus, as
shown in FIG. 1, this data storage system has a flash memory unit 1
constituted by a flash EEPROM, a disk drive or an HDD (Hard Disk
Drive) 2, and a controller. The controller includes a cache system
controller 3 (hereinafter called "controller") for performing a cache
function of using the flash memory unit 1 as a cache memory, and a
device driver (software) 5 with no cache function.

The device driver 5 has a function of controlling the flash memory unit 1
under the management of the OS (Operation System) of a host system 4.
In this invention, in particular, the device driver 5 performs the access
control (to be described later) of a highspeed access area 10B or a specific
storage area in the flash memory unit 1. The controller 3 performs data
input/output control (including cache operation control) for the flash
memory unit 1 and HDD 2 via respective device drivers (i.e. a flash
memory driver and a hard disk driver).

Sukegawa 4:1-21

2985

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 21 of 33

6. The method of claim 1, further
comprising updating the list of boot data.

Sukegawa, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Sukegawa discloses this claim limitation:

“The host system 4 refers to a computer body comprising a CPU of the
computer system, a main memory storing the OS and an application
program (AP), and other various structural elements. The controller 3 is
provided between the host system 4 and the storage units 1 and 2. The
controller 3 controls the flash memory unit 1 and HDD 2, as an
integrated storage system, in accordance with access requests
(read/write commands) issued from the host system 4 to the HDD.”

Sukegawa, 4:22-30.

“According to this system, for example, control information necessary
for starting an application program (AP) and an OS, which are
frequently used, is stored in the first storage area. Thus, the storage area
of the flash memory can be effectively used in accordance with the
function and the condition of use of data.”

Sukegawa, 2:65-3:3;

“(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the first
embodiment. This modification relates to a system having a mode (data
storage mode) for storing the control information necessary for starting
the OS in the permanent storage area 10A of flash memory unit 1, for
example, when the OS of the host system 4 is started in a series of
operations from the turn-on of power to the completion of the starting
operation.”

2986

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 22 of 33

Sukegawa, 6:18-26.

“According to the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting the OS, is
read out and stored in the permanent storage area 10A (steps S16 and
S17). The controller 3 transfers to the host system 4 the control
information necessary for starting the OS read out from the HDD.
Based on the control information, the host system 4 starts the OS.”

Sukegawa, 6:35-42.

“According to this system, when the OS is automatically started by the
control information read out from the HDD 2 at the time of turning-on
of power, the control information is stored in the permanent storage area
10 used as the cache memory area for the HDD 2. Accordingly, when
the OS is started at the time of the next turning-on of power, the control
information necessary for starting the OS is read out not from the HDD
2 but from the permanent storage area 10 or cache memory area, and the
read-out control information is transferred to the host system 4. Thus,
the control information can be accessed from the permanent storage area
10A in the flash memory unit 1 having a higher access speed than the
HDD 2. As a result, the OS can be started at higher speed.”

Sukegawa, 6:45-58.

“The permanent storage area 10A and non-volatile cache area 10C
function as cache memory areas of the HDD 2. Normally, each time the
data in the cache memory area is updated, the updated data is written in
the HDD 2. In this embodiment, the user can set the mode of each of the
areas 10A and 10C, thereby determining whether or not the updated data
should be written in the HDD 2 each time the data is updated.”

Sukegawa, 9:19-29.

See also Sukegawa 5:1-7:2, 7:28-55, 9:1-10, 9:53-10:52, 11:7-19, Fig 1, Fig. 4, Fig. 5

2987

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 23 of 33

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Sukegawa, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2988

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 24 of 33

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Sukegawa, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

2989

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 11.1
“A system comprising: a processor;”

 Page 25 of 33

11.1. a processor;

Sukegawa, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Sukegawa discloses this limitation:

See Claim 1.2 above.

2990

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 11.2
“a memory”

 Page 26 of 33

11.2. a memory; and

Sukegawa, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Sukegawa discloses this limitation:

See Claims 1.3, and 1.4 above.

2991

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 27 of 33

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Sukegawa, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

2992

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 28 of 33

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Sukegawa, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

2993

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 29 of 33

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Sukegawa, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1 and 1.5 above.

2994

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 30 of 33

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Sukegawa, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

2995

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 31 of 33

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Sukegawa, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

2996

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 32 of 33

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Sukegawa, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1, 8, and 11 above.

2997

Appendix B20
Invalidity of U.S. Patent 8,090,936 based on Sukegawa

	

Sukegawa Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 33 of 33

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Sukegawa, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Sukegawa discloses this limitation:

See Claims 1, 9, and 11 above.

2998

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine
 Page 1 of 26

U.S. Patent No. 6,212,632 to Surine (“Surine”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

2999

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 26

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Surine, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

“At power-up, boot code stored in the non-volatile memory is executed
and begins instantiating the initial operating environment of the
embedded computer system. A function pointer table is instantiated in the
volatile memory, wherein the function pointer table includes a plurality
of entries for a corresponding plurality of instantiated functions, wherein
at least one entry is for operating system code stored in the non-volatile
memory.”

Surine, Abstract.

“At power-up, boot code stored in the ROM is executed and begins
instantiating the initial operating environment of the embedded system.
A function pointer table is instantiated in the RAM. The function pointer
table has entries, or function pointers, for each instantiated function such
that they can each call each other and pass execution. The function pointer
table has entries for functions which are instantiated in ROM and entries
for functions which are instantiated in RAM.”

Surine, 2:66-3:7.

“Referring now to FIG. 4, a memory diagram depicting the contents of
ROM 310 and RAM 315 is shown. As shown in FIG. 4, ROM 310 stores
software including boot code 401, compressed high-use functions 402,

3000

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 26

and operating system code 403.”

Surine, 5:15-19.

“Function pointer table 510 includes a plurality of entries, or function
pointers, which, when called by processing unit 305, redirect program
execution to the memory address of a selected routine. The function
pointers of function pointer table allow instantiated functions, whether
executing from ROM 310 or RAM 315, to call one another. Initially, the
function pointers are initialized to addresses in ROM 310, but after
copying to RAM 315, the high-use function pointers are updated to
addresses in RAM 315.”

Surine, 6:24-29. See also Surine, 7:5-21, 8:54-56.

3001

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 26

1.2 initializing a central processing unit of
said computer system;

Surine, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

“At power-up, boot code stored in the non-volatile memory is executed
and begins instantiating the initial operating environment of the
embedded computer system. A function pointer table is instantiated in the
volatile memory, wherein the function pointer table includes a plurality
of entries for a corresponding plurality of instantiated functions, wherein
at least one entry is for operating system code stored in the non-volatile
memory.”

Surine, Abstract.

“At boot time, or power-up, boot code 202 executes, decompresses
compressed code 201 into camera system code 203 and loads camera
system code 203 into RAM 102.”

Surine, 2:4-7, Fig. 2.

“At system 300 power-up, boot code 401 is executed and begins setting
up the initial software environment of embedded system 300. Boot code
401 initializes the initial software environment of system 300 by setting
up capture buffer 414, display buffer 415, and working memory 420.”

Surine, 5:31-35.

3002

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 26

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Surine, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

“Typically, as shown in FIG. 2, the camera system code 203 (e.g.,
operating system software and its associated data structures, resources,
etc.) is stored as compressed code 201 in non-volatile ROM 104.”

Surine, 2:1-4, Fig. 2.

“At boot time, or power-up, boot code 202 executes, decompresses
compressed code 201 into camera system code 203 and loads camera
system code 203 into RAM 102.”

Surine, 2:4-7, Fig. 2.

“Consequently, these digital cameras and other performance-oriented
types of embedded system consumer electronic devices transfer a
compressed image of their system code from a non-volatile ROM to a
faster RAM at power up. The system code then executes from RAM.”

Surine, 2:21-25.

“Referring now to FIG. 4, a memory diagram depicting the contents of
ROM 310 and RAM 315 is shown. As shown in FIG. 4, ROM 310 stores
software including boot code 401, compressed high-use functions 402,
and operating system code 403.”

Surine, 5:15-19.

“Patch manager 405 subsequently executes. Patch manager 405 includes
decompression software which decompresses compressed high-use
functions 402 and, as described in greater detail in the discussion of FIG.

3003

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 26

5 below, loads the resulting decompressed high-use functions 416 into
RAM 315.”

Surine, 5:35-40.

“Patch manager 405 then loads the decompressed high-use functions 416
into RAM 315 and updates function pointer table 510 with entries for
high-use functions 416.”

Surine: 6:32-34.

3004

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 26

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Surine, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

“At least one high-use function is decompressed out of the non-volatile
memory and instantiated in volatile memory. The function pointer table
is updated using a patch manager to incorporate an entry for the high-use
function(s). The operating system code is executed from the non-volatile
memory while the high-use function is executed from the volatile
memory.”

Surine, Abstract.

“At boot time, or power-up, boot code 202 executes, decompresses
compressed code 201 into camera system code 203 and loads camera
system code 203 into RAM 102.”

Surine, 2:4-7, Fig. 2.

“Consequently, these digital cameras and other performance-oriented
types of embedded system consumer electronic devices transfer a
compressed image of their system code from a non-volatile ROM to a
faster RAM at power up. The system code then executes from RAM.”

Surine, 2:21-25.

“In accordance with the present invention, a set of high-use functions are
decompressed out of ROM and instantiated in RAM using a patch
manager.”

Surine, 3:7-9.

“In this embodiment, in addition to instantiating certain high-use
functions, a memory configuration manager decompresses new software

3005

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 26

functions out of ROM, instantiates them in RAM, and updates the
function pointer table to link them dynamically, as the capability of the
new software functions are needed.”

Surine, 3:27-32.

“Patch manager 405 subsequently executes. Patch manager 405 includes
decompression software which decompresses compressed high-use
functions 402 and, as described in greater detail in the discussion of FIG.
5 below, loads the resulting decompressed high-use functions 416 into
RAM 315.”

Surine, 5:35-40.

“Patch manager 405 then loads the decompressed high-use functions 416
into RAM 315 and updates function pointer table 510 with entries for
high-use functions 416.”

Surine: 6:32-34.	See also Surine, 7:5-44, 8:14-17, 8:36-43.

3006

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 9 of 26

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Surine, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

“At least one high-use function is decompressed out of the non-volatile
memory and instantiated in volatile memory. The function pointer table
is updated using a patch manager to incorporate an entry for the high-use
function(s). The operating system code is executed from the non-volatile
memory while the high-use function is executed from the volatile
memory.”

Surine, Abstract.

“In accordance with the present invention, a set of high-use functions are
decompressed out of ROM and instantiated in RAM using a patch
manager.”

Surine, 3:7-9. See also 8:14-17, 8:36-43.

3007

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 10 of 26

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Surine, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3008

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 11 of 26

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Surine, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Similarly, in addition to extending or modifying functions of operating
system code 403, patch manager 405 can extend the functionality of any
software application which executes on embedded system 300.”

Surine, 6:59-62.

“After boot and system instantiation is complete, application code uses
an available block of memory within RAM 315 to use as a display
buffer 751, working memory 752, and a capture buffer 753.”

Surine, 7:55-58.

“In step 807, the initial software environment for embedded system 300
is set up by an application. For example, a first executed application
(e.g., the default application code which executes after power-up) uses a
block of available memory of RAM 315 for capture buffers, display
buffers, working memory, and other software data structures which
need to be instantiated in the writeable address space of RAM 314.”

Surine, 8:63-9:3.

3009

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 12 of 26

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Surine, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“Similarly, in addition to extending or modifying functions of operating
system code 403, patch manager 405 can extend the functionality of any
software application which executes on embedded system 300.”

Surine, 6:59-62.

“After boot and system instantiation is complete, application code uses
an available block of memory within RAM 315 to use as a display
buffer 751, working memory 752, and a capture buffer 753.”

Surine, 7:55-58.

“In step 807, the initial software environment for embedded system 300
is set up by an application. For example, a first executed application
(e.g., the default application code which executes after power-up) uses a
block of available memory of RAM 315 for capture buffers, display
buffers, working memory, and other software data structures which
need to be instantiated in the writeable address space of RAM 314.”

Surine, 8:63-9:3.

3010

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 13 of 26

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Surine, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3011

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 14 of 26

6. The method of claim 1, further
comprising updating the list of boot data.

Surine, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“At least one high-use function is decompressed out of the non-volatile
memory and instantiated in volatile memory. The function pointer table
is updated using a patch manager to incorporate an entry for the high-use
function(s). The operating system code is executed from the non-volatile
memory while the high-use function is executed from the volatile
memory.”

Surine, Abstract.

“The patch manager subsequently updates the function pointer table to
incorporate an entry for the high-use functions, thereby linking the high-
use functions with the rest of the instantiated functions.”

Surine, 3:15-18.

“Patch manager 405 then loads the decompressed high-use functions 416
into RAM 315 and updates function pointer table 510 with entries for
high-use functions 416.”

Surine: 6:32-34.

3012

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 15 of 26

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Surine, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3013

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 16 of 26

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Surine, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

“Patch manager 405 includes decompression software which
decompresses compressed high-use functions 402 and, as described in
greater detail in the discussion of FIG. 5 below, loads the resulting
decompressed high-use functions 416 into RAM 315. This is shown by
arrow 410.”

Surine, 5:36-41.

3014

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.1
“A system comprising: a processor;”

 Page 17 of 26

11.1. a processor;

Surine, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Surine discloses this limitation:

See Claim 1.2 above.

3015

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.2
“a memory”

 Page 18 of 26

11.2. a memory; and

Surine, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Surine discloses this limitation:

See Claims 1.3, and 1.4 above.

3016

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 19 of 26

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Surine, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

“The embedded computer system includes a processor coupled to the
volatile and non-volatile memories via a bus. The volatile and non
volatile memories store computer readable software for execution by the
embedded computer system.”

Surine, Abstract.

“At power-up, boot code stored in the non-volatile memory is executed
and begins instantiating the initial operating environment of the
embedded computer system. A function pointer table is instantiated in
the volatile memory, wherein the function pointer table includes a
plurality of entries for a corresponding plurality of instantiated functions,
wherein at least one entry is for operating system code stored in the non-
volatile memory. At least one high-use function is decompressed out of
the non-volatile memory and instantiated 'in volatile memory.”

Surine, Abstract.

3017

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 20 of 26

“The operating system code is executed from the non-volatile memory
while the high-use function is executed from the volatile memory.”

Surine, Abstract.

“Typically, as shown in FIG. 2, the camera system code 203 (e.g.,
operating system software and its associated data structures, resources,
etc.) is stored as compressed code 201 in non-volatile ROM 104.”

Surine, 2:1-4.

“Consequently, these digital cameras and other performance-oriented
types of embedded system consumer electronic devices transfer a
compressed image of their system code from a non-volatile ROM to a
faster RAM at power up.”

Surine, 2:21-25.

3018

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 21 of 26

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Surine, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3019

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 22 of 26

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Surine, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1 and 1.5 above.

3020

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 23 of 26

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Surine, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Surine discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3021

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 24 of 26

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Surine, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Surine discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3022

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 25 of 26

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Surine, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

See Claims 1, 8, and 11 above.

3023

Appendix B21
Invalidity of U.S. Patent 8,090,936 based on Surine

	

Surine Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 26 of 26

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Surine, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Surine discloses this limitation:

See Claims 1, 9, and 11 above.

3024

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman
 Page 1 of 29

U.S. Patent No. 6,370,614 Teoman (“Teoman”) invalidates claims 1-6, 8-9, 11-13, and 15-
16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102
and/or 35 U.S.C. § 103 either alone or in combination with other prior art references, and/or
in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

3025

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 29

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Teoman, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

“According to one embodiment, the user cache 25 includes boot firmware
66 for storing program code that is used to support operation of the user
cache at system startup.”

Teoman, 7:50-52.

“In yet another embodiment for using the user cache to support system
startup, before the OS boot sequence is begun, boot program code in the
user cache firmware is executed to notify the system BIOS that the user
cache is a bootable mass storage device. Also, when executed, the boot
program code loads software into system memory for operating the user
cache as a bootable mass storage device. In this embodiment, the user
selects the user cache as the boot device in the system BIOS settings.
Then, during the boot sequence, the operating system accesses boot up
files in the user cache.”

Teoman, 13:52-62.

3026

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 3 of 29

1.2 initializing a central processing unit of
said computer system;

Teoman, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

“The program code is returned to the bus interface circuitry 61 which
outputs it to the expansion bus where it is routed to its ultimate destination
(e.g., the processor used to execute system boot code).”

Teoman, 7:61-64.

“Still referring to FIG. 1, the processing unit 12 includes one or more
processors that fetch program code from system memory 16 and execute
the code to operate on data and to read and Write data to the system
memory 16 and to the I/O devices on the expansion bus 18.”

Teoman, 4:8-12.

“In another embodiment, boot program code in the user cache firmware
is executed to redirect boot time I/O requests before the operating system
is loaded. In this way, boot time I/O requests are redirected to the user
cache, making the user cache operable as a source of boot files during the
entire boot sequence.”

Teoman, 13:46-51.

3027

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 4 of 29

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Teoman, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

“When an I/O request 40 to access the mass storage 46 is issued (e.g., a
file read or write request issued in the course of executing an application
program), the I/O request 40 is first applied to the OS cache maintained
in system memory 16. If the I/O request 40 hits the OS cache (i.e., the
data sought to be accessed is cached in the OS cache), the access is
performed in the OS cache. If the I/O request 40 is a read request, the data
is returned to the requestor. If the I/O request 40 does not hit the OS
cache, the I/O request 40 is redirected from the mass storage 46 to the
user cache 25 by software mechanisms described below. If the I/O request
40 hits the user cache 25, the access is performed in the user cache 25
without having to access the mass storage 46, thereby substantially
reducing the overall access time. Also, because the user cache 25 is
significantly larger than the OS cache and supports data preloading
(discussed below), much higher hit rates can be achieved in the user cache
than in the OS cache.”

Teoman, 4:57-5:7. See also Teoman, 5:16-20, 5:48-51.

“According to one embodiment, the user cache 25 includes boot firmware
66 for storing program code that is used to support operation of the user
cache at system startup.”

Teoman, 7:50-52.

“In general, there are two types of storage operations that take place in
the user cache: preloading and responsive caching. Responsive caching
refers to the storage of data in the user cache in response to I/O requests
from application processes. In a preload operation, by contrast, data is
retrieved from mass storage and stored in the user cache before being

3028

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 29

requested for use in an application process.”

Teoman, 9:24-31. See also Teoman, 9:31-44, 10:40-60.

“The user interface 123 also permits the user to configure the computer
system to use the user cache as a boot device, meaning that the user cache
will be treated as a source of boot software at system startup. In one
embodiment, if the user enables the “Use as a boot device” option, the
user cache manager process prompts the user to specify the logical drive
that is ordinarily the source of boot software. The user cache manager
software responds by interacting with the BIOS configuration to treat the
user-cache as the user-specified logical drive and thereby to boot out of
the user-cache at system startup.”

Teoman, 13:29-39.

“In another embodiment, the user cache driver is loaded very early in the
OS boot sequence and is operable for most of the sequence. Most
operating systems support loading device drivers early in the boot
sequence so that, in most cases, this mode of operation requires no special
hardware or software support.”

Teoman, 13:40-45.

“In yet another embodiment for using the user cache to support system
startup, before the OS boot sequence is begun, boot program code in the
user cache firmware is executed to notify the system BIOS that the user
cache is a bootable mass storage device. Also, when executed, the boot
program code loads software into system memory for operating the user
cache as a bootable mass storage device. In this embodiment, the user
selects the user cache as the boot device in the system BIOS settings.
Then, during the boot sequence, the operating system accesses boot up
files in the user cache.”

Teoman, 13:52-62.

3029

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 6 of 29

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Teoman, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

“When an I/O request 40 to access the mass storage 46 is issued (e.g., a
file read or write request issued in the course of executing an application
program), the I/O request 40 is first applied to the OS cache maintained
in system memory 16. If the I/O request 40 hits the OS cache (i.e., the
data sought to be accessed is cached in the OS cache), the access is
performed in the OS cache. If the I/O request 40 is a read request, the data
is returned to the requestor. If the I/O request 40 does not hit the OS
cache, the I/O request 40 is redirected from the mass storage 46 to the
user cache 25 by software mechanisms described below. If the I/O request
40 hits the user cache 25, the access is performed in the user cache 25
without having to access the mass storage 46, thereby substantially
reducing the overall access time. Also, because the user cache 25 is
significantly larger than the OS cache and supports data preloading
(discussed below), much higher hit rates can be achieved in the user cache
than in the OS cache.”

Teoman, 4:57-5:7. See also Teoman, 5:16-20, 5:48-51.

“After a user has specified a set of commanded preload parameters, the
user cache manager 90 responds by generating I/O requests to retrieve the
data identified by the preload parameters from mass storage 46”

Teoman, 9:56-59.

“In yet another embodiment for using the user cache to support system
startup, before the OS boot sequence is begun, boot program code in the
user cache firmware is executed to notify the system BIOS that the user
cache is a bootable mass storage device. Also, when executed, the boot
program code loads software into system memory for operating the user
cache as a bootable mass storage device. In this embodiment, the user

3030

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 29

selects the user cache as the boot device in the system BIOS settings.
Then, during the boot sequence, the operating system accesses boot up
files in the user cache.”

Teoman, 13:52-62.

3031

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 8 of 29

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Teoman, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

3032

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 9 of 29

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Teoman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3033

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 10 of 29

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Teoman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also Look for additional references to application programs

3034

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 11 of 29

Teoman, Fig. 10.

“In another embodiment, an application program called a user cache
manager is executed to receive user preferences as to what data to store
and not to store in the user cache.”

Teoman, 3:18-20.

“The program code in the system memory 16 includes operating system
(OS) program code 30, application program code 34 and device driver
program code 32. The application program code 34 is executed by the
processing unit 12 to implement application processes which, in turn,
invoke operating system services to display user-interfaces, operate on
user-input and access user-specified data.”

Teoman, 4:16-22.

3035

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 12 of 29

“For example, when an application process invokes an operating system
service to perform I/O to a device attached to the expansion bus 18, the
operating system 30 invokes a standard routine Within the appropriate
device driver 32 to carry out the requested I/O.”

Teoman, 4:35-40.

“When an I/O request 40 to access the mass storage 46 is issued (e.g., a
?le read or write request issued in the course of executing an application
program), the I/O request 40 is first applied to the OS cache maintained
in system memory 16.”

Teoman, 4:57-61.

3036

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 13 of 29

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Teoman, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

3037

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 14 of 29

Teoman, Fig. 10.

“In another embodiment, an application program called a user cache
manager is executed to receive user preferences as to what data to store
and not to store in the user cache.”

Teoman, 3:18-20.

“The program code in the system memory 16 includes operating system
(OS) program code 30, application program code 34 and device driver
program code 32. The application program code 34 is executed by the
processing unit 12 to implement application processes which, in turn,
invoke operating system services to display user-interfaces, operate on
user-input and access user-specified data.”

Teoman, 4:16-22.

3038

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 15 of 29

“For example, when an application process invokes an operating system
service to perform I/O to a device attached to the expansion bus 18, the
operating system 30 invokes a standard routine Within the appropriate
device driver 32 to carry out the requested I/O.”

Teoman, 4:35-40.

“When an I/O request 40 to access the mass storage 46 is issued (e.g., a
?le read or write request issued in the course of executing an application
program), the I/O request 40 is first applied to the OS cache maintained
in system memory 16.”

Teoman, 4:57-61.

3039

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 16 of 29

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Teoman, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The expansion bus 18 supports connection of a number of I/O devices
including a self-buffered disk drive controller 20 and its associated disk
drive 26, a non-buffered disk drive controller 22 and its associated disk
drive 28, a network access device 24 such as a modem or local/Wide
area network communications card and a user cache 25.”

Teoman, 3:51-57.

“The user-cache 25 includes bus inter face circuitry 61, a DRAM
controller 63 and a plurality of rows (1 through N) of DRAM
components 68A—68C, 69A—69C, 70A—70C.”

Teoman, 6:16-19.

“The address and control inputs of the DRAM components within a
given row are coupled to a common address path and a common control
path from the DRAM controller 63.”

Teoman, 6:24-27.

“In one embodiment, the power source selector 67 distinguishes
between full system power and trickle power and asserts a sleep signal
81 to the DRAM controller 63 Whenever the user cache is being
powered by trickle power or battery power. The DRAM controller 63
responds to the sleep signal 81 by issuing control signals to place the
DRAM components of the user cache 25 in reduced power state. In the

3040

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 17 of 29

reduced power state, DRAM refresh operations are continued either
under control of the DRAM controller 63 or by logic on board the
DRAM components themselves. Other logic elements Within the user-
cache 25, including the bus interface circuitry 61 and portions of the
DRAM controller that operate on access requests from the bus interface
circuitry are shut down to save power.”

Teoman, 7:18-32.

3041

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 18 of 29

6. The method of claim 1, further
comprising updating the list of boot data.

Teoman, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

“The requested blocks are then passed back to the user cache driver 45
which writes them to the user cache 25 and updates the user cache
directory.”

Teoman, 10:20-23.

“After loading data into the user cache 25, the user cache driver 45
updates the user cache directory to indicate the newly cached blocks.”

Teoman, 12:50-52.

3042

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 19 of 29

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Teoman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3043

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 20 of 29

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Teoman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3044

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 11.1
“A system comprising: a processor;”

 Page 21 of 29

11.1. a processor;

Teoman, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Teoman discloses this limitation:

See Claim 1.2 above.

3045

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 11.2
“a memory”

 Page 22 of 29

11.2. a memory; and

Teoman, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Teoman discloses this limitation:

See Claims 1.3, and 1.4 above.

3046

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 23 of 29

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Teoman, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

“According to one embodiment, the user cache 25 is a non-volatile
storage array that is used to cache data from mass storage devices, such
as the local disk drives 26, 28 or disk drives on network servers 29A,
29B.”

Teoman, 3:63-67.

“The boot firmware 66 may be implemented using a number of different
types of non-volatile memory including, but not limited to,
programmable read only memory (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), flash EEPROM, and so forth.”

Teoman, 7:64-8:3.

3047

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 24 of 29

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Teoman, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3048

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 25 of 29

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Teoman, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1 and 1.5 above.

3049

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 26 of 29

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Teoman, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Teoman discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3050

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 27 of 29

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Teoman, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3051

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 28 of 29

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Teoman, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1, 8, and 11 above.

3052

Appendix B22
Invalidity of U.S. Patent 8,090,936 based on Teoman

	

Teoman Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 29 of 29

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Teoman, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Teoman discloses this limitation:

See Claims 1, 9, and 11 above.

3053

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers
 Page 1 of 36

German Patent No. DE19721786 to Michael Vers (“Vers”) invalidates claims 1-6, 8-9, 11-
13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35
U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art
references, and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

3054

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 36

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Vers, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

The invention is based on the problem to provide a method for operating
a data processing device in such a way that non-volatile at least consistent
performance storage elements with a minimum memory capacity can be
used. the problem is inventively solved in that the system software stored
in compressed form in the non-volatile memory and to reset in response
to a flag element either is decompressed and stored in the volatile memory
or copied without decompression in the volatile memory and started there
and / or that the application software associated, are compressed changes
of application software files containing or by instructing from the
programming device before power failure and stored in the nonvolatile
memory and decompressed when power is restored to regenerate the files

3055

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 36

in the volatile memories.

Vers, 2

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

A particularly preferred compressing algorithm is the LZW algorithm
used.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

By a further storage area 36, the destination address is specified in the
volatile memory to which the operating system copies or store
decompressed. Finally, the tray of the operating system begins in
compressed or transparent form.

Vers, 3

3056

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 36

To inventively to guarantee the use of non-volatile memories of a
minimum memory size is provided that the stored in compressed form in
the non-volatile memory operating system during initialization in the
volatile memory is loaded. For this purpose it is provided that the non-
volatile memory compresses stored operating system, ie, when the flag
element the value "ONE" has a function of the marker element,
decompressed by a stored in nonvolatile memory uncompressed routine
and is stored in the nonvolatile memory. Before the decompression of the
operating system a CRC checksum is calculated and compared with the
likewise in the header 28 stored in the storage area 30 by means of a
checksum stored in the memory area 32 of the first header 28 length
information. Is the calculated checksum matches the checksum stored,
the process continues with the decompression. Here, the operating system
is decompressed without the header 28 and stored decompressed to the
stored in the memory area 36 of the header 28 destination address in the
volatile memory. Does the marker element the value "zero" on, is the
operating system directly, ie without decompression and without header
in the volatile memory copied. After decompress or copying of the
operating system as previously described a CRC checksum is determined
and compared with a in a second header 40 in volatile memory which is
present in decompressed form. If the two checksums match, a startup
routine of the operating system is started, whose address is also stored in
the header 40 in the storage area 46th

Vers, 3-4

3057

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 36

1.2 initializing a central processing unit of
said computer system;

Vers, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the

3058

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 6 of 36

operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

3059

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 36

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Vers, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

The invention is based on the problem to provide a method for operating
a data processing device in such a way that non-volatile at least consistent
performance storage elements with a minimum memory capacity can be
used. the problem is inventively solved in that the system software stored
in compressed form in the non-volatile memory and to reset in response
to a flag element either is decompressed and stored in the volatile memory
or copied without decompression in the volatile memory and started there
and / or that the application software associated, are compressed changes
of application software files containing or by instructing from the
programming device before power failure and stored in the nonvolatile
memory and decompressed when power is restored to regenerate the files
in the volatile memories.

Vers, 2

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after

3060

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 36

decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

A particularly preferred compressing algorithm is the LZW algorithm
used.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

By a further storage area 36, the destination address is specified in the
volatile memory to which the operating system copies or store
decompressed. Finally, the tray of the operating system begins in
compressed or transparent form.

Vers, 3

To inventively to guarantee the use of non-volatile memories of a
minimum memory size is provided that the stored in compressed form in
the non-volatile memory operating system during initialization in the
volatile memory is loaded. For this purpose it is provided that the non-
volatile memory compresses stored operating system, ie, when the flag
element the value "ONE" has a function of the marker element,
decompressed by a stored in nonvolatile memory uncompressed routine

3061

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 36

and is stored in the nonvolatile memory. Before the decompression of the
operating system a CRC checksum is calculated and compared with the
likewise in the header 28 stored in the storage area 30 by means of a
checksum stored in the memory area 32 of the first header 28 length
information. Is the calculated checksum matches the checksum stored,
the process continues with the decompression. Here, the operating system
is decompressed without the header 28 and stored decompressed to the
stored in the memory area 36 of the header 28 destination address in the
volatile memory. Does the marker element the value "zero" on, is the
operating system directly, ie without decompression and without header
in the volatile memory copied. After decompress or copying of the
operating system as previously described a CRC checksum is determined
and compared with a in a second header 40 in volatile memory which is
present in decompressed form. If the two checksums match, a startup
routine of the operating system is started, whose address is also stored in
the header 40 in the storage area 46th

Vers, 3-4

3062

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 10 of 36

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Vers, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

The invention is based on the problem to provide a method for operating
a data processing device in such a way that non-volatile at least consistent
performance storage elements with a minimum memory capacity can be
used. the problem is inventively solved in that the system software stored
in compressed form in the non-volatile memory and to reset in response
to a flag element either is decompressed and stored in the volatile memory
or copied without decompression in the volatile memory and started there
and / or that the application software associated, are compressed changes
of application software files containing or by instructing from the
programming device before power failure and stored in the nonvolatile
memory and decompressed when power is restored to regenerate the files
in the volatile memories.

Vers, 2

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC

3063

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 11 of 36

checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

A particularly preferred compressing algorithm is the LZW algorithm
used.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

By a further storage area 36, the destination address is specified in the
volatile memory to which the operating system copies or store
decompressed. Finally, the tray of the operating system begins in
compressed or transparent form.

Vers, 3

To inventively to guarantee the use of non-volatile memories of a
minimum memory size is provided that the stored in compressed form in
the non-volatile memory operating system during initialization in the
volatile memory is loaded. For this purpose it is provided that the non-
volatile memory compresses stored operating system, ie, when the flag
element the value "ONE" has a function of the marker element,
decompressed by a stored in nonvolatile memory uncompressed routine
and is stored in the nonvolatile memory. Before the decompression of the

3064

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 36

operating system a CRC checksum is calculated and compared with the
likewise in the header 28 stored in the storage area 30 by means of a
checksum stored in the memory area 32 of the first header 28 length
information. Is the calculated checksum matches the checksum stored,
the process continues with the decompression. Here, the operating system
is decompressed without the header 28 and stored decompressed to the
stored in the memory area 36 of the header 28 destination address in the
volatile memory. Does the marker element the value "zero" on, is the
operating system directly, ie without decompression and without header
in the volatile memory copied. After decompress or copying of the
operating system as previously described a CRC checksum is determined
and compared with a in a second header 40 in volatile memory which is
present in decompressed form. If the two checksums match, a startup
routine of the operating system is started, whose address is also stored in
the header 40 in the storage area 46th

Vers, 3-4

3065

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 13 of 36

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Vers, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

The invention is based on the problem to provide a method for operating
a data processing device in such a way that non-volatile at least consistent
performance storage elements with a minimum memory capacity can be
used. the problem is inventively solved in that the system software stored
in compressed form in the non-volatile memory and to reset in response
to a flag element either is decompressed and stored in the volatile memory
or copied without decompression in the volatile memory and started there
and / or that the application software associated, are compressed changes
of application software files containing or by instructing from the
programming device before power failure and stored in the nonvolatile
memory and decompressed when power is restored to regenerate the files
in the volatile memories.

Vers, 2

Preferably, a destination address in the volatile memory is in the header

3066

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 14 of 36

in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

A particularly preferred compressing algorithm is the LZW algorithm
used.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

By a further storage area 36, the destination address is specified in the
volatile memory to which the operating system copies or store
decompressed. Finally, the tray of the operating system begins in
compressed or transparent form.

Vers, 3

To inventively to guarantee the use of non-volatile memories of a
minimum memory size is provided that the stored in compressed form in
the non-volatile memory operating system during initialization in the
volatile memory is loaded. For this purpose it is provided that the non-
volatile memory compresses stored operating system, ie, when the flag

3067

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 15 of 36

element the value "ONE" has a function of the marker element,
decompressed by a stored in nonvolatile memory uncompressed routine
and is stored in the nonvolatile memory. Before the decompression of the
operating system a CRC checksum is calculated and compared with the
likewise in the header 28 stored in the storage area 30 by means of a
checksum stored in the memory area 32 of the first header 28 length
information. Is the calculated checksum matches the checksum stored,
the process continues with the decompression. Here, the operating system
is decompressed without the header 28 and stored decompressed to the
stored in the memory area 36 of the header 28 destination address in the
volatile memory. Does the marker element the value "zero" on, is the
operating system directly, ie without decompression and without header
in the volatile memory copied. After decompress or copying of the
operating system as previously described a CRC checksum is determined
and compared with a in a second header 40 in volatile memory which is
present in decompressed form. If the two checksums match, a startup
routine of the operating system is started, whose address is also stored in
the header 40 in the storage area 46th

Vers, 3-4

3068

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 16 of 36

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Vers, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3069

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 17 of 36

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Vers, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The invention relates to a method for operating a data processing device,
in particular automation device, with volatile and non-volatile memories,
said system and / or application software is copied from non-volatile to a
volatile memory.

Vers, 1

From the prior art it is known that in a data processing device, both the
system and the application software is stored in a nonvolatile memory.
The system software can run directly on the one hand from the non-
volatile memory or on the other hand copies of the non-volatile memory
to the volatile memory and run from this. The start of the system software
from non-volatile memory has the disadvantage that either a quicker and
thereby more expensive non-volatile memory must be used, or that the
system power is discontinued by inserting wait states ago. At the start of
the system software from the volatile memory non-volatile memory must
be in full size of the system software, however, is no longer needed after
copying the system software.

Vers, 1

The problem is inventively achieved in that the system software stored
compression form in the in the non-volatile memory after reset depending
on a flag element either is decompressed and stored in the volatile
memory or copied without decompression in the volatile memory and

3070

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 18 of 36

started there and / or that the application software associated, are
compressed files containing changes the user software or by appointment
by the programmer before power failure and stored in non-volatile
memory and decompressed when power is restored to regenerate the files
in the volatile memories.

Vers 2

In particular, programmable logic controllers or PLCs can be stored in
non-volatile memory in compressed form and application software.

Vers, 3

3071

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 19 of 36

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Vers, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The invention relates to a method for operating a data processing device,
in particular automation device, with volatile and non-volatile memories,
said system and / or application software is copied from non-volatile to a
volatile memory.

Vers, 1

From the prior art it is known that in a data processing device, both the
system and the application software is stored in a nonvolatile memory.
The system software can run directly on the one hand from the non-
volatile memory or on the other hand copies of the non-volatile memory
to the volatile memory and run from this. The start of the system software
from non-volatile memory has the disadvantage that either a quicker and
thereby more expensive non-volatile memory must be used, or that the
system power is discontinued by inserting wait states ago. At the start of
the system software from the volatile memory non-volatile memory must
be in full size of the system software, however, is no longer needed after
copying the system software.

Vers, 1

The problem is inventively achieved in that the system software stored
compression form in the in the non-volatile memory after reset depending
on a flag element either is decompressed and stored in the volatile

3072

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 20 of 36

memory or copied without decompression in the volatile memory and
started there and / or that the application software associated, are
compressed files containing changes the user software or by appointment
by the programmer before power failure and stored in non-volatile
memory and decompressed when power is restored to regenerate the files
in the volatile memories.

Vers 2

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

In particular, programmable logic controllers or PLCs can be stored in
non-volatile memory in compressed form and application software.

Vers, 3

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's
are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

3073

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 21 of 36

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Vers, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

In particular, programmable logic controllers or PLCs can be stored in
non-volatile memory in compressed form and application software.

Vers, 3

To not use volatile memory with a small storage capacity possible is, the
invention proposes that an art compression routine at Beauf transfer
compressed by a programmer the latch and the HEAP a memory
management and stored in the nonvolatile memory 16 and when the PLC
again is turned on, a Dekomprimierroutine is activated, which regenerates
the signal memory, and the entire heap of memory management of the
nonvolatile memory to the volatile memory. Stay All online changes
obtained so that a further change of user program when Spannungsaus
case can be avoided. In addition, while minimizing the hardware expense,
the functionality of the programmable controller expanded.

Vers 4

3074

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 22 of 36

6. The method of claim 1, further
comprising updating the list of boot data.

Vers, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

The method involves placing system software into a non-volatile memory
(16) in compressed form. After a reset, the software is copied into the
volatile memory (18) and is started there. This is done either after
decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of the
data in volatile memory.

Vers, Abstract

Preferably, a destination address in the volatile memory is in the header
in the non-volatile memory, where the system software such as operating
system copied or stored decompressed. It is also provided that after
decompression or copying of the system software calculated CRC
checksum compared with a in a second header in the region of the
beginning of the file system software in the volatile memory, and if they
match a start routine is started.

Vers, 2

In Fig. 1 the basic construction of a programmable controller is shown
with a bus 12 to which a microprocessor 14, non-volatile and volatile
memories 16, 18 and one or more peripheral devices 20 are connected. as
non-volatile memory 16 preferably flash memory modules are used,
which can be written and read, and in contrast to the volatile memory 18
may be retained their content when they are not supplied with operating
voltage. Other non-volatile memory such as EPROM and EEPROM can
also be used. Preferably as a volatile memory SRAM and / or DRAM's

3075

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 23 of 36

are used. In Fig. 2, the memory map of the nonvolatile memory 16 is
shown. According to the invention, that the system software as the
operating system stored in an initial region 22nd Following the operating
system is followed by a free space 24, which is a storage area 26 connects
with a reset initialization and a decompression algorithm as executable
code. Especially with programmable logic controllers or PLCs can also
use the software in the nonvolatile memory is stored in compressed form
be.

Vers, 3

By a further storage area 36, the destination address is specified in the
volatile memory to which the operating system copies or store
decompressed. Finally, the tray of the operating system begins in
compressed or transparent form.

Vers, 3

If a user software from the volatile memory operates 18 may at any time
provide the required memory locations for storing online modifications
available memory management. For an online modified user program is
again even with reclosing of the automation device in the previously
amended version is available, it must be stored before switching off the
automation device in the non-volatile memory, so that all previous
changes and variable initialization are stored.

Vers, 4

3076

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 24 of 36

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Vers, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

A particularly preferred compressing algorithm is the LZW algorithm
used.

Vers, 2

3077

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 25 of 36

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Vers, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3078

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.1
“A system comprising: a processor;”

 Page 26 of 36

11.1. a processor;

Vers, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Vers discloses this limitation:

See Claim 1.2 above.

3079

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.2
“a memory”

 Page 27 of 36

11.2. a memory; and

Vers, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Vers discloses this limitation:

See Claims 1.3, and 1.4 above.

3080

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 28 of 36

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Vers, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

See also

The method involves placing system software into a non-volatile
memory (16) in compressed form. After a reset, the software is copied
into the volatile memory (18) and is started there. This is done either
after decompression or without decompression, depending on the
characteristic element. Data corresponding to changes in the user
software prior to voltage drop-out are compressed and stored in the non-
volatile memory and after reset are decompressed for regeneration of
the data in volatile memory.

Vers, Abstract

From the prior art it is known that in a data processing device, both the
system and the application software is stored in a nonvolatile memory.
The system software can run directly on the one hand from the non-
volatile memory or on the other hand copies of the non-volatile memory
to the volatile memory and run from this. The start of the system software
from non-volatile memory has the disadvantage that either a quicker and

3081

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 29 of 36

thereby more expensive non-volatile memory must be used, or that the
system power is discontinued by inserting wait states ago. At the start of
the system software from the volatile memory non-volatile memory must
be in full size of the system software, however, is no longer needed after
copying the system software.

It is also known that application software can run in non-volatile memory
or can be loaded from a programming unit via a controlled by the system
software programming in the volatile memory directly. While executing
the application software from non-volatile memory often occurs a
problem that the application software on-line changes are difficult to
achieve or only with a considerable increase in the cycle time. In a
sequence of user software from the volatile memory is also known that a
memory management can always provide the necessary resources for
online changes available. If the modified data upon reconnection of the
data processing apparatus provided in its amended form available to use
must be assured that they were previously stored in non-volatile memory
so that the previous online changes are saved. However, this would
require an unnecessarily large non-volatile memory which would not be
used during the lifetime of the data processing device.

Vers, 1-2

To inventively to guarantee the use of non-volatile memories of a
minimum memory size is provided that the stored in compressed form in
the non-volatile memory operating system during initialization in the
volatile memory is loaded. For this purpose it is provided that the non-
volatile memory compresses stored operating system, ie, when the flag
element the value "ONE" has a function of the marker element,
decompressed by a stored in nonvolatile memory uncompressed routine
and is stored in the nonvolatile memory. Before the decompression of the
operating system a CRC checksum is calculated and compared with the
likewise in the header 28 stored in the storage area 30 by means of a
checksum stored in the memory area 32 of the first header 28 length
information. Is the calculated checksum matches the checksum stored,
the process continues with the decompression. Here, the operating system
is decompressed without the header 28 and stored decompressed to the
stored in the memory area 36 of the header 28 destination address in the
volatile memory. Does the marker element the value "zero" on, is the
operating system directly, ie without decompression and without header
in the volatile memory copied. After decompress or copying of the
operating system as previously described a CRC checksum is determined
and compared with a in a second header 40 in volatile memory which is
present in decompressed form. If the two checksums match, a startup

3082

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 30 of 36

routine of the operating system is started, whose address is also stored in
the header 40 in the storage area 46th

Vers, 3-4

3083

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 31 of 36

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Vers, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3084

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 32 of 36

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Vers, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1 and 1.5 above.

3085

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 33 of 36

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Vers, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Vers discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3086

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 34 of 36

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Vers, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Vers discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3087

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 35 of 36

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Vers, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

See Claims 1, 8, and 11 above.

3088

Appendix B23
Invalidity of U.S. Patent 8,090,936 based on Vers

	

Vers Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 36 of 36

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Vers, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Vers discloses this limitation:

See Claims 1, 9, and 11 above.

3089

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew
 Page 1 of 34

U.S. Patent No. 6,317,818 to Zwiegincew (“Zwiegincew”) invalidates claims 1-6, 8-9, 11-
13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35
U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with other prior art
references, and/or in combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

In addition, Apple incorporates by reference, as if set forth fully herein, all arguments
related to Zwiegincew in pending inter partes review petitions IPR2016-01737, IPR2016-
01738, and IPR2016-01739.

3090

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 34

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Zwiegincew, as evidenced by the
exemplary citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

Hard page fault patterns of an application program module are analyzed
in order to determine the pages that will be retrieved from disk storage
during a common hard page fault scenario. Copies of, or references to,
the determined pages are stored in a scenario file, along with an index
referred to as a page sequence. The scenario file may also include a
prologue indicating events that lead to a hard page fault scenario and an
epilogue that may indicate subsequent hard page fault scenarios.
Execution of the application program module is monitored to detect the
occurrence of a hard page fault scenario. When a hard page fault
scenario is detected, a corresponding scenario file is fetched from disk
storage and the determined pages, or copies thereof, are transferred into
RAM. The determined pages, or copies thereof, may be placed on a
stand-by list in RAM and later soft-faulted into the working set of the
application program upon request by the application program module,
thereby avoiding a sequence of hard page faults.

Zwiegincew, Abstract

3091

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 34

Zwiegincew, Fig. 1

Zwiegincew. Fig 2

There are various potential solutions to the performance bottleneck
caused by disk access time during hard page fault scenarios. An obvious
potential solution is to reduce disk access time. The reduction of disk
access time is primarily a hardware consideration and is not easily

3092

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 34

accomplished. However, other potential solutions involve the
manipulation of memory storage through software program modules.

Zwiegincew, 1:45-51

In an exemplary embodiment, the present invention may comprise one
or more memory management program modules 137 stored on the
drives or RAM 125 of the computer 100. Specifically, program modules
137 of the present invention may comprise computer implemented
instructions for determining which pages will have to be retrieved from
disk during a potential hard page fault scenario and pre-fetching the
determined pages into RAM prior to the occurrence of the potential hard
page fault sequence.

Zwiegincew, 5:50-51.

The present invention meets the needs described above by providing a
system and method for improving the performance of an application
program module by reducing the occurrence of hard page faults during
the operation of an application program module. The present invention
may be embodied in an add-on software program module that operates
in conjunction with the application program module. In this manner, no
effort is required on the part of the application programmer to
manipulate or modify the application program module in order to
improve performance. Furthermore, the add-on software program
module does not detract from the intended operation of the application
program module.

According to one aspect of the present invention, a scenario file is
created which comprises ordered copies of pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault. The scenario file is stored in the disk storage. Then, the
execution of the application program module is monitored until either
an explicit begin-of-scenario instruction is detected, or a hard page fault
scenario is detected. A hard page fault scenario may comprise any
situation or event that is likely to trigger a hard page fault, i.e., one or
more requested pages will not be available in RAM and will be
retrieved from disk storage. In response to the detection of a begin-of-
scenario instruction or a hard page fault scenario, the scenario file is
fetched from disk storage and the ordered copies of the pages are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. In another aspect of the
invention, a hard page fault scenario analyzer is provided for analyzing
a hard page fault scenario of an application program module in order to

3093

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 34

determine the pages that will be retrieved from disk storage upon the
occurrence of a hard page fault scenario. The hard page fault scenario
analyzer creates a scenario file comprising copies of the pages in the
determined order. A hard page fault scenario detector is provided for
monitoring the execution of the application module, detecting a hard
page fault scenario and sending a message to a pre-fetcher. The hard
page fault scenario detector may be manual or automatic. A pre-fetcher
retrieves a scenario file from disk storage and transfers the copies of the
determined pages into RAM. The copies of the determined pages are
placed on a standby list in RAM. Accordingly, the determined pages
will be available in RAM during a hard page fault scenario and will be
soft-faulted into the working set of the application program module
when they are requested by the application program module, thereby
avoiding a hard page fault.

According to another aspect of the invention, a scenario file is created
which comprises ordered references to pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault scenario, rather than the actual pages themselves. The
scenario file is stored in the disk storage. Then, the execution of the
application program module is monitored until either an explicit begin-
of-scenario instruction is detected, or a hard page fault scenario is
detected. A hard page fault scenario may comprise any situation or
event that is likely to trigger a hard page fault, i.e., one or more
requested pages will not be available in RAM and will be retrieved from
disk storage. In response to the detection of a begin-of-scenario
instruction or a hard page fault scenario, the pages referenced by the
scenario file are fetched from disk storage in the optimal manner and are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. This aspect of the invention
will result in more seek operations on disk, but will still allow reading
of the required pages in an optimal manner, rather than the ‘as needed’
ordering if the pages are hard faulted into RAM. This aspect of the
invention also reduces the disk space requirements over the previously
mentioned aspect.

Zwiegincew, 2:43-3:49.

A hard page fault scenario analyzer 240 anticipates and analyzes hard
page fault scenarios. As mentioned, a hard page fault scenario is a
situation in which a hard page fault sequence is highly likely to occur.
The hard page fault scenario analyzer logs various hard page fault
scenarios that occur during operation of the application program module
205. The logged hard page fault scenarios are then analyzed to

3094

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 34

determine if they re-occur frequently, and if they do, they are put in a
scenario file. This analysis can occur programmatically on the end-
user's computer system, or in advance by the developer of a particular
software product. As an example, suppose the application program
module 205 is a word processor and that an anticipated hard page fault
scenario is the situation in which the user selects a well known “file
open” command. In response to the “file open” command, the
application program will display a graphical representation of a file
directory. However, in order to display the graphical representation of
the file directory, a sequence of hard page faults will occur because the
word processor must retrieve a particular set of pages from disk. In
accordance with an exemplary embodiment of the present invention, the
hard page fault scenario analyzer 240 anticipates the “open file” hard
page fault scenario of the example and determines the set of pages that
will need to be retrieved from disk upon the occurrence of the hard page
fault. The determination of pages that will need to be retrieved from
disk will be described in greater detail below. The detection of
particular classes of hard page fault scenarios may be built into the
system. For example, application launch is virtually always a hard page
fault scenario, so an exemplary embodiment of the present invention
may be configured such that any launch operation of an application
program will be considered to be a hard page fault scenario.

Zwiegincew, 6:29-61.

The hard page fault scenario analyzer 240 may comprise functionality
for automatically analyzing hard page fault scenarios and generating
corresponding scenario files. By way of illustration, the hard page fault
analyzer 240 may log hard page faults that occur upon execution of a
process during operation of an application program module 205. During
idle time of the application program module 205, the hard page fault
scenario analyzer 240 may write the log of hard page faults to a log file.
Then, a pattern matching algorithm may be used to find a pattern of
hard page faults based on all log files generated for the process same. If
a pattern of hard page faults is found, a new scenario file may be
generated based on the pages that are retrieved from disk during the
pattern. Automatically generated scenario files may be subject to
subsequent refinement, i.e., they may be input into the pattern-matching
algorithm.

Zwiegincew, 7:24-40

See also Zwiegincew. 1:5-2:40, Figs 1-2

3095

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 34

1.2 initializing a central processing unit of
said computer system;

Zwiegincew, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

3096

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 8 of 34

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Zwiegincew, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

Hard page fault patterns of an application program module are analyzed
in order to determine the pages that will be retrieved from disk storage
during a common hard page fault scenario. Copies of, or references to,
the determined pages are stored in a scenario file, along with an index
referred to as a page sequence. The scenario file may also include a
prologue indicating events that lead to a hard page fault scenario and an
epilogue that may indicate subsequent hard page fault scenarios.
Execution of the application program module is monitored to detect the
occurrence of a hard page fault scenario. When a hard page fault
scenario is detected, a corresponding scenario file is fetched from disk
storage and the determined pages, or copies thereof, are transferred into
RAM. The determined pages, or copies thereof, may be placed on a
stand-by list in RAM and later soft-faulted into the working set of the
application program upon request by the application program module,
thereby avoiding a sequence of hard page faults.

Zwiegincew, Abstract

There are various potential solutions to the performance bottleneck
caused by disk access time during hard page fault scenarios. An obvious
potential solution is to reduce disk access time. The reduction of disk
access time is primarily a hardware consideration and is not easily
accomplished. However, other potential solutions involve the
manipulation of memory storage through software program modules.

Zwiegincew, 1:45-51

In an exemplary embodiment, the present invention may comprise one
or more memory management program modules 137 stored on the

3097

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 34

drives or RAM 125 of the computer 100. Specifically, program modules
137 of the present invention may comprise computer implemented
instructions for determining which pages will have to be retrieved from
disk during a potential hard page fault scenario and pre-fetching the
determined pages into RAM prior to the occurrence of the potential hard
page fault sequence.

Zwiegincew, 5:50-51.

The present invention meets the needs described above by providing a
system and method for improving the performance of an application
program module by reducing the occurrence of hard page faults during
the operation of an application program module. The present invention
may be embodied in an add-on software program module that operates
in conjunction with the application program module. In this manner, no
effort is required on the part of the application programmer to
manipulate or modify the application program module in order to
improve performance. Furthermore, the add-on software program
module does not detract from the intended operation of the application
program module.

According to one aspect of the present invention, a scenario file is
created which comprises ordered copies of pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault. The scenario file is stored in the disk storage. Then, the
execution of the application program module is monitored until either
an explicit begin-of-scenario instruction is detected, or a hard page fault
scenario is detected. A hard page fault scenario may comprise any
situation or event that is likely to trigger a hard page fault, i.e., one or
more requested pages will not be available in RAM and will be
retrieved from disk storage. In response to the detection of a begin-of-
scenario instruction or a hard page fault scenario, the scenario file is
fetched from disk storage and the ordered copies of the pages are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. In another aspect of the
invention, a hard page fault scenario analyzer is provided for analyzing
a hard page fault scenario of an application program module in order to
determine the pages that will be retrieved from disk storage upon the
occurrence of a hard page fault scenario. The hard page fault scenario
analyzer creates a scenario file comprising copies of the pages in the
determined order. A hard page fault scenario detector is provided for
monitoring the execution of the application module, detecting a hard
page fault scenario and sending a message to a pre-fetcher. The hard
page fault scenario detector may be manual or automatic. A pre-fetcher

3098

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 34

retrieves a scenario file from disk storage and transfers the copies of the
determined pages into RAM. The copies of the determined pages are
placed on a standby list in RAM. Accordingly, the determined pages
will be available in RAM during a hard page fault scenario and will be
soft-faulted into the working set of the application program module
when they are requested by the application program module, thereby
avoiding a hard page fault.

According to another aspect of the invention, a scenario file is created
which comprises ordered references to pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault scenario, rather than the actual pages themselves. The
scenario file is stored in the disk storage. Then, the execution of the
application program module is monitored until either an explicit begin-
of-scenario instruction is detected, or a hard page fault scenario is
detected. A hard page fault scenario may comprise any situation or
event that is likely to trigger a hard page fault, i.e., one or more
requested pages will not be available in RAM and will be retrieved from
disk storage. In response to the detection of a begin-of-scenario
instruction or a hard page fault scenario, the pages referenced by the
scenario file are fetched from disk storage in the optimal manner and are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. This aspect of the invention
will result in more seek operations on disk, but will still allow reading
of the required pages in an optimal manner, rather than the ‘as needed’
ordering if the pages are hard faulted into RAM. This aspect of the
invention also reduces the disk space requirements over the previously
mentioned aspect.

Zwiegincew, 2:43-3:49.

See also Zwiegincew. 1:5-2:40, Figs 1-2

3099

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 11 of 34

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Zwiegincew, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

Hard page fault patterns of an application program module are analyzed
in order to determine the pages that will be retrieved from disk storage
during a common hard page fault scenario. Copies of, or references to,
the determined pages are stored in a scenario file, along with an index
referred to as a page sequence. The scenario file may also include a
prologue indicating events that lead to a hard page fault scenario and an
epilogue that may indicate subsequent hard page fault scenarios.
Execution of the application program module is monitored to detect the
occurrence of a hard page fault scenario. When a hard page fault
scenario is detected, a corresponding scenario file is fetched from disk
storage and the determined pages, or copies thereof, are transferred into
RAM. The determined pages, or copies thereof, may be placed on a
stand-by list in RAM and later soft-faulted into the working set of the
application program upon request by the application program module,
thereby avoiding a sequence of hard page faults.

Zwiegincew, Abstract

There are various potential solutions to the performance bottleneck
caused by disk access time during hard page fault scenarios. An obvious
potential solution is to reduce disk access time. The reduction of disk
access time is primarily a hardware consideration and is not easily
accomplished. However, other potential solutions involve the
manipulation of memory storage through software program modules.

Zwiegincew, 1:45-51

In an exemplary embodiment, the present invention may comprise one
or more memory management program modules 137 stored on the
drives or RAM 125 of the computer 100. Specifically, program modules

3100

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 12 of 34

137 of the present invention may comprise computer implemented
instructions for determining which pages will have to be retrieved from
disk during a potential hard page fault scenario and pre-fetching the
determined pages into RAM prior to the occurrence of the potential hard
page fault sequence.

Zwiegincew, 5:50-51.

The present invention meets the needs described above by providing a
system and method for improving the performance of an application
program module by reducing the occurrence of hard page faults during
the operation of an application program module. The present invention
may be embodied in an add-on software program module that operates
in conjunction with the application program module. In this manner, no
effort is required on the part of the application programmer to
manipulate or modify the application program module in order to
improve performance. Furthermore, the add-on software program
module does not detract from the intended operation of the application
program module.

According to one aspect of the present invention, a scenario file is
created which comprises ordered copies of pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault. The scenario file is stored in the disk storage. Then, the
execution of the application program module is monitored until either
an explicit begin-of-scenario instruction is detected, or a hard page fault
scenario is detected. A hard page fault scenario may comprise any
situation or event that is likely to trigger a hard page fault, i.e., one or
more requested pages will not be available in RAM and will be
retrieved from disk storage. In response to the detection of a begin-of-
scenario instruction or a hard page fault scenario, the scenario file is
fetched from disk storage and the ordered copies of the pages are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. In another aspect of the
invention, a hard page fault scenario analyzer is provided for analyzing
a hard page fault scenario of an application program module in order to
determine the pages that will be retrieved from disk storage upon the
occurrence of a hard page fault scenario. The hard page fault scenario
analyzer creates a scenario file comprising copies of the pages in the
determined order. A hard page fault scenario detector is provided for
monitoring the execution of the application module, detecting a hard
page fault scenario and sending a message to a pre-fetcher. The hard
page fault scenario detector may be manual or automatic. A pre-fetcher
retrieves a scenario file from disk storage and transfers the copies of the

3101

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 34

determined pages into RAM. The copies of the determined pages are
placed on a standby list in RAM. Accordingly, the determined pages
will be available in RAM during a hard page fault scenario and will be
soft-faulted into the working set of the application program module
when they are requested by the application program module, thereby
avoiding a hard page fault.

According to another aspect of the invention, a scenario file is created
which comprises ordered references to pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault scenario, rather than the actual pages themselves. The
scenario file is stored in the disk storage. Then, the execution of the
application program module is monitored until either an explicit begin-
of-scenario instruction is detected, or a hard page fault scenario is
detected. A hard page fault scenario may comprise any situation or
event that is likely to trigger a hard page fault, i.e., one or more
requested pages will not be available in RAM and will be retrieved from
disk storage. In response to the detection of a begin-of-scenario
instruction or a hard page fault scenario, the pages referenced by the
scenario file are fetched from disk storage in the optimal manner and are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. This aspect of the invention
will result in more seek operations on disk, but will still allow reading
of the required pages in an optimal manner, rather than the ‘as needed’
ordering if the pages are hard faulted into RAM. This aspect of the
invention also reduces the disk space requirements over the previously
mentioned aspect.

Zwiegincew, 2:43-3:49.

Further, an exemplary embodiment includes a disk
compressor/decompressor 265. Well known compression algorithms
may be employed to achieve approximately 50% compression with 25
MB/s decompression throughput. These results may be achieved with as
little as 64 KB extra memory. Average disk transfer rates are about 8
MB/s. So, for an illustrative 3 MB pre-fetch scenario, comparative pre-
fetch times are as follows:

No compression: 0.012 s (seek)+3 MB/8 MB/s (read)=0.3870 s.

50% compression: 0.012 s (seek)+1.5 MB/8 MB/s (read)+3 MB/25
MB/s (decompress)=0.3195 s.

3102

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 14 of 34

Thus, there is a 17.5% improvement in pre-fetch time using 50%
compression.

Zwiegincew, 8:66-9:13

See also Zwiegincew. 1:5-2:40, Figs 1-2

3103

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 15 of 34

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Zwiegincew, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

Hard page fault patterns of an application program module are analyzed
in order to determine the pages that will be retrieved from disk storage
during a common hard page fault scenario. Copies of, or references to,
the determined pages are stored in a scenario file, along with an index
referred to as a page sequence. The scenario file may also include a
prologue indicating events that lead to a hard page fault scenario and an
epilogue that may indicate subsequent hard page fault scenarios.
Execution of the application program module is monitored to detect the
occurrence of a hard page fault scenario. When a hard page fault
scenario is detected, a corresponding scenario file is fetched from disk
storage and the determined pages, or copies thereof, are transferred into
RAM. The determined pages, or copies thereof, may be placed on a
stand-by list in RAM and later soft-faulted into the working set of the
application program upon request by the application program module,
thereby avoiding a sequence of hard page faults.

Zwiegincew, Abstract

There are various potential solutions to the performance bottleneck
caused by disk access time during hard page fault scenarios. An obvious
potential solution is to reduce disk access time. The reduction of disk
access time is primarily a hardware consideration and is not easily

3104

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 16 of 34

accomplished. However, other potential solutions involve the
manipulation of memory storage through software program modules.

Zwiegincew, 1:45-51

In an exemplary embodiment, the present invention may comprise one
or more memory management program modules 137 stored on the
drives or RAM 125 of the computer 100. Specifically, program modules
137 of the present invention may comprise computer implemented
instructions for determining which pages will have to be retrieved from
disk during a potential hard page fault scenario and pre-fetching the
determined pages into RAM prior to the occurrence of the potential hard
page fault sequence.

Zwiegincew, 5:50-51.

The present invention meets the needs described above by providing a
system and method for improving the performance of an application
program module by reducing the occurrence of hard page faults during
the operation of an application program module. The present invention
may be embodied in an add-on software program module that operates
in conjunction with the application program module. In this manner, no
effort is required on the part of the application programmer to
manipulate or modify the application program module in order to
improve performance. Furthermore, the add-on software program
module does not detract from the intended operation of the application
program module.

According to one aspect of the present invention, a scenario file is
created which comprises ordered copies of pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault. The scenario file is stored in the disk storage. Then, the
execution of the application program module is monitored until either
an explicit begin-of-scenario instruction is detected, or a hard page fault
scenario is detected. A hard page fault scenario may comprise any
situation or event that is likely to trigger a hard page fault, i.e., one or
more requested pages will not be available in RAM and will be
retrieved from disk storage. In response to the detection of a begin-of-
scenario instruction or a hard page fault scenario, the scenario file is
fetched from disk storage and the ordered copies of the pages are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. In another aspect of the
invention, a hard page fault scenario analyzer is provided for analyzing
a hard page fault scenario of an application program module in order to

3105

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 17 of 34

determine the pages that will be retrieved from disk storage upon the
occurrence of a hard page fault scenario. The hard page fault scenario
analyzer creates a scenario file comprising copies of the pages in the
determined order. A hard page fault scenario detector is provided for
monitoring the execution of the application module, detecting a hard
page fault scenario and sending a message to a pre-fetcher. The hard
page fault scenario detector may be manual or automatic. A pre-fetcher
retrieves a scenario file from disk storage and transfers the copies of the
determined pages into RAM. The copies of the determined pages are
placed on a standby list in RAM. Accordingly, the determined pages
will be available in RAM during a hard page fault scenario and will be
soft-faulted into the working set of the application program module
when they are requested by the application program module, thereby
avoiding a hard page fault.

According to another aspect of the invention, a scenario file is created
which comprises ordered references to pages that are likely to be
retrieved from disk storage by an application program module during a
hard page fault scenario, rather than the actual pages themselves. The
scenario file is stored in the disk storage. Then, the execution of the
application program module is monitored until either an explicit begin-
of-scenario instruction is detected, or a hard page fault scenario is
detected. A hard page fault scenario may comprise any situation or
event that is likely to trigger a hard page fault, i.e., one or more
requested pages will not be available in RAM and will be retrieved from
disk storage. In response to the detection of a begin-of-scenario
instruction or a hard page fault scenario, the pages referenced by the
scenario file are fetched from disk storage in the optimal manner and are
transferred into a standby list in RAM. In this manner, the requested
pages will be soft faulted into a working set of the application program
module, and no hard page fault will occur. This aspect of the invention
will result in more seek operations on disk, but will still allow reading
of the required pages in an optimal manner, rather than the ‘as needed’
ordering if the pages are hard faulted into RAM. This aspect of the
invention also reduces the disk space requirements over the previously
mentioned aspect.

Zwiegincew, 2:43-3:49.

Further, an exemplary embodiment includes a disk
compressor/decompressor 265. Well known compression algorithms
may be employed to achieve approximately 50% compression with 25
MB/s decompression throughput. These results may be achieved with as
little as 64 KB extra memory. Average disk transfer rates are about 8

3106

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 34

MB/s. So, for an illustrative 3 MB pre-fetch scenario, comparative pre-
fetch times are as follows:

No compression: 0.012 s (seek)+3 MB/8 MB/s (read)=0.3870 s.

50% compression: 0.012 s (seek)+1.5 MB/8 MB/s (read)+3 MB/25
MB/s (decompress)=0.3195 s.

Thus, there is a 17.5% improvement in pre-fetch time using 50%
compression.

Zwiegincew, 8:66-9:13

See also Zwiegincew. 1:5-2:40, Figs 1-2

3107

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 19 of 34

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Zwiegincew, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3108

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 20 of 34

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Zwiegincew, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3109

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 21 of 34

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Zwiegincew, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3110

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 22 of 34

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Zwiegincew, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3111

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 23 of 34

6. The method of claim 1, further
comprising updating the list of boot data.

Zwiegincew, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3112

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 24 of 34

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Zwiegincew, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3113

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 25 of 34

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Zwiegincew, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3114

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 11.1
“A system comprising: a processor;”

 Page 26 of 34

11.1. a processor;

Zwiegincew, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

3115

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 11.2
“a memory”

 Page 27 of 34

11.2. a memory; and

Zwiegincew, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Zwiegincew discloses this limitation:

See Claims 1.3, and 1.4 above.

3116

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 28 of 34

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Zwiegincew, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

3117

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 29 of 34

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Zwiegincew, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3118

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 30 of 34

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Zwiegincew, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1 and 1.5 above.

3119

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 31 of 34

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Zwiegincew, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3120

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 32 of 34

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Zwiegincew, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3121

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 33 of 34

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Zwiegincew, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1, 8, and 11 above.

3122

Appendix B24
Invalidity of U.S. Patent 8,090,936 based on Zwiegincew

	

Zwiegincew Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 34 of 34

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Zwiegincew, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Zwiegincew discloses this limitation:

See Claims 1, 9, and 11 above.

3123

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi
 Page 1 of 40

The publication Anyimi, "Implementing a Plug and Play BIOS Using Intel's Boot Block
Flash Memory," Feb. 1995 (“Anyimi”) invalidates claims 1-6, 8-9, 11-13, and 15-16 of
United States Patent No. 8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102 and/or
35 U.S.C. § 103 either alone or in combination with other prior art references, and/or in
combination with the knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

3124

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 40
	

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Anyimi, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this claim limitation:

Anyimi, 1.0

3125

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 40
	

Anyimi, 3.1

Anyimi, Fig. 2

3126

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 4 of 40
	

Anyimi, 2.2

Anyimi, Fig. 3

3127

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 5 of 40
	

Anyimi, 3.2

Anyimi, 3.2

3128

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 6 of 40
	

Anyimi, 5.1

3129

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 7 of 40

1.2 initializing a central processing unit of
said computer system;

Anyimi, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Anyimi discloses this claim limitation:

Anyimi, 3.1

Anyimi, Fig. 2

3130

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 8 of 40

Anyimi, Fig. 3

3131

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 9 of 40

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Anyimi, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions..

Anyimi discloses this claim limitation:

Anyimi discloses this claim limitation:

Anyimi, Fig. 2

3132

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 10 of 40

Anyimi, 2.2

Anyimi, Fig. 3

3133

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 11 of 40

Anyimi, 3.2

Anyimi, 3.2

3134

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 12 of 40

Anyimi, 5.1

3135

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 13 of 40

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Anyimi, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this claim limitation:

Anyimi, 2.2

3136

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 14 of 40

Anyimi, Fig. 3

Anyimi, 3.2

3137

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 15 of 40

Anyimi, 3.2

Anyimi, 5.1

3138

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 16 of 40

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Anyimi, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this claim limitation:

Anyimi, 2.2

3139

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 17 of 40

Anyimi, Fig. 3

Anyimi, 3.2

3140

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 18 of 40

Anyimi, 3.2

Anyimi, 5.1

3141

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 19 of 40

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Anyimi, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3142

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 20 of 40

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Anyimi, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Anyimi, 2.0

3143

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 21 of 40

Anyimi, 3.1

Anyimi, Fig. 2

3144

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 22 of 40

Anyimi, 4.0

3145

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 23 of 40

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Anyimi, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Anyimi, 2.0

3146

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 24 of 40

Anyimi, 3.1

Anyimi, Fig. 2

3147

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 25 of 40

Anyimi, 4.0

3148

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 26 of 40

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Anyimi, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Anyimi, 5.3.2.1

3149

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 27 of 40

6. The method of claim 1, further
comprising updating the list of boot data.

Anyimi, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Anyimi, 1.0

3150

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 28 of 40

Anyimi, Fig. 3

Anyimi, 3.2

3151

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 29 of 40

Anyimi, 3.2

Anyimi, 5.1

3152

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 30 of 40

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Anyimi, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3153

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 31 of 40

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Anyimi, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3154

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 11.1
“A system comprising: a processor;”

 Page 32 of 40

11.1. a processor;

Anyimi, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Anyimi discloses this limitation:

See Claim 1.2 above.

3155

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 11.2
“a memory”

 Page 33 of 40

11.2. a memory; and

Anyimi, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Anyimi discloses this limitation:

See Claims 1.3, and 1.4 above.

3156

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 34 of 40

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Anyimi, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

3157

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 35 of 40

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Anyimi, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3158

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 36 of 40

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Anyimi, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1 and 1.5 above.

3159

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 37 of 40

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Anyimi, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3160

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 38 of 40

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Anyimi, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3161

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 39 of 40

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Anyimi, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1, 8, and 11 above.

3162

Appendix B25
Invalidity of U.S. Patent 8,090,936 based on Anyimi

	

Anyimi Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 40 of 40

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Anyimi, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Anyimi discloses this limitation:

See Claims 1, 9, and 11 above.

3163

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett
 Page 1 of 29

The publication D. Bennett, “Booting Linux from EPROM,” Linux Journal, January 1997
(“Bennett”) invalidates claims 1-6, 8-9, 11-13, and 15-16 of United States Patent No.
8,090,936 (“the ’936 Patent”) pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either
alone or in combination with other prior art references, and/or in combination with the
knowledge of a person of ordinary skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

3164

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 29
	
	

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Bennett, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Bennett discloses this claim limitation:

Bennett, 1

Bennett, 1

3165

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 3 of 29
	
	

Bennett, 2

Bennett, 3

Bennett, 4

3166

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 4 of 29

1.2 initializing a central processing unit of
said computer system;

Bennett, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions

Bennett discloses this claim limitation:

Bennett, 1

3167

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 5 of 29

Bennett, 2

3168

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 6 of 29

1.3 preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;

Bennett, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Bennett discloses this claim limitation:

Bennett, 1

Bennett, 1

3169

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 7 of 29

Bennett, 2

Bennett, 3

Bennett, 4

3170

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 8 of 29

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Bennett, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory;
and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Bennett discloses this claim limitation:

Bennett, 1

Bennett, 1

3171

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 9 of 29

Bennett, 2

Bennett, 3

Bennett, 4

3172

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 10 of 29
	

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Bennett, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Bennett discloses this claim limitation:

Bennett, 1

Bennett, 1

3173

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 11 of 29
	

Bennett, 2

Bennett, 3

Bennett, 4

3174

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 2
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an operating system of said computer system..”

 Page 12 of 29

2. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an operating system of
said computer system.

Bennett, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an operating system of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an operating system of said computer system),
Apple contends that one of skill in the art would understand the operation of booting a
computer system to include the element that is missing similar to the manner in which
the patentee relied upon such knowledge of skill in the art during prosecution. See
Sections VI. and VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.4, and 1.5 above.

3175

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 13 of 29

3. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program of
said computer system.

Bennett, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program of
said computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Bennett, 1

3176

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 3
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program of said computer system.”

 Page 14 of 29

Bennett, 2

3177

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 15 of 29

4. The method of claim 1, wherein said
decompressed at least a portion of said
boot data comprises program code
associated with an application program
and an operating system of said computer
system.

Bennett, as evidenced by the example
citations below, discloses
“said decompressed at least a portion of
said boot data comprises program code
associated with an application program
and an operating system of said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said decompressed at least a portion of said boot data
comprises program code associated with an application program of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Bennett, 1

3178

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 4
“The method of claim 1, wherein said decompressed at least a portion of said boot data comprises
program code associated with an application program and an operating system of said computer system.”

 Page 16 of 29

Bennett, 2

3179

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 5
“The method of claim 1, wherein said preloading is performed by a
data storage controller connected to said boot device.”

 Page 17 of 29

5. The method of claim 1, wherein said
preloading is performed by a data storage
controller connected to said boot device.

Bennett, as evidenced by the example
citations below, discloses
“said preloading is performed by a data
storage controller connected to said boot
device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said preloading is performed by a data storage
controller connected to said boot device), Apple contends that one of skill in the art
would understand the operation of booting a computer system to include the element that
is missing similar to the manner in which the patentee relied upon such knowledge of
skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

3180

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 6
“The method of claim 1, further comprising updating the list of boot data.”

 Page 18 of 29

6. The method of claim 1, further
comprising updating the list of boot data.

Bennett, as evidenced by the example
citations below, discloses
“updating the list of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, updating the list of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

3181

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 8
“The method of claim 1, wherein Lempel-Ziv encoding is utilized to provide said at least
 a portion of said boot data in said compressed form.”

 Page 19 of 29

8. The method of claim 1, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.

Bennett, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in said compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in said compressed form), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, and 1.4 above.

See also

Bennett, 1

3182

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 9
“The method of claim 1, wherein a plurality of encoders are utilized to provide said at least
a portion of compressed data in compressed form.”

 Page 20 of 29

9. The method of claim 1, wherein a
plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.

Bennett, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of
compressed data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein a plurality of encoders are utilized to provide
said at least a portion of compressed data in compressed form), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

3183

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 11.1
“A system comprising: a processor;”

 Page 21 of 29

11.1. a processor;

Bennett, as evidenced by the example
citations below, discloses
“a processor.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a processor), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Bennett discloses this limitation:

See Claim 1.2 above.

3184

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 11.2
“a memory”

 Page 22 of 29

11.2. a memory; and

Bennett, as evidenced by the example
citations below, discloses
“a memory.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a memory), Apple contends that one of skill in the
art would understand the operation of booting a computer system to include the element
that is missing similar to the manner in which the patentee relied upon such knowledge
of skill in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Bennett discloses this limitation:

See Claims 1.3, and 1.4 above.

3185

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 11.3.1
“a non-volatile memory device for storing logic code associated with the processor, wherein said logic code comprises instructions
executable by the processor for maintaining a list of boot data used for booting the host system, at least a portion of said boot data is
stored in compressed form in said non-volatile memory device”

 Page 23 of 29

11.3.1 a non-volatile memory device for
storing logic code associated with the
processor, wherein said logic code
comprises instructions executable by the
processor for maintaining a list of boot
data used for booting the host system, at
least a portion of said boot data is stored
in compressed form in said non-volatile
memory device,

Bennett, as evidenced by the example
citations below, discloses
“a non-volatile memory device for storing
logic code associated with the processor,
wherein said logic code comprises
instructions executable by the processor
for maintaining a list of boot data used for
booting the host system, at least a portion
of said boot data is stored in compressed
form in said non-volatile memory device.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a non-volatile memory device for storing logic code
associated with the processor, wherein said logic code comprises instructions executable
by the processor for maintaining a list of boot data used for booting the host system, at
least a portion of said boot data is stored in compressed form in said non-volatile memory
device), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, 1.4 above.

3186

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 11.3.2
“said at least a portion of said boot data in compressed form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is decompressed and utilized to boot said computer system”

 Page 24 of 29

11.3.2 said at least a portion of said boot
data in compressed form is preloaded into
said memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system; and,

Bennett, as evidenced by the example
citations below, discloses
“said at least a portion of said boot data in
compressed form is preloaded into said
memory, and said preloaded at least a
portion of boot data in compressed form is
decompressed and utilized to boot said
computer system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded at least a portion of boot data in
compressed form is decompressed and utilized to boot said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.3, 1.4, and 1.5 above.

3187

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 11.4
“a data compression engine for providing said at least a portion of said boot data in compressed form by compressing said at least a
portion of said boot data and decompressing said at least a portion of said boot data in compressed form to provide said decompressed
at least a portion of boot data.”

 Page 25 of 29

11.4 a data compression engine for
providing said at least a portion of said
boot data in compressed form by
compressing said at least a portion of said
boot data and decompressing said at least
a portion of said boot data in compressed
form to provide said decompressed at
least a portion of boot data.

Bennett, as evidenced by the example
citations below, discloses
“a data compression engine for providing
said at least a portion of said boot data in
compressed form by compressing said at
least a portion of said boot data and
decompressing said at least a portion of
said boot data in compressed form to
provide said decompressed at least a
portion of boot data.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a data compression engine for providing said at least
a portion of said boot data in compressed form by compressing said at least a portion of
said boot data and decompressing said at least a portion of said boot data in compressed
form to provide said decompressed at least a portion of boot data), Apple contends that
one of skill in the art would understand the operation of booting a computer system to
include the element that is missing similar to the manner in which the patentee relied
upon such knowledge of skill in the art during prosecution. See Sections VI. and VII. of
Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1 and 1.5 above.

3188

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 12
“The system of claim 11, wherein said logic code further comprises program instructions executable
by said processor for maintaining a list of application data associated with an application program.”

 Page 26 of 29

12. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program.

Bennett, as evidenced by the example
citations below, discloses
“said logic code further comprises
program instructions executable by said
processor for maintaining a list of
application data associated with an
application program.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program), Apple contends that one of skill in the art would
understand the operation of booting a computer system to include the element that is
missing similar to the manner in which the patentee relied upon such knowledge of skill
in the art during prosecution. See Sections VI. and VII. of Apple’s Invalidity
Contentions.

Bennett discloses this limitation:

See Claims 1.1, 3, and 11.3.1 above.

3189

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 13
“The system of claim 11, wherein said logic code further comprises program instructions executable by said processor for maintaining
a list of application data associated with an application program, and wherein said application data is preloaded upon launching the
application program and utilized by said computer system.”

 Page 27 of 29

13. The system of claim 11, wherein said
logic code further comprises program
instructions executable by said processor
for maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.

Bennett, as evidenced by the example
citations below, discloses
“wherein said logic code further
comprises program instructions
executable by said processor for
maintaining a list of application data
associated with an application program,
and wherein said application data is
preloaded upon launching the application
program and utilized by said computer
system.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, wherein said logic code further comprises program
instructions executable by said processor for maintaining a list of application data
associated with an application program, and wherein said application data is preloaded
upon launching the application program and utilized by said computer system), Apple
contends that one of skill in the art would understand the operation of booting a computer
system to include the element that is missing similar to the manner in which the patentee
relied upon such knowledge of skill in the art during prosecution. See Sections VI. and
VII. of Apple’s Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1.1, 1.3, 3, 5 and 11.3.1 and 11.3.2 above.

3190

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 15
“The system of claim 11, wherein Lempel-Ziv encoding is utilized to provide
said at least a portion of said boot data in compressed form.”

 Page 28 of 29

15. The system of claim 11, wherein
Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.

Bennett, as evidenced by the example
citations below, discloses
“Lempel-Ziv encoding is utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, Lempel-Ziv encoding is utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Bennett discloses this limitation:

See Claims 1, 8, and 11 above.

3191

Appendix B26
Invalidity of U.S. Patent 8,090,936 based on Bennett

	

Bennett Claim 16
“The system of claim 11, wherein a plurality of encoders are utilized to provide said
at least a portion of said boot data in compressed form.

 Page 29 of 29

16. The system of claim 11, wherein a
plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.

Bennett, as evidenced by the example
citations below, discloses
“a plurality of encoders are utilized to
provide said at least a portion of said boot
data in compressed form.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, a plurality of encoders are utilized to provide said at
least a portion of said boot data in compressed form), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

3192

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows
 Page 1 of 26

The publication Michael Burrows, Charles Jerian, Butler Lampson and Timothy Mann,
On-line data compression in a log-structured file system. (“Burrows”) invalidates claims
1-6, 8-9, 11-13, and 15-16 of United States Patent No. 8,090,936 (“the ’936 Patent”)
pursuant to 35 U.S.C. § 102 and/or 35 U.S.C. § 103 either alone or in combination with
other prior art references, and/or in combination with the knowledge of a person of ordinary
skill.

The analysis provided in this chart may in some instances uses Realtime’s proposed (or
implied) claim constructions, and Apple reserves all rights to challenge these proposed (or
implied) constructions. To the extent any of the charted prior art should fail to disclose an
element of any claims of the ’936 Patent, Apple reserves the right to rely upon the
knowledge of one skilled in the art, or any other disclosed prior art, alone or in combination,
whether produced by Apple or by Realtime, to show the element and thereby invalidate
those claims. Citations given in the chart below are merely representative of the respective
elements and are not meant to be exhaustive.

3193

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.1
“maintaining a list of boot data used for booting a computer system, wherein at least a portion of said boot data is compressed by a
data compression engine to provide said at least a portion of said boot data in compressed form, and stored in compressed form on a

boot device;” Page 2 of 26

1.1 maintaining a list of boot data used
for booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;

Burrows, as evidenced by the exemplary
citations below, discloses
“maintaining a list of boot data used for
booting a computer system, wherein at
least a portion of said boot data is
compressed by a data compression engine
to provide said at least a portion of said
boot data in compressed form, and stored
in compressed form on a boot device;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, maintaining a list of boot data used for booting a
computer system, wherein at least a portion of said boot data is compressed by a data
compression engine to provide said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Burrows discloses this limitation:

“We have incorporated on-line data compression into the low levels of a
log-structured file system (Rosenblum’s Sprite LFS). Each block of data
or meta-data is compressed as it is written to the disk and decompressed
as it is read.”

Burrows, Abstract.

“The module that reads a disk block given its logical address needs a way
to find the physical address of the compressed bytes. We keep a logical
block map for each segment, which is simply an array indexed by
compression block number, whose entries are the physical byte addresses
of the blocks relative to the start of the segment. The block map is
constructed in memory as the segment is being compressed, and written
to the end of the segment when the segment is full. The maps are needed
for all file reads, so they are cached in memory whenever possible.”

Burrows, 5.

3194

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.2
“initializing a central processing unit of said computer system;”

 Page 3 of 26

1.2 initializing a central processing unit of
said computer system;

Burrows, as evidenced by the example
citations below, discloses
“initializing a central processing unit of
said computer system;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, initializing a central processing unit of said computer
system), Apple contends that one of skill in the art would understand the operation of
booting a computer system to include the element that is missing similar to the manner
in which the patentee relied upon such knowledge of skill in the art during prosecution.
See Sections VI. and VII. of Apple’s Invalidity Contentions.

3195

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 4 of 26

1.3 preloading said at least a portion of
said boot data in compressed form from
said boot device to a memory;

Burrows, as evidenced by the example
citations below, discloses
“preloading said at least a portion of said
boot data in compressed form from said
boot device to a memory;”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, preloading said at least a portion of said boot data in
compressed form from said boot device to a memory), Apple contends that one of skill
in the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Burrows discloses this limitation:

“We have incorporated on-line data compression into the low levels of a
log-structured file system (Rosenblum’s Sprite LFS). Each block of data
or meta-data is compressed as it is written to the disk and decompressed
as it is read.”

Burrows, Abstract.

“The module that reads a disk block given its logical address needs a way
to find the physical address of the compressed bytes. We keep a logical
block map for each segment, which is simply an array indexed by
compression block number, whose entries are the physical byte addresses
of the blocks relative to the start of the segment. The block map is
constructed in memory as the segment is being compressed, and written
to the end of the segment when the segment is full. The maps are needed
for all file reads, so they are cached in memory whenever possible.”

Burrows, 5.

“Unfortunately, this procedure reads and decompresses a full
compression block even if the caller wanted only some smaller unit, such
as a file system block or a physical sector. We alleviate this problem by
caching the entire decompressed block in memory, rather than just
caching the requested sectors. The data could be placed in the file system
buffer cache, but for simplicity in our prototype, we cached the last
decompressed block within the read routine. Sprite LFS reads files
sequentially in 4 KByte units, so this simple caching strategy typically
achieves three hits for each 16 KByte compression block when reading
large files.

3196

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.3
“preloading said at least a portion of said boot data in compressed form from said boot device to a

memory; Page 5 of 26

When the file system is reading non-sequentially, the additional time to
read a full compression block cannot be hidden by caching. Fortunately,
this time is small compared to the rotational latency. The time needed to
decompress the full block in software is several milliseconds; it would be
much smaller if decompression were implemented in hardware.”

Burrows, 6.

3197

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 6 of 26

1.4 accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and

Burrows, as evidenced by the example
citations below, discloses
“accessing and decompressing said at
least a portion of said boot data in said
compressed form from said memory; and”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example,	accessing and decompressing said at least a portion
of said boot data in said compressed form from said memory), Apple contends that one
of skill in the art would understand the operation of booting a computer system to include
the element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Burrows discloses this limitation:

“We have incorporated on-line data compression into the low levels of a
log-structured file system (Rosenblum’s Sprite LFS). Each block of data
or meta-data is compressed as it is written to the disk and decompressed
as it is read.”

Burrows, Abstract.

“The module that reads a disk block given its logical address needs a way
to find the physical address of the compressed bytes. We keep a logical
block map for each segment, which is simply an array indexed by
compression block number, whose entries are the physical byte addresses
of the blocks relative to the start of the segment. The block map is
constructed in memory as the segment is being compressed, and written
to the end of the segment when the segment is full. The maps are needed
for all file reads, so they are cached in memory whenever possible.”

Burrows, 5.

“The procedure for finding the compressed data associated with a logical
address is as follows:

1. Extract the segment number from the logical address. Use it to
find the logical block map for the segment.

2. Extract the compression block number from the address. Use it
to index the logical block map. This yields the physical byte offset
of the compressed data within the segment.

3. Examine the next entry in the map, to find the start of the next
block. This determines how much data should be read from the

3198

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.4
“accessing and decompressing said at least a portion of said boot data in said compressed form from said memory; and”

 Page 7 of 26

disk.

4. Read the compressed data from the disk and decompress it.

5. Extract the sector number from the logical address. Use it to
identify the desired sector within the decompressed block.”

Burrows, 5-6.

“Unfortunately, this procedure reads and decompresses a full
compression block even if the caller wanted only some smaller unit, such
as a file system block or a physical sector. We alleviate this problem by
caching the entire decompressed block in memory, rather than just
caching the requested sectors. The data could be placed in the file system
buffer cache, but for simplicity in our prototype, we cached the last
decompressed block within the read routine. Sprite LFS reads files
sequentially in 4 KByte units, so this simple caching strategy typically
achieves three hits for each 16 KByte compression block when reading
large files.

When the file system is reading non-sequentially, the additional time to
read a full compression block cannot be hidden by caching. Fortunately,
this time is small compared to the rotational latency. The time needed to
decompress the full block in software is several milliseconds; it would be
much smaller if decompression were implemented in hardware.”

Burrows, 6.

3199

Appendix B27
Invalidity of U.S. Patent 8,090,936 based on Burrows

	

Burrows Claim 1.5
“utilizing said decompressed at least a portion of said boot data to boot said computer system, wherein said at least a portion of said
boot data is decompressed by said data compression engine.”

 Page 8 of 26

1.5 utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.

Burrows, as evidenced by the example
citations below, discloses
“utilizing said decompressed at least a
portion of said boot data to boot said
computer system, wherein said at least a
portion of said boot data is decompressed
by said data compression engine.”

To the extent that Realtime contends this reference does not explicitly disclose this
element of this claim (for example, utilizing said decompressed at least a portion of said
boot data to boot said computer system, wherein said at least a portion of said boot data
is decompressed by said data compression engine), Apple contends that one of skill in
the art would understand the operation of booting a computer system to include the
element that is missing similar to the manner in which the patentee relied upon such
knowledge of skill in the art during prosecution. See Sections VI. and VII. of Apple’s
Invalidity Contentions.

Burrows discloses this limitation:

“We have incorporated on-line data compression into the low levels of a
log-structured file system (Rosenblum’s Sprite LFS). Each block of data
or meta-data is compressed as it is written to the disk and decompressed
as it is read.”

Burrows, Abstract.

“The procedure for finding the compressed data associated with a logical
address is as follows:

1. Extract the segment number from the logical address. Use it to
find the logical block map for the segment.

2. Extract the compression block number from the address. Use it
to index the logical block map. This yields the physical byte offset
of the compressed data within the segment.

3. Examine the next entry in the map, to find the start of the next
block. This determines how much data should be read from the
disk.

4. Read the compressed data from the disk and decompress it.

5. Extract the sector number from the logical address. Use it to
identify the desired sector within the decompressed block.”

3200

	a A.pdf
	A34 - Mealey v 608
	A35 - Menon v 608
	A36 - Rubini v 608
	A37 - Wynn v 608
	A38 - Linux Kernel v 608

	a B.pdf
	B1 - Esfahani v 936
	B2 - Lillich v 936
	B3 - Ballard v 936
	B4 - Feigenbaum v 936
	B5 - Greene v 936
	B6 - Hillis v 936
	B7 - Horning v 936
	B8 - Hovis v 936
	B9 - Ingvar v 936
	B10 - Kikinis v 936
	B11 - Krocker v 936
	B12 - Lee v 936
	B13 - Makinen v 936
	B14 - Noll v 936
	B15 - Pearce v 936
	B16 - Rahman v 936
	B17 - Settsu v 936
	B18 - Shinjo v 936
	B19 - Shipman v 936
	B20 - Sukegawa v 936
	B21 - Surine v 936
	B22 - Teoman v 936
	B23 - Vers v 936
	B24 - Zwiegincew v 936
	B25 - Anyimi v 936
	B26 - Bennett v 936
	B27 - Burrows v 936
	B28 - Cheng v 936
	B29 - Craft v 936
	B30 - Douglis v 936
	B31 - Grove v 936
	B32 - Jones v 936
	B33 - Magstar v 936
	B34 - Mealey v 936
	B35 - Menon v 936
	B36 - Rubini v 936
	B37 - Wynn v 936
	B38 - Linux Kernel v 936

