
1 Apple v. Realtime
Proceeding No. IPR2016-01738

APPLE 1038

(12) United States Patent
Zwiegincew et al.

U8006633968B2

(10) Patent N0.: US 6,633,968 B2

(45) Date of Patent: Oct. 14, 2003

(54) PRE-FETCHING OF PAGES PRIOR TO A
HARD PAGE FAULT SEQUENCE

(75) Inventors: Arthur Zwiegincew, Kirkland, WA
(US), James E. Walsh, Kirkland, WA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 416 days.

(21) Appl. N0.: 09/794,851

(22) Filed: Feb. 27, 2001

(65) Prior Publication Data

US 2002/0019723 A1 Feb. 14, 2002

Related U.S. Application Data

('63) Continuation—in—part of application No. 09/282,499, filed on
Mar. 30, 1999, now Pat. No. 6,317,818.

('51) Int. Cl.7 G06F 12/00
(52) U.S. Cl. 711/213
(58) Field of Search 711/203, 204,

711/209, 213, 217, 221; 712/207

(56) References Cited
U.S. PATENT DOCUMENTS

5,150,472 A * 9/1992 Blank et al. 711/137
5,694,568 A 12/1997 Harrison, III et al.
5,925,100 A 7/1999 Drewry et al.
6,047,363 A 4/2000 Lewchuk

OTHER PUBLICATIONS

An efirective onwhip preloading scheme to reduce data
access penalty; Jean—Loup Baer and Tien—Fu Chen; Pro-
ceedings of the 1991 conference on Supercomputing, 1991,
pp. 176—186.

Optimal prepaging and font caching; David R. Fuchs and
Donald E. Knuth; ACM Trans. Program. Lang. Syst. 7, 1
(Jan. 1985), pp. 62—79.
An architecture for softwarewontrolled data prefetching;
Alexander C. Klaiber and Henry M. Levy; Proceedings of
the 18m annual international symposium on Computer
architecture, 1991, pp. 43—53.
An eflective programmable prefetch engine for on—chip
caches; Tien—Fu Chen; Proceedings of the 28m annual
international symposium on ,Microarchitecture, 1995, pp.
237—242.

(List continued on next page.)

Primary Examiner—Kevin Verbrugge
(74) Attorney, Agent, or Firm—Merchant & Gould

(57) ABSTRACT

Arnethod for pre-fetching of pages prior to a hard page fault
sequence is described. A scenario file comprising a list of
pages that need to be pre-fetched may be created. A scenario
that requires pre-fetching may be automatically detected
when process creation begins (such as at application startup
or system boot). The scenario begins and it is determined
whether or not a scenario file exists for the scenario. If not,
the process continues (for example, the application is started
up and run, the system is booted, etc.). If a scenario file does
exist, the pages in the scenario file are pre-fetched to RAM.
The process continues (application is started up and run, the
system is booted, etc.). Pages that are used by the application
are logged into a scenario log. The scenario log is also used
to log page faults. An end scenario timer is started and it is
determined whether a page fault (soft or hard) has been
detected. Page faults are logged into memory (the scenario
log) and the end scenario timer is reset each time a new page
fault is encountered. If the end scenario timer has reached a

predetermined threshold, the scenario ends and a work item
is queued to post-process the scenario log and scenario file
during idle time. The scenario file and scenario log are
processed and an updated scenario file is written out to the
disk space.

19 Claims, 5 Drawing Sheets

1 Apple v. Realtime
Proceeding No. |PR2016-01738

APPLE 1038

2

US 6,633,968 132
Page 2

OTHER PUBLICATIONS

Modelling contention sensing memory management sys-
tems—A VAX/VMS case study; C.P. Singer and P. Biswas;
Mathematical and Computer Modelling, 1990, v.14, pp.
184—189.

Distributed, configurable memory management in an oper-
ating system supporting quality of service; I. McDonald;
Proceedings of the 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, 1999, pp. 191—196.

On minimizing the number of page faults with complete

information; T.F. Gonzales; 10th IMACS World Congress on
System Simulation and Scientific Computation , 1982, pp.
279—281, vol. 4.

How to pack trees; J. Gil and A. Itai; Journal ofA lgorithms,

1999, V.32, N2 (AUG) pp. 108—132.

* cited by examiner

3

US 6,633,968 B2

Ezano908mm

5f01

tBr
6m

S50362moi603
m024a1LCO

US. Patent

$5822322EEmoEE936EEmoicosmeaad.EmemmcmEEoEmE9:930

w?umw
3:22I

EmogoxN:.-

3:622Emaoicosmozqa<

momtBEmothEmomth.ton.m>:n_xmfi025x20fitmw$26026822
momtmg$25meEmI

mumtwt:

{02:02wmr 0:MN?9352Emhmoi
EmemmcmS.\COEmE

mam.E296mm?5334‘EDmmr899mmCEmEQO

______._____u

"O®E>mewmuEQ
___________.____

 mNr5.6.x

w:FNF

©NrmO_m_NNrVNr‘\1 EDM—>._oEws_Emuw>w

4

US. Patent Oct. 14, 2003 Sheet 2 0f 5 US 6,633,968 B2

I “\ 250

7 Page Fault Scenario “ 7I Detector

”xx-7 205

!_l ,, I

Application Program
Module

Ax 210
T fiFault Logger

 Memory Management Unit

I
Disk Drive i

(7,!“

JL H I,

FIG. 2

, “or 255l l,
, Y

7.7
, Pre-Fetcher

,/ K 240 ‘

7 7 t ,, l 245
3 Scenario //

W Page Fault Scenarlo FIIe 777/ I
Analyzer

a 7’ 1 :3
l

Page FaultLog l

4 270
[VI/Rx 230V,

Disk Storage

I

4 Scenario File
Defragger

Compressor/

Decompressor J

5

US. Patent Oct. 14, 2003 Sheet 3 0f5 US 6,633,968 B2

300

/'fl \\
\, 301

/I

t Start
l

_\7“- ”//

__.__Liw , 302
Monitor Application

Program Module for Page .7,, ,7
Fault Scenarios

[V —_ 304 310

Detect Page Fault l FCreate ScenarioFileScenario

/ \,

/ _ 306 308
//,,

/ . .\
/" Scenario File \

Analyze Page
Fault Scenario

,
\ Exists?\

312

Open Scenario File in Pre-
Fetcher

if,

#47 , 314

Allocate Memory Space in RAM
for Copies of Memory Pages in

Sequence File

ff; ”l 316
Transfer Copies of Memory

Pages into RAM

#ii 7 318

Set Up Page Table Entries to .
Reflect New Memory Page in

RAM

FIG. 3

6

US. Patent Oct. 14, 2003 Sheet 4 0f5 US 6,633,968 B2

400

Detect Application Startup i

i
,/ \, 410/' _\/

,x/Scenario File\\ N0

_,_t\\ Exists? ,/]

f 7, 415

Prefetch pages in scenario fiie‘
,,

,’Yf, , 420 i

Run appiication

,J

1 , 425

Start end scenario timerk #7 Reset end scenariotimer

,, 430 ‘/ \
/ i

/§eceived pag\e‘\ Yes ‘ Log page fault into*1, . 2* Hr» }

‘ \fauit Interrupt?/ memory
\~ ,/

440

'< 435

\
x /
\\‘ /./

gNo
/,u’l \\\\

K] ' d \3‘45
No/ eceive _en \\\
4(\ scenario ,2\ ' '7 /

\interrupt . /"_ x//

\/

#55J450
End scenario; queue work item

to post-process scenario file
and scenario log

4"
, Post-process the scenario file

I and scenario log

455

L;
i , . 460Write out new scenario

file

FIG. 4

7

US. Patent Oct. 14, 2003 Sheet 5 0f5 US 6,633,968 B2

/, (505/
/

v’

,, , , 3 ,, ,, ,‘ ,, ,, , 1 ,

Needed/1 Not lNileOdn'fd’ Not Not Nifn‘id’ lNilejid’}Needed/”:95?” Needed/ Needed! Nizdned/ ”mined, Not ”if?“‘ l l - , l . - _ _

ReSldent Needed Resndent Needed ‘ Needed ‘ReSldent Resident Resudent‘Resident‘ReSIdent Resudent Resident Resldent needec ‘Resident
i '7 7 be; a l ' ' lg A; 'l‘ ,7 l l ‘l l A l l l l ,, ll ‘ 7" "7,, r“ I, ,r

l .L
‘ ‘ J , l l

, \ ‘ l

ll ,«7 7 ,._ 7 77g“. “L7 , ,4“

y , , , v ,, ,, , , v, , v v ‘

Allocated ‘ Allocated 1 Allocated Allocated Allocated Allocated Allocated 1 ‘ Pree Pree , Pre- Pre- lby Pre- by Pre— by Pre» ‘ by Pre- by Pre- by Pre- l by Pre- ‘ Dummy l t' E . t' E . t' E . t‘
fetcher fetcher fetcher ‘ fetcher ‘ fetcher l fetcher ‘ fetcher Ex‘smg‘ X's mg “5mg X'smg

A

FIG. 5

8

US 6,633,968 B2

1
PRE-FETCHING OF PAGES PRIOR TO A

HARD PAGE FAULT SEQUENCE

REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of US. patent application
Ser. No. 09/282,499, entitled “PRE-FETCHING OF PAGES
PRIOR TO A HARD PAGE FAULT SEQUENCE”, filed
Mar. 30, 1999, now US. Pat. No. 6,317,818, which is
incorporated by reference herein.

TECHNICAL FIELD

This invention relates in general to the management of
pages for improved performance of an application program
module during hard page fault intensive scenarios. More
particularly, the present invention relates to the reduction of
hard page faults by pre-fetching pages into memory prior to
the occurrence of a hard page fault sequence.

BACKGROUND

In a computer system, physical memory refers to a
hardware device that is capable of storing information. In
common usage, physical memory refers to semiconductor
storage (RAM) that is connected to the processing unit of the
computer system. Many modem processing units and oper-
ating systems also support virtual memory. Virtual memory
is a technique that allows smaller and/or partially simulated
memory devices to be represented as a large uniform pri-
mary memory source. In operation, application program
modules access memory through virtual addresses, which
are then mapped by the operating system in conjunction with
a memory management unit (MMU) onto physical memory
addresses.

In the context of a paging memory system, a “page” is
defined as a fixed-size block of bytes whose physical address
can be changed via the MMU, working in conjunction with
a Virtual Memory Manager. Apage is either mapped onto a
physical address or is not present in RAM, in which case it
is stored on a disk storage in a page file. A “hard page fault”
is an exception that occurs when an application program
module attempts to access a virtual memory page that is
marked as being not present in RAM. When a hard page
fault occurs, the Virtual Memory Manager must access disk
storage to retrieve the data for the requested page.

Application program modules are typically disk-bound. In
other words, disk access and transfer times are limiting
factors of the performance speed of an application program
module. Disk access time refers to the time required by a
disk drive to access disk storage and respond to a request for
a data read or write operation. Therefore, the performance of
an application program module is significantly limited dur-
ing hard page fault intensive scenarios.

There are various potential solutions to the performance
bottleneck caused by disk access time during hard page fault
scenarios. An obvious potential solution is to reduce disk
access time. The reduction of disk access time is primarily
a hardware consideration and is not easily accomplished.
However, other potential solutions involve the manipulation
of memory storage through software program modules.

For example, one prior solution involves manipulating
pages such that related blocks of memory are stored together
on the same or an adjacent page. More specifically, appli-
cation program module code is typically stored in pages in
the order in which a compiler processed the source code, not
in the order in which it will be executed. Therefore, when a
page is accessed by an application program module, it is

10

15

25

30

35

40

45

50

55

60

65

2

likely that only a portion of the requested code is stored
thereon and one or more hard page faults will occur to
retrieve additional requested code from other pages.
Manipulating the pages so that related code is stored on the
same or adjacent pages reduces the number of pages
required to execute the code and thus reduces hard page
faults. Implementing this approach requires an extra per-
application eifort. Also, it is not always possible to manipu-
late code in pages in an efficient manner.

Another prior solution involves strategically ordering
pages in disk storage. According to this prior solution, the
order in which pages will likely be accessed during typical
usage of an application program is determined based on the
assumption that disk access patterns are similar from run to
run. Then, pages are stored in disk storage in the determined
order. A strategic ordering of pages will result in a reduction
of hard page fault times. However, this approach is some-
what limited by the fact pages may be accessed more than
once by an application program. Therefore, additional hard
page faults may occur when a particular page must be
re-retrieved from disk storage. Strategically ordering pages
in disk storage tends to work best when it is employed to
reduce hard page faults in a single hard page fault scenario,
typically boot.

Another prior technique to reduce the performance bottle-
neck caused by disk access time during hard page fault
scenarios involves decreasing the amount of pages associ—
ated with an application program module. Reducing the
number of pages containing code executed by an application
program module necessarily reduces the number of hard
page faults that may possibly occur during execution of the
application program module. However, the reduction of
memory associated with an application program module
requires significant effort on the part of the programmer, or
improvements in compiler technologies, to streamline the
application program module. Also, end-users demand appli-
cation program modules having extremely robust function-
ality and complex graphics capabilities. Thus, it is becoming
increasingly more difficult to streamline application pro-
gram modules while meeting market demands.

Thus, there remains a need for a method and system for
improving the performance of an application program mod—
ule by reducing disk access time without burdening the
programmer.

There further remains a need in the art for a method and

system for reducing hard page faults during execution of an
application program module without detracting from the
robustness of the application program module.

SUMMARY OF THE INVENTION

The present invention meets the needs described above by
providing a system and method for improving the perfor-
mance of an application program module by reducing the
occurrence of hard page faults during the operation of an
application program module. The present invention may be
embodied in an add-on software program module that oper-
ates m conjunction with the application program module. In
this manner, no effort is required on the part of the appli-
cation programmer to manipulate or modify the application
program module in order to improve performance.
Furthermore, the add-on software program module does not
detract from the intended operation of the application pro-
gram module.

In one aspect, the present invention is a method for
avoiding hard page faults during the booting of an operating
system of a computer system. Prior to booting the operating

9

US 6,633,968 B2

3

system, it is determined which pages will need to be
retrieved from disk. When the operating system needs to be
booted, the determined pages are loaded into a RAM of the
computer system, whereby the determined pages will be
available in the RAM and hard pages faults will not occur
during the booting of the operating system. The step of
determining which pages will be retrieved from disk may
include creating a log of hard page faults that occur during
the booting of the operating system, analyzing the log to find
a common hard page fault scenario for booting the operating
system, and determining from the log which pages were
retrieved from disk during the common hard page fault
scenario. A copy of each of the determined pages may be
stored in a scenario file. Alternatively, a reference for each
of the determined pages may be stored in a referenced
scenario file.

As described above, the scenario file may be a referenced
scenario file including a number of page references wherein
each page reference includes a reference to section infor-
mation (file name and whether the file is mapped as data or '
as an image) and a file offset for the referenced page.
Alternatively, each page reference may include a physical
disk sector for the page. The section information table that
the page references refer to, is also stored in the scenario file.

In yet another aspect, the invention is a method for
automatically detecting a hard page fault scenario. The
start—up of an application program module is detected and
the hard page fault scenario begins. It is determined if a
scenario file exists. If not, then the application program
module is run and a scenario file is created. If a scenario file

already exists, then the pages in the scenario file are fetched
into RAM and the application program module is run. When
the application begins to run, an end scenario timer is started
and soft page faults and hard page faults are logged. Each
time a page fault is logged, the end scenario timer is reset.
If the time period between two page faults is such that the
end scenario timer reaches a predetermined threshold, then
the hard page fault scenario is ended.

A queue may generate a work item to post—process the
scenario file and scenario log. During idle time, the scenario
file and scenario log may be post-processed. A scenario file
may then be written to the disk space.

As part of post-processing the scenario file and scenario
log, it may be determined which pages are part of the
scenario log and not already in the scenario file. These pages
are added to the scenario file. Scenario file entries corre-

sponding to pages that were used during the scenario are
updated to indicate that the page was used by the scenario.
Scenario file entries for pages that have not been used for a
predetermined number of times are deleted from the sce-
nario file. The scenario file entries may then be sorted
according to the section ID and file offset of each page
represented by each scenario file entry.

In another aspect, the invention is a method for detecting
a hard page fault scenario. The start-up of an application
program module is detected and it is determined whether a
scenario file exists. If a scenario file exists, then the pages in
the scenario file are pre-fetched into RAM and the applica-
tion program module is run. Any soft page faults or hard
page faults are logged into memory. The hard page fault
scenario may end when a Win32 hourglass cursor is replaced
with a regular cursor.

In still another aspect, the invention is a method for
building a plurality of memory descriptor lists (MDLs) for
mapping to physical memory a plurality of pages referenced
in a scenario file. It is determined whether each page

10

15

25

30

35

40

45

50

55

60

65

4

referenced in the scenario file is already resident in physical
memory and, if so, then these pages are discarded from
consideration. For all pages not resident in physical memory,
it is determined whether the file offsets for each pair of
consecutive pages is below a predetermined level and if so,
then the pages are put into the MDL. If the pages are not
consecutive, the gap between the pages is plugged by
inserting a required number of dummy pages into the MDL.

These and other aspects, features and advantages of the
present invention may be more clearly understood and
appreciated from a review of the following detailed descrip-
tion of the disclosed embodiments and by reference to the
appended drawings and claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of a personal computer illus-
trating an operating environment for an exemplary embodi-
ment of the present invention.

FIG. 2 is a functional block diagram illustrating operation
of an exemplary embodiment of the present invention.

FIG. 3 is a flow diagram illustrating operation of an
exemplary embodiment of the present invention.

FIG. 4 is a flow diagram illustrating a method for auto-
matic scenario detection in accordance with an embodiment

of the present invention.
FIG. 5 is a diagram illustrating a plurality of memory

pages being mapped to physical memory in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The present invention is directed to a system and method
for managing pages in order to improve the performance of
an application program module or an operating system
during hard page fault scenarios. The present invention is
operable to detect and analyze a potential hard page fault
scenario. In analyzing the potential hard page fault scenario,
the present invention determines which pages will have to be
retrieved from disk upon the occurrence of a hard page fault
sequence. Then, prior to the occurrence of the potential hard
page fault sequence, the present invention pre-fetches into
RAM most, if not all, of the determined pages. Accordingly,
no hard page fault will occur when the application program
module or operating system attempts to access the deter-
mined pages. Thus, the performance speed of the application
program module or operating system is improved due to
fewer disk seeks. Those skilled in the art should appreciate
that the definition of a hard page fault scenario is arbitrary,
i.e., a single lengthy scenario could be ‘split’ into multiple
smaller scenarios. Thus, pages may be pre-fetched in
segments, one segment per ‘smaller’ scenario, resulting in a
spreading out of the demand for a single large amount of
memory in which to read the prefetched pages.

A hard page fault occurs when a page requested by the
application program or operating system is not available in
RAM. The order in which pages are likely to be requested
in a particular hard page fault scenario is determined. A
referenced scenario file is created to store a list of the

determined pages. A pre-fetcher is used to load an appro-
priate scenario file into RAM prior to the occurrence of a
particular hard page fault sequence. Then, during the par-
ticular hard page fault scenario, the requested pages will be
found on the hard disk and passed into RAM before a hard
page fault occurs.

Exemplary Operating Environment

The following description will hereinafter refer to the
drawings, in which like numerals indicate like elements

10

US 6,633,968 B2

5

throughout the several figures. FIG. 1 and the following
discussion are intended to provide a brief and general
description of a suitable computing environment 100 for
implementation of the present invention. The exemplary
operating environment 100 includes a conventional personal
computer system 120, including a processing unit 121, a
system memory 122, and a system bus 123 that couples the
system memory 122 to the processing unit 121. The system
memory 122 includes read only memory (ROM) 124 and
random access memory (RAM) 125. A basic input/output
system 126 (BIOS), containing the basic routines that help
to transfer information between elements within the personal
computer system 120, such as during start-up, is stored in
ROM 124.

The personal computer system 120 further includes a hard
disk drive 127, a floppy disk drive 128, e.g., to read from or
write to a removable magnetic disk 129, and an optical disk
drive 130, e.g., for reading a CD-ROM disk 131 or to read
from or write to other optical media. The hard disk drive
127, removable magnetic disk drive 128, and optical disk .
drive 130 are connected to the system bus 123 by a hard disk
drive interface 132, a removable magnetic disk drive inter-
face 133, and an optical drive interface 134, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage for the personal computer sys-
tem 120. Although the description of computer-readable
mcdia abovc refers to a hard disk, a removable magnetic
disk and a CD-ROM disk, it should be appreciated by those
skilled in the art that other types of media that are readable
by a computer system, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, and
the like, may also be used in the exemplary operating
environment.

The computer system 120 may include additional input
devices (not shown), such as a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 121
through a serial port interface 146 that is coupled to the
system bus 123, but may be connected by other interfaces,
such as an IEEE 1394 bus or a universal serial bus (USB).
A monitor 147 or other type of display device is also
connected to the system bus 123 via an interface, such as a
video adapter 148. In addition to the monitor, personal
computer systems typically include other peripheral output
devices (not shown), such as speakers or printers.

The personal computer system 120 may operate in a
networked environment using logical connections to one or
more remote computer systems, such as a remote computer
system 149. The remote computer system 149 may be a
server, a router, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the personal computer system 120,
although only a memory storage device 150 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 151 and a wide
area network (WAN) 152. Such networking environments
are commonplace in oflices, enterprise-wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the per-
sonal computer system 120 is connected to the LAN 151
through a network interface 153. When used in a WAN
networking environment, the personal computer system 120
typically includes a modem 154 or other means for estab-
lishing communications over a WAN 152, such as the
Internet. The modem 154, which may be internal or external,
is connected to the system bus 123 Via the serial port
interface 146. In a networked environment, program mod-

10

15

25

30

35

40

45

50

55

60

65

10

6

ules depicted relative to the personal computer system 120,
or portions thereof, may be stored in the remote memory
storage device 150. It will be appreciated that the network
connections shown are exemplary and other me ans of estab-
lishing a communications link between the computer sys-
tems may be used. It will be further appreciated that the
invention could equivalently be implemented on host or
server computer systems other than personal computer
systems, and could equivalently be transmitted to the host
computer system by means other than a CD-ROM, for
example, by way of the network connection interface 153.

Anumber of program modules may be stored in the drives
and RAM 125 of the computer system 120. Program mod-
ules control how the computer system 120 functions and
interacts with the user, with I/O devices or with other
computers. Program modules comprise routines, data struc-
tures and other software or firmware components. Examples
of program modules are operating systems 135 and appli-
cation program modules 138. In an exemplary embodiment,
the present invention may comprise one or more memory
management program modules 137 stored on the drives or
RAM 125 of the computer 100. Specifically, program mod-
ules 137 of the present invention may comprise computer
implemented instructions for determining which pages will
have to be retrieved from disk during a potential hard page
fault scenario and pre-fetching the determined pages into
RAM prior to the occurrence of the potential hard page fault
sequence.

Those skilled in the art will appreciate that the invention
may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the
like. The invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

FIG. 2 is a functional block diagram illustrating operation
of an exemplary embodiment of the present invention. As
shown, an application program module 205 interacts with a
virtual memory device 210 to access data stored in pages. It
should be understood that the application program module
205 may instead be an operating system.

The virtual memory device 210 communicates with a
memory management unit (MMU) 215, which maps virtual
memory addresses onto physical memory addresses in the
RAM 220 of the computer system. The MMU, which is a
well known device, maintains a record of pages present in
the RAM 220. An MMU includes a lookaside cache;
requests for pages not recorded by the MMU are redirected
to a VMM (not shown). When the requested pages are not
present in the RAM 220, they must be retrieved from disk
storage 230. In such a situation, the VMM instructs a disk
drive 225 to transfer the requested pages into the RAM 220.
Typically, the requested pages are swapped with less used
pages in the RAM 220. Accordingly, the least recently used
pages are stored on the disk storage 230 and the VMM
updates its records to reflect the new pages in the RAM 220.
Swapping is a memory management technique that is well
known in the art. Those skilled in the art will appreciate that
the above description of memory management has been
provided by way of example only and that other algorithms
may be, and often are, employed.

A hard page fault scenario analyzer 240 anticipates and
analyzes hard page fault scenarios. As mentioned, a hard

11

US 6,633,968 B2

7

page fault scenario is a situation in which a hard page fault
sequence is highly likely to occur. The hard page fault
scenario analyzer logs various hard page fault scenarios that
occur during operation of the application program module
205. The logged hard page fault scenarios are then analyzed
to determine if they re-occur frequently, and if they do, they
are put in a scenario file. This analysis can occur program-
matically on the end-user’s computer system, or in advance
by the developer of a particular software product. As an
example, suppose the application program module 205 is a
word processor and that an anticipated hard page fault
scenario is the situation in which the user selects a well

known “file open” command. In response to the “file open”
command, the application program will display a graphical
representation of a file directory. However, in order to
display the graphical representation of the file directory, a
sequence of hard page faults will occur because the word
processor must retrieve a particular set of pages from disk.
In accordance with an exemplary embodiment of the present
invention, the hard page fault scenario analyzer 240 antici- ,
pates the “open file” hard page fault scenario of the example
and determines the set of pages that will need to be retrieved
from disk upon the occurrence of the hard page fault. The
determination of pages that will need to be retrieved from
disk will be described in greater detail below. The detection
of particular classes of hard page fault scenarios may be built
into the system. For example, application launch is virtually
always a hard page fault scenario, so an exemplary embodi-
ment of the present invention may be configured such that
any launch operation of an application program will be
considered to be a hard page fault scenario.

Based on the determined pages, the hard page fault
scenario analyzer 240 creates a scenario file 245, which is
stored in the disk storage 230. The scenario file 245 may
comprise ordered copies of the pages that will likely be
retrieved from disk due to one or more hard page faults
during the hard page fault scenario. The scenario file 245
may comprise multiple copies of a single page. Similarly,
multiple scenario files may include copies of the same pages.
In this manner, the copies of the pages may be transferred
into RAM 220 from the scenario file 245 in the appropriate
order without the occurrence of a hard page fault. The
transfer of the copies of pages into RAM is discussed below.

In one embodiment of the present invention, the scenario
file 245 may be a referenced scenario file comprising
ordered references to the pages that are likely to be retrieved
from disk storage 230 during a hard page fault scenario,
rather than copies of the actual pages themselves. In
response to the detection of a begin-of—scenario instruction
or a hard page fault scenario, the pages referenced in the
scenario file are fetched from disk storage in the optimal
manner and are transferred into RAM. In this manner, the
requested pages will be available in RAM when requested,
and no hard page fault will occur. This exemplary embodi-
ment of the invention will result in more seek operations on
disk, but will still allow reading of the required pages in an
optimal manner, rather than the ‘as needed” ordering if the
pages are hard faulted into RAM. As compared to a scenario
file 245 comprising ordered copies of the determined pages,
a scenario file comprising references to the determined
pages reduces disk space requirements.

The hard page fault scenario analyzer 240 may comprise
functionality for automatically analyzing hard page fault
scenarios and generating corresponding sccnario filcs. By
way of illustration, the hard page fault analyzer 240 may log
hard page faults that occur upon execution of a process
during operation of an application program module 205.

10

15

25

30

35

40

45

50

55

60

65

11

8

During idle time of the application program module 205, the
hard page fault scenario analyzer 240 may write the log of
hard page faults to a log file. Then, a pattern matching
algorithm may be used to find a pattern of hard page faults
based on all log files generated for the same scenario. If a
pattern of hard page faults is found, a new scenario file may
be generated based on the pages that are retrieved from disk
during the pattern. Automatically generated scenario files
may be subject to subsequent refinement, i.e., they may be
input into the pattern-matching algorithm.

The hard page fault analyzer 240 may also comprise
various application program interfaces (APIs) for allowing
an application program module 205 to explicitly designate
certain scenarios as hard page fault scenarios and to instruct
the hard page fault scenario analyzer 240 to create a corre-
sponding scenario file. Those skilled in the art will appre-
ciate that the use of such APIs is likely to be faster and more
accurate than using functionality for automatically analyz-
ing hard page fault scenarios.

The scenario file 245 may also comprise various other
components, such as a “scenario file ID,” a “prologue,” and
an “epilogue.” A scenario file ID may be a standard 128-bit
GUID, or an equivalent thereof, which is well—known in the
art. Additionally, a scenario file may contain a value that
decides how page faults are filtered during logging. Three
possibilities that might be used are: (a) only the process in
the scenario’s context is instrumented; (b) same as (a), but
including a few particular other processes (e.g. csrss.exe);
and (c) all processes in the system are instrumented (e.g.
used for system boot prefetching). Prologues and epilogues
may be provided as aids for determining the order of hard
page fault scenarios. For example, a component of the hard
page fault scenario analyzer 240 may be operable to keep
track of events leading to and following hard page fault
scenarios. A prologue may be used to record events that
typically lead to the hard page fault scenario associated with
the scenario file 245. The elements of prologues may be
stored as pairs in the form of: {image name, page offset}.
Similarly, an epilogue may be used to help to predict
whether another hard page fault scenario will follow the
hard page fault scenario associated with the scenario file
245. For example, an epilogue may be implemented as a list
of scenario file IDs, and a decay factor to minimize the
number of coincidental hints.

After the hard page fault scenario analyzer 240 has
analyzed various hard page fault scenarios of an application
program module 205 and has stored corresponding scenario
files 245 in the disk storage 230, the hard page fault scenario
detector 250 monitors operation of the application program
module 205 for the occurrence of a hard page fault scenario.
A hard page fault scenario detector may be manual or
automatic. A manual hard page fault scenario detector may
be programmed to send messages to the pre-fetcher upon the
occurrence of particular events, such as by calling a specific
API. An automatic hard page fault scenario detector may be
operable to analyze prologues and epilogues in scenario files
to predict when a hard page fault scenario will occur. When
the hard page fault scenario detector 250 detects a hard page
fault scenario, it sends a message to a pre-fetcher 255. The
message sent to the hard page fault scenario detector 250
instructs the pre—fetcher to fetch from disk storage 230 the
scenario file 245 associated with the detected hard page fault
scenario. A pre-fetcher 255 typically exists as part of an
operating system.

In response to the message received from the hard page
fault scenario detector 240, the pre-fetcher 255 accesses the
disk drive 225 to retrieve the appropriate scenario file from

12

US 6,633,968 B2

9

the disk storage 230. The pre-fetcher 255 then transfers into
the RAM 220 the page sequence of the retrieved scenario file
245. The newly transferred pages are placed on a standby list
in the RAM 220, which is a technique that is well known to
those skilled in the art. As such, the newly transferred pages
do not increase the working set, i.e., the pages currently
utilized by the application program module 205. Then, as the
newly transferred pages are requested by the application
program 205, they are soft-faulted into the working set and
a hard page fault is avoided. Of course, if the scenario file
is a referenced scenario file it will only contain references to
the pages needed by the scenario. The references are used by
the prc-fctchcr to transfer the pages from the hard disk to
RAM.

While pre—fetching scenario files 245 into RAM does not
increase the working set, it may increase the memory
requirements of the computer system. However, those
skilled in the art will recognize that not all computer systems
will include sufficient memory for proper operation of the
exemplary embodiment described above. Accordingly, in '
low-memory situations, the scenario files may be read in
parts, thereby reducing memory requirements. An exem-
plary embodiment of the present invention includes a
defragger 260. The pre-fetching of scenario files may be
performed more efficiently when scenario files are physi-
cally stored contiguously on the disk storage 230. Many
available operating systems include a disk defragger 260.
For example, the Windows NT operating system, manufac-
tured and produced by the Microsoft Corporation of
Redmond, Wash, supports defragmentation of uncom-
pressed files with the NTFS file system (also manufactured
and produced by the Microsoft Corporation). Such available
defraggers 260 are sufficient for operation in the present
invention. In accordance with an exemplary embodiment,
the defragger 260 may be automatically triggered during idle
time.

Further, an exemplary embodiment includes a disk
compressor/decompressor 265 to compress the copied pages
within the stored scenario files 265. Well known compres-
sion algorithms may be employed to achieve approximately
50% compression with 25 MB/s decompression throughput.
These results may be achieved with as little as 64 KB extra
memory. Average disk transfer rates are about 8 MB/s. So,
for an illustrative 3 MB pre-fetch scenario, comparative
pre-fetch times are as follows:

No compression: 0.012 s (seek)+3 MB/8 MB/s (read)=0.3870 s.

50% compression: 0.012 s (seek)+1.5 MB/S MB/s (read)+3
MB/25 MB/s (decompress:)=0.3195 5.

Thus, there is a 17.5% improvement in pre—fetch time
using 50% compression.

As described above with reference to FIG. 2, an exem-
plary embodiment of the present invention may be com-
prised of various functional components, including a hard
page fault scenario analyzer 240, a hard page fault scenario
detector 250, a pre-fetcher 255, a disk defragger 260, and a
compressor/decompressor 265. However, those having ordi-
nary skill in the art will recognize that the minimum com-
ponents required to implement the broad concept of the
present invention are a manual hard page fault scenario
detector 250 and a pre-fetcher 255. As mentioned, a manual
hard page fault scenario detector may be programmed to
send instructions to thc prc-fctchcr 255 upon the occurrence
of certain events. Those skilled in the art will further

appreciate that an automatic hard page fault scenario detec-
tor 250, a scenario analyzer 240, a disk defragger 260 and a

10

15

25

30

35

40

45

50

55

60

65

12

10

compressor/decompressor 265 are optimizations for the
present invention. The inclusion of such optimizations will
depend on the available memory of the computer system on
which the present invention will be run and possible gains to
be achieved by operation of the present invention.

FIG. 3 is a flow chart illustrating computer-implemented
steps for carrying out an exemplary method of the present
invention. Those skilled in the art will appreciate that the
flow charts of FIGS. 3—4 are executed by the processing unit
121 (FIG. 1) in response to instructions that have been
incorporated into the memory management program module
137. The exemplary method 300 begins at starting block 301
where a computer system, such as the computer 100 of FIG.
1, is executing an application program module, such as the
application program module 170 of FIG. 1. Alternatively, the
application program module may be an operating system. At
step 302, the application program module is monitored for
the occurrence of events that will lead to a hard page fault
scenario. At step 304, a hard page fault scenario is detected.
As mentioned above, a hard page fault scenario is a situation
in which a hard page fault sequence is likely to occur, i.e.,
requested pages will be unavailable in RAM and must be
retrieved from disk storage. Then, at step 306, a determina-
tion is made as to whether a scenario file exists that

corresponds to the detected hard page fault scenario. As
mentioned above with respect to FIG. 2, scenario files may
be stored on disk storage. Scenario files comprise either
ordered copies of or references to the pages that are deter-
mined to be likely to be retrieved from disk storage during
a hard page fault. The copies of or references to the
determined pages are stored in the order in which they are
likely to be requested by the application program module. If
no corresponding scenario file is located, the method pro-
ceeds to step 308, where the hard page fault scenario is
analyzed to determine which pages must be retrieved from
disk and in what order. Then, based on the analysis per-
formed at step 308, a scenario file is created for the detected
hard page fault scenario at step 310. Subsequently, the
method returns to step 302 to continue monitoring the
application program module for subsequent hard page fault
scenarios.

If, at step 306, a scenario file was located that corresponds
to the hard page fault scenario detected at step 304, the
method proceeds to step 312 where the scenario file is
opened and its header is retrieved. Then, at step 314,
memory space in RAM is allocated for the determined pages
that are copied or referenced in the scenario file. At step 316,
the determined pages, or copies thereof, are prcfctchcd into
the allocated space in RAM. An exemplary implementation
only allocates RAM for and prefetches those determined
pages, or copies thereof, that don’t already exist in system
RAM. Lastly, at step 318, page table entries in the Virtual
Memory Manager are updated to reflect the new pages
transferred into RAM. As described previously, the new
pages are pointed to by entries stored in the standby list.
Thus, the application program module requests the appro-
priate pages during the hard page fault scenario, the
prefetched pages are soft faulted into the working set of the
application program and a hard page fault is avoided.

Referenced Scenario Files

As described above, a referenced scenario file comprises
an ordered index, or list, of references to the pages that are
likely to be retrieved from disk storage 230 during a hard
page fault scenario, rather than copies of the actual pages
themselves. The index allows the pre-fetcher 255 to locate
each page in the original executable file. Referenced sce-

13

US 6,633,968 B2

11

nario files reduce the amount of disk space occupied by the
scenario file because copies of pages are not stored with the
scenario file. In scenario files with stored pages, it is difficult
to ensure that copies of pages are identical to master copies.
Referenced scenario files eliminate system crashes or other
incorrect behavior that may result from loading a stored
page with incorrect content. Referenced scenario files avoid
the need to ensure that the copy of a page matches the
original page (even after the original page has been edited).
Security of scenario files which store pages is also an issue
because copies of pages may appear to have a valid signature
but may have been tampered with. Referenced scenario files
avoid these security problems.

In a preferred embodiment, the index of a referenced
scenario file comprises a file name of each page, a file offset
of each page, and a 32—bit bit field for each page representing
the last 32 runs of the scenario. The 32-bit field is used to

indicate if the page was used during each of the last 32 runs
of the scenario. After a scenario has run, the referenced
scenario file is cleaned up as will be described below. As part '
of this cleanup, a one or a zero is entered into the last bit of
the 32-bit field for each page to indicate whether or not the
page was used during the last run of the scenario. Also as
part of the clean-up of the scenario file, if the 32-bit field
indicates that a page has not been used during any of the past
32 runs of the scenario, then that page is removed from the
scenario file. The 32 bit field indicates whether the page has
been called during the last 32 times that the application has
been started up. In a preferred embodiment, if a particular
page has not been used the last two times the scenario has
been run, then the page is not pre-fetched. Also, in a
preferred embodiment, if a page has not been used the past
thirty two times a scenario has been run, then the page is
removed from the scenario file during post-processing of the
scenario file.

Automatic Scenario Detection

The beginning and end of a scenario may be manually
determined as has been described above. Manual scenario

detection may be implemented using Win32 application
programming interface (API) calls or a similar feature used
by application program modules or operating systems to
manually define the beginning and end of a scenario.
However, in an embodiment of the present invention, auto-
matic scenario detection is implemented.

Under automatic scenario detection, the beginning and
end of a scenario is automatically determined based upon
certain events taking place. As will be described in detail
below, in one embodiment, a scenario begins and a scenario
file is opened (if a scenario file for the scenario already
exists) or created (if a scenario file for the scenario does not
already exist) at process creation (such as when an applica-
tion program module file is opened). Pages that are used
during the scenario are logged into an internal scenario log.
The scenario ends and page faults are no longer logged when
the interval between two consecutive page faults for the
process rises above a certain timing threshold, such as 100
milliseconds.

Referring now to FIG. 4, a flowchart illustrating a method
400 for automatic scenario detection in accordance with an

embodiment of the present invention will be described. The
method 400 begins at start step 405 and proceeds to step 410
where a process creation begins (such as at application
startup or system boot) and the scenario begins. The method
then proceeds to decision step 410.

At decision step 410, it is determined whether or not a
scenario file exists for the scenario that was started at step

10

15

25

30

35

40

45

50

55

60

65

13

12

405. If not, then the method proceeds to step 420 and the
application is started up and run (or the system is booted,
etc.). However, if it is determined that a scenario file does
exist, then the method proceeds to step 415.

At step 415, the pages in the scenario file are pre-fetched
and the method proceeds to step 420 where the application
is started up and run. Pages that are used by the application
are logged into a scenario log. The scenario log is used to
update the scenario file as will be described below. The
method then proceeds to step 425.

At step 425, an end scenario timer is started and the
method proceeds to decision step 430.

At decision step 430, it is determined whether an external
page fault interrupt has been received from the page fault
scenario detector 250. Soft and hard page faults are both
logged because a soft page fault may be a hard page fault the
next time the scenario is encountered. So, it is important to
include soft page faults as part of the scenario file. When the
CPU detects a page fault, it generates and sends a page fault
interrupt, which is handled by the NT Memory Manager, and
forwarded to the page fault logger 270. If a page fault
interrupt has been received at decision step 430, then the
method proceeds to step 435.

At step 435, the page fault is logged into memory (the
page fault log, also known as the scenario log) and the
method proceeds to step 440. At step 440, the end scenario
timer is reset. The end scenario timer is then started again at
step 425.

If, at decision step 430, no page fault has been detected,
then the method proceeds to decision step 445. At decision
step 445, it is determined whether an end scenario timer
interrupt has been received. The end scenario timer interrupt
indicates that the end scenario timer has reached a prede-
termined threshold (such as 100 milliseconds). The prede-
termined threshold is set so that if the time between two

consecutive page faults exceeds the threshold then the
scenario will end. The end of a scenario is important to
determine because it is inefficient for a scenario to last for a

longer time period than necessary.

If, at decision step 445, it is determined that the end
scenario timer interrupt has not been received, then the
method returns to decision step 430 and it is determined
whether a page fault interrupt has been received.

However, if, at decision step 445, it is determined that the
end scenario timer interrupt has been received, then the
method proceeds to step 450.

At step 450, the scenario ends and a work item is queued
to post-process the scenario log and scenario file during idle
time. The method then proceeds to step 455.

At step 455, the scenario file and scenario log are pro-
cessed. In one embodiment, the post-processing includes the
following steps:

1. Pages that are part of the scenario log, but not already
part of the scenario file are added to the scenario file;

2. The scenario file entries corresponding to the pages that
were used during the scenario are updated to indicate
that the page was used by the scenario. As described
above, a 32-bit field for each page represents the last 32
runs of the scenario. In a preferred embodiment, the
rightmost bit in this field is set to indicate whether or
not the last run of the scenario required the page;

3. Pages with a scenario file entry with a 32-bit field
indicating that the page has not been used in the last 32
runs of the scenario are deleted from the scenario file;
and

14

US 6,633,968 B2

13

4. Pages in the scenario file are sorted according to section
ID and file offset. Sorting the pages in this manner
results in efficient 1/0 with a minimal number of disk

seeks when the pages are prefetched at step 415
(assuming there is a reasonable disk layout).

After the scenario file and scenario log are processed at
step 455, the method then proceeds to step 460.

At step 460, an updated scenario file is written out to the
disk space. The method then ends at step 499.

It should be understood that the method 400 may include
a failsafe timer to end the scenario in case the end scenario

timer malfunctions. For example, a failsafe timer may be a
predetermined time period (such as 5 seconds) and if the
scenario lasts for longer than the predetermined time period,
then the scenario automatically ends. This failsafe timer
prevents the scenario file from becoming too large (which is
inefficient).

It should be understood that the 32-bit fields stored in the

scenario file allow the scenario file to be self—tuning. If a
page has not been required by a scenario for the last thirty '
two times, then the page may be removed from the scenario
file. Of course, the 32-bit field could be any bit length
required.

The two rightmost bits of the 32-bit field may also be used
to determine whether a page is pre-fetched. In an embodi-
ment of the present invention, a page is not pre-fetched
unless one of the two rightmost bits of the 32-bit field
indicates that the page has been required during one or more
of the past two times the scenario has been run. Of course,
this number may be adjusted as needed to the last five runs,
last ten runs, etc.

Using Win32 IIourglass Cursor to Detect End of
Scenario

It should be understood that in an alternative embodiment,
the beginning of the scenario may be automatic such as at
process creation and the end of the scenario may be deter-
mined based upon a detection that the Win32 hourglass
cursor has been replaced with a regular cursor. Although this
embodiment works well, it is not typically as effective as
automatically determining the end of a scenario based on a
timing threshold.

MDLs (Memory Descriptor Lists)

Amemory descriptor list (MDL) is a system structure for
describing a virtual buffer in terms of physical memory
pages. For each prefetched scenario file, an embodiment of
the present invention builds a series of MDLs.

Referring now to FIG. 5, a diagram illustrating a plurality
of memory pages 505 (exes or dlls) mapped to physical
memory 510 in accordance with an embodiment of the
present invention will be described. In one embodiment, the
invention is a method for building a series of MDLs
(memory descriptor lists) for mapping a plurality of memory
pages to physical memory as illustrated in FIG. 5. Each page
described in the scenario file is checked to determine

whether the page is already in physical memory. If a page is
already in physical memory, then the page is discarded from
consideration. For all pages not in physical memory, it is
determined whether the file offsets in the disk space for each
pair of consecutive pages is below a predetermined level. In
a preferred embodiment, this level is 128 KB.

If it is determined that the file offsets between consecutive

pages in the disk space is below a predetermined level, then
the pages are put into the MDL. If the pages are not
physically consecutive in the disk space, the gap between the

10

15

25

30

35

40

45

50

55

60

65

14

14

pages is plugged by inserting the required number of dummy
pages into the MDL. Dummy MDL pages reference one
physical page so that the disk can stream the pages in
without seeking.

If it is determined that the file offsets between consecutive

pages is above a predetermined level, then the MDL ends
and a new MDL is created beginning from the last page not
entered into the previous MDL. It should be understood
from the above description that large seeks (such that it’s
more efficient to seek than use dummy pages) break MDLs,
so it’s likely to have multiple MDLs for each section.

Therefore, referring to FIG. 5, pages 505 that are needed
by the scenario and already resident in physical memory
remain mapped to their preexisting physical memory. Pages
not needed by the scenario but between consecutive pages in
the MDL that are needed are mapped to a dummy physical
memory location. Pages that are needed by the scenario and
non-resident in physical memory are mapped to physical
memory locations allocated by the pre-fetcher.

System Boot

It should be understood that, in one embodiment, the
present invention may be used at system startup (system
boot). Using pre-fetching of pages at system boot may
decrease system boot times significantly. In one
embodiment, the system boot scenario start and end are
user-defined. In other words, the operating system when
booting up determines when to start and stop the system boot
scenario. For example, Win32 APIs may be used to define
the start and end of the system boot scenario.

Prefetching Files Mapped as Data

Although the above description has been related to pages
that are mapped files, such as dynamic link libraries (dlls)
and executable files (exes), an embodiment of the present
invention may be used to pre-fetch data files which are
accessed as mapped files. Pre-fetching mapped data files
may decrease system boot times and application startup
times significantly. For example, at system boot, registry
files are accessed as mapped files and may be pre-fetched.
Thus, in one embodiment, the present invention may also be
used to pre-fetch mapped constant data files rather than just
executable images (dlls and exes).

Use of the Present Invention at the Physical Disk
Level

In another embodiment, the present invention may be
implemented at the physical disk level rather than at the file
level. For example, rather than storing only the section type,
file name and file offset for a page in a scenario file, the
scenario file may actually store a physical disk sector
number for a page. By working at the disk level, it may be
possible to decrease application startup times even further.
For example, files such as normal.dot may be used by
executable files such as winword.exe. By prefetching files
such as normal.dot, application and system startup times
may be decreased even more. One main advantage of this
approach is that file system metadata may be prefetched.

It should be understood that the foregoing pertains only to
the preferred embodiments of the present invention, and that
numerous changes may be made to the embodiments
described herein without departing from the spirit and scope
of the invention.

We claim:

1. In a computer system, a method for avoiding hard page
faults during the booting of an operating system, the method
comprising the steps of:

15

US 6,633,968 B2

15

prior to booting the operating system, determining which
pages will be retrieved from disk;

detecting that the operating system needs to be booted;
and

in response to detecting that the operating system needs to
be booted, fetching the determined pages into a RAM
of the computer system, whereby the determined pages
will be available in the RAM and hard page faults will
not occur during the booting of the operating system.

2. The method of claim 1, wherein the step of determining
which pages will be retrieved from disk comprises the steps
of:

creating a log of hard page faults that occur during the
booting of the operating system;

analyzing the log to find a common hard page fault
scenario for booting the operating system; and

determining from the log which pages were retrieved
from disk during the booting of the operating system.

3. The method of claim 1, wherein the pages are com- '
pressed in the disk storage; and

wherein the method further comprises the step of decom-
pressing the copies of the determined pages prior to
fetching them into the RAM.

4. The method of claim 1, wherein a copy of each of the
determined pages is stored in a scenario file; and

wherein the step of fetching the determined pages into
RAM comprises fetching the copy of each of the
determined pages from the scenario file into RAM.

5. The method of claim 1, wherein a reference for each of
the determined pages is stored in a referenced scenario file;
and

wherein the step of fetching the determined pages into
RAM comprise accessing the referenced scenario file in
order to locate and fetch the determined pages into
memory.

6. The method of claim 5 wherein the determined pages
are mapped data files.

7. The method of claim 5 wherein each page reference in
the referenced scenario file comprises a reference to a
section description (file name and mapping type), and a file
offset for the page.

8. The method of claim 5 wherein each page reference in
the referenced file scenario comprises a physical disk sector
for the page.

9. In a computer system, a method for automatically
detecting a hard page fault scenario, the method comprising
the computer-implemented steps of:

detecting the start-up of an application program module;

determining if a scenario file exists;

if not, then running the application program module;

if a scenario file exists, then pre-fetching the pages in the
scenario file into RAM and running the application
program module; and

logging a plurality of soft page faults and hard page faults
into memory.

10. The method of claim 9 further comprising the steps of:

starting an end scenario timer;
resetting the end scenario timer each time a page fault is

logged; and
if the time between two logged page faults is such that the

end scenario timer reaches a predetermined threshold,
then ending the hard page fault scenario.

11. The method of claim 10 further comprising the steps
of:

10

15

25

30

35

40

45

50

55

60

65

15

16

queuing a work item to post-process the scenario file and
scenario log; and

during idle time, post-processing the scenario file and
scenario log.

12. The method of claim 11 further comprising the step of
writing out a new scenario file.

13. The method of claim 11 wherein the step of post-
processing the scenario file and scenario log comprises the
steps of:

determining pages that are part of the scenario log and not
already in the scenario file;

adding a scenario file entry to the scenario file for each
page that is part of the scenario log and not already in
the scenario file;

updating scenario file entries corresponding to pages that
were used during the scenario to indicate that the page
was used by the scenario;

deleting scenario file entries for pages that have not been
used for a predetermined number of times; and

sorting the scenario file entries.
14. The method of claim 13 wherein the step of updating

scenario file entries corresponding to pages that were used
during the scenario to indicate that the page was used by the
scenario comprises setting a bit in a 32-bit field.

15. The method of claim 13 wherein the step of sorting the
scenario file entries comprises sorting the scenario file
entries according to the section ID and file offset of each
page represented by each scenario file entry.

16. In a computer system, a method for detecting a hard
page fault scenario, the method comprising the computer—
implemented steps of:

detecting the start—up of an application program module;

determining if a scenario file exists;

if not, then running the application program module;

if a scenario file exists, then pre-fetching the pages in the
scenario file into RAM and running the application
program module;

logging a plurality of soft page faults and hard page faults
into memory; and ending the hard page fault scenario
when a Win32 hourglass cursor is replaced with a
regular cursor.

17. A method for building a plurality of memory descrip-
tor lists (MDLs) for mapping to physical memory a plurality
of pages referenced in a scenario file, the method comprising
the steps of:

determining whether each page referenced in the scenario
file is already resident in physical memory and, if so,
then discarding these pages from consideration;

for all pages not resident in physical memory, determining
whether the file offsets for each pair of consecutive
pages is below a predetermined level;

if so, then adding the pages to the MDL; and

if the pages are not consecutive, plugging the gap between
the pages by inserting a required number of references
to one physical dummy page into the MDL.

18. The method of claim 17 wherein the dummy pages
reference one page in the physical memory.

19. The method of claim 4 wherein the determined pages
are mapped data files.

16

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,633,968 B2 Page 1 of 1
DATED : October 14, 2003

INVENTOR(S) : Zwiegincew et a1.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 1

Line 25, delete “modem”and insert -- modern

Column 6

Lines 45-46, delete

“system.
The”

and insert -- system. The

Signed and Sealed this

Thirtieth Day of December, 2003

JAMES E. ROGAN

Director oft/1e United States Patent and Trademark Ofi‘ice

16

