
Apple Inc. v. Realtime Data, LLC d/b/a/ IXO
Cases IPR2016-01737, -01738, -01739

U.S. Patent No. 8,880,862

1

PATENT OWNER REALTIME DATA
DEMONSTRATIVE EXHIBITS

REALTIME 2032-A

Table of Contents

IPR2016-01739 ISSUES
“Boot Data List” Construction …………………………..………………………..6

Settsu and Zwiegincew Do Not Render Obvious “Updating
the Boot Data List” …………………………………………………………………19

Settsu and Zwiegincew Do Not Render Obvious “Updating the
Boot Data List in Response to the Utilizing” Step ……………………36

“Non-Accessed Boot Data” Construction ..………………………………..42

Settsu and Zwiegincew Do Not Render Obvious “Disassociating
Non-Accessed Boot Data from the Boot Data List”…………………50

2

Table of Contents

IPR2016-01737, -01738 ISSUES
Sukegawa and Zwiegincew Do Not Render Obvious a “Boot

Data List” …….…………………………………………………………………………57

Sukegawa Does Not Disclose “Disassociating Non-Accessed
Boot Data from the Boot Data List” …..……………………………………72

Sukegawa Does Not Disclose “Loading [or Accessing] Boot
Data … That is Associated with a Boot Data List” ..…………….……79

Sukegawa Does Not Disclose Claim 14’s “Accessing Boot Data”
Prior to “Loading”.…………………………………………………………………..96

Sukegawa Does Not Disclose Claim 19’s “Utilizing the Stored
Additional Portion of [OS]” …..………………..…………………………….104

Sukegawa Does Not Disclose “Boot Data” with “Program Code
Associated with … an Application Program”………………………….111

Combination of Sukegawa and Dye Is Improper.…..………..……..116
3

Table of Contents

IPR2016-01737, -01738, -01739 ISSUES

Dye Does not Render Obvious a “Plurality of Encoders”…………129

Realtime’s Motions to Exclude Evidence ……………………………..…140

4

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

IPR2016-01737

Independent Claims 1, 6, 13
Dependent Claims 3-4, 7,

23-34, 47-58, 83-96, 99-100,
105-111, 113, 116

Motion to Amend

IPR2016-01738

Independent Claims 8, 11, 14
Dependent Claims 9-10, 15-22,
59-82, 101-104, 114-115, 117

Motion to Amend

IPR2016-01739

Independent Claim 5

Dependent Claims 35-46,
97-98, 112

No Motion to Amend

5

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

“BOOT DATA LIST” CONSTRUCTION

6

‘862 Patent at Claim 11

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST”
USED TO IDENTIFY AND LOAD BOOT DATA

U.S. Patent Nov. 4, 2014 Sheet 8 of 13 US 8,880,862 B2

Receive Reques for rever
coi Data

71 -
Retrieve Requested Boot

Data from Disk

Awu.
Record Data Block Number

of Retrieved Boot Data in a List

- Boot N.
ocess

Complete

FIG. 7A

7

‘862 at 21:24-42
‘862 at Figure 7A

U.S. Patent Nov. 4, 2014 Sheet 9 of 13 US 8,880,862 B2

A
--- me

75 - - Ys
-- s ̂

 No- Power-up or '^c
System Reset

2

Prefetch Data Blocks

CC) rece 3Cot
rocess

Service Request Using
Preloaded Boot Data

84-^ Gs ^Ye - Any Booi Data \ N M" Root ata S. ox. Not Requested)
Lirrig Boot eaded

^ Frocess

Retrieve Requested Boot
3ta for Boot evice Boot Data Previously

Specified in list

Update List to
Data Not Previously
Specified in List

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST”
USED TO IDENTIFY AND LOAD BOOT DATA

8

‘862 at 21:43-52

‘862 at Figure 7B

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

9

‘862 at 21:65-22:1

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST”
USED TO IDENTIFY AND LOAD BOOT DATA

POSITA WOULD UNDERSTAND “BOOT DATA LIST”
IDENTIFIES AND LOADS BOOT DATA INTO MEMORY

10

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 56

“BOOT DATA LIST” MEANS “RECORD USED TO
IDENTIFY AND LOAD BOOT DATA INTO MEMORY”

11

Realtime ‘1739 Response at 15

DR. NEUHAUSER ADMITS THAT “BOOT DATA
LIST” USED TO IDENTIFY BOOT DATA TO LOAD

Dr. Neuhauser Transcript (Ex. 2024) at 87:9-15

12

APPLE’S “BOOT DATA LIST” CONSTRUCTION IS DIVORCED FROM
THE ‘862 SPECIFICATION AND UNREASONABLY BROAD

APPLE ARGUES THAT EVERY OPERATING SYSTEM FILE IS
ITSELF A “BOOT DATA LIST”:

‘1739 Petition at 22

13

APPLE’S “BOOT DATA LIST” CONSTRUCTION IS DIVORCED FROM
SPECIFICATION AND UNREASONABLY BROAD

Apple’s ‘1739 Reply at 9

14

US 8,880,862 B2
25

is selected for output and a null data compression type
descriptor is appended thereto. A null data compression type
descriptor is defined as any recognizable data token or
descriptor that indicates no data encoding has been applied to
the input data block. Accordingly, the unencoded input data
block with its corresponding null data compression type
descriptor is then output for Subsequent data processing, Stor
age, or transmittal.

Again, it is to be understood that the embodiment of the
data compression engine of FIG.9 is exemplary of a preferred
compression system which may be implemented in the
present invention, and that other compression systems and
methods known to those skilled in the art may be employed
for providing accelerated data storage in accordance with the
teachings herein. Indeed, in another embodiment of the com
pression system disclosed in the above-incorporated U.S. Pat.
No. 6,195,024, a timer is included to measure the time elapsed
during the encoding process againstana priori-specified time
limit. When the time limit expires, only the data output from
those encoders (in the encoder module 125) that have com
pleted the present encoding cycle are compared to determine
the encoded data with the highest compression ratio. The time
limit ensures that the real-time or pseudo real-time nature of
the data encoding is preserved. In addition, the results from
each encoder in the encoder module 125 may be buffered to
allow additional encoders to be sequentially applied to the
output of the previous encoder, yielding a more optimal loss
less data compression ratio. Such techniques are discussed in
greater detail in the above-incorporated U.S. Pat. No. 6, 195,
O24.

Referring now to FIG. 10, a detailed block diagram illus
trates an exemplary decompression system that may be
employed herein or accelerated data retrieval as disclosed in
the above-incorporated U.S. Pat. No. 6,195,024. In this
embodiment, the data compression engine 180 retrieves or
otherwise accepts compressed data blocks from one or more
data storage devices and inputs the data via a data storage
interface. It is to be understood that the system processes the
input data stream in data blocks that may range in size front
individual bits through complete files or collections of mul
tiple files. Additionally, the input data block size may be fixed
or variable.
The data decompression engine 180 comprises an input

buffer 155 that receives as input an uncompressed or com
pressed data stream comprising one or more data blocks. The
data blocks may range in size from individual bits through
complete files or collections of multiple files. Additionally,
the data block size may be fixed or variable. The input data
buffer 55 is preferably included (not required) to provide
storage of input data for various hardware implementations.
A descriptor extraction module 160 receives the buffered (or
unbuffered) input data block and then parses, lexically, Syn
tactically, or otherwise analyzes the input data block using
methods known by those skilled in the art to extract the data
compression type descriptor associated with the data block.
The data compression type descriptor may possess values
corresponding to null (no encoding applied), a single applied
encoding technique, or multiple encoding techniques applied
in a specific or random order (in accordance with the data
compression system embodiments and methods discussed
above).
A decoder module 165 includes one or more decoders

D1 ... Dn for decoding the input data block using a decoder,
set of decoders, or a sequential set of decoders corresponding
to the extracted compression type descriptor. The decoders
D1 . . . Dn may include those lossless encoding techniques
currently well known within the art, including: run length,

10

15

25

30

35

40

45

50

55

60

65

26
Huffman, Lempel–Ziv Dictionary Compression, arithmetic
coding, data compaction, and data null Suppression. Decod
ing techniques are selected based upon their ability to effec
tively decode the various different types of encoded input data
generated by the data compression systems described above
or originating from any other desired source.
As with the data compression systems discussed in U.S.

Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as to
reduce the data decoding time. An output data buffer or cache
170 may be included for buffering the decoded data block
output from the decoder module 165. The output buffer 170
then provides data to the output data stream. It is to be appre
ciated by those skilled in the art that the data compression
system 180 may also include an input data counter and output
data counter operatively coupled to the input and output,
respectively, of the decoder module 165. In this manner, the
compressed and corresponding decompressed data block
may be counted to ensure that sufficient decompression is
obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of a
preferred decompression system and method which may be
implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to those
precise embodiments, and that various other changes and
modifications may be affected therein by one skilled in the art
without departing from the scope or spirit of the invention. All
Such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.
What is claimed is:
1. A method for providing accelerated loading of an oper

ating system in a computer system, the method comprising:
loading a portion of boot data in a compressed form that is

associated with a portion of a boot data list for booting
the computer system into a memory;

accessing the loaded portion of the boot data in the com
pressed form from the memory;

decompressing the accessed portion of the boot data in the
compressed form at a rate that decreases a boot time of
the operating system relative to loading the operating
system utilizing boot data in an uncompressed form; and

updating the boot data list,
wherein the decompressed portion of boot data comprises

a portion of the operating system.
2. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list.
3. The method of claim 1, wherein the updating comprises:
removing an association of additional boot data that is

associated with the boot data list from the boot data list.
4. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list; and
compressing a portion of the additional boot data.
5. A method for booting a computer system, the method

comprising:
storing boot data in a compressed form that is associated

with a portion of a boot data list in a first memory;
loading the stored compressed boot data from the first

memory;
accessing the loaded compressed boot data;
decompressing the accessed compressed boot data;

‘862 CLAIMS AND SPECIFICATION DISTINGUISH BETWEEN
“BOOT DATA” AND “BOOT DATA LIST”

15

‘862 Patent at Claim 1

CLAIM ELEMENTS LISTED SEPARATELY IN CLAIM ARE
DISTINCT COMPONENTS OF THE PATENTED INVENTION

FEDERAL CIRCUIT’S BECTON, DICKINSON DECISION:

16

616 F.3d 1249, 1254 (Fed. Cir. 2010); see also HTC Corp. v. Cellular  
Comm’ns Equip., LLC, IPR2014-01133, Paper 48 at 8-12 (PTAB Jan. 4, 2016)

“Where a claim lists elements separately, ‘the
clear implication of the claim language’ is that
those elements are ‘distinct component[s]’ of the
patented invention.”

APPLE’S “BOOT DATA LIST” CONSTRUCTION IS INCONSISTENT WITH
POSITA’S UNDERSTANDING

17

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 74

18

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 76

APPLE’S “BOOT DATA LIST” CONSTRUCTION IS INCONSISTENT WITH
POSITA’S UNDERSTANDING

19

IPR2016-01739 ISSUE
SETTSU AND ZWIEGINCEW DO NOT RENDER
OBVIOUS “UPDATING THE BOOT DATA LIST”

|PR2016-O1739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER

OBVIOUS "UPDATING THE BOOT DATA LIST"

19

CLAIMS 5, 35-46, 97, 98, AND 112 ARE PATENTABLE OVER ‘1739
IPR GROUNDS 1-4

Settsu, alone or in view of Zwiegincew,
fails to render obvious claim elements:

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

- “updating the boot data list" (cl. 5)

- “updating the boot data list in
response to the utilizing" (cl. 112)

- “disassociating non-accessed boot
data from the boot data list" (cl. 98)

20

US 8,880,862 B2
25

is selected for output and a null data compression type
descriptor is appended thereto. A null data compression type
descriptor is defined as any recognizable data token or
descriptor that indicates no data encoding has been applied to
the input data block. Accordingly, the unencoded input data
block with its corresponding null data compression type
descriptor is then output for Subsequent data processing, Stor
age, or transmittal.

Again, it is to be understood that the embodiment of the
data compression engine of FIG.9 is exemplary of a preferred
compression system which may be implemented in the
present invention, and that other compression systems and
methods known to those skilled in the art may be employed
for providing accelerated data storage in accordance with the
teachings herein. Indeed, in another embodiment of the com
pression system disclosed in the above-incorporated U.S. Pat.
No. 6,195,024, a timer is included to measure the time elapsed
during the encoding process againstana priori-specified time
limit. When the time limit expires, only the data output from
those encoders (in the encoder module 125) that have com
pleted the present encoding cycle are compared to determine
the encoded data with the highest compression ratio. The time
limit ensures that the real-time or pseudo real-time nature of
the data encoding is preserved. In addition, the results from
each encoder in the encoder module 125 may be buffered to
allow additional encoders to be sequentially applied to the
output of the previous encoder, yielding a more optimal loss
less data compression ratio. Such techniques are discussed in
greater detail in the above-incorporated U.S. Pat. No. 6, 195,
O24.

Referring now to FIG. 10, a detailed block diagram illus
trates an exemplary decompression system that may be
employed herein or accelerated data retrieval as disclosed in
the above-incorporated U.S. Pat. No. 6,195,024. In this
embodiment, the data compression engine 180 retrieves or
otherwise accepts compressed data blocks from one or more
data storage devices and inputs the data via a data storage
interface. It is to be understood that the system processes the
input data stream in data blocks that may range in size front
individual bits through complete files or collections of mul
tiple files. Additionally, the input data block size may be fixed
or variable.
The data decompression engine 180 comprises an input

buffer 155 that receives as input an uncompressed or com
pressed data stream comprising one or more data blocks. The
data blocks may range in size from individual bits through
complete files or collections of multiple files. Additionally,
the data block size may be fixed or variable. The input data
buffer 55 is preferably included (not required) to provide
storage of input data for various hardware implementations.
A descriptor extraction module 160 receives the buffered (or
unbuffered) input data block and then parses, lexically, Syn
tactically, or otherwise analyzes the input data block using
methods known by those skilled in the art to extract the data
compression type descriptor associated with the data block.
The data compression type descriptor may possess values
corresponding to null (no encoding applied), a single applied
encoding technique, or multiple encoding techniques applied
in a specific or random order (in accordance with the data
compression system embodiments and methods discussed
above).
A decoder module 165 includes one or more decoders

D1 ... Dn for decoding the input data block using a decoder,
set of decoders, or a sequential set of decoders corresponding
to the extracted compression type descriptor. The decoders
D1 . . . Dn may include those lossless encoding techniques
currently well known within the art, including: run length,

10

15

25

30

35

40

45

50

55

60

65

26
Huffman, Lempel–Ziv Dictionary Compression, arithmetic
coding, data compaction, and data null Suppression. Decod
ing techniques are selected based upon their ability to effec
tively decode the various different types of encoded input data
generated by the data compression systems described above
or originating from any other desired source.
As with the data compression systems discussed in U.S.

Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as to
reduce the data decoding time. An output data buffer or cache
170 may be included for buffering the decoded data block
output from the decoder module 165. The output buffer 170
then provides data to the output data stream. It is to be appre
ciated by those skilled in the art that the data compression
system 180 may also include an input data counter and output
data counter operatively coupled to the input and output,
respectively, of the decoder module 165. In this manner, the
compressed and corresponding decompressed data block
may be counted to ensure that sufficient decompression is
obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of a
preferred decompression system and method which may be
implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to those
precise embodiments, and that various other changes and
modifications may be affected therein by one skilled in the art
without departing from the scope or spirit of the invention. All
Such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.
What is claimed is:
1. A method for providing accelerated loading of an oper

ating system in a computer system, the method comprising:
loading a portion of boot data in a compressed form that is

associated with a portion of a boot data list for booting
the computer system into a memory;

accessing the loaded portion of the boot data in the com
pressed form from the memory;

decompressing the accessed portion of the boot data in the
compressed form at a rate that decreases a boot time of
the operating system relative to loading the operating
system utilizing boot data in an uncompressed form; and

updating the boot data list,
wherein the decompressed portion of boot data comprises

a portion of the operating system.
2. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list.
3. The method of claim 1, wherein the updating comprises:
removing an association of additional boot data that is

associated with the boot data list from the boot data list.
4. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list; and
compressing a portion of the additional boot data.
5. A method for booting a computer system, the method

comprising:
storing boot data in a compressed form that is associated

with a portion of a boot data list in a first memory;
loading the stored compressed boot data from the first

memory;
accessing the loaded compressed boot data;
decompressing the accessed compressed boot data;

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

21

‘862 Patent at Claim 5

CLAIM 5’S “UPDATING THE BOOT DATA LIST” (‘1739 IPR)

22

SETTSU’S OS MAIN BODY INCLUDES SEVEN OR
MORE MODULES (‘1739 IPR)

Settsu at Figure 5

23

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 78

SETTSU FAILS TO RENDER OBVIOUS
“UPDATING THE BOOT DATA LIST” (‘1739 IPR)

EXAMINER CONSIDERED SETTSU DURING ORIGINAL
PROSECUTION, INCLUDING PASSAGES CITED BY APPLE

EXAMINER’S OFFICE ACTION:

‘862 File History (Ex. 1002) at 306

24

EXAMINER SPECIFIED SETTSU DOES NOT TEACH OR SUGGEST
“UPDATING THE BOOT DATA LIST”

EXAMINER’S OFFICE ACTION REFERRING TO
ALLOWABLE CLAIM 22:

’862 File History (Ex. 1002) at 288, 411

25

ZWIEGINCEW SWAPS APPLICATION FILES USING
VIRTUAL MEMORY MANAGER

26

Zwiegincew at Figure 2

ZWIEGINCEW DOES NOT RELATE TO COMPUTER
SYSTEM BOOT UP

27

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 82

ZWIEGINCEW DOES NOT RELATE TO COMPUTER
SYSTEM BOOT UP

28

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 85

ZWIEGINCEW DOES NOT RELATE TO COMPUTER
SYSTEM BOOT UP

29

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 84

30

ZWIEGINCEW’S TECHNIQUE COULD NOT BE USED UNTIL SETTSU’S
VIRTUAL MEMORY MANAGER HAS BEEN ENABLED (‘1739 IPR)

Settsu at Figure 5

DR. NEUHAUSER ADMITS THAT ZWIEGINCEW’S TECHNIQUE
REQUIRES AN ENABLED VIRTUAL MEMORY MANAGER

31

Dr. Neuhauser Testimony (Ex. 2024) at 103:6-12; see also ‘1737 Patent
Owner Response at 15 & 38, ‘1738 Patent Owner Response at 14 & 36-37,

‘1739 Patent Owner Response at 31-32 & 35-36

AS REALTIME ARGUES IN ITS RESPONSES, ZWIEGINCEW’S TECHNIQUE
REQUIRES AN ENABLED VIRTUAL MEMORY MANAGER:

DR. NEUHAUSER ADMITS THAT SETTSU’S VIRTUAL MEMORY
MANAGER IS NOT ENABLED UNTIL TRANSFERRING INTO MEMORY 2

32

Dr. Neuhauser Testimony (Ex. 2024) at 105:17-23; see also see also
‘1739 Patent Owner Response at 7, 35-36

AS REALTIME ARGUES IN ITS RESPONSE, SETTSU’S VIRTUAL MEMORY MANAGER
MODULE IS ENABLED AFTER IT HAS BEEN TRANSFERRED TO MEMORY 2:

NO MOTIVATION EXISTS TO COMBINE SETTSU AND
ZWIEGINCEW

33

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 87

NO MOTIVATION EXISTS TO COMBINE SETTSU AND
ZWIEGINCEW

34

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶¶ 88-89

US 8,880,862 B2
Page 4

(56)

5,949,968
5,951,623
5,955,976
5,956.490
5,960.465
5,964.842
5,968, 149
5,969,927
5,973,630
5,974,235
5,974,387
5,974,471
5,978.483
5,982,360
5,982,723
5,982.937
5,987,022
5,987.432
5,987,590
5.990,884
5.991,515
5.996,033
6,000,009
6,002,411
6,003,115
6,008,743
6,009,491
6,011.901
6,014,694
6,021,433
6,023,755
6,026,217
6,028,725
6,031,939
6,032,148
6,032, 197
6,038,346
6,058,459
6,061,398
6,061.473
6,070, 179
6,073,232
6,075.470
6,078,958
6,091,777
6,092,123
6,094,634
6,097.520
6,097.845
6,098,114
6,104,389
6,105,130
6,115,384
6,128,412
6,134,631
6,141,053
6,145,020
6,145,069
6,169,241
6,170,007
6,170,047
6,170,049
6,172.936
6,173,381
6,175,650
6,175,856
6,182,125
6,185,625
6,185,659
6, 192,082
6, 192,155
6, 195,024
6, 195,125
6,195.391

References Cited

U.S. PATENT DOCUMENTS

9, 1999
9, 1999
9, 1999
9, 1999
9, 1999

10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
12, 1999
12, 1999
12, 1999
12, 1999
12, 1999

1, 2000
1, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
3, 2000
5, 2000
5, 2000
5, 2000
5, 2000
6, 2000
6, 2000
6, 2000
T/2000
T/2000
T/2000
8, 2000
8, 2000
8, 2000
8, 2000
8, 2000
9, 2000

10, 2000
10, 2000
10, 2000
11, 2000
11, 2000

1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001

Gentile
Reynar et al.
Heath
Buchholz et al.
Adams
Packard
Jacquette et al.
Schirmer et al.
Heath
Nunally et al.
Kageyama
Belt
Thompson, Jr. et al.
Wu et al.
Kamatani
Accad
Geiger et al.
Zusman et al.
Wing So
Douma et al.
Fall et al.
Chiu-Hao
Brady
Dye
Spear et al.
Jacquette
Roppel et al.
Kirsten
Aharoni et al.
Payne
Casselman
Adiletta
Blumenau
Gilbert et al.
Wilkes
Birdwell et al.
Ratnakar
Owen et al.
Satoh et al.
Chen et al.
Craft
Kroeker et al.
Little et al.
Echeita et al.
Guetz et al.
Steffan et al.
Yahagi et al.
Kadnier
Ng et al.
McDonald et al.
Ando
Wu et al.
Parzych
Satoh
Jennings, III
Saukkonen
Barnett
Dye
Shimizu
Venkatraman et al.
Dye
So
Kitazaki
Dye
Sindhu et al.
Riddle
Borella et al.
Tso et al.
Milillo et al.
Moriarty et al.
Fan
Fallon
Udagawa et al.
Hancock et al.

6,195.465
6,198.842
6, 198,850
6,208,273
6,215,904
6,216,157
6,219,754
6,222,886
6,225,922
6,226,667
6,226,740
6,230,223
6,237,054
6,243,829
6.253,264
6,257,693
6,272,178
6,272,627
6,272.628
6,282,641
6,285.458
6,298.408
6,308,311
6,309,424
6,310,563
6,317,714
6,317,818
6,330,622
6,333,745
6,336,153
6,345,307
6,356,589
6,356,937
6,374,353
6,388,584
6,392,567
6,404,931
6.421,387
6,434,168
6,434.695
6,442,659
6,449,658
6,449,682
6,452,602
6,452.933
6,459.429
6.463,509
6,487,640
6,489,902
6,505,239
6,513,113
6,523,102
6,526,174
6,529,633
6,532,121
6,539,438
6,539,456
6,542,644
6,577,254
6,590,609
6,597,812
6,601,104
6,604,040
6,604,158
6,606,040
6,606,413
6,609,223
6,618,728
6,624,761
6,633,244
6,633,968
6,650.261
6,661,839
6,661,845
6,704,840
6,708.220
6,711,709
6,717,534

2, 2001
3, 2001
3, 2001
3, 2001
4, 2001
4, 2001
4, 2001
4, 2001
5/2001
5/2001
5/2001
5/2001
5/2001
6, 2001
6, 2001
T/2001
8, 2001
8, 2001
8, 2001
8, 2001
9, 2001

10, 2001
10, 2001
10, 2001
10, 2001
11, 2001
11, 2001
12, 2001
12, 2001

1, 2002
2, 2002
3, 2002
3, 2002
4, 2002
5/2002
5/2002
6, 2002
T/2002
8, 2002
8, 2002
8, 2002
9, 2002
9, 2002
9, 2002
9, 2002

10, 2002
10, 2002
11, 2002
12, 2002

1, 2003
1, 2003
2, 2003
2, 2003
3, 2003
3, 2003
3, 2003
3, 2003
4/2003
6, 2003
T/2003
T/2003
T/2003
8, 2003
8, 2003
8, 2003
8, 2003
8, 2003
9, 2003
9, 2003

10, 2003
10, 2003
11/2003
12, 2003
12, 2003
3, 2004
3, 2004
3, 2004
4, 2004

Zandi et al.
Yeo
Banton
Dye et al.
Lavallee
Vishwanath et al.
Belt et al.
Yogeshwar
Norton
Matthews et al.
Iga
Olarig
Freitag, Jr.
Chan
Sebastian
Miller et al.
Nieweglowski et al.
Mann
Aguilar et al.
Christensen
Yada
Park
Carmichael et al.
Fallon
Har et al.
Del Castillo et al.
Zwiegincew et al.
Schaefer
Shimomura et al.
Izumida et al.
Booth
Gebler et al.
Montville et al.
Settsu et al.
Dorward et al.
Satoh
Chen et al.
Rhee
Kari
Esfahani et al.
Blumenau
Lafe et al.
Toorians
Morein
Duffield et al.
Deering
Teoman et al.
Lipasti
Heath
Kobata
Kobayashi
Dye et al.
Graffagnino
Easwar et al.
Rust et al.
Ledzius et al.
Stewart
Satoh
Rasmussen
Kitade et al.
Fallon et al.
Fallon
Kawasaki et al.
Fallon
Abdat
Zeineh
Wolfgang
Rail
Fallon
Avery
Zwiegincew et al.
Nelson et al.
Ishida et al.
Herath
Nalawadi et al.
Olin
York
Yokose

EXAMINER CONSIDERED ZWIEGINCEW AND
SETTSU DURING ORIGINAL PROSECUTION

35

¶

‘862 Patent at page 4

US 8,880,862 B2
Page 4

(56)

5,949,968
5,951,623
5,955,976
5,956.490
5,960.465
5,964.842
5,968, 149
5,969,927
5,973,630
5,974,235
5,974,387
5,974,471
5,978.483
5,982,360
5,982,723
5,982.937
5,987,022
5,987.432
5,987,590
5.990,884
5.991,515
5.996,033
6,000,009
6,002,411
6,003,115
6,008,743
6,009,491
6,011.901
6,014,694
6,021,433
6,023,755
6,026,217
6,028,725
6,031,939
6,032,148
6,032, 197
6,038,346
6,058,459
6,061,398
6,061.473
6,070, 179
6,073,232
6,075.470
6,078,958
6,091,777
6,092,123
6,094,634
6,097.520
6,097.845
6,098,114
6,104,389
6,105,130
6,115,384
6,128,412
6,134,631
6,141,053
6,145,020
6,145,069
6,169,241
6,170,007
6,170,047
6,170,049
6,172.936
6,173,381
6,175,650
6,175,856
6,182,125
6,185,625
6,185,659
6, 192,082
6, 192,155
6, 195,024
6, 195,125
6,195.391

References Cited

U.S. PATENT DOCUMENTS

9, 1999
9, 1999
9, 1999
9, 1999
9, 1999

10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
10, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
11, 1999
12, 1999
12, 1999
12, 1999
12, 1999
12, 1999

1, 2000
1, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
2, 2000
3, 2000
5, 2000
5, 2000
5, 2000
5, 2000
6, 2000
6, 2000
6, 2000
T/2000
T/2000
T/2000
8, 2000
8, 2000
8, 2000
8, 2000
8, 2000
9, 2000

10, 2000
10, 2000
10, 2000
11, 2000
11, 2000

1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
1, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001
2, 2001

Gentile
Reynar et al.
Heath
Buchholz et al.
Adams
Packard
Jacquette et al.
Schirmer et al.
Heath
Nunally et al.
Kageyama
Belt
Thompson, Jr. et al.
Wu et al.
Kamatani
Accad
Geiger et al.
Zusman et al.
Wing So
Douma et al.
Fall et al.
Chiu-Hao
Brady
Dye
Spear et al.
Jacquette
Roppel et al.
Kirsten
Aharoni et al.
Payne
Casselman
Adiletta
Blumenau
Gilbert et al.
Wilkes
Birdwell et al.
Ratnakar
Owen et al.
Satoh et al.
Chen et al.
Craft
Kroeker et al.
Little et al.
Echeita et al.
Guetz et al.
Steffan et al.
Yahagi et al.
Kadnier
Ng et al.
McDonald et al.
Ando
Wu et al.
Parzych
Satoh
Jennings, III
Saukkonen
Barnett
Dye
Shimizu
Venkatraman et al.
Dye
So
Kitazaki
Dye
Sindhu et al.
Riddle
Borella et al.
Tso et al.
Milillo et al.
Moriarty et al.
Fan
Fallon
Udagawa et al.
Hancock et al.

6,195.465
6,198.842
6, 198,850
6,208,273
6,215,904
6,216,157
6,219,754
6,222,886
6,225,922
6,226,667
6,226,740
6,230,223
6,237,054
6,243,829
6.253,264
6,257,693
6,272,178
6,272,627
6,272.628
6,282,641
6,285.458
6,298.408
6,308,311
6,309,424
6,310,563
6,317,714
6,317,818
6,330,622
6,333,745
6,336,153
6,345,307
6,356,589
6,356,937
6,374,353
6,388,584
6,392,567
6,404,931
6.421,387
6,434,168
6,434.695
6,442,659
6,449,658
6,449,682
6,452,602
6,452.933
6,459.429
6.463,509
6,487,640
6,489,902
6,505,239
6,513,113
6,523,102
6,526,174
6,529,633
6,532,121
6,539,438
6,539,456
6,542,644
6,577,254
6,590,609
6,597,812
6,601,104
6,604,040
6,604,158
6,606,040
6,606,413
6,609,223
6,618,728
6,624,761
6,633,244
6,633,968
6,650.261
6,661,839
6,661,845
6,704,840
6,708.220
6,711,709
6,717,534

2, 2001
3, 2001
3, 2001
3, 2001
4, 2001
4, 2001
4, 2001
4, 2001
5/2001
5/2001
5/2001
5/2001
5/2001
6, 2001
6, 2001
T/2001
8, 2001
8, 2001
8, 2001
8, 2001
9, 2001

10, 2001
10, 2001
10, 2001
10, 2001
11, 2001
11, 2001
12, 2001
12, 2001

1, 2002
2, 2002
3, 2002
3, 2002
4, 2002
5/2002
5/2002
6, 2002
T/2002
8, 2002
8, 2002
8, 2002
9, 2002
9, 2002
9, 2002
9, 2002

10, 2002
10, 2002
11, 2002
12, 2002

1, 2003
1, 2003
2, 2003
2, 2003
3, 2003
3, 2003
3, 2003
3, 2003
4/2003
6, 2003
T/2003
T/2003
T/2003
8, 2003
8, 2003
8, 2003
8, 2003
8, 2003
9, 2003
9, 2003

10, 2003
10, 2003
11/2003
12, 2003
12, 2003
3, 2004
3, 2004
3, 2004
4, 2004

Zandi et al.
Yeo
Banton
Dye et al.
Lavallee
Vishwanath et al.
Belt et al.
Yogeshwar
Norton
Matthews et al.
Iga
Olarig
Freitag, Jr.
Chan
Sebastian
Miller et al.
Nieweglowski et al.
Mann
Aguilar et al.
Christensen
Yada
Park
Carmichael et al.
Fallon
Har et al.
Del Castillo et al.
Zwiegincew et al.
Schaefer
Shimomura et al.
Izumida et al.
Booth
Gebler et al.
Montville et al.
Settsu et al.
Dorward et al.
Satoh
Chen et al.
Rhee
Kari
Esfahani et al.
Blumenau
Lafe et al.
Toorians
Morein
Duffield et al.
Deering
Teoman et al.
Lipasti
Heath
Kobata
Kobayashi
Dye et al.
Graffagnino
Easwar et al.
Rust et al.
Ledzius et al.
Stewart
Satoh
Rasmussen
Kitade et al.
Fallon et al.
Fallon
Kawasaki et al.
Fallon
Abdat
Zeineh
Wolfgang
Rail
Fallon
Avery
Zwiegincew et al.
Nelson et al.
Ishida et al.
Herath
Nalawadi et al.
Olin
York
Yokose

36

IPR2016-01739 ISSUE
SETTSU AND ZWIEGINCEW DO NOT RENDER

OBVIOUS “UPDATING THE BOOT DATA LIST IN
RESPONSE TO THE UTILIZING” STEP

IPR2016-01739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER

OBVIOUS "UPDATING THE BOOT DATA LIST IN

RESPONSE TO THE UTILIZING" STEP

36

CLAIM 112’S “UPDATING THE BOOT DATA LIST IN
RESPONSE TO THE UTILIZING” (‘1739 IPR)

US 8,880,862 B2
25

is selected for output and a null data compression type
descriptor is appended thereto. A null data compression type
descriptor is defined as any recognizable data token or
descriptor that indicates no data encoding has been applied to
the input data block. Accordingly, the unencoded input data
block with its corresponding null data compression type
descriptor is then output for Subsequent data processing, Stor
age, or transmittal.

Again, it is to be understood that the embodiment of the
data compression engine of FIG.9 is exemplary of a preferred
compression system which may be implemented in the
present invention, and that other compression systems and
methods known to those skilled in the art may be employed
for providing accelerated data storage in accordance with the
teachings herein. Indeed, in another embodiment of the com
pression system disclosed in the above-incorporated U.S. Pat.
No. 6,195,024, a timer is included to measure the time elapsed
during the encoding process againstana priori-specified time
limit. When the time limit expires, only the data output from
those encoders (in the encoder module 125) that have com
pleted the present encoding cycle are compared to determine
the encoded data with the highest compression ratio. The time
limit ensures that the real-time or pseudo real-time nature of
the data encoding is preserved. In addition, the results from
each encoder in the encoder module 125 may be buffered to
allow additional encoders to be sequentially applied to the
output of the previous encoder, yielding a more optimal loss
less data compression ratio. Such techniques are discussed in
greater detail in the above-incorporated U.S. Pat. No. 6, 195,
O24.

Referring now to FIG. 10, a detailed block diagram illus
trates an exemplary decompression system that may be
employed herein or accelerated data retrieval as disclosed in
the above-incorporated U.S. Pat. No. 6,195,024. In this
embodiment, the data compression engine 180 retrieves or
otherwise accepts compressed data blocks from one or more
data storage devices and inputs the data via a data storage
interface. It is to be understood that the system processes the
input data stream in data blocks that may range in size front
individual bits through complete files or collections of mul
tiple files. Additionally, the input data block size may be fixed
or variable.
The data decompression engine 180 comprises an input

buffer 155 that receives as input an uncompressed or com
pressed data stream comprising one or more data blocks. The
data blocks may range in size from individual bits through
complete files or collections of multiple files. Additionally,
the data block size may be fixed or variable. The input data
buffer 55 is preferably included (not required) to provide
storage of input data for various hardware implementations.
A descriptor extraction module 160 receives the buffered (or
unbuffered) input data block and then parses, lexically, Syn
tactically, or otherwise analyzes the input data block using
methods known by those skilled in the art to extract the data
compression type descriptor associated with the data block.
The data compression type descriptor may possess values
corresponding to null (no encoding applied), a single applied
encoding technique, or multiple encoding techniques applied
in a specific or random order (in accordance with the data
compression system embodiments and methods discussed
above).
A decoder module 165 includes one or more decoders

D1 ... Dn for decoding the input data block using a decoder,
set of decoders, or a sequential set of decoders corresponding
to the extracted compression type descriptor. The decoders
D1 . . . Dn may include those lossless encoding techniques
currently well known within the art, including: run length,

10

15

25

30

35

40

45

50

55

60

65

26
Huffman, Lempel–Ziv Dictionary Compression, arithmetic
coding, data compaction, and data null Suppression. Decod
ing techniques are selected based upon their ability to effec
tively decode the various different types of encoded input data
generated by the data compression systems described above
or originating from any other desired source.
As with the data compression systems discussed in U.S.

Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as to
reduce the data decoding time. An output data buffer or cache
170 may be included for buffering the decoded data block
output from the decoder module 165. The output buffer 170
then provides data to the output data stream. It is to be appre
ciated by those skilled in the art that the data compression
system 180 may also include an input data counter and output
data counter operatively coupled to the input and output,
respectively, of the decoder module 165. In this manner, the
compressed and corresponding decompressed data block
may be counted to ensure that sufficient decompression is
obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of a
preferred decompression system and method which may be
implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to those
precise embodiments, and that various other changes and
modifications may be affected therein by one skilled in the art
without departing from the scope or spirit of the invention. All
Such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.
What is claimed is:
1. A method for providing accelerated loading of an oper

ating system in a computer system, the method comprising:
loading a portion of boot data in a compressed form that is

associated with a portion of a boot data list for booting
the computer system into a memory;

accessing the loaded portion of the boot data in the com
pressed form from the memory;

decompressing the accessed portion of the boot data in the
compressed form at a rate that decreases a boot time of
the operating system relative to loading the operating
system utilizing boot data in an uncompressed form; and

updating the boot data list,
wherein the decompressed portion of boot data comprises

a portion of the operating system.
2. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list.
3. The method of claim 1, wherein the updating comprises:
removing an association of additional boot data that is

associated with the boot data list from the boot data list.
4. The method of claim 1, wherein the updating comprises:
associating additional boot data with the boot data list; and
compressing a portion of the additional boot data.
5. A method for booting a computer system, the method

comprising:
storing boot data in a compressed form that is associated

with a portion of a boot data list in a first memory;
loading the stored compressed boot data from the first
memory;

accessing the loaded compressed boot data;
decompressing the accessed compressed boot data;

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

prises:

US 8,880,862 B2
33

102. The method of claim 8, wherein the updating com
prises:

disassociating a non-accessed portion of the operating sys
tem from the boot data list.

103. The method of claim 11, further comprising: 5
accessing additional boot data that is not associated with

the boot data list, and wherein the updating comprises:
associating the additional boot data with the boot data list.
104. The method of claim 11, wherein the updating com- 10

disassociating non-accessed boot data from the boot data
list.

105. The method of claim 13, further comprising:
accessing additional boot data that is not associated with

the boot data list, and wherein the updating comprises:
associating the additional boot data with the boot data list.
106. The method of claim 13 wherein the updating com

5

prises:
disassociating non-accessed boot data from the boot data 20

list.
107. The method of claim 2, further comprising:
storing the updated boot list in a non-volatile memory.
108. The method of claim 2, further comprising:
compressing at least a portion of the additional boot data. 25
109. The method of claim 108, further comprising:
storing the compressed additional boot data.

34
110. The method of claim 1, wherein a plurality of data

compression encoders was utilized to encode the portion of
the boot data in the compressed form.

111. The method of claim 1, wherein the updating com
prises:

updating the boot data list in response to the accessing.
112. The method of claim 5, wherein the updating com

prises:
updating the boot data list in response to the utilizing.
113. The system of claim 6, wherein the processor is con

figured to update the boot data list based upon the accessed
portion of the boot data.

114. The method of claim 8, wherein the updating com
prises:

updating the boot data list in response to the accessing or
the utilizing.

115. The method of claim 11, wherein the updating com
prises:

updating the boot data list in response to the accessing or
the utilizing.

116. The method of claim 13, wherein the updating com
prises:

updating the boot data list in response to the accessing.
117. The method of claim 14, wherein the updating com

prises:
updating the boot data list in response to the servicing.

k k k k k

37

‘862 Patent at claims 5 & 112

ZWIEGINCEW DOES NOT SUGGEST UPDATING A BOOT DATA LIST IN
RESPONSE TO UTILIZING DECOMPRESSED BOOT DATA

38

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 104

ZWIEGINCEW DOES NOT SUGGEST UPDATING A BOOT DATA LIST IN
RESPONSE TO UTILIZING DECOMPRESSED BOOT DATA

39

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 106

SETTSU’S FUNCTION DEFINITION FILE IS NOT RELATED TO
APPLICATION FILE SWAPPING

40

Settsu at Figure 17

NO MOTIVATION EXISTS TO COMBINE SETTSU AND
ZWIEGINCEW TO RENDER OBVIOUS CLAIM 112

41

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 107

42

IPR2016-01739 ISSUE
“NON-ACCESSED BOOT DATA” CONSTRUCTION

|PR2016-O1739 ISSUE

"NON-ACCESSED BOOT DATA" CONSTRUCTION

42

“NON-ACCESSED BOOT DATA” CONSTRUCTION

US 8,880,862 B2
31

decompressing the accessed first portion with a decom
pression decoder.

63. The method of claim 8, wherein the second memory
comprises:

a physical memory.
64. The method of claim 8, wherein the operating system

comprises:
a plurality of files.
65. The method of claim8, wherein the operating system in

the compressed form comprises:
a program code associated with the operating system and

an application program.
66. The method of claim 65, wherein the application pro

gram comprises:
a plurality of files.
67. The method of claim 8, wherein the accessing com

prises:
accessing the loaded first portion from the second memory

via direct memory access.
68. The method of claim 8, wherein a form of dictionary

encoding was utilized to encode the operating system in the
compressed form.

69. The method of claim 8, wherein Lempel–Ziv encoding
was utilized to encode the operating system in the compressed
form.

70. The method of claim 8, wherein a plurality of encoders
was utilized to encode the operating system in the compressed
form.

71. The method of claim 11, wherein the boot data in the
compressed form represents a plurality of files.

72. The method of claim 11, wherein the boot data in the
compressed form comprises:

a program code associated with the operating system.
73. The method of claim 11, further comprising:
compressing the boot data to provide the boot data in the

compressed form.
74. The method of claim 11, wherein the decompressing

comprises:
decompressing the boot data in the compressed form uti

lizing a decompression decoder.
75. The method of claim 11, wherein the memory com

prises:
a physical memory.
76. The method of claim 11, wherein the operating system

comprises:
a plurality of files.
77. The method of claim 11, wherein the boot data in the

compressed form comprises:
a program code associated with the operating system and

an application program.
78. The method of claim 11, wherein the application pro

gram comprises:
a plurality of files.
79. The method of claim 11, wherein the accessing com

prises:
accessing the boot data in the compressed form from the
memory via direct memory access.

80. The method of claim 11, wherein a form of dictionary
encoding was utilized to encode the boot data in the com
pressed form.

81. The method of claim 11, wherein Lempel–Ziv encoding
was utilized to encode the boot data in the compressed form.

82. The method of claim 11, wherein a plurality of encod
ers was utilized to encode the boot data in compressed form.

83. The method of claim 13, wherein the boot data in the
compressed form represents a plurality of files.

10

15

25

30

35

40

45

50

55

60

65

32
84. The method of claim 13, wherein the boot data in the

compressed form comprises:
a program code associated with the operating system.
85. The method of claim 13, further comprising:
compressing the boot data to provide the compressed boot

data.
86. The method of claim 13, wherein the decompressing

comprises:
decompressing the compressed boot data with a decom

pression decoder.
87. The method of claim 13, wherein the memory com

prises:
a physical memory.
88. The method of claim 13, wherein the operating system

comprises:
a plurality of files.
89. The method of claim 13, wherein the boot data in the

compressed form comprises:
a program code associated with the operating system and

application program.
90. The method of claim 89, wherein the application pro

gram comprises:
a plurality of files.
91. The method of claim 13, wherein the accessing com

prises:
accessing the loaded boot data in the compressed form via

direct memory access.
92. The method of claim 13, wherein a form of dictionary

encoding was utilized to encode the compressed boot data.
93. The method of claim 13, wherein Lempel–Ziv encoding

was utilized to encode the compressed boot data.
94. The method of claim 13, wherein a plurality of encod

ers was utilized to encode the compressed boot data.
95. The method of claim 1, further comprising:
accessing additional boot data that is not associated with

the boot data list, and wherein the updating comprises:
associating the additional boot data with the boot data list.
96. The method of claim 1, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.
97. The method of claim 5, further comprising:
accessing additional compressed boot data that is not asso

ciated with the boot data list, and wherein the updating
comprises:

associating the additional compressed boot data with the
boot data list.

98. The method of claim 5, wherein the updating com
prises:

disassociating non-accessed boot data from the boot data
list.

99. The method of claim 6, wherein the processor is further
configured:

to access additional boot data that is not associated with the
boot data list, and

to associate the additional boot data with the boot data list.
100. The system of claim 6, wherein the processor is fur

ther configured:
to disassociate non-accessed boot data from the boot data

list.
101. The method of claim 8, further comprising:
accessing an additional portion of the operating system that

is not associated with the boot data list, and wherein the
updating comprises:

associating the additional portion of the operating system
with the boot data list.

43

‘862 Patent at claim 98

U.S. Patent Nov. 4, 2014 Sheet 9 of 13 US 8,880,862 B2

A
--- me

75 - - Ys
-- s ̂

 No- Power-up or '^c
System Reset

2

Prefetch Data Blocks

CC) rece 3Cot
rocess

Service Request Using
Preloaded Boot Data

84-^ Gs ^Ye - Any Booi Data \ N M" Root ata S. ox. Not Requested)
Lirrig Boot eaded

^ Frocess

Retrieve Requested Boot
3ta for Boot evice Boot Data Previously

Specified in list

Update List to
Data Not Previously
Specified in List

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

‘862 SPECIFICATION DISCLOSES “NON-ACCESSED BOOT DATA” IS
IDENTIFIED IN BOOT DATA LIST BUT NOT ACCESSED DURING BOOT

44

‘862 Patent at 22:5-11

‘862 Patent at Figure 7B

POSITA WOULD UNDERSTAND “NON-ACCESSED BOOT DATA” IS
IDENTIFIED IN BOOT DATA LIST BUT NOT ACCESSED DURING BOOT

45

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 62

“NON-ACCESSED BOOT DATA” MEANS “BOOT DATA IDENTIFIED IN THE
BOOT DATA LIST THAT WAS NOT REQUESTED DURING SYSTEM BOOT-UP”

46

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 66

‘862 EMBODIMENT TOWARD QUICK LAUNCH OF APPLICATION
PROGRAMS IS USED AFTER SYSTEM BOOT-UP

47

‘862 Patent at Figures 8A-8B

U.S. Patent Nov. 4, 2014 Sheet 11 of 13 US 8,880,862 B2

--~~x.

- 95.- N No - Application N
Launched

rwaxxxxxYarrrrrrrra-e-Beaves

Prefetch Data Blocks
Specified in List

-
100 Y.|-

- www.wrwr. service Request Using
99) is N. - Requested ^ womawa

& Application Data Yes
NE ^ - 103.1 is N. No - Any Preloaded N.

101 N. s - Boot Data YNo
Retrieve Remainder of & Not R; Purg

Application Data from Disc p in * eaacaaaaaaaoooooooooooooooooooooooooooooooooooooaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. & Launch

1 O2 a. -A-o-c-occo. Ye
Update List to include 104s, Yes
Application Data Not Update List to Exclude Previously Specified in List Application Data Previously

Specified in List
-\\\\\\\\\\\vertsvory-WWYYYYYYYY

FIG 8B

U.S. Patent Nov. 4, 2014 Sheet 10 of 13 US 8,880,862 B2

Receive Request for
Application Data Associated
with launched Application

91A.
Retrieve Requested

Application Data from Disc

92
Record Data Block Number of Retrieved Application

Data in a List

..

a'N w SF 93-- N - launch N
- ocess is. sleepy

U.S. Patent Nov. 4, 2014 Sheet 10 of 13 US 8,880,862 B2

Receive Request for
Application Data Associated
with launched Application

91A.
Retrieve Requested

Application Data from Disc

92
Record Data Block Number of Retrieved Application

Data in a List

..

a'N w SF 93-- N - launch N
- ocess is. sleepy

U.S. Patent Nov. 4, 2014 Sheet 11 of 13 US 8,880,862 B2

--~~x.

- 95.- N No - Application N
Launched

rwaxxxxxYarrrrrrrra-e-Beaves

Prefetch Data Blocks
Specified in List

-
100 Y.|-

- www.wrwr. service Request Using
99) is N. - Requested ^ womawa

& Application Data Yes
NE ^ - 103.1 is N. No - Any Preloaded N.

101 N. s - Boot Data YNo
Retrieve Remainder of & Not R; Purg

Application Data from Disc p in * eaacaaaaaaaoooooooooooooooooooooooooooooooooooooaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. & Launch

1 O2 a. -A-o-c-occo. Ye
Update List to include 104s, Yes
Application Data Not Update List to Exclude Previously Specified in List Application Data Previously

Specified in List
-\\\\\\\\\\\vertsvory-WWYYYYYYYY

FIG 8B

APPLE MISCONSTRUES PROSECUTION HISTORY WHEN
CONSTRUING “NON-ACCESSED BOOT DATA”

48

Apple’s ‘1739 Reply at 6

‘862 File History (Ex. 1002) at 157, 162

APPLE’S PROSECUTION EVIDENCE RELATES TO LOADING “APPLICATION DATA” (NOT
BOOT DATA) TO UPDATE AN “APPLICATION DATA LIST” (NOT A BOOT DATA LIST):

APPLE RELIES ON PROSECUTION HISTORY WHEN
CONSTRUING “NON-ACCESSED BOOT DATA”

49

50

IPR2016-01739 ISSUE
SETTSU AND ZWIEGINCEW DO NOT RENDER
OBVIOUS “DISASSOCIATING NON-ACCESSED

BOOT DATA FROM THE BOOT DATA LIST”

|PR2016-O1739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER

OBVIOUS "DISASSOCIATING NON-ACCESSED

BOOT DATA FROM THE BOOT DATA LIST"

5O

ZWIEGINCEW DOES NOT SUGGEST “DISASSOCIATING
NON-ACCESSED BOOT DATA” ELEMENT

51

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 94

ZWIEGINCEW DOES NOT SUGGEST “DISASSOCIATING
NON-ACCESSED BOOT DATA” ELEMENT

52

Dr. Back ‘1739 Declaration (Ex. 2008) at ¶ 97

APPLE RELIES ON ZWIEGINCEW’S 6:20-25 FOR
“DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

‘1739 Petition at 58-59

53

DR. NEUHAUSER RELIES ON ZWIEGINCEW’S 6:20-25 FOR
“DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

54

Dr. Neuhauser ‘1739 Declaration (Ex. 1003) at ¶ 204

ZWIEGINCEW’S 6:20-25 IS UNRELATED TO DISASSOCIATING
NON-ACCESSED BOOT DATA

Zwiegincew at 6:20-25

55

Zwiegincew at Figure 2

DR. NEUHAUSER ADMITS ZWIEGINCEW’S 6:20-25 IS UNRELATED
TO “DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

Dr. Neuhauser Transcript (Ex. 2011) at 179:9-18

56

IPR2016-01737, -01738 ISSUE
SUKEGAWA AND ZWIEGINCEW DO NOT RENDER

OBVIOUS A “BOOT DATA LIST”

57

|PR2016-O1737 -O1738 ISSUE

SUKEGAWA AND ZWIEGINCEW DO NOT RENDER

OBVIOUS A "BOOT DATA LIST"

57

GROUNDS 1-5 IN EACH ‘1737 IPR AND ‘1738 IPR
FAIL TO RENDER OBVIOUS THE ‘862 CLAIMS

Sukegawa fails to disclose or render
obvious claim elements:

- “loading [or accessing] boot data … that
is associated with a boot data list” (cls.
1, 11, 6, 8, 13, 14)

- “disassociating non-accessed boot data
from the boot data list" (cls. 20, 96, 100,
102, 104, 106)

- “the compressed boot data comprises: a
program code associated with … and an
application program” (cls. 17, 29, 53, 65,
77, 89)

- “utilizing the stored additional portion of
the operating system to at least further
partially boot the computer system” (cl. 9)

58

US 8,880,862 B2
21

nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.
Once the data is preloaded, when the computer system bus

issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application Such as a word processor and
any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data
storage controller will record the requested data block num
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each Subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).
When the boot process begins (step 78) (i.e., the storage

controller is initialized and the system bus reset is deas
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the

10

15

25

30

35

40

45

50

55

60

65

22
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro
gram, and Loading

It is to be appreciated that the data storage controller (hav
ing an architecture as described herein) may employ a tech
nique of data preloading to decrease the time to load applica
tion programs (referred to as “quick launch').
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread
sheet each time the program is started. In addition, the com
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember what data is
typically loaded following the launch of the spreadsheet pro
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for
mat, the data will be decompressed. The process of preload
ing (compressed) program data significantly reduces the time
for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quicklaunch
method according to one aspect of the present invention. With
this technique, the data storage controller maintains a list
comprising the data associated with launching an application.
In particular, when an application is first launched, the data
storage controller will receive requests for the application
data (step 90). In response, the data storage controller will
retrieve the requested application data from memory (e.g.,
hard disk) and store it in the local cache memory (step 91).
The data storage controller will record the data block number
of each data block requested by the host computer during the
launch process (step 92). When the launch process is com
plete (affirmative determination in step 93), the data storage
controller will store the data list in a designated memory
location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch of
the application (affirmative result in step 95), the data storage
controller would retrieve and read the stored list (step 96) and
then proceed to preload the application data specified on the
list (i.e., the data associated with the expected data requests)
into the onboard cache memory (step 97). During the appli
cation launch process, the data storage controller will receive
requests for application data (step 98). If the host computer
issues a request for application data that is pre-loaded in the
local memory of the data storage controller (affirmative result
in step 99), the request is immediately serviced using the

SUKEGAWA’S STORAGE OF A SINGLE BOOT DATA
FILE IS NOT A “BOOT DATA LIST”

59

Sukegawa at 6:45-62

USER INTERFACE MUST BE USED TO ACCESS SUKEGAWA’S
APPLICATION PROGRAM INFORMATION FILES STORED IN FLASH

60

Sukegawa at Fig. 3

USER INTERFACE MUST BE USED TO ACCESS SUKEGAWA’S
APPLICATION PROGRAM INFORMATION FILES STORED IN FLASH

Sukegawa at 5:24-28, 5:54-58

61

Sukegawa at Figure 1

DR. NEUHAUSER ADMITS SUKEGAWA DISCLOSES ACCESSING
APPLICATION PROGRAM INFORMATION VIA USER INTERFACE

Dr. Neuhauser Transcript (Ex. 2011) at
209:20-210:1, 211:11-17

62

Sukegawa at Figure 1

SUKEGAWA’S APPLICATION PROGRAM CONTROL
INFORMATION IS NOT “BOOT DATA”

63

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 82

ZWIEGINCEW TEACHES USING A SCENARIO FILE TO SWAP
FILES IN AND OUT OF VIRTUAL MEMORY

64

Zwiegincew at Figure 2

ZWIEGINCEW DOES NOT SUGGEST A “BOOT DATA LIST”

65

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 90

ZWIEGINCEW DOES NOT SUGGEST A “BOOT DATA LIST”

66

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 86

SUKEGAWA SPECIFIES MANAGEMENT INFORMATION TABLE 3A
ONLY MANAGES FLASH AREAS 10A AND 10C

67

Sukegawa at Figure 1

Sukegawa at 5:5-9

SUKEGAWA SPECIFIES SWAPPING APPLICATION FILES IN AND
OUT OF FLASH AREA 10B—NOT AREAS 10A AND 10C

68

Sukegawa at Figure 1

Sukegawa at Figure 6A

NO MOTIVATION EXISTS TO USE ZWIEGINCEW’S SCENARIO
FILE WITH SUKEGAWA’S “BOOT DATA LIST”

69

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 91

NO MOTIVATION EXISTS TO USE ZWIEGINCEW’S “SCENARIO
FILE” WITH SUKEGAWA’S “BOOT DATA LIST”

70

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 92

Sukegawa at Figure 1

IPR2016-01737, -01738 ISSUE
SUKEGAWA DOES NOT DISCLOSE

“DISASSOCIATING NON-ACCESSED BOOT DATA
FROM THE BOOT DATA LIST”

71

|PR2016-O1737 -O1738 ISSUE

SUKEGAWA DOES NOT DISCLOSE

"DISASSOCIATING NON-ACCESSED BOOT DATA

FROM THE BOOT DATA LIST"

71

72

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 66

“NON-ACCESSED BOOT DATA” MEANS “BOOT DATA IDENTIFIED IN THE BOOT
DATA LIST THAT WAS NOT REQUESTED DURING SYSTEM BOOT-UP”

SUKEGAWA DISCLOSES THAT THE OS CONTROL INFORMATION
FILE IS SAVED IN FLASH STORAGE AREA 10A

73

Sukegawa at Figure 1

SUKEGAWA’S MANUAL DELETION OF OS CONTROL INFORMATION
FILE IS NOT “DISASSOCIATING NON-ACCESSED BOOT DATA”

74

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 98

SUKEGAWA USES A USER INTERFACE TO ACCESS APPLICATION
PROGRAM CONTROL INFORMATION FILES FROM FLASH

75

Sukegawa at Fig. 3

SUKEGAWA DOES NOT DISCLOSE “DISASSOCIATING NON-
ACCESSED BOOT DATA” ELEMENT

76

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 99

MEMORY’S LEAST-RECENTLY-USED ALGORITHM FAILS TO SUGGEST
“DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

77

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 100

IPR2016-01737, -01738 ISSUE
SUKEGAWA DOES NOT DISCLOSE “LOADING [OR
ACCESSING] BOOT DATA … THAT IS ASSOCIATED

WITH A BOOT DATA LIST”

78

IPR2016-01737 -01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE "LOADING [OR

ACCESSING] BOOT DATA THAT IS ASSOCIATED

WITH A BOOT DATA LIST”

78

INDEPENDENT CLAIMS 1, 6, 8, 11, & 13 REQUIRE “LOADING” “BOOT
DATA” … THAT IS ASSOCIATED WITH A BOOT DATA LIST”

79

‘862 Patent at Claim 11

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

‘862 SPECIFICATION REQUIRES “BOOT DATA” BE ASSOCIATED
WITH “BOOT DATA LIST” PRIOR TO “LOADING” INTO MEMORY

80

‘862 Patent at Figure 7B

U.S. Patent Nov. 4, 2014 Sheet 9 of 13 US 8,880,862 B2

A
--- me

75 - - Ys
-- s ̂

 No- Power-up or '^c
System Reset

2

Prefetch Data Blocks

CC) rece 3Cot
rocess

Service Request Using
Preloaded Boot Data

84-^ Gs ^Ye - Any Booi Data \ N M" Root ata S. ox. Not Requested)
Lirrig Boot eaded

^ Frocess

Retrieve Requested Boot
3ta for Boot evice Boot Data Previously

Specified in list

Update List to
Data Not Previously
Specified in List

“BOOT DATA” MUST BE ASSOCIATED WITH “BOOT DATA LIST”
PRIOR TO “LOADING” INTO MEMORY

81

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 102

“BOOT DATA” MUST BE ASSOCIATED WITH “BOOT DATA LIST”
PRIOR TO “LOADING” INTO MEMORY

82

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 103

DR. NEUHAUSER ADMITS CLAIMS REQUIRE “BOOT DATA” BE
ASSOCIATED WITH “BOOT DATA LIST” PRIOR TO “LOADING”

Dr. Neuhauser Transcript
(Ex. 2011) at 25:21-26:16, 38:9-18

83

DR. NEUHAUSER ADMITS CLAIMS REQUIRE “BOOT DATA” BE
ASSOCIATED WITH “BOOT DATA LIST” PRIOR TO “LOADING”

Dr. Neuhauser Transcript
(Ex. 2011) at 41:4-16 84

APPLE ASSERTS SUKEGAWA’S MANAGEMENT INFORMATION TABLE
3A IS THE CLAIMED “BOOT DATA LIST”

‘1737 Petition at 12

85

Sukegawa at Figure 1

Sukegawa at Figure 1

Sukegawa at 5:5-9

SUKEGAWA’S TABLE 3A NEVER LOADS “BOOT DATA … THAT IS
ASSOCIATED WITH A BOOT DATA LIST”

SUKEGAWA’S TABLE 3A ONLY MANAGES FLASH MEMORY
UNITS 10A AND 10C—NOT HARD DRIVE 2:

86

SUKEGAWA’S TABLE 3A NEVER LOADS “BOOT DATA … THAT
IS ASSOCIATED WITH A BOOT DATA LIST”

SUKEGAWA’S ALLEGED “BOOT DATA” (CONTROL INFORMATION FILES) IS ASSOCIATED WITH
TABLE 3A ONLY AFTER THE DATA HAS BEEN LOADED INTO FLASH FROM THE BOOT DEVICE:

Sukegawa at 5:41-53

87

Sukegawa at Figure 1

SUKEGAWA’S TABLE 3A NEVER LOADS “BOOT DATA … THAT IS
ASSOCIATED WITH A BOOT DATA LIST”

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 107

88

SETTSU’S FUNCTION DEFINITION FILE IS NOT RELATED TO TABLES
LIKE SUKEGAWA’S TABLE 3A

Settsu at Figure 18

89

SETTSU DOES NOT RENDER OBVIOUS “LOADING BOOT DATA …
THAT IS ASSOCIATED WITH A BOOT DATA LIST”

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 109

90

ZWIEGINCEW’S SCENARIO FILE IS NOT RELATED TABLES LIKE
SUKEGAWA’S TABLE 3A

91

Zwiegincew at Figure 2

ZWIEGINCEW DOES NOT RENDER OBVIOUS “LOADING BOOT DATA …
THAT IS ASSOCIATED WITH A BOOT DATA LIST”

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 111

92

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

CLAIM 14 REQUIRES “ACCESSING BOOT DATA … ASSOCIATED
WITH A BOOT DATA LIST”

93

‘862 Patent at Claim 14

LIKE “LOADING” ELEMENT, SUKEGAWA DOES NOT DISCLOSE CLAIM 14’S
“ACCESSING BOOT DATA … THAT IS ASSOCIATED WITH A BOOT DATA LIST”

Dr. Back ‘1738 Declaration (Ex. 2008) at ¶ 107

APPLE ARGUES THAT SUKEGAWA ALONE DISCLOSES CLAIM 14’S “ACCESSING” STEP

94

95

IPR2016-01737, -01738 ISSUE
SUKEGAWA DOES NOT DISCLOSE CLAIM 14’S

“ACCESSING BOOT DATA” PRIOR TO “LOADING”

IPR2016-01737 -01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE CLAIM 14’S

"ACCESSING BOOT DATA" PRIOR TO "LOADING”

95

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

‘862 Patent at Claim 14

CLAIM 14 DIFFERENTIATES BETWEEN ACCESSING UNLOADED BOOT
DATA AND ACCESSING LOADED BOOT DATA

96

CLAIM 14 REQUIRES “ACCESSING BOOT DATA” PRIOR TO
“LOADING THE BOOT DATA”

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 100

97

APPLE ASSERTS SUKEGAWA “ACCESSING BOOT DATA” ONLY AFTER
IT HAS BEEN LOADED INTO FLASH MEMORY 1

‘1738 Petition at 31-32

98

SUKEGAWA’S HOST SYSTEM ACCESSES ALLEGED “BOOT DATA” AFTER
THAT DATA HAS BEEN LOADED INTO FLASH MEMORY 1

99

Sukegawa at Figure 1

DR. NEUHAUSER CONCEDES SUKEGAWA ONLY ACCESSES BOOT DATA
AFTER IT HAS BEEN LOADED INTO FLASH MEMORY 1

Dr. Neuhauser ‘1738 Declaration (Ex. 1003) at ¶ 429

100

DR. NEUHAUSER CONCEDES SUKEGAWA ONLY ACCESSES BOOT DATA
AFTER IT HAS BEEN LOADED INTO FLASH MEMORY 1

Dr. Neuhauser ‘1738 Declaration (Ex. 1003) at ¶ 430

101

Sukegawa at Figure 1

SUKEGAWA FAILS TO DISCLOSE CLAIM 14’S “ACCESSING BOOT DATA”
PRIOR TO “LOADING” AND “SERVICING” STEPS

Dr. Back ‘1738 Declaration (Ex. 2008) at ¶ 102

102

IPR2016-01737, -01738 ISSUE
SUKEGAWA DOES NOT DISCLOSE CLAIM 19’S “UTILIZING

THE STORED ADDITIONAL PORTION OF [OS]”

103

IPR2016-01737 -01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE CLAIM 19’S "UTILIZING

THE STORED ADDITIONAL PORTION OF [OS]"

103

‘862 CLAIM 9 REQUIRES UTILIZING STORED ADDITIONAL OS DATA TO
FURTHER PARTIALLY BOOT THE SYSTEM (‘1738 IPR)

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.
104

‘862 Patent at Claim 9

APPLE ASSERTS SUKEGAWA’S FILE SWAPPING MEETS CLAIM 9’S
“UTILIZING” STEP

‘1738 Petition at 24

105

SUKEGAWA SWAPS APPLICATION PROGRAM DATA IN AND OUT OF
MAIN MEMORY RAM 23 AFTER SYSTEM BOOT-UP

Sukegawa at Figure 2

106

SUKEGAWA SWAPS APPLICATION PROGRAM DATA IN AND OUT OF
MAIN MEMORY RAM 23 AFTER SYSTEM BOOT-UP

Sukegawa at 7:66-8:6

Sukegawa at 1:20-24

107

SUKEGAWA’S FILE SWAPPING DOES NOT RELATE TO CLAIM 9’S
“UTILIZING” STEP

Dr. Back ‘1738 Declaration (Ex. 2008) at ¶ 134

108

SUKEGAWA’S FILE SWAPPING DOES NOT RELATE TO CLAIM 9’S
“UTILIZING” STEP

Dr. Back ‘1738 Declaration (Ex. 2008) at ¶ 135

109

IPR2016-01737, -01738 ISSUE
SUKEGAWA DOES NOT DISCLOSE “BOOT DATA”

WITH “PROGRAM CODE ASSOCIATED WITH … AN
APPLICATION PROGRAM”

110

IPR2016-01737 -01 738 ISSUE

SUKEGAWA DOES NOT DISCLOSE "BOOT DATA"

WITH "PROGRAM CODE ASSOCIATED WITH AN

APPLICATION PROGRAM"

110

‘862 CLAIMS 17, 29, 53, 65, 77, AND 89 REQUIRE THE “BOOT DATA” INCLUDE
PROGRAM CODE ASSOCIATED WITH AN APPLICATION PROGRAM (‘1737, ‘1738 IPRS)

US 8,880,862 B2
27

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,
wherein the loading, the accessing, and the decompressing

occur within a period of time which is less than a time to
access the boot data from the first memory if the boot
data was stored in the first memory in an uncompressed
form.

6. A system comprising:
a processor;
a memory; and
a second memory configured to store boot data in a com

pressed form for booting the system and a logic code
associated with the processor,

wherein the processor is configured:
to load a portion of the boot data in the compressed form

that is associated with a boot data list used for booting
the system into the first memory,

to access the loaded portion of the boot data in the
compressed form,

to decompress the accessed portion of the boot data in
the compressed form at a rate that decreases a boot
time of the system relative to booting the system with
uncompressed boot data, and

to update the boot data list.
7. The system of claim 6, further comprising:
a data compression engine, coupled to the second memory,

configured to compress the portion of the boot data to
provide the portion of the boot data in the compressed
form; and

a data compression encoder, coupled to the data compres
sion engine, configured to compress additional boot
data, the additional boot data not being associated with
the boot data list.

8. A method of loading an operating system for booting a
computer system, comprising:

storing a portion of the operating system in a compressed
form in a first memory;

loading the portion of the operating system from the first
memory to a second memory, the portion of the operat
ing system being associated with a boot data list;

accessing the loaded portion of the operating system from
the second memory in the compressed form;

decompressing the accessed portion of the operating sys
tem to provide a decompressed portion of the operating
system;

utilizing the decompressed portion of the operating system
to at least partially boot the computer system; and

updating the boot data list,
wherein the portion of the operating system is accessed and

decompressed at a rate that is faster than accessing the
loaded portion of the operating system from the first
memory if the portion of the operating system was to be
stored in the first memory in an uncompressed form.

9. The method of claim 8, further comprising:
compressing an additional portion of the operating system

that is not associated with the boot data list; and
storing the additional portion of the operating system in the

first memory, and
wherein the utilizing comprises:

utilizing the stored additional portion of the operating
system to at least further partially boot the computer
system.

10. The method of claim 9, wherein the compressing com
prises:

compressing the additional portion of the operating system
with a data compression encoder.

10

15

25

30

35

40

45

50

55

60

65

28
11. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device into a memory
upon initialization of the computer system;

accessing the loaded boot data in compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form;

utilizing the decompressed boot data to load at least a
portion of the operating system for the computer system;
and

updating the boot data list.
12. The method of claim 11, further comprising:
compressing boot data that is not associated with the boot

data list with a data compression encoder.
13. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
loading boot data in a compressed form that is associated

with a boot data list from a boot device;
accessing the loaded boot data in the compressed form;
decompressing the accessed boot data in the compressed

form at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data in an uncompressed form; and

updating the boot data list.
14. A method for providing accelerated loading of an oper

ating system in a computer system, comprising:
accessing boot data for booting the computer system,

wherein a portion of the boot data is in a compressed
form and is associated with a boot data list;

loading the boot data into a memory; and
servicing a request for the boot data from the computer

system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela
tive to loading the operating system utilizing the boot
data in an uncompressed form; and

updating the boot data list.
15. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system.
16. The method of claim 14, wherein the operating system

comprises:
a plurality of files.
17. The method of claim 14, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
18. The method of claim 17, wherein the application pro

gram comprises:
a plurality of files.
19. The method of claim 14, wherein the request for the

boot data comprises:
a request to access boot data that is not associated with the

boot data list, and wherein the updating comprises:
associating the accessed boot data that is not associated

with the boot data list to the boot data list.
20. The method of claim 14, wherein the updating com

prises:
disassociating non-accessed boot data from the boot data

list.

111

‘862 Patent at Claim 17

SUKEGAWA USES A USER INTERFACE TO ACCESS APPLICATION
PROGRAM CONTROL INFORMATION FILES FROM FLASH

112

Sukegawa at Fig. 3

SUKEGAWA’S APPLICATION PROGRAM CONTROL INFORMATION
IS NOT “BOOT DATA”

113

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 82

SUKEGAWA’S “BOOT DATA” DOES NOT INCLUDE CODE ASSOCIATED
WITH AN APPLICATION PROGRAM

114

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 124

IPR2016-01737, -01738 ISSUE
COMBINATION OF SUKEGAWA AND DYE IS

IMPROPER

115

IPR2016-01737 -01738 ISSUE

COMBINATION OF SUKEGAWA AND DYE IS

IMPROPER

115

DYE DISCLOSES A COMPRESSION ENGINE IN A FLASH MEMORY
CONTROLLER (‘1737, ‘1738 IPRS)

116

Dye at Figure 3

CEFMC MEANS “COMPRESSION ENHANCED
FLASH MEMORY CONTROLLER “

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (‘1737, ‘1738 IPRS)

117

‘1737 Petition at 16

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (‘1737, ‘1738 IPRS)

118

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 114

DR. BACK’S OPINION REGARDING THE COMBINATION
OF SUKEGAWA AND DYE:

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (‘1737, ‘1738 IPRS)

119

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 114

DR. BACK’S OPINION REGARDING THE COMBINATION
OF SUKEGAWA AND DYE:

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (‘1737, ‘1738 IPRS)

120

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 115

Dr. Neuhauser Transcript (Ex. 2026) at 97:4-23; see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO COST AND
COMPLEXITY ISSUES (‘1737, ‘1738 IPRS)

121

AS REALTIME ARGUES IN ITS RESPONSES, DR. NEUHAUSER STATES DYE’S
TECHNIQUE PRESENTS COMPLEXITY ISSUES:

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO
COMPLEXITY ISSUES (‘1737, ‘1738 IPRS)

Dr. Neuhauser Transcript (Ex. 2026) at 97:24-98:10; see also ‘1737 Patent
Owner Response at 58-59, ‘1738 Patent Owner Response at 61-62

122

AS REALTIME ARGUES IN ITS RESPONSES, DR. NEUHAUSER STATES
DYE’S TECHNIQUE PRESENTS COMPLEXITY ISSUES:

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO
COMPLEXITY ISSUES (‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2027) at ¶ 50; see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

123

AS REALTIME ARGUES IN ITS RESPONSES, DR. BACK STATES DYE’S
TECHNIQUE PRESENTS COMPLEXITY ISSUES:

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO
COMPLEXITY INCREASES (‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2027) at ¶ 46; see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

124

AS REALTIME ARGUES IN ITS RESPONSES, DR. BACK STATES DYE’S
TECHNIQUE PRESENTS COMPLEXITY ISSUES:

BURROWS DISCOURAGES USE OF DYE’S COMPRESSION TECHNIQUE TO
ACCELERATE BOOT-UP (‘1737, ‘1738 IPRS)

Burrows at 20 (Table 3)

DYE’S ONLY COMPRESSION TECHNIQUE USES LZ ENCODING. (‘1737 PET. AT 49.)

BURROW SPECIFIES USING LZ COMPRESSION SLOWS BOOT-UP VERSUS USING NO
COMPRESSION:

125

POSITA WOULD NOT INCORPORATE SETTSU’S COMPRESSION TECHNIQUE
INTO SUKEGAWA (‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶¶ 120-21

126

POSITA WOULD NOT INCORPORATE ZWIEGINCEW’S COMPRESSION
TECHNIQUE INTO SUKEGAWA (‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 122

127

IPR2016-01737, -01738, -01739 ISSUE
DYE DOES NOT RENDER OBVIOUS A “PLURALITY

OF ENCODERS”

128

|PR2016-O1737 -O1738 -O1739 ISSUE

DYE DOES NOT RENDER OBVIOUS A "PLURALITY

OF ENCODERS"

128

US 8,880,862 B2
29

21. The method of claim 14, further comprising:
maintaining the boot data list.
22. The method of claim 14, wherein the accessing com

prises:
accessing the boot data from a non-volatile memory.
23. The method of claim 1, wherein the portion of the boot

data in the compressed form represents a plurality of files.
24. The method of claim 1, wherein the portion of the boot

data in the compressed form comprises:
a program code associated with the operating system.
25. The method of claim 1, further comprising:
compressing the portion of the boot data with a compres

sion encoder to provide the portion of the boot data in the
compressed form.

26. The method of claim 1, wherein the decompressing
comprises:

decompressing the accessed portion of the boot data in the
compressed form utilizing a decompression decoder.

27. The method of claim 1, wherein the memory com
prises:

a physical memory.
28. The method of claim 1, wherein the operating system

comprises:
a plurality of files.
29. The method of claim 1, wherein the boot data com

prises:
a program code associated with the operating system and

an application program.
30. The method of claim 29, wherein the application pro

gram comprises:
a plurality of files.
31. The method of claim 1, wherein the accessing com

prises:
accessing the loaded portion of the boot data in the com

pressed form via direct memory access.
32. The method of claim 1, wherein a form of dictionary

encoding was utilized to encode the portion of the boot data in
the compressed form.

33. The method of claim 1, wherein Lempel–Ziv encoding
was utilized to encode the portion of the boot data in the
compressed form.

34. The method of claim 1, wherein a plurality of encoders
was utilized to encode the portion of the boot data in the
compressed form.

35. The method of claim 5, wherein the compressed boot
data represents a plurality of files.

36. The method of claim 5, wherein the compressed boot
data comprises:

a program code associated with an operating system of the
computer system.

37. The method of claim 5, further comprising:
compressing the boot data to provide the boot data in the

compressed form.
38. The method of claim 5, wherein the decompressing

comprises:
decompressing the accessed compressed boot data with a

decompression decoder.
39. The method of claim 5, wherein the loading comprises:
loading the stored compressed boot data from the first
memory to a second memory, and wherein the second
memory comprises:

a physical memory.
40. The method of claim 36, wherein the operating system

comprises:
a plurality of files.

5

10

15

25

30

35

40

45

50

55

60

65

30
41. The method of claim 5, wherein the compressed boot

data comprises:
a program code associated with an operating system of the

computer system and an application program.
42. The method of claim 41, wherein the application pro

gram comprises:
a plurality of files.
43. The method of claim 5, wherein the accessing com

prises:
accessing the loaded compressed boot data via direct
memory access.

44. The method of claim 5, wherein a form of dictionary
encoding was utilized to encode the compressed boot data.

45. The method of claim 5, wherein Lempel–Ziv encoding
was utilized to encode the compressed boot data.

46. The method of claim 5, wherein a plurality of encoders
was utilized to encode the compressed boot data.

47. The system of claim 6, wherein the boot data in the
compressed form represents a plurality of files.

48. The system of claim 6, wherein the boot data in the
compressed form comprises:

a program code associated with an operating system.
49. The system of claim 6, further comprising:
an encoder configured to compress the boot data to provide

the boot data in the compressed form.
50. The system of claim 6, further comprising:
a decoder configured to decompress the boot data in the

compressed form.
51. The system of claim 6, wherein the first memory com

prises:
a physical memory.
52. The system of claim 6, wherein the boot data the com

pressed form comprises:
a plurality of files.
53. The system of claim 6, wherein the boot data in the

compressed form comprises:
a program code associated with an operating system of the

system and an application program.
54. The system of claim 53, wherein the application pro

gram comprises:
a plurality of files.
55. The system of claim 6, wherein the processor is further

configured to access the loaded portion of the boot data in the
compressed form from the first memory via direct memory
aCCCSS,

56. The system of claim 6, wherein the processor is further
configured to utilize a form of dictionary encoding to encode
a portion of the boot data to provide the portion of the boot
data in the compressed form.

57. The system of claim 6, wherein the processor is further
configured to utilize Lempel–Ziv encoding to encode a por
tion of the boot data to provide the portion of the boot data in
the compressed form.

58. The system of claim 6, further comprising:
a plurality of encoders configured to encode the boot data

in the compressed form.
59. The method of claim8, wherein the operating system in

the compressed form represents a plurality of files.
60. The method of claim8, wherein the operating system in

the compressed form comprises:
program code associated with the operating system.
61. The method of claim 8, further comprising:
compressing a portion of the operating system to provide

the portion of the operating system in the compressed
form.

62. The method of claim 8, wherein the decompressing the
accessed first portion comprise:

‘862 CLAIMS 34, 46, 58, 70, 82, 94 INCLUDE A PLURALITY OF
ENCODERS TO ENCODE BOOT DATA (‘1737, ‘1738, ‘1739 IPRS)

129

‘862 Patent at Claim 34

US 8,880,862 B2
Sheet 12 of 13

Nov. 4, 2014
U.S. Patent

‘862 SPECIFICATION DISCLOSES A PLURALITY OF ENCODERS EACH
ENCODING ITS OWN DATA STREAM

130

‘862 Patent at Figure 9

DYE DISCLOSES A SINGLE ENCODER THAT USES A “PARALLEL
ALGORITHM” (‘1737, ‘1738 IPRS)

131

Dye at Figure 10B

Dye at 18:60-63

DYE DISCLOSES A SINGLE ENCODER THAT USES A “PARALLEL
ALGORITHM” (‘1737, ‘1738 IPRS)

132

Dye at Figure 10B

Dye at 19:12-17

POSITA WOULD UNDERSTAND DYE DISCLOSES A SINGLE ENCODER
(‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 130

133

DYE’S FIGURE 13 SHOWS MODIFIED ALGORITHM OF A SINGLE ENCODER
(‘1737, ‘1738 IPRS)

Dye at Figure 13

134

DYE’S FIGURE 15 IS AN EXAMPLE OF TABLE USED DURING COMPRESSION OF
A SINGLE ENCODER (‘1737, ‘1738 IPRS)

Dye at Figure 15

135

DYE’S FIGURES 13 AND 15 SHOW LOGIC OF A SINGLE ENCODER
(‘1737, ‘1738 IPRS)

Dr. Back ‘1737 Declaration (Ex. 2008) at ¶ 132

136

APPLE’S PETITION SHOWS A SINGLE COMPRESSION ENGINE
(‘1737, ‘1738 IPRS)

137

‘1737 Petition at 14

APPLE’S “ENCODER” DEFINITION SHOWS THAT ENCODING COMPONENTS
ARE NOT A PLURALITY OF ENCODERS

138

Microsoft Computer Dictionary
(Ex. 1041) at 4

DICTIONARY SHOWS WINDOWS MEDIA ENCODER AND MP3 ENCODER ARE EXAMPLES OF
“ENCODERS”—NOT INDIVIDUAL ENCODING COMPONENTS WITHIN AN ENCODER:

IPR2016-01737, -01738, -01739 ISSUE
REALTIME’S MOTIONS TO EXCLUDE EVIDENCE

139

Exhibit 1038 is a continuation-in-part of Exhibit
1010.

Exhibit 1038 should be excluded because Apple
offers it to prove the truth of the matter being
asserted regarding the disclosures of Zwiegincew
(Exhibit 1010)—this constitutes impermissible
hearsay per FRE 802 without an applicable
exception.

Apple failed to establish that the information
cited in Exhibit 1038 was publicly available and
accessible prior to the ‘862 priority date.

Exhibit 1038 does not tend to make a fact of
consequence more or less probable than it would
be without this exhibit, thus it should be excluded
per FRE 401, 402.

EX. 1038 SHOULD BE EXCLUDED AS HEARSAY AND IRRELEVANT
(‘1737, ‘1738, ‘1739 IPRS)

140

EXS. 1048-1049 SHOULD BE EXCLUDED AS LACKING AUTHENTICATION,
HEARSAY, AND IRRELEVANT (‘1737, ‘1738 IPRS)

Exhibits 1048 and 1049 appear to be websites
that Apple failed to properly authenticate—
thus each should be excluded per FRE 901, 902.

Exhibits 1048 and 1049 should be excluded
because Apple offers each to prove the truth of
the matter being asserted regarding the relative
cost of RAM versus flash memory—this
constitutes impermissible hearsay per FRE 802
without an applicable exception.

Dr. Neuhauser does not rely upon Exhibits
1048 and 1049 and each is published years
after the ‘862 filing date. As such, the exhibits
should be excluded as irrelevant per FRE 401,
402 because each does not tend to make a fact
of consequence more or less probable than it
would be without these exhibits.

141

