PATENT OWNER REALTIME DATA
DEMONSTRATIVE EXHIBITS

Apple Inc. v. Realtime Data, LLC d/b/a/ IXO
Cases IPR2016-01737, -01738, -01739
U.S. Patent No. 8,880,862

REALTIME 2032-A

Table of Contents

|IPR2016-01739 ISSUES
"BOOT Data LISt CONSTIUCTION coinietieiteeeieeeereeeeeeesseneseenssesssessssesnsenenss 6

Settsu and Zwiegincew Do Not Render Obvious “Updating

the Boot Data LiSt” ...t 19
Settsu and Zwiegincew Do Not Render Obvious “Updating the

Boot Data List in Response to the Utilizing” Stepuuvveeeeeenn..e. 36
“Non-Accessed Boot Data” Constructionccccceeveeeeccccnrnneeeeeeeeenn, 42

Settsu and Zwiegincew Do Not Render Obvious “Disassociating
Non-Accessed Boot Data from the Boot Data List”.....c.ccovvuneen..n. 50

Table of Contents

IPR2016-01737, -01738 ISSUES
Sukegawa and Zwiegincew Do Not Render Obvious a “Boot

Data LISt oo 57
Sukegawa Does Not Disclose “Disassociating Non-Accessed

Boot Data from the Boot Data List”ccccoieeeiiicciiieeee e, /2
Sukegawa Does Not Disclose “Loading [or Accessing] Boot

Data ... That is Associated with a Boot Data List”ccccvveeeeeen, 79
Sukegawa Does Not Disclose Claim 14's “Accessing Boot Data”

Prior t0 “LO@ding ...ttt s e 96
Sukegawa Does Not Disclose Claim 19's “Utilizing the Stored

AdAIitioNal POrtion Of [OS] e eeieeeeteeeeeeeeseeeeseeneesseneessnnnnss 104
Sukegawa Does Not Disclose “Boot Data” with “Program Code

Associated with ... an Application Program”..........cccccovvvvveeeeeenn, 11

Combination of Sukegawa and Dye Is Improper.......cccccecuvnneenn.. 116

Table of Contents

IPR2016-01/37, -01738, -01739 ISSUES

Dye Does not Render Obvious a “Plurality of Encoders”............

Realtime’'s Motions to Exclude Evidence

a2y United States Patent
Fallon et al.

Inventors:
John Buck. Ocmns 1
F. Pickel. Bethpage. NY (US);
J. McErlain, New York, NY (US)
Assignee: Realtime Data, LLC, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this
patent i tended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject 10 a terminal dis-
claimer.
Appl. No.: 13/118,122
Filed May 27, 2011
Prior Publication Data
US 2011/0231642 Al Sep. 22, 2011
Related U.S. Application Data

{63) Continuation of application No. 11/
Oct. 19, 2006, now
continuation of application No. 09/776,267, filed on
Feb. 2, 2001, now Pat. No. 7,181,608,

(60) Provisional application No. 60/180,114, filed on Feb.
3, 2000.
{(51) Int.CL
GO6F 15/177 ’(‘K'V} 01)
GO6F 924
GO6F 12/00
GO6F 3/06 2 (0
GOGF 9/44 {2006.01)
GUO6F 9/445 {2006.01)
HO3M 7730 (2006.01)
GO6F 1/24 (2006.01)
U.S. ClL.
CPC GO6F 3/0613 (2013.01). GO6F 3/0638
013.01): GO6F 3/0658 (2013.01). GO6F
013.01): GO6F 9/4401 (2013.01):
GOG6F 9/4406 (2013.01). GO6F 9/445
(2013.01); HO3M 7/30 (2013.01). GOGF 1/24
(2013.01)

US008880862B2

(10) Patent No.: US 8,880,862 B2
45) Date of Patent: *Nov. 4, 2014

l lcld of Classification \« arsh
USPC
See application file for compl

References Cited
U.S. PATENT DOCUMENTS

3394352 A 7/1968 Wernikoff et al.
3.490,690 A 970 Apple et al.

(Continued)
FOREIGN PATENT DOCUMENTS

4127518 21992

0164677 1271985
{Continued)

OTHER PUBLICATIONS

“A-T Financial Offers Manipulation, Redistribution of Ticker I1I",
Inside Market Dara, vol. 4 No. 14, Sep. 5, 1989, | page

(Continued)

I'rlm.lr.. Examiner — Suresh Suryawanshi
igent, or Firm — Steme. Kessler, Goldstein

ABSTRACT

\\\Km\ and muhu\i\ for pm ding Auuluutui Ioadmu of

e,]n one l\pLL a muhnd

ng of an operating system

: uuiuluiuingu list of'boot data used for

hooting a computer system; preloading the boot data upon

initialization of the computer system; and servicing requests

for boot data from the computer system using the prdtudcd

boot d In another aspect. a method for providing acceler-

ated launching of an application program comprises llu steps

of: maintaining a list of application data associated with an

application program; preloading the application data upon

launching the application program; and servicing requests for

application data from a computer system using the preloaded
application data.

117 Claims, 13 Drawing Sheets

IPR2016-01737
Independent Claims 1, 6, 13

Dependent Claims 3-4, 7,
23-34, 47-58, 83-96, 99-100,
105-111, 113, 116

Motion to Amend

IPR2016-01738
Independent Claims 8, 11, 14

Dependent Claims 9-10, 15-22,
59-82, 101-104, 114-115, 117

Motion to Amend

IPR2016-01739
Independent Claim 5

Dependent Claims 35-46,
97-98, 112

No Motion to Amend

“BOOT DATA LIST" CONSTRUCTION

11. A method for providing accelerated loading of an oper-
ating system 1n a computer system, comprising;:

loading boot data 1n a compressed form that 1s associated
with a boot data list from a boot device into a memory
upon mitialization of the computer system;

accessing the loaded boot data 1n compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data 1n an uncompressed form;

utilizing the decompressed boot data to load at least a

portion of the operating system for the computer system:;
and

updating the boot data list.

‘862 Patent at Claim 11
6

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST”
USED TO IDENTIFY AND LOAD BOOT DATA

(s

70““\5 ¥

Receive Request for
Boot Data

71~

Retrieve Requested Boot
Data from Disk

72“«% ¥+

of Retrieved Boot Data in a List

Record Data Block Number i

¥

A

73~ o
T Boot TS
Process ~~..No

- Complete

Store List

¥
A

‘862 at Figure 7A

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto-
matic process that requires no input from the user. With this

technique, the data storage controller maintain a list compris-

ing the data associated with the first series of data requests
received by the data storage controller by the host system

after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache

memory (step 71)._For each requested data block. the data

storage controller will record the requested data block num-
ber 1n a list (step 72). The data storage controller will record

the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process 1s complete (affirmative determination

in step 73), the data storage controller will store the data list

on the boot device (or other storage device) (step 74).

‘862 at 21:24-42

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST"
USED TO IDENTIFY AND LOAD BOOT DATA

Prefetoh Data Blocks

SpeCIfled in Llst

Commencs Boot
HProcess

‘862 at Figure 7B

Then, upon each subsequent power-on/reset (affirmative
result in step 73), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (1.e., the data associated Wlﬂl the
expected data requests) into the onboard cache memo

77). It1s to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro-
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).

‘862 at 21:43-52

‘862 SPECIFICATION DISCLOSES “BOOT DATA LIST"

USED TO IDENTIFY AND LOAD BOOT DATA

In addition, the data storage
controller would update the boot data list by recording any
changes 1n the actual data requests as compared to the
expected data requests already stored in the list (step 83).

‘862 at 21:65-22:1

POSITA WOULD UNDERSTAND “BOOT DATA LIST"

IDENTIFIES AND LOADS BOOT DATA INTO MEMORY

56. Specifically, based on the ‘862 Patent, a POSITA would have
understood that the recited “boot data list” refers to a record used to 1dentify and
load boot data into memory. As such, a POSITA would have understood that this is

a record of boot data separate from the boot data itself. Notably, the specification

Dr. Back ‘1739 Declaration (Ex. 2008) at §| 56

“BOOT DATA LIST" MEANS “RECORD USED TO

IDENTIFY AND LOAD BOOT DATA INTO MEMORY"

A. Proper Interpretation of “Boot Data List”

The term “boot data list.” as used in claims 1-9, 11-14, 19-21, 95-106. and

a into mem 01}'

record used to 1dentify and load boot dat

= —

111-117, should mean “

Indeed. this construction is consistent with the claims and the intrinsic record, and

1s the broadest reasonable interpretation in light of the specification.

Realtime ‘1739 Response at 15

11

DR. NEUHAUSER ADMITS THAT “BOOT DATA

LIST” USED TO IDENTIFY BOOT DATA TO LOAD

Q. Based on the teachings of the '862 patent,
for something to constitute a boot data list, does
1t have to allow the data storage controller to
know what data to preload from the boot device?
MR. HUGUENIN-LOVE: Object to form.
THE WITNESS: Yes, I think 1t does 1n some

way.

Dr. Neuhauser Transcript (Ex. 2024) at 87:9-15

12

APPLE'S “BOOT DATA LIST" CONSTRUCTION IS DIVORCED FROM
THE ‘862 SPECIFICATION AND UNREASONABLY BROAD

APPLE ARGUES THAT EVERY OPERATING SYSTEM FILE IS
ITSELF A “BOOT DATA LIST™:

1 3:55-65, FIG.,
the file. a POSITA would have understood that an OS functional module file stored

on boot device 3 includes a list of data necessary for starting the OS — a boot data

list as described by the '862 Patent. Dec., §78 (citing Microsoft Press Computer

Dictionary defining “file” as **|a| complete, named collection of information, such
as a program, a set of data used by a program, or a user-created document” that
“binds a conglomeration of instructions ... into a coherent unit™).

‘1739 Petition at 22

APPLE'S “BOOT DATA LIST" CONSTRUCTION IS DIVORCED FROM

SPECIFICATION AND UNREASONABLY BROAD

POR, 25-27. However, Apple argued that Settsu’s files are themselves lists of boot

data and Realtime does not respond to this analysis.

Specifically, Realtime criticizes the definition of “file” cited by Apple, vyet
offers an alternative definition that aligns with Apple’s definition and argument.
Specifically, Apple’s definition confirmed that a file 1s a “collection of information.™
APPLE-1014, 3. Similarly, Realtime’s definition states that *“[a] file is a collection

of related information.” REALTIME-2012, 4. As Dr. Neuhauser explained, a list

1S an obvious representation for a collection of information and, thus, Settsu’s OS

files represent lists of boot data. APPLE-1003, 9977-79; APPLE-1031, 5:16-20;

Apple’s ‘1739 Reply at 9

14

‘862 CLAIMS AND SPECIFICATION DISTINGUISH BETWEEN

“BOOT DATA” AND “BOOT DATA LIST"

What is claimed 1s:
1. A method for providing accelerated loading of an oper-
ating system in a computer system, the method comprising:

loading a portion of boot data in a compressed form that 1s
associated with a portion of a boot data list for booting
the computer system into a memory;

accessing the loaded portion of the boot data 1n the com-
pressed form from the memory;

decompressing the accessed portion of the boot data 1n the
compressed form at a rate that decreases a boot time of
the operating system relative to loading the operating
system utilizing boot data 1n an uncompressed form; and

updating the boot data list,

wherein the decompressed portion of boot data comprises
a portion of the operating system.

‘862 Patent at Claim 1

CLAIM ELEMENTS LISTED SEPARATELY IN CLAIM ARE
DISTINCT COMPONENTS OF THE PATENTED INVENTION

FEDERAL CIRCUIT'S BECTON, DICKINSON DECISION:

“Where a claim lists elements separately, ‘the
clear implication of the claim language’ is that
those elements are distinct component(s]’ of the
patented invention.”

616 F.3d 1249, 1254 (Fed. Cir. 2010); see also HTC Corp. v. Cellular
Comm'ns Equip., LLC, IPR2014-01133, Paper 48 at 8-12 (PTAB Jan. 4, 2016)

16

APPLE'S “BOOT DATA LIST" CONSTRUCTION IS INCONSISTENT WITH

POSITA'S UNDERSTANDING

74. Nowhere 1n this definition does 1t state that a “file” includes a list of
its contents. To be sure. the term “file” 1s routinely defined without regard to its
contents. and there 1s no requirement that files include lists of their contents."
Indeed. a POSITA would have understood that files do not necessanly contamn a
list of their contents. More importantly. a POSITA would have understood that the
files to which Dr. Neuhauser refers in Settsu—object files created when the OS 1s
built or rebuilt—do not contain a list of their contents. For instance. OS kemels
are built 1n a way that eliminates the need for lists when loading the kernel into
memory. The addition and use of such lists would slow down their loading. The
kemel's object module contain only a header that says where to load it? A

POSITA would not consider a header—a single entity—to constitute a list.

Dr. Back ‘1739 Declaration (Ex. 2008) at 8 74

17

APPLE'S “BOOT DATA LIST" CONSTRUCTION IS INCONSISTENT WITH

POSITA'S UNDERSTANDING

76. Moreover. Dr. Neuhauser s assertion 1s mconsistent with how a
POSITA would have understood how a file relates to a “boot data list” and 1s an
unreasonably broad interpretation of this claam term. As described above in

Section VI.B.. “boot data list” means “record used to identify and load boot data

into memory. Based on this meaning. a POSITA would have understood that any

information listed internallyv to a file of “boot data 1s not a record used to identify

boot data. and therefore. 1s not a “boot data list. ™

Dr. Back ‘1739 Declaration (Ex. 2008) at § 76

18

IPR2016-01/739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER
OBVIOUS “UPDATING THE BOOT DATA LIST"

19

CLAIMS 5, 35-46, 97, 98, AND 112 ARE PATENTABLE OVER ‘1739
IPR GROUNDS 1-4

a2 United States Patent

Fallon et al.

AND METHODS FOR
RATED LOADING OF OPERATING
MS AND APPLICATION PROGRAMS
Inventors: James J. F: rmonk, NY
John B 0 3 Y

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
patent is subject 10 a terminal dis-
aimer.
ppl. No.: 13/118,122
Filed May 27, 2011
Prior Publication Data
US 2011/0231642 Al Sep. 22, 2011
Related US. Application Data
Continuation of application No. 11/551,211, filed on
Oct. 19, 2006, now N 112,619, which is a

continuation of appl . filed on
Feb. 2, 2001, now Pat, No. 7,181,608,

onal application No. 60/180,114, filed on Feb.

GO6F 15/177 2006.01)
GU6F 9/24 01)
GO6F 12/00

GO6F 3/06

GO6F 9/44

GU6F 9/445

4406 (2013.01): GO6,
01): HO3M 7/30(2013.0

(10) Patent No.:
45) Date of Patent:

US 8,880,862 B2
*Nov. 4, 2014

713/2: 71

on file for complete search history.
References Cited

U.S. PATENT DOCU!

(Continued)
iN PATENT DOCUMENTS
21992
1271985
{Continued)
OTHER PUBLICATIONS
Offers Manipulation, Redistribution of Ticker TIT",
et Dara, vol. 4 No. 14, Sep. §, 1989, |
(Continued)
Primary Examiner — Suresh Suryawanshi
Agent, or Firm — Sterne, Kessler, Goldstein

ABSTRACT

vading of
tem boot

maintaining a list of boot
ing the boot data upon

for boot from the computer p

boot data. In another aspect. a method for providing

ated launchi an application pro

of: maintaining a list of applic:

application program; preloading

launching the application program; and servicing reque
application data from a computer system using the preloaded
application da

117 Claims, 13 Drawing Sheets

Settsu, alone or in view of Zwiegincew,
fails to render obvious claim elements:

- “updating the boot data list" (cl. 5)

- “updating the boot data list in
response to the utilizing" (cl. 112)

- “disassociating non-accessed boot
data from the boot data list" (cl. 98)

20

CLAIM 5'S “UPDATING THE BOOT DATA LIST" ("1739 IPR)

5. A method for booting a computer system, the method
comprising;

storing boot data in a compressed form that 1s associated
with a portion of a boot data list 1n a first memory;

loading the stored compressed boot data from the first
memory;

accessing the loaded compressed boot data;

decompressing the accessed compressed boot data;

utilizing the decompressed boot data to at least partially
boot the computer system; and

updating the boot data list,

wherein the loading, the accessing, and the decompressing
occur within a period of time which is less than a time to
access the boot data from the first memory 1if the boot
data was stored 1n the first memory in an uncompressed
form.

‘862 Patent at Claim 5

SETTSU’'S OS MAIN BODY INCLUDES SEVEN OR

MORE MODULES ("1739 IPR)

1 2 o
s s ‘
v BOOT BLOCK
r \ "H MINI OS MODULE)
F/W
I(\“1(2)113)% - = S FILE SYSTEM 3
| (17 | SYSTEM CALLS k
17
. — 7\ PROCESSING MODULE
) BOOT
6 , 18 | (PROCESS MANAGEMENT) DEVICE
MEMORY Y1 MODULE g U
19 [COMMON MEMORY 1
| MANAGEMENT MODULE
0S MAIN < 20 | (" MESSAGE MANAGEMENT)
BODY | MODULE .
21 | (7 SIGNAL MANAGEMENT)
(MODULE o
22 | (™ VIRTUAL MEMORY 1
(| PROCESSING MODULE
\16 g (DEVICE DRIVER MODULE J

Settsu at Figure 5

SETTSU FAILS TO RENDER OBVIOUS

“"UPDATING THE BOOT DATA LIST" (‘1739 IPR)

78. Instead. a POSITA would have understood that most. if not all.

operating system updates would not change the list of OS modules needed to load
the first application program in Seftsu's system. which 1s all that 1s contained in

Settsu’'s “function defimition files.” For instance. if any of the modules shown in
Figure 17 were to be updated (the System Calls Processing Module, Process
Management Module, etc.). and if any subset of those modules were needed to
load the first application program. this subset would likely not change due to an OS

module update. Thus. the function definition file (the claimed “boot data list™

would not need to be quated during an oBerating system uEdate because 1its

contents would not change-
Dr. Back ‘1739 Declaration (Ex. 2008) at 9 78

23

EXAMINER CONSIDERED SETTSU DURING ORIGINAL
PROSECUTION, INCLUDING PASSAGES CITED BY APPLE

EXAMINER'S OFFICE ACTION:
Claims 1, 6-7,9, 12, 14-22, 25-30, 33, 37-48, 51, 55-606, 69, 73-84, 87, 91-102, 105, 109-
120, 123 and 127-134 are rejected under pre-AlIA 35 U.S.C. 102(e) as being anticipated by
Settsu et al (US Patent 6,374.353"; hereinafter Settsu).
0. As per claim 1, Settsu disclose a method for providing accelerated loading of an
operating system in a computer system, comprising:
maintaining a list of boot data for booting the computer system. wherein at least a portion

of boot data is associated with the list of boot data [col. 3, lines 56-59; required modules are

listed; col. 16, lines 26-30; col. 16, line 57 -- col. 17, line 20];

‘862 File History (Ex. 1002) at 306

EXAMINER SPECIFIED SETTSU DOES NOT TEACH OR SUGGEST
“UPDATING THE BOOT DATA LIST"

EXAMINER’S OFFICE ACTION REFERRING TO
ALLOWABLE CLAIM 22:

Allowable Subject Matter
Claims 2-4 and 22-24 are objected to as being dependent upon a rejected base claim. but
would be allowable if rewritten in independent form including all of the limitations of the base

claim and any intervening claims.

'nted) The method of claim 15, further compnsing:

‘862 File History (Ex. 1002) at 288, 411

25

ZWIEGINCEW SWAPS APPLICATION FILES USING

VIRTUAL MEMORY MANAGER

250
/
PAGE FAULT
» SCENARIO
’ DETECTOR
205
/ 1
APPLICATION APPLICATION PAGE FAULT PRE-FETCHER
PROGRAM PROGRAM fe—— —| SCENARIO
ULE MODULE ANALYZER 245,
MOD ™~ SCENARIO
FILE
210
[
VIRTUAL
MEMORY
210 '
Y/ T
l 215
VIRTUAL , Py
VEMORY
MEMORY MANAGEMENT [+ RAM
UNIT .
230
L
225 DISK
STORAGE [* 280
DISK DRIVE 245 p
SCENARIO 1 DEFRAGGER
265
4
FIG.2 COMPRESSOR/
o DECOMPRESSOR

Zwiegincew at Figure 2

ZWIEGINCEW DOES NOT RELATE TO COMPUTER

SYSTEM BOOT UP

Zwiegincew does not describe, or relate to, improving boot speed or prefetching of
pages expected during the boot process. Rather, a POSITA would have understood

that Zwiegincew’s teachings relate to managing virtual memory through swapping

data pages into RAM from disk memory and swapping data pages out of RAM into

disk Memory. Because the use of these technigues 1‘eguire the presence of a fully

initialized operating system kernel. they can be applied only after the operating

system kernel has booted up., and thus cannot relate to the accelerated loading of

the operating svstem kernel itself or to otherwise managing the boot-up process. As

such, a POSITA would not have considered Zwiegincew’s teachings relevant to “a

boot data list” or loading boot data to decrease boot time. Specifically, a POSITA

would have understood that Zweigincew’s teachings cannot be used to speed u

the loading of an operating system for the simple reason that Zwiegncew’s

techniques require the presence of a functioning operating system in order to work.

Dr. Back ‘1739 Declaration (Ex. 2008) at 9 82

ZWIEGINCEW DOES NOT RELATE TO COMPUTER
SYSTEM BOOT UP

85. Overall, a POSITA would have understood that Zwiegincew 1s not
concerned with and does not recogl_lize a Eroblem with slow boot sEeeds due to

hard page faults during_ the boot process. Zwiegincew, indeed. states in the

Background of the Invention that “there remains a need for a method and system

for improving the performance of an application program module —as opposed to

boot up processes— by reducing disk access time without burdening the

57

programmer.

Dr. Back ‘1739 Declaration (Ex. 2008) at 8 85

28

ZWIEGINCEW DOES NOT RELATE TO COMPUTER

SYSTEM BOOT UP
84. Regarding the last passage referenced by Dr. Neuhauser.

Zwiegincew s passage at 2:12-15 does not relate to solving slow boot times. This

passage begins by explaming “strategic ordering in which the order of pages

likely to be accessed “dunng typical usage of an application™ 1s determined. Here.

Zwieg,incew 1s not discussing acceleration of hard page faults during the boot
process of the OS 1itself Rather. this aEEroach refers to staning agglication
programs. The “strategic ordering” approach could indeed be useful just after boot.

1.e.. the boot [page fault] scenario.” but 1t would not be useful during boot. This

passage appears to be the only time Zwiegincew refers to system “boot.” or to
system start-up in general. Even here. however, the “strategic ordening referenced

in this passage relates to hard page faults caused by application programs. Dr.
Dr. Back ‘1739 Declaration (Ex. 2008) at 9 84

29

ZWIEGINCEW'S TECHNIQUE COULD NOT BE USED UNTIL SETTSU'S

VIRTUAL MEMORY MANAGER HAS BEEN ENABLED (‘1739 IPR)

1 2 4
: S BOOT BLOCK S
ROM ‘
-) 7. »—(MINI OS MODULE)
F/W
CODE B FILE SYSTEM 3
MODULE
(17| SYSTEM CALLS Cb
8 / T\ PROCESSING MODULE
4 X BOOT
6 , 18 PROCESS MANAGEMENT DEVICE
MEMORY Y1 MODULE
19 | 7

COMMON MEMORY
MANAGEMENT MODULE

L
|

MESSAGE MANAGEMENT
MODULE

SIGNAL MANAGEMENT
MODULE

0S MAIN /.20
BODY

VIRTUAL MEMORY
PROCESSING MODULE

DEVICE DRIVER MODULE

. [L.

BN

B
))))
FNERRT T N\

Settsu at Figure 5

DR. NEUHAUSER ADMITS THAT ZWIEGINCEW'S TECHNIQUE
REQUIRES AN ENABLED VIRTUAL MEMORY MANAGER

AS REALTIME ARGUES IN ITS RESPONSES, ZWIEGINCEW'S TECHNIQUE
REQUIRES AN ENABLED VIRTUAL MEMORY MANAGER:

Q. Is that what Zwiegincew teaches expressly,
doing that 1t way?

A. I don't think 1t says one way or the
other. It just says that you have -- basically,
Zwiegincew assumes that the virtual memo

available to 1t when 1t needs i1t. So 1n that

sense, 1t's enabled when 1t -- 1t certainly has to

be enabled by the time -- by the time you leave the
process 1n Zwiegincew or preloading, 1f you

Dr. Neuhauser Testimony (Ex. 2024) at 103:6-12; see also ‘1737 Patent
Owner Response at 15 & 38, ‘1738 Patent Owner Response at 14 & 36-37,
1739 Patent Owner Response at 31-32 & 35-36

31

DR. NEUHAUSER ADMITS THAT SETTSU'S VIRTUAL MEMORY
MANAGER IS NOT ENABLED UNTIL TRANSFERRING INTO MEMORY 2

AS REALTIME ARGUES IN ITS RESPONSE, SETTSU'S VIRTUAL MEMORY MANAGER
MODULE IS ENABLED AFTER IT HAS BEEN TRANSFERRED TO MEMORY 2:

Q. Before the OS main body module has moved
from boot device 3 into memory 2. are the modules

within the OS main body module enabled?

A. What do you mean by "enabled" here?

Q. Are they booted, loading and running?
MR. HUGUENIN-LOVE: Object to form.
THE WITNESS: I don't believe so.

Dr. Neuhauser Testimony (Ex. 2024) at 105:17-23; see also see also
1739 Patent Owner Response at /, 35-36

32

NO MOTIVATION EXISTS TO COMBINE SETTSU AND

ZWIEGINCEW

87. With respect to the motivation to combine Settsu and Zwiegincew, a

POSITA would have understood that hard page fault hand]ing does not apply to the

process of loading the operating system itself. Rather. page fault handling 1s

manager. which 1s necessarily available onlzr after the boot up _process.

Zwiegmcew confirms this fact, stating that “[1]n the context of a paging memory
system. a “page 1s defined as a fixed-size block of bytes whose physical address
can be changed via the MMU, working 1n conjunction with a Virtual Memory
Manager.”® This explains why “boot” is not discussed anywhere in Zwiegincew.
except in one passing reference in the background section, which however

indicates that application programs may cause page faults shortly after boot.

Dr. Back ‘1739 Declaration (Ex. 2008) at § 87

33

NO MOTIVATION EXISTS TO COMBINE SETTSU AND

ZWIEGINCEW

88. Moreover. Zwiegincew s page swappmg method. which requires an

mitialized virtual memory manager, 1s antithetical to Settsu's teachings. Settsu
teaches speeding up the boot process by dividing the OS mnto a mini-OS module
with some basic functionality., which then bootstraps the loading of the OS main

module. In Figures 3. 5. 12. and 17 of Settsu. this virtual memory processing

module 22 1s part of the OS main body module. For example, Settsu states with
89. Based on this description. a POSITA would have understood that the

virtual memory manager., which 1s need to implement Zwiegincew s page

swapping technique, 1s not available to use to speed up Settsu’s boot process since

it 1s part of the mam OS. For this simple reason, a POSITA could not have

combined Zwiegincew s updating of the scenano file with Settsu's purported boot

Dr. Back ‘1739 Declaration (Ex. 2008) at 99 88-89

34

EXAMINER CONSIDERED ZWIEGINCEW AND
SETTSU DURING ORIGINAL PROSECUTION

References Cited

6,317,714 11/2001 Del Castillo et al.
6,317,818 11/2001 Zwiegincew et al.
6,330,622 12/2001 Schaeter
6,333,745 12/2001 Shimomura et al.
6,336,153 1/2002 Izumida et al.
6,345,307 2/2002 Booth

6,356,589 3/2002 GGebler et al.
6,356,937 3/2002 Montville et al.
6,374,353 4/2002 Settsu et al.
6,388,584 5/2002 Dorward et al.
6,392,567 5/2002 Satoh

6,404,931 6/2002 Chen et al.
6,421,387 7/2002 Rhee

‘862 Patent at page 4

IPR2016-01739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER
OBVIOUS "UPDATING THE BOOT DATA LIST IN
RESPONSE TO THE UTILIZING" STEP

36

CLAIM 112'S “"UPDATING THE BOOT DATA LIST IN
RESPONSE TO THE UTILIZING" ("1739 IPR)

5. A method for booting a computer system, the method
comprising:
storing boot data 1n a compressed form that 1s associated
with a portion of a boot data list in a first memory;
loading the stored compressed boot data from the first

memory;
accessing the loaded compressed boot data;
decompressing the accessed compressed boot data;
utilizing the decompressed boot data to at least partially
boot the computer system; and
updating the boot data list,

112. The method of claim S, wherein the updating com
prises:
updating the boot data list 1n response to the utilizing.

‘862 Patent at claims 5& 112

37

ZWIEGINCEW DOES NOT SUGGEST UPDATING A BOOT DATALISTIN

RESPONSE TO UTILIZING DECOMPRESSED BOOT DATA

104. Specifically, a POSITA would not have considered Zwiegincew s

teachings toward scenario files or to fetching pages before hard page faults

relevant to claim 5's “utilizing”™ step nor to a “boot data list.” Indeed. Dr.

Neuhauser does not refer to Zwieg,inciew’s teaching,s when analyzing claam 3's

“utilizing” step (element 5.5).69

Dr. Back ‘1739 Declaration (Ex. 2008) at § 104

38

ZWIEGINCEW DOES NOT SUGGEST UPDATING A BOOT DATA LIST IN

RESPONSE TO UTILIZING DECOMPRESSED BOOT DATA
106. Likewise, a POSITA would not have considered refining
Zwieg__incew's scenario file meets “uRdating the boot data list 1n response to the
“utilizing” step of claim 5. Rather. a POSITA would have understood that the
claimed step of Tutilizing...boot data to at least partially boot the computer

system 1s unrelated to Zwiegincew s scenanio file. Dr. Neuhauser refers to

Zwiegimcew s description of pattern-based subsequent refinement of scenario files

. 70 .
as a suggestion to add or remove data based upon use. However. a POSITA

would not have considered Zwiegincew s pattern-based refinement relevant to

- -

claim 5's step of utiizing decompressed boot data for system boot-up nor to

updating a boot data list 1n response to the utiziling step. as required by claim 112.
Dr. Back ‘1739 Declaration (Ex. 2008) at §| 106

39

SETTSU’'S FUNCTION DEFINITION FILE IS NOT RELATED TO

APPLICATION FILE SWAPPING

3 2 3
m— BOOT BLOCK
i b 7 w(MINI OS MODULE)
F/W
CODE S__ FILE SYSTEM 3
MODEE ’ SYSTEM CALLS 1
% J 17 PROCESSING MODULE |
(-
4 S : y BOOT
] PROCESS MANAGEMENT
6 18 *—‘L MODULE r DEVICE
19| COMMON MEMORY i
| MANAGEMENT MODULE |
DO INS 20 |~ MESSAGE MANAGEMENT)
MEMORY (| MODULE)
21 | SIGNAL MANAGEMENT)
| MODULE y
22 |~ VIRTUAL MEMORY 3
| PROCESSING MODULE
\ 16\»(DEVICE DRIVER MODULE |
w,
70 |~ \
N APPLICATION MODULE
FUNCTION
DEFINITION ||} 71
FILE
\ <

Settsu at Figure 17

40

NO MOTIVATION EXISTS TO COMBINE SETTSU AND

ZWIEGINCEW TO RENDER OBVIOUS CLAIM 112

107. Dr. Neuhauser's analysis regarding claim 112 also does not explain
why or how a POSITA would have used Zwiegincew s teachings regarding page

swappmg and scenario files to modify Settsu's system to update the functional

definition file 71 (the alleged “boot data list). This 1s likely because Settsu's

function definition file (the purported “boot data list™ in Dr. Neuhauser's

hypothetical construction) would not be updated in response to the utilizing.

Dr. Back ‘1739 Declaration (Ex. 2008) at § 107

41

IPR2016-01/739 ISSUE
"NON-ACCESSED BOOT DATA" CONSTRUCTION

42

“NON-ACCESSED BOOT DATA” CONSTRUCTION

98. The method of claim 5, wherein the updating com-
Prises:
disassociating non-accessed boot data from the boot data
l1st.

‘862 Patent at claim 98

‘862 SPECIFICATION DISCLOSES “NON-ACCESSED BOOT DATA" IS
IDENTIFIED IN BOOT DATA LIST BUT NOT ACCESSED DURING BOOT

‘.,u-"ﬂ"i,,\“

B4 e O

e ~"Any Boot Data™
.-.-m'f"'__ Not r?.eq..iﬁ-&fﬁ‘d

ﬁ_
o Luring Ramjﬂ

N

Further, during the boot process, if no request 1s made b
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (aflirmative result

in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 83). Thereat-
ter, upon the next boot sequence, the data storage controller
215 NS b SUHOTE { @will not pre-load that data into local memory.

Specified in List 862 Patent at 22:5-11

n
l"J-..‘h.\.\\h\\.‘h.\h.\h\h\\\"L\'\p\\.‘\.‘\\\\\\\\\\\\'\‘k\‘ﬁ}‘“\“\“\\\\\\'\‘m‘\-‘\“m\“‘\‘liﬂﬂ\\\\
1

Yes
o ‘3’

| Updaﬁu List to Exclude
| Boot Data Frevicusly

‘862 Patent at Figure /B

44

POSITA WOULD UNDERSTAND “NON-ACCESSED BOOT DATA" IS

IDENTIFIED IN BOOT DATA LIST BUT NOT ACCESSED DURING BOOT

62. Based on the "862 Patent, a POSITA would have understood that the
recited “non-accessed boot data list” refers to boot data identified in the boot data
list that was not requested during system boot-up.” The 862 specification
discloses that “non-accessed boot data” 1s boot data that has been retnneved and

recorded in the boot data list during a previous system boot-up., but was not

requested during a subsequent system boot-up. For example, the specification

Dr. Back ‘1739 Declaration (Ex. 2008) at 9 62

45

“NON-ACCESSED BOOT DATA" MEANS “BOOT DATA IDENTIFIED IN THE

BOOT DATA LIST THAT WAS NOT REQUESTED DURING SYSTEM BOOT-UP”

66. Therefore, in my opmion. the broadest reasonable iterpretation of

“non-accessed boot data in light of the specification 1s “boot data identified in the

boot data list that was not requested during system boot-up.

Dr. Back ‘1739 Declaration (Ex. 2008) at §| 66

46

‘862 EMBODIMENT TOWARD QUICK LAUNCH OF APPLICATION
PROGRAMS IS USED AFTER SYSTEM BOOT-UP

Start
CD Update List tc Exclude

S Application Data Previously
Spemitd bl

.,

90~ 90 N\ A_m,,,«-"" Appllcatlon N
~ Launched

.

~

Recaly |

Applicatior Recaive Requeet for
wimlaun | Application Data Associated
with Launfhed Applicalion N |

Retrieve Req 97-
Application Data from Disc > T :
Prefetch Data Blocks

Specified in List

92 '\ k- 98"‘\

{ Record Data Block Number of : Receive Read Requests
* Retrieved Application - for Application Data
Data in a List 100~

b

¥

P .| _ Service Request Using
99 ST s S Preloaded Application Data

“ Requested ™ Yes

Y

\\’ Leumh o
- Frocess No

’ ?

Yes

94~ .

Store List

Appllcat|on Data
\‘\Ereloaded
f‘)
\. ‘

No

| Application Data from Disc

Retrieve Remainder of

102~

Update List to Include |
Application Data Not
Previously Specified in List

fff'\\'\
103~ " 15
- Any Preloaded\
" Boot Data “No

. Not Requested During
Application f“’ﬁf

- ?

Yes
104~ $
Update List to Exclude
Application Data Previously
~ Specified in List

‘862 Patent at Figures 8A-8B

47

APPLE MISCONSTRUES PROSECUTION HISTORY WHEN

CONSTRUING “NON-ACCESSED BOOT DATA"

Further. the mrtion of the 862 patent cited 1n Realtime s POR and the

prosecution history as supporting non-accessed boot data” includes references to a

“non-requested data block™ “[d]uring the application launch process.” APPLE-

1001, 22:12-23:26: APPLE-1002 (Part 1). 156-157.160-162. Thus. Realtime’'s own

Apple’s ‘1739 Reply at 6

48

APPLE RELIES ON PROSECUTION HISTORY WHEN
CONSTRUING “NON-ACCESSED BOOT DATA"

APPLE’S PROSECUTION EVIDENCE RELATES TO LOADING “APPLICATION DATA” (NOT
BOOT DATA) TO UPDATE AN “APPLICATION DATA LIST” (NOT A BOOT DATA LIST):

As a vet further non-limiting example, Applicant respectfully directs the
Examiner to % [0115] of the Specification that provides, with emphasis added:

[0115] Further, during the launch process, if no request 1s made by
the host computer for a data block that was pre-loaded into the
local memory of the data storage controller (affirmative result in
step 103), then the ar fication data list will be updated by
N’"?fﬂ“"lgf.'hc _m_:n—!‘uIl.y‘\!r'rf a/t{[gl_ﬁf(_{gili()ﬂ.‘ the list (step 104).

Therecafter, upon the next launch seguence for the given

application, the data storage controller will not pre-load that data
into local memory.

‘862 File History (Ex. 1002) at 157, 162

49

IPR2016-01739 ISSUE

SETTSU AND ZWIEGINCEW DO NOT RENDER
OBVIOUS “DISASSOCIATING NON-ACCESSED
BOOT DATA FROM THE BOOT DATA LIST"

50

ZWIEGINCEW DOES NOT SUGGEST “DISASSOCIATING

NON-ACCESSED BOOT DATA" ELEMENT

94. Fust. a POSITA would not have considered Zwiegincew s page
swappmg teachings relevant to the claimed boot-up method or to changes to
Zwiegincew s scenario file. Dr. Neuhauser references only one passage of
Zwiegimmcew (6:20-25) regarding page swapping. However, as Dr. Neuhauser
admitted duning his deposition. that referenced passage does not address

. . : : 65
ZWlegmcew s scenario file and does not discuss boot data. Instead. as Dr.

Neuhauser confirmed, Zwiegincew s passage (6:20-25) generally discusses

memory management performed by a virtual memory manager.”® The passage

Dr. Back ‘1739 Declaration (Ex. 2008) at 8 94

51

ZWIEGINCEW DOES NOT SUGGEST “DISASSOCIATING

NON-ACCESSED BOOT DATA" ELEMENT

97. A POSITA would have understood that the claimed “non-accessed

boot data” and “accessed boot data are concepts unrelated to the scenario file

taught by Zwiegincew because scenanio files cannot be used during boot-up.

Moreover, Zwiegincew s page files in the scenano file are unrelated to boot-up.

Therefore, any "updating taught by Zwiegincew does not meet the claimed "non-

accessed boot data,” which requires “boot data” not be requested during system

boot-up.

Dr. Back ‘1739 Declaration (Ex. 2008) at § 97

52

APPLE RELIES ON ZWIEGINCEW'S 6:20-25 FOR

“DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

Zwiegmcew further describes that “the requested pages are swapped with

less used pages in the RAM 2207 such that ““the least recently used pages are stored

on the disk storage 230.” Zwiegincew, 6:20-25. From this and related description,

‘1739 Petition at 58-59

53

DR. NEUHAUSER RELIES ON ZWIEGINCEW'S 6:20-25 FOR

“DISASSOCIATING NON-ACCESSED BOOT DATA" ELEMENT

Zwiegincew further describes that “the requested pages are swapped with less

used pages 1n the RAM 2207 such that ““the least recently used pages are stored

on the disk storage 230.” with corresponding changes to implicated scenario files

incew. 6:20-25]. From this and related description, one of ordinary skill

would have been motivated to make room 1n memory 2 for frequently requested

boot data by removing least recently used data from memory 2. Further, from

Dr. Neuhauser ‘1739 Declaration (Ex. 1003) at 9 204

54

ZWIEGINCEW'S 6:20-25 IS UNRELATED TO DISASSOCIATING
NON-ACCESSED BOOT DATA

transfer the requested pages into the RAM 220. Typically,

MEMORY
the requested pages are swapped with less used pages in the
RAM 220. Accordingly, the least recently used pages are
stored on the disk storage 230 and the VMM updates its
MEMORY records to reflect the new pages in the RAM 220. Swapping
MANAGEMENT 1s a memory management technique that 1s well known 1n
UNIT the art. Those skilled in the art will appreciate that above

Zwiegincew at 6:20-25

DISK DRIVE

 Zwiegincew at Figure 2

955

DR. NEUHAUSER ADMITS ZWIEGINCEW'S 6:20-25 IS UNRELATED

TO “"DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

Q My point 1s -- 1s a simple one. Lines 20 through

25 that you --

A Uh-hubh.

Q -- cite in Paragraph 204, those lines don't
discuss attributes of Zwiegincew's scenario file?

A Yes. that's correct.

Q And these lines don't discuss boot data?
MR. BITTNER: I'll object to the form.
A I don't think they use the word "boot data."

Thev're not discussing boot data here.

Dr. Neuhauser Transcript (Ex. 2011) at 179:9-18

56

IPR2016-01/37,-01738 ISSUE

SUKEGAWA AND ZWIEGINCEW DO NOT RENDER
OBVIOUS A“BOOT DATA LIST"

o7

GROUNDS 1-5IN EACH ‘1737 IPR AND ‘1738 IPR
FAIL TO RENDER OBVIOUS THE ‘862 CLAIMS

a2y United States Patent
Fallon et al.

SYSTEMS AND METHODS FOR
ACC ELERATED LOADING OF OPE R\ll\(.
AND APPLICATION PROC

Inventors: James J. Fallon, Armonk, NY (IS
John Butl\ (

Assignee:

Notice: Subj any ¢ mer, the term of this
ded or m_hu\lcd under 35

patent is subject to a terminal dis-
claimer.
Appl. No.: 13/118,122
Filed May 27, 2011
Prior Publication Data
US 2011/0231642 A1 Sep. 22, 2011
Related U.S. Application Data

Continuation of upphwlmn No. 11/551,
Oct. 19, 2006, now Pat. 7
continuation of application No. 09

Feb. 2, 2001, now Pat, No, 7,181,608,

Provisional application No. 60/180,114, filed on Feb.
3, 2000.
Int. CI.
GO6F 15/177 01)
GO6F 924 (2006.01)
GO6F IZ/IIII 01)
)6.01)
(2006.01)
GO6F 9/445 {2006.01)
HO3M 7/30 {2006.01)
{2006.01)

(:061‘ 3/0613 (2013.01): GOGF 3/0638
(2013.01); GO6F

3.01): GO6F 9/4401 (2013.01):

GOGF 9/4406 (2013.01). GOGF 9/445

US008880862B2

(10) Patent No US 8,880,862 B2
45) Date of Patent: *Nov. 4, 2014

USPC .. e 11372, 713/1; 711/113
Field of Classification \«anh
USPC 2
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
71968 Wernikoff et al.
19 Apple et al.
{Continued)
FOREIGN PATENT DOCUMENTS
21992
12/1985
{Continued)

OTHER PUBLICATIONS

Offers Manipulation, Redistribution of Ticker 11",
Inside Market Dara, vol. 4 No 5 9

{Continued)
Primary Examiner — Suresh Suryawanshi

dgent, or Firm — Steme, Kessler, Goldstein

ABSTRACI

accelerated loading of

system boot
a method
nI an an ting sy:

ist of boot dat:
hooting a computer system; prel dmg IhL boot \Lu
uulmhm(v S

ate: d laumhum
of: maintaining a
application program prxluddmg the ‘lp[‘h\ on d.ihl upon

launching the application program; and servicing requests for

a from a computer system using the preloaded
application data.

117 Claims, 13 Drawing Sheets

Sukegawa fails to disclose or render
obvious claim elements:

“loading [or accessing] boot data ... that
IS associated with a boot data list” (cls.
1,11,6,8 13, 14)

- "disassociating non-accessed boot data

from the boot data list" (cls. 20, 96, 100,
102, 104, 106)

- “the compressed boot data comprises: a

program code associated with ... and an
application program” (cls. 17, 29, 53, 65,
/7, 89)

- ‘Utilizing the stored additional portion o

the operating system to at least further
partially boot the computer system” (cl. 9)

58

SUKEGAWA'S STORAGE OF A SINGLE BOOT DATA
FILE IS NOT A “BOOT DATA LIST”

HOST
SYSTEM

CACHE
SYSTEM
CONTROLLER

PERMANENT
STORAGE AREA

NON-VOLATILE
CACHE AREA

MANAGEMENT
INFORMAT ION
TABLE

According to this system, when the OS 1s automatically
— o "]

started by the control information read out from the HDD 2

at the time of turning-on of power, the control information
1s stored 1n the permanent storage arca 10A used as the cache
memory area for the HDD 2. Accordingly, when the OS 1s
started at the time of the next turning-on of power, the
control information necessary for starting the OS 1s read out
not from the HDD 2 but from the permanent storage arca
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
arca 10A 1n the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control 1nforma-
tion mav be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time

Sukgawa at 6:45-62

59

USER INTERFACE MUST BE USED TO ACCESS SUKEGAWA'S
APPLICATION PROGRAM INFORMATION FILES STORED IN FLASH

(STRT)
(S

S§1 RT DATA STORAGE UTILITY
S GRAM OF CACHE SYSTEM s8

ITROLLER
START DATA STORAGE UTILITY | <>

PROGRAM OF CACHE SYSTEM | SELPERMENT STORMGE | | 59 g
CONTROLLER o | [como

INFORMATION FROM
STRUCT HOST SYSTEM TO PERMANENT STORAGE
SSZ ART APPLICATION PROGRAM AREA

SET PERMANENT STORAGE | oo iwromro) | [START APPLICATION

AREA IN FLASH MEMORY DM HOD Svsten

35
S 31 07

Sf;j; JRE_CONTROL INFORMAT | ON
PERMANENT STORAGE AREA

INSTRUCT HOST SYSTEM T0 »
START APPLICATION PROGRAM
h o YES

STOP DATA STORAGE
UTILITY PROGRAM

Sukegawa at Fig. 3

USER INTERFACE MUST BE USED TO ACCESS SUKEGAWA'S
APPLICATION PROGRAM INFORMATION FILES STORED IN FLASH

Then, the user 1nstructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
mstruction, 1ssues a rcad command to the controller 3 1n
order to read control information necessary for the start of

the AP from the HDD 2.

9 : 3A

DEVICE CACHE MANAGEMENT
DRIVER SYSTEM --* |NFORMAT | ON
CONTROLLER TABLE

i
J

If the user instructs the start of the same AP via the user
interface, the host system 4 1ssues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“YES” 1n step
S8). Upon receiving the read command, the controller 3

Sukegawa at 5:24-28, 5:54-58

FLASH MEMORY UNIT

PERMANENT
STORAGE AREA '

H1GH-SPEED
ACCESS AREA l

NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

61

DR. NEUHAUSER ADMITS SUKEGAWA DISCLOSES ACCESSING
APPLICATION PROGRAM INFORMATION VIA USER INTERFACE

HOST
SYSTEM

3A
!

DEVICE
DRIVER

MANAGEMENT
SYSTEM --* |NFORMAT | ON
CONTROLLER TABLE

FLASH MEMORY UNIT

PERMANENT
STORAGE AREA

H1GH-SPEED
ACCESS AREA

NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

Q So Sukegawa discloses that once the user
instructs the host system to -- that i1t wants to retrieve
an application program. that's when the host system sends
out a read command. correct?

A That's correct.

In the first embodiment of Sukegawa.
Sukegawa discloses that the application program being
retrieved from storage area 10A 1s being retrieved due to
an instruction from the user using the user interface.
correct?

A I think that's correct. It's kind of roundabout.

but I generallv agree with it.

Dr. Neuhauser Transcript (Ex. 2011) at
209:20-210:1, 211:11-17

62

SUKEGAWA'S APPLICATION PROGRAM CONTROL

INFORMATION IS NOT “BOOT DATA"

table 3A references information regarding AP control information files. Because

Sukegawa discloses that “the user instructs the start of the same AP [stored in

flash] via the user interface.”’ a POSITA would have understood that Sukesawa’s

user interface 1s available to the user only after the system has booted-up.

Accordingly.

stored 1n flash memory 1 to be “boot data.” Thus, a POSITA would not have
understood that table 3's reference to nformation regarding AP control

mnformation in Sukegawa meets the claamed “boot data list.”

Dr. Back ‘1737 Declaration (Ex. 2008) at 9 82

63

ZWIEGINCEW TEACHES USING A SCENARIO FILE TO SWAP

FILES IN AND OUT OF VIRTUAL MEMORY

250
)
PAGE FAULT
» SCENARIO
‘ DETECTOR
205
/ |
l 205 255
240
APPLICATION pe— . ' s 1 230
PAGE FAULT PRE-FETCHER
PROGRAM PROGRAM fo——— 1 'SCENARIO
MODULE adali2] 248 | SCENAR DISK
FILE STORAGE
>
VIRTUAL SCENARIO
210 MEMORY FILE
' / i
VIRTUAL l 7£15 ~ 20
MEMORY WeEMORY | . 2
MANAGEMENT A
UNIT
L]
230
4
225 DISK o
STORAGE [+ &
DISK DRIVE) /: 45 yane
SCENARIO T CcFRAGGER
| 265
V4
F'G 2 COMPRESSOR/
o DECOMPRESSOR

Zwiegincew at Figure 2

Z

ZWIEGINCEW DOES NOT SUGGEST A “BOOT DATA LIST”

Zwiegincew s scenario file to be a “boot data list.” A POSITA would understand

that such scenario files are emgloved to address a “scenario 1n which a virtual

memory manager services a hard page fault interth when the CPU detects an

access to an unmapped virtual address. The mnterrupt requires swapping in data for
the page into physical memory (RAM) and updating the address of that data in the

memory manager unit (MMU).(55 Overall, a POSITA would have understood that a

scenario file. such as those disclosed 1n Zwiegincew. cannot include the operating

system itself

Dr. Back ‘1737 Declaration (Ex. 2008) at § 90

65

ZWIEGINCEW DOES NOT SUGGEST A “BOOT DATA LIST”

pages expected during the boot process. Rather, a POSITA would have understood

that Zwiegincew s teachings relate to managin

data pages into RAM from disk memory and swapping data pages out of RAM nto

disk memory. Because the use of these techniques requires the presence of a fully

initialized operating system kemnel. they can be applied only after the operating
system kernel has booted up. and thus cannot relate to the accelerated loading of

the operating system kemnel itself or to otherwise managing the boot-up process. As
such. a POSITA would not have considered Zwiegincew s teachings relevant to “a

boot data list” or loading boot data to decrease boot time. Specifically, a POSITA

would have understood that Zwiegincew"s teachings cannot be used to sgeed up
the loading of an operating system for the simple reason that Zwiegmncew s

techniques require the presence of a functioning operating system in order to work.

Dr. Back ‘1737 Declaration (Ex. 2008) at §| 86

66

SUKEGAWA SPECIFIES MANAGEMENT INFORMATION TABLE 3A
ONLY MANAGES FLASH AREAS 10A AND 10C

HOST
SYSTEM

CACHE MANAGEMENT
SYSTEM --» INFORMATION
CONTROLLER TABLE

PERMANENT
STORAGE AREA

H1GH-SPEED
ACCESS AREA

NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

are managed. The controller 3 manages the storage areas

10A to 10C of the flash memory unit 1 by usine a manage-

ment information table 3A. The management information
table 3A 1s stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

Sukega at 5:5-9

67

SUKEGAWA SPECIFIES SWAPPING APPLICATION FILES IN AND
OUT OF FLASH AREA 10B—NOT AREAS 10A AND 10C

330

GENERATE SWAP FILE

331

ACCESS HIGH-SPEED
ACCESS AREA

HOST
SYSTEM

SYSTEM
CONTROLLER

DETERMINE THAT AREA OF
FILE SIZE 1S RESERVED
OR NOT IN HIGH-SPEED

PERMANENT ACCESS AREA

STORAGE AREA

H1GH-SPEED
ACCESS AREA

Sukegawa at Figure 1

STORE SWAP FILE IN
HIGH-SPEED ACCESS AREA

Sukegdfvaat FigUre 6A

NO MOTIVATION EXISTS TO USE ZWIEGINCEW'S SCENARIO

FILE WITH SUKEGAWA'S “BOOT DATA LIST”

91. Moreover. Zwiegincew does not Erovide any teaching or suggestion to

add a scenario file to manage Sukegawa s control information files stored in flash

memory 1 or to modify the manner in which Sukegawa manages table 3A. As

explained above. table 3A 1s a directory such that no benefit would be gained from
teachings of Zwiegincew to manage this directory. Dr. Neuhauser. moreover, does
not explain how a POSITA would have mcorporated Zwiegincew s teachings

toward a scenario file into Sukegawa s table 3A.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 91

69

NO MOTIVATION EXISTS TO USE ZWIEGINCEW'S “SCENARIO
FILE” WITH SUKEGAWA'S “BOOT DATA LIST"

HOST
SYSTEM

92. Sukegawa also discloses a page swappmg operation in which

application program data 1s swapped between RAM memory 23 and flash area

CACHE MANAGEMENT
SYSTEN --+» INFORMAT I ON
CONTROLLER TABLE

10B.°® However, Sukegawa teaches that table 3A is used for data stored in flash

-

areas 10A and 10C—not flash area 10B.®” To the extent the teachins of

Zwiegincew suggest any modification to Sukegawa's system, a POSITA would
have looked to Sukegawa s page swapping operation but not to the management of

H1GH-SPEED table 3A. As such. any combination of Sukegawa's and Zwiegincew s teachings

ACCESS AREA

NON-VOLATILE
CACHE AREA

does not constitute the claiamed “boot data list.”

Dr. Back ‘1737 Declaration (Ex. 2008) at § 92

Sukegawa at Figure 1

70

IPR2016-01/37,-01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE
"DISASSOCIATING NON-ACCESSED BOOT DATA
FROM THE BOOT DATA LIST"

1

“NON-ACCESSED BOOT DATA" MEANS “BOOT DATA IDENTIFIED IN THE BOOT

DATA LIST THAT WAS NOT REQUESTED DURING SYSTEM BOOT-UP”

66. For purposes of this declaration. 1t 1s my opmion that a POSITA
would have understood that the termm “non-accessed boot data.” as used 1in claims

20.96.98. 100, 102. 104. and 106 of the "862 Patent. to mean boot data identified

in the boot data list that was not requested during system boot-up. In my opmion.

this 1s the broadest reasonable interpretation in light of the specification.

Dr. Back ‘1737 Declaration (Ex. 2008) at §| 66

(2

SUKEGAWA DISCLOSES THAT THE OS CONTROL INFORMATION
FILE IS SAVED IN FLASH STORAGE AREA 10A

FLASH MEMORY UNIT

PERMANEN
STORAGE AREA

H1GH-SPEED
ACCESS AREA

NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

/3

SUKEGAWA'S MANUAL DELETION OF OS CONTROL INFORMATION

FILE IS NOT “DISASSOCIATING NON-ACCESSED BOOT DATA"

98. Furst, a POSITA would not have understood that a user deleting

control information from Sukegawa's flash storage area 10A corresponds to

disassociating “non-accessed boot data.” Sukegawa discloses that deletion of

control information from storage area 10A 1s “based on the user’s judgment.”""

Accordingly, the user can delete control information at any time regardless of

whether that information was reguested durning system boot-uB.

Dr. Back ‘1737 Declaration (Ex. 2008) at §| 98

74

SUKEGAWA USES A USER INTERFACE TO ACCESS APPLICATION
PROGRAM CONTROL INFORMATION FILES FROM FLASH

(STRT)
(S

S§1 RT DATA STORAGE UTILITY
S GRAM OF CACHE SYSTEM s8

ITROLLER
START DATA STORAGE UTILITY | <>

PROGRAM OF CACHE SYSTEM | SELPERMENT STORMGE | | 59 g
CONTROLLER o | [como

INFORMATION FROM
STRUCT HOST SYSTEM TO PERMANENT STORAGE
SSZ ART APPLICATION PROGRAM AREA

SET PERMANENT STORAGE | oo iwromro) | [START APPLICATION

AREA IN FLASH MEMORY DM HOD Svsten

35
S 31 07

Sf;j; JRE_CONTROL INFORMAT | ON
PERMANENT STORAGE AREA

INSTRUCT HOST SYSTEM T0 »
START APPLICATION PROGRAM
h o YES

STOP DATA STORAGE
UTILITY PROGRAM

Sukegawa at Fig. 3

SUKEGAWA DOES NOT DISCLOSE “DISASSOCIATING NON-

ACCESSED BOOT DATA” ELEMENT

control information files to meet the “disassociating” Immitation. Sukegawa

discloses that OS control information 1s onlzr stored 1n flash storage area IOA,73 and

thus. no OS control information would be stored in flash cache area 10C. As

explaimned above. AP control information 1s not the claimed “boot data” because

. . : S : : 74
bukegawa discloses AP control information 1s accessed using a user interface. As

such. a POSITA would not have considered the AP control information stored in

flash memory 1 as “boot data or the claimed "non-accessed boot data.” in claims
96. 100, and 106.

Dr. Back ‘1737 Declaration (Ex. 2008) at §| 99

MEMORY'S LEAST-RECENTLY-USED ALGORITHM FAILS TO SUGGEST

“DISASSOCIATING NON-ACCESSED BOOT DATA” ELEMENT

the “disassociating lmmtation. A POSITA would have understood that cache

memory using a least-recently-used (LRU) algonithm adds items to cache. and if
necessary. discards least-recently-used items. Thus. a POSITA would have

understood that an LRU algorithm does not evaluate whether items to be discarded

were requested during system boot-up or not. On the contrary, an LRU algorithm

could discard items from the cache that were reguested during system boot-ug 1if
those items haEEen to be the least-recentlv-used items when eviction from the
cache 1s taking Blace. In other words. a cache memory using an LRU algorithm

does not “disassociate’ i1tems based on whether that item was accessed during

boot-up. As such. Sukegawa does not render obvious “disassociating the non-

Dr. Back ‘1737 Declaration (Ex. 2008) at § 100

il

IPR2016-01/37,-01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE “LOADING [OR
ACCESSING] BOOT DATA ... THAT IS ASSOCIATED
WITH A BOOT DATA LIST"

/8

INDEPENDENT CLAIMS 1, 6, 8, 11, & 13 REQUIRE “LOADING" “BOOT

DATA" ... THAT IS ASSOCIATED WITH A BOOT DATA LIST”

11. A method for providing accelerated loading of an oper-
ating system 1n a computer system, comprising;:

loading boot data 1n a compressed form that 1s associated
with a boot data list from a boot device into a memory
upon mitialization of the computer system;

accessing the loaded boot data 1n compressed form from
the memory;

decompressing the accessed boot data in compressed form
at a rate that decreases a time to load the operating
system relative to loading the operating system with the
boot data 1n an uncompressed form;

utilizing the decompressed boot data to load at least a

portion of the operating system for the computer system:;
and

updating the boot data list.

‘862 Patent at Claim 11

‘862 SPECIFICATION REQUIRES “BOOT DATA" BE ASSOCIATED

WITH “BOOT DATA LIST” PRIOR TO “LOADING"” INTO MEMORY

A
________ i T
¥
o~ "‘"'\
75 T -~ N
o e
- Ro _,.-**""'M Power-u D or ‘“f\,‘\x

o?

-

. System Reset

e T o B e T T e o 2 ey

LR AT Y

| Prefetch Data Blocks

‘862 Patent at Figure /B

80

“BOOT DATA” MUST BE ASSOCIATED WITH “BOOT DATA LIST"

PRIOR TO “LOADING” INTO MEMORY

102. A POSITA would have understood that claims 1. 6. and 13 require

that the recited “boot data” be “associated with a boot data list™ prior fo the boot
data being loaded into memory. This requirement is consistent with the

SECiﬁcation of the ‘862 Patent. The sgeciﬁcation consistently describes that “boot

data be associated with the “boot data list” at the time the boot data 1s loaded into

cache memory. "> In fact. the svystem’s storage controller uses the boot data list to

identify which data 1s the boot data to be loaded into memo::\[.76 For example, the

Dr. Back ‘1737 Declaration (Ex. 2008) at § 102

81

“BOOT DATA” MUST BE ASSOCIATED WITH “BOOT DATA LIST"

PRIOR TO “LOADING"” INTO MEMORY

105. This requirement is further supported by the distinction the 862

claims make between boot data “associated and “not associated” with the boot

data list. For example, claim 1 specifies boot data “that 1s associated with a portion

of a boot data list.” and claim 6 and 13 include similar limitations. In contrast.

claims 99 and 103 specify accessing boot data “that 1s not associated with the boot
data list.” In view of this distinction. a POSITA would have understood that the

boot data 1n claims 1. 6, and 13 must already be associated with the boot data list

before being loaded into memory.

Dr. Back ‘1737 Declaration (Ex. 2008) at §| 103

82

DR. NEUHAUSER ADMITS CLAIMS REQUIRE “BOOT DATA" BE
ASSOCIATED WITH “BOOT DATA LIST” PRIOR TO “LOADING"

Q The loading step of Claim 1 specifies that the

boot data being loaded 1s associated with a portion of a

boot data list, correct?

A I believe that's correct.

So the boot data being loaded from a boot
device 1s both 1 a compressed form and associated with a
boot data list, correct?
A Yes. And I think it's both of those things.

That's correct.

Dr. Neuhauser Transcript
(Ex. 2011) at 25:21-26:16, 38:9-18

DR. NEUHAUSER ADMITS CLAIMS REQUIRE “BOOT DATA" BE
ASSOCIATED WITH “BOOT DATA LIST” PRIOR TO “LOADING"

Q So Clamm 6, from the perspective of a person of
ordinary skill 1n the art, understands that the processor
1s configured to load a portion of boot data -- of the boot
data, correct?

A That's correct.

Q And aperson of -- a POSITA understands that the

portion of boot data that's loaded 1s 1n the compressed

form and 1s associated with a boot data list, correct?
MR. BITTNER: Objection; form.
A Yes.

THE WITNESS: Read the question again.
(Requested portion read.)

A Yes, I believe that's correct.

Dr. Neuhauser Transcript
(Ex. 2011) at 41:4-16

84

APPLE ASSERTS SUKEGAWA'S MANAGEMENT INFORMATION TABLE
3A IS THE CLAIMED “BOOT DATA LIST”

memory unit 1.7 Id.. 5:1-61. 6:59-7:2. Thus. Sukegawa’s table 3A stores infor-
mation descriptive of the data loaded into the storage areas 10A/10C of the flash
memory 1 (e.g.. files of application/OS control information). Because a table in-

MANAGEMENT

cludes a list of data (e.g.. rows of data stored in the table). because Sukegawa’s

INFORMAT ION
TABLE

storage areas 10A/10C are loaded with boot data, and because Sukegawa’s table

3A 1dentifies the boot data stored in storage areas 10A/10C, Sukegawa’s table 3A

Sukegawa at Figure 1

includes a boot data list (e.g.. a list of files of application/OS data). Dec., §Y125-

126.
‘1737 Petition at 12

85

SUKEGAWA'S TABLE 3A NEVER LOADS “BOOT DATA ... THAT IS
ASSOCIATED WITH A BOOT DATA LIST"

SUKEGAWA'S TABLE 3A ONLY MANAGES FLASH MEMORY

UNITS T0A AND 10C—NOT HARD DRIVE 2:
HOST

CACHE
SYSTEM
CONTROLLER

3A

are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-

ment information table 3A. The management information
table 3A 1s stored, for example, in the non-volatile cache
arca 10C of flash memory unit 1.

Sukegaa at 5:5-9

PERMANENT
STORAGE AREA

H1GH-SPEED

ACCESS AREA '
NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

86

SUKEGAWA'S TABLE 3A NEVER LOADS “BOOT DATA ... THAT
IS ASSOCIATED WITH A BOOT DATA LIST"

SUKEGAWA'S ALLEGED “BOOT DATA” (CONTROL INFORMATION FILES) IS ASSOCIATED WITH
TABLE 3A ONLY AFTER THE DATA HAS BEEN LOADED INTO FLASH FROM THE BOOT DEVICE:

HOST
SYSTEM

CACHE
SYSTEM
CONTROLLER

In this case, the control information 1s stored in the
yermanent storage area 10A 1n flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment

.

is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 via the user interface, thereby referring to the
file (the control information of the AP 1n this case) stored in
the permanent storage area 10A. The user can delete the file,
Sukegawa at 5:41-53

. | [PERMANENT
: | | STORAGE AREA

H1GH-SPEED

ACCESS AREA '
NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

87

SUKEGAWA'S TABLE 3A NEVER LOADS “BOOT DATA ... THAT IS

ASSOCIATED WITH A BOOT DATA LIST"

. . . . -~ 80 ' . . _ ~ .
information 1s recorded in table 3A." Assuming for the sake of aregument that

Sukegawa’s table 3A were ““a boot data list.” then the boot data Sukecawa loads

into 1ts cache does not become associated with that list until after 1t has been

loaded 1nto the cache. not beftore. This 1s so because Sukegawa’s system updates its

management mmformation table only when loading data into the cache. Thus.
Sukegawa fails to disclose that 1ts boot data “is associated with a boot data list”

(table 3A) prior to being loaded into flash memory 1, as required by claims 1, 6.

and 13.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 107

88

SETTSU’'S FUNCTION DEFINITION FILE IS NOT RELATED TO TABLES

LIKE SUKEGAWA'S TABLE 3A

APPLICATION MODULE —I~7O
| -
FUNCTION 71
DEFINITION N
FILE
e —————————————————————————————

SYSTEM CALLS
PROCESSING

PROCESS
MANAGEMENT

MESSAGE
MANAGEMENT |

Settsu at Figure 18

89

SETTSU DOES NOT RENDER OBVIOUS “LOADING BOOT DATA ...

THAT IS ASSOCIATED WITH A BOOT DATA LIST”

directorial operation of Sukegawa’s’ table 3A. Specifically, Settsu’s function

definition file 71. which 1s part of application module 70, lists between one and

seven functional modules drawn from the modules contained in OS main body 5

-~ - . 83 ’ . ?
for loadine mto memorv.”” A POSITA would not have considered Settsu’s

teachines recardine function defimition file 71 Eertinent to the OReration of

Sukecawa’s table 3A or to storagce of OS and AP control mformation 1n

Sukecawa’s permanent storagce area 10A.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 109

90

ZWIEGINCEW'S SCENARIO FILE IS NOT RELATED TABLES LIKE

SUKEGAWA'S TABLE 3A

250
Vi
PAGE FAULT
SCENARIO |
DETECTOR
205 2
) 2 S l 230
APPLICATION PAGE FAULT PRE-FETCHER Vil
Paggw »/ SCENARIO
ANALYZER 245
"N SCENARIO DISK
FILE STORAGE
=
VIRTUAL SCENARIO
MEMORY FILE
!)
215 ~ 20
MEMORY ,
Sl
_f
l 230
V4
45 DISK - -
STORAGE [+ db
DISKDRIVE }—nu —» /: 45 7=
SCENARIO T | nirRAGGER
| 265
/4
F |G 2 COMPRESSOR/
. DECOMPRESSOR

Zwiegincew at Figure 2

91

ZWIEGINCEW DOES NOT RENDER OBVIOUS “LOADING BOOT DATA ...

THAT IS ASSOCIATED WITH A BOOT DATA LIST”

111. As explamned above 1n Section VIL.B., Dr. Neuhauser mischaracterizes
Zwiegincew’s teachings. A POSITA would not have considered Zwiegincew’s

scenario file to be a “form of boot data list” or to use the scenario durine the boot

85 5 s * - 2 *
process.” As such, a POSITA would not have considered Zwiegincew’s teachings

recardine the scenario file pertinent to the operation of Sukegawa’s table 3A or to

the storage of OS and AP control information into permanent storace area 10A.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 111

92

CLAIM 14 REQUIRES “ACCESSING BOOT DATA ... ASSOCIATED

WITH A BOOT DATA LIST"

14. A method for providing accelerated loading of an oper-
ating system 1n a computer system, comprising:

accessing boot data for booting the computer system,
wherein a portion of the boot data 1s 1n a compressed
form and 1s associated with a boot data list;

loading the boot data into a memory; and

servicing a request for the boot data from the computer
system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela-
tive to loading the operating system utilizing the boot
data 1n an uncompressed form; and

updating the boot data list.

‘862 Patent at Claim 14

LIKE “LOADING” ELEMENT, SUKEGAWA DOES NOT DISCLOSE CLAIM 14'S
“ACCESSING BOOT DATA ... THAT IS ASSOCIATED WITH A BOOT DATA LIST”

APPLE ARGUES THAT SUKEGAWA ALONE DISCLOSES CLAIM 14°S “ACCESSING” STEP

107. Sukegcawa does not disclose the alleeged “boot data’ 1s associated with
the allegced “boot data list” before “accessing” and “loading” the boot data mto
flash memory 1. As explained above in Section VILA.. Apple and Dr. Neuhauser

assert that Sukegawa discloses a “boot data list” under two theories. However.

Sukegawa’s AP and OS LOIlIlOl nltomlatlon (1 e.. the alleged “boot data ") 1S not

assouated W 1th a boot data llst I101 to accessmo the data 111 HDD 2 1101 loadm0

the data from HDD 2 to flash memory 1.

Dr. Back ‘1738 Declaration (Ex. 2008) at § 107

94

IPR2016-01/37,-01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE CLAIM 14'S
"ACCESSING BOOT DATA" PRIOR TO "LOADING"

95

CLAIM 14 DIFFERENTIATES BETWEEN ACCESSING UNLOADED BOOT

DATA AND ACCESSING LOADED BOOT DATA

14. A method for providing accelerated loading of an oper-
ating system 1n a computer system, comprising:

accessing boot data for booting the computer system.,
wherein a portion of the boot data 1s 1n a compressed
form and 1s associated with a boot data list;

loading the boot data into a memory; and

servicing a request for the boot data from the computer
system to access the loaded compressed boot data and to
decompress the accessed compressed boot data at a rate
that decreases a boot time of the operating system rela-
tive to loading the operating system utilizing the boot
data 1n an uncompressed form; and

updating the boot data list.

‘862 Patent at Claim 14

CLAIM 14 REQUIRES “ACCESSING BOOT DATA” PRIORTO

“LOADING THE BOOT DATA"

100. Claim 14 recites three steps of “accessing boot data.,” “loading the

boot data.” and “servicing a request for the boot data.” A POSITA would have

understood that claim 14 requires nitially “accessing boot data,” then “loading the

boot data” that was accessed, and subsequently “servicing a request for the boot

data...to access the loaded...boot data.” As such. a POSITA would have

understood that the “accessing” step 1s the accessing of unloaded boot data.

whereas the “servicing” step 1s to access and decompress loaded boot data. In other

words, claim 14 requires the “accessing” and “servicing” steps to each interact
with boot data in different forms, and at different stages of the boot process.
Consequently, the “accessing” and “servicing” steps cannot comprise the same step

of the boot process.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 100

97

APPLE ASSERTS SUKEGAWA “ACCESSING BOOT DATA” ONLY AFTER

IT HAS BEEN LOADED INTO FLASH MEMORY 1

14.1: accessing boot data for booting the computer system, wherein a portion
of the boot data is in a compressed form and is associated with a boot data
list;

As explained at 8.0-8.3 and 11.0-11.2, Sukegawa and Dye render obvious
loading boot data in a compressed form that 1s associated with a boot data list from

a boot device into a memory, and accessing the loaded boot data in compressed

form from the INEMmOry. Dec.. 1:42 8-430.

Similarly, and as Dr. Neuhauser explains, Sukegawa and Dye render obvious
accessing boot data for booting the computer system, wherein a portion of the boot
data 1s 1n a compressed form and 1s associated with a boot data list. Dec., 9431-

432.

‘1738 Petition at 31-32

SUKEGAWA'S HOST SYSTEM ACCESSES ALLEGED “BOOT DATA" AFTER

THAT DATA HAS BEEN LOADED INTO FLASH MEMORY 1

HostT |,
SYSTEM
9 3A
§ q
CACHE MANAGEMENT
3§Y¢E§ SYSTEM -~ |NFORMAT | ON
CONTROLLER TABLE
x - T ~
FLASH MEMORY UNIT }“\‘ HOD |2
PERMANENT o
STORAGE AREA [
H1GH-SPEED R
171 ACCESS AREA [-110B
NON-VOLATILE | |
CACHE AREA [10C
= FIG. 1

Sukegawa at Figure 1

DR. NEUHAUSER CONCEDES SUKEGAWA ONLY ACCESSES BOOT DATA

AFTER IT HAS BEEN LOADED INTO FLASH MEMORY 1

compression/decompression engine. With this modification, Sukegawa’s

controller 3 loads control information into the flash memorv unit 1 1n conqgressed

form. and uses the compressed control information to service requests from

Sukegawa’s host system. In doing so, Sukegawa’s controller 3 accesses. from
flash memory unit 1, the compressed control information and uses Dye’s
compression/decompression engine to decompress the compressed data accessed
from flash memory unit 1 at a rate that increases flash memory unit 1’s effective

access rate [Dye *284, 4:16-20, 11:32-35, 11:56-12:7, 12:61-13:7, 13:52-53; Dye,

Dr. Neuhauser ‘1738 Declaration (Ex. 1003) at § 429

100

DR. NEUHAUSER CONCEDES SUKEGAWA ONLY ACCESSES BOOT DATA
AFTER IT HAS BEEN LOADED INTO FLASH MEMORY 1

DEVICE AL
SYSTEM
DRIVER CONTROLLER I

hus. one having ordinary skill would have found it obvious to modify
—

Sukegawa’s controller 3 to use an embedded compression/decompression engine,

and to service requests from Sukegawa’s host system bv accessing compressed

FLASH MEMORY UNIT

PERMANENT
STORAGE AREA '

data from flash memorv unit 1 and decompressing the compressed data.

H1GH-SPEED
ACCESS AREA '

0B Dr. Neuhauser ‘1738 Declaration (Ex. 1003) at 9 430

NON-VOLATILE
CACHE AREA

Sukegawa at Figure 1

101

SUKEGAWA FAILS TO DISCLOSE CLAIM 14'S “ACCESSING BOOT DATA"

PRIOR TO “LOADING"” AND “SERVICING"” STEPS

102. Accordingly, Sukegawa fails to disclose the separate “accessing” and

“servicing’’ steps because Sukecawa onlv accesses the control information (the

alleged “boot data™) after that data has been loaded into memory. Sukegawa,

therefore, does not disclose both the “accessing” and “servicing” steps of claim 14.

Dr. Back ‘1738 Declaration (Ex. 2008) at § 102

102

IPR2016-01/73/7, -01/738 ISSUE

SUKEGAWA DOES NOT DISCLOSE CLAIM 19°'S "UTILIZING
THE STORED ADDITIONAL PORTION OF [OS]"

103

‘862 CLAIM 9 REQUIRES UTILIZING STORED ADDITIONAL OS DATATO

FURTHER PARTIALLY BOOT THE SYSTEM (‘1738 IPR)

9. The method of claim 8, further comprising:

compressing an additional portion of the operating system
that 1s not associated with the boot data list; and

storing the additional portion of the operating system in the
first memory, and

wherein the utilizing comprises:
utilizing the stored additional portion of the operating

system to at least further partially boot the computer
system.

‘862 Patent at Claim 9

104

APPLE ASSERTS SUKEGAWA'S FILE SWAPPING MEETS CLAIM 9'S

“UTILIZING"” STEP

9.2: ... utihizing the stored additional portion of the operating system to at
least further partially boot the computer system.

As explamned at 8.1-8.7 and 9.0-9.1, Sukegawa discloses storing a swap file
that includes an additional portion of the OS that 1s necessary for starting the OS
on HDD 2. Sukegawa, 7:40-35. 7:66-8:6. 8:17-36: Dec.. 9373. Sukegawa further

discloses that the swap file can be read out via controller 3 on an as-needed basis.

and a POSITA would have understood that the stored additional Eortion of the OS

in the swap file could be used to further Eartiallv boot Sukegawa's host computer
system. Sukegawa, 4:26-30, 5:10-40, 6:19-58, 7:28-55, 8:17-18, 8:21-36.

‘1738 Petition at 24

105

SUKEGAWA SWAPS APPLICATION PROGRAM DATA IN AND OUT OF

MAIN MEMORY RAM 23 AFTER SYSTEM BOOT-UP

22~ CPU . N
#0
S S A ;
pcl | WAl RON_ | ;
21~ BRIDGE [™"| MEWORY | @0 | L di
n==4 0

i S % 'I """" } I

FLASH MEMORY
DRIVE

———— ——1' : 26

JENE
. (CARD P25

Sukegawa at Figure 2

106

SUKEGAWA SWAPS APPLICATION PROGRAM DATA IN AND OUT OF
MAIN MEMORY RAM 23 AFTER SYSTEM BOOT-UP

of the HDD. In a specific system, a part of the storage arca
of the main memory (volatile IC memory) comprising a

DRAM 1s used as a cache area of the HDD (this system
being called “smartdrive™). In this svstem, however, the
Sukegawa at 1:20-24

When the host system 4 executes a program other than the
yrograms such as the AP stored 1in the main memory 23, the
host system 4 performs a swapping operation. In the swap-
Ing operation, the program (including data) stored in the

main memory 23 is shifted from the main memory 23 as a
swap file, thereby to load the program to be executed 1n the
main_memory 23. Normally, the swap file 1s shifted to the
HDD 2.

Sukegawa at 7:66-8:6

107

SUKEGAWA'S FILE SWAPPING DOES NOT RELATE TO CLAIM 9'S

“UTILIZING" STEP

134. First, Sukegawa discloses that any OS control information stored in

. . . 109
flash memorv 1 1s stored as a single file in the permanent storace area 10A.

Sukecawa also discloses that 1ts swappine operation swaps application proeram

data between RAM memorv 23 and flash area 10B—not flash storage areas 10A

and 10C.""° Accordingly. OS control information stored in flash memory 1 is not

ever subject to a swapping operation. A POSITA, thus, would not have understood
that any of Sukegawa’s swap files contain a “portion of the operating system to at

least further partially boot the computer system,” as recited 1n claim 9.

Dr. Back ‘1738 Declaration (Ex. 2008) at 8 134

108

SUKEGAWA'S FILE SWAPPING DOES NOT RELATE TO CLAIM 9'S

“UTILIZING" STEP

135. Moreover, as explained above 1n Section VIL.A., a POSITA would not
have considered Sukegawa’s AP control information stored in flash memory 1 to
be a “portion of the operating system to at least further partially boot the computer
system,” as recited 1in claim 9. Sukegawa discloses that a user instruction, 1ssued

via a user interface. causes the reading out of AP control information from flash

111 - - , -
To the extent any AP data 1s subject to Sukegawa’s swapping

memory 1.
operation, that data 1s not a “portion of the operating system to at least further

partially boot the computer system.”

Dr. Back ‘1738 Declaration (Ex. 2008) at § 135

109

IPR2016-01/37,-01738 ISSUE

SUKEGAWA DOES NOT DISCLOSE "BOOT DATA"
WITH “PROGRAM CODE ASSOCIATED WITH ... AN
APPLICATION PROGRAM"

110

‘862 CLAIMS 17, 29, 53, 65, 77, AND 89 REQUIRE THE “BOOT DATA" INCLUDE

PROGRAM CODE ASSOCIATED WITH AN APPLICATION PROGRAM (1737, ‘1738 IPRS)

17. The method of claim 14, wherein the boot data com-
Prises:
a program code associated with the operating system and
an application program.

‘862 Patent at Claim 17

111

SUKEGAWA USES A USER INTERFACE TO ACCESS APPLICATION
PROGRAM CONTROL INFORMATION FILES FROM FLASH

(STRT)
(S

S§1 RT DATA STORAGE UTILITY
S GRAM OF CACHE SYSTEM s8

ITROLLER
START DATA STORAGE UTILITY | <>

PROGRAM OF CACHE SYSTEM | SELPERMENT STORMGE | | 59 g
CONTROLLER o | [como

INFORMATION FROM
STRUCT HOST SYSTEM TO PERMANENT STORAGE
SSZ ART APPLICATION PROGRAM AREA

SET PERMANENT STORAGE | oo iwromro) | [START APPLICATION

AREA IN FLASH MEMORY DM HOD Svsten

35
S 31 07

Sf;j; JRE_CONTROL INFORMAT | ON
PERMANENT STORAGE AREA

INSTRUCT HOST SYSTEM T0 »
START APPLICATION PROGRAM
h o YES

STOP DATA STORAGE
UTILITY PROGRAM

Sukegawa at Fig. 3

SUKEGAWA'S APPLICATION PROGRAM CONTROL INFORMATION

IS NOT “BOOT DATA"

table 3A references information regarding AP control information files. Because

Sukegawa discloses that “the user instructs the start of the same AP [stored in

flash] via the user interface.” a POSITA would have understood that Sukegawa s

user interface 1s available to the user only after the system has booted-up.

Accordingly. a POSITA would not have considered AP control information files

stored 1n flash memory 1 to be “boot data.” Thus. a POSITA would not have

understood that table 3's reference to information regarding AP control

information in Sukegawa meets the claamed “boot data list.”

Dr. Back ‘1737 Declaration (Ex. 2008) at 9

82

113

SUKEGAWA'S “BOOT DATA" DOES NOT INCLUDE CODE ASSOCIATED

WITH AN APPLICATION PROGRAM

limitation those files include program code.'’” But as explained in Section VILA ., a
POSITA would not have understood that AP control information stored on
Sukegawa’s flash memory 1 1s “boot data” because that control information 1s

accessed by the user only after completion of the system’s boot-up process.” ~ As

such, a POSITA would not have understood that Sukegawa discloses “boot data™

stored 1n flash memory 1 that includes program code associated with an application

EI‘O gram.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 124

114

IPR2016-01/37,-01738 ISSUE

COMBINATION OF SUKEGAWA AND DYE IS
IMPROPER

115

DYE DISCLOSES A COMPRESSION ENGINE IN A FLASH MEMORY

CONTROLLER (“1737, ‘1738 IPRS)

900 - Flash memory System

SRAM or
. 200 - CEFMC : DRAM
| | | MPU memory
Decompression | 420
Engine : 118 —
e 20 kel A
Flash \/F T ;
Memory | = 445 & | 142 | ECC/EDC | |
Array | P Byte | —> & Bypass SRAM Micro
100 Mux 108 Ware J’ 240 Cache Processing
< 120 17108 | Leveling 4 160 Unit
| ' 109 | Logic 400
-t 220 Compression
A A F Y Engine
T 260
| DC/DC | 102 Controlf
— Converter |4 SRAM
' 190 or
I —> | | | DRAM
Compression Control Unit & Data Directory Main memo
104 ___Array Row Address 300 ans ry

Dye at Figure 3

116

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE

HINDSIGHT (1737, ‘1738 IPRS)

0
SYSTEM

Decompresson @ §
Engine : Host system bus.

280 —— ACHE MANAGEMENT
DRIVER YSTEM ==* INFORMAT ION
ONTROLLER TABLE

Controller.

Bypass ‘ — : : :
240 : e A Data compression/decompression engine
t | . LFLASH MEMORY UNIT | Il HOD (per Dye).
Compression PERMANENT 10A | — — Hard dlSk
Engine : STORAGE AREA |~ (storing compressed boot data).
260 . 1] HIGH-SPEED | N y0p -
ACCESS AREA Cache
E(A)péﬁ\éokag A LE | L. cc (storing preloaded compressed boot data).

Sukegawa FIG. 1 and Dye FIG. 3

(combined 2xcerpts, annotated).

‘1737 Petition at 16

117

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (“1737, ‘1738 IPRS)

DR. BACK'S OPINION REGARDING THE COMBINATION
OF SUKEGAWA AND DYE:

outgoing from flash memory.”” To the extent a POSITA would have modified

Sukegawa’s system 1n view of Dye, such a modification would have resulted n
Dve’s data compression/decompression engine being embedded in Sukegawa’s

flash memory unit:

Dr. Back ‘1737 Declaration (Ex. 2008) at § 114

118

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE
HINDSIGHT (“1737, ‘1738 IPRS)

DR. BACK'S OPINION REGARDING THE COMBINATION
OF SUKEGAWA AND DYE:

HOS
SYSTEN SYSTEM

3A

Dacompression
Engine
280

i

NANAGEMENT
| NFORMAT | ON
TABLE

({ S &
DEVICE CACHE MANAGEMENT DEVICE .
SYSTEM -=+ INFORNAT | ON DRIVER

DRIVER CONTROLLER TABLE
L]
Bypass < '
240

K : | | B : DFLASH MEMORY UNIT [

Compression : FLASH MEMORY UNIT |~ 1 Compression PERMANENT

Engine : " PERRANENT Engine : STORAGE AREA [
£00 . 0| STORAGE AREA [M1° 260 . § [HIGH-SPEED
WH SPEED | ACCESS AREA
ACCESS AREA [NON-VOLATILE |

CACHE AREA
NON-VOLATILE
CACHE AREA

Location of Dye’s Engine To The Extent

Excerpt of Apple’s Diagram (Petition, p. 16)
Combination of Sukegawa and Dye is Proper ‘P PP 48 (P

Dr. Back ‘1737 Declaration (Ex. 2008) at § 114

SUKEGAWA AND DYE COMBINATION BASED ON IMPERMISSIBLE

HINDSIGHT (“1737, ‘1738 IPRS)

memory unit 1 to controller 3.”" However, Dr. Neuhauser does not explain why a

POSITA would have chosen such a needlessly complex approach to modify

Sukegawa’s system versus the simpler approach actually taught in Dve—namely.

compressing and decompressing data transferred into and out of a flash memory.

Therefore, 1t appears that Dr. Neuhauser and Apple used the ‘862 Patent as a

blueprint to reconstruct the claimed mvention. I understand that a patent cannot be

found obvious based on such a hindsight analysis.

Dr. Back ‘1737 Declaration (Ex. 2008) at 4 115

120

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO COST AND
COMPLEXITY ISSUES ("1737, ‘1738 IPRS)

AS REALTIME ARGUES IN ITS RESPONSES, DR. NEUHAUSER STATES DYE'S

TECHNIQUE PRESENTS COMPLEXITY ISSUES:

THE WITNESS: This 1s another one
of those examples of an incomplete
hypothetical, because 1t depends on the cost
of data compression. Data compression in Dye

1s not cheap.
Q [what sense?

A Well, so there's -- in Dye -- let's just
speak about Dye, for example. That's the most
concrete thing and the important 1ssue here.
One of the objectives of Dye 1s to make
data compression faster than transferring
information without data compression, and to do
that, Dye has to use, or recommends -- I don't
know that he has to use this, but the preferred
embodiment 1s to use a highly parallel data
compression engine, which 1s quite complex. okay?
I don't think that that's a trivial
cost. Remember we're talking about 2000. There
was a lot of different technology a person could
use, and 1t would depend on a lot of factors, like
volume and so forth, but data compression 1s not
V1 ~0S
Dr. Neuhauser Transcript (Ex. 2026) at 97:4-23; see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

121

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUETO
COMPLEXITY ISSUES ("1737, ‘1738 IPRS)

AS REALTIME ARGUES IN ITS RESPONSES, DR. NEUHAUSER STATES
DYE'S TECHNIQUE PRESENTS COMPLEXITY ISSUES:

Q What do you mean by "cost" when you say
that?) -
A Well. there's a lot of different costs.

but the cost I'm thinking about right now 1s the
actual monetary cost of the system. right. because
nonvolatile memory costs something. RAM costs

something. the support logic costs something, and
compression requires logic, specialized logic in
the case of Dye. and that costs something.

So you'd have to know what all of those
costs were before a statement like the one you
just made, you could really assess that.

Dr. Neuhauser Transcript (Ex. 2026) at 97:24-98:10; see also ‘1737 Patent
Owner Response at 58-59, ‘1738 Patent Owner Response at 61-62

122

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUE TO
COMPLEXITY ISSUES ("1737, ‘1738 IPRS)

AS REALTIME ARGUES IN ITS RESPONSES, DR. BACK STATES DYE'S
TECHNIQUE PRESENTS COMPLEXITY ISSUES:

combination. The additional cost and complexity of adding Dye’s compression to

the system of Sukegawa would act as a significant disincentive for a POSA to
make the proposed combination, and Dr. Neuhauser's declaration does not address
those factors or explain why it would have been obvious for a POSA to make that
combmation 1n spite of them. A POSA 1s certamnly sufficiently intelligent and

expenienced to know not to undertake a complex and costly modification sumply

because 1t may have some benefits 1n 1solation. without evaluating whether those

benefits warrant the undertaking given 1ts costs and challenges.

Dr. Back ‘1737 Declaration (Ex. 2027) at § 50; see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

123

POSITA WOULD NOT COMBINE SUKEGAWA AND DYE DUETO
COMPLEXITY INCREASES (1737, ‘1738 IPRS)

AS REALTIME ARGUES IN ITS RESPONSES, DR. BACK STATES DYE'S
TECHNIQUE PRESENTS COMPLEXITY ISSUES:

46. 1 disagree with Dr. Neuhauser that a POSA would have been
motivated to make such a combination. As I explain in further detail below.
modifying Sukegawa to incorporate Dye’s compression system would require

substantial additional cost and would create significant engmmeering complexity.

Dr. Neuhauser does not addresses those costs or complexities i his declaration.

nor does he explain whyv a POSA would have been motivated to make the proposed

combination desEite those costs.

Dr. Back ‘1737 Declaration (Ex. 2027) at | 46, see also ‘1737 Patent Owner
Response at 58-59, ‘1738 Patent Owner Response at 61-62

124

BURROWS DISCOURAGES USE OF DYE'S COMPRESSION TECHNIQUE TO
ACCELERATE BOOT-UP (1737, “1738 IPRS)

DYE'S ONLY COMPRESSION TECHNIQUE USES LZ ENCODING. (‘1737 PET. AT 49.)

BURROW SPECIFIES USING LZ COMPRESSION SLOWS BOOT-UP VERSUS USING NO
COMPRESSION:

System Time for phase (seconds) Total

unmodified LES

N0 COmMpression
Algorithm 1
Algorithm 2
LZRWI1-A
LZRW3-A

This table shows the time in seconds for the Andrew file system benchmark running
on six LFS configurations: unmodified LFS, and our modified LFS with five different
compression algorithms. The values given are the mean of three runs, each on a newly
rebooted and otherwise 1dle DECstation 5000/200 using an RZ55 disk.

= 2 N 99

Burrows at 20 (Table 3)

125

POSITA WOULD NOT INCORPORATE SETTSU'S COMPRESSION TECHNIQUE

INTO SUKEGAWA (1737, ‘1738 IPRS)

transferred to memory 2 during start-up.”> A POSITA would not have understood

how Settsu’s teachings relate to Sukegawa’s cooperative storage system in which

colzies of files are stored in both flash and hard disk memory nor to Dze’s flash

memory system with an embedded compression/decompression engine.

121. Moreover, Apple and Dr. Neuhauser do not explain how a POSITA
would structure Sukegawa’s storage system using compressed OS functional

- - N - : 99 b] b]
modules in view of Settsu’s teachings.”” Apple’s and Dr. Neuhauser’s proposed

modification of Sukegawa’s cooperative storage system to accommodate Settsu’s

teachings would 1'egui1'e sienificant engineering effort and be non-obvious to a

POSITA. For example, Sukegawa specifies that a data storage utility program

Dr. Back ‘1737 Declaration (Ex. 2008) at 99 120-21

126

POSITA WOULD NOT INCORPORATE ZWIEGINCEW'S COMPRESSION

TECHNIQUE INTO SUKEGAWA (1737, ‘1738 IPRS)

122. As described above in Section VILB.. Apple mischaracterizes
Zwiegincew’s teachings as being directed to slow boot times and page faults

during the boot process. Rather, Zwiegincew describes techniques to reduce page

faults for aHRlication programs duringe oEeration of the system after boot-u]_).101 As

also described 1in Section VII.B.. a POSITA would not have found Zwiegincew’s

teachings relevant to the challenges addressed by the ‘862 claims nor the

challenges described in Sukegawa and Dve. A POSITA. therefore. would not have

been motivated by Zwiegincew to modify Sukegawa to stored compressed boot

data in Sukegawa’s HDD 2.

Dr. Back ‘1737 Declaration (Ex. 2008) at 4 122

127

IPR2016-01/37,-01738, -01/39 ISSUE

DYE DOES NOT RENDER OBVIOUS A "PLURALITY
OF ENCODERS”

128

‘862 CLAIMS 34, 46, 58, 70, 82, 94 INCLUDE A PLURALITY OF

ENCODERS TO ENCODE BOOT DATA (1737, ‘1738, ‘1739 IPRS)

34. The method of claim 1, wherein a plurality of encoders
was utilized to encode the portion of the boot data in the
compressed form.

‘862 Patent at Claim 34

129

‘862 SPECIFICATION DISCLOSES A PLURALITY OF ENCODERS EACH

ENCODING ITS OWN DATA STREAM

! }
‘ :
| 1
o 125, 130 i
| Encoder E1 Buffer/Counter 1| |
i e, . “ |

Data 115~ 120, Encoder E2 Buffer/Counter 2| ;m??-&-_)m Fo 138 |
\ {input | . - {Compression Ratio} {Compression; |

SUeAM: .. Data -+ Data Blocic.,.| | Encoder E3 |, |Buffer/Counter 3 -» Determination/ }» Type i
| Buffer ounter . ’ . : § Comparison Description | |
i : ; : : A — . 'E
i Encoder En|| !|Buffer/Counter n
;
| 3
(|
i |
| f
] |
.22
110—

Encoded
Data
Stream
with
Descriptor

‘862 Patent at Figure 9

130

DYE DISCLOSES A SINGLE ENCODER THAT USES A “PARALLEL
ALGORITHM" ("1737, ‘1738 IPRS)

Input Data Entry
Byte 0 0 4
Input Data
Byte 0 1

Input Data
Byte 0 2
Input Data
Byte 0

Dye at Figure 10B

FI1G. 10B—Paralle!l Aleorithm
The preferred embodiment of the present mnvention

varallel implementation of dictionary based (or
history table based) compression/decompression. By

Dye at 18:60-63

131

DYE DISCLOSES A SINGLE ENCODER THAT USES A “PARALLEL
ALGORITHM" ("1737, ‘“1738 IPRS)

Input Data
Byte 0

Input Data
Byte 0

Input Data
Byte 0 2

Input Data
Byte 0 3

Dye at Figure 10B

arallel aleorithm comprises paralleling three
the serial aleorithm: the historv table (or historv window
analvsis of symbols and compressed stream selection

the output generation. In the preferred embodiment the
data-flow through the history table becomes a 4 symbol

arallel flow 1nstead of a single symbol history table. Also,
4 symbols are analyzed 1n parallel, and multiple compressed

Dye at 19:12-17

132

POSITA WOULD UNDERSTAND DYE DISCLOSES A SINGLE ENCODER

(1737, ‘1738 IPRS)

130. For all five mnstituted grounds, Apple and Dr. Neuhauser rely on Dye
as disclosing “a plurality of encoders,” as recited in dependent claims 34, 58, and

94. Rather. Dve describes that the prior art approach. shown in Fig. 10B. encodes a

sigle aleorithm. Dye, on the other hand, Dve disclose a purported improvement of

the prior art bv usig a simgle encoder that distributes the encoding calculations

110

among several stages. as shown 1 Fig. 10A.""" But each of these stages 1s not a

. .. 111
separate encoder—on the contrarv. each unit 1s a part of Dve’s single encoder.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 130

133

DYE'S FIGURE 13 SHOWS MODIFIED ALGORITHM OF A SINGLE ENCODER

(1737, ‘1738 IPRS)

Entry D p D3 Compare
Data Byte OQutputs to
602 » D2 Later
D1 Entries
610 _@ >
Data3 : - Max Value
e 56
Data? * - ous
Data1 :<: i
Data0 —-:<:1 DO
| » Results
C1 (Previous Entry) p| Calculation P Output Mask
B2 606
e B P Output Count
Combined Mask >
B

Dye at Figure 13

134

DYE'S FIGURE 15 IS AN EXAMPLE OF TABLE USED DURING COMPRESSION OF

A SINGLE ENCODER ("1737, ‘1738 IPRS)

Input Matches New Counter Output Qutput Reset
D0 C1 B2 A3 Value Counter Mask Value
1 [1 1 1 1 Saved+4 Saved +4 10000 0
1 1 1 0 0 Saved+3 10001 1
1 1 0 1 1 Saved+2 10010 2
1 1 0 0 0 Saved+2 10011 2
1 0 1 1 2 Saved+1 10100 3
1 0 1 0 0 Saved+1 10101 3
1 0 0 1 1 Saved+1 10110 3
1 0 0 0 0 Saved+1 10111 3
0 1 1 1 3 Saved 11000 4
0 1 1 0 0 Saved 01111 1
0 1 0 1 1 Saved 11010 4
0 1 0 0 0 Saved 11011 4
0 0 1 1 2 Saved 11100 4
0 0 1 0 0 Saved 11101 4
0 0 0 1 1 Saved 11110 4
0 0 0 0 0 Saved 11111 4

Dye at Figure 15

135

DYE'S FIGURES 13 AND 15 SHOW LOGIC OF A SINGLE ENCODER

(1737, ‘1738 IPRS)

132. Dye’s description of Figures 13 and 15, however, does not support Dr.
Neuhauser’s opmion. Dye explains that Figure 13 illustrates Dye’s modified

algorithm, wherein the various components of the encoder logic work together.

with each performine a subset of the encoding operations of Dve’s single

113 - - -
encoder. And Figure 15 1s an exem]glal:y table used during the Earallel

compression that coordinates the parallel processes of the single encoder.

Dr. Back ‘1737 Declaration (Ex. 2008) at § 132

136

APPLE'S PETITION SHOWS A SINGLE COMPRESSION ENGINE
(1737, ‘1738 IPRS)

900 - Flash memory System

SRAM or
200 - CEFMC DRAM
— MPU memory
Decompression 420
Engine 2
2 o o A
ECC/EDC |) | \
& Bypass Bus MICFO. !
Ware 240 /F Proces_smg
Leveling T 180 Unit
Logic —
220 Compression
- Engine
+ 260
102 Control
Converter
190 I or
— - 1 Compression Conjrol Unit & Data Directory DRAN
— 440
Cache. Controller. Data compression/decompression engine. Host system bus. Host system.

Dye FIG. 3 (excerpt, annotated).
‘1737 Petition at 14

137

APPLE'S “"ENCODER" DEFINITION SHOWS THAT ENCODING COMPONENTS
ARE NOT A PLURALITY OF ENCODERS

DICTIONARY SHOWS WINDOWS MEDIA ENCODER AND MP3 ENCODER ARE EXAMPLES OF
“ENCODERS™—NOT INDIVIDUAL ENCODING COMPONENTS WITHIN AN ENCODER:

encoder ». 1. In general, any hardware or software that
encodes information—that 1s, converts the information to
a particular form or format. For example, the Windows
Media Encoder converts audio and video to a form that
can be streamed to clients over a network. 2. In reference
to MP3 digital audio in particular, technology that con-

verts a WAY audio file mto an MP3 file. An MP3 encoder
compresses a sound file to a much smaller size, about
one-twelfth as large as the original, without a perceptible
drop 1n quality. Also called: MP3 encoder. See also MP3,
WAV . Compare r1p, ripper.

Microsoft Computer Dictionary

(Ex. 10417) at 4
138

IPR2016-01/37,-01738, -01/39 ISSUE
REALTIME'S MOTIONS TO EXCLUDE EVIDENCE

139

EX. 1038 SHOULD BE EXCLUDED AS HEARSAY AND IRRELEVANT
(1737, ‘1738, ‘1739 IPRS)

0 0 0 Nt Exhibit 1038 is a continuation-in-part of Exhibit

, United States Patent (101 Patent No.: US 6.633.968 B2 70 7 0

Zwicgincew ¢t al, (451 Date of Patent: Oct, 14, 2003

Exhibit 1038 should be excluded because Apple
offers it to prove the truth of the matter being
asserted regarding the disclosures of Zwiegincew
(Exhibit 1010)—this constitutes impermissible
hearsay per FRE 802 without an applicable
exception.

Apple failed to establish that the information
cited in Exhibit 1038 was publicly available and
accessible prior to the ‘862 priority date.

Exhibit 1038 does not tend to make a fact of
consequence more or less probable than it would
be without this exhibit, thus it should be excluded
per FRE 401, 402.

v. Realtime

_ Apple
Proceeding No. IPR2018-01720
APPLE 1038
el gd ® USs

140

EXS. 1048-1049 SHOULD BE EXCLUDED AS LACKING AUTHENTICATION,
HEARSAY, AND IRRELEVANT (1737, “1738 IPRS)

Flash Mem: s. HDDs - Which Will Win?

The Rise of the Flash | _

Memory Market: Its Impact J\:ﬂi 3‘35?‘“:
on Firm Behavior and |
Global Semiconductor :;:,1:?11,,,3

Trade Patterns

APPLE 1049
Apple v. Realtime Data
IPR2016-01738

le v. Rea)eD
IPR2016-01 738

IPR2016-01738

Exhibits 1048 and 1049 appear to be websites
that Apple failed to properly authenticate—
thus each should be excluded per FRE 901, 902.

Exhibits 1048 and 1049 should be excluded
because Apple offers each to prove the truth of
the matter being asserted regarding the relative
cost of RAM versus flash memory—this
constitutes impermissible hearsay per FRE 802
without an applicable exception.

Dr. Neuhauser does not rely upon Exhibits
1048 and 1049 and each is published years
after the ‘862 filing date. As such, the exhibits
should be excluded as irrelevant per FRE 401,
402 because each does not tend to make a fact
of consequence more or less probable than it
would be without these exhibits.

141

