
APPLE 10101

US006317818B1

(12) United States Patent (10) Patent N0.: US 6,317,818 B1
Zwiegincew et al. (45) Date of Patent: Nov. 13, 2001

(54) PRE-FETCHING or PAGES PRIOR TO A 6,047,363 * 4/2000 Lewchuk 711/213
HARD PAGE FAULT SEQUENCE

* cited by examiner

(75) Inventors: Arthur Zwiegincew, Bothell; James E. Primary Examirter—KeVin Verbrugge
Walsh, Kirkland, both of WA (US) (74) Attorney, Agent, or Firm—Merchant & Gould

(73) Assignee: Microsoft Corporation, Redmond, WA (57) ABSTRACT
(U5) Hard page fault patterns of an application program module

are analyzed in order to determine the pages that will be
retrieved from disk storage during a common hard page fault
scenario. Copies of, or references to, the determined pages
are stored in a scenario file, along with an index referred to
as a page sequence. The scenario file may also include a

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) APPL N05 09/2823499 prologue indicating events that lead to a hard page fault

(22) Filed. Man 30, 1999 scenario and an epilogue that may indicate subsequent hard
page fault scenarios. Execution of the application program

(51) Int. Cl.7 G06F 12/00 module is monitored to detect the occurrence of a hard page
(52) U.S. Cl. 711/213 fault scenario. When a hard page fault scenario is detected.
(58) Field of Search 711/217, 221, 21 Corresponding scenario file is fetched from disk storage

711/203, 209, 204, 213; 712/207 and the determined pages, or copies thereof, are transferred
into RAM. The determined pages, or copies thereof, may be

(56) References Cited placed on a stand-by list in RAM and later soft-faulted into
the Working set of the application program upon request by

Us‘ PATENT DOCUMENTS the application program module thereby avoiding a

5,150,472 * 9/1992 Blank ct al. 395/425 Sequence of hard Page faults
5,694,568 * 12/1997 Harrison, 111 et al. .. 395/421.03
5,925,100 * 7/1999 Drewry et al. 709/219 29 Claims, 3 Drawing Sheets

1 300
K

30

MONITOR APPLICATION
PROGRAM MODULE FOR
PAGE FAULT SCENARIOS

304

DETECT PAGE
FAULT SCENARIO

302

 310

CRIATE SCENARIO
FILE

308

5CEF’,‘ILAER'0 ANALYZE PAGE

EXET FAULT SCENARIO
YES 812

OPEN SCENARIO FILE
IN PRE—FETCHER

314

ALLOCATE MEMORY SPACE IN RAM
FOR COPIES OF MEMORY PAGES

IN SEQUENCE FILE

31 6

TRANSFER COPIES OF
MEMORY PAGES INTO RAM

31 8

SET UP PAGE TABLE ENTRIES
TO REFLECT NEW MEMORY

PAGES IN RAM

1 APPLE 1010

2

_..0_u_
om<om>m§m_w:o_>_

US 6,317,818 B1

mm._:oos_2<mooE

m:3002s_<aoomn_»zmsmo<z<s_

zo:<o:&<

mm—.ZO_._.<0_._n_n_<
Nair

$590.2s_<mwomn.Emacs.s_<mwomn_Emsmo<z<s_Eosmz_2Em>moz:<mmao

sm:m>moz:<mmn_o

8.«E3:marmaxmozfiz.,/<mm<mo;>'@ImmSn.s_ooAIIVIImlEosmm..........------..............--..........--$4..92may/5.X32:MMMmm...«.21m_o<”_mm:z.tmo<#m:z_wxmozfizmamaxwaxmwm,_m_m_<:
<m~_<4<oo.__M_mm?0_2_39_1.w.5:

N_map
000o_

"mm_E<a<:2:.mmo:zos__ 89>wz_mwmooE
eu

.m_inmi.9_our

P_..-L
San

U

3

U.S. Patent Nov. 13, 2001 Sheet 2 013 US 6,317,818 B1

250

PAGE FAULT
SCENARIO

DETECTOR

255

APPLICATION
PROGRAM

MODULE

VIRTUAL

MEMORY

MEMORY

MANAGEMENT
UN IT

PAGE FAULT

SCENARIO
ANALYZER

SCENARIO
FILE

DISK

STORAGE

SCENARIO
FILE

265

COMPRESSOR!

DECOMPRESSOR

260

DISK DRIVE

DEFRAGGER
F|G.2

4

U.S. Patent Nov. 13, 2001 Sheet 3 013 US 6,317,818 B1

301 300

START

302

MONITOR APPLICATION

PROGRAM MODULE FOR

PAGE FAULT SCENARIOS

304

DETECT PAGE

FAULT SCENARIO

31 0

CREATE SCENARIO
FILE

308

ANALYZE PAGE

FAULT SCENARIO

306

SCENAR|O
FILE

EXIST
?

YES 312

OPEN SCENARIO FILE

IN PRE—FETCHER

314

ALLOCATE MEMORY SPACE IN RAM

FOR COPIES OF MEMORY PAGES
IN SEQUENCE FILE

316

MEMORY PAGES INTO RAM " ' 3°3
31 8

SET UP PAGE TABLE ENTRIES
TO REFLECT NEW MEMORY

PAGES IN RAM

320

5

US 6,317,818 B1

1
PRE-FETCHING OF PAGES PRIOR TO A

HARD PAGE FAULT SEQUENCE

FIELD OF THE INVENTION

This invention relates in general to the management of
pages for improved performance of an application program
module during hard page fault intensive scenarios. More
particularly, the present invention relates to the reduction of
hard page faults by pre-fetching pages into memory prior to
the occurrence of a hard page fault sequence.

BACKGROUND OF THE INVENTION

In a computer system, physical memory refers to a
hardware device that is capable of storing information. In
common usage, physical memory refers to semiconductor
storage (RAM) that is connected to the processing unit of the
computer system. Many modern processing units and oper-
ating systems also support virtual memory. Virtual memory
is a technique that allows smaller and/or partially simulated
memory devices to be represented as a large uniform pri-
mary mcmory source. In operation, application program
modules access memory through virtual addresses, which
are then mapped by the operating system in conjunction with
a memory management unit (MMU) onto physical memory
addresses.

In the context of a paging memory system, a “page” is
dcfincd as a fixcd-sizc block of bytes whosc physical address
can be changed via the MMU, working in conjunction with
a Virtual Memory Manager. Apage is either mapped onto a
physical address or is not present in RAM, in which case it
is stored on a disk storage in a page file). A “hard page fault”
is an exception that occurs when an application program
module attempts to access a virtual memory page that is
marked as being not present in RAM. When a hard page
fault occurs, the Virtual Memory Manager must access disk
storage to retrieve the data for the requested page .

Application program modules are typically disk-bound. In
other words, disk access and transfer times are limiting
factors of the performance speed of an application program
module. Disk access time refers to the time required by a
disk drive to access disk storage and respond to a request for
a data read or write operation. Therefore, the performance of
an application program module is significantly limited dur-
ing hard page fault intensive scenarios.

There are various potential solutions to the performance
bottleneck caused by disk access time during hard page fault
scenarios. An obvious potential solution is to reduce disk
access time. The reduction of disk access time is primarily
a hardware consideration and is not easily accomplished.
However, other potential solutions involve the manipulation
of memory storage through software program modules.

For example, one prior solution involves manipulating
pages such that related blocks of memory are stored together
on the same or an adjacent page. More specifically, appli-
cation program module code is typically stored in pages in
the order in which a compiler processed source code, not in
the order in which it will be executed. Therefore, when a
page is accessed by an application program module, it is
likely that only a portion of the requested code is stored
thereon and one or more hard page faults will occur to
retrieve additional requested code from other pages.
Manipulating the pages so that related code is stored on the
same or adjacent pages reduces the number of pages
rcquircd to cxccutc the code and thus rcduccs hard page
faults. Implementing this approach requires an extra per-
application effort. Also, it is not always possible to manipu-
late code in pages in an efficient manner.

10

15

25

30

35

40

45

50

55

60

65

2

Another prior solution involves strategically ordering
pages in disk storage. According to this prior solution, the
order in which pages will likely be accessed during typical
usage of an application program is determined based on the
assumption that disk access patterns are similar from run to
run. Then, pages are stored in disk storage in the determined
order. A strategic ordering of pages will result in a reduction
of hard page fault times. However, this approach is some-
what limited by the fact pages may be accessed more than
once by an application program. Therefore, additional hard
page faults may occur when a particular page must be
re-retrieved from disk storage. Strategically ordering pages
in disk storage tcnds to work best when it is cmploycd to
reduce hard page faults in a single hard page fault scenario,
typically boot.

Another prior technique to reduce the performance bottle-
neck caused by disk access time during hard page fault
scenarios involves decreasing the amount of pages associ-
ated witl1 an application program module. Reducing the
number of pages containing code executed by an application
program module necessarily reduces the number of hard
page faults that may possibly occur during execution of the
application program module. However, the reduction of
memory associated with an application program module
requires significant eifort on the part of the programmer, or
improvements in compiler technologies, to streamline the
application program module. Also, end-users demand appli-
cation program modules having extremely robust function-
ality and complex graphics capabilities. Thus, it is becoming
increasingly more diflicult to streamline application pro-
gram modules while meeting market demands.

Thus, there remains a need for a method and system for
improving the performance of an application program mod-
ule by reducing disk access time without burdening the
programmer.

Thcrc furthcr remains a nccd in the art for a method and

system for reducing hard page faults during execution of an
application program module without detracting from the
robustness of the application program module.

SUMMARY OF THE INVENTION

The present invention meets the needs described above by
providing a system and method for improving the perfor-
mance of an application program module by reducing the
occurrence of hard page faults during the operation of an
application program module. The present invention may be
embodied in an add-on software program module that oper-
ates in conjunction with the application program module. In
this manner, no effort is required on the part of the appli-
cation programmer to manipulate or modify the application
program module in order to improve performance.
Furthermore, the add-on software program module does not
detract from the intended operation of the application pro-
gram modulc.

According to one aspect of the present invention, a
scenario file is created which comprises ordered copies of
pages that are likely to be retrieved from disk storage by an
application program module during a hard page fault. The
scenario file is stored in the disk storage. Then, the execution
of the application program module is monitored until either
an explicit begin-of-scenario instruction is detected, or a
hard page fault scenario is detected. A hard page fault
sccnario may comprise any situation or cvcnt that is likely
to trigger a hard page fault, i.e., one or more requested pages
will not be available in RAM and will be retrieved from disk

storage. In response to the detection of a begin-of-scenario

6

US 6,317,818 B1

3

instruction or a hard page fault scenario, the scenario file is
fetched from disk storage and the ordered copies of the
pages are transferred into a standby list in RAM. In this
manner, the requested pages will be soft faulted into a
working set of the application program module, and no hard
page fault will occur. In another aspect of the invention, a
hard page fault scenario analyzer is provided for analyzing
a hard page fault scenario of an application program module
in order to determine the pages that will be retrieved from
disk storage upon the occurrence of a hard page fault
scenario. The hard page fault scenario analyzer creates a
scenario file comprising copies of the pages in the deter-
mined order. A hard page fault scenario detector is provided
for monitoring the execution of the application module,
detecting a hard page fault scenario and sending a message
to a pre-fetcher. The hard page fault scenario detector may
be manual or automatic. A pre-fetcher retrieves a scenario
file from disk storage and transfers the copies of the deter-
mined pages into RAM. The copies of the determined pages
are placed on a standby list in RAM. Accordingly, the '
determined pages will be available in RAM during a hard
page fault scenario and will be soft-faulted into the working
set of the application program module when they are
requested by the application program module, thereby
avoiding a hard page fault.

According to another aspect of the invention, a scenario
file is created which comprises ordered references to pages
that are likely to be retrieved from disk storage by an
application program module during a hard page fault
scenario, rather than the actual pages themselves. The sce-
nario file is stored in the disk storage. Then, the execution of
the application program module is monitored until either an
explicit begin-of-scenario instruction is detected, or a hard
page fault scenario is detected. A hard page fault scenario
may comprise any situation or event that is likely to trigger
a hard page fault, i.e., one or more requested pages will not
be available in RAM and will be retrieved from disk storage.
In response to the detection of a begin-of-scenario instruc-
tion or a hard page fault scenario, the pages referenced by
the scenario file are fetched from disk storage in the optimal
manner and are transferred into a standby list in RAM. In
this manner, the requested pages will be soft faulted into a
working set of the application program module, and no hard
page fault will occur. This aspect of the invention will result
in more seek operations on disk, but will still allow reading
of the required pages in an optimal manner, rather than the
‘as needed’ ordering if the pages are hard faulted into RAM.
This aspect of the invention also reduces the disk space
requirements over the previously mentioned aspect.

These and other aspects, features and advantages of the
present invention may be more clearly understood and
appreciated from a review of the following detailed descrip-
tion of the disclosed embodiments and by reference to the
appended drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a personal computer illus-
trating an operating environment for an exemplary embodi-
ment of the present invention.

FIG. 2 is a functional block diagram illustrating operation
of an exemplary embodiment of the present invention.

FIG. 3 is a flow diagram illustrating operation of an
exemplary embodiment of the present invention.

DETAILED DESCRIPTION

The present invention is directed to a system and method
for managing pages in order to improve the performance of

10

15

25

30

35

40

45

50

55

60

65

4

an application program module during hard page fault
scenarios. The present invention is operable to detect and
analyze a potential hard page fault scenario. In analyzing the
potential hard page fault scenario, the present invention
determines which pages will have to be retrieved from disk
upon the occurrence of a hard page fault sequence. Then,
prior to the occurrence of the potential hard page fault
sequence, the present invention pre-fetches into RAM most,
if not all, of the determined pages. Accordingly, no hard
page fault will occur when the application program module
attempts to access the determined pages. Thus, the perfor-
mance speed of the application program module is improved
due to fewer disk seeks. Those skilled in the art should

appreciate that the definition of a hard page fault scenario is
arbitrary, i.e., a single lengthy scenario could be ‘split’ into
multiple smaller scenarios. Thus, pages may be pre-fetched
in segments, one segment per ‘smaller’ scenario, resulting in
a spreading out of the demand for a single large amount of
memory in which to read the prefetched pages.

A hard page fault occurs when a page requested by the
application program is not available in RAM. The present
invention attempts to determine the order in which pages are
likely to be requested in a particular hard page fault scenario.
A “scenario file” is created to store a “page sequence,”
which comprises ordered copies of each determined page. A
pre-fetcher is used to load an appropriate scenario file into
RAM prior to the occurrence of a particular hard page fault
sequence. Then, during the particular hard page fault
scenario, the requested pages will be present in RAM and no
hard page fault will occur.

The following description will hereinafter refer to the
drawing, in which like numerals indicate like elements
throughout the several figures. FIG. 1 and the following
discussion are intended to provide a brief and genera
description of a suitable computing environment 100 for
implementation of the present invention. The exemplary
operating environment 100 includes a conventional persona
computer system 120, including a processing unit 121, a
system memory 122, and a system bus 123 that couples the
system memory 122 to the processing unit 121. The system
memory 122 includes read only memory (ROM) 124 anc
random access memory (RAM) 125. A basic input/output
system 126 (BIOS), containing the basic routines that help
to transfer information between elements within the persona
computer system 120, such as during start-up, is stored in
ROM 124.

The personal computer system 120 further includes a hare
disk drive 127, a floppy disk drive 128, e.g., to read from or
write to a removable magnetic disk 129, and an optical disk
drive 130, e.g., for reading a CD-ROM disk 131 or to reac
from or write to other optical media. The hard disk drive
127, removable magnetic disk drive 128, and optical disk
drive 130 are connected to the system bus 123 by a hard disk
drive interface 132, a removable magnetic disk drive inter-
face 133, and an optical drive interface 134, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage for the personal computer sys-
tem 120. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic
disk and a CD-ROM disk, it should be appreciated by those
skilled in the art that other types of media that are readable
by a computer system, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, and
the like, may also be used in the exemplary operating
environment.

The computer system 120 may include additional input
devices (not shown), such as a microphone, joystick, game

7

US 6,317,818 B1

5

pad, satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 121
through a serial port interface 146 that is coupled to the
system bus 123, but may be connected by other interfaces,
such as an IEEE 1394 bus or a universal serial bus (USB).
A monitor 147 or other type of display device is also
connected to the system bus 123 via an interface, such as a
video adapter 148. In addition to the monitor, personal
computer systems typically include other peripheral output
devices (not shown), such as speakers or printers.

The personal computer system 120 may operate in a
networked environment using logical connections to one or
more remote computer systems, such as a remote computer
system 149. The remote computer system 149 may be a
server, a router, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the personal computer system 120,
although only a memory storage device 150 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 151 and a wide ,
area network 152. Such networking environments
are commonplace in ofiices, enterprise-wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the per-
sonal computer system 120 is connected to the LAN 151
through a network interface 153. When used in a WAN
networking environment, the personal computer system 120
typically includes a modem 154 or other means for estab-
lishing communications over a WAN 152, such as the
Internet. The modem 154, which may be internal or external,
is connected to the system bus 123 via the serial port
interface 146. In a networked environment, program mod-
ules depicted relative to the personal computer system 120,
or portions thereof, may be stored in the remote memory
storage device 150. It will be appreciated that the network
connections shown are exemplary and other me ans of estab-
lishing a communications link between the computer sys-
tems may be used. It will be further appreciated that the
invention could equivalently be implemented on host or
server computer systems other than personal computer
systems, and could equivalently be transmitted to the host
computer system by means other than a CD-ROM, for
example, by way of the network connection interface 153.

Anumber of program modules may be stored in the drives
and RAM 125 of the computer system 120. Program mod-
ules control how the computer system 120 functions and
interacts with the user, with I/O devices or with other
computers. Program modules comprise routines, data struc-
tures and other software or firmware components. Examples
of program modules are operating systems 135 and appli-
cation program modules 138. In an exemplary embodiment,
the present invention may comprise one or more memory
management program modules 137 stored on the drives or
RAM 125 of the computer 100. Specifically, program mod-
ules 137 of the present invention may comprise computer
implemented instructions for determining which pages will
have to be retrieved from disk during a potential hard page
fault scenario and pre-fetching the determined pages into
RAM prior to the occurrence of the potential hard page fault
sequence.

Those sldlled in the art will appreciate that the invention
may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systcms, microprocessor-bascd or programmablc consumer
electronics, minicomputers, mainframe computers, and the
like. The invention may also be practiced in distributed
computing environments where tasks are performed by

10

15

25

30

35

40

45

50

55

60

65

6

remote processing devices that are linked through a com-
munications network. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

FIG. 2 is a functional block diagram illustrating operation
of an exemplary embodiment of the present invention. As
shown, an application program module 205 interacts with a
virtual memory device 210 to access data stored in pages.
The virtual memory device 210 communicates with a
memory management unit (MMU) 215, which maps virtual
memory addresses onto physical memory addresses in the
RAM 220 of the computer system. The MMU, which is a
well known device, maintains a record of pages present in
the RAM 220. An MMU includes a lookaside cache;
requests for pages not recorded by the MMU are redirected
to the VMM. When the requested pages are not present in
the RAM 220, they must be retrieved from disk storage 230.
In such a situation, the VMM instructs a disk drive 225 to
transfer the requested pages into the RAM 220. Typically,
the requested pages are swapped with less used pages in the
RAM 220. Accordingly, the least recently used pages are
stored on the disk storage 230 and the VMM updates its
records to reflect the new pages in the RAM 220. Swapping
is a memory management technique that is well known in
the art. Those skilled in the art will appreciate that above
description of memory management has been provided by
way of example only and that other algorithms may be, and
often are, employed.

A hard page fault scenario analyzer 240 anticipates and
analyzes hard page fault scenarios. As mentioned, a hard
page fault scenario is a situation in which a hard page fault
sequence is highly likely to occur. The hard page fault
scenario analyzer logs various hard page fault scenarios that
occur during operation of the application program module
205. The logged hard page fault scenarios are then analyzed
to determine if they re-occur frequently, and if they do, they
are put in a scenario file. This analysis can occur program-
matically on the end-user’s computer system, or in advance
by the developer of a particular software product. As an
example, suppose the application program module 205 is a
word processor and that an anticipated hard page fault
scenario is the situation in which the user selects a well

known “file open” command. In response to the “file open”
command, the application program will display a graphical
representation of a file directory. However, in order to
display the graphical representation of the file directory, a
sequence of hard page faults will occur because the word
processor must retrieve a particular set of pages from disk.
In accordance with an exemplary embodiment of the present
invention, the hard page fault scenario analyzer 240 antici-
pates the “open file” hard page fault scenario of the example
and determines the set of pages that will need to be retrieved
from disk upon the occurrence of the hard page fault. The
determination of pages that will need to be retrieved from
disk will be described in greater detail below. The detection
of particular classes of hard page fault scenarios may be built
into the system. For example, application launch is virtually
always a hard page fault scenario, so an exemplary embodi-
ment of the present invention may be configured such that
any launch operation of an application program will be
considered to be a hard page fault scenario.

Based on the determined pages, the hard page fault
scenario analyzer 240 creates a scenario file 245, which is
stored in the disk storage 230. The scenario filc 245 may
comprise ordered copies of the pages that will likely be
retrieved from disk due to one or more hard page faults
during the hard page fault scenario. The scenario file 245

8

US 6,317,818 B1

7

may comprise multiple copies of a single page. Similarly,
multiple scenario files may include copies of the same pages.
In this manner, the copies of the pages may be transferred
into RAM 220 from the sequence file 245 in the appropriate
order without the occurrence of a hard page fault. The
transfer of the copies of pages into RAM is discussed below.

Asequence file 245 may also comprise ordered references
to the pages that are likely to be retrieved from disk storage
230 during a hard page fault scenario, rathcr than copies of
the actual pages themselves. In response to the detection of
a begin-of-scenario instruction or a hard page fault scenario,
the pages referenced in the scenario file are fetched from
disk storage in the optimal manner and are transferred into
RAM. In this manner, the requested pages will be available
in RAM when requested, and no hard page fault will occur.
This exemplary embodiment of the invention will result in
more seek operations on disk, but will still allow reading of
the required pages in an optimal manner, rather than the ‘as
needed’ ordering if the pages are hard faulted into RAM. As
compared to a scenario file 245 comprising ordered copies '
of the determined pages, a scenario file comprising refer-
ences to the determined pages reduces disk space require-
ments.

The hard page fault sccnario analyzer 240 may comprise
functionality for automatically analyzing hard page fault
scenarios and generating corresponding scenario files. By
way of illustration, the hard page fault analyzer 240 may log
hard page faults that occur upon execution of a process
during operation of an application program module 205.
During idle time of the application program module 205, the
hard page fault scenario analyzer 240 may write the log of
hard page faults to a log file. Then, a pattern matching
algorithm may be used to find a pattern of hard page faults
based on all log files generated for the process same. If a
pattern of hard page faults is found, a new scenario file may
be generated based on the pages that are retrieved from disk
during the pattern. Automatically generated scenario files
may be subject to subsequent refinement, i.e., they may be
inp11t into the pattern-matching algorithm.

The hard page fault analyzer 240 may also comprise
various application program interfaces (APIs) for allowing
an application program module 205 to explicitly designate
certain scenarios as hard page fault scenarios and to instruct
the hard page fault scenario analyzer 240 to create a corre-
sponding sequence file. Those skilled in the art will appre-
ciate that the use of such APIs is likely to be faster and more
accurate than using functionality for automatically analyz-
ing hard page fault scenarios.

A scenario file 245 may further include an index referred
to herein as a “page sequence.” The elements of a page
sequence may be stored as triples in the form of: {image
name, page offset, pre-fetch offset}, where a pre-fetch offset
is the offset into the scenario file. Physically, a page
sequence may be implemented as: {image name, count,
(page offset, pre-fetch offset)

The scenario file 245 may also comprise various other
components, such as a “scenario file ID,” a “process image
name,” a “prologue” and an “epilogue.” A scenario file ID
may be a standard 128-bit COM GUID, or an equivalent
thereof, which is well known in the art. A process image
name may allow hard page fault scenarios to be constrained
to certain processes (e.g. winword.exe). Prologues and epi-
logucs may be provided as aids for determining the order of
hard page fault scenarios. For example, a component of the
hard page fault scenario analyzer 240 may be operable to
keep track of events leading to and following hard page fault

10

15

25

30

35

40

45

50

55

60

65

8

scenarios. A prologue may be used to record events that
typically lead to the hard page fault scenario associated with
the scenario file 245. The elements of prologues may be
stored as pairs in the form of: {image name, page offset}.
Similarly, an epilogue may be used to help to predict
whether another hard page fault scenario will follow the
hard page fault scenario associated with the scenario file
245. For example, an epilogue may be implemented as a list
of scenario file IDs, and a decay factor to minimize the
number of coincidental hints.

After the hard page fault scenario analyzer 240 has
analyzed various hard page fault scenarios of an application
program module 205 and has stored corresponding scenario
files 245 in the disk storage 230, the hard page fault scenario
detector 250 monitors operation of the application program
module 205 for the occurrence of a hard page fault scenario.
A hard page fault scenario detector may be manual or
automatic. A manual hard page fault scenario detector may
be programmed to send messages to the pre-fetcher upon the
occurrence of particular events. An automatic hard page
fault scenario detector may be operable to analyze prologues
and epilogues in scenario files to predict when a hard page
fault scenario will occur. When the hard page fault scenario
detector 250 detects a hard page fault scenario, it sends a
message to a pre-fetcher 255. The message sent to the hard
page fa11lt scenario detector 250 instructs the pre-fetcher to
fetch from disk storage 230 the scenario filc 245 associated
with the detected hard page fault scenario. Apre-fetcher 255
typically exists as part of an operating system.

In response to the message received from the hard page
fault scenario detector 240, the pre-fetcher 255 accesses the
disk drive 225 to retrieve the appropriate scenario file from
the disk storage 230. The pre-fetcher 255 then transfers into
the RAM 220 the page sequence of the retrieved scenario file
245. The newly transferred pages are placed on a standby list
in the RAM 220, which is a technique that is well known to
those skilled in the art. As such, the newly transferred pages
do not increase the working set, i.e., the pages currently
utilized by the application program module 205. Then, as the
newly transferred pages are requested by the application
program 205, they are soft-faulted into the working set and
a hard page fault is avoided.

While pre-fetching scenario files 245 into RAM does not
increase the working set, it may increase the memory
requirements of the computer system. However, those
skilled in the art will recognize that not all computer systems
will include sufficient memory for proper operation of the
exemplary embodiment described above. Accordingly, in
low-memory situations, the scenario files may be read in
parts, thereby reducing memory requirements. An exem-
plary embodiment of the present invention includes a
defragger 260. The pre-fetching of scenario files may be
performed more efliciently when scenario files are physi-
cally stored contiguously on the disk storage 230. Many
available operating systems include a disk defragger 260.
For example, the Windows NT operating system, manufac-
tured and produced by the Microsoft Corporation of
Redmond, Wash., supports defragmentation of uncom-
pressed files on 8 KB—64 KB (depending on disk size and
user settings) boundaries with the NTFS file system (also
manufactured and produced by the Microsoft Corporation).
Such available defraggers 260 are sufficient for operation in
the present invention. In accordance with an exemplary
embodiment, the defragger 260 may be automatically trig-
gered during idle time.

Further, an exemplary embodiment includes a disk
compressor/decompressor 265. Well known compression

9

US 6,317,818 B1

9

algorithms may be employed to achieve approximately 50%
compression with 25 MB/s decompression throughput.
These results may be achieved with as little as 64 KB extra
memory. Average disk transfer rates are about 8 MB/s. So,
for an illustrative 3 MB pre-fetch scenario, comparative
pre-fetch times are as follows:

No compression: 0.012 s (seek)+3 MB/8 MB/s (read)=0.3870 s.

50% compression: 0.012 s (seek)+1.5 MB/8 MB/s (read)+3
MB/25 MB/s (dec0mpress:)=0.3195 s.

Thus, there is a 17.5% improvement in pre-fetch time
using 50% comprcssion.

As described above with reference to FIG. 2, an exem-
plary embodiment of the present invention may be com-
prised of various functional components, including a hard
page fault scenario analyzer 240, a hard page fault scenario
detector 250, a pre-fetcher 255, a disk defragger 260, and a
compressor/decompressor 265. However, those having ordi-
nary skill in the art will recognize that the minimum com- '
ponents required to implement the broad concept of the
present invention are a manual hard page fault scenario
detector 250 and a pre-fetcher 255. As mentioned, a manual
hard page fault scenario detector may be programmed to
send instructions to the pre-fetcher 255 upon the occurrence
of certain events. Those skilled in the art will further

appreciate that an automatic hard page fault scenario detec-
tor 250, a scenario analyzer 240, a disk defragger 260 and a
compressor/decompressor 265 are optimizations for the
present invention. The inclusion of such optimizations will
depend on the available memory of the computer system on
which the present invention will be run and possible gains to
be achieved by operation of the present invention.

FIG. 3 is a flow chart illustrating computer implemented
steps for carrying out an exemplary method of the present
invention. The exemplary method 300 begins at starting
block 301 where a computer system, such as the computer
100 of FIG. 1, is executing an application program module,
such as the application program module 170 of FIG. 1. At
step 302, the application program module is monitored for
the occurrence of events that will lead to a hard page fault
scenario. At step 304, a hard page fault scenario is detected.
As mentioned above, a hard page fault scenario is a situation
in which a hard page fault sequence is likely to occur, i.e.,
requested pages will be unavailable in RAM and must be
retrieved from disk storage. Then, at step 306, a determina-
tion is made as to whether a scenario file exists that

corrcsponds to thc dctcctcd hard page fault sccnario. As
mentioned above with respect to FIG. 2, scenario files may
be stored on disk storage. Scenario files comprise either
ordered copies of or references to the pages that are deter-
mined to be likely to be retrieved from disk storage during
a hard page fault. The copies of or references to the
determined pages are stored in the order in which they are
likely to be requested by the application program module. If
no corresponding scenario file is located, the method pro-
ceeds to step 308, where the hard page fault scenario is
analyzed to determine which pages must be retrieved from
disk and in what order. Then, based on the analysis per-
formed at step 308, a scenario file is created for the detected
hard page fault scenario at step 310. Subsequently, the
method returns to step 302 to continue monitoring the
application program module for subsequent hard page fault
sccnarios.

If at step 306 a scenario file was located that corresponds
to the hard page fault scenario detected at step 304, the
method proceeds to step 312 where the scenario file is

10

15

25

30

35

40

45

50

55

60

65

10

opened and its header is retrieved. Then, at step 314,
memory space in RAM is allocated for the determined pages
that are copied or referenced in the scenario file. At step 316,
the determined pages, or copies thereof, are prefetched into
the allocated space in RAM. Lastly, at step 318, page table
entries in the Virtual Memory Manager are updated to reflect
the new pages transferred into RAM. As described
previously, the new pages are pointed to by entries stored in
the standby list. Thus, the application program module
requests the appropriate pages during the hard page fault
scenario, the prefetched pages are soft faulted into the
working set of the application program and a hard page fault
is avoided.

In view of the foregoing, it will be appreciated that the
present invention provides a method and system for improv-
ing the performance of an application program module by
pre-fetching pages into RAM during hard page fault
scenarios, in order to avoid hard page faults. Still, it should
be understood that the foregoing relates only to the exem-
plary embodiments of the present invention, and that numer-
ous changes may be made thereto without departing from
the spirit and scope of the invention, as defined by the
following claims.

We claim:

1. In a computer system, a method for avoiding hard page
faults during a hard page fault scenario of an application
program module, the hard page fault scenario comprising a
situation in which the application program module attempts
to access one or more pages that are unavailable in RAM and
must be retrieved from a disk storage, the method compris-
ing the computer implemented steps of:

prior to an occurrence of the hard page fault scenario,
determining which pages will be retrieved from disk;

detecting the occurrence of the hard page fault scenario;
and

in response to detecting the hard page fault scenario,
fetching the determined pages into RAM prior to the
occurrence of the hard page faults of the hard page fault
scenario,

whereby the determined pages will be available in RAM
and hard page faults will not occur.

2. The method of claim 1, wherein the step of determining
which pages will be retrieved from disk during the hard page
fault scenario comprises the steps of:

creating a log of hard page faults that occur during
operation of the application program module;

analyzing the log to find a common hard page fault
scenario; and

determining from the log which pages were retrieved
from disk during that the common hard page fault
scenario.

3. The method of claim 1, further comprising the step of
defragging the disk storage.

4. The method of claim 1, wherein the pages are com-
pressed in the disk storage; and

wherein the method further comprises the step of decom-
pressing the copies of the determined pages prior to
fetching them into the RAM.

5. The method of claim 1, wherein a copy of each of the
determined pages is stored in a sequence file; and

wherein the step of fetching the determined pages into
RAM comprises fetching the copy of each of the
determined pages from the sequence filc into RAM.

6. The method of claim 5, wherein the sequence file
further comprises a prologue indicating one or more events
that lead to the hard page fault scenario.

10

US 6,317,818 B1

11

7. The method of claim 5, wherein the sequence file
further comprises an epilogue indicating one or more sub-
sequent hard page fault scenarios that are likely to follow the
hard page fault scenario.

12

wherein the hard page fault scenario detector is operable
to analyze the prologue of the scenario file in order to
detect the hard page fault scenario.

19. The system of claim 17, wherein the sequence file
8. The method of claim 1, wherein a reference to each of 5 further comprises an epilogue indicating one or more sub-

the determined pages is stored in a sequence file; and

wherein the step of fetching the determined pages into
RAM comprise accessing the sequence file in order to
locate and fetch the determined pages into memory.

9. The method of claim 8, wherein the sequence file
further comprises a prologue indicating one or more events
that lead to the hard page fault scenario.

10. The method of claim 8, wherein the sequence file
further comprises an epilogue indicating one or more sub-
sequent hard page fault scenarios that are likely to follow the
hard page fault scenario.

11. The method of claim 1, wherein fetching the copies of
the determined pages into RAM comprises placing the
copies of the determined pages on a standby list in the RAM.

12. Acomputerized system for avoiding a hard page fault '
during a hard page fault scenario of an application program
module, the hard page fault scenario comprising a situation
in which the application program module attempts to access
one or more determined pages that are unavailable in RAM
and must be retrieved from a disk storage, the system
comprising:

a hard page fault scenario detector for detecting the
occurrence of the hard page fault scenario; and

a pre-fetcher for fetching from the disk storage the deter-
mined pages into RAM prior to the occurrence of the
hard page fault of the hard page fault scenario, the
pre-fetcher operating in response to a message received
from the hard page fault scenario detector indicating
that the hard page fault scenario has been detected,

whereby the determined pages will be available in RAM
and the hard page fault will not occur.

13. The system of claim 12, wherein the hard page fault
scenario detector comprises computer implemented instruc-
tions within the application program module for sending the
message to the pre-fetcher when a predetermined eventoccurs.

14. The system of claim 12, wherein a copy of each of the
determined pages is stored in a sequence file; and

wherein the pre-fetcher fetches the copy of each of the
determined pages stored in the sequence file into RAM.

15. The system of claim 14, wherein the sequence file
further comprises a prologue indicating events that lead to
the occurrence of the hard page fault scenario; and

wherein the hard page fault scenario detector is operable
to analyze the prologue of the scenario file in order to
detect the hard page fault scenario.

16. The system of claim 14, wherein the sequence file
further comprises an epilogue indicating one or more sub-
sequent hard page fault scenarios that are likely to follow the
hard page fault scenario.

17. The system of claim 12, wherein a reference to each
of the determined pages is stored in a sequence file; and

wherein the pre-fetcher accesses the sequence file in order
to locate and fetch the determined pages into RAM.

18. The system of claim 17, wherein the sequence file
further comprises a prologue indicating events that lead to
the occurrence of the hard page fault scenario; and

10

15

25

30

35

40

45

50

55

60

10

sequent hard page fault scenarios that are likely to follow the
hard page fault scenario.

20. The system of claim 12, further comprising a hard
page fault scenario analyzer for analyzing the hard page
fault scenario in order to predetermine which pages will be
retrieved from disk during the hard page fault of the hard
page fa11lt scenario and create a scenario file comprising the
copies of the predetermined pages.

21. The system of claim 12, further comprising a defrag-
ger for defragging the disk storage.

22. The system of claim 12, further comprising a
compressor/decompressor for compressing the pages stored
in the disk storage and decompressing the copies of the
predetermined pages prior to fetching them into the RAM.

23. The system of claim 12, wherein the pre-fetcher
fetches the copies of the predetermined pages into RAM by
placing the copies of the predetermined pages on a standby
list in the RAM.

24. A data structure stored on a computer readable
medium for use in conjunction with an application program
module for avoiding a sequence of hard page faults during
a hard page fault scenario of the application program, the
data str11ct11re comprising:

a page sequence index comprising ordered identifiers of
one or more pages that are likely to be retrieved from
a disk storage during the sequence of hard page faults;
and

copies of the plurality of pages that are likely to be
retrieved from a disk storage during the sequence of
hard page faults.

25. The data structure of claim 24, further comprising a
prologue for indicating one or more events that typically
lead to the hard page fault scenario.

26. The data structure of claim 24, further comprising an
epilogue for indicating one or more subsequent hard page
fault scenarios that typically follow the hard page fault
scenario.

27. A data structure stored on a computer readable
medium for use in conjunction with an application program
module for avoiding a sequence of hard page faults during
a hard page fault scenario of the application program, the
data structure comprising:

a page sequence index comprising ordered identifiers of
one or more pages that are likely to be retrieved from
a disk storage during the sequence of hard page faults;
and

references to the plurality of pages that are likely to be
retrieved from a disk storage during the sequence of
hard page faults.

28. The data structure of claim 27, further comprising a
prologue for indicating one or more events that typically
lead to the hard page fault scenario.

29. The data structure of claim 27, further comprising an
epilogue for indicating one or more subsequent hard page
fault scenarios that typically follow the hard page fault
scenario.

