United States Patent

US007190284B1

(12) (10) Patent No.: US 7,190,284 B1
Dye et al. 45) Date of Patent: Mar. 13, 2007
(54) SELECTIVE LOSSLESS, LOSSY, OR NO 4,881,075 A 11/1989 Weng ..cocovivcrnivrinnnan 341/87
COMPRESSION OF DATA BASED ON 4903317 A 2/1990 Nishihara et al. . e 358/1.9
ADDRESS RANGE, DATA TYPE, AND/OR 4,987,541 A 1/1991 Levente et al. ... cree TO1/35
REQUESTING AGENT 5,003,307 A 3/1991 Wh!ting et al.
5,016,009 A 5/1991 Whiting et al.
ol i itine e
(76) Inventors: Thomas A. Dye, 6621 Candle Ridge S0, 4 6,199“ Whiting etal.
3 P o) 5,136,280 A 8/1992 Yoshida et al.
C,C'Ve, AAUSUD, i B 4 (US) 78731; Manuel 5146221 A 9/1992 Wq'lllll'lg et al.
J. Alvarez, II, 8300 Pepper Rock Dr., 5150430 A 91992 Chu
Austin, TX (US) 78717; Peter Geiger, 5.155.484 A 10/1992 Chambers, IV
10407 Treasure Island Dr., Austin, TX 5,237,460 A 8/1993 Miller et al. 395/888
(US) 78730 5237675 A 81993 Hannon, Jr. ... e 710/08
5247638 A 9/1993 (O’Brien et al. ... 395/888
(*) Notice: Subject to any disclaimer, the term of this 5,247,646 A 9-":1993 Osterlund et al. 395/888
patent is extended or adjusted under 35 :'igg'gég i é:gg: gbel] 3?97:20%3
S.C. 15 . . 3,325, Ira-ebal o
WSk) b} Odays 5337275 A 8/1994 Garner 365/189.01
; 5,353,024 A 10/1994 Graybill
(21) Appl. No.: 09/239,659 5353425 A 10/1994 Malamy et al. 711/144
. 5357614 A 10/1994 Pattisam et al. 395/250
(22) Filed: Jan. 29, 1999 5371499 A 12/1994 Graybill et al.
L 5379036 A 1/1995 Storer
Related U.S. Application Data 5380922 A 2/1995 Seroussi et al.
(63) Continuation-in-part of application No. 08/916.464, s #1995 FAnueHHan. v 358/426
: 5,406,278 A 4/1995 Graybill et al.
filed on Aug. 8, 1997, now Pat. No. 6.173.381, which 5406 :
: 7 il ‘ el 5406,279 A 4/1995 Anderson et al.
is a continuation-in-part of application No. 08/463, 5412429 A 5/1995 Glover
106, filed on Jun. 5, 1995, now abandoned, which is 5.414.425 A 5/1995 Whiting et al.
a continuation-in-part of application No. 08/340.667. 5,414,850 A 5/1995 Whiting
filed on Nov. 16, 1994, now Pat. No. 6.002.411. 5.420,696 A 5/1995 Wegeng et al. 358/468
5,426,779 A 6/1995 Chambers, IV
(5]] Int. CI. 5455577 A 10/1995 Slivka et al. ... 341751
HOIM 7/30 (2006.01) 5455943 A 10/1995 Chambers, IV
GOGE 12/00 (2006.01) 5,463,390 A 10/1995 Whiting et al.
o Y Y ! 5467,087 A 11/1995 Chu
(52) US.CL f 3}{4]!5'],3%11387..7](}}'68. 5.479.587 A 12/1995 Campbell et al. 358/1.11
T11/170; 382/232; 382/233; 382/244 5.485.526 A 1/1996 Tobin
(58) Field of Classification Search 382/232, 5.493.698 A 2/1996 Suzuki et al. ooooovoonnnn. 370/280
382/233, 244; 710/68; 709/247; 341/51, 5,506,580 A 4/1996 Whiting et al.
341/87; 711/170 5,510,840 A 4/1996 Yonemitsu el al.
See application file for complete search history. 5525982 A 6/1996 Cheng et al.
5,526,363 A 6/1996 Weiss et al.
(56) References Cited 5,532,693 A 7/1996 Winters et al.
n 5,532,694 A 7/1996 Mayers et al.
U.S. PATENT DOCUMENTS 5,530,865 A * 7/1996 Gentileoovrrerrnvnnnn. 358/1.16
- — 5,548,742 A 8/1996 Wang et al. . TIL/128
4008460 A 21977 Bryantetal ..ooonne 3931483 5,553,160 A * 9/1996 Dawson 358/426.02
4.688.108 A 81987 Cotton et al. 358/261.1 5559978 A 9/1996 Spilo .eoocveererirerinnnn. 711/203
4.876,541 A 10/1989 Storer 5,563,595 A 10/1996 Strohacker 341/106

APPLE 1009

US 7,190,284 B1
Page 2

5.602.976
5.606.428
5621403 A
5625712 A *
5,627,995 A

* 0 2/1997 Cooper et al.
2/1997 Hanselman .
4/1997 Reznik
4/1997 Schoenzeit et al. 375/240.05
5/1997 Miller et al.

5,652,878 A 7/1997 Craft

5696912 A 12/1997 Bicevskis et al. 395/308
5,724,582 A ™ 3/1998 Pelanek et al. . 382/232
5,729,228 A 3/1998 Franaszek et al.

5771011 A 6/1998 Masenas

5,778,255 A 7/1998 Clark et al.

358/1.15
. 358/404

5,572206 A 11/1996 Miller et al.
5,577,248 A 11/1996 Chambers, IV
5,584,008 A 12/1996 Shimada et al. 711/114
5,590,047 A * 12/1996 Uehara 700/214
A
A

5,793,937 A * 8/1998 Churaet al.cocenene 358/1.16
5798718 A 8/1998 Hadady
5812817 A 9/1998 Hovis et al. . . 395/497.04
5828877 A 10/1998 Pearce et al.c.ccec... 395/670
5,836,003 A 11/1998 Sadeh
5,838,334 A 11/1998 Dye
5,847,762 A * 12/1998 Canfield et al. 375/240.15
5,852,742 A * 12/1998 Vondran et al. 710/1
5,874,908 A 2/1999 Craft
5877711 A 3/1999 Craft
5,883,588 A 3/1999 Okamura
5933104 A 81999 Kimura
5,936,560 A 8/1999 Higuchi
5945933 A 8/1999 Kalkstein
5956372 A 9/1999 Vaman et al.
5,961,617 A * 10/1999 Tsangccccvvvnennnnns 710/100
5.973.630 A 10/1999 Heath
6,002411 A 12/1999 Dye .. e 345/521
6,002,814 A * 12/1999 Chadezcooveeren.ee. 358/1.15
6.067.098 A 5/2000 Dvye
6.145.069 A 1172000 Dye
6.170.047 Bl 1/2001 Dye
6,173,381 Bl 172001 Dye
6,198,850 B1™ 3/2001 Banton 358/426.02
6.208,273 Bl 3/2001 Dye
6,292,194 B1* 9/2001 Powell, III 236/92 B
6,333,745 Bl 12/2001 Shimomura et al.

2004/0017483 Al1™ 1/2004 Kitsugi et al. 348/207.99

FOREIGN PATENT DOCUMENTS

EP 0 702 457 3/1996
P 05204747 A * 8/1993
WO 95/19662 7/1995

OTHER PUBLICATIONS

Brenza, “Synonym Avoidance Cache,” IBM Technical Disclosure
Bulletin, vol. 34, No. 1. Jun. 1991, pp. 377-381.

International Search Report for Application No. PCT/US 00/02355,
mailed Jun. 16, 2000.

U.S. Appl. No. 08/463.106, filed Jun. 5, 1995, Dye.

U.S. Appl. No. 60/144,125, filed Jul. 16, 1999, Dye.

U.S. Appl. No. 09/491.343, filed Jan. 26, 2000, Dye.

U.S. Appl. No. 09/818,283, filed Mar. 27. 2001, Dye.

Yabe et al., Compression/Decompression DRAM for Unified
Memory Systems: A 16 Mb, 200MHz, 90% to 50% Graphics-
Bandwidth Reduction Prototype, IEEE 1998 Solid-State Circuits
Conference, Feb. 1998, pp. 342-343,

Kjelso et al., Design and Performance of a Main Memory Hardware
Data Compressor, EuroMicro 96 Conference, IEEE, Sep. 1996, pp.
423-430.

* cited by examiner

Primary Examiner—Hong Kim
(57) ABSTRACT

An integrated memory controller (IMC) including Memo-
ryF/X Technology which includes data compression and
decompression engines for improved performance. The
memory controller (IMC) of the present invention preferably
selectively uses a combination of lossless, lossy. and no
compression modes. Data transfers to and from the inte-
grated memory controller of the present invention can thus
be in a plurality of formats, these being compressed or
normal (non-compressed), compressed lossy or lossless, or
compressed with a combination of lossy and lossless. The
invention also indicates preferred methods for specific com-
pression and decompression of particular data formats such
as digital video, 3D textures and image data using a com-
bination of novel lossy and lossless compression algorithms
in block or span addressable formats. To improve latency
and reduce performance degradations normally associated
with compression and decompression techniques, the
Memoryl'/X Technology encompasses multiple novel tech-
niques such as: 1) parallel lossless compression/decompres-
sion; 2) selectable compression modes such as lossless,
lossy or no compression: 3) priority compression mode; 4)
data cache techniques; 5) variable compression block sizes:
6) compression reordering: and 7) unique address transla-
tion, attribute, and address caches. The parallel compression
and decompression algorithm allows high-speed parallel
compression and high speed parallel decompression opera-
tion. The IMC also preferably uses a special memory
allocation and directory technique for reduction of table size
and low latency operation. The integrated data compression
and decompression capabilities of the IMC remove system
bottle-necks and increase performance. This allows lower
cost systems due to smaller data storage. reduced bandwidth
requirements, reduced power and noise.

16 Claims, 34 Drawing Sheets

US 7,190,284 Bl

Sheet 1 of 34

Mar. 13, 2007

U.S. Patent

(Uy Jold)
} b4
8l1 sng O/l
Y d 0]
8€C w2 k74 _ 0ct
Ova opny 9snop preoghoy ol ¥sid PIeH
J8|j04uo)
wajsAsqns Oy
L0}
sng doV/I0d vio a9
d
gr ™ &
fodepy : ’ ab _w|9u 0 . L
solydess a Pug YUON | _
v
L a 0L} Alowapy washs
_ v
11 Aowa Jayng aweld
Y i 0 - g0} sng [e207
T o
col ey v0l
Ndd a 9yoe)
v

US 7,190,284 Bl

Sheet 2 of 34

Mar. 13, 2007

U.S. Patent

g bi4
8Ll sng Ol
v d 4
{4 144} . 57T
oSOy pJeoqhay 91l 4510 PIEH
lajjonuo)
waysAsqns Q||
{4 9
- ———
fedsiq ospl orl r 1_7
¢yl Aejasiqg oapIp by _ _
8€C _
ovaopny [041 Aowsp washs
<H oH oH - 90| sng [e007]
ar w07
Ndd ayoe)

US 7,190,284 Bl

Sheet 3 of 34

Mar. 13, 2007

U.S. Patent

6y :
m V2 |
m .| ®oewa O sng eseydueg | :
m e S i
- | S ou__mlﬁ_% d H ﬂ.w
: . a [VoA bu3 :
OS1N/8oY m 9 auibug 4aA F soydels ospiv/ae/az | ! C
“ _ :
m I ™ #= 1 m
“ | m
m (534 072 — “ H
- UOISIBAUOD) <— %009 }/AIoWal Yim e—n lec 3 e
3105PIA BHBIA ¢ [jewnod 3 o) oapIA 18]j01u0Q) Alowajy - HouEH i | I | i
: _ “
: I * '
m p . ™™ m
=% m = Emﬁmmmn_zw 0i2 m 0Ll
va m Wapoy 3 olpny aulbu3 uoynoax3 m fiowa| we)sks
S o _
! * 707 ~702 m
m (jeuss)x3 10 payesbayu)) i
m 4/1 OSIH/NdD [B307 m
: OvF OWI

]
]
]
]
1
1
1
[}
1
(]
i
]
(]
1
L}
]
1
(]
1
[}
1
]
]
]
]
1
1
(]
(]
]
1
1
L}
]
1
]
(]
1
(]
(]
(]
[}
(]
(]
L
1]
L}
1
[}
]
L]
]
i
(]
1
1
]
]
]
]
L]
L]
[]
L]
[}
1
L}
L}
L]
1
1
1
1
]
]
]
[]
L]
1
i
i
L}
(]
]
[]
(]
]
(]
i

901 sng [B207]

US 7,190,284 Bl

Sheet 4 of 34

Mar. 13, 2007

U.S. Patent

—A

] — — —

[¥44
21607
aoBla)U|
Kowspy

L - >
1GC <
Jun uoissaidwosa(] B uoissaidwo?) |ojered (u)sng ejeq
I ™ (u)sng ssaippy
!
m 19z y
| e 21607
_ bLC o}IM -
= | Kopang - .
<«——— eleq pessaidwo) .
mcommmmo €1 _ +
! v M 912 (1)sng eleg
G1Z (1)sng ssaippy
g —— — — _ - — — P -‘I_.
18¢
jiun [ojuod
uoissaidwo) _
................ 1z lontogjsngsanbay | T T T T

US 7,190,284 Bl

Sheet 5 of 34

Mar. 13, 2007

U.S. Patent

snjels - S
adA) - A1
yibua - q
be| - |
$SaIppy - v .
ucmEEoQ.mQ c @H\
REN
auibu3
uoissaidwo)
£sso G/G :w.umm
0/G eubu3 (e m_ﬁ .
i [@or) uoissaidwo) (g9}) > ssaidwo) [“5]
eleq m -
O S
¥65 765 095 @ eleqg 1L IS —
o | o | (272 o s | | yomg
e v fotion 15) @ Kiowsy | 1egssoIn
I
<
“yo
auibu3
uoissaidwoosaq eleq ‘1 .
fsso] G5 _,m”w AN QY
s (a9l) i < A YOIMS
ejeq 065 auibu3 7 << ssaidwodaq s
S [A —_— d |
7z| ‘LS |1e uoIssaldwodsq -

US 7,190,284 Bl

Sheet 6 of 34

Mar. 13, 2007

U.S. Patent

(uy maN)

g9 bi4
Lu%m_ w, - am_m ﬁ - ‘c_mcm Qm_m - Em% Mwmc_
%.%m ﬁi bw_m_ mm - am_m chm_ = Em% wﬂmn__c_
%.D_m_ ﬁ - EWm ﬁ - am_m_ chw Ealan ﬂmom. wﬁm_c_
aﬂm mwl \cm_m_ ﬁ - bm_m_ \cm_m_ R Em%wﬁwc_

(MY J0Ld)

v9 b4
aﬂ_m_ mm - am_m ﬁ - Ercm_ bm_m_ - Emom %mc_

U.S. Patent Mar. 13,2007 Sheet 7 of 34 US 7,190,284 B1

[Parallel Compression]

l

Maintain a history table
comprising entries
402

l

Maintain a current count of prior
matches for each entry in the
history table
404

l

Receive Uncompressed data
406

l

Compare a plurality of symbols with
each entry in the history table
408

A4
Determine match information for each
of the plurality of symbols based on
the current count and compare results
410

l

Output compressed data in response
to the match énformation
412

Fig. 7

9

US 7,190,284 Bl

Sheet 8 of 34

Mar. 13, 2007

U.S. Patent

uonessny|l Jo asea o} A||euss
umouys “|9Jlesed ul pawiopad

O

0Ly

8 bi4

“" Yoley utuno) joquiks |
m 10 Xep\ 0} Jajuno?) Jasoy
w SaA
m — 9%
: 89p ; '
b o Bleq ¢10quifs Jse) ay) :
' passaidwo)) ndinQ i
m = 2o
; 79 ;
Vol e passaidwooun »_F__ouw ﬁw_.__w
m joquiAS Inding e
w [oqWAS Jnduj yoe3 Jo4
(3 ey
<1 0187 0) oju| ejeq passaidwon
SIB)UN0Y IV Jesey snoiasld IndinQ
A
£ A%
passaldwooun 5 ¢seyojew
joquiS o83 Indino i
dois
A J ﬂ
11 08¢
mopuipp AIojsiH o} Saydle
S|oquAS passaldwooun ppy snoinesd Buluiewsy ysni4

oN
z5p
¢S3Yojey

96v
0ju| EJeq passaidwon
snoald indino

+

5
yolep snoinald Buipnjou
yole ysabie 108188

+

snoinalg SaA

£Udjew auo
ul sjoquiAg
Y

SOA

EEYY

[443
¢SeYdle
Auy

807
AU mOpuIp Yoea yim
joquiAs ndul yoea aledwo?)

SOA

907
(Eleq jndu
alop

(713
S|oquAS Jo #
Aq 19)unon) asealou|

y

{257
MopuIp AlojsiH o)
s|oquiAg passaidwooun ppy

10

US 7,190,284 Bl

Sheet 9 of 34

Mar. 13, 2007

U.S. Patent

6 bi4

Juno) IndinQ <e——
NSep indinQ <e——

909
uole[naje)
s)nsay

A A A A

A

!

¥09
JBjuno) g Ayug

-
mmm_“wcm 1] -
19)E7]

0} sjndino .A ¢q -

asedwo) £Q -

-

an[eA 19s9y
ey
Z9
(Anu3g snojeld) 1.9
]
0a w_ 0 eleQ
el
=l | Bleq
e
= Zeeg
o |
= ¢ ejeQ
g ="
809 019
709
a)Ag ejeq q A3

11

US 7,190,284 Bl

Sheet 10 of 34

Mar. 13, 2007

U.S. Patent

ejeq

0L bi4
weang ejeq ndino
L ¥Se ssaidwo)) u Aug
)SE|N $Sa1dWOo?) pauIquo) 9 :
yse ssaidwo)) g Aug
— m .I REEE o9 U A3
E%wmm_ﬂ%,o < junog xep o_mom P%38 - :
...A.|I X3pu| Juno) Asld Snoield | 4 ASEIN 3 3un0g g Anu3
YSe %8 Junod | Aju3
[¥sEN 7 1un0) 0 A3
— 7t .
| _ Xapu| ¢1Z1 YSE % Junod u Aju3
€ ¢ ‘ 0 Ema P o_mom_ _wmzoo = :
eleg | eed | Bed | o q Junod xep WNWIXep B ¥SEW % Juno) Z Anug
YSE Xe YSe % uno) | Az
UOHEIN9|RY) S)NSay 0] . anje Jesay i YSE % Juno) o Au3

12

US 7,190,284 Bl

Sheet 11 of 34

Mar. 13, 2007

U.S. Patent

LL B

14 Ll PoAES 0 0 0 0 0
1% ObLLL POAES | b 0 0 0
1% LOLLL POAES 0 0 I 0 0
14 0011} POAES ¢ I I 0 0
14 L10L) PaAES 0 0 0 } 0
14 0L0L} POABS | I 0 I 0
r LLLLO PoAES 0 0 b I 0
14 00011 POAES & I I } 0
£ LLLOL | +PaAES 0 0 0 0 l
€ 0LLOL | +PoAES | I 0 0 |
€ 1L0LOL | +POAES 0 0 I 0 I
£ 00101 | +PBAES Z I I 0 I
4 1100} (+PoAES 0 0 0 I |
¢ 0100} Ct+POAES | I 0 I I
| 10001 E+PoAES 0 0 l I |
0 0000} P+ paAeS p+POAES I | } }
anjeA ySel i8juno onjep A4 [4:) 2] 0d
1959y indinp indino 12Juno) MaN sayajey induj

13

U.S. Patent

Mar. 13, 2007

Sheet 12 of 34

Send out

compressed block

723
Adjust max count

to 4 or less
725
Send out
compressed block
31
Send out data 0

733

Send out data 0
4

No

Send out data 0
47

US 7,190,284 Bl

Send LZ12
compressed bloc

=

743

y

Yes

Fig.

12

CCM(0) = 17

Send outdata 0
51

Yes
749

U.S. Patent Mar. 13,2007 Sheet 13 of 34 US 7,190,284 B1

Entry 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sae0 Daw [FO)FY) (P2 [F2) P [FE) FEL) PR PRI P P Y P FE D
Count [0]0] (][9] (0] [0] (0] [°] (0] (™1 (®] (@] (01 (@] (O]]
Input D3:0
CountOut - [0] [0] [0] [0] (0] [0] (0] 0] (@] (01 (@] (@] [@] (2] (@] [0]
Mask Out - [1F] [1F] [F] [1F] (TF] [1F] (1F] [TF] [F] [iF] {TF] [F] [TF] (] [FF] [FF)
Output
Sate1 Data [CO)[F7][F8] [FS] [FO [F1] [F2] [F3] [F2] [FS] [FE] (F7] [FB] [FB] A [P
Count [0][0][0][0] (0] (0] [°] (0] [*] (O] (O] (e] (0] (O] [O1[2]
Input D3:0
Countout [0][0][0][0] (0] [05[0] (o] [0][0][0] (o] (2] (@] [@][T]
Mask Out - [1F] [1F] [1F] [1F] [1F] [TF] (TF] [F] [1F] [TF] [iF] [{F] [{F] [F] (iF] [7F)
Ou
state2 Data [FO][F1) 2] [B5] [CO) [F7] [FB] [FE] (01 [F] [F2) (F3] [F4] [FB] e [F7)
Count [0](0] (0] [0] (7] [*] (@] (O] (] (O] [B] (O] (@] (2] [] (]
Input D3:0
Countout [0][0][0][0][0][0] (][] (0] (] [0] [0] (O] @] [O][T]
Mask Out - [1F] [1F] [1F] (¥F] [F] (F] (TF] (¥F] {TF] [FF] [{F] [iF] [{F] [{F] [{F] [iF]
Oupu
Ste3 Data [BS[F7][F8] [Fe] [F3] [F4] [F5] [B3] (€01 [F7] [Fe] [F3] [F) () 2 [FB)]
Cont [0][0][9]][9] [*] (] (01 (O] (O] (O] (@] (O] (O] (O]]
Input D3:0
Countout [0][0][0]] [0][0] (0] (0] (2] (O] (@] (O] (®] (O] [®] (O]
Mask Out - [1F] [1F] [F] [1F] [TF] [1F] [1F] [TF] [TF] [FF] {TF] [{F] [F] [F] [F] [TF]
Output [(9,2)E2(6,1)
Sete4 Dat
count (001 0] (@) (21 (@) @ () (€1) (20) (2] (0 0 (2] e Ot
Final Output

F fQ 13 Alternate Output

15

U.S. Patent Mar. 13, 2007 Sheet 14 of 34 US 7,190,284 B1

Fig. 14

US 7,190,284 Bl

Sheet 15 of 34

Mar. 13, 2007

U.S. Patent

9} b4
a I | X |0 I | X | X
0 XL [X]0 b | X
g 0 | X [X X |0 }
Y X 10 L X [X |0
a|o|v]|]a|o]|s4g
o | /@ |V @O |@E|N 108j8S
Gl @H\ UOIjeIauUas) 108|188
amn a/d an N a/9 av
aledwo) aledwo) aledwo) aledwo) aledwon aledwo)
Remz femz em z Rem 2 Remz kem g
t N R = e b
aAguz 0 A3 g Az v Ajug

17

US 7,190,284 Bl

Sheet 16 of 34

Mar. 13, 2007

U.S. Patent

/L b4

5/G mc_mcm uoissaldwo?) Asson

r S e T R S e A TR P M e e el Ll e ey
. m _mwmmo . _“
m m 8'd | pleq fssoy «_EEoo m “.
— 377 7] P
e R s W7 T oA I T e
m | pessaidwog | VEONS ajeol|doy S0 A | m
S > I¥d P
m guA .
m GGG auibu3 uoissaidwodsg hmmo._ ._"

m [Nmm 671 P
R Jopoous | yomsg | - “ “
: ejep ANA | 810IS WYHS :

m nassaicllion ejeq Asso 108138 GHA A m

m m 4 A B ADA m m
“ : 897 . : m
! jojuo) A U H%m m :
| I P
! « | A0D L ._ ..
“ guA| Jowenuo) [“goy | m
m L 30Inog _. ;
_ 997 m :
m e | P
= 2

18

US 7,190,284 Bl

Sheet 17 of 34

Mar. 13, 2007

U.S. Patent

64 614
SHQZE | SNqB/y | SHQQ/y | UGG | SHQG | SHQG [S)qG | SH9 | Si9
safgouel suad | uwy | xewy | ulwg | xews | uiwy | Xewdd | XewA | UIWA | SI0J00 7< X UWIWA =j XBWA
SHQOL | Suq g/ | SHAQ/y | SHAS | SHQG [SHQG [SHQG | SHAQ | SI9
seifgg//| siad [uwy | xewy | uiug |xewg | uwy | Xewy | UWA | XBWA | SI0[00Z X UIWA =j XBWA
sqze | sHagm | suag/m [s1qz [suqs [suqg [suq9 | suqg [seydyy z<
SalAg 6/8 sigd | uwwy [xewy | 0} [Xewsg [xewy [Xew\ | xewa [Jojod | UIWY =j XEWY UIA = XBUA
sYq9) [snagw [suagy | swaz [suag|snqs sugo | siqg | seydve
salAg //9 SHq 4 Uiy Xeuwly 10| Xewg [xewy | XBWA | XBWA | J0j0d | Uy =j Xewy Ul = XeWA
SHG 8/ | SHq8/p | SUGZ | SUGG | SIgS | SIgQ | SHG 9
SalAg G/p uwy | xewy 10 [xewg | xewy [xewA | XewA | 10jod | [4410 00 =j U = XBWY [UWA = XBWA
SIGZ | SHaG | SNgG | Siq9 | siq 9
SaAg € L [xewg | xewy | xew, | xew, | 10j09 | 44%0 = Uy = Xeuly | UIWA = XewA
SUqZ | SHAG | SIIgG | siq g | siq Qg
sajAg ¢ 00 | xewg | xewy | XewA | Xewa | 10joo | 00X0 = UlWy = Xewy | UIWA = XBWA
8L bi4
syqze | skas | swas | syqs | swag | swgg | swag
sajigg | suad ujwg xewg iy XEWY XBWA U | sIojoo g< | WA =j Xewa
SHq 91 Siq § S}q S s)q § SHq S SHq 9 S)q 9
sailig9o | suad uig xewg Uy XBWY UIwA Xewa | siojooz | ulwa =j Xewa
s}q ¢ S}q G Siq S s)q 9 s}q 9
salkg ¢ Ll Xewsg B XBLWA XBWA J0j00 | UIWA = XBWA

19

US 7,190,284 Bl

Sheet 18 of 34

2007

]

13

Mar.

U.S. Patent

0z ‘b4

ejeq passaiduwio)

Ble(passaldwods -

055
aulbug
uoissaidwodaq
|a|jeled $$87-8S07

eleq
passaldwo))

sng Aowsy

o3

Ggs
aulbug
uoissaidwoas] Asso

o - - -~

(1] e — -
un __
aledwo) !
Aely | !
_
m
285]
sl0)g [e—— auibu3
WYNS uoissaidwo)) AssoT
186 [V
2l0)S [<——- sulbu3 uoissaidwon
WYYS |9)jeIed $597-5507

uoissaidwiossq
uoissaldwoosq
ajeipawLIB)u|
uojssaidwod Aewid

192
UoIms
Induj

sng LNdNI

(174}
80In0g

feutbuQ

US 7,190,284 Bl

Sheet 19 of 34

Mar. 13, 2007

U.S. Patent

L2 b4

00¢€ \ 96¢€ \ 06¢ L 08¢ \ 0.¢€ 1\ 09¢ %
aur ¥20)9 leaur]
feidsiq dwy au dwo dws dwoun dwniqg

A A

20¢
aIn)xa]
/
au 300|9 leaul
dwy [PUTMO] Guy | 9WOUN | duwngm
\ 0S¢ e 0)4% \ 0€e \ 0ce \ OLE

BjeQ uoneuisaq

BJeQ 92In0g

21

U.S. Patent Mar. 13,2007 Sheet 20 of 34 US 7,190,284 B1

[Compression of received data]

l

Receive uncompressed data
802

l

Determine a compression mode
of the data
804

L

Selectively compress the
uncompressed data according to the
compression mode
806

l

Store the data in the memory; store
compression mode information with
the data
808

Fig. 22

22

U.S. Patent Mar. 13,2007 Sheet 21 of 34 US 7,190,284 B1

L Access compressed data]

l

Receive a request for the data
812

l

Access the data from the memory
814

l

Determine a compression mode
for the data
816

l

Selectively decompress the data
according to the compression mode
818

l

Provide the data in response
to the request
820

Fig. 23

23

US 7,190,284 Bl

Sheet 22 of 34

ve .@n‘ ejeq passaldwods(
855 .
YONMS Jewlod inding (0:11) 1pPY
B &
ele pessaldwo) 55 / 058
JapeaH wmc_mcm._ uoissaldwodsg
0.2
"}20|q passaidwooun 0572
|oea Joj $%00|q passaldwod EN eje(passaiduio)
Buiuiewss ||e suieyuon) xooig Alowspy B Jopesy
E3lY MO|UBAQ 09/2

]

(1] 714
"}20|q passaidwooun

B8 10} %20]q PassaIdLU0D U0 SUIBJUOY)

Mar. 13, 2007

U.S. Patent

‘ojjey uoissaidwoy) wnwixep Aq papiaiqg 8zIS 08/2
abuey Aowsyy o) azis ul [enb3 yoo|g Alowaspy
|
T Ealy UONE20]Y [eniu| <<
suoljejuawajdwi 0cie
abue! ssaippe sjbuis .
10§ pauinbas Jou 110 (z1:1€) Jppy
:9)ON Id 1VO lid ejeQ Ippy 1ejs
084¢ 0LLe
xew Ajjua 95z abues fuowsw passaldwod Jad Ajus |
Aijua Jad s)q £G Anua sad sygq z/
(LYO) 8iqe ssaippy MoiaAQ | (L1vD) 9|qe | uoe|suel] sseippy passaidwo)

(0:1€) ssesppy

24

US 7,190,284 Bl

Sheet 23 of 34

Mar. 13, 2007

U.S. Patent

Gz b4

| Kijua 10 Jo Baly MOIAAD Y} Ul v/ 1050 Je s %oojq xauayL | |g

(suq 0z+8) Y1 LLL

Baly MO[LIAAQ) 8y} Ul 7 oS0 Je St)0|q xau syl | €7 (sHq 02) V0L |
(¢49)e 10) BUO 81} 810jaq $%90|q / S1%00/q XU dYL | 0L (sna 8) ol
auo siy) Jaye Alieaisfud smojjoj %20|q Jxau 8yl z 10
pasnunooig isen [4 00

Siq
Buiueapy 10# SNEA

uondiasaq 1apeaH MojUBAQ

| Aljua | YO JO Baly MOJUBAQ BY) Ul Y 1asyo Je sIyoojg xau syl | 0g

(s1q 0Z+8)VI 11

Baly MOJUBAQ 8y} Ui Y/ 18SY0 Je s1 yoojq xau 8yl | zzZ (sHq 02) v 01
pasnunppoigise | | 0
S
Buiuespy 104 aNEA
uonduasaq JapeaH [eniy)
9qe) Siy) Ul Aipunog pp
Aua xau 0} sjuiod Ayiqessaippy €9 ¢
19 s g SIq +Z siq 0Z
PllEA LYO IXeN did LVO XeN v_uo_%xwz did MOLHBAQ
xey Aiu3 95Z-(LV0) 9|qeL SSaIppy MOJLaAQ
Apunog 3y Aspunog My azIS Y19 fipunog)y Aipunog My
passaidwo) Aljiqessaippy 897
sNq 8 S} 0z siiq siq 02 siq 0z
id LYO id ereq adA L 1ppy Buipuz 1ppy Buneg

ywi7 ubisaq Aijug gz)-(LLy9) @|qeL uojje|suel] Ssaippy passaidwiog

spjal4 uoneao|py Aiowsyy

25

U.S. Patent

Mar. 13, 2007 Sheet 24 of 34

@Memory Allocation
(Initialized CATT)
2109

v

Allocate CATT Entry
27111

Y

Arrange entry order
(if required based oq gtarﬂend address)
27

v

Set the compression type
2715

v

Allocate% of the requested memory
(Based on block sizg a1nd compression type)
717

v

Set the data pointer to start at the initial block
in the CATT
2719

Y

Allocate Overflow Address memory (OAM)
(Set by IMC driver or BIOS)
Typically 1/8th original data size
2721

v

Initialize the OAT pointer in the CATT
2723

v

Initialize allocated memory headers to zero
2725

v

Initialize OAT entries, set overflow
pointer in OAT
27271

Fig. 26

26

US 7,190,284 Bl

U.S. Patent Mar. 13, 2007

@Compressed
Memory Store (Addr N)
2749

Check
Cache for Hit
While searching CATT
2731

Calculate Initial Address |, continue to
compress data (Validate present entry)
2733

Sheet 25 of 34

US 7,190,284 Bl

H = Header
from Address |
2759

Remaining
Compressed block
>Block Size?
2735
S~

Get Next
Address (U=f(H))
2799

Store block of Compressed data at
address | with header=LAST

Store block of Compressed data at
address | with header(U) Set I=U

Store uncompressed block and header
at Add N in cache and set most
recently modified bit for cache
2743

=

Done

2737 2739
No H2=Header from Address H Set
header of H to UNUSED Set H=f(H2)
2745
Yes

27

Fig. 27

U.S. Patent Mar. 13,2007 Sheet 26 of 34 US 7,190,284 B1

@Memory Fetch
(address N)
2759

Search :
Cache Directory HIT? Yes Deliver d%t?sfaom cache
2751 £92

Solve for initial address (1) = (Matching
CATT start address - N)/X
(Xis based on data type)
2753

v

Fetch from memory
compressed block |
2755

y

Strip the Header bits, and decompress
the remaining data from |
2757

Fetch the overflow block using the

LAST Block? overflow pointer as base and the

2761 header as offset
2754
Yes ¥
Read compressed overflow blocks
2756

v

Send decompressed data to
requesting agent
2765

-
Y
Update Cache, invalidate LRU, mark
new block as MRU
2769

:

Completed compressed

read operation Fig. 28

28

US 7,190,284 Bl

Sheet 27 of 34

Mar. 13, 2007

U.S. Patent

62 bi4 | |
G602
(a21s %00/q Jospo NuAUAOY =(d) [
$S2IPPE YI0|q MOHAAC MaU B)E|nojes
auoQ £0.¢
'ﬂ 1q pijea pue Jajuiod | YO meu j8s
804¢ W0£Z
J3uiod ssalppe Jxau Aque | v pue
ut Jgjured mﬁ__._me 310j3 b AJoLaL MOWSAQ JO 00| M3U BJR20|)y
8218 %00 m_mc.._._ma al 9 Z St 16.¢
| = la)ul S5 B aZl 0] =
1S %00[q + Y = JA)Ul PpE XoN 1S 001G +Y = ¥ T o
eu s|

v0.C

¢ pasnup} pajealpul 1apeay

+

nZ
H@ 1apeay MoLan)) peay

t

S6.¢
Jayuiod xau®
1VO woy Jsjiiod mOjHaAQ) MaN

SO
£6/¢

dling Aujus [0 ¥00iq

202

(N 1opeaq)j = ¥

Jajulod ssalppe %20|q 1xau sjenoe)

Xau s

164¢

ON $¥00i8 15V

6612
((H)=y) ssaippe
¥au 89

29

US 7,190,284 Bl

Sheet 28 of 34

Mar. 13, 2007

U.S. Patent

o€ b4
%511 %68 %¥ 0 %001 | 8 [A* | [43
%9€l %L 'G %0 %05 [4 9l [4> ¢ ¥9
%88 %8¢C %0 %S¢ 14 [A3 T4 £ 8Cl
%E ¥ %P1 %C 0 %S¢ 14 9 9 14 96¢
%E ¥ %6'0 %C 0 %<l 8 ¥9 ¥9 G AL
%E ¥ %90 %C 0 %9 9l 9 ¥9 9 A
%C ¥ %S0 %0 %9 9l 9 8¢l L 8¥0¢C
%l ¥ %¥ 0 %00 %39 al 9 962 8 960%

pajuswbesq | Besq-uoN (1) saig soiig sajig
40 /M 0/Mm 40 9/m uonedo||y oney 9zig ¥doo]g | 3zig)d0|g ¥ao|g

lapeay lapeay lapeay leniu) dwo9 xepy MOJHBAQ [eniuj adA) dwoouf

30

US 7,190,284 Bl

Sheet 29 of 34

Mar. 13, 2007

U.S. Patent

LE biH

Alowaw 0} ¥oeq %00|q passaiduwiod ajupm (9

(4@) Bey yym sopeay yoepy (g
Japl0 J0 Jn0 ¥20|q ssa1dwod - 3y (§
8|qe} ul (4@) bey uonisod 810l (g
ayoeo ejep £7 0} ssaidwodrsqg (z

Aowsw wolj ¥90|q passaidwod peay (|

0€se \

1apJo Jo jno Buneoipur G, si pjey be) Japeay ..,

Japi0 [euibuo ul Bugeaipur 0, si pley bey sapesy ,

02se \

SSaIppe peal MaN =

(saihqze) Juawfiag yoolg sjelpawusyy|
LH {91 4 [31a]o|g]V [iepesH]
_A (s8)Aq9Gz) %20|q ucissaiduwio) "

o_‘mm.\x

«19PI0
[T aToT8[VvIHT]o9I] 4 [Jepesy] Pesseidwod

MaN

Japi0
leuibuo

31

US 7,190,284 Bl

Sheet 30 of 34

Mar. 13, 2007

U.S. Patent

g€ bl
GZ T qazl q9 LLLLLLL Li<
€l - 3 q9 OLLLLLL L
el » ; q9 LOLLLLL 0l
el - - q9 00LLLLL 5
€l i - q9 LLOLLL 8
€l 5 . q9 0LOLLL) L
£l - - q9 L00LLLL 4
€l - v a9 000L 411 G
0l - s q9 i 14
0l : - g9 101 €
0l : - q9 0011 4
8 - - q9 0l l
6 g8 - - 0 0
pasq s)g ejeQ Junoo xapu| be4 passaidwon
saiig

32

U.S. Patent Mar. 13,2007 Sheet 31 of 34 US 7,190,284 B1

Input Data 8 Bytes

25501 ~

Stage 1: Initial Input Selector and Byte Counter

Start Count Index Index Data Data Bytes
0 s & @ ... % Valid Valid 0 ... 7
[TTTTT [TTTTI [TTTTI

5503 ~, P 4 6 <6 48 8 8 <8
Y Yy Yy Y Y Y v Y
[Pipe Register (168 bits) |
5IIIIII§ 6|II!II6 g : [TTTTT
SN Y v v Y Y

Stage 2: Calculate Initial Selects and Overflows
Partial Selects and Overflows <8 48
B s 5. e s 15
[TTTTTTTITTTT
25507 ~ 8 111

~ ~

4 A 4

[Pipe Register (144 bits) |
FETTTETTERTT [TTTT
8 48

2509~y 7

Stage 3: Calculate Final Selects
Final Selects

[TTTTTTITTT
251~ [} il
4

¥ Y Y Y
| Pipe Register (128 bits) |
BRERRRRRRRE

] T, $8u||||
B~y i V

Stage 4: Data Selection

Data Out kg?igas History Window

15
TTTTTTTITTT

1s ig fs

b Fig. 33

‘oo

33

U.S. Patent

Mar. 13, 2007

Sheet 32 of 34

US 7,190,284 Bl

34

Input Data
D0:D63
25521
DO: D8: | D9:| D10:| D13:| D25:
D24y D63y D63y D63y D63y D63y
Decoder 0 /
EO:
E55 25523
Data Index EO: E8:| EQ:| E10:| E13:| E25:
Byte E24y ES5) E55¢ E554 E55¢ E55{
Count Decoder 1 /
l l FO:
F47 25525
Data Index FO: F8: | F9: [F10:[F13:] F25:
Byte F24" F4?" F47{, F4?’r Fili’“r F47‘
> Decoder 2 @
Count GO:
l l G39 25527
Data Index GO: G8:| G9:| G10:[G13:| G25:
Byte U G244 G39¢ G39y G394 G39¢ G39y
™| Decoder 3]——\ /
Count] HO:
1 lC — | | H31 25529
ount HO: H8: H9: H10:} H13:
Data Index H244, H31ly H31y H31y H3ty
B}'te 4\"‘- \
> Decoder 4 [\ P
] | Jo:
l l J23 95531
Count Jo: B J9 | Jio] 43
Data Index 9234 J23y 234 J23y J23y
BY(E 4\"""
.| Decoder 5 /
l l KO:
K15 25533
Data [ndex KO: K8:
Byte K15 K154
™! Decoder 6 ™| Decoder 7
wwnrwrll{' l l l l
Start Counts Data Index Data Index
Byte Byte
25535
Fig. 34

US 7,190,284 Bl

Sheet 33 of 34

Mar. 13, 2007

U.S. Patent

Ge b4

g
nQ 19888 -
< A <
G o
Juno) <
pue xapu|
<& -
- 1955 3 Juno)
Sjeldus?d) | snoinald
EleQ =
- et
aig ejeq I : ¢ z 0 |
9GG55C PGGGSe 3GGGSC qG6aae EGGGSC
1o8y9 ®38yD %98yD ®08yd o8y
gdll< gl1-6 ave gl g0
A A A 4 A A
9:0d 9:00 £-0d _ 100 0d
R AR
.‘\
£945¢ ¢
199183
Em}.num:u snoinalg
1GGGE
apoos(alin

199[83

v20:0Q
ejeq induj

35

US 7,190,284 Bl

Sheet 34 of 34

Mar. 13, 2007

U.S. Patent

q9¢ I3y
X OdHT@EId SHOdH9TPAd THOd+EAiTd 1+0d 1+0d Juno)
X uaLa 1a:Ld 6 X Ld:Td xapuy
X X X X 8 1d X | a4g yeq
00 10 20 0 80 01 19938
BO¢ 2an3I1
00 00 00 00 00 80| 08=AI4AN
00 00 OI dI d1 dI | ob=dlfN
00 00 HI dI dI dI | 0z=dl i
00 A1 A1 A1 A1 41| o1=dI AN
00 d1 A1 41 41 41| 80=d1 A
00 A1 d1 A1 A1 A1 | 0=l AN
00 A1 A1 A1 A1 Al | 20=d1 AN
00 A1 A1 Al A1 Al | 10=al AN
19998
00 10 70 #0 80 OI | snoiadag

36

US 7,190,284 Bl

1
SELECTIVE LOSSLESS, LOSSY, OR NO
COMPRESSION OF DATA BASED ON
ADDRESS RANGE, DATA TYPE, AND/OR
REQUESTING AGENT

CONTINUATION DATA

This application is a continuation-in-part (CIP) of Ser. No.
08/916.,464, filed Aug. 8, 1997, and now U.S. Pat. No.
6,173,381, issued on Jan. 9, 2001:

which is a continuation-in-part (CIP) of Ser. No. 08/463,
106, filed Jun. 5, 1995, now abandoned;

which is a continuation-in-part (CIP) of Ser. No. 08/340,
667, filed on Nov. 16, 1994, which is now U.S. Pat. No.
6.002.411, issued on Dec. 14, 1999,

FIELD OF THE INVENTION

The present invention relates to computer system archi-
tectures, and more particularly to a memory controller which
includes an embedded data compression and decompression
engine for the reduction of system bandwidth and improved
efficiency.

DESCRIPTION OF THE RELATED ART

Since their introduction in 1981, the architecture of per-
sonal computer systems has remained substantially
unchanged. The current state of the art in computer system
architectures includes a central processing unit (CPU) which
couples to a memory controller interface that in turn couples
to system memory. The computer system also includes a
separate graphical interface for coupling to the video dis-
play. In addition, the computer system includes input/output
(I/O) control logic for various /O devices, including a
keyboard. mouse. floppy drive, hard drive. etc.

In general, the operation of modern computer architecture
is as follows. Programs and data are read from a respective
1/O device such as a floppy disk or hard drive by the
operating system, and the programs and data are temporarily
stored in system memory. Once a user program has been
transferred into the system memory, the CPU begins execu-
tion of the program by reading code and data from the
system memory through the memory controller. The appli-
cation code and data are presumed to produce a specified
result when manipulated by the system CPU. The CPU
processes the code and data, and data is provided to one or
more of the various output devices. The computer system
may include several output devices, including a video dis-
play, audio (speakers), printer, etc. In most systems, the
video display is the primary output device.

Graphical output data generated by the CPU is written to
a graphical interface device for presentation on the display
monitor. The graphical interface device may simply be a
video graphics array (VGA) card, or the system may include
a dedicated video processor or video acceleration card
including separate video RAM (VRAM). In a computer
system including a separate, dedicated video processor, the
video processor includes graphics capabilities to reduce the
workload of the main CPU. Modern prior art personal
computer systems typically include a local bus video system
based on the Peripheral Component Interconnect (PCI) bus,
the Advanced Graphics Port (AGP), or perhaps another local
bus standard. The video subsystem is generally positioned
on the local bus near the CPU to provide increased perfor-
mance.

10

20

25

30

40

50

60

2

Therefore, in summary, program code and data are first
read from the hard disk to the system memory. The program
code and data are then read by the CPU from system
memory, the data is processed by the CPU, and graphical
data is written to the video RAM in the graphical interface
device for presentation on the display monitor.

The system memory interface to the memory controller
requires data bandwidth proportional to the application and
system requirements. Thus, to achieve increased system
performance, either wider data buses or higher speed spe-
cialty memory devices are required. These solutions force
additional side-effects such as increased system cost, power
and noise. FIG. 1 illustrates the data transfer paths in a
typical computer memory controller and system memory
using prior art technology.

The CPU typically reads data from system memory across
the local bus in a normal or non-compressed format, and
then writes the processed data or graphical data back to the
/O bus or local bus where the graphical interface device is
situated. The graphical interface device in turn generates the
appropriate video signals to drive the display monitor. It is
noted that prior art computer architectures and operation
typically do not perform data compression and/or decom-
pression during the transfer between system memory and the
CPU or between the system memory and the local /O bus.
Prior art computer architecture also does nothing to reduce
the size of system memory required to run the required user
applications or software operating system. In addition, soft-
ware controlled compression and decompression algorithms
typically controlled by the CPU for non-volatile memory
reduction techniques can not be applied to real time appli-
cations that require high data rates such as audio, video, and
graphics applications. Further, CPU software controlled
compression and decompression algorithms put additional
loads on the CPU and CPU cache subsystems.

Certain prior art systems utilize multiple DRAM devices
to gain improved memory bandwidth. These additional
DRAM devices may cost the manufacturer more due to the
abundance of memory that is not fully utilized or required.
The multiple DRAM devices are in many instances included
primarily for added bandwidth, and when only the added
bandwidth is needed. additional cost is incurred due to the
multiple DRAM packages. For example, if a specific com-
puter system or consumer computing appliance such as a
Digital TV set-top box uses DRDRAM memory and requires
more than 1.6 Gbytes/sec of bandwidth, then the minimum
amount of memory for this bandwidth requirement will be
16 Mbytes. In such a case the manufacture pays for 16
Mbytes even if the set-top box only requires 8 Mbytes.

Computer systems are being called upon to perform larger
and more complex tasks that require increased computing
power. In addition, modern software applications require

s computer systems with increased graphics capabilities.

Modern software applications include graphical user inter-
faces (GUIs) which place increased burdens on the graphics
capabilities of the computer system. Further, the increased
prevalence of multimedia applications also demands com-
puter systems with more powerful graphics capabilities.
Therefore, a new system and method is desired to reduce the
bandwidth requirements required by the computer system
application and operating software. A new system and
method is desired which provides increased system perfor-
mance without specialty high speed memory devices or
wider data 1/0O buses required in prior art computer system
architectures.

37

US 7,190,284 Bl

3
SUMMARY OF THE INVENTION

The present invention comprises a memory controller,
also referred to as the integrated memory controller (IMC),
which provides improved data efliciency and bandwidth.
The memory controller includes a compression/decompres-
sion engine, preferably parallel data compression and
decompression slices, that are embedded into the memory
control logic of the memory controller. Further, the present
invention does not require specialty memory devices or
system sofiware changes for operation. The memory con-
troller logic of the present invention preferably interfaces to
the system CPU either external or internal to the memory
controller. Further, the memory controller interfaces to the
main system memory and other interface buses such as a
high-speed system peripheral bus, e.g.. the PCI bus or the
AGP. Additionally the IMC may contain graphics, video
and/or audio control functions. The IMC includes one or
more symmetric memory ports for connecting to system
memory. The IMC also may include video outputs to
directly drive the display device, as well as an audio
interface for digital audio delivery to an external stereo
digital-to-analog converter (DAC).

The IMC includes an embedded Technology termed
“Memoryl/X” designed for the reduction of data bandwidth
between the main or system memory and the memory
controller. The MemoryF/X Technology reduces the band-
width requirements while increasing the memory efliciency
for almost all data types within the computer system. Thus.
conventional standard (JDEC) memory devices can achieve
higher bandwidth with less system power and noise than
when used in conventional systems without the MemoryF/X
Technology.

The IMC transfers data between the local bus, the embed-
ded MemoryF/X Technology and system memory. In addi-
tion, the IMC also transfers data between the system
memory and the display output. Therefore, the MemoryF/X
technology of the present invention typically resides
between the CPU local bus, peripheral interconnect buses.
and the main system memory.

The MemoryF/X Technology is designed to embed into
memory control circuits and has a novel architecture to
compress and decompress parallel data streams within the
computing system. In addition, the MemoryF/X Technology
has a “scalable” architecture designed to function in a
plurality of memory configurations or compression modes
with a plurality of performance requirements.

The MemoryF/X Technology’s system level architecture
reduces data bandwidth requirements and thus improves

memory efliciency. Efficiency is improved by the reduction :

of device I/O pins between the main memory bank and the
memory controller. Compared to conventional systems, the
MemoryF/X Technology obtains equivalent bandwidth to
conventional architectures that use wider buses, specialty
memory devices, and/or more attached memory devices.
Both power and noise are reduced, improving system efli-
ciency. Thus, systems that are sensitive to the cost of
multiple memory devices, size, power and noise can reduce
costs and improve system efliciency.

Systems that require a minimum of DRAM memory but
also require high bandwidth do not need to use multiple
memory devices or specialty DRAM devices in a wider
configuration to achieve the required bandwidth when the
MemoryF/X technology is utilized. Thus, minimum
memory configurations can be purchased that will still
achieve the bandwidth required by high-end applications
such as video and graphics.

0

40

45

60

4

As mentioned above, according to the present invention
the MemoryF/X Technology embedded within the IMC
includes one or more compression and decompression
engines for compressing and decompressing data within the
system. In the preferred embodiment the Memoryl/X Tech-
nology comprises separate compression and decompression
engines. In an alternate embodiment, a single combined
compression/decompression engine can be implemented.
The IMC preferably., primarily uses a lossless data compres-
sion and decompression scheme. Data transfers to and from
the integrated memory controller of the present invention
can thus be in either two formats, these being compressed or
normal (non-compressed). The IMC may also include one or
more lossy compression schemes for audio/video/graphics
data.

Thus compressed data from system /O peripherals such
as the non-volatile memory, floppy drive. or local area
network (LAN) are decompressed in the IMC and stored
mto system memory or saved in the system memory in
compressed format. Thus, data can be saved in either a
normal or compressed format, retrieved from the system
memory for CPU usage in a normal or compressed format,
or transmitted and stored on a medium in a normal or
compressed format.

To improve latency and reduce performance degradations
normally associated with compression and decompression
techniques, the MemoryF/X Technology encompasses mul-
tiple novel techniques such as: 1) parallel lossless compres-
sion/decompression; 2) selectable compression modes such
as lossless. lossy or no compression; 3) priority compression
mode; 4) data cache techniques; 5) variable compression
block sizes; 6) compression reordering; and 7) unique
address translation, attribute, and address caches.

The MemoryF/X Technology preferably includes novel
parallel compression and decompression engines designed
to process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modify the single stream dictionary
based (or history table based) data compression method
described by Lempel and Ziv to provide a scalable, high
bandwidth compression and decompression operation. The
parallel compression method examines a plurality of sym-
bols in parallel, thus providing greatly increased compres-
sion performance.

The MemoryF/X Technology can selectively use different
compression modes, such as lossless, lossy or no compres-
sion. Thus, in addition to lossless compression/decompres-
sion. the IMC also can include one or more specific lossy
compression and decompression modes for particular data
formats such as image data, texture maps, digital video and
digital audio. The MemoryF/X technology may selectively
apply different compression/decompression algorithms
depending on one or more of the type of the data, the
requesting agent, or a memory address range. In one

5 embodiment, internal memory mapping allows for format

definition spaces (compression mode attributes) which
define the compression mode or format of the data to be read
or written.

The MemoryF/X Technology may use a priority compres-
sion and decompression mode which is designed for low
latency operation. In the priority compression [ormat,
memory address blocks assigned by the operating system for
uncompressed data are used to store the compressed data.
Hence data-path address translation is not necessary. which
optimizes bandwidth during data transfers. This also allows
use of the Memoryl/X Technology with minimal or no
changes to the computer operating system. Thus, for priority

38

US 7,190,284 Bl

5

memory transfers, memory size is equivalent to that of data
storage for non-compressed formats. The excess memory
space resulting from the compression is preferably allocated
as overflow storage or otherwise is not used. Thus the
priority mode optimizes data transfer bandwidth, and may
not attempt to reduce utilized memory.

The compression/decompression engine in the Memo-
ryF/X Technology uses multiple data and address caching
techniques to optimize data throughput and reduce latency.
The Memoryl/X Technology includes a data cache, referred
to as the L3 data cache, which preferably stores most
recently used data in an uncompressed format. Thus cache
hits result in lower latency than accesses of data compressed
in the system memory. The L3 data cache can also be
configured to store real time data, regardless of most
recently used status, for reduced latency of this data.

The MemoryF/X Technology preferably dynamically (or
statically) allocates variable block sizes based on one or
more of data type, address range and/or requesting agent for
reduced latency. In general. a smaller block size results in
less latency than a larger block size, at the possible expense
of lower compression ratios and/or reduced bandwidth. The
memory controller preferably allocates smaller block sizes
to data with faster access requirements, such as real time or
time sensitive data. As noted above, the memory controller
may also designate certain data with a “no compression™
mode for optimum speed and minimal latency.

The MemorylF/X Technology also includes a compression
reordering algorithm to optimally reorder compressed data
based on predicted future accesses. This allows for faster
access of compressed data blocks. During decompression,
the longest latency to recover a compressed portion of data
in a compressed block will be the last symbol in the portion
of the data being accessed from the compressed block. As
mentioned above, larger compression block sizes will
increase latency time when the symbol to be accessed is
towards the end of the compressed data stream. This method
of latency reduction separates a compression block at inter-
mediate values and reorders these intermediate values so
that the portions most likely to be accessed in the future are
located at the front of the compressed block. Thus the block
is reordered so that the segment(s) most likely to be accessed
in the future, e.g. most recently used, are placed in the front
of the block. Thus these segments can be decompressed
more quickly. This method of latency reduction is especially
effective for program code loops and branch entry points and
the restore of context between application subroutines. This
out of order compression is used to reduce read latency on
subsequent reads from the same compressed block address.

The MemoryF/X Technology in an alternate embodiment :

reduces latency further by use of multiple history windows
to context switch between decompression operations of
different requesting agents or address ranges. A priority can
be applied such that compression and decompression opera-
tions are suspended in one window while higher priority
data is transferred into one of a number of compression/
decompression stages in an alternate window. Thus, reduc-
tion of latency and improved efliciency can be achieved at
the cost of additional parallel history window buffers and
comparison logic for a plurality of compression/decompres-
sion stages.

The Memoryl/X Technology includes an address trans-
lation mode for reduction of memory size. This reduction of
memory size is accomplished at the cost of higher latency
transfers than the priority compression mode. due to the
address translation required. An address translation cache
may be utilized for the address translation for reduced

0

5

40

60

6

latency. An internal switch allows for selection of priority
mode compression, normal mode compression, or no com-
pression transfers. An attribute or tag field, which in-turn
may be controlled by address ranges on a memory page
boundary, preferably controls the switch.

In one embodiment, the operating system, memory con-
troller driver or BIOS boot software allocates memory
blocks using a selected compression ratio. Thus the allocated
memory block size is based on a compression ratio, such as
2:1 or 4:1. Hence the allocated block size assumes the data
will always compress to at least the smaller block size.

The MemoryF/X Technology also accounts for overflow
conditions during compression. Overflow occurs when the
data being compressed actually compresses to a larger size
than the original data size, or when the data compresses to
a smaller size than the original data, but to a larger size than
the allocated block size. The MemoryF/X Technology
handles the overflow case by first determining whether a
block will overflow, and second storing an overflow indi-
cator and overflow information with the data. The memory
controller preferably generates a header stored with the data
that includes the overflow indicator and overflow informa-
tion. Thus the directory information is stored with the data,
rather than in separate tables. Compression mode informa-
tion may also be stored in the header with the data. The
MemoryF/X Technology thus operates to embed directory
structures directly within the compressed data stream.

The MemoryF/X Technology also includes a combined
compression technique for lossy compression. The com-
bined compression technique performs lossless and lossy
compression on data in parallel, and selects either the
lossless or lossy compressed result depending on the degree
of error in the lossy compressed result.

The integrated data compression and decompression
capabilities of the MemoryF/X Technology remove system
bottlenecks and increase performance. This allows lower
cost systems due to smaller data storage requirements and
reduced bandwidth requirements. This also increases system
bandwidth and hence increases system performance. Thus
the IMC of the present invention is a significant advance
over the operation of current memory controllers.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illusirates a prior art computer system architecture;

FIG. 2 illustrates a computer system including an inte-
grated memory controller (IMC) according to the present
invention:

FIG. 3 illustrates the internal architecture of the IMC

_according to the preferred embodiment;

FIG. 4 is a block diagram illustrating the internal archi-
tecture of the Memory Controller unit of the IMC:

FIG. 5 is a more detailed block diagram illustrating the
compression/decompression logic comprised in the IMC
140:

FIG. 6A illustrates the sequential compression technique
of the prior art dictionary-based [LZ serial compression
algorithm;

FIG. 6B illustrates the parallel compression algorithm
according to the present invention;

FIG. 7 is a high level flowchart diagram illustrating
operation of the parallel compression;

39

US 7,190,284 Bl

7

FIG. 8 is a more detailed flowchart diagram illustrating
operation of the parallel compression;

FIG. 9 illustrates the entry data history and input data
compare and results calculation for the parallel compression
and decompression unit:

FIG. 10 shows the parallel selection and output generation
block diagram;

FIG. 11 shows the operation of the counter values, output
counter and output mask used for output selection during the
parallel compression operation of the present invention:

FIG. 12 illustrates the Output Generator Flow diagram;

FIG. 13 illustrates an example of the parallel compression
operation indicating the data flow through multiple cycles;

FIG. 14 illustrates a high speed parallel comparison
circuit used to find the largest count of matching entries to
the history table;

FIG. 15 further illustrates the select generation logic and
entry compare logic designed for high data clocking rates;

FIG. 16 illustrates the logic table for the high speed
parallel comparison;

FIG. 17 illustrates the lossy compression and decompres-
sion engines;

FIG. 18 is a table which shows the lossy compression
output format for image data that does not include alpha
values:

FIG. 19 is a table which shows the lossy compression
output format for image data that includes alpha values:

FIG. 20 is a block diagram of the combination lossy and
lossless compression and decompression operation;

FIG. 21 illustrates a plurality of compression formats for
source and destination data as used by the IMC for com-
pression and decompression memory efficiency;

FIGS. 22 and 23 are flowchart diagrams illustrating
operation of memory accesses using the compression mode
features of the present invention;

FIG. 24 illustrates the flow for compression address
translation, dictionary and overflow block address transla-
tion;

FIG. 25 is a table illustrating the memory allocation fields
for the compression allocation table and the Overflow table,
compression memory area and the overflow memory area;

FIG. 26 illustrates the initialization process {low for the
compression address translation table;

FIG. 27 illustrates the store transaction process flow for
the compression and decompression unit;

FIG. 28 illustrates the memory fetch process flow;

FIG. 29 illustrates the next address generation process
flow;

FIG. 30 is a table illustrating the memory allocation space

and compression ratios according to one implementation of :

the present invention;

FIG. 31 illustrates the compression re-ordering algorithm
use to reduce read data latency of subsequent memory read
cycles by requesting system agents:

FIG. 32 is a table illustrating the header information
presented to the lossless decompression engine;

FIG. 33 illustrates the four stages used for the parallel
lossless decompression algorithm:

FIG. 34 illustrates the eight decoder stages required to
generate the start counts used for the parallel decompression
process;

FIG. 35 illustrates a single decoder block used by the
stage 1 input selector and byte counter of FIG. 33;

FIG. 364 is a table indicating the check valid results table
of the decode block; and

FIG. 365 is a table describing the Data Generate outputs
based on the Data Input and the Byte Check Select logic.

o

5

20

25

40

60

8
DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

This application is a continuation-in-part (CIP) of Ser, No.
08/916.464, filed Aug. 8 1997, titled “Memory Controller
Including Embedded Data Compression And Decompres-
sion Engines,” whose inventor is Thomas A. Dye, and now
U.S. Pat. No. 6,173,381, issued on Jan. 9, 2001.

which is a continuation-in-part (CIP) of Ser. No. 08/463,
106. filed Jun. 5, 1995, titled “Memory Controlled Including
Embedded Data Compression And Decompression
Engines,” whose inventor is Thomas A, Dye. now aban-
doned:

which is a continuation-in-part (CIP) of Ser. No. 08/340,
667, filed on Nov. 16, 1994, titled “Integrated Video And
Memory Controller With Data Processing And Graphical
Processing Capabilities,” whose inventor is Thomas A. Dye,
and is now U.S. Pat. No. 6.002.411. issued on Dec. 14, 1999,

Prior Art Computer System Architecture

FIG. 1 illustrates a block diagram of a prior art computer
system architecture. As shown, prior art computer architec-
tures typically include a CPU 102 coupled to a cache system
104. The CPU 102 couples to the cache system 104 and
couples to a local bus 106. A memory controller 108,
referred to as North Bridge 108, is coupled to the local bus
106, and the memory controller 108 in turn couples to
system memory 110. The graphics adapter 112 is typically
coupled to a separate local expansion bus such as the
peripheral component interface (PCI) bus or the Accelerated
Graphics Port (AGP) bus. Thus the north-bridge memory
controller 108 is coupled between the CPU 102 and the main
system memory 110 wherein the north-bridge logic also
couples to the local expansion bus where the graphics
adapter 112 is situated. The graphics adapter 112 couples to
frame buffer memory 114 which stores the video data, also
referred to as pixel data, that is actually displayed on the
display monitor. Modern prior art computer systems typi-
cally include between 1 to 8 Megabytes of video memory.
An /O subsystem controller 116 is shown coupled to the
local bus 106. In computer systems which include a PCI bus,
the I/O subsystem controller 116 typically is coupled to the
PCI bus. The I/O subsystem controller 116 couples to a
secondary input/output (I/O) bus 118. Various peripheral /O
devices are generally coupled to the I/O bus 18, including a
non-volatile memory, e.g., hard disk 120, keyboard 122,
mouse 124, and audio digital-to-analog converter (DAC)
238.

Prior art computer system architectures generally operate
as follows. First, programs and data are generally stored on
the hard disk 120. If a software compression application is
being used, data may be stored on the hard disk 120 in
compressed format. At the direction of the CPU 102, the
programs and data are transferred from the hard disk 120

5 through the 1/O subsystem controller 116 to system memory

110 via the memory controller 108. If the data being read
from the hard disk 120 is stored in compressed format, the
data is decompressed by software executing on the CPU 102
prior to being transferred to system memory 110. Thus
software compression applications require the compressed
data to be transferred from the hard disk 120 to the CPU 120
prior to storage in the system memory 110.

The CPU 102 accesses programs and data stored in the
system memory 110 through the memory controller 108 and
the local bus 106. In processing the program code and data,
the CPU 102 generates instructions and data that are then
provided over the local bus 106 and generally the PCI bus

40

US 7,190,284 Bl

2

or AGP bus to the graphics adapter 112. The graphics
adapter 112 receives graphical instructions or pixel data
from the CPU 102 and generates pixel data that is stored in
the frame buffer memory 114. The graphics adapter 112
generates the necessary video signals to drive the video
display device (not shown) to display the pixel data that is
stored in the frame buffer memory 114. When a window on
the screen is updated or changed. the above process repeats
whereby the CPU 102 reads data across the local bus 106
from the system memory 110 and then transfers data back
across the local bus 106 and local expansion bus to the
graphics adapter 112 and frame buffer memory 114.

When the computer system desires to store data on the
hard disk 120 in a compressed format, the data is read by the
CPU 102 and compressed by the software compression
application. The compressed data is then stored on the hard
disk 120. If compressed data is stored in system memory 110
which must be decompressed. the CPU 102 is required to
read the compressed data, decompress the data and write the
decompressed data back to system memory 110.

However, it is noted that in modern computer systems or
computing appliances, the system memory controller does
not contain compression and decompression technology to
optimize bandwidth efliciency for the main system memory.
Specialty technology such as RAMBUS can be used both in
the memory device and memory control unit to supply high
bandwidth at low pin count. For more information on the
RAMBUS memory architecture, please see “RAMBUS
Architectural Overview,” version 2.0, published July 1993
by RAMBUS, Inc.. and “Applying RAMBUS Technology to
Desktop Computer Main Memory Subsystems,” version 1.0,
published March 1992 by RAMBUS, Inc., which are both
hereby incorporated by reference. While the RAMBUS
technology achieves higher bandwidth with lower memory
chip count, making concessions for the ultra high [requency
transmission effects of the RAMBUS channel can cause
power and noise as well as cost problems. In addition, to
achieve higher bandwidth the transmission channel requires
additional logic in both the memory controller and the
memory itself, again causing higher power and additional
cost.

Main memory DRAM devices at the 64-Mbit levels and
higher continue to increase the package sizes and number of
address and data pins. The increased pin count due to this
trend eliminates the ability to “bank™ DRAMS for higher
effective bandwidth as in smaller DRAM architectures of the
past. In addition, to lower effective bandwidth the “wide”
DRAM devices cost more to manufacture due to increased
package cost, test equipment, and testing time. In order to

increase bandwidth the system memory controller must be -

designed with additional 1/O data pins to compensate for
wider DRAM devices. Thus higher power and noise results.

For computer appliances that require minimum main
memory configuration and also require high bandwidth, the
current choices are currently limited to specialty high speed
memory devices such as RAMBUS or DDRDRAM which
cost more. consume more power and generate more noise, or
multiple smaller DRAM packages that typically require
more PC board real-estate.

Computer Architecture of the Preferred Embodiment

FIG. 2 is a block diagram illustrating one embodiment of
the architecture of a system incorporating the present inven-
tion. FIG. 2 is an example of one embodiment, and it is noted
that the technology described herein may be included in any
ol various systems or architectures. For example, the tech-
nology of the present invention may be included in a

0

5

20

40

45

60

41

10
computer system, a television system (such as HD'TV), a set
top box, Internet appliance, PDA (Personal Digital Assis-
tant), or other systems which include memory for storing
data. The technology of the present invention is described
below with reference to a computer system architecture,
which is one example of the use of the present invention.
Elements in FIG. 2 that are similar or identical to those in
FIG. 1 include the same reference numerals for convenience.

As shown, the computer system of the present invention
includes a CPU 102 preferably coupled to a cache system
104. The CPU 102 may include an internal first level cache
system and the cache 104 may comprise a second level
cache. Alternatively, the cache system 104 may be a first
level cache system or may be omitted as desired. The CPU
102 and cache system 104 are coupled to a Local bus 106.
The CPU 102 and cache system 104 are directly coupled
through the Local bus 106 to an integrated memory con-
troller (IMC) 140 according to the present invention.

The integrated memory controller (IMC) 140 performs
memory control functions and includes a compression/
decompression engine for greatly increasing the perfor-
mance of the computer system. It is noted that the IMC 140
can be used as the controller for main system memory 110
or can be used to control other memory subsystems as
desired. The IMC 140 couples to system memory 110,
wherein the system memory 110 comprises one or more
banks of DRAM memory and may comprise a plurality of
different type memory devices. The IMC 140 includes a
memory controller core, also referred to as the MemoryF/X
Technology core at present invention. The MemoryF/X
Technology core is preferably embedded in the IMC 140,
but alternately may be external to the IMC or may be
comprised in the CPU 102. The entire IMC 140 may also be
integrated with the CPU 102. The MemorylF/X Technology

5 core in the preferred embodiment performs memory com-

pression and decompression, system memory control, com-
pression format, cache directory, data cache control and data
multiplexing to improve the effective data bandwidth and
efliciency of system memory data transfers.

The IMC 140 of the present invention may couple to any
of various types of memory, as desired. In the preferred
embodiment, the IMC 140 couples to the system memory
110 through a RAMBUS implementation. For more infor-
mation on the RAMBUS memory architecture, please see
the RAMBUS references mentioned above, which were
incorporated by reference. In an alternate embodiment, the
system memory 110 comprises SGRAM or single in-line
memory modules (SIMMs). As noted above, the IMC 140 of
the present invention may couple to any of various types of
memory, as desired.

In the preferred embodiment, the IMC 140 also generates
appropriate video signals for driving video display device
142. The IMC 140 preferably generates red, green, blue
(RGB) signals as well as vertical and horizontal synchroni-

5 zation signals for generating images on the video display

142. Therefore, the integrated memory controller 140 of the
present invention integrates memory controller and video
and graphics controller capabilities into a single logical unit.
This greatly reduces bus traflic and increases system per-
formance. In one embodiment, the IMC 140 also generates
appropriate data signals that are provided to Audio DAC 238
for audio presentation. Alternatively, the IMC 140 integrates
audio processing and audio DAC capabilities and provides
audio signal outputs that are provided directly to speakers.

The IMC 140 of the present invention is preferably
situated either on the main CPU bus or a high speed system
peripheral bus. The IMC 140 may also be closely or directly

US 7,190,284 Bl

11

integrated with the CPU 102, e.g., comprised on the same
chip as the CPU 102. In the preferred embodiment, as shown
in FIGS. 2 and 3, the IMC 140 is coupled directly to the
Local bus 106 or CPU bus, wherein in the preferred embodi-
ment the IMC 140 interfaces through a 1.2 cache system 104
to the CPU 102. In an alternate embodiment, the 1.2 cache
and controller 104 may be integrated into the CPU 102 or
into the IMC 140, or not used.

An I/O subsystem controller 116 is coupled to the Local
bus 106. The /O subsystem controller 116 in turn is coupled
to an optional I/O bus 118. Various [/O devices are coupled
to the I/O bus including a non-volatile memory, e.g., hard
disk 120. keyboard 122, and mouse 124, as shown. In one
embodiment the /O bus is the PCI bus, and the [/O
subsystem Controller 116 is coupled to the PCI bus.

Typical computer programs require more Local bus band-
width for the transfer of application data than the transfer of
program code executed by the CPU. Examples of applica-
tion data include a bit mapped image, font tables for text
output, information defined as constants, such as table or
initialization information, etc. Graphical and/or video data,
for example, is processed by the CPU 102 for display before
the video data is written to the graphical output device.
Therefore, in most cases, the actual program code executed
by the CPU 102 which manipulates the application data
consumes considerably less system memory 110 for storage
than the application data itself.

The IMC 140 includes a novel system architecture which
helps to eliminate system bandwidth bottlenecks and
removes extra operations required by the CPU 102 to move
and manipulate application data and/or program code.
According to the present invention, the IMC 140 includes a
data compression/decompression engine which allows
application data and/or program code. i.e., any data in the
system, to move about the system in a compressed format.
The operation of the compression/decompression engine in
the IMC 140 is discussed in greater detail below.

The IMC 140 also includes a high level protocol for the
graphical manipulation of graphical data or video data which
greatly reduces the amount of bus traffic required for video
operations and thus greatly increases system performance.
This high level protocol includes a display list based video
refresh system and method whereby the movement of
objects displayed on the video display device 142 does not
necessarily require movement of pixel data in the system
memory 110, but rather only requires the manipulation of
display address pointers in a Display Refresh List, thus
greatly increasing the performance of pixel bit block trans-
fers, animation, and manipulation of 2D and 3D objects. For
more information on the video/graphics operation of the
IMC 140, please see U.S. Pat. No. 5,838,334, The IMC 140
also includes an improved system and method for rendering
and displaying 3D objects.

FIG. 2 illustrates an example of the data transfer path of
data within a computer system including the IMC 140
according to the present invention. As mentioned above, in
typical computer systems. the program code and data is
initially stored on the non-volatile memory 120. First. the
IMC 140 reads program code and data stored on the non-
volatile memory 120 using a direct memory access (DMA)
method and/or burst control method, where the IMC 140
may act as a master on the local bus 106. The program code
and data are read from the non-volatile memory 120 by the
IMC 140 and stored in the system memory 110. In an
alternative embodiment, the program code and data are
transferred from the non-volatile memory 120 to the IMC
140 under CPU control. The data is transferred from the

o

20

25

30

40

50

60

12

non-volatile memory 120 to the system memory 110 pref-
erably in a compressed format, and thus the data requires
less disk storage and reduced Local bus bandwidth. As the
data is transferred from the non-volatile memory 120 to the
IMC 140. the data is preferably decompressed by the decom-
pression engine within the IMC 140 and stored in the system
memory bank 110 in an uncompressed format. In general,
magnetic media (hard disk) I/O transfer rates are sufficiently
slow to allow decompression and storage of the data as the
compressed data is received from the disk 120. Alterna-
tively, the data is stored in the system memory in a com-
pressed format. The data may also be stored in a cache in an
uncompressed format.

The CPU 102 begins program execution by reading the
recently decompressed program code from the system
memory 110 from the cache. Alternatively, the decompres-
sion engine within the IMC 140 provides the uncompressed
data to the CPU 102 in parallel with storing the uncom-
pressed data in the system memory 110. In another alternate
embodiment, where the data is stored in the memory in a
compressed format, a CPU access of the data results in the
data being decompressed and provided to the CPU 102.

Portions of the program code contain information neces-
sary to write data and/or instructions back to the IMC 140
using a special graphical protocol to direct the IMC 140 to
control the display output on the video display 142. In many
cases, the graphical data correctly stored in the system
memory 110 is not required to leave the system memory 110
and is not required to move to another location in system
memory 110, but rather the display list-based operation and
high level graphical protocol of the IMC 140 of the present
invention enables the CPU 102 to instruct the IMC 104 how
window and other graphical data is presented on the screen.
This provides a tremendous improvement over prior art
systems.

FIG. 3—IMC Block Diagram

FIG. 3 is a block diagram illustrating the internal com-
ponents comprising the IMC 140 in the preferred embodi-
ment. The IMC 140 preferably incorporates the MemoryF/X
Technology according to the present invention. As shown,
the present invention integrates a data compression/decom-
pression engine and control functions into the memory
controller unit 220 of the IMC 140. This reduces the amount
of non-volatile (disk) storage or archive storage require-
ments and reduces the amount of bandwidth required to
move data in the system, and thus reduces overall system
costs. This also reduces the required amount of system
memory because, when data is compressed for storage. more
non-recently-used or off-screen data can be stored in system
memory 110.

It is noted that the present invention may be incorporated
into any of various types of computer systems or devices
having various system architectures. In alternate embodi-

s ments of the present invention, the data compression/de-

compression engine can be integrated into any device that
connects to memory. In some embodiments the present
invention improves bandwidth and efficiency without
increase in cost to the system or increased /O bus require-
ments.

The memory controller may operate in different compres-
sion modes. One mode. referred to as normal compression
mode, reduces the amount of memory used by translating
addresses allocated by the operating system into new
addresses which minimize the memory usage according to
the compression that is performed. While this embodiment
may reduce the amount of memory used, an alternate mode,

42

US 7,190,284 Bl

13

referred to as priority compression mode. does not make use
of memory size savings and instead trades off the additional
saved memory for higher bandwidth and lower overall
latency. In the priority compression mode, no changes to the
soltware or operating system software are necessary (other
than initialization code) to implement the compression/
decompression improvements. The normal and priority
compression modes are discussed below.

It is noted that various of the elements in FIG. 3 are
interconnected with each other, wherein many of the various
interconnections are not illustrated in FIG. 3 for simplicity.

As shown, the IMC 140 includes bus interface logic 202
for coupling to the host computer system, for coupling to the
Local bus 106. In the preferred embodiment, the Local bus
106 is the CPU bus or host bus. Alternatively. the Local bus
106 is the PCI bus, and the bus interface logic 202 couples
to the PCI bus. Instruction storage/decode logic (not shown)
may be coupled to the bus interface logic 202.

The bus interface logic 202 couples to the memory control
unit 220. The MemorylF/X technology prelerably resides
internal to the memory controller block 220. A control bus
201 connects all units to the local CPU interface 202. An
execution engine 210 is coupled through the control bus 201
to the local CPU interface 202 and the memory interface 221
and the execution engine 210 also couples to the memory
controller. Local bus 106 data and commands are routed
through the local CPU interface to the control bus 201 which
in turn is coupled to the execution engine 210, the memory
interface 221, the graphics engine 212, the Peripheral /O
bus interface 234, the VDRL engine 240. a video input and
format conversion unit 235 and finally the audio & modem
subsystem 236. In addition the execution engine 210 is
coupled to the main system memory 110 through the
memory controller 220 and the memory interface 221.

The graphics engine 212 is also coupled to the main
system memory 110 through the memory controller 220 and
the memory interface 221. Thus, data is read and written for
rasterization and pixel draw output by the graphics engine
212 with assistance for data transfer and efliciency by the
memory controller 220. In addition, the other blocks are
coupled under similar circumstances through the memory
controller 220 and memory interface 221 to the system
memory 110.

As shown in FIG. 3 the memory controller 220 transfers
data between the system memory 110 and the requesting
units. The requesting units include the execution engine 210,
local CPU or RISC interface 202, audio and modem sub-
system 236, Video I/O interface 235, VDRL engine 240,
peripheral bus interface 234 and graphics engine 212. The
requesting units will request the memory controller 220 for
data transfer operations to the system memory 110 through
the system memory interface 221. Each requesting unit may
represent or utilize a different compression format, allowing
higher memory efliciency. Thus, there are pluralities of data
compression formats under control of the requesting units
and supported by the memory controller block 220.

FIG. 4—Memory Controller Unit

FIG. 4 illustrates the memory controller block 220. In the
preferred embodiment the memory controller 220 includes a
parallel compression and decompression engine 251. In an
alternate embodiment the memory controller 220 includes a
single or serial compression engine and a single or serial
decompression engine. Also, in the preferred embodiment,
the parallel compression and decompression unit 251
includes a separate lossy compression and decompression
engine (discussed later in this disclosure) which also may be

0

20

25

30

40

50

60

14
designed as separate or unified units. Additional alternate
embodiments may apply individual compression and/or
decompression units located in multiple areas of the IMC
140 for optimal efliciency of compression or decompression.

The memory controller block 220 may include one or
more parallel or serial compression/decompression engines,
including one or more parallel and/or serial lossless com-
pression/decompression engines and/or one or more parallel
and/or serial lossy compression/decompression engines. The
term “compression/decompression engine™ as used herein is
intended to include all such combinations of one or more
parallel, serial, lossless and/or lossy compression/decom-
pression engines, whether they be integrated or separate
blocks, and whether they be comprised in or external to the
memory controller, or comprised in another unit, such as the
CPU 102.

Support blocks for the preferred embodiment of the
memory controller 220 preferably include the switch logic
261, compression control unit 281, compressed data direc-
tory 271, L3 data cache memory 291, and the memory
interface logic 221. Main system memory 110 in FIG. 4 is
preferably external to the memory controller block 220 and
is shown only for reference. In addition. the L3 data cache
291 may also be standard memory (SRAM or Embedded
DRAM) in absence of external memory and may be con-
figured other than as cache type memory. Input signals to the
memory controller 220 preferably comprises a request bus
and control bus 211. and a plurality of address buses 215 and
data buses 216 from each requesting unit in the IMC 140 as
indicated in FIG. 4. Alternatively, each of the requesting
agents may share common address/data buses. The memory
controller 220 generates output signals which interface to
the main system memory 110. These output signals comprise
a plurality control signals required to drive multiple DRAM
memory devices as previously indicated.

Again referring to FIG. 4, the switch logic 261 preferably
interfaces to all the requesting unit’s address and data buses,
including control buses and strobes necessary to indicate
valid data and address cycles presented to the memory
controller 220. The switch logic 261 also includes the
necessary ports to drive address and data to the other units
within the memory controller 220. The switch logic 261
controls read and write data to and from the parallel com-
pression and decompression unit 251 and the compression
control unit 281. In addition. for data that is not to be
compressed or decompressed (normal or bypass data), the
switch logic 261 controls an interface directly to the memory
interface logic 221. In order to properly control the switch-
ing direction of the address and data for different data
compression formats, the switch logic 261 receives control
inputs from the compression control unit 281 and the
Request bus 211. The switch logic 261 also interacts with the
parallel compression and decompression unit 251 as
described in detail later. Thus, the switch logic 261 arbitrates

5 the incoming requests for memory control and data transfer

operations, ranking requests in a priority scheme and filter-
ing the requests for normal or compressed memory trans-
actions.

Again referring to FIG. 4, the compression control unit
281 receives memory transaction requests from the request
and control bus 211 and receives addresses from the switch
unit 261 for control of each memory transaction. The
compression control unit 281 directs the switch logic 261,
the compression data directory 271, the local data cache
memory (L3 data cache) 291. the memory interface logic
221. and the parallel compression and decompression unit
251 for proper operation and set-up for each memory

43

US 7,190,284 Bl

15

transaction request. The compression control unit 281 inter-
faces to the compressed data directory 271. The compressed
data directory 271 is used for look up of the address block
start location for either the L3 data cache 291, the SRAM
buffers (located in the Parallel Compression and Decom-
pression unit 251) or the system memory 110. Thus, the
compression control unit 281 receives requests from other
units in the IMC 140, translates the location by address,
determines the compression block size, and controls the
sub-units of the memory controller 220 for the proper
address and data transactions as required to read or write
data to and from the main system memory 110.

The data cache 291 shown in FIG. 4 is used to minimize
the latency of operation by returning requested data that has
been recently used. The data cache 291 is an 1.3 data cache
where the CPU 102 or system includes L1 and 1.2 caches.
The cache 291 may also operate as an L2 or L1 cache for the
CPU 102, as desired. The cache 291 is referred to as an L3
cache in this description.

The 1.3 data cache size will determine the average number
of clocks required to return data to the requesting units of the
IMC 140. In the present embodiment, most recently used
data is stored in a non-compressed format in the L3 data
cache 291. For data that resides in the .3 data cache 291, no
compression or decompression action is required by the
parallel compression and decompression unit 251. Thus. a
transaction request with an L3 data cache hit can return data
with less latency than a transaction request that requires a
main memory 110 transaction. The L3 data cache 291
typically contains only uncompressed data, although in
alternate embodiments the L3 cache 291 may store most
recently used data in a compressed format, or in a combi-
nation of compressed and non-compressed formats. Thus the
1.3 data cache 291 located in the memory controller 210 can
return most recently used data without the normal latency
delay associated with conventional memory controllers.

In one embodiment where the parallel compression and
decompression engine 251 does not contain SRAM buller
storage, the 1.3 data cache 291 can double for such SRAM
buffers used to store write blocks for future compression and
read blocks for future decompression. Thus the L3 data
cache 290 may be used to store compressed blocks which
await future decompression for either read or write opera-
tions. For example, the 1.3 data cache 291 may be used to
store LRU pages that are waiting to be compressed and
transferred to the non-volatile memory. Thus the L3 data
cache 291 and associated cache control logic 281 bufler the
transactions to improve memory access latency for both read
and write operations of both compressed/decompressed
transactions or transactions which require uncompressed
operation (no compression or decompression).

Again referring to F1G. 4. the memory interface logic 221
receives control signals form the compression control unit,
receives address and data from either the switch logic 261
(non-compressed transactions), or the compression data
directory 271 and controls the timing and delivery voltage
levels to the main memory 110 depending on the DRAM
device type. Thus the memory interface logic 221 is used to
interface to the main system memory 110 matching the
memory configuration and device type.

The Parallel compression and decompression unit 251 is
described in detail in the following sections.

FIG. 5—Compression/Decompression Engine

As shown in FIG. 5, the parallel compression and decom-
pression 251 block preferably includes compression engines
570/575 and decompression engines 550/555. As noted

o

5

20

25

30

40

50

60

16

above, the parallel compression and decompression unit 251
may contain a single lossless parallel compression and
decompression engine and/or a single lossy compression and
decompression engine, or a combination of lossless and/or
lossy engines.

The parallel compression and decompression unit 251
performs high speed parallel compression and decompres-
sion using a parallel symbol data stream. instead of a serial
symbol data stream as in conventional implementations. The
parallel operation of the compression and decompression
unit 251 is optimized for bandwidth reduction and reduced
latency. Thus the parallel compression and decompression
engines allows a higher speed decompression and compres-
sion rate. which substantially increases bandwidth and
reduces latency of that over prior art compression and
decompression engines. The algorithm for the parallel com-
pression invention is further described in detail below.

FIG. 5 also illustrates the internal diagram of the switch
logic 261. The switch 261 performs data format and address
conversion as well as the arbitration of multiple requests
from a plurality of other units in the IMC 140. The switch
logic 261 includes a crossbar switch 502 that performs the
selection of the current memory transaction request. This
selection is performed by one of a plurality of arbitration
methods with the intention to deliver data first to units that
must operate real time memory transactions, In the preferred
embodiment, the order of priority for such requesting units
is first the display refresh requests from the VDRI engine
240, followed by the Video I/O unit 235, the Audio and
Modem 236, the Local CPU/RISC interface 202, the Graph-
ics engine 212 and execution engine 210, followed by the
Peripheral I/O bus interface 234. The priority order, block
size. and request latency is software programmable by the
interface driver sofiware for the IMC 140. Thus, the system
performance and memory transaction efliciency and/or
response can be adjusted dynamically by software control
executed by the interface drivers. Such interface software is
preferably executed on the CPU 102 but alternatively can be
executed by the execution engine 210.

The switch logic 261 preferably contains specific data
selection units separating normal uncompressed reads and
writes from compressed reads and writes. Decompression
switch 512 determines a block read operation by sending
command, address, block tags. data type and length infor-
mation to the decompression engine 550 and 555. In addi-
tion the decompression switch 512 receives decompressed
data and transaction tag information from the decompression
engine 550 and/or 555. The decompression switch 512 is
preferably pipelined for a plurality of system memory read
requests at the same time. The tag field allows multiple
outstanding requests to be issued to the decompression
engines 550 and/or 555 in parallel.

Similarly. the switch logic 261 contains a normal memory
switch 514 for read and write transactions that require no

5 compression or decompression operation. In the preferred

embodiment, some data address ranges or requests from
specific request units may not need or want to have com-
pression operations. Thus the memory switch 514 generates
block transfer, address generation, data tags, length and
command information for interface to the memory interface
unit 560.

The switch logic 261 includes compress switch 516 which
performs command, address, tag. length and data type
preparation for the compression engine 570 and/or 575. Data
written to the memory controller 220 by a plurality of
requesting units 211 are received by the compress switch
516 and will be either compressed and written to main

44

US 7,190,284 Bl

17

memory 110 or, if in the valid address range of the 1.3 data
cache 291, will be written to the L3 data cache 291 under
control of the memory switch 514.

Thus, the compression cache control unit 281 along with
the switch unit 261 determine the transaction type. priorily
and control required to complete the transaction by either the
L3 data cache 291, the parallel compression and decom-
pression unit 251 or the main memory interface 560. As
indicated in FIG. 5. the preferred embodiment shows trans-
action sizes ol 16 data bytes. In alternate embodiments the
transaction sizes can be any number of data bytes.

As discussed above in FIG. 4, the L3 data cache 291
interacts with the cache control unit 281. For transactions
that have address ranges with associated data located within
the L3 data cache 291, the decompression engine 550,
memory interface 560. and compression engine 570, are not
used, and data is read or written directly into the L3 data
cache 291. Thus, for L3 data cache 291 hits, data bypasses
the parallel compression and decompression unit 251 and is
read or written directly to/from the 1.3 data cache 291 in a
non-compressed format.

In addition, again referring to FIG. 5, the parallel com-
pression and decompression unit 251 includes data and
command transfer multiplexers 522 and write data multi-
plexers 590. The command transfer multiplexers 522 per-
form data, command address, tag, length switching and
interfacing to the decompression engine 550/555, memory
interface 560, and compression engines 570/575. Alternate
embodiments may include the transfer multiplexers 522 in
the switch logic 261 in a single rather than multiple bus
design. The write data multiplexers 590 perform the selec-
tion between normal (uncompressed) data writes and com-
pressed data writes to the main memory 110.

The memory interface unit 221 interfaces to the decom-
pression engines 550 and/or 555 for status, tags and read
data, interfaces to the memory interface 560 for both read,
write control, address and tags, and interfaces to the com-
pression engines 570 and/or 575 for write data. The memory
interface unit 221 includes a DRAM controller 592 and a
DRAM 1/O interface 594. The DRAM controller 592 per-
forms the timing of the control signals and address to the
DRAM V/O interface 594 to control the main memory bank
110. In the preferred embodiment the control of RDRAM
memory is controlled by the high speed analog RAC located
within the DRAM 1/O interface 594. In alternate embodi-
ments other memory types such as SDRAM, DRDRAM,
SLDRAM, or VMC require additional logic in the DRAM
[/O interface 594. Thus, the memory interface logic 221 is
internal to the memory controller 220 and interfaces to the

compression control unit 281 for control signals, the switch -

logic 261 for address, tags, control and data signals, the
parallel compression and decompression unit 251 for
address, control and data transactions. In addition the
memory interface logic 221 performs the memory interface
and signal conditioning for interfacing to the main system
memory 110.

Parallel Lossless Compression and Decompression

The parallel compression/decompression unit or engine
251, which performs parallel compression and decompres-
sion functions. is now discussed. The engine 251 is prefer-
ably a dedicated codec hardware engine, e.g., the engine is
comprised of logic circuitry. In one embodiment, the codec
engine 251 comprises a programmable DSP or CPU core, or
programmable compression/decompression processor, with
one or more ROMs or RAMs which store different sets of
microcode for certain functions. such as compression,

0

5

3
o

40

60

18

decompression, special types of graphical compression and
decompression, and bit blit operations, as desired. In this
embodiment, the codec engine 251 dynamically shifts
between the different sets of microcode in the one or more
memories. depending on the function being performed. The
compression/decompression engine may also be imple-
mented vsing reconfigurable or programmable logic, e.g.,
one or more FPGAs.

As shown in FIG. 5, in one embodiment, the engine 251
preferably includes an embedded lossless parallel data com-
pression engine 570 and parallel decompression engine 550
designed to compress and decompress data as data is trans-
ferred to/from system memory 110. The compression engine
570 and decompression engine 550 may be constructed
using any of the techniques described with reference to the
engine 251, including hardware engines comprised of logic
circuitry, programmable CPUs, DSPs, a dedicated compres-
sion/decompression processor, or reconfigurable or pro-
grammable logic, to perform the parallel compression and
decompression method of the present invention. Various
other implementations may be used to embed a compres-
sion/decompression within the memory controller according
to the present invention. In the preferred embodiment, the
compression engine 570 and decompression engine 550
comprise hardware engines in the IMC 140, or alternatively
use pieces of the same engine for compression and decom-
pression. In the following description, the parallel compres-
sion and decompression unit is described as having separate
compression and decompression engines 570 and 550.

For a general overview of the benefits and methods for
using compression and decompression engines in the main
system memory controller, refer to US patent disclosure
titled “Memory Controller Including Embedded Data Com-
pression and Decompression Engines”, filed Jun. 5. 1995,
Ser. No. 08/463.106, whose inventor is Thomas A. Dye.

Thus. the IMC 140 includes two data formats referred to
as “compressed” data and “non-compressed” data. The
compressed data format requires less storage and thus is less
expensive. The compressed format also requires less system
bandwidth to transfer data between system memory 110 and
I/O subsystems. The decompression from compressed data
format to normal data format results in a small performance
penalty. However, the compression of non-compressed data
format to compressed data format does not have an associ-
ated penalty, although there may be an added latency which
would normally be hidden. However, if the data doesn’t
compress well, and there is a long series of stores which
need compressed, the bus could be backed up causing read
and snoop delays to the processor. In one embodiment, the
compression engine 570 is implemented in software by the
CPU 102.

In the preferred embodiment, the compression engine 570
and decompression engine 550 in the IMC 140 comprise one
or more hardware engines that perform a novel parallel

s lossless compression method, preferably a “parallel” dictio-

nary based compression and decompression algorithm. The
parallel algorithm may be based on a serial dictionary based
algorithm, such as the LZ77 (preferably LZSS) dictionary
based compression and decompression algorithm. The par-
allel algorithm may be based on any variation of conven-
tional serial LZ compression. including 1277, LZ78, LZW
and/or LZRW1, among others.

The parallel algorithm could also be based on Run Length
Encoding, Predictive Encoding, Huffiman, Arithmetic, or
any other lossless compression algorithm. However, the
parallelizing of these is less preferred due to their lower
compression capabilities and/or higher hardware costs.

45

US 7,190,284 Bl

19

As a base technology, any of various lossless compression
methods may be used as desired. As noted above, a parallel
implementation of LZSS compression is preferably used,
although other lossless compression methods may allow for
fast parallel compression and decompression specifically
designed for the purpose of improved memory bandwidth
and efliciency.

For more information on a data compression and decom-
pression system using serial LZ compression, please see
U.S. Pat. No. 4,464,650 which is hereby incorporated by
reference. The above patent presents implementations of the
LZ77 data compression method described by Lempel and
Ziv in “Compression of Individual Sequences Via Variable-
Rate Coding,” IEEE Transactions on Information Theory,
I'T-5. September 1977, pages 530-537. and “A Universal
Algorithm for Sequential Data Compression,” IEEE Trans-
actions on Information Theory, Volume 23, No. 3 (IT-23-3),
May 1977, pages 337-343. wherein the above two articles
are both hereby incorporated by reference. U.S. Pat. No.
4,701,745, titled “Data Compression System,” which issued
Oct. 20, 1987, describes a variant of LZ77 called LZRW1,
and this patent is hereby incorporated by reference in its
entirety. A modified version of the LZ78 algorithm is
referred to as LZW and is described in U.S. Pat. No.
4.558,302. Another variant of LZW compression is
described in U.S. Pat. No. 4,814,746.

In an alternate embodiment, the data compression and
decompression engines 570 and 550 utilize parallel data
compression/decompression processor hardware based on
the technology disclosed in U.S. Pat. No. 5,410,671, titled
“Data Compression/Decompression Processor,” which
issued Apr. 25, 1995 and which is hereby incorporated by
reference in its entirety.

The IMC 140 may also utilize parallel data compression/
decompression techniques of the present invention based on
the serial techniques described in U.S. Pat. No. 5,406,279
titled “General Purpose, Hash-Based Technique for Single
Pass Lossless Data Compression,™; U.S. Pat. No. 5,406.278
titled “Method and Apparatus for Data Compression Having
an Improved Matching Algorithm which Utilizes a Parallel
Hashing Technique,”; and U.S. Pat. No. 5,396,595 titled
“Method and System for Compression and Decompression
of Data.” In alternate embodiments, other types of parallel or
serial data compression/decompression methods may be
used.

The compression/decompression engine 251 of the
present invention may include specialized compression/
decompression engines 575/555 for image data. The pre-
ferred embodiment of the lossy compression/decompression
engine is described with reference to FIGS. 17-20, and a
parallel version is described with reference to FIGS. 32-36.

Other embodiment may utilize image compression and
decompression techniques shown and described in U.S. Pat.
No. 5,046,119 titled “Method and Apparatus for Compress-
ing and Decompressing Color Video Data with an Anti-
Aliasing Mode.” this patent being hereby incorporated by
reference in its entirety. For related information on com-
pression and decompression engines for video applications,
please see U.S. Pat. No. 5,379.356 titled “Decompression
Processor for Video Applications,” U.S. Pat. No. 5.398.066
titled “Method and Apparatus for Compression and Decom-
pression of Digital Color Images.” U.S. Pat. No. 5,402,146
titled “System and Method for Video Compression with
Artifact Disbursement Control.” and U.S. Pat. No. 5,379,
351 titled “Video Compression/Decompression Processing
and Processors,” all of which are hereby incorporated by
reference in their entirety.

20

25

30

40

50

60

20
FIG. 6 A—Prior Art

Prior art has made use of the LZ compression algorithm
for design of computer hardware, but the bandwidth of the
data stream has been limited due to the need to serially
review the incoming data to properly generate the com-
pressed output stream. FIG. 6A depicts the prior art normal
history table implementation.

The LZ compression algorithm attempts to reduce the
number of bits required to store data by searching that data
for repeated symbols or groups of symbols. A hardware
implementation of an LZ77 algorithm would make use of a
history table to remember the last n symbols of a data stream
so that they could be compared with the incoming data.
When a match is found between the incoming stream and the
history table. the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the history table.

FIG. 6B—Parallel Algorithm

The preferred embodiment of the present invention pro-
vides a parallel implementation of dictionary based (or
history table based) compression/decompression. By
designing a parallel history table, and the associated com-
pare logic, the bandwidth of the compression algorithm can
be increased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which
results in a 4 times improvement in the bandwidth of the
implementation with no reduction in the compression ratio
of the data. In alternate embodiments, the number of sym-
bols and parallel history table can be increased and scaled
beyond four for improved parallel operation and bandwidth,
or reduced to ease the hardware circuit requirements. In
general, the parallel compression algorithm can be a 2
symbol parallel algorithm or greater, and is preferably a
multiple of 2. e.g.. 2, 4. 8, 16, 32, etc. The parallel algorithm
is described below with reference to a 4 symbol parallel
algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table (or history window),
analysis of symbols and compressed stream selection, and
the output generation. In the preferred embodiment the
data-flow through the history table becomes a 4 symbol
parallel flow instead of a single symbol history table. Also,
4 symbols are analyzed in parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win-
dows for decompression of multiple streams. allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current
block decompression in favor of other block decompression
to reduce latency during fetch operations. For ease of
discussion, this disclosure will assume a symbol to be a byte
of data. Symbols can be any reasonable size as required by

_ the implementation. FIG. 6B shows the data-flow for the

parallel history table.

FIG. 7—High Level Flowchart of the Parallel Compression
Algorithm

FIG. 7 is a high level flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps in the flowchart may occur con-
currently or in different orders.

In step 402 the method maintains a history table (also
called a history window) comprising entries, wherein each
entry may comprise one symbol. The history table is pref-
erably a sliding window which stores the last n symbols of
the data stream.

46

US 7,190,284 Bl

21

In step 404 the method maintains a current count of prior
matches which occurred when previous symbols were com-
pared with entries in the history table. A count is maintained
for each entry in the history table.

It is noted that maintenance of the history table and the
current counts are performed throughout the algorithm based
on previously received symbols, preferably starting when
the first plurality of symbols are received for compression.

In step 406 the method receives uncompressed data,
wherein the uncompressed data comprises a plurality of
symbols. Thus the parallel compression algorithm operates
on a plurality of symbols at a time. This is different than
conventional prior art serial algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols. preferably a power
of 2. In the preferred embodiment, the parallel compression
algorithm operates on 4 symbols at a time. However, imple-
mentations using 8. 16, 32 or more symbols, as well as other
non-power of 2 numbers, may be readily accomplished
using the algorithm described herein.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Fach entry in the
history table preferably compares with each of the plurality
of symbols concurrently, i.e., in a parallel fashion, for
improved speed.

In step 410 the method determines match information for
each of the plurality of symbols based on the current count
and the compare results. Step 410 of determining match
information includes determining zero or more matches of
the plurality of symbols with each entry in the history table.
More specifically, step 410 may include determining a
longest contiguous match based on the current count and the
compare results, and then determining if the longest con-
tiguous match has stopped matching. If the longest contigu-
ous match has stopped matching, then the method resets or
updates the current counts.

As noted above, step 410 also includes resetting the
counts for all entries i’ the compare results indicate a
contiguous match did not match one of the plurality of
symbols. The counts for all entries are preferably reset based
on the number of the plurality of symbols that did not match
in the contiguous match. In the preferred embodiment. the
method generates a reset value for all entries based on the
compare results for a contignous match. The reset value
indicates a number of the plurality of symbols that did not
match in the contiguous match as indicated in the compare
results. The method then updates the current counts accord-
ing to the compare results and the reset value.

In step 412 the method outputs compressed data infor- :

mation in response to the match information. Step 412 may
involve outputting a plurality of sets of compressed data
information in parallel, e.g., for different matches and/or for
non-matching symbols. Step 412 includes outputting com-
pressed data information corresponding to the longest con-
tiguous match which stopped matching, if any. The contigu-
ous match may involve a match from a prior plurality of
symbols. Step 412 may also include outputting compressed
data information solely from a prior match. Step 412 also
includes, for non-matching symbols which do not match any
entry in the history table, outputting the non-matching
symbols in an uncompressed format.

For a contiguous match, the compressed data information
includes a count value and an entry pointer. The entry
pointer points to the entry in the history table which pro-
duced the contiguous match, and the count value indicates a
number of matching symbols in the contiguous match. In

0

5

20

40

45

60

22

one embodiment, an encoded value is output as the count
value, wherein more often occurring counts are encoded
with fewer bits than less often occurring counts.

Steps 402-412 are repeated one or more times until no
more data is available. When no more data is available, then,
il any current counts are non-zero. the method outputs
compressed data for the longest remaining match in the
history table.

Since the method performs parallel compression, operat-
ing on a plurality of symbols at a time, the method preferably
accounts for symbol matches comprised entirely within a
given plurality of symbols, referred to as the “special case”.
Here presume that the plurality of symbols includes a first
symbol. a last symbol, and one or more middle symbols.
Step 410 of determining match information includes detect-
ing if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved in a
match with either the symbol before or after the respective
contiguous middle symbols. I this condition is detected,
then the method selects the one or more largest non-
overlapping contiguous matches involving the middle sym-
bols. In this instance, step 412 includes outputting com-
pressed data for each of the selected matches involving the
middle symbols.

FIG. 8 Detailed Flowchart of the Parallel Compression
Algorithm

FIG. 8 is a more detailed flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps which are similar or identical to
steps in FIG. 7 have the same reference numerals for
convenience.

In the flowchart of FIG. 8, it is presumed that the method
maintains a history table comprising entries, wherein each
entry comprises one symbol. The history table is preferably
a sliding window which stores the last n symbols of the data
stream. It is also presumed that the method maintains a
current count of prior matches which occurred when previ-
ous symbols were compared with entries in the history table.
A count is maintained for each entry in the history table. As
noted above, the maintenance of the history table and the
current counts are performed throughout the algorithm,
preferably starting when the first plurality of symbols are
received for compression.

In step 406 the method receives uncompressed input data,
wherein the uncompressed data comprises a plurality (or
group) of symbols. Thus the parallel compression algorithm
operates on a plurality of symbols at a time. This is different
than conventional prior art algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more svmbols, preferably 4 sym-
bols. As noted above, the parallel compression algorithm can
operate on any number of symbols at a time. The input data

s may be the first group of symbols from a data stream or a

group of symbols from the middle or end of the data stream.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently, i.e., in a parallel fashion. for
improved speed.

In step 422 the method determines zero or more matches
of the plurality of symbols with each entry in the history
table. In other words. in step 422 the method determines. for
each entry, whether the entry matched any of the plurality of
symbols. This determination is based on the compare results.

47

US 7,190,284 Bl

23

If no matches are detected for the plurality of symbols in
step 422, then in step 432 the method determines if any
previous matches existed. In other words, step 432 deter-
mines if one or more ending symbols from the prior group
of symbols matched entries in the history table, and com-
pressed information was not yet output for these symbols
since the method was waiting for the new plurality of
symbols to possibly determine a longer contiguous match. If
one or more previous matches existed as determined in step
432, then in step 434 the method outputs the previous
compressed data information. In this case, since the prior
matches from the prior group of symbols are not contiguous
with any symbols in the current group, the previous com-
pressed data information is output. Afier step 434, operation
proceeds to step 436.

If no previous matches existed as determined in step 432,
or after step 434, then in step 436 the method outputs each
symbol of the plurality of symbols as uncompressed sym-
bols. Since each of the plurality of symbols does not match
any entry in the history table, then each of the plurality of
symbols are output in an uncompressed format. After step
436, in step 438 all counters are reset to 0. In step 472 the
uncompressed symbols are added to the history window, and
operation returns to step 406 to receive more input data, i.e.,
more input symbols.

If one or more matches are detected for the plurality of
symbols in step 422, then in step 442 the method determines
if'all of the plurality of symbols are comprised in one match.
If so, then in step 444 the method increases the count for the
respective entry by the number of matching symbols, e.g.. 4
symbols. In step 474 the uncompressed symbols are added
to the history window, and operation returns to step 406 to
receive more input data, i.e., more input symbols. In this
case. the method defers providing any output information in
order to wait and determine if any symbols in the next group
contiguously match with the current matching symbols.

If all of the plurality of symbols are not comprised in one
match as determined in step 442. then in step 452 the method
determines if any previous matches existed. The determina-
tion in step 452 is similar to the determination in step 432,
and involves determining if one or more ending symbols
from the prior group of symbols matched entries in the
history table, and compressed information was not yet
output for these symbols since the method was waiting for
the new plurality of symbols to possibly determine a longer
contiguous match.

If one or more previous matches existed as determined in
step 452, then in step 454 the method selects the largest
contiguous match including the previous match. In step 456

the method outputs compressed data information regarding :

the largest contigunous match. This compressed data infor-
mation will include previous compressed data information,
since it at least partly involves a previous match from the
previous group of symbols. If the first symbol in the current
plurality of symbols is not a contigunous match with the
previous match, then the compressed data information will
comprise only the previous compressed data information.
After step 456, operation proceeds to step 462.

Steps 462470 are performed for each input symbol in a
parallel fashion. In other words, steps 462-470 are per-
formed concurrently for each input symbol. Steps 462-470
are shown in a serial format for ease of illustration.

In step 462 the method determines if the respective
symbol is included in any match. If not, then in step 464 the
method outputs the uncompressed symbol. In this case, the
respective symbol does not match any entry in the history
table, and thus the symbol is output uncompressed.

0

25

40

60

24

If the respective symbol is included in a match as deter-
mined in step 462, then in step 466 the method determines
if the match includes the last symbol. If not, then in step 468
the method outputs compressed data information for the
match. It is noted that this may involve a “special case”
involving a match comprising only one or more middle
symbols.

If the match does include the last symbol as determined in
step 466, then in step 470 the method resets counters to the
maximum of the symbol count in the match. In this case,
compressed information is not output for these symbols
since the method waits for the new plurality of symbols to
possibly determine a longer contiguous match.

Once steps 462-470 are performed for each input symbol
in parallel, then in step 472 the uncompressed symbols are
added to the history window. Operation then returns to step
406 to receive more input data, i.e., a new plurality or group
of input symbols. If no more input data is available or is
received, then in step 480 the method flushes the remaining
previous matches, i.e., provides compressed information for
any remaining previous matches.

The method of FIG. 8 also accounts for matches within
the middle symbols as described above.

FIGS. 9 and 10—Operation of the Parallel Compression
Algorithm

FIGS. 9 and 10 are hardware diagrams illustrating opera-
tion of the parallel compression algorithm. As with the prior
art LZ serial algorithm, each entry of the history table
contains a symbol (byte) of data, which is compared with the
input stream of data 610. The input stream 610 comprises
Datal, Datal, Data2 and Data3. FIG. 9 illustrates an entry of
the history table, referred to as entry D 602. As shown entry
D 602 is compared with each symbol of the input stream
610. FIG. 9 illustrates Entry D 602 of the parallel imple-
mentation, and its inputs and outputs. Comparators 608
compare each data byte entry with the 4 bytes from the input
stream 610, and generate 4 compare signals (labeled D0
through D3 for entry D). Compare signal D0 is used in entry
D. The compare signal D1 will be used by the next entry E
in the history table. compare signal D2 will be used by entry
F, and compare signal D3 will be used by entry G. Accord-
ingly. entry ID uses compare signal 3 from entry A, 2 from
compare signal entry B and code 1 from entry C. These can
be seen as inputs to the results calculation block 606 in FIG.
9. The results of this compare are held in a counter 604 that
is part of the entry logic. The counter values are sent to the
compressed stream selection logic 612/614/616 (FI1G. 10) to
determine if the input data is being compressed or not. This
information is forwarded to the output generation logic 618
which sends either the uncompressed data to the output. or
the compressed stream data.

The generation of the Output Mask and Output count
from the results calculation block 606, along with the Entry

s Counter update value, is described in the table of FIG. 11.

The New Counter Value is calculated by counting the
number of matches that occur beginning with A3 and
continuing to DO. For example, an A3 and B2 match without
a C1 match sets the counter to 2. The special case of all four
compares matching adds 4 to the present counter value.
Generation of the counter output is similar, comprising
the Saved counter (counter value prior to the setting of the
new counter value) plus the count of matches starting with
DO and continuing to A3. The output mask is generated by
inverting the 4 match signals and adding a 5” signal which
is 1 for all cases except for a special case of a C1 and B2
match without a DO or an A3 match. This special case allows

48

US 7,190,284 Bl

25

the compression of the two bytes centered in the input word.
The Reset Value will be generated by the selection logic 612
from the mask value. The reset value is included in this
disclosure as indicated in the table of FIG. 11 for ease of
description only.

Compressed Stream Selection Logic

FIG. 10 shows a block diagram of the selection logic
612/614/616 and the output stream generation logic 618.
The compressed stream selection logic 612/614/616 collects
the output counters and the output masks from each of the
entries from the results calculation block 606, and generates
indices and counts for the output stream generator 618,
along with the Reset Value which is sent back to each entry.
The indices point to the entries that generated the selected
counts. The main function of the Selection Logic 612/614/
616 is to find the largest blocks to be compressed out of the
input stream, i.e.. the largest contiguous match. This is
accomplished by finding the largest output count from any
entry. Because of the parallel compression, i.e., because a
plurality of symbols are operated on in parallel, there could
be multiple compressed blocks that need to be sent to the
output. Because of this, in the 4 symbol parallel embodi-
ment, two counts and three indices are provided to the output
logic 618. These are referred to as the Previous Count and
Index, the Max Count and Index, and the LZ12 index.

Selecting the largest count with a Mask of 11111 gener-
ates the Previous Count and Index. This indicates a com-
pressed block that ended with the first data input of this cycle
(i.e. the first data input or first symbol could not be com-
pressed with this block). The Index is simply the entry
number that contained the selected count. Selecting the
largest count with a mask that is not 11111 generates the
Max Count and Index. This indicates a compressed block
that includes one or more of the 4 symbols received on this
cycle. The mask from this entry is also forwarded to the
output generator 618. The LZ12 index points to any block
that returned a mask of 01111, which is the “special case™.
The special case includes a contiguous match of one or more
middle symbols as described above. A combined compress
mask block 616 generates a combined compress mask
comprising a logical AND of all of the masks. and forwards
this to the Output Generator 618.

Finally, the selected Max Mask and the Reset Value
column in the table of FIG. 11 are used in generating a Reset
Value. This reset value is distributed back to all entries, and
the entries will reset their counters to the minimum of this
value, or their present value.

FIG. 12—Output Stream Generator Flowchart

The output stream generator 618 logic (FIG. 10) generates
the output stream according to the flowchart shown in FIG.
12. The term “CCM?” in this flowchart refers to the Com-
bined Compress Mask, and CCM(0) is the least significant
bit as used in the table of FIG. 11. The output generator 618
sends out either uncompressed data, which includes the
proper flags to indicate that it is not compressed. or a
compressed block which includes a flag to indicate this is a
compressed block, along with an encoded count and index
that is used by the decompression logic to regenerate the
original mnput.

As shown, in step 721 the method determines il previous
count equals zero. If no, then the method sends out the
compressed block in step 723 and adjusts the max count to
4 or less in step 725. Operation then advances to step 727.
If previous count is determined to equal zero in step 721,
then operation proceeds directly to step 727.

20

25

30

40

50

60

26

In step 727 the method determines if Max Cnt equals zero.
If not, then the method determines in step 729 if Max Mask
equals 10000. If not. then the method sends out the com-
pressed block in step 731. Operation then advances to step
735. If Max Cnt is determined to equal zero in step 727 or
if Max Mask is determined to equal 10000 in step 729, then
operation proceeds directly to step 735.

In step 735 the method determines if CCM (3) equals
zero. If not, then the method sends out data zero in step 733.
Operation then advances to step 737. If CCM (3) is deter-
mined to equal zero in step 735, then operation proceeds
directly to step 737.

In step 737 the method determines if CCM (4,2.1) equals
011. If not, then in step 739 the method determines if CCM
(2) equals 1. If not, then in step 741 the method sends out
data zero, and operation proceeds to step 745. [CCM (2) is
determined to equal 1 in step 739, then operation proceeds
directly to step 745. In step 745 the method determines if
CCM (1) equals 1. If not, then in step 747 the method sends
out data zero. Operation then proceeds to step 749. If CCM
(1) is determined to equal 1 in step 745, then operation
proceeds directly to step 749.

If CCM (4.2.1) is determined to equal 011 in step 737,
then in step 743, the method sends an 1.Z12 compressed
block. Operation then proceeds to step 749.

In step 749 the method determines if CCM (0) equals 1.
If not, then the method sends out data zero in step 751.
Operation then completes. [f CCM (0) is determined to equal
1 in step 749, then operation completes.

If single byte compression is being performed by this
logic, i.e., if individual symbols are being compressed,
additional indices for each of the byte matches should be
generated by the Selection Logic to allow the Output Gen-
erator to compress these. Otherwise, the output generation
logic should also handle the cases where outputs of a
compressed stream result in a single byte non-compressed
output and adjust the flags accordingly. Previous Data3 may
also be required by the output generator 618 in the case that
the previous match is a count of one. Preferably, one method
of handling single byte matches would be to adjust the table
of FIG. 11 to not allow generation of single byte compare
masks because single byte compares normally force the
compressed stream fo increase in size. For example, in the
10xx rows, if the saved count is 0, count out should be 0
along with a mask of 11xx to prevent the generation of a
compressed block for the DO single byte match.

FIG. 13— Parallel Algorithm Example

FIG. 13 illustrates a parallel algorithm example. Assume
a window (history table length) of 16 entries, that has been
initialized to the following wvalues: Entry 0=FO0, Entry
1=F1 . . . Entry 15=FF. Also assume that all of the entry

s counters are 0. The below sequence shows state changes for

the 4 indicated inputs.

In state 0, the input data, in the order received, is F9, I'8,
F7, CO. The input data is shown in the arrival order from
right to left in FIG. 13, ie., the input data D3:D0=CO0.F7,
F8,F9. In state 0, the input finds a match of the first 3
symbols in entry 9. This results in those three symbols being
replaced in the output stream by compressed data indicating
a count of 3 and an index of 9. The output mask value “18”
prevents these uncompressed symbols from being included
in the output stream, since the compressed data is being
output to represent these symbols. Also in state 0, the symbol
C5 is determined to not match any entry in the history table.

49

US 7,190,284 Bl

27

Thus the symbol C5 is provided in the output stream in
uncompressed form. Thus the output in state 0, from right to
left, is: CO, (9,3).

In state 1, the input data, in the order received, is B3, F2,
F1. FO. The symbol B5 does not match any entry in the
history table. Thus the symbol B5 is provided in the output
stream in uncompressed form. Also in state 1 three input
symbols match 3 symbols in entry 7. Note that the matches
are in previous entries, but the results calculation for this
match occurs in entry 7. In other words, the actual matching
entries are entries 6, 5, and 4. However, this match is
detected by entry 7, since entry 7 compares the 4 input
symbols with entries 7, 6. 5. and 4. Compressed data is not
generated for this match in state 1 because the entry does not
know if the match will continue with the next set of input
symbols, and thus the output count is 0. The mask value for
entry 7 prevents the matching data from being included in
the output stream. Thus the output in state 1 is B5. The count
value for entry 7 is updated to 3, as shown in state 2. to
indicate the 3 matches in state 1.

In state 2, the input data, in the order received, is F9, F8,
F7, B5. The matching in entry 7 continues for 3 more
symbols, and then ends. Thus entry 7 outputs a count of 6
and a mask for the new matching symbols. In addition, entry
6 matches with the symbol B5.

Thus entry 6 updates its count to 1 in state 3. However,
since symbol B35 is the last symbol in this group of input
symbols, the entry does not know if the match will continue
with the next set of input symbols. Thus for entry 6 the
output count is 0 and the mask value will prevent that
symbol from being output. Thus the output in state 2 is (7.6)

In state 3, no further contiguous matches exist for the
symbol B5 from state 2. Thus, for entry 6, the output count
is 1 from entry 6 for the B5 input after stage 2. Also. no
match is detected for input symbol E2, and thus E2 is output
as an uncompressed symbol. In state 3 a match is detected
with respect to the middle symbols CO and B5. This match
comprising solely middle symbols is detected by entry 9.
and thus the OF Mask is output from entry 9. This mask is
the special case mask that indicates the two symbols cen-
tered in the input (B5CO in this example) can be compressed
out. The actual compressed output data or block will include
a flag, a count of 2 and the index 9. Thus the output from
state 3. from right to lefi, is (9.2), E2, (6,1). In an embodi-
ment where individual symbols are not compressed, the
output is (9,2), E2, B5, as shown in the alternate output box.

The final state in this example, state 4, has a 1 in the count
for entry 7 as a result of a match of F3 with entry 4 in state
3. The mask from this match prevented the sending of the F3
to the output stream in state 3. If this were the end of the
input stream, the window is flushed, resulting in the single
symbol compression block for this match. The output would
show a match of 1 at index 7. Thus. assuming that the input
in state 3 is the final data received, then the final output for
the stream is (7.1). Alternately, the single symbol match
could be sent uncompressed as symbol F3, as shown in the
alternate output box.

Compare Logic

The compare logic 612 and 614 (FIG. 10) in stage three,
which is used to find the largest count may be specially
designed to be able to complete in one cyele. The counts are
especially critical because stage 2 must first choose to send
0. count, count+1. count+2 or count+3. The count from all
entries are then compared to find the largest.

As shown in FIG. 14, straightforward greater-than com-
pare of 2 multi-bit numbers requires 3 levels plus a selector.
If the number is 6 bits, this compare will require around 30

o

20

25

30

40

50

60

28

gates, and the selector will require an additional 18 for the
selector for 48 gates per 2-way compare. A stacked compare
(64 to 32, 32 t0 16. 16 t0 8, 8 t0 4. 4 to 2, 2 to 1) would
require 6*5 levels of logic, and 48%63~3 Kgates.

With standard 0.25 um process technology the time
through the compare should be about 1.25 nS (0.25 ns per
XOR, 0.5 ns 6wayAnd/Or). The selector would take an
additional 0.3 nS for 1.55 nS per compare. This stacked
compare would then require 1.55 nS*6=9.3 nS. This doesn’t
include the selection and distribution of these counts from
the source. For operation above 100 Mhz clocking the
timing is too limiting for proper operation.

In order to increase the speed, a novel 4 way parallel
compare can be used. as shown in FIG. 15. This embodiment
only requires 3 levels of compares (64 to 16. 16 to 4. 4 to 1),
however, more two-way compares are required (6 per 4 way
compare) and an additional And/Or is required before the
selector. This design would then require 126 compares and
21 selectors for 126%30+21%33~4.5 Kgates. But the result-
ing delay would be (1.5540.3 ns)*3 Levels=5.55 nS. This
timing allows for high speed parallel compression of the
input data stream. The table of FIG. 16 describes the Select
Generation Logic.

Lossy Compression Algorithm

As indicated in US patent disclosure entitled “Memory
Controller Including Embedded Data Compression and
Decompression Engines”. filed Jun. 5, 1995, Ser. No.
08/463.106, whose inventor is Thomas A. Dye, it is also
desirable to implement some of the compression formats as
“lossy™. The term “Lossy™ implies a compression/decom-
pression operation where data is altered and is represented
by an approximation of the original data after decompres-
sion.

Referring to FIG. 21, some compression conversion for-
mats preferably use lossy compression while others use
lossless compression. In the preferred embodiment, texture
302. image data (Compressed block 380), video data (Com-
pressed Block 380), and display data 300, and in some cases
“Z” or depth data, are compressed with the lossy algorithm.
Alternate embodiments include any of these formats or
additional formats to be compressed with the lossless com-
pression algorithm. Control data, programs, VDRL, or 3D
parameter data, or any other data required to be decom-
pressed without loss from the original content is compressed
using the lossless parallel compression process according to
the present invention.

FIG. 17— Lossy Compression and Decompression Engines
FIG. 17 illustrates the preferred embodiment of the lossy
compression engine 575 and the lossy decompression engine
555. These two engines preferably are located within the
parallel compression and decompression unit 251.
The lossy compression engine 575 and the lossy decom-
pression engine 555 may be separate blocks or integrated as

5 a single unit. The engines 575 and 555 may be implemented

in any of various manners, including discrete logic, a
programmable CPU, DSP, or microcontroller. or reconfig-
urable logic such as an FPGA, among others. Preferably. the
lossy compression engine 575 performs the lossy compres-
sion algorithm for image, texture, video, and depth data.
Data in either RGB or YUV color format is presented to
the lossy compression engine 575 by the switch logic 261 of
the memory controller 220. If such data is in the RGB
format, a source converter 762 is used to encode the RGB to
a luminance (Y) value (encoded to YRB). This conversion
process operation is standard for those who are knowledge-
able in the art. The reason for this conversion is to improve

50

US 7,190,284 Bl

29
color replication across the compression and subsequent
decompression procedure. Note that the YUV data is not
converted by block 762. but rather is treated by the com-
pression algorithm the same as the YRB data previously
converted by the source converter 762.

The data is selected by mux 764 lor storage as normal data
by SRAM store 770 and for min & max calculation by 768
and 766 respectively as described further. The data that
resides in SRAM store 770 is selected for values according
to the tables of FIGS. 18 and 19. The YRB/YUV values are
interpolated by select switch 772 under the control signals
generated by control logic located within the Max Y 766 and
Min Y 768 units. The lossy data encoder 774 performs the
control bit insertion into the selected values that are output
by the YRB select switch 772. Lossy compressed data from
the lossy compression Engine 575 is output to the memory
interface logic 221 for storage in the main system memory
110.

Likewise the lossy decompression engine 555 receives the
compressed data from the memory interface logic 221 to
perform the lossy decompression operation. Data is first
processed by the compressed stream separator 776 which
strips off’ the header for process control information and
sends appropriate signals to the lossy data decoder 778 and
the pixel replicate logic 780. The lossy data decoder 778
controls the replication process performed in the pixel
replicate unit 780. Data Min and Max Y values with the
associated Red and Blue (or U and V) can be positioned back
preferably into a 4x4 array of output pixels. The final step
performed by the Y to G converter 782 is to convert the
YRB/YUV data format back to the original RGB format as
indicated by the header that accompanied the block of
compressed data. For decompression of YUV data, the Y to
G conversion process is skipped and the data is output
directly from the Y to G converter 782. In alternate embodi-
ments other color source formats can be used. as the
compression method operates with a luminance value to
determine the minimum and maximum intensity within the
group or block of data under compression.

In the preferred embodiment the lossy compression algo-
rithm starts with a 4x4 block of pixels in RGB format and
compresses them to various size blocks depending on the
attributes of that 4x4 block. Alternate embodiments may use
other initial source data block sizes with simple extension to
the following process. Also in the preferred embodiment
each block could be encoded to a different size, and its size
is encoded with the data so the decompression engine can
function properly. Alternatively. some applications such as
consumer appliances and embedded DRAM require a

“fixed” compression ratio in order to accommodate a fixed :

size memory environment. Fixed compression ratio allows
the software to allocate memory in a known size and also
compensates for overflow of data past the physical limit of
the memory size. In this alternate embodiment, where a
fixed compression ratio is required, the lossy algorithm is
easily changed to eliminate special cases. which in the
preferred embodiment allow a better compression ratio.

Also, in an alternate embodiment the CPU 102 may
perform the compression and/or decompression in software
according to the present invention. In another embodiment,
the decompression process can be performed by logic while
the compression can be performed by software executing on
the CPU 102.

Data input may originate in the YUV format (typically
video) or the RGB format (typically graphics) and may also
be combined with alpha for transparency eflect. In the
preferred embodiment, if the data to be compressed is in

o

5

3
o

40

60

51

30

Red, Green and Blue format. data is converted to the proper
data format of Y (luminance), Red and Blue or is left in YUV
format if that is the original source format. During the source
read process the data format is converted to the preferred
format and a number of compare steps are performed on
each block as indicated. The Y values of the block of 4x4
pixels during load are compared to the previous values for
the maximum and minimum Y values of two pixels. Once
found the associated R and G values are stored correspond-
ing to such minimum and maximum Y values. Thus the
maximum Y and minimum Y are determined for each block.
As the data for each pixel is read the maximum and
minimum Y are located, the associated R. B and Alpha
values for the minimum and maximum Y pixels are also
stored 770.

For compression operation without alpha components,
FIG. 18 indicates the algorithm uvsed to output a block.
Likewise, for the lossy compression operation with alpha,
values in FIG. 19 are used. Now with reference to the tables
of FIGS. 18 and 19. P bits accompany the compressed data
such that during the decompression stage output pixel loca-
tions can be determined. If 16 P bits are required, then each
pixel is compared with the two colors found in the block, and
a 0 indicates that pixel is the Min color (Y ,,;,,» R,..,» B
A,...) or a 1 indicates that pixel is the Max color. When
greater than two colors or alphas are present as determined
by minimum 768 and maximum 766 Y logic, 32 bits are
used. When 32 P bits are used the compression unit calcu-
lates intermediate Y values at 67, V4, and %™ between the
Max and Min Y values. The Y value of each pixel is then
compared with these values, and if less than or equal to the
™ value, 00 is used for this pixel. If greater than the Y
value, but less than or equal to the ' value, a 01 is used for
this pixel. Likewise, for 10 (between %2 value and %" value)
and 11 (greater than %™ value). The decompression engine
will calculate the ¥4 and 24" values between Y,,,. and
Y i and if the value for the pixel is 00, Y, will be used.
If 01, the 4" value is used. 10 uses the 24’ value, and 11
uses the Y, . value. During the decompression process, the
Y, R, B color format is reconverted into the original data
format R. G, B, or Y, U. V. For application or system
requirements where a fixed compression ratio is required,
the default algorithm can use the last entries referenced in
FIGS. 18 and 19 for each 16 and 32 bit data input formats.
Alternate embodiments could use a larger or fewer bits for
each pixel’s P bits. or P bits based on individual colors for
the pixel. In addition, alternate embodiments and variations
of the lossy compression may yield less compression but
higher image quality and fixed compression ratios.

min?

FIG. 20
Due to the nature of the compression requirements the
preferred embodiment introduces a new method to achieve
high quality fixed or variable image and video compression
ratios using a combination of both the lossy and lossless
engines. The IMC 140 compresses multiple data types and
formats as discussed previously in this disclosure. When
image data is compressed with only a lossy algorithm. image
data with high detail can be blurred or washed out. Prior art
performs lossy compression on image data with discrete
cosine transforms by conversion into the frequency domain.
These practices are expensive due to the high bandwidth
requirements of the real time transformation for video and
graphics from the time domain to the frequency domain.

Combined Compression

US 7,190,284 Bl

31

In order to solve these issues, a combination of both lossy
and lossless engines 575 and 570 running in parallel is
performed, and outputs from one of the engines is selected
based on a criteria.

As shown in FIG. 20, the original source data 120. e.g.,
from disk, subsystem, or CPU 102, is transmitted into the
input switch 261 across the input bus, where the bus may be
an embedded local data or CPU bus or be a proprietary
internal design bus. The input switch 261 performs the
determination of address and qualification for block size and
compression operation. The data then is sent to both the
parallel lossless compression engine 570 and the lossy
compression engine 575, which performs the proper com-
pression before storing into the SRAM store memory 581
and 582, respectively.

The source data is thus read into both the parallel lossless
compression engine 570 and the lossy compression engine
575 in parallel. Both engines compress data of equivalent
input block sizes, while compressed output sizes from each
engine may vary.

In the preferred embodiment of FIG. 20, an error term
determines the selection of either the lossy or the lossless
compression results for insertion into the compressed
stream. The lossy compression engine 575 may generate the
error term during the compression of the incoming data
stream. More specifically, an array compare unit 584 gen-
erates the error signal in response to output from the lossy
compression engine 575. The error signal is preferably
generated based on difference between the Min Y and Max
Y values. Alternatively, during the lossy compression pro-
cess, the original data is subtracted from the encoded or
lossy compressed data to produce the error term. This error
then determines if the block to insert in the compressed
stream is either lossy compressed or lossless compressed
form. The error signal is provided to an output format switch
or multiplexer 586, which selects the compressed data from
either the lossless engine 570 or the lossy engine 575. As
shown, the outputs of the lossless engine 570 and the lossy
engine 575 are temporarily stored in SRAM stores 581 and
582 prior to being provided to the output format switch 586.
If the error signal is below a certain threshold, indicating a
low error in the compression output of the lossy compres-
sion engine 575. then the output of the lossy compression
engine 575 is used. If the error signal is above the threshold,
then the error in the compressed output from the lossy
engine is deemed unacceptably high, and the output from the
lossless engine 570 is selected.

Thus, for areas that show a high error due to the magni-
tude of the difference in luminance, the lossless parallel

compression data is used. For data that shows a minimal :

threshold of error, the lossy compressed data is used. The
advantage of this technique is that blocks of image to be
compressed with noise will compress better with the lossy
engine. Likewise, blocks that have repetitive detail, high
frequency imagery or detailed repetitive data will compress
more effectively with the lossless parallel compression.
During the write of compressed blocks, the header
includes a tag bit used as an indication of the type of
compression used. This tag bit is used during decompression
to apply the proper decompression procedure to the data.
The error term selection can also be a dynamic function
to assure a fixed compression ratio. In this embodiment, if'a
fixed compression ratio is desired, the dynamic threshold
can be adjusted to vary the magnitude of the error deemed
acceptable for lossy compression. A running tally of the
current compression ratio is used to dynamically adjust the
threshold value, which determines where the lossless com-

0

20

40

60

32

pression blocks are used instead of the lossy compressed
blocks. This operates to degrade the image, if necessary, by
selection of additional lossy compression blocks in lieu of
lossless compression blocks. If the run rate of the current
block 1s at the required compression ratio, then the threshold
is set to the default value. If the current run rate is over-
allocated, the error threshold value will increase such that
output selection is from the lossy compression engine 575.
Thus, a dynamic compression error threshold determines
how to adjust the ratio of lossy to lossless data in order to
achieve a guaranteed compression ratio.

During decompression, preferably the output format
switch 588 first strips the header for determination of
decompression engine output selection. In one embodiment,
the compressed data is decompressed in parallel by both
engines 555 and 550. In this embodiment, during decom-
pression, the header of each block determines, preferably
after completion of the decompression operation, whether
the destination pixel is selected from the lossy decompres-
sion engine 555 or the lossless decompression engine 550.
The output format switch 588 performs the selection of
decompression engine output.

In another embodiment, only the selected decompression
engine. either 555 or 550, is applied to the data. In this
embodiment, the compressed data is efliciently allocated to
the proper decompression engine, depending on the mode of
compression as determined by the header.

FIG. 21— Compression Formats

As shown in FIG. 21, the preferred embodiment of the
present invention allows faster memory access time using a
plurality of compressed storage formats. The system may be
designed to optimize the compression and decompression
ratios based on the type of system data. Data that is used for
programs or used to control the processing of other data is
compressed and stored in a lossless format (lossless com-
pression). Likewise. data that can be compressed with loss
during recovery or de-compression is compressed in a lossy
format. Thus, each format has a specific address and
memory orientation for best decompression rate and storage
size. In addition, each specific compression and decompres-
sion format scales in bandwidth performance based on the
amount of cache memory used to store uncompressed
memory during the compression and decompression pro-
cess.

Referring to FIG. 21, in addition to the lossless format and
lossy formats, the IMC 140 preferably contains further
multiple compression and decompression formats for effi-
ciency and optimization of bandwidth within the memory
controller device. Data Source blocks 310, 320, 330, 340,
and 350 represent the compression format of data that is read
from system memory 110, written from the CPU 102, read
from the non-volatile memory 120, read from the I/O system
controller 116, or read from the internal graphics blocks

s within the IMC 140 device, or alternatively as in prior art

FI1G. 1, read from the PCI or AGP buses 107 to the IMC 140.
Destination blocks 360, 370, 380, 390, 396, 300 represent
the compression format of data that is written to system
memory 110, or read by the CPU 102 (transferred to the
CPU 102 in response to a CPU read), written to the
non-volatile memory 120, written to the I/O system control-
ler 116. written to internal graphics blocks within the IMC
140 device, or alternatively as in prior art FIG. 1, written to
the PCI or AGP buses 107 from the IMC 140. Therefore,
blocks 310, 320, 330. 340, 350 are considered the data
source formats where data flows into or is generated within
the IMC. Blocks 360, 370, 380, 390, 396, and 300 are

52

US 7,190,284 Bl

33

destination formats where data flows out of the IMC. It is
noted that destination formats become source formats on
subsequent accesses by the IMC 140. Thus a compression
format may be referred to as source format/destination
format.

Blocks 302, 304, 306. 308 and 309 represent the data type
of the data. These data types include texture data 302,
3D-DIL. 304, 2D-DL 306, DV-DIL. 308 and VDRI 309. These
data types are discussed briefly below.

VDRI, Indirect Compressed Lines
One form of data in the preferred embodiment is video

display refresh list (VDRL) data as described in U.S. Pat.
No. 5,838,334, referenced above. VDRL data comprises
commands and/or data for referencing pixel/video data on a
span line basis, typically from various non-contiguous
memory areas, for refresh of the display. VDRL compressed
data is expected to be a long stream of start and stop pointers
including various slopes and integer data. Such data must be
compressed with the lossless compression and decompres-
sion process according to the present invention. The follow-
ing VDRL context register fields in the graphics engine can
be programmed to cause screen data to be written back to
system memory as lossless compressed screen lines 390(or
sub-lines) during VDRI execution:

DestEn

DestType = {Linear, XY, or LineCompressed}
pDestTopLinePtr /f Pointer to compressed pointer list
pDestTopLine // Pointer to screen data

DestMode = {Draw&Refresh | DrawOnly}

DestPixFmt

DestPitch

When enabled., each screen line (or span line) that is
rendered or displayed (based on processing one or more
VDRL segments) is compressed independently (for each
screen line, a new compression stream is started and closed)
and written back to memory at the current byte offset into
pDestTopLine. In addition, the graphics engine writes back
a pointer to the compressed screen line at the current pointer
offset into pDestTopLinePtr. The current offsets into pDest-
TopLine and pDestTopLinePtr are managed by the graphics
engine. The compressed screen data 300 and corresponding
pointer list can be referenced as a compressed window by a
subsequent VDRL 309. Preferably the workspace associated
with the compressed window includes the following fields
used by the graphics engine to indirectly access the com-
pressed screen data:

pTopLine

pTopLinePtr

SrcType={LinearXYILineCompressed}

PixFmt

Pitch

Since screen lines are compressed on a line 390 (or
sub-line) basis, the subsequent VDRL 309 only has to
reference those lines that are needed for the current screen
being refreshed.

Note: 3D-DL 304 and DV-DL 308 can also render indirect
compressed screen lines 396 in a similar manner. However,
the resulting indirect compressed screen lines are to be
consumed by subsequent VDRL 309.

Note: DV-DL 308 is fundamentally based on processing
and drawing blocks. For implementations that do not have

20

25

30

50

60

34

enough storage blocks to cover the width of the screen being
drawn, screen lines 390, 300 are compressed back to
memory on a sub-line basis.

Static Data

For each independent triangle., the 3D-triangle setup
engine generates two lossless compressed static data blocks
using standard linear compression 360: an execution static
data block, and a graphics engine static data block. For a
given 3D window or object, all static data is written starting
at a particular base address (pTopStatic). Each static data
block is compressed independently (for each static data
block, a new compression stream is started and closed) and
written back to memory at the current compressed block
offset into pTopStatic. In addition, the 3D triangle setup
engine writes back a pointer to the compressed static data
block (pStatic) in the appropriate static pointer line bucket.
The format of pStatic comprises the following fields: static
data block pointer offset, static format (indicating whether
the data is compressed or not), the number of compressed
blocks associated with the execution static data block. and
the number of compressed blocks associated with the graph-
ics engine static data block. Note that the number of com-
pressed blocks for each static data block type is used to
instruct the decompression engine 550 how much data to
decompress.

3D-DL

A 3D-DL comprises a 3-dimensional draw list for ren-
dering a 3-D image into memory, or onto the display. For
each 3D window line (or sub-line), the 3D execution engine
generates a lossless compressed stream of a 3D-DL 304.
Fach 3D-DL line is compressed independently (i.e. for each
3DDL line, a new compression stream is started and closed)
and the resulting compressed 3D-DL line 390 is written back
to memory 110. It is not necessary for consecutive lines of
3D-DL to be contiguous in memory. In addition, the 3D
execution engine of the IMC 140 may write back a 3D-DL
pointer to the compressed 3D-DIL. line 390 at the current
pointer offset into the 3D-DL pointer list (p3DDLPir). The
resulting compressed 3D-DL lines 390 and corresponding
3D-DL pointer list 304 is parsed and consumed by the 3D
graphics engine 212. The graphics engine 212 uses the
following 3D-DL context register fields:

p3DDL

p3DDLPr

The context register fields operate to provide context infor-
mation to the IMC 140 during execution of a 3D-DL.
Note: Since 3D-DL is compressed on a line 390 (or
sub-line) basis, only the visible portion of a 3D window
(based on feedback from VDRL window priority resolution)

5 may need to be drawn.

Textures

Texture data 302 for 3D rendering is also compressed and
decompression according to the present invention. The lossy
algorithm preferably compresses images. In an alternate
embodiment, the parallel combination of lossy and lossless
algorithms can be used for improved image and texture map
quality without added time delay. Texture data 302 is typi-
cally compressed and decompressed in a block compression
format 380 of the present invention. The logical format of a
lossy (or lossless) compressed texture table for a given scene
with T textures, is as follows:

53

US 7,190,284 Bl

pTopTex ->

opTex() ->
pLod0BIkO ->
pLodOBlk(last) ->
pLod{last)Blk(last) ->

8x8 compressed texture sub-blocks

opTexl ->
pLodOBIKO ->
opTex(T-1) ->. . .

pTopTex is the base pointer to a compressed texture table.
pTopTex is loaded into the graphics engine 212 on a per 3D
window basis. opTex is an offset into pTopTex that provides
the graphics engine 212 with a pointer to the first com-
pressed texture sub-block (i.e., LODO0, sub-block 0) associ-
ated with the targeted texture. opTex is a field located in a
group attribute data block, RenderState. RenderState con-
tains attributes shared by groups of triangles. The group
attribute data block pointer, pRenderState, is contained in
each 3D-DL 304 segment. Using pTopTex, opTlex. and all of
the texture attributes and modifiers, one of the graphics
engine’s texture address generation engines determine
which critical texture sub-blocks 380 (pLodB1k) to prefetch.

The size of a texture sub-block 380 in the preferred
embodiment will be 8x8 texels. The compressed texture
sub-blocks are read into the compressed texture cache Note
that the pLodB1k pointers point to 8x8 compressed texture
sub-blocks 380.

DV-DL Video

The DV-DL format comprises a digital video draw list for
rendering digital video into memory or onto the display. The
block compression format 380 can also be used for video
and video motion estimation data. In addition, Display data
300 is also preferably stored in compressed format accord-
ing to the present invention. The display data 300 is expected
to be sequentially accessed RGB or YUV data in scan line
blocks typically greater than 2 K bytes. The preferred
method for compression of display data 300 is to line
compress 390 the entire span line preferably in the parallel
lossless format.

Video input data is also compressed preferably in any of
the formats, lossless, lossy, or a combination of lossy and
lossless according to the present invention. Video data is
typically and preferably compressed and decompressed in
two dimensional blocks 380 addressed in linear or X/Y
format.

Each data type has a unique addressing scheme to fit the

most effective natural data format of the incoming source :

format.

For special graphics, video, and audio data types 306, 308
and 310 the data types can be associated with a respective
compression format to achieve optimal compression ratios
for the system.

Blocks 310 and 360 represent a lossless or lossy com-
pression and decompression format of linear addressed
compressed or decompressed data blocks as specified by the
CPU 102 and system software. Data block size and data
compression type are dependent on the bandwidth and cost
requirements of the application and system respectively.
Source data applied to block 310, if coming from the system
memory, will be decompressed and written to the destination
as normal (uncompressed) data or data which has some loss
associated with the decompression process. The input band-
width of compressed data provided to block 310 is equal to
the bandwidth required by normal non-compressed data

10

5

30

40

45

60

36
divided by the difference of the compression ratio. The
compression ratio is a function of multiple constraints,
including compression block size, data type, and data for-
mat. Further, the bandwidth of the uncompressed destination
data is equal to the original uncompressed source data
bandwidth. In addition, source data can be uncompressed
“normal™ data that is compressed and written to the desti-
nation in one of many compression formats as indicated by
blocks 360, 380, 390, and 396.

Source data block 320 represents incoming data that has
not been altered by compression. In this case data which
represents a texture type can be written in the compressed
block format 380 for optimal use of 3D texture memory
space. Likewise, 3D-Draw (3D-DDL) type data can be
received as source data in an uncompressed format 320 and
can be processed and formatted for output in either uncom-
pressed 370 or line compressed 390 destination formats.
Similar operation can occur when the source is already in
Compressed block format 330.

Compressed line 340/390 for example may be generated
from VDRL 309 instructions and stored in partial com-
pressed line segments 340/390 for later usage by another
requesting agent. These compressed line segments are
addressed in standard linear addressing format.

Intermediate compressed line segments 350/396 are a
special case of conversion from compressed blocks 330/380
to compressed intermediate lines 350/396. Compressed
intermediate lines are used as a conversion technique
between compressed block 330/380 and the digital video
draw list (DV-DL) 308.

Display data 300 can also be compressed and is typically
compressed in a lossless format that is linear complete span
lines. During the refresh of video to the display, the display
compressed span lines 300 which have not been modified by
the 3D graphics engine 212 are decompressed for display on
the respective display device span line.

Video and Texture data 302, for example, are preferably
in uncompressed 320/370 or compressed block 330/380
formats. Block formats 330/380 are typically 8x8 blocks that
have representation of X/Y address but are referenced in
system memory as linear 64 bytes with a pitch of 8 bytes. In
the compressed block format 330/380, decompression
results in 32x32 texture blocks also addressed in X/Y
format.

Instruction lists, such as VDRL (video display refresh list)
309, DV-DL (digital video draw list 308, 3D-DL (3-D draw
list) 304 preferably are stored in a lossless compressed
format with linear addressing. CPU data is also preferably
stored in a lossless compressed format with linear address-
ing. These instruction lists are executable to render pixel
data into memory in response to geometry lists or (o access
video/pixel data from memory for display on the display
device. The draw results of these also have formats as

; indicated in FIG. 21. For example, uncompressed linear

addressed data 320 as a source may be manipulated and read
by the 3D-DL 304 instruction list, and stored compressed in
compressed line 390 format or Uncompressed 370 data
format. Each operator indicated in FIG. 21 has a preferred
format for data transition and storage.

Data which is type 2D-Draw list 306 1s received as source
data in uncompressed 320 format or block compressed 330
format. For 2D-DL data type 306, the output data can be in
uncompressed 370 or Intermediate line compressed 396
formats.

For digital video draw lists (DV-DL) 308, the source data
of the DV-DL 308 is received in uncompressed 320 format

54

US 7,190,284 Bl

37

or block compressed 330 format which is output to the
destination in intermediate line compressed 396 format.

Source data of the VDRL data type is received in either
uncompressed 320, Compressed line 340, or intermediate
compressed line 350 formats, and is output to the destination
address as compressed line 390 or directly to the display
device 300.

Lastly, data of the Display format type 300 is typically
normal or lossless compressed with a linear span addressing
format.

As indicated in U.S. Pat. No. 5.838.334, “workspace
areas” are located in memory to define the windows or
object types. In one embodiment, the relationship between
such workspace regions and the compression and decom-
pression operation of the present invention is as follows.
Fach “workspace”™ contains a data area which indicates the
compression type and quality (if lossy compression) for
reproduction of the window or object on the display. The
Application Software (API), Graphical User Interface (GUI)
software or Operating System (OS) software can determine
the type and memory allocation requirements and proce-
dures to optimize the cost, performance and efliciency of the
present invention. Windows or objects that have been altered
from the original content or that have been resized can be
represented with a plurality of quality levels for final rep-
resentation on the display as indicated in the window
workspace areas of the main system memory. In addition,
3D objects or textures can contain the compression quality
attributes as well. Thus, by assignment of compression type.
address format, and quality of representation in the indi-
vidual window or object workspace area. the system can be
optimized for cost and performance by the elimination of
memory size and bandwidth requirements.

Data types texture data 302, 3D-draw lists 304, 2D-draw
lists 306, Digital video draw lists 308, and Virtual (video)
Display Refresh List 309 all represent the audio, video and
graphics media formats of the IMC as referenced in U.S. Pat.
No. 5,838,334,

The core compression block formats allow multiple data
types from various sources as inputs. The compression and
decompression formats attempt to compress the data into the
smallest possible storage units for highest efliciency, depen-
dent upon the data type of the data received. To achieve this,
the memory controller 210 understands the data types that it
may receive.

Therefore, the IMC 140 of the present invention reduces
the amount of data required to be moved within the system
by specific formats designed for CPU 102, Disk 120, system
memory 110, and video display. thus reducing the overall

cost while improving the performance of the computer -

system. According to the present invention, the CPU 102
spends much less time moving data between the various
subsystems. This {rees up the CPU 102 and allows the CPU
102 greater time to work on the application program.

As discussed further below, data from the CPU may be
compressed and stored in linear address memory with vari-
able block sizes. This data from the CPU may be unrelated
to the graphics data, and may result from invalidation of
cache lines or least recently used pages (LRU), or requested
memory from a CPU-based application. In this embodiment
the driver requesting compression will handle the memory
allocation and directory function for both the compressed
and uncompressed data.

Latency and Efficiency
The memory Controller 220 minimizes latency of read
operations by a plurality of novel methods. Each method is

10

5

40

60

38

discussed further in reference to the preferred embodiment.
Most of the control functions for latency reduction are
located in the switch logic 261, and further located in the
compression switch logic 516, the decompression switch
512 and the normal memory switch 514. Locality of data
addresses to compression blocks and L3 data cache blocks
also play a major role in latency reduction. The various
latency reduction and efliciency methods include: Parallel
compression/decompression (described above); Selectable
compression modes: Priority compression mode; Variable
compression block size: the L3 Data Cache; and Compres-
sion Reordering.

FIGS. 22 and 23— Selection of Compression/Decompres-
sion Mode Based on Criteria

The parallel compression and decompression unit 251 can
selectively perform a compression/decompression mode or
type (compression mode) based on one or more of: request-
ing agent, address range, or data type and format, again as
indicated in U.S. patent application Ser. No. 08/463,106.
Examples of the compression/decompression modes (com-
pression modes) include lossless compression. lossy com-
pression, no compression, and the various compression
formats shown in FIG. 21. The compression modes may also
include varying levels of lossy compression for video/
graphical objects or windows which are displayed on the
display. Thus the IMC 140 can selectively perform lossless
compression for first data, lossy compression for second
data, and no compression for third data.

FIGS. 22 and 23 are flowcharts illustrating selective use
of compression and decompression schemes. The method of
FIGS. 22 and 23 is preferably performed by the memory
controller comprising the compression/decompression
engine. The memory controller is preferably a system
memory controller for controlling system memory, wherein
the system memory stores application code and data
executed by the CPU.

As shown, the method in step 802 first receives uncom-
pressed data. The data may be CPU application data, oper-
ating system data, graphics/video data, or other types of
data. The data may originate from any of the various
requesting agents.

In step 804 the method determines a compression mode
for the data. The compression mode preferably comprises
one of lossless compression, lossy compression, or no
compression. Other compression modes include either the
lossless or lossy types above in combination with one of the
compression types shown in FIG. 21, e.g.. either compressed
linear, compressed block, compressed line, or [-compressed
line.

The compression mode is preferably determined in
response Lo one or more of: an address range where the data
is 10 be stored; a requesting agent which provides the data;
and/or a data type of the data.

Where the address range is used to determine the com-
pression mode, the method analyzes the destination address
received with the data to determine the compression mode,
wherein the destination addresses indicating a storage des-
tination for the data in the memory. For example, assume a
first address range is designated with a lossless compression
format, a second address range is designated with a lossy
compression format, and a third address range is designated
with a no compression format. In this case, step 804 of
determining the compression mode comprises analyzing the
destination address(es) to determine if the address(es) reside
in the first address range, the second address range. or the
third address range.

55

US 7,190,284 Bl

39

Where the requesting agent is used to determine the
compression mode, the method determines who is the
requesting agent and then determines the compression mode
based on the requesting agent. For example, if the requesting
agent is a CPU application or associated driver, then a
lossless compression should be applied. If or the requesting
agent is a video/graphics driver, then lossy compression may
be applied.

Where the data type is used to determine the compression
mode, the method examines the data type of the data and
determines the compression mode based on the data type of
the data. Using the example above, if the data comprises
application data, the compression mode is determined to be
lossless compression. If the data comprises video/graphics
data, then the compression mode may be lossy compression.
In the preferred embodiment, the determination of the com-
pression mode is preferably inherently based on data type of
the data, and the use of address range or requesting agent in
determining compression mode may be implicitly based on
the data type being stored in the address range or originating
from the requesting agent.

Further, the compression modes may comprise varying
levels of lossy compression for video/graphical objects or
windows which are displayed on the display. Thus a lossy
compression with a greater compression ratio may be
applied for objects which are in the background of the
display, whereas lossy compression with a lesser compres-
sion ratio may be applied for objects which are in the
foreground of the display. As noted above, for graphical/
image data, in step 804 the compression mode may be
determined on a per-object basis, e.g.. based on whether the
object is in the foreground or background, or based on an
attribute of the graphical object. For example, 2, 4. 8, or 16
varying levels of lossy compression may be applied to
graphical/image data, depending on attributes of the object.

In step 806 the method selectively compresses the uncom-
pressed data based on or in response to the compression
mode for the data. In step 806, the data is compressed using
a lossless compression format if the compression mode
indicates lossless compression for the data, the data is
compressed using a lossy compression format if the com-
pression mode indicates lossy compression for the data. and
the data is not compressed if the compression mode indi-
cates no compression for the data.

In step 808 the method stores the data in the memory. In
step 808, the data is stored in the memory in a lossless
compression format if the compression mode indicates loss-
less compression for the data, the data is stored in the
memory in a lossy compression format if the compression

mode indicates lossy compression for the data, and the data :

is stored in the memory in an uncompressed format if the
compression mode indicates no compression for the data.

In the preferred embodiment, storing the data in the
memory includes storing compression mode information in
the memory with the data. The compression mode informa-
tion indicates a decompression procedure for decompression
of the compressed data. The compression mode information
is stored in a non-compressed format regardless of the
compression mode of the data.

The compression mode information is preferably embed-
ded in the data, 1.e.. is not stored in a separate table or
directory. In the preferred embodiment, a header is created
which includes compression mode information indicating
the compression mode of the first data. As described below,
the header is also used to store other information, such as an
overflow indicator and overflow information. The header is
preferably located at the top of the data. 1.e., is stored at the

0

5

40

45

60

40

beginning address. followed by the data, but may also be
located at the bottom of the data or at designated points in
the data.

In an alternate embodiment, the IMC 140 reserves space
for an overflow tag and overflow table entry number in
memory within the IMC 140. Thus, in this embodiment, the
IMC 140 includes a separate overtlow cache, entry table and
control logic. In an alternate embodiment, the overflow
indication can be processed by the same control and trans-
lation cache logic blocks used for a normal compression
operation.

Referring now to FIG. 23, decompression of the stored
data is shown. In step 812 the method receives a request for
the data.

In step 814 the method accesses the data from the memory
in response to the request.

In step 816 the method determines a compression mode
for the data in response fo receiving the request. In the
preferred embodiment, the compression mode is comprised
in the stored data, preferably within a header comprised
within the stored data. Thus the data is first accessed in step
814 betfore the compression mode is determined in step 816.

In step 818 the method selectively decompresses the data.
The type or mode of decompression is selected based on the
compression mode for the data. In the selective decompres-
sion of step 818, the data is decompressed using lossless
decompression if the compression mode indicates lossless
compression for the data, the data is decompressed using
lossy decompression if the compression mode indicates
lossy compression for the data, and the data is not decom-
pressed if the compression mode indicates no compression
for the data.

In step 820, afier decompression, the method provides the
data in response to the request.

Thus, to turther reduce latency, certain selected data can
be stored/retrieved with normal operation using no com-
pression or with a selected compression mode such as
lossless or lossy. This is preferably accomplished by address
range comparison for Memory management unit (MMU)
blocks that contain special flags for “no-compression” indi-
cation. It is assumed that for power-on configuration, these
non-compression address ranges may be set to the supervi-
sor mode code and data blocks used by the operating system.

The MMU in the memory controller 210 can determine
(e.g., 4096 byte range) what form of compression, if any, is
used. In the preferred embodiment, this determination is
based on compression fields located within the MMU trans-
lation table on a memory page boundary. In alternate
embodiments, the compression type flags may be located on
a plurality of boundary ranges. The method of using address
range look-up to determine memory compression data types
is further documented in patent disclosure titled “Memory
Controller Including Embedded Data Compression and
Decompression Engines”, filed Jun. 5, 1995, Ser. No.

s 08/463.106, whose inventor is Thomas A. Dye.

Memory Allocation for Compressed Data—Priority and
Normal Compression Modes

1. Priority Mode Compression

The IMC 140 includes two different compression modes
for fast and eflicient memory allocation and data retrieval.
These two modes are referred to as “priority compression
mode” and “normal compression mode”. The “priority
mode” architecture is a non-intrusive memory allocation
scheme. Priority mode provides the ability to incorporate the
Memoryl/X Technology. including the compression/decom-
pression capabilities, for faster effective bandwidth, without

56

US 7,190,284 Bl

41

requiring operating system software changes. In this case
(without OS changes) the memory controller 210 of the IMC
140 is more tailored to bandwidth improvements than to
memory size conservation. The compression and decom-
pression operations increase the effective bandwidth of the
system. The memory allocation and compression operations
uses the additional memory freed up by the compression
algorithm for the overflow space. The overflow space is used
in cases where the lossless compression results in more data
than the original data size before compression. The “priority
mode” feature is used for systems that require faster data
transfers and have no need for memory conservation.

In the case of priority mode operation, the overflow
addresses are assumed to be in memory blocks previously
reduced by the compression operation. Thus in priority
mode system software reallocation is not required to com-
pensate for memory allocation and size.

Any second level overflow or overflow that does not fit
into the allocated overflow area provided by the memory
allocation of the present invention is handled by a system
level driver interrupt. In such cases where a real time event
can not handle the second level interrupt delay, a fixed
compression ratio of a required size can be used under the
alternate embodiment previously disclosed.

The priority mode is used for compressing data and
storing the compressed data in a memory in a computer
system, wherein portions of the computer system are not
required to account for the compression. In the priority mode
method, the computer system. e.g., the operating system,
first allocates a memory block for uncompressed data. The
memory block is allocated on the assumption that the data
stored there will be uncompressed data.

The operating system is not required to account for the
compression operation and may be unaware of the compres-
sion operation.

The memory controller may later receive uncompressed
data and one or more corresponding destination addresses
indicating a storage destination of the first data in the
allocated memory block. In response, the memory controller
compresses the uncompressed data to produce compressed
data. The memory controller then stores the compressed first
data in the allocated memory block at the one or more
destination addresses. This store operation preferably does
not perform address translation of the one or more destina-
tion addresses for reduced latency. Thus the priority mode
compression does not attempt to perform memory minimi-
zation. Also, as noted above, overflow storage may be
allocated in the allocated memory block, as needed.

When this compressed data is later requested by a request-
ing agent, the destination addresses are used to access the
compressed data from the memory, decompress the com-
pressed data, and provide the uncompressed data in response
to the request.

1. Normal Mode Compression

In the normal compression mode (non-priority mode), the
IMC 140 uses a novel memory directory for fast and eflicient
data retrieval during the decompression process. The novel
directory procedure allows for minimum memory consump-
tion to hold memory allocation and directory tables, and a
fixed area allocation to assist the operating system software
for use in the computer main-system memory bank 110.

Memory allocation and directory maintenance is per-
formed under control of the compression control unit 281
and the compressed data directory 271 located in the IMC
140 memory controller 220 (FIG. 4). The initial address
ranges and compression block sizes are set during initial-

o

20

25

30

40

50

60

42

ization and configuration by the BIOS or boot software. The
address range selection is only necessary when the system
uses a plurality of requesting units with different compres-
sion formats and requirements. In a closed system where
only a single client uses the memory system, a majority of
this initialization can be hard wired into the standard opera-
tion. The address range and block selection flexibility gives
the system more performance as required by the special
needs of the requesting agents. In the PC environment for
example, the PCI and AGP address ranges require separate
entries in the compressed address translation table 2710. The
present invention allows for multiple compressed address
translation table 2710 entries for CPU to memory transac-
tions.

In an alternate embodiment the address translation table
2710 entries can be allocated not by the operating system
software but by a separate statistical gathering unit (not
shown in the preferred embodiment). The statistical gather-
ing unit monitors sequential addresses, requesting agents,
and the associated block sizes and then automatically and
dynamically programs entries into the compressed address
translation table 2710.

In addition, if the compression operation is not required
for a plurality of requesting agents or block sizes, such as
graphics frame bufler or depth and texture compression, the
compression address translation table 2710 is not required in
the alternate embodiment.

FIG. 24—Memory Allocation

FIG. 24 illustrates the preferred procedure for memory
allocation within the compression and decompression sys-
tem environment of the IMC 140 or alternate embodiments
of the present invention. The full address bus is presented to
the compressed address translation table (CATT) 2710 for
address start selection, data pointer, and overflow table
pointer information. The initial allocation area 2740 is a
portion of system memory which has previously been allo-
cated to a fixed size by the system or user software. The
initial allocation area 2740 receives a portion of the trans-
lated address that preferably has been translated by a simple
subtraction and shift operation for look up of the first block.
The initial allocation area 2740 contains one block of the
compressed data for each uncompressed block in a fixed
memory allocated range. Once the address for the com-
pressed block is located. the header for the block is decoded
by the compressed data header logic 2750 for determination
of further decompression. The compression block header
2750 located at the front of the compressed data block
determines if the block compressed to a size larger than the
allocated compressed block size. If so, the overflow address
translation pointer is used along with the information from
the compressed header data 2750 through the select logic
2760 to select the correct overflow area pointer to read the
overflow block from the overflow area 2770. The overflow

_ area resides in the remaining portion of system memory

unused by the initial allocation area. The resulting overflow
block header 2790 contains information along with the
original header information 2750 used by the decompression
engines 550 and 555 to complete the decompression pro-
cess. The output of the decompression unit is used by the
output format switch 588 for selection of block information
and final output as decompressed data.

FIG. 26—Memory Allocation and Initialization

Referring to the flowchart of FIG. 26 and in reference to
FIG. 24 and the table of FIG. 25, the preferred embodiment
for the memory allocation and initialization is outlined. It
should be noted that in FIG. 24 the most recently used CATT

57

US 7,190,284 Bl

43

and OAT entries could be cached by the compression
controller for faster access in a system with many separately
compressed memory ranges. The number of entries in the
CATT is variable, and allows overflow into the memory. For
faster lookup, the CATT in memory will have its entries
ordered. The OAT entries are numbered so no ordering is
required.

The preferred initialization 2709 is shown in FIG. 26.
First, in step 2711 the method allocates a compressed
address translation table entry. If required in step 2713, a
reorder of entry data for the start and end compression block
addresses is performed. In step 2715 the set method of the
compression type for this memory range based on the
allocate command of the initialization or operating system
software. In the preferred embodiment pages are on 4096
byte boundaries which follow the current PC architecture for
address translation performed by the CPU or GART. In
alternate embodiments other page sizes may be used. In
addition, in other alternate embodiments the CATT may not
be necessary if memory allocation is to fixed memory types
such as frame buffers, or embedded appliances where a
single CATT entry could describe the entire memory.

In step 2717 the method allocates a percentage of the
requested memory. based on the block size and the com-
pression type. During the allocation command sequence of
step 2717 the requested compression block size and the type
of compression operation performed will determine the
maximum amount of allocated memory. The data (DAT)
pointer is initialized in step 2719 to start at the initial block
in the CATT 2710.

The overflow memory allocation and initialization in step
2721 is performed by either the initialization logic, sofiware
drivers, BIOS or operating system software. With the loss-
less compression algorithm used by the preferred embodi-
ment, the maximum overflow allocation is 12.5%. Typical
allocation of the overflow area in step 2770 is a portion of
the original data size. For the preferred embodiment, 14” the
original data size is the typical choice. The overflow address
table 2780 is then initialized in steps 2723, 2725 and 2727
if required. These steps initialize the headers to zero and
initialize the overflow address table 2780 entries to point at
the overflow address area 2770. Thus the memory allocation
procedure 2709 performs the initialization of the CATT
2710 and OAT 2780, and in addition allocates the initial
allocation area 2740 and the overflow area 2770.

FIG. 27—Compressed Memory Writes
FIG. 27 illustrates the procedure for performing com-

pressed memory writes. A write operation first involves a -

cache look-up to determine if the write data resides in the
cache 291 in an uncompressed format. If so. the write data
overwrites the current data in the cache 291, and this entry
is marked as most recently used. In a write-back implemen-
tation, the write data is not actually written back to the
system memory 110, but rather is stored only in the cache
291. In a write-through implementation, the write data is
written back to the system memory 110, preferably in a
compressed format, as well as being stored in the cache 291
in an uncompressed format.

If the write data does not reside in the cache 291, then an
LRU block may be flushed back to the system memory.
preferably in a compressed format, to free up a line in the
cache 291. and the new write data is stored in the cache 291
in an uncompressed format in the freed up line. Again, this
write data 1s not actually written back to the system memory
110 in a write-back implementation, but is written back to

5

40

45

60

44

the system memory 110, preferably in a compressed format,
in a write through implementation.

The operation of the cache 291 may also involve analysis
of status bits, such as invalid and modified bits. for lines in
the cache. Where the cache 291 is an L2 or L1 cache, the
operation of the cache 291 may also involve analysis of
status bits, such as invalid. shared, exclusive, and modified
bits. for lines in the cache.

Referring to FIG. 27, as write data enters the memory
controller 220, a look up by the CATT 2710 is performed in
step 2731 for determination of an internal cache hit. The
internal compression cache 291 preferably contains normal
non-compressed data. If a cache hit occurs as determined in
step 2731, no compression or memory fetch of compressed
block is required, and the data is retired to the cache
immediately in step 2743. The uncompressed write data is
preferably stored in the cache, and a most recently modified
flag is set for this cache entry. In alternate embodiments the
compression cache memory may be internal or external to
the IMC 140 or may contain compressed data in addition to
normal non-compressed data.

The write data is assembled into a decompressed block,
and in the preferred embodiment, the block is stored uncom-
pressed in the data cache. In alternate embodiments without
the compression data cache, the block can be written back to
the system memory 110. In the alternate embodiment, or in
the case of a castout of this data from the cache, the same
compressed blocks that were previously used for this
uncompressed data will be reused.

If the resulting lookup of step 2731 is a cache miss, and
the cache does not contain an unused line for this write data,
the LRU line is selected for write back. The initial address
for the write back is calculated in step 2733 using a simple
subtract and shift to write the first compressed block to main
memory 110. The header is read and processed. to determine
if additional blocks were previously allocated for this block
of data in steps 2759 and 2735 while the write back data is
compressed by the compression engine 570 or 575.

Once the compression of the data is complete, the com-
pressed data is tested for overflow of the initial allocation
block 2740 as indicated in step 2735. If larger than the initial
block size, the next address allocation, step 2799 shown in
FIG. 29, is performed. A compressed block is stored in the
block returned by the next address allocation, and the header
from the next block is retrieved 2759. This loop continues
until the complete compressed data is stored. If the com-
pressed data fits without overflow it is stored in this block
with an overflow indicator in the header indicating Last
Block, and the test for last block of step 2741 is performed.
It this block was the last one allocated previously, the store
is complete. Otherwise, the header of the next block is
fetched and re-written as Unused 2745. The newly fetched
header is then checked for Unused. and this loop (2741,

5 2745) continues until all previously allocated blocks are

marked unused In step 2745. The newly fetched header is
then checked for Unused, and this loop steps (2741 & 2745)
continues until all previously allocated blocks are marked

Unused.

FIG. 28— Memory Fetch

FIG. 28 illustrates the process for memory fetch 2759. As
shown. in step 2751 the method determines if the data is
resident in cache. [f a cache hit occurs. i.e., the data resides
in the cache, then data is read directly from the cache in step
2752. The cache flags are undated in step 2769 and the most
recent block is marked n step 2769.

58

US 7,190,284 Bl

45

If the compressed block is not located within the cache as
determined in step 2751, the initial compressed block
address is calculated in step 2753. From this address the
initial block is read from the system memory 110 in step
2755. In step 2757 the header instructs the memory control-
ler 210 for the decompression process. More specifically, the
method strips the header bits to determine the type of
decompression, and the data is decompressed using the
appropriate decompression method. In step 2761 the initial
block header 1s tested for a last block indication to determine
if’ the last block of the fetch has been accessed and if so
marked, the process finishes with a cache invalidation of the
LRU and a store of the block as MRU as in step 2769.

Thus the LRU data in the cache is removed or invalidated
to make room for the newly read data, which is stored in the
cache and marked as most recently used. If the header
indicates additional blocks in step 2761, a fetch of the
overflow block from the overflow area 2770 is required in
step 2754. Based on the calculation of the overflow block
pointer in step 2754 the block is read and decompressed in
step 2756. In order to reduce latency, the data is sent back
to the requesting agent in step 2765 and the process is ended
if the last block was reached in step 2761. The book-keeping
then updates the operation, setting the new cache block as
MRU with a possible compression and memory write of the
LRU block in cache as shown in step 2769. Thus the
memory fetch operation and process of 2759 reads com-
pressed blocks from system memory 110 decompresses
these blocks and manages such cache and overflow address
calculations.

FIG. 29 Next Address Generation

The next address generation shown in FIG. 29 performs
the calculation for the next compression block address.
During step 2791 the header is examined for indications of
block completion. The last/unused flag (overflow indicator)
located in the header indicates completion. If the last block
is not reached, the process continues with step 2702 for
calculation of the next block address pointer. Once complete
the next address is returned for further process. If during step
2791 the initial header indicates last block, then the process
proceeds with step 2793 where the overflow process must
determine a new overflow address for the overflow header
build. If the OAT 2780 is not full operation continues with
step 2705. If the OAT 2780 entry is full a new overflow
pointer must be assigned in step 2795, A check for valid
overflow pointer 1s made in step 2797 and this pointer is
used if it is valid. If the overflow pointer is not valid,
operation continues with the allocation of the new overflow

memory block and OAT 2780 entry, step 2701. The new :

overflow address table 2780 pointer is set to the address of
the newly allocated entry 2703. The process continues with
step 2705 where the new overflow block address is calcu-
lated. Once the new block address is presented, step 2707
reads the new overflow header and based on this header step
2704 determines if the overflow block is unused. If unused
is indicated in step 2704 the next sequential block’s address
is stored in the next address pointer in step 2706B. If a
unused in not indicated in step 2704 then the address for the
next sequential block is calculated, and a return to step 2707
checks that block for unused. A reasonable implementation
of the present invention for the parallel compression and
decompression address allocation and data directory are
shown in Table 6. The memory allocation table, from left to
right indicates the uncompressed block size, the type num-
ber entry, the initial allocation area block size, the overflow
area block size, the maximum compression ratio, the initial

0

5

3
o

30

40

60

46

allocation percentage of the uncompressed data, the header
size without overflow. the maximum header size with over-
flow and sequential blocks, the maximum header size with
fragmentation and non-sequential blocks, compression and
fragmented data. For an average uncompressed block size of
512 bytes, the total directory size is less than 1% of the
compressed data size. Thus the embedded compressed next
address and overflow algorithm significantly enhances the
reduction of directory information required for compression
and decompression process as indicated by the present
invention.

L3 Data Cache

The structured use of L3 data cache 291. which contains
pre-fetched decompressed data, reduces latency by using
pipelined addresses and a most recently least recently used
cache address scheme. Thus. in the preferred embodiment an
L3 data cache is used to store most recently used memory
pages which are read from the main memory 110. The pages
are preferably decompressed by the parallel compression
and decompression unit 251 and stored in the L3 cache in a
decompressed format for rapid access and reduced latency.
The L3 cache was discussed in detail above.

Compression Reordering

To reduce latency even further, the IMC can also operate
to reorder compressed blocks for faster access of com-
pressed data blocks. In the preferred embodiment, an
optional address tag is stored in the compressed data to
indicate a new byte order from the original or last byte order
of the input data stream. During decompression the longest
latency to recover a compressed portion of data on a
compressed first block will be the last byte in the portion of
the compressed block. Larger compression block sizes will
increase latency time. This method of latency reduction
separates a compression block at intermediate values and
reorders these intermediate values to be located at the front
of the compression block. The block is reordered so that the
segment most likely to be accessed in the future, e.g. most
recently used, is placed in the front of the block. The tag field
indicates to the decompression engine how to reorder the
bytes in the intermediate segments for placement into the L3
data cache. When the block (currently stored in the 1.3 data
cache) becomes the least recently used block, and before it
is written back to main memory 110, it will be compressed
with the most recently used intermediate segment at the
front of the compressed block before storage back into the
main memory 110. This method of latency reduction is
especially eflective for program code loops and branch entry
points and the restore of context between application sub-
routines. In an alternate embodiment, a tag field could be
present for each intermediate block such that the new
compression order of intermediate segments track the N
most recent intermediate blocks in the order in which they
were accessed over time. In the preferred embodiment only

5 the block header will indicate which intermediate block

segment is first in the recompression and restore process, the
order will then follow the nature of the original data stream.

FIG. 31 illustrates how out of order compression is used
to reduce read latency on subsequent reads from the same
compressed block address. The original compressed block
2510 is stored in main memory 110 in the order written by
the requesting agent. As a new request is issued by the
requesting agent, the steps indicated in sequence 2530 are
preformed. At the time compressed block 2510 is ready to be
re-compressed for storage into the main memory 110, an out
of order flag is attached to the header field indicating that the
intermediate blocks are out of order from the original written

59

US 7,190,284 Bl

47

order. The new compressed out of order block 2520 is
written back to main memory 110.
Variable Compression Block Size

In the preferred embodiment, the compression block size,
representing the input data block before compression, is
dynamic and can be adjusted in size to reduce latency of
operation. For example, the local bus interface 106 may
compress with input blocks of 32 or 64 bytes while video
235 or graphics engine 212 may compress with input blocks
of 256 or 512 bytes. In the preferred embodiment the
power-on software will set default block sizes and compres-
sion data formats for each of the requesting units and for
specific address ranges. Also, the preferred embodiment
includes software control registers (not shown) that allow
interface software drivers to dynamically adjust the com-
pression block sizes for a plurality of system memory
performance levels. Thus, by dynamically adjusting the
compression block sizes based on one or more of the
requesting agent, address range, or data type and format,
latency can be minimized and overall efliciency improved.

Dynamically Gather Statistics to Adjust Block Size

In one embodiment, the IMC 140 may gather statistics to
dynamically adjust block size. The IMC gathers statistics on
sequentiality of addresses and locality of addresses. In this
embodiment, the IMC 140 includes a statistical unit which
analyzes, for example, address blocks, localities of requests
to the same page or block, and the sequentiality of the
addresses being accessed.

Loss Less Decompression

A discussion of the parallel decompression 550 for the
lossless decompression of parallel compressed data is now
disclosed. According to the present invention, decompres-
sion of the parallel compressed data can be done serially as
well as in parallel. Because the data is designed to be
identical to the serial compression algorithm, either serial or
parallel decompression engines will result in the same data.
In the preferred embodiment. it is desirable to be able to
decompress at least as fast as the compression operation or
faster. Also, in alternate embodiments, decompression
engines 550/555 may be placed in a plurality of locations
within the system or circuit. Multiple decompression
engines allow for a custom operation of the decompression
process and a custom bandwidth of throughput may be
designed depending on the number of stages used in the
decompression engine. Therefore, below is a decompression
algorithm for the decompression engine 550 that yields
higher bandwidth than prior art serial algorithms.

According to the present invention the pipelined design is

expected to require 4 stages to run at 100 MHz using a 0.25n :

CMOS technology. The stages of the decompression engine
are illustrated in FIG. 33. These stages are preferably
divided up. or alternatively combined, as the silicon process
technology requires. Only the last stage in this pipeline
25513 uses the history window, and that final stage contains
minimum logic. Based on this, this function could be
extended to many more than 4 stages if a significantly faster
clock was available. Thus in alternate embodiments as
process improves and clock rates increase the stages of the
decompression engine can increase to increase the decom-
pression rate with the same input compression stream.
However, for the preferred embodiment the four stages
shown are the logical divisions of the function. To under-
stand this novel decompression the table of FIG. 32 illus-
trates the compression mask and index coding algorithm for
a sample code. In alternate embodiment other codes could
alter the design of the decompression unit.

o

5

30

40

45

60

48

With the preferred embodiment of codes is shown in the
table of FIG. 32, the following decompression trees allows
decoding of 8 bytes of the input in one cycle. The smallest
encoded data is 8 bits, so the minimum number of decoders
(25521-25535), indicated in FIG. 34, for 8 bytes is 8. Each
of these decoders could see one of many data inputs depend-
ing on the prior compressed stream.

The decompression tree, shown in FIG. 34, requires very
fast decoding at each stage to determine the proper data for
the next stage. The Window Index. Start Count and Data
Byte output (FIG. 32) should be latched for the next stage of
the decode pipeline of FIG. 33. This decode pipeline
requires the assembly of the output data. More detail of the
preferred Decode block can be seen in FIG. 35.

The Check Valid block 25553 verifies that enough bits are
available for the checker 25555(a—¢). The tables for these
blocks are illustrated in the tables of FIGS. 36a and 365. In
the preferred embodiment, the longest path through Check
Valid 25553 should be 3 gates. and the Byte Check 25555
(a—e) will only add one gate because the check is an output
enable. The outputs from the Check Valid logic 25553, and
the Byte Check logic 25555 in FIG. 35 show 0 as the most
significant bit, and 6 as the least significant bit.

The data generate logic 25557 is simply a mux of the
input data based on the check select 25555 input. At most,
one Byte Check should be active for valid data. In addition
an alternate embodiment may include a checker which is
added to this decoder to verify that one byte check is active
for valid data. The table of FIG. 36h describes the Data
Generate outputs based on the Data Input and the Byte
Check Select.

The second stage 25505 of the decompression begins
calculating pointers to the appropriate bytes from the history
window for compressed data which have been latched in the
168-bit pipe register 25503. Stage two receives eight copies
of the Index & Count or Data Byte from each decoder, along
with a pair of valid bits for these sets of signals. With
minimal logic. a preliminary select can be calculated for
each of the 16 output bytes that are latched in the 144-bit
pipe register 25507. Each select latched into 35507 is a 7 bit
encode (for a 64-entry window) with a single bit overflow.
These signals are latched 35507 and used by the next unit
25509 in stage 3. The selects will have the values of 0-63 if
a window value is to be used for this output byte, 64-71 if
one of the eight data bytes is to be used for this output byte,
and an overflow if the data for this output byte is a result of
one of the other parallel decodes occurring with this data.
The third stage 25509 checks each of the overflows from the
previous stage 25505. If inactive, the 7 bit select is passed
on unchanged. If active, the select from the correct stage 2
decoder 25505 is replicated on the select lines for this output
byte.

The final stage of the decompression, stage 4 25513,
selects the data from the window or the data bytes passed

s from the 1** stage to build the output data. The output bytes

that are assembled are then added to the window for the next
cycles decode.

Because the maximum output of this design is 16 bytes
per cycle, it is required that the 1* stage select its next input
data based on the number of bytes that will be used to decode
16 bytes. This is calculated during the 1% stage in 25501.
Additionally, the last stage 25513 includes data valid bits so
that the proper output data assembly can occur if fewer than
16 bytes can be decoded for any one cycle. According to the
preferred embodiment of present invention, the minimum
number of bytes that could be decoded any cycle is 7 if there
was no compression of the input data.

60

US 7,190,284 Bl

49

Decompression Timing

Each stage in this design has been timed to achieve 100
MHz with 0.25p technology and low power standard cell
design library. Alternate embodiments may use custom
data-paths or custom cells to achieve higher clock rates or
fewer stages. Stage 1 25501 has proven to be the most
critical at 9.1 nS in standard cell design. Stage 2 25505,
required only 3.8 nS, with stages 3 25509 and 4 25513 at
8.23 nS and 1.5 nS respectively. There will be some addi-
tional powering logic delay in stage 4 not accounted for in
these calculations, which are not a problem due to the timing

margin of stage 4 25513.

Scalable Compression/Decompression

The IMC 140 also includes scalable compression/decom-
pression, wherein one or more of the parallel compression/
decompression slices can be selectively applied for different
data streams, depending on the desired priorities of the data
streams.

Concurrency

The IMC 140 also allows concurrency of operations by
allocation of multiple data requests from a plurality of
requesting agents or from multiple data requests input from
a single requesting agent. On average, when the compres-
sion and decompression unit 251 is used, the requested data
block 1s retired sooner than without use of the current
invention. When multiple data requests are queued from
concurrent sources, the pending transactions can complete
with less latency than in prior art systems. As the input block
size grows and the number of pending concurrent data
requests increase, the present invention becomes increas-
ingly attractive for reduction of latency and increased effec-
tive bandwidth.

Although the system and method of the present invention
has been described in connection with the preferred embodi-
ment, it is not intended to be limited to the specific form set
forth herein, but on the contrary, it is intended to cover such
alternatives, modifications, and equivalents, as can be rea-
sonably included within the spirit and scope of the invention
as defined by the appended claims.

The invention claimed is:
1. A method for storing data in a memory in a computer
system the method comprising:

receiving uncompressed data;

determining a compression mode for the data, wherein the
compression mode comprises one of lossless compres-
sion, lossy compression, or no compression:

selectively compressing the uncompressed data. wherein

said compressing is selectively performed in response -

to the compression mode for the data;

storing the data in the memory;

creating a header after said determining the compression
mode for the data, wherein the header includes com-
pression mode information indicating the compression
mode of the first data, wherein the compression mode
information indicates a decompression procedure for
decompression of the compressed first data; and

wherein said storing the data in the memory includes
storing the header in the memory with the data.

2. The method of claim 1, further comprising:

receiving a request for the data;

accessing the data from the memory in response to the
request;

analyzing the header to determine a compression mode
for the data in response to receiving the request:

5

0

15

40

60

61

50
selectively decompressing the data, wherein said decom-
pressing is selectively performed in response to the
compression mode for the data; and

providing the data in response to the request.

3. A method for compressing data and storing the com-
pressed data in a memory in a computer system. the method
comprising;

receiving uncompressed first data;

compressing the uncompressed first data to produce com-

pressed first data, wherein said compressed first data
has a first size:

determining if the first size of the compressed first data is

greater than an allocated memory block size of a first
allocated memory block;

creating a header, wherein the header includes an over-

flow indicator indicating whether the first size of the
compressed first data is greater than the allocated
memory block size; and

storing the compressed first data and the header in the

memory.

4. The method of claim 3, wherein said determining
determines that the first size of the compressed first data is
less than or equal to the allocated memory block size:

wherein the overflow indicator indicates that the first

allocated memory block stores all of the compressed
first data.

5. The method of claim 4, wherein said overflow indicator
indicates that the last symbol of the compressed first data is
stored in the first allocated memory block.

6. The method of claim 3, wherein said determining
determines that the first size of the compressed first data is
greater than the allocated memory block size;

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data:

the method further comprising:

allocating a first overflow memory block;

storing overflow information in the header, wherein the

overflow information includes an overflow address
pointer which points to the first overflow memory
block;

wherein said storing comprises:

storing a first portion of the compressed first data and the

header in the first allocated memory block; and
storing an overflow portion of the compressed first data in
the first overflow memory block.
7. The method of claim 6, wherein the first overflow
memory block has a fixed size.
8. The method of claim 6. further comprising:
determining whether the overflow portion has a size
greater than the first overflow memory block:

creating an overflow header, wherein the overflow header
includes an overflow indicator indicating whether the
overflow portion has a size greater than the first over-
flow memory block;

wherein said storing the overflow portion includes storing

the overflow portion and the overflow header in the first
overflow memory block.

9. The method of claim 8, further comprising:

wherein said determining determines that the overflow

portion of the compressed first data has a size greater
than the first overflow memory block;

wherein the overflow indicator in the overflow header

indicates that the first overflow memory block does not
store all of the overflow portion;

the method further comprising:

US 7,190,284 Bl

- |

allocating a second overflow memory block in response to
determining that the overflow portion of the com-
pressed first data is greater than the first overflow
memory block;

storing overflow information in the first overflow header,

wherein the overflow information includes an overflow
address pointer which points to the second overflow
memory block;

wherein said storing comprises:

storing a first portion of the compressed first data and the

header in the first allocated memory block;

storing a first overflow portion of the compressed first

data in the first overflow memory block: and

storing a second overflow portion of the compressed first

data in the second overflow memory block.

10. The method of claim 3, wherein said determining
determines that the first size of the compressed first data is
greater than the allocated memory block size:

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data;

the method further comprising:

allocating a plurality of overflow memory blocks, includ-

ing a first overflow memory block and a last overflow
memory block;

storing overflow information in the header, wherein the

overflow information includes an overflow address
pointer which points to a first overflow memory block;
wherein said storing comprises:

storing a first portion of the compressed first data and the

header in the first allocated memory block; and

for each of the overflow memory blocks except the last

overflow memory block, storing, in the respective
overflow memory block, an overflow portion of the
compressed first data and a header pointing to a sub-
sequent overflow memory block.

11. The method of claim 3 wherein said determining
determines that the first size of the compressed first data is
greater than the allocated memory block size:

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data;

the method further comprising:

allocating one or more overflow memory blocks, wherein

the first allocated memory block and the one or more
overflow memory blocks are insufficient to store the
compressed first data;

generating an interrupt to a driver in response to the first

allocated memory block and the one or more overflow
memory blocks being insuflicient to store the com-
pressed first data;

the driver allocating additional overflow memory blocks

in response to the interrupt.

12. The method of claim 3., wherein said determining
determines if the first size of the compressed first data and
a maximum header size are greater than the allocated
memory block size.

o

2

13. The method of claim 3, further comprising:

allocating the first allocated memory block in response to

receiving the uncompressed first data. wherein the first
allocated memory block is allocated according to a
pre-determined compression ratio.

14. The method of claim 3, wherein the computer system
includes an operating system, the method further compris-
ing:

the operating system allocating the first allocated memory

block in response to receiving the uncompressed first
data.

15. A computer system including a memory controller

having an embedded compression/decompression engine,
the computer system comprising:

5

20

25

a CPU,

system memory which stores data used by said CPU for
executing one or more applications:

a memory controller coupled to said system memory and
said CPU, wherein said memory controller performs
memory control functions for said system memory,
wherein said memory controller includes said compres-
sion/decompression engine comprised in said memory
controller for compressing and decompressing data
transferred to or from said system memory;

wherein said memory controller is operable to:

receive uncompressed first data:

selectively compress the uncompressed first data to pro-
duce compressed first data according to a compression
mode;

create a header, wherein the header includes compression
mode information indicating the compression mode of
the first data, wherein the compression mode informa-
tion indicates a decompression procedure for decom-
pression of the compressed first data; and store the
compressed first data and the header in the memory.

16. A method for compressing data and storing the com-

pressed data in a memory in a computer system, the method
comprising;

40

50

62

allocating a memory block. wherein the memory block is
allocated according to a pre-determined compression
ratio:

receiving uncompressed first data having a first size;

receiving one or more destination addresses indicating a
storage destination of the first data in the allocated
memory block: compressing the uncompressed first
data to produce compressed first data having a second
smaller size;

storing the compressed first data in the allocated memory
block at the one or more destination addresses:

determining if the compressed first data fits within the
allocated memory block: and

allocating an overflow memory block if the compressed
first data does not fit within the allocated memory
block.

