
APPLE 10061

|||
USU(l6374353Bl

(12) Ulllted States Patent (10) Patent No.: US 6,374,353 B1
Scttsu ct al. (45) Date of Patent: Apr. 16, 2002

(S4) lNl*'()RMA'[‘l()N l’R()CI*ZSSIN(} Al’PARA'['US 5,355,498 A 1{I,*1.994 Provino el al.

METHOD ()1? [;()()1‘[NG INFQRMATION 25,918,048 A * (331999 Mealcy ct al. ‘H3.-“'2
PROCESSING APPARATUS ATA HIGH :\,93_l3,-$31 A * 8,.’1‘JU‘) Manley et al. '1-'l3x2
SPEED (:__t):>2_.?”.='8 A * 4;‘2t]UtJ Ilagyclal. ?13f2

(75) Inventors: Atsushi Settsu; Noriyuki Balm; Naotn OTHER PUBLICATIONS

sugah an 01 Tokyo (JP) M. M. Mckusick at al. Maruzen Co. Ltd, Jun. 30, 1991 pp.
(73) Astzigncc: Mitsubishi Dcnki Kahusliiki Kaislm, 413433‘

Tokyo (JP)
* cited by cxaniincr

(*) Noticc: Subject to any disclaimcr, the term of this
patent is cxlcnclcd or adjusted under 35 Primary I;'xmm'ner Thomas M. Hccklcr
U.S.C. 15403) by U (lays.

(57) A[lS'l'RAC'I‘

(21) APPL N0-5 "9:’2l51:255 A method ofbooling up an ii'1i'ormalion prcicessing apparatus

(32) Wed: M3,._35 1999 is provided. An operating system is divided into a mini
operating system (OS) module having :1 function of hoot-

(3U) Forcign Application Priority Data strap and an OS main body module having functions other
than the function of bootstrap. The mini 05 i‘l'l0v’.lLll{.‘. can be

Lian lo,l998 (JP) .__.“”."”._”.”“._“.__.“._” l(LUo595? localcd in a bool block Of a bot“ device’ Yvhcrcas the ()8
(51) Int. CL? G06F 9E4-15 main hotly module car1l)e located in a lili: system oflht: boot

(52) U.S. Cl. 713r2 device. A flrrnwarc or 1-‘IW code module stored in a ROM

(58) Field of Search 713:2 1_0«'{<1‘% lh¢_mini 05 m_0d1I1<= into mt=r_n0ry \~_'h_=n homing up Ihc
l1'il0l'I"I'lal1('I[1 processing apparatus. 111:: mini OS I'l'l0dUlC then

(55) References Cited loads the OS main body module into memory and then
_ initializes the OS main body module.U.S. l’A'l1-NI‘ [)0(TUME.N’l‘S

5_.3t'l?_,4‘.}? A 4,-‘I994 Feigenbauni at al. 12 Claims, 26 Drawing Sheets

BOOT BLOCK

F/W
CODE
MODULE

MEMORY

1 APPLE 1006

2

U.S. Patent Apr. 16,2002 Sheet 1 of 26 US 6,374,353 B1

FIG.1

1 2

6 7

WW
CODE
MODULE

5

MEMORY

FIG.2

BOOT BLOCK

MINI OS
MODULE

OS MAIN
BODY
MODULE

MINI KERNEL MODULE

3

U.S. Patent Apr. 16,2002 Sheet 2 of 26 US 6,374,353 B1

FIG.3

OS MAIN BODY MODULE

KERNEL MODULE

DEVICE DRIVER MODULE

FIG.4

OS LOADING AND INITLALIZATION
MINI OS MODULE PROCESSING MODULE

 LINK OS MAIN BODY
MODULE WITH MINI
OS MODULE

ST113

WITIALIZE OS MAIN
BODY MODULE

ST1 14
1

START init PROCESS

FINISH

GENERATE THREAD FOR
OS LOADING AND
INITIALIZATION
PROCESSING MODULE

4

Apr. 16, 2002 Sheet 3 of 26 US 6,374,353 B1..lHefl3.PcwU

WADDOEmmfimomo_>ma mqsoozozammuommWMOSEEq<:b:>M23902.Em2mo<z<E1_<zo_m
MADQOE,..zm2mo<z<2mofimmzMADDOEhzm2mo<z<2wmozmz202200MADQOEHZmEm_O<Z¢.EmmmuommMADQOEozammuommmimeSmemwm

H

o

m

m

EmpmwmmamMUOJQ.H.OOm_

WUE

3.NNN
N.

HHS

wnom222we

wmozmz

mango:mmouBE

5

U.S. Patent Apr. 16,2002 Sheet 4 of 26 US 6,374,353 B1

FIG.6

MINT 05 MODULE

PROCESSING MODULE

FIG.7

MINI OS MODULE

10

30

31

INITLALIZE MINI ST121
KERNEL MODULE .

INITIALIZE BOOT DEVI CE 5T123
DRIVER MODULE

GENERATE THREAD FOR US ST123
LOAD PROCESSING MODULE

ST124
START THE. THREAD

6

U.S. Patent Apr. 16,2002 Sheet 5 of 26 US 6,374,353 B1

FIG.8
OS LOAD PROCESSING OS INITIALIZATION
MODULE PROCESSING MODULE

LINK EACH OF 08 FUNCTIONAL

MODULES LOADED WITH MINI
OS MODULE

LOAD EACH OF

OS FUNCTIONAL MODULES
INCLUDED IN OS MAIN BODY

GENERATE THREAD FOR
OS INITIALIZATION
PROCESSING MODULE

INITIALIZE TI-IE OS
FUNCTIONAL MODULE

LOADING
ALL OS FUNCTIONAL

MODULES IS

COMPLETED

ST135

FIG.9

MINI OS MODULE

MINI KERNEL MODULE

BOOT DEVICE DRIVER MODULE

OS LOAD PROCESSING MODULE

THREAD SYNCHRONIZATION MODULE

OS INITIALIZATION
PROCESSING MODULE

7

U.S. Patent Apr. 16, 2002 Sheet 6 of 26 US 6,374,353 B1

FIG.10

MINI OS MODULE

START

INITIALIZE MINI ST15 1
KERNEL MODULE

INITIALIZE BOOT DEVICE ST152
DRIVER MODULE

GENERATE THREAD FOR OS ST153
LOAD PROCESSING MODULE

START THE THREAD ST154

GENERATE THREADFOR ST-155
OS INITIALIZATION

PROCESSING MODULE

START THE THREAD ST156

FINISH

8

U.S. Patent Apr. 16,2002 Sheet 7 of 26 US 6,374,353 B1

FIG. 1 1

OS INITIALIZATION

OS LOAD PROCESSING MODULE PROCESSING MODULE

LOAD EACH OF OS FUNCTIONAL
MODULES INCLUDED IN
OS MAIN BODY

WAIT FOR REQUEST BY WAY OF
THREAD SYNCHRONIZATION
MODULE

MAKE REQUEST OF OS

%IoI‘u‘I‘L§-»:Z?c§?:"1§‘~‘:11§v1?f-3:‘fiEz‘°,ixS:II"o‘1‘~:
OF EACH OF OSFUNCFIONAL Ia”S§5‘fE%HL%iS§5‘x§”a¥H"3¢‘E€‘1L
MODULES LOADED BY WAY OF 03 MODULE
THREAD SYNCI-IRONIZATION
MODULE

ST173

INITIALIZE TI-[E OS
FUNCTIONAL MODULE

 LOADING
ALL OS FUNCTIONAL

MODULES IS

COMPLETED

START init PROCESS

9

U.S. Patent Apr. 16,2002 Sheet 3 of 26 US 6,374,353 B1

mu_>mn.HOO.m

mango:aminomoczmmWADQOEozammuommwmozmz.._<D.Hm_>WADQOE,~zm2mo<z<213295
m.._DQO2..,zm2mm<z<EmofimmzMADQOE.HZmEm0<Z<EwmozmzZOEEOUmango:.H.ZmEmO<Z.<EmmmoommWADQOEozammoofi3440zmemrmEmhmrmmamMUO.._m.HOOm2S

3

mm

Hm

on 3

E

S

OE

woomZ532mo

wmozmz

WADQOEMQOUBE

10

U.S. Patent Apr. 16,2002 Sheet 9 of 26 US 6,374,353 B1

FIG. 13

OS I1\UTIALIZATION
PROCESSING MODULE

FIG. 14

OS LOADING AND DECOMPRESSION
PROCESSING MODULE

LOAD EACH OF OS FUNCTIONAL
MODULES INCLUDED IN

OS MAIN BODY

DECOMPRESS EACH OF 03

FUNCTIONAL MODULES LOADED

GENERATE ‘THREAD FOR OS

INITIALIZATION PROCESSING MODULE

ST184
START THE THREAD

ST185

ST181

ST182

ST183

LOADING

ALL OS FUNCTIONAL
MODULES IS
COMPLETED

9

YES

START init PROCESS ST186

10

11

U.S. Patent Apr. 16,2002 Sheet 10 of 26 US 6,374,353 B1

FIG.15

OS DECOMPRESSION
PROCESSING MODULE

OS DECOMPRESSION
OS LOAD PROCESSING MODULE PROCESSING MODULE

 LOAD EACH OF OS FUNCTIONAL
MODULES INCLUDED IN
OS MAIN BODY

DECOMPRESS EACH OF OS
FUNCTIONAL MODULES
LOADED

 GENERATE THREAD FOR

03 DECOMPRESSION
PROCESSING MODULE

GENERATE THREAD FOR

OS INITIALIZ.ATION
PROCESSING MODULE

LOADING
ALL OS FUNCTIONAL

MODULES IS

COMPLETED
ST195 . YES

START init PROCESS

11

12

U.S. Patent Apr. 16,2002 Sheet 11 of 26 US 6,374,353 B1

 MAEZOHEZEWDZOE.DZDm.MADQOEZOH.H<UHwEm<
E

E

WHDQOEmmimmmu_>mmMJDQOEozammoommWMOEME1_<P5=>MADQOEezmEmo<z<2q<zo_m
WADQOEezm2mo<zS2mwfimmzWADQOE._.zmEmo<z<2VMOSEEZOEEOUMADDOE.:,_m2mo<z<2mmmoommNADQOEwzammuommm.._1_<UEmemwmEmemwmmam

3an Hm

on

2BD

EomZ732mo

FMOEME

HADQOEWQOU

12

13

U.S. Patent Apr. 16, 2002 Sheet 12 of 26 US 6,374,353 B1

FIG.18

APPLICATION MODULE

SYSTEM CALLS
PROCESSING

PROCESS

MANAGEMENT

MESSA GE

MANAGEMENT

FIG.19

MINI KERNEL MODULE

BOOT DEVICE DRIVER MODULE

AP EXECUTION AND OS LOAD

PROCESSING MODULE

OS INITL-’-XLIZATION

PROCESSING MODULE

10

72

31

13

14

U.S. Patent Apr. 16,2002 Sheet 13 of 26 US 6,374,353 B1

FIG.20
AP EXECUTION AND
Os LOAD PROCESSING MODULE

START

LOAD APPLICATION MODULE STZII

ANALYZE FUNCTION DEFINITION FILE 51712

LOAD EACH OF OS FUNCTIONAL MODULES ST213
INCLUDED IN OS MAIN BODY AND LISTED
IN FUNCTION DEFINITION FILE

GENERATE THREAD FOR OS INITIALIZATION 31214
PROCESSING MODULE

ST215

ST216

LOADING ALL
OS FUNCTIONAL MODULES

LISTED IN FUNCTION DEFINITION

FILE IS COMPLETED

YES

START APPLICATION MODULE SE17

LOAD EACH OFREMAINING Os FUNCTIONAL ST313
MODULES INCLUDED IN OS MAIN BODY

GENERATE THREAD FOR OS INITIALIZATION ST219
PROCESSING MODULE

ST220

ST221

 LOADING

ALL REMAINING OS FUNCTIONAL

MODULES IS?COMPLETED
YES

START init PROCESS ST222

FINISH

14

15

U.S. Patent

F/W
CODE
MODULE

MINI OS
MODULE

Apr. 16, 2002 Sheet 14 of 26

FIG.21

2

MEMORY
FIG.22

MINI OS MODULE

4

BOOT

BLOCK

US 6,374,353 B1

CODE
PORTION

----- —-NflNIKERNELMODULE——---——----
DATA
PORTION

CODE

PORTION
- - -BOOT DEVICE DRIVER MODULE——————— — —

_ OS LOADING AND INITIALIZATION
PROCESSING MODULE

15

DATA
PORTION

CODE
P ORTION

PORTION

16

U.S. Patent Apr. 16,2002 Sheet 15 of 26 US 6,374,353 B1

FIG.23
OS LOADING AND INITIALIZATION

MINI OS MODULE PROCESSING MODULE

ST241

LOAD OS MAIN BODY MODULE

ST242

LINK OS MAIN BODY MODULE
WITH MINI OS MODULE

ST243

INITIALIZE OS MAIN BODY
MODULE

ST244

START init PROCESS

GENERATE THREAD FOR OS
LOADING AND INTILALIZATION
PROCESSING MODULE

CODE
R 0

———— — -MINI KERNEL MODULE — - - — —P—O— -13- 15
DATA

PORTION

CODE
PORTION

— —BOOT DEVICE DRIVER MODULE- — - - - - - - - -
DATA
P ORTION

coma

os LOADING AND [NITIALIZATION PORTION
"PROCESSING MODULE DATA

PORTION

ADDRESS RESOLVE TABLE

10

11

 80

16

17

U.S. Patent Apr. 16,2002 Sheet 16 of 26 US 6,374,353 B1

FIG.25
OS LOADING AND INT1"IALIZATION
PROCESSING MODULE

ST25 1

LOAD OS MAIN BODY MODULE

LINK OS MAIN BODY MODULE
WITH MINI OS MODULE

[NITIALIZE OS MAIN BODY MODULE

START init PROCESS

LOAD CODE PORTION OF
MINI OS MODULE

UPDATE ADDRESS RESOLVE TABLE

ST252

ST253

ST254

ST255

STZS6

FIG.26

08 MAIN BODY MODULE

8

91

--_______~LOADINGFLAG'--._

DEVICE DRIVER

VIRTUAL MEMORY

SIGNAL
MANAGEMENT

MESSAGE
MANAGEMENT

COMMON MEMORY
MANAGEMENT

PROCESS MANAGEMENT

SYSTEM CALLS PROCESSING

17

18

U.S. Patent Apr. 16,2002 Sheet 17 of 26 US 6,374,353 B1

FIG.27

MINI KERNEL MODULE

BOOT DEVICE DRIVER MODULE

OS LOAD PROCESSING MODULE

OS INITIALIZATION PROCESSING MODULE

10

30

31

FIG.28

MINI OS MODULE

INITIALIZE MINI
KERNEL MODULE

INITIALIZE BOOT DEVICE

DRIVER MODULE

GENERATE THREAD FOR OS

LOAD PROCESSING MODULE

START THE THREAD

ST261
ST262

ST263

ST264

18

19

U.S. Patent Apr. 16, 2002 Sheet 18 of 26 US 6,374,353 B1

FIG.29

OS LOAD PROCESSING MODULE

START

LOAD ONE BLOCK OF Os MAIN ST271
BODY MODULE INTO MEMORY

ST272

A BIT OF LOADING

FLA? IS 1

YES

GENERATE THREAD FOR ST273
OS IN1TLALIZA'I"ION

PROCESSING MODULE

Sm‘

ST275

 LOADING

OS MAIN BODY MODULE

IS COMELETED

YES

START init PROCESS SE76

FINISH

19

20

US. Patent Apr. 16,2002 Sheet 19 of 26 US 6,374,353 B1

FIG.30

OS {NITTALIZATTON

PROCESSING MODULE

ST281

ST282

ST283
FIG.31

OS MAIN BODY MODULE

LOADING FLAG

U : NEGLECT

OTHERWISE : ADDRESSES OF
LINK PROCESSING FUNCTION

AND INITIALIZATION
PROCESSING FUNCTION

20

21

U.S. Patent Apr. 16, 2002 Sheet 20 of 26 US 6,374,353 B1

FIG.32

OS LOAD PROCESSING MODULE

 LOAD ONE BLOCK OF OS MAIN STZ91
BODY MODULE INTO MEMORY

ST292

LOADING

FLAG IS OTI?-IER THAN 0

GENERATE THREAD FOR

OS INITIALIZATION

PROCESSING MODULE

ST293

ST294

LOADING

OS MAIN BODY MODULE

IS COMI:LETED

YES

START init PROCESS

ST296

22

U.S. Patent Apr. 16,2002 Sheet 21 of 26 US 6,374,353 B1

FIG.33

OS INITIALIZATION
PROCESSING MODULE

CALL LINK PROCESSING FUNCTION
SPECIFIED BY LOADING FLAG

CALL INITIALIZATION PROCESSING

%IRIgT’ION SPECIFIED BY LOADING

 ST301

 ST302

105

OS
PROGRAM
FILE

22

23

U.S. Patent Apr. 16,2002 Sheet 22 of 26 US 6,374,353 B1

FIG.35
OS PROGRAM FILE

HEADER

CODE PORTION OF
MINI OS MODULE

CODE PORTION OF OS
MAIN BODY MODULE

106 ADDRESS SPECIFYING
MEMORY LOCATION

OF CODE AREA

SIZE OF CODE AREA

I ADDRESS SPECIFYING
LOCATION OF CODE
AREA RELATIVE TO OS

107

108

109 WONOF
Mm 03 MODULE MEMORY LOCATION

110 OF DATA AREA
DATA PORTION OF OS
MAIN BODY MODULE SIZE OF DATA AREA

111 ADDRESS SPECIPYING
LOCATION OF DATA
AREA RELATIVE TO OS
PROGRAM FILE ORIGIN

ADDRESS SPECIFYING
LOCATION OF SYMBOL
INFORMATION AREA
RELATIVE TO OS
PROGRAM FILE ORIGIN

FIG.36

OS PROGRAM FILE MINI OS MODULE

HEADER HEADER

CODE PORTION OF CODE PORTION OF
MINI OS MODULE MINI OS MODULE

CODE PORTION OF OS
MAIN BODY MODULE

DATA PORTION OF
MINI OS MODULE

DATA PORTION OF OS 03
MAIN BODY MODULE DIVIDING CODE PORTION OF 08

PROGRAM MAIN BODY MODULE

SYMB OL
INFORMATION
AREA

106

107

108 DATA PORTION OF
MINI OS MODULE 109

OS MAIN BODY MODULE

114

110

108

111

112 DATA PORTION OF OS 110
MAIN BODY MODULE

23

24

U.S. Patent Apr. 16, 2002 Sheet 23 of 26 US 6,374,353 B1

FIG.37

OS DIVIDING PROGRAM

START

EXTRACT CODE PORTION ST311
OF MINI OS MODULE

EXTRACT DATA PORTION ST312

OF MINI OS MODULE

CREATE HEADER OF ST313
MINI OS MODULE

EXTRACT CODE PORTION ST314
OF OS MAIN BODY MODULE

EXTRACT DATA PORTION ST315
OF OS MAIN BODY MODULE

CREATE HEADER OF ST3 15
OS MAIN BODY MODULE

FINISH

24

25

US. Patent Apr. 16,2002 Sheet 24 of 26 US 6,374,353 B1

mo_>mnHOOE

MADQOEMO5:;muoqm.HOOm
ma

manna:moH234EUzofimom<.H<QMADQOEmoH752noZOVHMOAmeow
m.Smo2MQOU>23

25

26

U.S. Patent Apr. 16,2002 Sheet 25 of 26 US 6,374,353 B1

FIG.39

MINI OS MODULE

OS LOADING AND INITIALIZATION

PROCESSING MODULE

GENERATE THREAD FOR
OS LOADING AND

INITIALIZATION MODULE

26

27

US. Patent Apr. 16,2002 Sheet 26 of 26 US 6,374,353 B1

murpmmBOOM.

MADQOEPQOMZ322mo

MADQOEmo:/:2MUOAm_HOOm_

MADQOEwmom7:<EMOmozozaom<,H.<QMADDOEmo:52moZOEMOA<.H<DWADDOEwnomZ22nomozofimomWQOUmango:moH232nozofimomNQOU
27

28

US 6,374,353 B1

1
INFORMATION l"ROCESSING APPARATUS

MISTI-IOI} OF BOOTING INl'*‘0RMA'l‘lON
PROCESSING APPARATUS AT A HIGH

SPEED

BACKGROUND O1’ 'l'I-IE. INVI:iN'I'ION

1. Field of the Invention

'Ihe present invention relates to an information processing
apparatus capable of reducing the time required for booting
itself when it is powered on, and a method of booting an
information processing apparatus at a high speed.

2. Description of the Prior Art

In accordance with a prior art method of booting an
information processing apparatus, a firmware or FEW code
stored in a programmable read only memory (ROM) loads
a bootstrap code, called boot, into memory, as shown in for
example "Booting up System", Chapter 13, pp.4l3—-433 in
“The Design and Implementation of the UNIX 4.3l3SD”,
translated by Akira Nakamura et al., Maruzen, Jun. 30, "I991 .
The boot progam then loads an operating system or OS
stored in a file system into memory. The OS is then started
and goes through initialization. After that, the OS starts
execution of a lirst process or program, called init, to be
executed first after the OS goes through initialization. Appli- ~
cations can then run on the OS.

Since the prior art method of booting an information
processing apparatus comprises the steps of the FIW code
loading the bootstrap code stored in a boot block of a boot
device into memory, the FEW code starting execution of the
bootstrap code, the bootstrap code loading the OS stored in
the file system of the boot device into memory, and the
bootstrap code starting execution of the OS, much time is
required to start execution of the OS. Further, another
problem with the prior art method is that since the OS cannot
start execution of applications to be started automatically
when the information processing apparatus is booted up
until the OS finishes going through initialization perfectly,
much time is required to start execution of such applications
when booting up the information processing apparatus.

SUMMARY OF THE INVENTION

The present invention is made to overcome the above
problems. It is therefore an object of the present invention to
provide an information processing apparatus and a method
capable of reducing the time required for booting up itself
when it is powered on, and also reducing the time required
to start execution of applications to be started automatically
when the information processing apparatus is booted up.

In accordance with an aspect of the present invention,
there is provided an information processing apparatus com-
prising: a boot device divided into a boot block in which a
mini operating system (05) module having a function
required for bootstrap processing is located and a file system _
in which an operating system (US) main body module
having functions other than the function of bootstrap; and a
read-only memory or R()M in which a [irrnware or WW
code module is located for loading the mini 08 module
located in the boot block into a memory and for starting
execution of the mini OS module instead of a bootstrap code
when booting up the information processing apparatus, the
mini 08 module loading the 08 main body module from the
file system of the boot device into the memory, and the mini
08 module being linked to the 08 main body module.

In accordance with another aspect of the present
invention, there is provided a method of booting up an

ID

15

30

35

40

45

50

60

65

28

2

information processing apparatus comprising a boot device
and a memory by loading an operating system into the
memory, comprising the steps of: dividing the operating
system into a mini operating system (OS) module having a
function required for bootstrap processing and an operating
system (OS) main body module having functions other than
the function of bootstrap, the mini OS module including a
mini kernel module that is a basic part of the operating
system, a boot device driver module for performing inputf
output (U0) operations on the boot device, and an OS
loading and initialization processing module for loading the
08 main body module into the memory and for initializing
the OS main body module; locating the mini OS module in
a boot block of the boot device; locating the OS main body
module in a file system of the boot device; a firmware or
FIW code module being stored in a ROM and loading the
mini OS module located in the boot block into the memory
when booting up the information processing apparatus; the
mini OS module initializing the mini kernel module and the
boot device driver module; the mini OS module generating
and starting execution of a thread for the 08 leading and
initialization processing module; and the OS loading and
initialization processing module loading the OS main body
module stored in the file system into the memory and then
initializing the OS main body module.

In accordance with a preferred embodiment of the present
invention, the OS main body module is divided into a
plurality of functional modules including a device driver
module, which are located as separate files in the file system,
and the OS loading and initialization processing module is
divided into an OS loading processing module for loading
each of the plurality of functional modules into the memory
and an OS initialization module for initializing each of the
plurality of functional modules loaded into the memory by
the OS loading processing module. Further, after the mini
OS module is loaded into the memory, the mini 08 module
initializes the mini kernel module and the boot device driver

module and then generates and starts execution of a thread
for the OS loading processing module. After the thread for
the OS loading processing module is started, the OS loading
processing module loads each of the plurality of functional
modules into the memory and then generates and starts
execution of a thread for the OS initialization module every
time it loads each of the plurality of functional modules.
After the thread for the OS initialization module is started,

the OS initialization module initializes each of the plurality
of functional modules loaded into the memory.

In accordance with another preferred embodiment of the
present invention, the mini OS module includes a thread
synchronization module for providing synchronization
between a thread for the OS loading processing module and
a thread for the OS initialization module using the mini
kernel module. Further, the mini 08 module generates and
starts execution of a thread for the OS loading processing
module and a thread for the OS initialization module after
the mini 05 module initializes the mini kernel module and
the boot device driver module. After those threads are

started, the OS initialization module brings itself into a state
in which it is waiting for a request for initialization of a
functional module through the thread synchronization mod-
ule. Every time the OS loading processing module loads
each of the plurality of functional modules into the memory,
the OS loading processing module makes a request ofthe OS
initialization modttle for initialization ofeach of the plurality
of functional modules through the thread synchronization
module. The OS initialization module initializes each of the

plurality of functional modules loaded into the memory

29

US 6,374,353 B1

3

every time the OS initialization module receives a request
for initialization of each of the plurality of functional
modules loaded into the memory from the OS loading
processing module, and then waits for another request for
initialization.

In accordance with another preferred embodiment of the
present invention, the plurality of functional modules, into
which the OS main body module is divided, are stored as
compressed files in the file system and the loading and
initialization processing module of the mini OS module is
divided into an OS loading and decompression processing
module and an OS initialization module. Further, the mini
OS module generates and starts execution of a thread for the
OS loading and decompression processing module after the
mini OS module initializes the mini kernel module and the
boot device driver module. After the thread for the OS

loading and decompression processing module is started, the
OS loading and decompression processing module loads
each of the plurality of functional modules into the memory
and deoompresses the loaded functional module, and then .
generates and starts execution of a thread for the OS
initialization module. After the thread for the OS initializa-

tion module is exccutcd, the OS initialization module ini-

tializes each of the plurality of functional modules loaded
into the memory and decompressed.

In accordance with another preferred embodiment of the
present invention, the OS loading and decompression pro-
cessing module is divided into an OS loading processing
module and an OS decompression processing module.
Further, the mini OS module generates and starts execution
of a thread for the OS loading processing module after the
mini OS module initializes the mini kernel module and the
boot device driver module. After the thread for the OS

loading processing module is started, the OS loading pro-
cessing module loads each of the plurality of compressed
functional modules into the memory, and then generates and
starts execution of a thread for the OS decompression
processing module. After the thread for the OS decompres-
sion processing module is started, the OS decompression
processing module decompresses each of the plurality of
compressed functional module loaded into the memory and
then generates and starts execution of a thread for the OS
initialization module. And, after the thread for the OS
initialization module is started, the OS initialization module
initializes each of the functional modules loaded into the

memory and decompressed by the OS decompression pro-
cessing module.

In accordance with another preferred embodiment of the
present invention, the OS loading processing module of the
mini OS module is an application (AP) execution and OS
loading processing module for starting execution of at least
a predetermined application module which is located in the
file system and which can automatically be started and run
on the operating system when booting up the information
processing apparatus, and for loading each of the plurality of _
functional modules into the memory. Further, the predetcrw
mined application module includes a function definition lile
in which some functional modules required for the applica-
tion module to run on the operating system are listed. After
the mini 08 module is loaded into the memory, the mini 08
module initializes the mini kernel module and the boot

device driver module and then generates and starts execution
of a thread for theAP execution and OS loading processing
module. After the thread for the AP execution and OS

loading processing module is started, the AP execution and
OS loading processing module loads the application nodule
from the file system into the memory and further loads some

I0

15

30

35

40

45

50

60

65

29

4

functional modules required for the application module into
the memory according to the function delinition file included
in the application module, and then generates and starts
execution of a thread for the OS initialization module. After

the thread for the OS initialization module is started, the OS
initialization module then initializes each of the some func-

tional modules loaded into the memory. And, after the
initialization of all of the some functional modules is

completed, the application execution and OS loading pro-
cessing module further loads the remainder of all functional
modules included in the OS main body module into the
memory and initializes the remainder using the OS initial-
ization processing module while starting execution of the
application module as a process.

In accordance with another preferred embodiment of the
present invention, the OS loading and initialization process-
ing module of the mini OS module is divided into an OS
loading processing module and an OS initialization module,
the OS main body module is divided into a plurality of
blocks of arbitrary record size, each of which includes a
loading flag consisting of a plurality of hits respectively
corresponding to the plurality of functional modules
included in the OS main body module. Further, the loading
flag ofone of the plurality of blocks including the end of any
one of the plurality of functional modules has a correspond-
ing bit set to a predetermined value. After the mini OS
module is loaded into the memory, the mini OS module
initializes the mini kernel module and the boot device driver

module and then generates and starts execution of a thread
for the OS loading processing module. After the thread for
the OS loading processing module is started, the loading
processing module loads each of the plurality of blocks of
the OS main body module into the memory, and refers to the
loading flag every time it loads each of the plurality of
blocks into the memory. Only if a bit of the loading llag is
set to a predetermined value, the OS loading processing
module generates and starts execution ofa thread for the OS
initialization module. And, after the thread for the OS
initialization module is started, the OS initialization module

initializes a corresponding one of the plurality of functional
modules loaded into the memory.

In accordance with another preferred embodiment of the
present invention, the OS loading and initialization process-
ing module is divided into an OS loading processing module
and an OS initialization module, and the OS main body
module is divided into a plurality of blocks of arbitrary
record size, each of which includes a loading llag. Further,
the loading flag of one of the plurality of blocks including
the end of any one of the plurality of functional modules has
the address of a linkage processing function of linking the
one functional module with the mini OS module and the

address of an initialization processing function of initializing
the one functional module. After the mini 08 module is

loaded into the memory, the mini OS module initializes the
mini kernel module and the boot device driver module and

then generates and starts execution of a thread for the OS
loading processing module. After the thread for the OS
loading processing module is started, the loading processing
module loads each of the plurality of blocks of the OS main
body module into the memory, and refers to the loading flag
every time it loads each of the plurality of blocks into the
memory. Only ifthc loading flag has a value other than zero,
the OS loading processing module generates and starts
execution of a thread for the OS initialization module. And,
after the thread for the OS initialization module is started,
the OS initialization module calls a linkage processing
function and an initialization processing function according
to the value of the loading flag.

30

US 6,374,353 B1

5

In accordance with another preferred embodiment of the
present invention, the method further comprises the steps of,
in order to generate the mini OS module and the OS main
body module, combining an object file of the mini OS
module and an object file of the OS main body module into
an operating system file by using a linkage editor or linker,
and dividing the operating system file into the mini OS
module and the OS main body module according to link
information.

In accordance with another aspect of the present
invention, there is provided a method of booting up an
information processing apparatus comprising a boot device
and a memory by loading an operating system into the
memory, comprising the steps of: dividing the operating
system into a mini operating system (OS) module having, a
function required for bootstrap processing and an operating
system (OS) main body module having functions other than
the function of bootstrap, the mini 08 module including a
mini kernel module that is a basic part of the operating
system, a boot device driver module for performing input.’
output (HO) operations on the boot device, and an OS
loading and initialization processing module for loading the
OS main body module into the memory and for initializing
the OS main body module; locating the mini OS module in
a read-only memory or ROM; locating the OS main body
module in a file system of the boot device; a firmware or H
WW code module being stored in the ROM and directly
executing the mini OS module located in the ROM when
booting up the information processing apparatus; the mini
OS module loading only data portions of the mini kernel
module, the boot device driver module, and the OS loading
and initialization processing module into the memory; the
mini OS module initializing the mini kernel module and the
boot device driver module; the mini 08 module generating
and starting execution of a thread for the OS loading and
initialization processing module; and the OS loading and ‘
initialization processing module loading the 08 main body
module stored in the file system into the memory and then
initializing the OS main body-module.

In accordance with another preferred embodiment of the
present invention, the mini OS module further includes an
address resolve table used for linking the mini OS module
with the 05 main body module. Further, after the mini 03
module generates and starts execution of a thread for the OS
loading and initialization processing module, the OS loading
and initialization processing module loads the 08 main body
module into the memory and then initializes it, loads a first
process to be executed first, into the memory, loads code
portions of the mini kernel module and the boot device
driver module into the memory, and writes addresses of the
code portions loaded into the memory into the address
resolve table.

Further objects and advantages of the present invention
will be apparent from the following description of the
preferred embodiments of the invention as illustrated in the
accompanying drawings.

l3RIl£I7 DI.-LS(.'RIP'I'ION OI’ 'I"I'IIi DRAWINGS

FIG. 1 is a block diagram showing the structure of an
information processing apparatus according to a first
embodiment of the present invention;

FIG. 2 is a diagram showing the structure of a mini OS
module stored in a boot block of a boot device of the

information processing apparatus according to the first
embodiment of the present invention;

FIG. 3 is a diagram showing the structure of an 05 main
body module of the information processing apparatus
according to the first embodiment of the present invention;

I0

15

30

40

50

55

60

65

30

6

FIG. 4 is a flow chart showing operations of the mini 05
module of the information processing apparatus according to
the tirst embodiment of the present invention;

FIG. 5 is a block diagram showing the structure of an
information processing apparatus according to a second
embodiment of the present invention;

FIG. 6 is a diagram showing the structure of a mini 08
module of the information processing apparatus according to
the second embodiment of the present invention;

FIG. 7 is a llow chart showing operations of the mini 05
module of the information processing apparatus according to
the second embodiment of the present invention;

FIG. 8 is a flow chart showing operations of an OS load
processing module and an OS initialization processing mod-
ule of the information processing apparatus according to the
second embodiment of the present invention;

FIG. 9 is a diagram showing the stnicture of a mini OS
module of an information processing apparatus according to
a third embodiment of the present invention;

FIG. 10 is a How chart showing operations of the mini 03
module of the information processing apparatus according to
the third embodiment of the present invention;

FIG. 11 is a flow chart showing operations of an OS load
processing module and an OS initialization processing mod-
ule of the information processing apparatus according to the
third embodiment of the present invention;

FIG. 12 is a block diagram showing the structure of an
information processing apparatus according to a fourth
embodiment of the present invention;

FIG. 13 is a diagram showing the structure of a mini OS
module of the information processing apparatus according to
the fourth embodiment of the present invention;

FIG. 14 is a flow chart showing operations of an OS
loading and decompression processing module of the infor-
mation processing apparatus according to the fourth embodi-
ment of the present invention;

FIG. 15 is a diagram showing the structure of a mini OS
module of an information processing apparatus according to
a fifth embodiment of the present invention;

FIG. 16 is a flow chart showing operations of an OS load
processing module and an OS decompression processing
module of the information processing apparatus according to
the fifth embodiment of the present invention;

FIG. 17 is a block diagram showing the structure of an
information processing apparatus according to a sixth
embodiment of the present invention;

FIG. 18 is a diagram showing an application module of
the information processing apparatus according to the sixth
embodiment of the present invention;

FIG. 19 is a diagram showing the structure of a mini OS
module of the information processing apparatus according to
the sixth embodiment of the present invention;

FIG. 20 is a flow chart showing operations of an appli-
cation execution and 08 load processing module of the
information processing apparatus according to the sixth
embodiment of the present invention;

FIG. 21 is a block diagram showing the structure of an
information processing apparatus according to a seventh
embodiment of the present invention;

FIG. 22 is a diagram showing the structure of a mini OS
module of the information processing apparatus according to
the seventh embodiment of the present invention;

FIG. 23 is a flow chart showing operations of the mini 08
module and an OS loading and initialization processing

31

US 6,374,353 B1

7

module ofthe information processing apparatus according to
the seventh embodiment of the present invention;

FIG. 24 is a diagram showing the structure of a mini 03
module of an information processing apparatus according to
an eighth embodiment of the present invention;

FIG. 25 is a flow chart showing operations of an OS
loading and initialization processing module of the infor-
mation processing apparatus according to the eighth
embodiment of the present invention;

FIG. 26 is a diagram showing the lite structure of an OS
main body module of an information processing apparatus
according to a ninth embodiment of the present invention;

FIG. 27 is a diagram showing the structure of a mini OS
module of the information processing apparatus according to
the ninth embodiment of the present invention;

FIG. 28 is a flow chart showing operations of the mini OS
module ofthe information processing apparatus according to
the ninth embodiment of the present invention;

FIG. 29 is a How chart showing operations of an OS load
processing module of the information processing apparatus
according to the ninth embodiment ofthe present invention;

FIG. 30 is a How chart showing operations of an OS
initialization processing module of the information process-
ing apparatus according to the ninth embodiment of the
present invention;

FIG. 31 is a diagram showing the structure of an OS main A-I
body module ofan information processing apparatus accord-
ing to a tenth embodiment of the present invention;

FIG. 32 is a flow chart showing operations of an OS load
processing module of the information processing apparatus
according to the tenth embodiment of the present invention;

FIG. 33 is a flow chart showing operations of an OS
initialization processing module of the information process-
ing apparatus according to the tenth embodiment of the
present invention;

FIG. 34 is a diagram showing a process for generating an
OS program file from program source files in an information
processing apparatus according to an eleventh embodiment
of the present invention;

FIG. 35 is a diagram showing the structure of the OS
program file in the information processing apparatus accord-
ing to the eleventh embodiment of the present invention;

FIG. 36 is a diagram showing a process for dividing the
OS program file into a mini OS module and an 05 main
body module in the information processing apparatus
according to the eleventh embodiment of the present inven-
tion;

FIG. 37 is a [low chart showing operations of an OS
dividing unit of the information processing apparatus
according to the eleventh embodiment of the present inven-
tion;

FIG. 38 is a block diagram showing a state in which the
mini OS module is loaded into memory, of the information
processing apparatus according to the eleventh embodiment
of the present invention;

FIG. 39 is a How chart showing operations of the mini OS
module and an OS loading and initialization processing -
module ofthe information processing apparatus according to
the eleventh embodiment of the present invention; and

FIG. 40 is a block diagram showing a state in which the
OS main body module is loaded into memory, of the
information processing apparatus according to the eleventh
embodiment of the present invention.

DE'l‘/\ILl3D Dl_".SCRIP'I‘ION O1’ TIIE.
PIIEFERRED t£MBODIMEN'l‘S

FIRST EMBODIMIE.N'I'

Referring next to FIG. 1, there is illustrated a block
diagram showing the structure of an information processing

10

15

30

35

40

45

50

60

65

31

8

apparatus according to a lirst embodiment of the present
invention. In the figure, reference numeral 1 denotes a ROM
of the information processing apparatus, 2 denotes a
memory of the information processing apparatus, 3 denotes
a boot device of the information processing apparatus, 4
denotes a boot block in the boot device 3, 5 denotes a file

system in the boot device 3, and 6 denotes a firmware or FEW
code module stored in the ROM 1. The FUW code module

6 is directly executed on the ROM 1 so as to load data from
the boot block 4 in the boot device 3 into the memory 2 and
then assume that the loaded data is a code and execute the

code after setting up and running diagnostic checks on a
hardware or PIIW register. Further, reference numeral 7
denotes a mini operating system (08) module complied and
liked in the same way as ordinary program files and located
in the boot block 4 within the boot device, the mini 08

module having OS functions required for bootstrap
processing, and 8 denotes an 08 main body module located
in the Iile system 5 within the boot device and provided with
08 functions except the OS functions included in the mini
OS module 7. When the infomtation processing apparatus is
powered on, it goes through initialization and transfers
control to the FEW code module 6 stored in the ROM 1.

Referring next to FIG. 2, there is illustrated a diagram
showing the structure of the mini 08 module 7 stored in the
boot block of the boot device of the information processing
apparatus according to the first embodiment of the present
invention. As shown in the figure, the mini OS module 7
consists of a mini kernel module 9 which is a basic part of
the OS, a boot device driver module 10 for performing U0
operations on the boot device 3, and an OS loading and
initialization processing module 11 for loading the OS Inain
body module 8 from the boot device 3 into the memory 2 and
for executing the initialization of the OS main body module
8. The mini kernel module 9 consists of a thread manage-
ment module l2 for implementing parallel execution of
threads, an inputfoutput (IEO) management module 13 for
managing device drivers and for supporting inputfoulput
(IEO) interrupts, and a thread communication management
module 14 for ensuring synchronization between threads.
The boot device driver module 10 has the same driver

structure as typical BOSS and is managed by the IEO
management module 13 of the mini kernel module 9. The
OS loading and initialization processing module 11, which
is started up as a thread, has access to the boot device driver
module 10 by way of the IIO management module 13.

Referring next to FIG. 3, there is illustrated a diagram
showing the structure of the OS main body module 8 of the
information processing apparatus according to the first
embodiment of the present invention. As shown in the
figure, the 08 main body module 8 consists of a kernel
module 15 having kernel functions except the functions
included in the mini kernel module 9 of FIG. 2, and a device

driver module 16 for performing I10 operations on devices
(not shown) except the boot device 3. The kernel module 15
includes a system call processing module 17 for interfacing
between user programs and the kernel, a process manage-
ment module 18 for implementi ng operations as processes of
user programs, a common memory management module 19
for enabling processes to refer to an identical memory or a
common memory, a message management module 20 for
implementing message transmissions and receptions
between processes, a signal management module 21 for
implementing signaling as asynchronous communication
between processes, a virtual memory processing module 22
for implementing a swap function, and soon. The OS main
body module 8 is located within the file system 5 of the boot

32

US 6,374,353 B1

9

device 3 and is loaded into the memory 2 by the mini OS
module 7. The OS main body module 8 then goes through
initialization.

Referring next to FIG. 4, there is illustrated a llow chart
showing operations of the mini OS module 7 of the infor-
mation processing apparatus according to the first embodi-
ment of the present invention. The l-‘KW code module 6 loads
the mini 05 module 7 into the memory 2 and transfers
control to the mini OS module 7. The mini OS module 7

then, in step ST101, executes initialization oftlie mini kernel
module 9. In this case, the thread management module 12,
the U0 management module 13, and the thread communi-
cation management module 14 are initialized and their
functions are available now. Next, the mini ()8 module 7, in

step STl02, executes initialization of the boot device driver
module 10. The boot device driver module 10 registers an
interrupt request from the boot device into an interrupt table
of the IIO management module 13 so as to handle the
interrupt request, and generates and starts execution of a
thread for boot device U0 processing by using the thread
management module 12. The boot device driver module 10
further keeps synchronization between interrupt services
and the boot device IEO processing that is started as a thread,
by using the thread communication management module 14.
Interfaces between drivers and another module for U0

processing such as the OS loading and initialization pro-
cessing module 11 are registered into the U0 management
module 13. For example, all other modules have access to
the boot device driver module 10 by way of the U0
management module 13.

The mini OS module 7, in step S'l'l03, generates a thread
for the OS loading and initialization processing module 11
by using the thread management module 12. The mini 08
module 7 further, in step STIO4, starts execution of the
thread by using the thread management module 12. The 08
leading and initialization processing module 11 is thus
started up as the thread. After that, the mini 08 module 7
transfers control to the OS loading and initialization pro-
cessing module 11.

Next, the OS loading and initialization processing module
11, in step ST1ll, loads the OS main body module 8 stored
in the file system 5 of the boot device 3 into the memory 2
by using the boot device driver module 10. The OS loading
and initialization processing module 11 then, in step STll2,
links the 08 main body module 8 loaded into the memory
2 with the mini OS module 7, i.e. combines the OS main

body module 8 and the mini OS module 7 into one program.
The OS loading and initialization processing module 11
resolves the addresses of code and data in the mini OS

module 7, which are not-yet-defined in the OS main body
module 8, and the address of code and data in the OS main
body module 8, which are not-yet—defined in the mini OS
module 7. As a result, the 08 main body module 8 has access
to the mini OS module 7, and the mini OS module 7 has

access to the OS main body module 8.
The OS loading and initialization processing module 11

then, in step ST113, executes initialization of the OS main
body module 8. To be more specific, the OS loading and
initialization processing module 11 initializes the plurality of
functional modules within the kernel module 15, such as the

system call processing module 17, the process management
module 18, the common memory management module 19,
the message management module 20, and the signal man-
agement module 21, and the virtual memory processing
module 22, and also initializes the device driver module 16
including device drivers except the boot device driver. The
functional modules within the mini kernel module 9 of the

ID

15

30

35

40

45

50

60

65

32

10

mini OS module 7, such as the thread management module
12, the IJO management module 15, and the thread com-
munication management module 14, serve as basic func-
tional part of the functional modules within the kernel
module 15. In other words, the process management module
18 calls the thread management module 12 when performing
processing about threads, such as generating a thread.
Similarly, the message management module 20 calls the
thread communication management module 14 when keep-
ing synchronization between threads.

The IIO management module 13 also serves as basic part
ofthe device driver module 16 ofthe OS main body module
8. For example, the U0 management module 13 implements
the registration of interrupt services for devices and manages
inputfoutput (IEO) interfaces in behalf of the device driver
module 16. In performing step-S'l"l13, when the initializa-
tion of the OS main body module 8 is completed, the OS
loading and initialization processing module 11 loads the
that process, called init, to be executed first after booting up
the information processing apparatus, from the tile system 5
into the memory 2. The OS loading and initialization pro-
cessing module 11 then, in step STll4, starts execution of
the first process (init process). Thus, the initialization of the
OS is completed.

As previously mentioned, in accordance with the first
embodiment of the present invention, the OS is divided into
the mini OS module 7 for performing the boot process and
the OS main body module 13 for performing processes
except the boot process. Further, the mini 08 module 7 is
located in the boot block of the boot device, whereas the 03

main body module 8 is located in the file system of the boot
device. The F;'W code module ti loads the mini ()8 module

7 into the memory 2 and then starts execution of the mini ()5
module 7. The mini OS module 7 then loads the ()5 main

body module 8 from the tile system into the memory 2 and
initializes the ()3 main body module 8. Accordingly, the first
embodiment of the present invention provides an advantage
of being able to reduce the time required for booting up the
information processing apparatus.

SECONG EMBODIMENT

Referring next to FIG. 5. there is illustrated a block
diagram showing the structure of an information processing
apparatus according to a second embodiment of the present
invention. In the figure, the same reference numerals as
shown in l-‘IG. 1 designate the same or like elements, and
therefore the description of those elements will be omitted
hereinafter. Like the OS of the llrst embodiment, the OS of
the second embodiment is divided into a mini OS module 7

and a main body of the OS. The main body is further divided
into a plurality of functional modules, such as a system call
processing module 17, a process management module 18, a
common memory management module 19, a message man-
agement module 20, a signal management module 21, a
virtttal memory processing module 22, and a device driver
module 16. The plurality of functional modules are sepa-
rately stored as files in a file system 5 of a boot device 3.

Referring next to FIG. 6, there is illustrated a diagram
showing the structure of the mini 08 module stored in the
boot block of the boot device of the information processing
apparatus according to the second embodiment of the
present invention. As shown in the figure, the mini 08
module 7 of the second embodiment consists of a mini

kernel module 9 which is the basic part of the OS, a boot
device driver module 10 for performing IIO operations on
the boot device 3. an OS load processing module 30 for

33

US 6,374,353 B1

11

loading the OS main body from the boot device 3 into a
memory 2, and an initialization processing module 31 for
executing the initialization of the OS main body.

Referring next to FIG. 7, there is illustrated a llow chart
showing operations of the mini 08 module of the informa-
tion processing apparatus according to the second embodi-
ment of the present invention. The FEW code module 6 loads
the mini 05 module 7 into the memory 2 and transfers
control to the mini OS module 7. The mini OS module 7

then, instep S'I‘l21, executes initialization of the mini kernel
module 9. The mini OS module 7 in turn, in step S'I‘l22,
executes initialization of the boot device driver module 10.

After that, the mini OS module 7, in step STl23, generates
a thread for the OS load processing module 30. The mini 05
module 7 then, in step ST124, starts execution of the thread
for the 08 load processing module 30. After that, the mini
OS module 7 transfers control to the OS load processing
module 30.

Referring next to FIG. 8, there is illustrated a llow chart
showing operations of the OS load processing module 30
and the OS initialization processing module 31 of the '
information processing apparatus according to the second
embodiment ofthe present invention. The thread for the OS
load processing module 30 to which control from the mini
OS module 7 has been transferred, in step S'l‘l3l, loads the
main body of the OS stored in the lile system 5 of the boot _
device 3, including the separate files such as the system call
processing module 17, the process management module 18,
the common memory management module 19, the message
management module 20, the signal management module 21,
the virtual memory processing module 22, and the device
driver module 16, into the memory 2. In performing step
STl3l, the OS load processing module 30 loads any one of
those functional modules 16 to 22 first. After that, the OS

load processing module 30 then, in step S'l‘l32, generates a
thread for the OS initialization processing module 31 and
starts execution of the thread for the OS initialization

processing module 31, in step S'l'l33. After that, the OS load
processing module 30 and the OS initialization processing
module 31 can be executed in parallel with each other.

The OS load processing module 30 then, in step ST134,
checks whether or not the whole of the main body ofthe OS
has been loaded, that is, whether or not all the functional
modules 16 to 22 have been loaded into the memory 2. If all
the functional modules 16 to 22 have not been loaded into

the memory 2 yet, the OS load processing module 30 returns
to step ST131 in which it continues to load the remaining
functional modules of the OS main body. On the other hand,
when the checking result in step ST134 shows that the load
processing is completed, the lll'Sl process, called init, to be
executed first is loaded from the file system 5 into the
memory 2 and is then started, in step STl35.

When the OS initialization processing module 31 is
started as a thread, it, in step ST14-1, links the loaded
functional module, ie. any one of the system call processing
module 17, the process management module 18, the com- _
mon memory management module 19, the message man~
agement module 20, the signal management module 21, the
virtual memory processing module 22, and the device driver
module 16, which has been loaded into the memory, with the
mini OS module 7. The OS initialization processing module
31 then, in step STI-12, initializes the loaded functional
module and completes the initialization processing. In this
manner, every time each of the plurality of functional
modules 16 to 22 that construct the main body of the OS is
loaded into the memory 2, one thread for the OS initializa-
tion processing module 31 is generated and started in steps
STl32 and ST.l33 by the OS load processing module 30.

I0

15

30

35

40

45

50

60

65

33

12

As previously mentioned, in accordance with the second
embodiment of the present invention, the main body of the
OS is divided into a plurality of functional modules accord-
ing a plurality of functions to be performed by the main body
of the OS. Further, the plurality of functional modules are
separately stored in the file system 5. In addition, the OS
load processing and the OS initialization processing can be
perfonned in parallel with each other after any one of the
plurality of functional modules of the OS main body is
loaded into the memory. As a result, while the CPU waits for
the occurrence of an event in performing the OS load or
initialization processing, the CPU does not idle but the CPU
performs another processing. Accordingly, the second
embodiment ofthe present invention provides an advantage
of being able to further reduce the time required for booting
up the information processing apparatus.

TIIIRI) EMBODIMIENT

Referring next to FIG. 9, there is illustrated a block
diagram showing the structure of a mini OS module of an
information processing apparatus according to a third
embodiment of the present invention. In the figure, the same
reference numerals as shown in FIGS. 2 and 6 designate the
same or like elements, and therefore the description of those
elements will be omitted hereinafter. Like the mini OS

module 7 of the second embodiment, the mini OS module 7

of the third embodiment is provided with a mini kernel
module 9, a boot device driver module 10, an OS load
processing module 30, and an OS initialization processing
module 31. The mini OS module 7 of the third embodiment

further includes a thread synchronization module 40 for
maintaining synchronization between the OS load process-
ing module 30 and the OS initialization processing module
31.

Referring next to FIG. 10, there is illustrated a how chart
showing operations of the mini OS module of the informa-
tion processing apparatus according to the third embodiment
of the present invention. The WW code module 6 loads the
mini OS module 7‘ into the memory 2 and transfers control
to the mini OS module 7. The mini OS module 7 then, instep
STISI, executes initialization of the mini kernel module 9.
The mini OS module 7 in turn, in step STl52, executes
initialization of the boot device driver module 10. After that,
the mini OS module 7, in step ST153, generates a thread for
the 08 load processing module 30. The mini OS module 7
then, in step STIS4, starts execution of the thread for the OS
load processing module 30. Further, the mini 05 module 7,
in step STl55, generates a thread for the OS initialization
processing module 31. The mini OS module 7 then, in step
ST156, starts execution ofthe thread for the OS initialization
processing module 31. After that, both the OS load process-
ing module 30 and the OS initialization processing module
31 can be executed in parallel with each other.

Referring next to FIG. 11, there is illustrated a flow chart
showing operations of the OS load processing module 30
and the OS initialization processing module 31 of the
information processing apparatus according to the third
embodiment ofthe present invention. The OS load process-
ing module 30 which has been started as a thread by the mini
OS module 7, in step STl6l, starts loading the main body of
the OS stored in the file system 5 of the boot device 3,
including the functional modules such as the system call
processing module 17, the process management module 18,
the common memory management module 19, the message
management module 20, the signal management module 21,
the virtual memory processing module 22, and the device
driver module 16, into the memory 2. In performing step

34

US 6,374,353 B1

13

STl61, the [)5 load processing module 30 loads any one of
those functional modules 16 to 22 first. The OS load

processing module 30 then, in step ST162, makes an ini-
tialization requcst of the OS initialization processing module
31 for the OS initialization processing by way of the thread
synchronization module 40. The OS load processing module
30 then, in step S'I'l63, checks whether or not the whole of
the main body of the OS has been loaded, that is, whether or
not all the functional modules 16 to 22 have been loaded into

the memory 2.
If all the functional modules 16 to 22 have not been

loaded into the memory 2 yet, the 05 load processing
module 30 returns to step STl6l in which it continues to load
the remaining functional modules of the 08. On the other
hand, when the loading of the whole of the main body of the
OS is completed, the OS load processing module 30 loads
the first process, called init, to be executed first from the file
system 5 into the memory 2 and starts execution of the init
process, in step S'l'l64.

When the OS initialization processing module 31 is
started as a thread by the mini OS module 7, it, in step
S'l‘17l, waits for an initialization request from the 08 load
processing, module 30 by way of the thread synchronization
module 40. When the OS initialization processing module
31 receives an initialization request made, in step S’l'l62, by “
the OS load processing module 30, it links the loaded
functional module with the mini ()8 module 7, in step
ST172. The OS initialization processing module 31 then, in
step STl'i'3, initializes the loaded functional module and
returns to step STl7l in which it waits for another initial-
ization request from the OS load processing module 30 by
way of the thread synchronization module 40.

As previously mentioned, in accordance with the third
embodiment of the present invention, the information pro-
cessing apparatus can maintain synchronization between
one thread used by the 08 load processing module 30 for
loading the 08 main body into memory and another thread
used by the OS initialization processing module 31 for
initializing the OS main body by using the thread synchro-
nization module 40, without having to create and terminate
a thread to be used by the OS initialization processing
module 31. Accordingly, the third embodiment of the
present invention provides an advantage of being able to
further reduce the time required for booting up the infor-
mation processing apparatus.

FOURTII EMBODIMENT

Referring next to FIG. 12, there is illustrated a block
diagram showing the structure of an information processing
apparatus according to a fourth embodiment of the present
invention. In the figure, the same reference numerals as
shown in FIG. 5 designate the same or like elements, and
therefore the description of those elements will be omitted
hereinafter. Like the OS of the second embodiment, the OS _
of the second embodiment is divided into a mini OS module

7 and a main body of the OS, and the main body is further
divided into a plurality of functional modules, such as a
system call processing module 17, a process management
module 18, a common memory management module 19, a
message management module 20, a signal management
module 21, a virtual memory processing module 22. and a
device driver module 16. Tire plurality of functional mod-
ules are separately stored as compressed files in a file system
5 of a boot device 3.

Referring next to FIG. 13, there is illustrated a block
diagram showing the structure of the mini OS module 7 of

ID

15

30

35

40

45

50

60

65

34

14

the information processing apparatus according to the fourth
embodiment of the present invention. Like the mini OS
module 7 of the second embodiment as shown in FIG. 6, the
mini OS module 7 of the fourth embodiment is provided
with a mini kernel module 9, a hoot device driver module 10,
and an OS initialization processing module 31. The mini 08
module 7 of the fourth embodiment further comprises an OS
loading and dccornpression processing module 50 having a
function of decomprcssing a loaded functional module in
addition to the function of the 03 load processing module 30
of the second embodiment, instead of the 05 load process-
ing module 30.

Referring next to FIG. 14, there is illustrated a liow chart
showing operations of the OS loading and decompression
processing module 50 of the information processing appa-
ratus according to the fourth embodiment of the present
invention. The OS loading and decompression processing
module 50 to which control from the mini OS module 7 has

been transferred, in step ST181, loads the main body of the
OS stored in the file system 5 of the boot device 3, such as
the system call processing module 17, the process manage-
ment module l8, the common memory management module
19, the message management module 20, the signal man-
agement modulc 21, the virtual memory processing module
22, and the device driver module 16, into the memory 2. In
performing step STISI, the OS loading and decompression
processing module 50 loads any one of those functional
modules 16 to 22 first. The OS loading and decompression
processing module 50 then, in step STl82, decompresses
one functional module loaded into the memory. Since the
plurality of functional modules 16 to 22 are stored as
compresses files in the tile system 5 of the boot device, the
functional module loaded into the memory 2 is compressed
data. Therefore, in performing step STIS2, the OS loading
and decompression processing module 50 decompresses the
compressed data so as to convert it into executable code and
data.

The OS loading and decompression processing module 50
then, in step STIS3, generates a thread for the OS initialv
ization processing module 31 and starts execution of the
thread for the OS initialization processing module 31. in step
STl84. After that, the OS initialization processing module
31 executes initialization of the loaded and decomprcssed
OS functional module. The OS loading and decompression
processing module 50 then, in step S’l‘l85, checks whether
or not the whole of the main body of the OS has been loaded,
that is, whether or not all the functional modules 16 to 22

have been loaded into the memory 2. If all the functional
modules 16 to 22 have not been loaded into the memory 2
yet, the OS loading and decompression processing module
50 returns to step STl8l in which it continues to load the
remaining functional modules of the 08 main body. On the
other hand, when the loading of all the OS functional
modules is completed, the OS loading and decompression
processing module loads the first process, called init, to be
executed first from the file system 5 into the memory 2 and
starts execution of the first process, in step STI186.

As previously mentioned, in accordance with the fourth
embodiment of the present invention, the main body of the
OS is divided into a plurality of functional modules accord-
ing a plurality of functions to be performed by the main
body, and the plurality of functional modules are stored as
compressed files in the file system 5 of the boot device.
Further, the OS loading and decompression processing mod-
ule 50 decompresses each of the plurality of functional
modules each time it loads each of them into memory. As a
result, the time required for IE0 processing can be reduced.

35

US 6,374,353 B1

15

Accordingly, the fourth embodiment of the present invention
provides an advantage of being able to further reduce the
time required for booting up the information processing
apparatus.

I"Il'~'l'lI EMl3ODlMI:IN'I"

Referring next to FIG. 15, there is illustrated a block
diagram showing the structure of a mini OS module of an
information processing apparatus according to a fifth
embodiment of the present invention. In the figure, the same
reference numerals. as shown in FIG. 13 designate the same
or like elements, and therefore the description of those
elements will be omitted hereinafter. like the mini OS
module of the fourth embodiment mentioned above, the

mini OS module 7 ofthe fifth embodiment oomprisesa mini
kernel module 9, a boot device driver module II], and an OS

initialization processing module 31. Further, the mini OS
module 7 of the lifth embodiment includes an OS load

processing module 60 and an OS decompression processing
module 61, instead of the OS loading and decompre.ssion
processing module 50 of the fourth embodiment.

Referring next to FIG. 16, there is illustrated a how chart
showing operations of the 08 load processing module 60
and the OS decompression processing module 61 of the
information processing apparatus according to the fifth
embodiment of the present invention. The OS load process-
ing module 60 to which control from the mini OS module 7
has been transferred, in step STl91, sequentially loads a
plurality of OS functional modules .16 to 22 stored in the tile
system 5 into the memory 2. In performing step S'l‘l91, the
OS load processing module 60 loads any one of these
functional modules 16 to 22 first. The OS load processing
module 60 then, in step S'l‘l92, generates a thread for the OS
decompression processing module 61 and starts execution of
the thread, in step STI91 The OS decompression processing
module 61 thus starts execution. After that, both the 08 load

processing module 60 and the OS decompression processing
module 61 can be executed in parallel with each other.

The OS load processing module 60 then, in step STI94,
checks whether or not the whole of the main body of the 05
has been loaded, that is, whether or not all the functional
modules 16 to 22 have been loaded into the memory 2. If all
the functional modules 16 to 22 have not been loaded into

the memory 2 yet, the 03 load processing module 60 returns
to step S'I'l9l in which it continues to load the remaining
functional modules ofthe OS main body. On the other hand,
when the loading of all the OS functional modules is
completed, the OS load processing module 60 loads the first
process, called init, to he executed first from the file system
5 into the memory 2 and starts execution of the first process,
in step ST195. When the OS decompression processing
module 61 is started up as a thread, it decomprcsses one of
the plurality of functional module 16 to 22, which has been
loaded into the memory, in step S'I‘2l]l. The OS decompre.s- _
sion processing module 61 then, in step ST202, generates a
thread for the OS initialization processing module 31 and, in
step ST203, starts execution of the thread for the OS
initialization processing module 31. After that, the OS
initialization processing module 31 starts initialization of the
loaded and decompressed OS functional module.

As previously mentioned, in accordance with the fifth
embodiment of the present invention, the information pro-
cessing apparatus can perform the OS load processing and
the decompression processing in parallel. As a result, while
the CPU waits for the occurrence of an event in performing
the OS load or decompression processing, the CPU does not

10

15

30

35

40

45

50

60

65

35

16

idle but the CPU performs another processing. Accordingly,
the fifth embodiment of the present invention provides an
advantage of being able to further reduce the time required
for booting up the information processing apparatus.

SIXTH EMBODIMENT

Referring next to FIG. 17, there is illustrated a block
diagram showing the structure of an information processing
apparatus according to a sixth embodiment of the present
invention. In the figure, the same reference numerals as
shown in FIG. I designate the same or like elements, and
therefore the description of those elements will be omitted
hereinafter. Like the OS of the second embodiment. the OS
of the sixth embodiment is divided into a mini 03 module

7 and a main body of the OS, and the main body is further
divided into a plurality of functional modules, such as a
system call processing module 17, a process management
module 18, a common memory management module 19, a
message management module 20, a signal management
module 21, a virtual memory processing module 22, and a
device driver module 16. The plurality of functional mod-
ules are separately stored as in a file system 5 of a boot
device 3. In the file system 5, at least an application module
70 that can automatically start execution and run on the OS
when booting up the information processing apparatus is
also stored. The application module 70 includes a function
definition file 71 for listing a minimum number of OS
fimctional modules, such as some of the plurality of OS
functional modules 16 to 22, required for the application
module 70 to run on the OS.

Referring next to FIG. 18, there is illustrated a block
diagram showing the structure of an example of a applica-
tion module 70 of the information processing apparatus
according to the sixth embodiment of the present invention.
In the function definition file 71 ofthe application module 70
as shown in FIG. 18, the system call processing module 17,
the process management module 18, and the message man-
agement module 20 are listed as an example.

Referring next to FIG. 19, there is illustrated a block
diagram showing the structure of the mini ()S module 7 of
the information processing apparatus according to the sixth
embodiment of the present invention. The mini OS module
7 of the sixth embodiment is provided with a mini kernel
module 9, a boot device driver module ll], an application
(AP) execution and OS load processing module 72, and an
OS initialization processing module 31.

Referring next to FIG. 20, there is illustrated a llow chart
showing operations of the AP execution and OS load pro-
cessing module 2 of the information processing apparatus
according to the sixth embodiment of the present invention.
One thread for the 08 AP execution and load processing
module 72 to which control from the mini OS module 7 has

been transferred, in step S1211, loads the application mod
ule 70 from the file system 5 into the memory 2 and
simultaneously loads the function definition file 71 into the
memory 2. The AP execution and OS load processing
module 72 then, in step ST212, ascertains what the mini-
mum number of OS functional modules listed are, that is, it
identifies the minimum number of OS functional modules

listed in the function definition file 71, in the example of
FIG. 19, the system call processing module 17, the process
management module 18, and the message management
module 20.

The AP execution and 03 load processing module 72, in
step ST213, loads one of the plurality of OS functional
modules listed in the function definition file 71 into the

36

US 6,374,353 B1

17

memory 2. The AP execution and OS load processing
module 72 then, in step ST214, generates a thread for the OS
initialization processing module 31 and starts execution of
the thread for the OS initialization processing module 31, in
step ST215. After that, the OS initialization processing
module 31 starts initialization of the loaded OS functional

module. After that, the Al’ execution and OS load processing
module 72 then, in step ST216, checks whether or not all the
OS functional modules listed in the function definition file

'71 has been loaded into the memory 2. If all the functional
modules listed in the function definition file 71 have not

been loaded into the memory 2 yet, the AP execution and OS
load processing module 72 returns to step ST2 13 in which
it continues to load the remaining functional modules listed
in the function definition tile 71. On the other hand, when the

loading of all the OS functional modules listed in the
function definition file 71 is completed, the AP execution
and OS load processing module 72 starts the application
module 70 loaded in step ST211 as a process, in step ST217.
As a result, the application module 70 then starts execution.

The AP execution and OS load processing module 72
then, in step ST2l8. loads the remainder of the plurality of
OS functional modules, which were not loaded into the

memory in steps S'l‘2I3 to S'l‘2l6, in the example ofFIG. 19,
the common memory management module 19, the signal ~
management module 21, the virtual memory processing
module 22, and the device driver module 16, into the
memory. The AP execution and OS load processing module
'72 then, in step ST'2l9, generates a thread for the OS
initialization processing module 31 and starts execution of
the thread, in step ST220. After that, the OS initialization
processing module 31 starts initializing the OS functional
module loaded in step ST218.

The AP execution and OS load processing module 72
then, in step ST22l, cheeks whether or not the whole of the
main body of the OS has been loaded, that is, whether or not
all the functional modules 16 to 22 have been loaded into the

memory 2. If all the functional modules 16 to 22 have not
been loaded into the memory 2 yet, the AP execution and 08
load processing module '72 returns to step ST2l8 in which
it continues to load the remaining functional modules of the
OS main body. On the other hand, when the loading of all
the OS functional modules is completed, the Al’ execution
and OS load processing module 72 loads the first process,
called init, to be executed first from the file system 5 into the
memory 2 and starts execution of the first process, in step
81222.

As previously mentioned, in accordance with the sixth
embodiment of the present invention, the infonriation pro-
cessing apparatus ean load and initialize a minimum number
of ()5 functional modules required for at least an application
to be automatically executed and run on the OS when
booting up the information processing apparatus, tirst.
Further, after placing the application into execution, the
information processing apparatus loads and initializes the
remaining ()8 functional modules. As a result, the time
required to start up such an application upon booting up the
information processing apparatus can be reduced. The sixth
embodiment of the present invention also provides an
advantage of being able to reduce the time required for
booting up the information processing apparatus.

SEV1-LN'l'l-l l:lMBODIMEN'l"

Referring next to FIG. 21, there is illustrated a block
diagram showing the structure of an information processing
apparatus according to a seventh embodiment ofthc present

10

15

30

35

40

45

50

60

65

36

18
invention. FIG. 22 shows the structure of a mini OS module

of the information processing apparatus according to the
seventh embodiment of the present invention. In the figures,
the same reference numerals as shown in FIGS. 1 and 2

designate the same or like elements, and therefore the
description of those elements will be omitted hereinafter. A
mini OS module 7 of the seventh embodiment is located in

a ROM 1, unlike the mini OS module of the first embodi-

ment. Art OS main body module 8 having a structure as
shown in FIG. 3 is stored in a file system 5 of a hoot device
3. As shown in FIG. 22, the mini OS module 7 consists of
a mini kernel module 9 having its code portion and its data
portion, a boot device driver module 10 having its code
portion and its data portion, and an OS loading and initial-
ization processing module 11 having its code portion and its
data portion. ‘those code portions can be executed directly
on the ROM 1. Those data portions can be processed after
they are loaded into memory 2.

Referring next to FIG. 23, there is illustrated a llow chart
showing operations of the mini OS module 7 and the OS
loading and initialization processing module 1}. of the infor-
mation processing apparatus according to the seventh
embodiment of the present invention. After an F/W code
module 6 has completed processing, it executes the mini OS
module 7 directly on the ROM 1. The mini OS module 7
then, in step S1231, loads or copies the data portion of the
mini OS module, i.e. the data portions of the mini kernel
module 9, the boot device driver module 10, and the OS
loading and initialization processing module 11, into the
memory 2. After that, the mini OS module 7 executes
initialization of the mini kernel module 9, in step ST232.
Only the data portion of the mini kernel module 9 copied to
the memory 2 can be used upon the initialization of the mini
kernel module 9. Also, the data portion copied to the
memory will be used in future processing. Next, the mini OS
module 7, in step ST233, executes initialization of the boot
device driver module 10. The mini OS module 7 then, in step
ST234, generates a thread for the OS loading and initial-
ization processing module 11 and, in step S1235, starts
execution of the thread. As a result, the mini OS module 7
transfers control to the OS loading and initialization pro-
cessing module 11.

Next, the OS loading and initialization processing module
11, in step ST24l, loads the OS main body module 8 stored
in the file system 5 of the boot device 3 into the memory 2.
The OS loading and initialization processing module 11
then, instep ST242, links the OS main body module 8 loaded
into the memory2 with the mini OS module 7. The OS main
body module 8 combines the code portion of the mini OS
module 7 stored in the ROM 1 and the data portion of the
mini OS module 7 loaded into the memory 2. The OS
loading and initialization processing module 11 then, in Step
S1243, executes initialization of the 08 main body module
8. When the initialization of the 08 main body module 8 is
completed, the OS loading and initialization processing
module 11, in step ST244, loads the first process, called init.
to be executed first when booting up the information pro-
cessing apparatus from the file system 5 into the memory 2
and starts execution of the first process. The OS loading and
initialization processing module 11 thus completes the OS
loading and initialization processing.

As previously mentioned, in accordance with the seventh
embodiment ofthe present invention, the mini OS module 7
is located in the ROM] and only the data portion of the mini
OS module 7 is loaded into the memory 2 and the code
portion of the mini OS module 7 is executed directly on the
ROM 1 upon booting up the information processing appa-

37

US 6,374,353 B1

19

ratus. Therefore, the process of copying the code portion of
the mini OS module 7 to the memory can be eliminated.
Accordingly, the seventh embodiment of the present inven-
tion provides an advantage of being able to further reduce
the time required for booting up the information processing
apparatus.

EIGI-I'l'l-I I:lMBODlMl:LN’l‘

Referring next to FIG. 24, there is illustrated a block
diagram showing the structure of a mini OS module of an
information processing apparatus according to an eighth
embodiment of the present invention. In the figure. the same
reference numerals as shown in FIG. 22 designate the same
or like elements, and therefore the description of those
elements will be omitted hereinafter. A mini OS module 7 of

the eighth embodiment is located in a ROM 1, like the mini
OS module of the seventh embodiment as shown in FIG. 21.

An 08 main body module 8 of the eighth embodiment is
located in a lile system 5 of a boot device 3, like the OS main
body of the seventh embodiment as shown in FIG. 21. As .
shown in FIG. 24, the mini OS module 7 includes an address

resolve table 80in addition to a mini kernel module 9 having
its code portion and its data portion, a boot device driver
module ll] having its code portion and its data portion, and
an OS loading and initialization processing module 11 H
having its code portion and its data portion. In the address
resolve table 80, symbols defined in the mini kernel module
9, the boot device driver module 80, and the OS loading and
initialization processing module 11, and symbols needed by
the 05 main body module 8 are described. The mini 03
module 7 and the OS main body module 8 have access to
each other to access each other’s functions and data by using
the address resolve table 80.

Referring next to FIG. 25, there is illustrated a flow chart
showing operations of the OS loading and initialization
processing module 11 of the information processing appav
ratus according to the eighth embodiment of the present
invention. The OS loading and initialization processing
module 11 which has been started as a thread, in step S'l‘251,
loads the OS main body module 8 from the [ile system 5 of
the boot device 3 into the memory 2. The OS loading and
initialization processing module 11 then, in step ST252,
links the 08 main body module 8 loaded into the memory
2 with the mini OS module 7. The linkage is carried out by
way ofthe address resolve table 80. In other words, when the
OS main body module 8 needs the code or data of the mini
OS module 7, it has to refer to a corresponding entry in the
address resolve table 80 so as to call a desired function or
access desired data.

The OS loading and initialization processing module 11
then, in step ST253, executes initialization of the 08 main
body module 8. When the initialization of the OS main body
module 8 is completed, the OS loading and initialization
processing module 11, in step ST254, loads the lirst process,
called init, to be executed first from the file system 5 into the .
memory 2 and starts execution of the init process. Any
application program is thus made executable. When the OS
loading and initialization processing module 11 completes
the OS loading and initialization processing, it loads the
code portion of the mini 08 module 7 into the memory 2,
instep ST255. The OS loading and initialization processing
module 11 then, in step ST256, updates the contents of the
address resolve table 80. This is because the contents of one

entry of the address resolve table 80 specifying the location
of the code portion of the mini OS module 7 (Le. the start
address specifying the memory location in the ROM 1) have
to he changed to the start address specifying the memory

l0

l5

30

35

40

45

50

60

65

37

20

location of the code portion loaded in the memory 2). As a
result, the OS main body module 8 has access to the code
portion of the mini OS module 7 stored in the memory 2
rather than in the ROM 1.

As previously mentioned, in accordance with the eighth
embodiment of the present invention, the code portion of the
mini OS module 7 is loaded into the memory 2 after starting
the first process, called init, and the contents of the address
resolve table 80 is updated so that the OS main body module
8 has access to the code portion-of the mini OS module 7
loaded into the memory 2. Therefore, future execution of the
mini OS module 7 can be done by reading the code portion
from the memory 2. Accordingly, the eighth embodiment of
the present invention provides an advantage of being able to
reduce the time required to start execution of at least an
application to be automatically executed upon booting up
the information processing apparatus. as well as to eliminate
delay to be caused when executing the OS code directly
from the ROM 1.

NINTH EMBODIMENT

Referring next to FIG. 26, there is illustrated a block
diagram showing the structure of an 08 main body module
of an information processing apparatus according to a ninth
embodiment of the present invention. The information pro-
cessing apparatus of the ninth embodiment can have the
same structure as that of the aforementioned first embodi-

ment as shown in FIGS. 1 to 3. An OS main body module
8. into which a kernel module 15 and a device driver module

16 are incorporated, as shown in FIG. 3, can be divided into
a plurality ofblocks of arbitrary record size such as 4K bytes
or 16K bytes, each ofwhich includes a loading flag 91 at the
end thereof. The loading llag 91 of each block has a plurality
of bits corresponding to a plurality of functional modules
within the OS main body module 8, such as a system call
processing module 17, a process management module 18, a
common memory management module 19, a message man-
agement module 20, a signal management module 21, a
virtual memory processing module 22, and a device driver
module 16, respectively. A block including the end of one
functional module includes a loading ilag 91, a correspond-
ing bit of which is set to one. Therefore, if one bit of the
loading flag 9] of ajust—loaded block is in ON state, i.c. state
I, it is determined that a corresponding functional module
has just been loaded into a memory 2, and the initialization
of the functional module is then carried out. In contrast,
when all bits of the loading [lag 91 of the just-loaded block
are in OFF state, ie. state 0, the next block will simply be
loaded into the memory 2 without generating and starting
execution of a thread for initialization of the functional

module being loaded into the memory.
Referring next to FIG. 27, there is illustrated a block

diagram showing the stnicture of the mini 08 module of the
information processing apparatus according to the ninth
embodiment of the present invention. Like the mini OS
module '7 of the second embodiment, the mini OS module 7
of the ninth embodiment is provided with a mini kernel
module 9, a boot device driver module 10, an OS load
processing module 30, and an OS initialization processing
module 31, as shown in FIG. 27.

Referring next to FIG. 28, there is illustrated a flow chart
showing operations of the mini OS module 7 of the infor-
mation processing apparatus according to the ninth embodi-
ment of the present invention. /\n F2'W code module 6 loads
the mini OS module 7 into a memory 2 and transfers control
to the mini 08 module 7. The mini OS module 7 then, in step

38

US 6,374,353 B1

21

ST261, executes initialization of the mini kernel module 9.
The mini OS module 7 in turn, in step ST262, executes
initialization of the boot device driver module 10. After that,
the mini OS module 7, in step ST263, generates a thread for
the OS load processing module 30. The mini OS module 7
then, in step S1264, starts execution of the thread for the OS
load processing module 30. As a result, the OS load pro-
cessing module 30 starts execution.

Referring next to FIG. 29, there is illustrated a [low chart
showing operations of the OS load processing module 30 of
the information processing apparatus according to the third
embodiment of the present invention. The OS load process-
ing module 30, in step STZTI, starts loading one block (the
first block for the first time) of the OS main body module 8
stored in the file system 5 of the boot device 3 into the
memory 2. The OS load processing module 30 then, in step
ST272, refers to the loading [lag 91 in the loaded block and
then determines whether or not each of the plurality of bits
of the loading flag is 1. Ifone ofthe plurality of bits is 1, the
OS load processing module 30, in step ST273, generates a
thread for the OS initialization processing module 31 and, in
step ST254, starts execution of the thread. The OS initial-
ization processing module 31 thus starts initializing the
loaded functional module. After that, the OS load processing
module 30 advances to step ST275. On the other hand, when
the OS ioad processing module 3 determines that all the bits
of the loading flag 9] are set to 0, it also advances to step
ST275.

In step ST275, the OS load processing module 3 checks
whether or not all blocks of the OS main body module 8
have been loaded into the memory 2. If all blocks of the OS
main body module have not been loaded into the memory 2
yet, the OS load processing module 30 returns to step 81271
in which it loads the next block of the OS main body module
8 into the memory 2. On the other hand, when the loading
of all blocks of the OS main body module 8 is completed,
the OS load processing module 30 loads the first process,
called init, to be executed first from the file system 5 into the
memory 2 and starts execution of the lirst process, in step
ST276. The load processing is thus completed.

Referring next to FIG. 30, there is illustrated a flow
diagram showing operations of the OS initialization pro-
cessing module 31 of the information processing apparatus
according to the ninth embodiment ofthe present invention.
When the OS initialization processing module 31 is started
as a thread by the mini OS module 7, it, in step ST281, refers
to the loading [lag 91 ofa loaded block of the OS main body
module 8 so as to determine which bit is set to one. The OS

initialization processing module 8 then selects one func-
tional module indicated by a bit set to one as the target
functional module to be initialized from among the plurality
of functional modules: the system call processing module
17, the process management module 18, the common
memory management module 19, the message management
module 20, the signal management module 21, the virtual _
memory processing module 22, and the device driver mod-
ule 16. Next, the OS initialization processing module 31, in
step ST282, links the loaded functional module with the
mini OS module 7. The OS initialization processing module
31 then, instep ST283, initializes the loaded functional
module.

As previously mentioned, in accordance with the ninth
embodiment of the present invention, the OS main body
module 8 of the information processing apparattls provides
the loading liag 91 for each of a plurality of blocks into
which the OS main body module 8 is divided. In addition,
since a block including the end of one functional module

10

15

30

35

40

45

50

60

65

38

22

includes a loading llag 91, a corresponding bit of which is
set to one, the initialization of the functional module, can be
done after the loading of the functional module is completed.
As a result, the OS load processing and the OS initialization
processing can be executed in parallel. Accordingly, the
ninth embodiment of the present invention provides an
advantage of being able to reduce the time required for
booting up the information processing apparatus.

TE.NTI I EMBOIDIM ENT

Referring next to FIG. 31, there is illustrated a block
diagram showing the structure of an OS main body module
of an information processing apparatus according to a tenth
embodiment of the present invention. In the figure, the same
reference numerals as shown in 1’IO. 26 designate the same
or like elements, and therefore the description of those
elements will be omitted hereinafter. Like the ninth

embodiment, the information processing apparatus of the
tenth embodiment has the same structure as that of the
aforementioned first embodiment as shown in FIG. 1. In

other words, the OS is divided into a mini OS nodule 7
stored in a boot block 4 of a boot device 3 and an 08 main

body module 8 stored in a file system 5 of the boot device
3. Like the OS main body module of the ninth embodiment,
the 08 main body module 8 is divided into a plurality of
blocks of arbitrary record block such 4K bytes or 16K
bytes. each of which includes a loading flag 91 at the end
thereof. A block including the end of one functional module
includes a loading flag 91 into which the addrem of a linkage
processing function of linking the functional module with
the mini 08 module and the address of an initialization

function of initializing the functional module are written.
Therefore, if the loading [lag 91 of a just-loaded block has
a value other than zero, it is determined that a corresponding
functional module has just been loaded into a memory 2, and
the linkage between the loaded functional module and the
mini OS module and the initialization of the functional

module are then carried out. In contrast, when the loading
flag 91 of the just-loaded block is set to zero, the next block
will simply be loaded into the memory 2 without generating
and starting execution of a thread for initialization of the
functional module being loaded into the memory.

Like the ninth embodiment mentioned above, an FM
code module loads the mini 05 module 7 into the memory
2 and transfers control to the mini OS module 7. The mini
OS module 7 then executes initialization of a mini kernel
module 9 and executes initialization of a boot device driver

module 10. After that, the mini 05 module 7 generates a
thread for an OS load processing module 30 and starts
execution of the thread for the OS load processing module
30. As a result, the OS load processing module 30 is started.

Referring next to FIG. 32, there is illustrated a flow chart
showing operations of the OS load processing module 30 of
the information processing apparatus according to the tenth
embodiment of the present invention. When the OS load
processing module 30 isstarted as a thread, it, in step ST291,
loads the first block of the OS main body module 8 stored
in the file system 5 of the boot device 3 into the memory 2.
The OS load processing module 30 then, in step ST292,
determines whether or not the loading flag 91 is 0. Unless the
loading flag 91 is (l, the OS load processing module 30, in
step ST293, generates a thread for the OS initialization
processing module 31 and, in step ST294, starts execution of
the thread. Thus the OS initialization processing module 31
can start initializing the loaded functional module. The 05
load processing module 30 then advances to step ST295. On
the other hand, when the loading flag 9] is 0 in performing

39

US 6,374,353 B1

23

step ST292, the OS load processing module 30 also
advances to step ST295.

In step ST295, the OS load processing module 3|] checks
whether or not the loading of the 08 main body module 8
is completed. Unless the loading of the OS main body
module 8 is completed, the OS load processing module 30
returns to step S'l‘29l in which it loads the next block of the
OS main body module 8 into the memory 2. On the other
hand, when the loading of all blocks of the OS main body
module 8 is completed, the OS load processing module 30
loads the first process, called init, to be executed first from
the file system 5 into the memory 2 and starts execution of
the first process. in step ST29-S. The load processing is thus
completed.

Referring next to FIG. 33, there is illustrated a flow
diagram showing operations of the OS initialization pro-
cessing module of the infomration processing apparatus
according to the tenth embodiment of the present invention.
When the OS initialization processing module 31 is started
as a thread by the OS load processing module 30, it, in step
ST3[|l. calls a linkage processing function by referring to
the address of the linkage processing function stored in the
loading [lag 91 of the just—loaded block. The linkage pro-
cessing function then links the functional modttle which has
just been loaded into the memory by the OS load processing “
module 30 with the mini OS moditle 7. The OS initialization

processing module 31 then, in step ST30Q, calls an initial-
ization processing function by referring to the address of the
initialization processing function stored in the loading flag
9] of the just-loaded block. The initialization processing
function then initializes the loaded functional module.

As previously mentioned, in accordance with the tenth
embodiment of the present invention, in the loading flag 91
of a block including the end of a functional module that is
an part of the OS main body module. the addresses of a
linkage processing function and an initialization processing
function, respectively used for linking the functional module
with the mini OS module 7 and for initializing the functional
module are stored. As a result, the OS initialization process.-
ing module does not need to determine which functional
mode has just been loaded into memory. Accordingly, the
tenth embodiment of the present invention provides an
advantage of being able to further reduce the time required
for booting up the information processing apparatus.

ELEVENTH l:1MBODIMEN’l'

Referring next to FIG. 34, there is illustrated a diagram
showing a process of creating an operating system (OS)
program file from program source files in an information
processing apparatus according to an eleventh embodiment
of the present invention. The information processing appa-
ratus according to the eleventh embodiment can have the
same structure as of the aforementioned first embodiment as
shown in FIG. 1.

Each ofthe source files ofa mini OS module 7 and an 08

main body module 8 of FIG. 1 consists of a C file 100
written in the C language and an ASM file 101 written in the
assembler language. A compiler 102 converts each of the
source files into an equivalent object file 103 written in
machine language. A linkage editor or linker 104 statically
combines the functions and data of the object files 103
generated by the compiler 102 into one OS program file 105.

Referring next to FIG. 35, there is illustrated a diagram
showing the structure of the OS program lile 105 generated
by the information processing apparatus according to the
eleventh embodiment of the present invention. The OS

I0

15

30

35

40

45

50

60

65

39

24

program file 105 created by the linker 104 includes a header
104 at the top thereof. The OS program [ile 105 includes a
code area comprised of a code portion 107 of the mini OS
module and acode portion 108 ofthe OS main body module
at the back of the header 106. and further includes a data area
comprised ofa data portion 109 of the mini 08 module and
a, data portion 110 of the OS main body module. The OS
program file 105 further includes a symbol information area
111 including the values ofsymbols included in the code and
data areas of the OS program file at the bottom thereof.

The header 104 includes a code address entry with an
absolute address specifying the location of a memory 2
where the top of the code area of the OS program tile is to
be loaded, a code size entry with the size of the code area,
a relative code address entry with a relative address relative
to the origin of the OS program file, specifying the location
of the top of the code area within the OS program file, a data
address entry with an absolute address specifying the loca-
tion of the memory 2 where the top of the data area of the
OS program file is to be loaded, a data size entry with the
size of the data area, a relative data address entry with a
relative address relative to the origin of the OS program file,
specifying the location of the top ofthe data area within the
08 program file, and a symbol information area address
entry with a relative address relative to the origin of the OS
program file, specifying the location of the top of the symbol
information area 111 within the OS program file. When
booting up the information processing apparatus, the con-
tents of the header 106 can be used to search through the OS
program file 105 for the code and data areas and to deter-
mine where to load those areas into the memory 2 and what
memory size they need, which will be described later.

Referring next to FIG. 36, there is illustrated a diagram
showing a process of dividing the OS program file into the
mini OS module and the OS main body module in the
information processing apparatus according to the eleventh
embodiment of the present invention. Art operating system
(OS) dividing program 112 can divide the OS program file
105 created by the linker 104 into the mini OS module 7 and
the OS main body module 8. The OS dividing program 112
extracts the code and data portion 107 and 109 of the mini
OS module from the OS program file 105 and then writes
them into the mini OS module 7.

The OS dividing program 112 stores information associ-
ated with the code and data portions 107 and 109 of the mini
OS module into a header 113 of the mini OS module 7. To

be more specific, the OS dividing program 112 writes the
absoiute address specifying the memory location where the
top of the code portion 107 of the mini OS module is to be
loaded into a code address entry of the header 113, the size
of the code portion 107 of the mini OS module into a code
size entry of the header 113 and the relative address of the
code portion 107 of the mini OS module that is relative to
the origin of the mini OS module 7 into a relative code
address entry of the header 113. Information on -the data
portion 109 of the mini OS module is also written into the
header 113 by the OS dividing program 112. Since infor-
mation of the symbol information area 111 is not needed
when booting up the information processing apparatus, it is
not necessary to link it to the mini OS module 7. The OS
dividing program 112 generates the OS main body module
8 in a similar way.

Referring next to FIG. 37, there is illustrated a llow chart
showing operations of the OS dividing program of the
information processing apparatus according to the eleventh
embodiment of the present invention. When the OS diving
module 112 is started, it. in step ST3ll, extracts the code

40

US 6,374,353 B1

25

portion 107 ofthe mini OS module from the OS program lile
105 and then writes the extracted code into the mini OS

module 7. The OS dividing program 112 can determine-the
location of the code portion 107 of the mini OS module from
the relative code address specifying the location of the code
area within the OS program file, which is stored in the
header 106. The size of the code portion 107 of the mini 08
module can be calculated by searching through the symbol
information area 111 for the symbol of a function located at
the top of the code portion 108 of the OS main body module,
and by subtracting the absolute address of the code area, i.e.
the address of the memory location of the top of the code
portion 107 of the mini OS module from the value of the
symbol searched for, indicating the address of the memory
location where the top of the code portion 108 of the OS
main body module is to be loaded.

Next, the OS dividing program 112, instep ST312,
extracts the data portion 109 of the mini OS module from the
OS program file 105 and then writes the extracted data into
the mini 08 module 7. The OS dividing program 112 can
determine the location ofthe data portion 109 of the mini 03
module from the relative data address specifying the loca-
tion of the data area within the OS program file, which is
stored in the header 106. The size of the data portion 109 of
the mini OS module can be calculated by searching through H
the symbol information area 111 for the symbol of a variable
located at the top of the data portion I10 of the OS main
body module, and by subtracting the absolute address of the
data area., i.e. the address of the memory location ofthc top
ofthe data portion 109 ofthe mini OS module from the value
of the symbol searched for, indicating the address of the
memory location where the top ofthe data portion 110 of the
08 main body module is to be loaded. The OS dividing
program 112 then, in step ST3l3, generates the header 113
for the mini OS module 7. The absolute address of the code

area stored in the header 106 of the 08 program file 105 is
written into the code address entry of the header 113 for
storing the address of the memory location where the code
portion of the mini OS module is to be loaded, just as it is.
The size of the code portion 107 of the mini OS module
calculated in step ST31l is then written into the code size
entry of the header M3 for storing the size of the code
portion of the mini 08 module. The relative address of the
top of the code portion 107 relative to the origin ofthe mini
OS module 7 is thus written into the relative code address

entry of the header 113. The absolute address of the data area
stored in the header 106 of the OS program file 105 is written
into the data address entry of the header 113 for storing the
address oi‘ the memory location where the data portion 109
ofthc mini OS module is to he loaded,just as it is. The size
of the data portion 109 of the mini OS module calculated
instep ST3 12 is then written into the data size entry of the
header 113 for storing the size of the data portion of the mini
08 module. The relative address of the top of the data
portion 109 relative to the origin of the mini OS module is _
thus written into the relative data address entry of the header
113. No specific value is written into the header 113 as the
address of the symbol infonnation area 111. In this way,
specific data are written into the header 113 and the mini OS
module 7 is completed in step ST293.

Next, the OS dividing program 112, in step ST314,
extracts the code portion 108 of the 08 main body module
from the OS program file 105 and then writes the extracted
code into the OS main body module 8. The OS dividing
program 112 can determine the location of the code portion
108 of the OS main body module by adding the relative
address of the code area stored in the header 106, i.e. the

ID

15

30

35

40

45

50

60

65

40

26

address of the code portion 107 of the mini OS module,
which is relative to the origin of the OS program lile, and the
size of the code portion 107 of the mini 03 module
calculated in step ST3l1. The size of the code portion 108
of the 08 main body module can be calculated by subtract-
ing the size of the code portion 107 of the mini OS module
calculated in step 81311 from the size of the code area of the
08 program file 105, which is stored in the header 106 of the
OS program file.

Next, the OS dividing program 112, instep ST315,
extracts the data portion 110 of the OS main body module
from the OS program file 105 and then writes the extracted
data into the OS main body module 8. The OS dividing
program 112 can determine the location of the data portion
110 of the US main body module by adding the relative
address of the data area that is relative to the origin of the 08
program file, which is stored in the header 106, i.e. the
address specifying the location of the data portion 109 of the
mini OS module within the OS program file, and the size of
the data portion 109 of the mini OS module calculated in
step ST312. The size of the data portion 110 of the OS main
body module can be calculated by subtracting the size of the
data portion 109 of the mini OS module calculated in step
S1312 from the size of the data area of the OS program ille
105, which is stored in the header 106 of the 08 program
lile.

The OS dividing program 112 then, in step STSI6,
generates the header 114 for the OS main body module 8.
The address of the top of the function included in the code
portion 108 of the OS main body module and searched for
in step ST3ll is written into a code address entry of the
header 114 for storing the address of the memory location
where the code portion of the ()8 main body module is to be
loaded, just as it The size of the code portion 108 of the
()8 main body module calculated in step ST314 is then
written into a code size entry of the header 114 for storing
the size of the code portion of the 08 main body module.
The relative address of the top of the code portion 108
relative to the origin of the 08 main body module is thus
written into a relative code address entry of the header 114.
The address of the variable located at the top of the data
portion 110 of the OS main body module and searched for
in step ST3l2 is written into a data address entry of the
header 114 for storing the address of the memory location
where the data portion of the 08 main body module is to be
loaded, just as it is. The size of the data portion 110 of the
08 main body module calculated in step S'l‘3l5 is then
written into a data size entry ofthe header 114 for storing the
size of the data portion of the OS main body module. The
relative address of the top of the data portion 110 relative to
the origin of the OS main body module is thus written into
a relative data address entry of the header 114. No specific
value is written into the header 114 as the address of the

symbol information area 111. In this way, specific data are
written into the header 114 and the OS main body modttle 8
is Completed in step ST316. After that, the mini 08 module
7 can be then stored in a boot block of a boot device, whereas
the ()3 main body module 8 can be stored in a file system
of the boot device.

Referring next to FIG. 38, there is illustrated a block
diagram showing a state in which the mini 08 module is
loaded into the memory, in the information processing
apparatus according to the eleventh embodiment of the
present invention. A11 FIW code module 6 can load the mini
OS module 7 from the boot block 4 to the memory 2. The
WW code module 6 reads the relative address of the code

portion 107 of the mini OS module, which is relative to the

41

US 6,374,353 B1

27

origin of the mini OS module, and the size of the code
portion 10’? from the header 113 ol‘ the mini OS module 7.
The FEW code module 6 can then read the code portion 107
of the mini OS module out of the boot block 4, and load it
into the memory 2 according to the absolute address stored
in the header 113, specifying the location of the memory 2
where the code portion 107 is to be loaded. Similarly, the
FEW code module 6 loads the data portion 109 of the mini
()S module into the memory 2. The FEW code module 6 then
transfers control to the code portion 107 of the mini 08
module.

As shown in FIG. 38, there can be a free space between
the code portion 107 and data portion 108 of the mini OS
module, and another free space of several hundred kilobytes
behind the data portion 109 of the mini ()8 module, those
free spaces being intended for the OS main body module 8
to be loaded into. However, the mini OS module 7 does not
need to be aware of the free spaces. This is because the mini
OS module 7, which was extracted from the OS program file
105, will be able to run as the OS program file 105 including
the 08 main body module 8 and therefore does not need to
perform a special operation on the free spaces.

Referring next to FIG. 39, there is illustrated a flow chart
showing operations of the mini OS module and an OS
loading and initialization processing module of the inforv H
mation processing apparatus according to the eleventh
embodiment of the present invention. When the mini OS
module 7 receives control from the FKW code module, it
then, in step ST32l, executes initialization of a mini kernel
module 9. Further, the mini OS module 7, in step ST3-22,
executes initialization of a boot device driver module 10.

The mini 08 module 7. in step ST323. generates a thread for
the OS loading and initialization processing module ii. The
mini 08 module 7 further, in step S1324, starts execution of
the thread.

The OS loading and initialization processing module 11,
in step ST33l, loads the 08 main body module 8 stored in
the file system 5 of the boot device 3 into the memory 2.
Before that, the OS loading and initialization processing
module 11 reads the relative address of the code portion 108
of the OS main body module, which is relative to the origin
of the OS main body module, and the size of the code
portion 108 from the header 114 of the OS main body
module 8. The OS loading and initialization processing
module 11 then reads the code portion 108 of the OS main
body module out of the file system 5, and loads it into the
memory 2 according to the address specifying the location
of the memory 2 where the code portion 108 is to be loaded.
The OS loading and initialization processing module 11 then
loads the data portion 110 of the OS main body module into
the memory 2 in a similar way. Since the code and data
portions 108 and 110 of the 08 main body module were
extracted from the OS program file 105, they are not
overlaid on the code and data portions 107 and 109 of the
mini OS module when they are loaded into the memory. _
Furthermore, since the mini OS module 7 and the OS main
body module 8 were extracted from the OS program lile 105
statistically combined, no not-yet-delined symbol or the like
occurs. Therefore, there is no need to link the mini OS

module 7 with the OS main body module 8.
Referring next to FIG. 40, there is illustrated a diagram

showing a state in which the OS main body module is loaded
into the memory. The OS loading and initialization process-
ing module 11 then, in step S1332, executes initialization of
the OS main body module 8. After that, the OS loading and
initialization processing module 11, in step ST333, loads the
first process, called init, to be executed first after booting up

5

I0

15

30

35

40

45

50

60

65

41

28

the information processing apparatus from the file system 5
into the memory 2. The OS loading and initialization pro-
cessing module 11 then starts execution of the first process.
Thus, the initialization of the OS is completed.

As previously mentioned, in accordance with the eleventh
embodiment of the present invention, after the translation
into object language of the mini 08 module source and the
translation of object language of the OS main body module
source are statistically combined into the OS program file
105, the OS program file 105 is divided into the mini OS
module 7 which is located in the boot block 4 and the 03

main body module 8 which is located in the file system 5, by
means of the OS dividing program. Accordingly, the elev-
enth embodiment of the present invention oifers the advan-
tage of being able to eliminate the need for linking the OS
main body module 8 with the mini OS module 7 when
loading the OS main body module 8 into the memory, and
therefore to reduce the time required for booting up the
information processing apparatus.

Many widely dilferent embodiments of the present inven-
tion may be constructed without departing from the spirit
and scope of the present invention. it should be understood
that the present invention is not limited to the specific
embodiments described in the specification, except as
defined in the appended claims.

What is claimed is:

1. Ar: information processing apparatus comprising:
a boot device divided into a boot block in which a mini

operating system (08) module having a function of
bootstrap is located and a file system in which an
operating system (US) main body module having func-
tions other than said function of bootstrap; and

a read-only memory or ROM in which a lirrnware or FM’
code module is located for loading said mini 08
module located in said boot block into a memory and
for starting execution of said mini OS module instead
of a bootstrap code when booting up said information
processing apparatus, said mini OS module loading
said OS main body module from said file system ofsaid
boot device into said memory, and said mini OS
module being linked to said 08 main body module.

2. A method of booting up an information processing
apparatus comprising a boot device and a memory by
loading an operating system into the memory, comprising
the steps of:

dividing the operating system into a mini operating sys-
tem (OS) module having a function of bootstrap and an
operating system (OS) main body module having func-
tions other than said function ol bootstrap, said mini OS
module including a mini kernel module that is a basic
part of the operating system, a boot device driver
module for performing inputioutput (IEO) operations on
said boot device, and an OS loading and initialization
processing module for loading said OS main body
module into said memory and for initializing said OS
main body module;

locating said mini OS module in a boot block of said boot
device;

locating said OS main body module in a file system of
said boot device;

a firmware or WW code module being stored in a ROM
and loading said mini 08 module located in said boot
block into said memory when booting up said infor-
mation processing apparatus;

said mini OS module initializing said mini kernel module
and said boot device driver module;

42

US 6,374,353 B1

29

said mini OS module generating and starting execution of
a thread for said OS loading and initialization process-
ing module; and

said OS loading and initialization processing module
loading said OS main body module stored in said file
system into said memory and then initializing said OS
main body module.

3. The method according to claim 2, wherein said OS
main body module is divided into a plurality of functional
modules including a device driver module, which are
located as separate tiles in said file system, and said OS
loading and initialization processing module is divided into
an OS loading processing module for loading each of said
plurality of functional modules into said memory and an OS
initialization module for initializing each of said plurality of
functional modules loaded into said memory by said OS
loading processing module, and wherein after said mini OS
module is loaded into said memory, said mini OS module
initializes said mini kernel module and said boot device

driver module and then generates and starts execution of a
thread for said OS loading processing module, after the
thread for said OS loading processing module is started, said
OS loading processing module loads each of sa id plurality of
functional modules into said memory and then generates and
starts execution of a thread for said OS initialization module 4.:

every time it loads each of said plurality of functional
modules, and, after the thread for said OS initialization
module is started, said OS initialization module initializes
each of said plurality of functional modules loaded into said
memory.

4. The method according to claim 3, wherein said plurality
of functional modules, into which said OS main body
module is divided, are stored as compressed files in said file
system and said loading and initialization processing module
of said mini OS module is divided into an OS loading and .
decompression processing module and an OS initialization
module, and wherein said mini OS modttle generates and
starts execution of a thread for said OS loading and decom-
pression processing module after said mini OS module
initializes said mini kernel module and said boot device

driver module, after the thread for said OS loading and
decompression processing module is started, said OS load-
ing and decompression processing module loads each of said
plurality of functional modules into said memory and
decompresses the loaded functional module, and then gen-
erates and starts execution of a thread for said OS initial-

ization module, and after the thread for said OS initialization
module is executed, said OS initialization module initializes
each of said plurality of functional modules loaded into said
memory and decompressed.

5. The method according to claim 4, wherein said OS
loading and decompression processing module is divided
into an OS loading processing module and an OS decom-
pression processing module, and wherein said mini OS
module generates and starts execution of a thread for said
OS loading processing module after said mini OS module
initializes said mini kernel module and said boot device

driver module, after the thread for said OS loading process-
ing module is started, said OS loading processing module
loads each of said plurality of compressed functional mod-
ules into said memory, and then generates and starts execu-
tion of a thread for said OS decompression processing
module, after the thread for said 08 decompression pro-
cessing module is started, said OS decompression process-
ing module decompresses each of the plurality of com-
pressed functional module loaded into said memory and then
generates and starts execution of a thread for said 05

I0

15

30

40

50

55

60

65

42

30

initialization module, and, after the thread for said OS
initialization module is started, said OS initialization module
initializes each of said functional modules loaded into said

memory and decompresscd by said OS decompression pro-
cessing module.

6. The method according to claim 3, wherein said 08
loading processing module of said mini OS module is an
application (AP) execution and OS loading processing mod-
ule for starting execution of at least a predetermined appli-
cation module which is located in said file system and which
can automatically be started and run on the operating system
when booting up said information processing apparatus, and
for loading each of said plurality of functional modules into
said memory, and said predetermined application module
includes a function definition file in which some functional

modules required for said application module to run on said
operating system are listed, and wherein after said mini OS
module is loaded into said memory, said mini OS module
initializes said mini kernel module and said boot device

driver module and then generates and starts execution of a
thread for said AP execution and OS loading processing
module, after the thread for said Al’ execution and OS

loading processing module is started. said AP execution and
OS loading processing module loads said application mod-
ule from said file system into said memory and further loads
some functional modules required for said application mod-
ule into said memory according to said function definition
file included in said application module, and then generates
and starts execution of a thread for said OS initialization

module, after the thread for said OS initialization module is
started. said OS initialization module then initializes each of

said some functional modules loaded into said memory, and,
after the initialization of all of said some functional modules

is completed, said application execution and OS loading
processing module further loads the remainder of all func-
tional modules included in said 08 main body module into
said memory and initializes the remainder using said OS
initialization processing module while starting execution of
said application module as a process.

7. The method according to claim 2, wherein said mini OS
module includes a thread synchronization module for pro-
viding synchronization hetween a thread for said OS loading
processing module and a thread for said OS initialization
module using said mini kernel module, and wherein said
mini 08 module generates and starts execution of a thread
for said OS loading processing module and a thread for said
OS initialization module after said mini OS module initial-
izes said mini kernel module and said hoot device driver

module, after those threads are started, said OS initialization

module brings itself into a state in which it is waiting for a
request for initialization of a functional module through said
thread synchronization module, every time said OS loading
processing module loads each of said plurality of functional
modules into said memory, said OS loading processing
module makes a request of said OS initialization module for
initialization of each of said plurality of functional modules
through said thread synchronization module, and said OS
initialization module initializes each of said plurality of
functional modules loaded into said memory every time said
08 initialization module receives a request for initialization
of each of said plurality of functional modules loaded into
said memory from said 08 leading processing module, and
then waits for another request for initialization.

8. The method according to claim 2, wherein said 05
loading and initialization processing module ofsaid mini 03
module is divided into an OS loading processing module and
an OS initialization module, said 03 main body module is

43

US 6,374,353 B1

31

divided into a plurality of blocks of arbitrary record size,
each of which includes a loading llag consisting of a
plurality of bits respectively corresponding to said plurality
of functional modules included in said OS main body
module, and, said loading flag of one of said plurality of
blocks including the end of any one of said plurality of
functional modules has a corresponding bit set to a prede-
termined value, and wherein after said mini OS module is
loaded into said memory, said mini OS module initializes
said mini kernel module and said boot device driver module

and then generates and starts execution of a thread for said
OS loading processing module, after the thread for said 05
loading processing module is started, said loading process-
ing module loads each of said plurality of blocks of said OS
main, body module into said memory, and refers to said
loading flag every time it loads each of said plurality of
blocks into said memory, only if a bit of said loading flag is
set to a predetermined value, said OS loading processing
module generates and starts execution of a thread for said
OS initialization module, and, after the thread for said OS
initialization module is started, said 05 initialization module

initializes a corresponding one of said plurality of functional
modules loaded into said memory.

9. The method according to claim 2, wherein said OS
loading and initialization processing module is divided into _
an OS loading processing module and an OS initialization
module, said OS main body module is divided into a
plurality of blocks of arbitrary record size, each of which
includes a loading flag, and said loading flag of one of said
plurality of blocks including the end of any one of said
plurality of fu netional modules has the address of a linkage
processing function of linking said one functional module
with said mini OS module and the address of an initialization

processing function of initializing said one functional
module, and wherein after said mini OS module is loaded .

into said memory, said mini OS module initializes said mini
kernel module and said boot device driver module and then

generates and starts execution of a thread for said 08
loading processing module, after the thread for said OS
loading processing module is started, said loading process-
ing module loads each of said plurality of blocks of said 08
main body module into said memory, and refers to said
loading flag every time it loads each of said plurality of
blocks into said memory, only if said loading flag has a value
other than zero, said OS loading processing module gener-
ates and starts execution of a thread for said OS initialization

module, and, after the thread for said OS initialization
module is started, said OS initialization module calls a
linkage processing function and an initialization processing
function according to the value of said loading flag.

10. The method according to claim 2, further comprising
the steps of, in order to generate said mini OS module and
said OS main body module, combining an object file ofsaid
mini 08 module and an object file of said OS main body
module into an operating system file by using a linkage

I0

15

30

40

50

43

32

editor or linker, and dividing said operating system lile into
said mini OS module and said ()8 main body module
according to link information.

11. A method of l1ooting—up an information processing
apparatus comprising a boot device and a memory by
loading an operating system into the memory, comprising
the steps of:

dividing the operating system into a mini operating sys-
tem (OS) module having a function of booLstrap and
operating system (OS)main body module having func-
tions other than said function ofhootstrap, said mini 03
module including a mini kernel module that is a basic
part of the operating system, a hoot device driver
module for performing inputtoutput (IEO) operations on
said boot device, and an OS loading and initialization
processing module for loading said OS main body
module into said memory and for initializing said 08
main body module;

locating said mini OS module in a read-only memory or
ROM;

locating said OS main body module in a file system of
said boot device;

a firmware or FEW code module being stored in said ROM
and directly executing said mini OS module located in
Said ROM when booting tip said information process-
ing apparatus;

said mini OS module loading only data portions of said
mini kernel module, said boot device driver module,

and said OS loading and initialization processing mod-
ule into said memory;

said mini OS module initializing said mini kernel module
and said boot device driver module;

said mini OS module generating and starting execution of
a thread for said OS loading and initialization process-
ing module; and

said OS loading and initialization processing module
loading said OS main body module stored in said file
system into said memory and then initializing said 05
main body module.

12. The method according to claim 11, wherein said mini
OS module further includes an address resolve table used for

linking said mini OS module with said OS main body
module, and wherein after said mini 08 module generates
and starts execution of a thread for said OS loading—and
initialization processing module, said OS loading and ini-
tialization processing module loads said OS main body
module into said memory and then initializes it, loads a lirst
process to be executed first, into said memory, loads code
portions of said mini kernel module and said boot device
driver module into said memory, and writes addresses of
said code portions loaded into said memory into said address
resolve table.

