912
FIG. 10A

FIG. 10B

10112

1112

FIG. 13

1212 -
FIG. 14

VGiUS MAUE DLANK (USPTO)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 06.05.1999 Bulletin 1999/18
(21) Application number: 93202871.5
(22) Date of filing: 12.10.1993
(54) Arrangement for storing an information signal in a memory and retrieving the information

Gerāt zur Speicherung eines Datensignals in einem Speicher und zur Wiedergabe des Datensignals aus diesem Speicher
Appareil de mémorisation d'un signal d'information dans une mémoire et de recouvrement du signal
d'information de la mémoire en question
(51) Int Cl.6: G06F 3/06, G06F 5/06,

G06F 7/00, H04N 5/44, H04N 5/45
signal from said memory
(84) Designated Contracting States:

AT DE FR GB
(30) Priority: 19.10.1992 EP 92203191
(43) Date of publication of application: 27.04.1994 Bulletin 1994/17
(73) Proprielor: Koninklijke Philips Electronics N.V.
(73) Proprielor: Koninkiijke Ph
5621 BA Eindhoven (NL)
(72) Inventors:

- Thomason, Graham G., c/O INT. OCTROOIBUREAU B.V. NL-5656 Eindhoven (NL)
- Van Loon, Paul M., c/oINT. OCTROOIBUREAU B.V. NL-5656 Eindhoven (NL)
(74) Representative:
van der Kruk, Willem Leonardus et al INTERNATIONAAL OCTROOIBUREAU B.V., Prof, Holstlaan 6
5656 AA Eindhoven (NL)
(56) References cited:

WO-A-90/08999
WO-A-91/13695

- COMPUTER DESIGN, vol.25, no.6, March 1986, LITTLETON, MASSACHUSETTS US pages 87-92 WINTERSTEIN 'CACHE DESIGN BOOSTS SMD DISK DRIVE PERFORMANCE'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition lee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The invention relates to an arrangement for storing an information signal in a memory and retrieving the information signal from said memory, the arrangement including the memory, an input terminal for receiving the information signal, an output terminal for supplying a delayed version of the information signal, an input bufler memory, having an input coupled to the input terminal and an output coupled to an input of said memory, and an output buller memory having an input coupled to the output of said memory and an output coupled to said output terminal.
[0002] Published international patent application no. WO91/13695 discloses the temporary storage of a video signal in a memory. Using this known arrangement, an information signal can be stored in the memory and an information signal previously stored in said memory can be retrieved simullaneously from said memory. The memory can be in the form of an optical disk or a magnetic disk, such as a hard disk or a disk-array. The arrangement can be used in a television apparatus or a videorecorder so as to store a video signal in the memory.
[0003] One application of the arrangement is where live television signal transmissions are continuously recorded and a history is maintained as lar back as the extent of the memory will permit. For some applications, the memory capacity of the memory can be such that it permits the storage of a video signal having a length of a few minutes. For other applications a memory capacity corresponding to a length of about 15 minutes is considered a minimum practical amount.
[0004] The arrangement offers a number of interesting features to a user.
[0005] Individual choice of the time at which a program is watched. For example, suppose at ten past eight the viewer wants to start watching the eight o'clock news (from the beginning, of course). Using the arrangement, provided the right channel has been monitored, the viewer jumps back ten minutes in time, as it were, and watches the news from the start. Unlike the case where the programme is recorded on a conventional video recorder, the viewer does not have to wait until the program has finished before watching it.
[0006] Continuity after an interruption. If the viewer is interrupted while watching a programme, for example by a telephone call or a call at the door, he can resume watching the program from the point at which he was interrupted. This functionality is not possible with a conventional video-recorder.
[0007] A practical solution to program overlap. Suppose a programme on one channel doesn't finish until ten minutes after the start of a programme on another channel. The prior ant permits one to watch both programmes without the use of a video recorder. During the first programme, the viewer ensures thal the channel of the second programme is being monitored. After the first
programme has ended, the viewer switches to the other channel and jumps back to the start of the programme. An important advantage over using a video recorder is that one does not have to wait until the recording has
5 linished before the programme can be watched.
[0008] Individual replays, including slow motion. The viewer can see a replay of an event just seen, (or just missed, or not fully undersiood) and then continue watching the programme from the point where the replay was starled. Moreover, the replays can be watched in slow motion.
[0009] Belated decision to record on video recorder possible. A viewer may decide after watching a programme for ten minutes that the programme is worth rospectively start video-recording, whilst continuing to watch the programme live.
[0010] Additional features of the arrangement are:
[0011] A means of accelerating the viewing of a historical programme. If the viewer is not watching live, \mathbf{e}. g. due to a later programme start or an interruption, he can catch up with the live broadcast by accelerating the playback. An acceleration factor of a few per cent is practically unnoticed by the viewer. The circuitry (disk read-out, demultiplexing, data decompression, d/a conversion etc.) must be capable of processing the data at the accelerated rate. The sound can be specially processed so that the speed is accelerated without an undue increase in tone.
30 [0012] A means of fast-accelerating over a historical programme. In this case not all television picture data is necessarily processed - some may be skipped and not be passed on for demultiplexing and decompression.
[0013] A fast reverse function.
[0014] A picture-in-picture (PIP) processing unit to enable combinations of live and historical programmes to be displayed using picture-in-picture formats.
[0015] In order to enable an uninterrupted storage of a live television programme in the main memory, and enable an uninterrupted and simultaneous retrieval of the historical programme from the main memory, an input buffer memory and an output buffer memory are present. Data arriving for storage in the main memory, whilst the main memory is temporarily busy for another operation, will be stored in the input buffer memory, and will be stored at a later moment in the main memory by retrieving the data from the input buffer memory. Data will also be requested regularly from the main memory to be displayed on a TV screen as a historical programme. Again, the main memory may be temporarily busy for another operation, so data must be readily available in the output buffer memory, so as to provide continuity of viewing for the user.
[0016] The invention as claimed in claim 1 provides in ingementin relation to the memories included in the arrangement. For that purpose, the input bulfer memory and the output buffer memory are combined into one single butfer memory.
[0017] The invention is based on the following recognition. In an ideal operation of the input buffer memory, the control of the data transler through the input buffer memory should be such that, in order to absorb a maximum amount of data without a transler of data from the input buffer memory to the main memory, the input buffer memory should be empty. Further, in an ideal operation of the output buffer memory, the control of the data transter through the output buifer memory should be such that, in order to provide a maximum amount of data to be displayed on the screen without a transfer of data from the main memory to the output buffer memory, the output bulfer memory should be full. These requirements offer the possibility to combine the input buffer memory and the output buffer memory into one shared memory, to be used as elficiently as possible under the administration realized by a microprocessor.
[0018] The invention is specifically useful in the situation where the main memory is a hard-disk arrangement, and where the hard-disk arrangement has a single magnetic head for storing the information signal on and retrieving the information signal from the hard disk included in the hard-disk arrangement. It should however be noted that also in disk arrangements having more than one head, siluations can occur where an uninterrupted storage on or retrieval from the disk is nol possible, such as in the case where a head has to jump to another storage location and information flow interruption can not be corrected by another head. Further, it should be noted that, where the description discloses the storage of a single information signal in and retrieval of said information signal from the main memory, it is equally well possible to apply the inventive concept to the storage and retrieval of a number of two or more information signals in/from the main memory, eg. derived from different program channels.
[0019] The invention will be further described in the following figure description, in which
figure 1 discloses an embodiment of the arrangement,
figure 2 discloses a more simplified embodiment,
figure 3 discloses a buffer memory in the form of a FIFO, and
figure 4 discloses a buffer memory in the form of a reversible FIFO.
[0020] Figure 1 discloses an embodiment of the arrangement. One or more television signals first pass through a channel selector 1 , which selects which transmissions, according to their channel, are to be stored, and which transmissions, according to their channel, are required for live display. The transmissions which are selected to be stored are digitized by means of a/d (analogue to digital) converters 2 . The digital data is then compressed in real time by a data compressor 3 . The output of each channel after being compressed by the data compressor 3 is placed in a buffer 4 , of which there
is at least one per selected channel. The buffers 4 also act as a multiplexer because they can be read out in such a way as to convert several parallel data streams into one data stream (although the different streams are separately administered). The information contained in the buffers 4 will be transferred to the buffer memory 35 under supervision of a microprocessor 24 by a DMA (direct memory access) controller 31, and is idenlifiable as input destined for a main memory 36 , which is in the 0 form of a band disk arrangement. The microprocessor 24 initiates the data transfer from the buffer 4 to the buffer memory 35, and performs memory allocation in the buffer memory. The microprocessor 24 runs ROM-(read-only memory) 22 based soltware and makes use of a working RAM (random access memory) 23 for temporary variables, the administration of the buffer memory 35 , storage of user commands and the user status etc. Input data in the buffer memory 35 is transferred to the main memory 36 as soon as it is convenient under supervision of the microprocessor 24 by another DMA controller 32
[0021] The stored data in main memory 36 is in due course transferred to the buffer memory 35 under supervision of the microprocessor 24 by DMA controller 5 32. DMA controller 32 cannot at the same time be required or used for Iransferring data in the opposite direction. As television data is actually required to be displayed on the television screen, it is Iranslerred under supervision of the microprocessor 24 by DMA controller 33 to a buffer 14. The process of transler of data from main memory 36 to the buffer memory 35, and from the bulfer memory 35 to the buffers 14 takes place sepurately for channels which the viewer has selected as historical channels to be viewed or recorded or used for any other purpose. An adequate supply of data per channel must always be present in the buffer memory 35 to be able to keep up with the demand. Data is taken from the buffers 14 and is decompressed by a data decompressor 13 , and is converted to an analogue signal by a d/a (digital to analogue) converter 12 . The output of the d/a converter 12 can be sent to a video recorder or television. An acceleration controller 41 has various tasks - it controls the acceleration rate at which data is required, including providing for slow motion and frozen frames and frame stepping. It also provides lor fast forward and fast reverse functions. The DMA controller 33, buffers 14, data decompressor 13 and d/a (digital to analogue) converters 12 should all be capable of working slightly faster (say 15\%) than real time, so that an accelerated playback can be provided without loss of data until the acceleration controller 41 generates an accelerated display at a standard frame-rate. Live transmissions and historical transmissions can be simultaneously displayed using PIP = (picture-in-picture) techniques 55 by a PIP/postprocessor 42 .
[0022] It may be advantageous to combine the bufter memory 35 and working RAM (randomaccess memory) 23 into one memory.
[0023] The buffer memory 35 enables a single head hard disk to cope with the dual task of writing the TV signal being monitored and simultaneously reading out the signal to be displayed.
[0024] Referring now to figure 2, conceptually, when the arrangement is in operation, there is a flow of data as follows.
[0025] Data arrives at the input terminal 50 for storage on the main memory 36 , but as the disk in the main memory 36 may be temporarily busy for another operation, the data arriving will be buffered in input buffer 35 a , by applying the data to the input 59a of said input bufler 35a. As soon as the disk is capable of receiving the data, the data stored in the input buffer 35 a is supplied to the output 51 a of the buffer 35 a and applied to the input 54 of the main memory 36 , for storage on the disk.
[0026] Data will also be regularly requested from the main memory disk 36 to be displayed on the TV screen. Again the disk may be temporarily busy for another operation. Data stored in the output buffer 35 b is now supplied to the output 51 b and thus applied to the output terminal 53 so as to enable continuity of viewing for the user. As soon as the disk is capable of supplying data, the data stored on the disk is supplied to the output 56 of the main memory 36 and applied to the input 59 b of the output buffer memory 35b, for storage in the output buffer 35b,
[0027] In particular, the input buffer 35 a is needed to buffer the incoming data while the disk is being read, and the output buffer 35 b is needed to provide a continuous output of data while the disk is being written to. The input buffer 35 a and the oulput buffer 35b are combined into one shared memory 35.
[0028] It will be shown that the input buffer part and the output buffer part in the buffer memory 35 can be realized using a FIFO or alternatively a reversible queue mechanism. These structures are now discussed.
[0029] Figure 3 shows a buffer memory, such as the input buffer memory 35 a in the form of a FIFO. The output buffer memory has the same construction. Figure 3 shows basic FIFO queue control using a two-entry FIFO queue control block 60, including two pointer locations, the pointers stored in the locations pointing to the beginning and the end of the queue. The pointers in the control block 60 are set to some suitable constant such as zero to indicate an empty queue, see figure 3a. Memory blocks 51a, 52a, ...,58a and 59a are chained in one direction. All memory blocks include a memory space 70 for storing the data and a pointer location 71, as indicated in the memory block 52a. The pointer P1 in the control block 60 points to the address where the memory block 59a is stored. As this memory block is the block lastly stored, its pointer has a constant value, such as zero. The pointer P2 in the control block 60 points to the address where the memory block 51a is stored. This memory block is the block containing the oldest information stored in the buffer memory Its pointer points to
the address where the next memory block 52a is stored. The pointer 71 of the memory block 52a points to the address where the next memory block is stored. In this way, the pointer of block 58 a points to the address where
[0030] Memory blocks, such as the memory block 72 , are added to the queue at the end of the chain. This is realized by setting P1 in control block 60 to the address where the memory block 72 is stored. Further, the pointer in memory block 72 becomes zero, and the pointer in memory block 59a will be set to the address where the memory block 72 is stored. Memory blocks, such as the memory block 51a, are taken from the queue at the start of the chain. This is realized by setting P2 in the control block 60 to the address where the memory block 52a is stored. In this way memory blocks can be added to and taken from the queue without the need to follow the whole chain of memory blocks. The pointer administration can be maintained in a short, fixed period of time.
[0031] A basic administration of the buffer memory 35 is possible using 3 FIFO queues, namely one FIFO queue (FIFO number 1) for the free memory blocks in the common buffer memory 35, one FIFO (FIFO number 2) for the input buffer memory part in the common bufter memory 35 and one FIFO (FIFO number 3) for the output buffer memory part of the common buffer memory 35.
[0032] A memory block is allocated for input by taking it from FIFO number 1 and adding it to FIFO number 2. A memory block is deallocated from input after its contents have been written to main memory 36 by taking it from FIFO number 2 and adding it to FIFO number 1. A memory block is allocated for output by taking it from FIFO number 1 and adding it to FIFO number 3. A memory block is deallocated from output after its data has been transterred to the output terminal 53 by taking it from FIFO number 3 and adding it to FIFO number 1. For this scheme to work properly, there must be adequate memory available in the buffer memory 35 . It is important not to allow too much output memory to be allocated, as the amount of free memory for input will then be insufficient. The amount of memory needed, and the maximum amount of memory to ever be allocated to output data are mainly dependent on the seek time and data transfer time of the main memory 36.
[0033] The FIFO queue control blocks, such as the control block 60, can be located in fixed locations of working RAM 23 or the buffer memory 35.
[0034] Separate channels can be separately administered by defining one FIFO for free memory blocks and two FIFOs per channel (one for the input buffer part and one lor the output buffer part, for each channel).
[0035] it may be possible to economise on memory by allowing the situation to occur exceptionally where there are no free memory blocks to allocate for input. In this case the most recently filled output buffer memory block is taken from FIFO number 3 and added to FIFO
number 1. An indication is set that in due course this data must be re-read from main memory 36 . This process can be repeated if more input buffer memory blocks are needed A snag is that in order to deallocate the most recent buffer in a FIFO queue as administered in Figure 3, the entire chain of memory blocks must be fotlowed in order to find the most-recent-but-one memory block, which is to become the most recent memory block. This problem can be solved by using a reversible FIFO queue for the output butfer part, as illustrated in Figure 4. Reversible queues are an extension to the FIFO of figure 3, in that the memory blocks are linked in both directions. This enables a consistent queue administration to be maintained ior use as FIFO (First-In FirstOut) or LIFO (Last-In First-Out) without needing to follow the whole chain of pointers. For that purpose, the memory blocks include two pointer locations 71 and 73 , for pointing lowards a subsequent and a previous memory block respectively. The memory block 61 can again be the block including the oldest information, and the block 69 then comprises the most information most recently stored.
[0036] If the reference numerals in Figure 3 that carry an index ' a ' are amended so as to carry an index ' b ', the buffer memory of Figure 3 thus obtained describes the output buffer memory 35 b.

Claims

1. An arrangement for intermediate storage of a video signal, said arrangement comprising input means (50) for receiving sequential video signal elements at a first average speed; first-in-first-out input bridging buffer memory means (35a) having an input (59a) led by said inpul means, having random access functionality for receiving said video signal elements and having an output interface (51a); mass memory disc means (36) having cross-track random access functionality for effecting said intermediate slorage, and having write head means fed by said output interlace (51a) and furthermore read head means; first-in-first-out output bridging buffer memory means (35b) having random access functionality and having an input interface (59b) led by said read head means; output means (53) having an input fed by said first-in-first-out output bridging buffer memory means (35b) for outputting said sequential video signal elements at a second average speed; and wherein said input bridging buffer memory means and output bridging buffer memory means are exchangeably mapped on a single bridging bufler, lor through said random access functionality and said cross-track random access functionality effecting an arbitrarily selectable intermediate slorage time.
2. An arrangement as claimed in Claim 1, incorporat-
ed in a television receiver apparatus that has a video output for connection to a video recorder apparatus.
3. An arrangement as claimed in Claim 1 combined with a multi-channel video-receiver apparatus and
a supplementary single-channel video-recording apparatus, wherein said input means and said mass memory disc means are arranged lor accepting at least two independent streams of video signal elements in parallel and said output means are arranged for belatedly activating said supplementary video recording apparatus with respect to a second channel after said intermediale storage having commenced at an earlier instant during overlap of said second channel with a first channel during the latter's being stored on said supplementary video recorder.
4. An arrangement as claimed in Claim 1 combined with a video-receiver apparatus and a video display apparatus, wherein said input means and said mass memory disc means are arranged for accepting a first stream of video signal elements in parallel to receiving at least a second independent stream of video signal elements next to said first stream of video signal elements by said video receiver apparatus, and said output means are arranged for belatedly activating said video display apparatus with respect to said first stream after said intermediate storage having commenced at an earlier instant during overlap of said first and second streams and said second stream's being displayed on said video display apparatus.
5. An arrangement as claimed in Claim 1 combined with a video-receiver apparatus and a video display apparatus, and for receiving a stream of video signal elements, and comprising inputting means for receiving an intermission control signal at a first particular time instant, and second inputting means for subsequently receiving a continue control signal at a second particular time instant, and said output means are arranged for belatedly activating said video display apparatus as from said second particular time instant on for displaying said stream of video signal elements as having been slored since said first particular time instant.

Patentansprūche

1. Anordnung zur unmittelbaren Speicherung eines Videosignals, wobei die genannte Anordnung umfaß1: Eingangsmittel (50) zum Empfangen sequentieller Videosignalelemente bei einer ersten mittleren Geschwindigkeit; FIFO-Eingangsüberbrùkkungspulferspeichermittel (35 a), mit einem von den genannten Eingangsmitteln gespeisten Eingang (59a), mit der Funktionalitat des wahlireien Zugrifts zum Emplangen der genannten Videosignalelemente und mil einer Ausgangsschnittstelle (51a); Massenspeicherplattenmitteln (36) mit der Funklionalität des wahlfreien Querspurzugrifis zum Bewir-
2. Anordnung nach Anspruch 1, wobei die genannten Speicherplattenmittel die laufende Speicherung zu-
mindest eines fünt Minuten langen Stroms aus Videosignalelementen zulassen.
3. Anordnung nach Anspruch 1, wobei die genannten Eingangsmittel, die genannten Ausgangsmittel und die genannten Massenspeicherplattenmittel ausgebildet sind, um zumindest zwei unabhängige Ströme von Vídeosignalelementen parallel zu akzeptieren.
4. Anordnung nach Anspruch 1, wobei die genannten Eingangsmittel und die genannten Massenspeicherplattenmittel ausgebildet sind, urn zumindest zwei unabhängige Ströme von Videosignalelementen parallel zu akzeptieren.
5. Anordnung nach Anspruch 1, kombiniert mit einem zusätzlichen Videoaufnahmegerät, wobei die genannten Ausgangsmittel ausgebildet sind, um dieses Videorecordergeràt spãt zu aktivieren, nachdem die genannte Z wischenspeicherung zu einem früheren Zeitpunkt begonnen hat.
6. Anordnung nach Anspruch 1 , kombiniert mil einem Videoempfangsgerät und einem Videowiedergabegerät und ausgebildet zum rundfünkanbieterunabhängigen Abspielen und/oder zum Abspielen in Zeitlupe.
7. Anordnung nach Anspruch 1, kombiniert mit einem Mehrkanalvideoempfangsgerät und einem zusätzlichen Einkanalvideoaulnahmegerảt, wobei die genannten Eingangsmittel und die genannten Massenspeicherplattenmittel ausgebildet sind, um zumindest zwei unabhängige Ströme von Videosignalelementen parallel zu akzeptieren und die genannten Ausgangsmittel ausgebildet sind, um dieses zusätzliche Videoaufnahmegerät in bezug auf einen zweiten Kanal spät zu aktivieren, nachdem die genannte Zwischenspeicherung zu einem früheren Zeilpunkt während des Überlappens dieses zweiten Kanals mit einem ersten Kanal beim Speichern des letzteren aul dem genannten zusätzlichen Videorecorder begonnen hat.
8. Anordnung nach Anspruch 1 , kombiniert mit einem Videoemplangsgerät und einem Videowiedergabegerät, wobei die genannten Eingangsmittel und die genannten Massenspeicherplattenmittel ausgebildet sind, um einen ersten Strom von Videosignatelementen zu akzeptieren, wobei parallel zumindest ein zweiter unabhängiger Strom von Videosignalelementen außer dem genannten ersten Strom von Videosignalelementen mit diesem Videoemplangsgerät emplangen wird, und die genannten Ausgangsmittel ausgebildel sind, um dieses Videowiedergabegerät in bezug aut den genannten ersten Strom spát zu aktivieren, nachdem die ge-
9. Montage pour le stockage intermédiaire d'un signal vidéo, ledit montage comprenant: des moyens d'entrée (50) pour recevoir des éléments de signal vidéo séquentielsà une première vitesse moyenne; des premiers moyens de mémoire tampon de pontage premier entré, premier sorti (35a) comportant une entrée (59a) alimentée par lesdits moyens d'entrée, présentant une fonctionnalité d'accès direct pour recevoir lesdits éléments de signal vidéo et comportant une interface de sortie (51a); des moyens de disque de mémoire de masse (36) présentant une fonctionnalité d'accès direct transversale pour effectuer ledit stockage intermédiaire, et comportant des moyens de tête d'écrilure alimentés par ladite interface de sortie (5 la) et en outre des moyens de tēte de lecture; des moyens de mémoire tampon de pontage de sortie premier entré, premier sorli (35b) présentant une fonctionnalité d'accès direct et comportant une interface d'entrée (59b) alimentée par lesdits moyens de tête de lecture; des moyens de sortie (53) comportant une entrée alimentée par lesdits moyens de mémoire tampon de pontage de sortie premier entré, premier sorti (35b) pour produire lesdits éléments de signal vidéo séquentielsà une deuxième vitesse moyenne; et dans lequel lesdits moyens de mémoire tampon de pontage d'entrée et lesdits moyens de mémoire tampon de pontage de sortie sont cartographiés de manière échangeable sur un seui tampon de pontage, pour, par le bíais de ladite fonctionnalité d'accès direct el ladite lonctionnalité d'accès direct transversale, appliquer un temps de slockage intermédiaire pouvant être sélectionné de manière arbitraire.
10. Montage suivant la revendication 1 , intégré dans un téléviseur qui comporte une sortie vidéo pour une connexion à un appareil d'enregistrement vidéo.
11. Montage suivant la revendication 1 , dans lequel lesdits moyens de tēte d'écriture et les moyens de tête de lecture sont situés dans une seule têle.
12. Montage suivant la revendication 1 , dans lequel lesdits moyens de disque de mémoire de masse sont des moyens de disque dur de stockage magnétique el/ou optique.
13. Montage suivant la revendication 1 , dans lequel lesdits moyens d'entrèe sont agencés pour fonctionner à une première vilesse moyenne et lesdits moyens de sortie sont agencés pour fonctionner ensuile à une deuxième vitesse moyenne qui est supérieure à ladite première vitesse moyenne.
14. Montage suivan lla revendication 1 , dans lequel lesdits moyens d'entrée sont agencés pour fonctionner à une première vitesse moyenne et lesdits moyens de sortie sont agencés pour fonctionner de manière sélective à une deuxième vitesse moyenne qui est soit supérieure de manière commandable à ladite première vitesse moyenne ou inférieure de manière commandable à celle-ci.
15. Montage suivant la revendication 5 ou 6 , dans lequel ladite deuxième vilesse moyenne correspond à une vitesse d'observation appropriée à un utilisateur humain.
16. Montage suivant la revendication 1 , dans lequel lesdits moyens de disque de stockage permettent un stockage actuel d'au moins un flux d'éléments de signal vidéo de cinq minutes.
17. Montage suivant la revendication 1 , dans lequel lesdits moyens d'entrée, lesdits moyens de sortie et lesdits moyens de disque de mémoire de masse sont agencés pour accepter au moins deux flux indépendants d'éléments de signal vidéo en parallèle.
18. Montage suivant la revendication 1 , dans lequel lesdits moyens d'entrée et lesdits moyens de disque de mémoire de masse sont agencés pour accepter au moins deux flux indépendants d'éléments de signal vidéo en parallèle.
19. Montage suivant la revendication 1, combiné à un appareil d'enregistrement vidéo supplémentaire, dans lequel lesdits moyens de sortie sont agencés pour activer tardivement ledit appareil d'enregistrement vidéo après que ledit slockage intermédiaire a débuté à un moment antérieur.
20. Montage suivant la revendication 1, combiné à un appareil de réception vidéo et à un appareil d'affichage vidéo, et agencé pour une releclure indépendante de la station de diffusion evou une relecture au ralenti.
21. Montage suivant la revendication 1 , combiné à un appareil de réception vidéo à plusieurs canaux et à un appareil d'enregistrement vidéo à un seul canal supplémentaire, dans lequel lesdits moyens d'entrée et lesdits moyens de disque de mémoire de masse sont agencés pour accepter au moins deux flux indépendants d'éléments de signal vidéo en parallèle et lesdits moyens de sortie sont agencés pour activer tardivement ledit appareil d'enregistrement vidéo supplémentaire par rapport à un deuxième canal après que ledit stockage intermédiaire a débutéà un moment antérieur durant le chevauchement entre ledit deuxième canal et un premier canal pendant le stockage de ce dernier sur ledit enregistreur vidéo supplémentaire.
22. Montage suivant la revendication 1 , combiné à un appareil de réception vidéo et à un appareil d'affichage vidéo, dans lequel lesdits moyens d'entrée et lesdits moyens de disque de mémoire de masse sont agencés pour accepter un premier flux d'éléments de signal vidéo parallèlement à la réception d'au moins un deuxième flux d'éléments de signal vidéo indépendant à la suite dudit premier fluxd'éléments de signal vidéo par ledit appareil de réception vidéo, et lesdits moyens de sortie sont agencés pour activer tardivement ledit appareil d'affichage vidéo par rapport audit premier flux après que le stockage intermédiaire a débuté à un moment antérieur pendant le chevauchement entre l'affichage desdits premier et deuxième flux sur ledit appareil d'affichage vidéo.

40 15. Montage suivant la revendication 1, combiné à un appareil de réception vidéo et à un appareil d'affichage vidéo, et pour recevoir un flux d'éléments de signal vidéo, el comprenant des moyens d'entrée pour recevoir un signal de commande d'interruption à un premier instant particulier, et des deuxièmes moyens d'entrée pour recevoir par la suite un signal de commande de continuation à un deuxième instant particulier, lesdits moyens de sortie étant agencés pour activer tardivement ledit appareil d'affichage vidéo à partir dudit deuxième instant particulier pour afficher ledit flux d'éléments de signal vidéo tel que slocké depuis ledit premier instant particulier.

FIG. 3 a

FIG. 4

Europäisches Patentamt European Patent Office European Office europeen des brevets

EUROPEAN PATENT APPLICATION

(21) Application number: 93202871.5
(2) Date of filing: $\mathbf{1 2}$.10.93
(31) Int. CI.5: G06F 5/06, G06F 3/06, H04N 5/907
(30) Priority: 19.10.92 EP 92203191
(43) Date of publication of application: 27.04.94 Bulletin 94/17
(8) Designated Contracting States: AT DE FR GB
(71) Applicant: PHILIPS ELECTRONICS N.V.

Groenewoudseweg 1
NL-5621 BA Eindhoven(NL)
Inventor: Thomason, Graham G., c/o INT.
OCTROOIBUREAU B.V.
Prof. Holstlaan 6
NL-5656 Eindhoven(NL)
Irventor: Van Loon, Paul M., c/o INT.
OCTROOIBUREAU B.V.
Prof. Holstlaan 6
NL-5656 Eindhoven(NL)

Representative: van der Kruk, Willem
Leonardus et al
INTERNATIONAAL OCTROOIBUREAU B.V.
Prof. Holstlaan 6
NL-5656 AA Eindhoven (NL)

Arrangement for storing an information signal in a memory and retrieving the information signal from said memory.
(5) An arrangement for storing an information signal in a main memory (36) and retrieving the information signal from said main memory includes the memory (36), an input buffer memory (35a) and an output
buffer memory (35b). The input buffer memory and the output buffer memory are combined into one single buffer memory (35).

TIVO 454220

HEADING A

The invention relates to an arrangement for storing an information signal in a memory and retrieving the information signal from said memory, the arrangement including the memory, an input terminal for receiving the information signal, an output terminal for supplying a delayed version of the information signal, an input buffer memory, having an input coupled to the input terminal and an output coupled to an input of said memory, and an output buffer memory having an input coupled to the output of said memory and an output coupled to said output terminal.

HEADING B

Published international patent application no. W091/13695 discloses the temporary storage of a video signal in a memory. Using this known arrangement, an information signal can be stored in the memory and an information signal previously stored in said memory can be retrieved simultaneously from said memory. The memory can be in the form of an optical disk or a magnetic disk, such as a hard disk or a disk-array. The arrangement can be used in a television apparatus or a videorecorder so as to store a video signal in the memory.

One application of the arrangement is where live television signal transmissions are continuously recorded and a history is maintained as far back as the extent of the memory will permit. For some applications, the memory capacity of the memory can be such that it permits the storage of a video signal having a length of a few minutes. For other applications a memory capacity corresponding to a length of about 15 minutes is considered a minimum practical amount.

The arrangement offers a number of interesting features to a user.

Individual choice of the time at which a program is watched. For example, suppose at ten past eight the viewer wants to start watching the eight o'clock news (from the beginning, of course). Using the arrangement, provided the right channel has been monitored, the viewer jumps back ten minutes in time, as it were, and watches the news from the start. Unlike the case where the programme is recorded on a conventional video recorder, the viewer does not have to wait until the program has finished before watching it.

Continuity after an interruption. If the viewer is interrupted while watching a programme, for example by a telephone call or a call at the door, he can resume watching the program from the point at which he was interrupted. This functionality is not possible with a conventional video-recorder.

A practical solution to program overlap. Suppose a programme on one channel doesn't finish until ten minutes after the start of a programme on another channel. The invention permits one to watch both programmes without the use of a video recorder. During the first programme, the viewer ensures that the channel of the second programme is being monitored. After the first programme has ended, the viewer switches to the other channel and jumps back to the start of the programme. An important advantage over using a video recorder is that one does not have to wait until the recording has finished before the programme can be watched.

Individual replays, including slow motion. The viewer can see a replay of an event just seen, (or just missed, or not fully understood) and then continue watching the programme from the point where the replay was started. Moreover, the replays can be watched in slow motion.

Belated decision to record on video recorder possible. A viewer may decide after watching a programme for ten minutes that the programme is worth recording onto video. With the arrangement, he can retrospectively start video-recording, whilst continuing to watch the programme live.

Additional features of the arrangement are:
A means of accelerating the viewing of a historical programme. If the viewer is not watching live. e.g. due to a later programme start or an interruption, he can catch up with the live broadcast by accelerating the playback. An acceleration factor of a few per cent is practically unnoticed by the viewer. The circuitry (disk read-out, demultiplexing, data decompression, d/a conversion etc.) must be capable of processing the data at the accelerated rate. The sound can be specially processed so that the speed is accelerated without an undue increase in tone.

A means of fast-accelerating over a historical programme. In this case not all television picture data is necessarily processed - some may be skipped and not be passed on for demultiplexing and decompression.

A fast reverse function.
A picture-in-picture (PIP) processing unit to enable combinations of live and historical programmes to be displayed using picture-in-picture formats.

In order to enable an uninterrupted storage of a live television programme in the main memory, and enable an uninterrupted and simultaneous retrieval of the historical programme from the main memory, an input buffer memory and an output buffer memory are present. Data arriving for storage in the main memory, whilst the main memory is temporarily busy for another operation, will be stored in the input buffer memory, and will be stored at a
later moment in the main memory by retrieving the data from the input bufter memory．Data will also be requested regularly from the main memory to be displayed on a TV screen as a historical pro－ gramme．Again，the main memory may be tem－ porarily busy for another operation，so data must be readily available in the output buffer memory， so as to provide continuity of viewing for the user．

HEADING C

The invention provides for an improvement in relation to the memories included in the arrange－ ment．For that purpose，the arrangement is char－ acterized in that the input buffer memory and the output buffer memory are combined into one single buffer memory．

The invention is based on the following rec－ ognition．In an ideal operation of the input buffer memory，the control of the data transfer through the input buffer memory should be such that，in order to absorb a maximum amount of data without a transfer of data from the input buffer memory to the main memory，the input buffer memory should be empty．Further，in an ideal operation of the output buffer memory，the control of the data trans－ fer through the output buffer memory should be such that，in order to provide a maximum amount of data to be displayed on the screen without a transfer of data from the main memory to the output buffer memory，the output buffer memory should be full．These requirements offer the pos－ sibility to combine the input buffer memory and the output buffer memory into one shared memory，to be used as efficiently as possible under the admin－ istration realized by a microprocessor．

The invention is specifically useful in the situ－ ation where the main memory is a hard－disk ar－ rangement，and where the hard－disk arrangement has a single magnetic head for storing the informa－ tion signal on and retrieving the information signal from the hard disk included in the hard－disk ar－ rangement．It should however be noted that also in disk arrangements having more than one head， situations can occur where an uninterrupted stor－ age on or retrieval from the disk is not possible， such as in the case where a head has to jump to another storage location and information flow in－ terruption can not be corrected by another head． Further，it should be noted that，where the descrip－ tion discloses the storage of a single information signal in and retrieval of said information signal from the main memory，it is equally well possible to apply the inventive concept to the storage and retrieval of a number of two or more information signals in／from the main memory，eg．derived from different program channels．

HEADING D

The invention will be further described in the following figure description，in which
figure 1 discloses an embodiment of the ar－ rangement，
figure 2 discloses a more simplified embodi－ ment，
figure 3 discloses a buffer memory in the form of a FIFO，and
figure 4 discloses a buffer memory in the form of a reversible FIFO．

HEADING E

Figure 1 discloses an embodiment of the ar－ rangement．One or more television signals first pass through a channel selector 1 ，which selects which transmissions，according to their channel， are to be stored，and which transmissions，accord－ ing to their channel，are required for live display． The transmissions which are selected to be stored are digitized by means of a／d（analogue to digital） converters 2．The digital data is then compressed in real time by a data compressor 3．The output of each channel after being compressed by the data compressor 3 is placed in a buffer 4 ，of which there is at least one per selected channel．The buffers 4 also act as a multiplexer because they can be read out in such a way as to convert several parallel data streams into one data stream （although the different streams are separately ad－ ministered）．The information contained in the buff－ ers 4 will be transferred to the buffer memory 35 under supervision of a microprocessor 24 by a DMA（direct memory access）controller 31，and is identifiable as input destined for a main memory 36 ，which is in the form of a band disk arrange－ ment．The microprocessor 24 initiates the data transfer from the buffer 4 to the buffer memory 35 ， and performs memory allocation in the buffer memory．The microprocessor 24 runs ROM－（read－ only memory） 22 based software and makes use of a working RAM（random access memory） 23 for temporary variables，the administration of the buffer memory 35，storage of user commands and the user status etc．Input data in the buffer memory 35 is transferred to the main memory 36 as soon as it is convenient under supervision of the micropro－ cessor 24 by another DMA controller 32 ．

The stored data in main memory 36 is in due course transferred to the buffer memory 35 under supervision of the microprocessor 24 by DMA con－ troller 32．DMA controller 32 cannot at the same time be required or used for transferring data in the opposite direction．As television data is actually required to be displayed on the television screen，it is transferred under supervision of the micropro－
cessor 24 by DMA controller 33 to a buffer 14 . The process of transfer of data from main memory 36 to the buffer memory 35 , and from the buffer memory 35 to the buffers 14 takes place separately for channels which the viewer has selected as historical channels to be viewed or recorded or used for any other purpose. An adequate supply of data per channel must always be present in the buffer memory 35 to be able to keep up with the demand. Data is taken from the buffers 14 and is decompressed by a data decompressor 13, and is converted to an analogue signal by a d/a (digital to analogue) converter 12. The output of the d/a converter 12 can be sent to a video recorder or television. An acceleration controller 41 has various tasks - it controls the acceleration rate at which data is required, including providing for slow motion and frozen frames and frame stepping. It also provides for fast forward and fast reverse functions. The DMA controller 33 , buffers 14 , data decompressor 13 and d/a (digital to analogue) converters 12 should all be capable of working slightly faster (say 15%) than real time, so that an accelerated playback can be provided without loss of data until the acceleration controller is reached 41 which generates an accelerated display at a standard frame-rate. Live transmissions and historical transmissions can be simultaneously displayed using PIP $=$ (picture-in-picture) techniques by a PIP/postprocessor 42.

It may be advantageous to combine the buffer memory 35 and working RAM (random access memory) 23 into one memory.

The buffer memory 35 enables a single head hard disk to cope with the dual task of writing the TV signal being monitored and simultaneously reading out the signal to be displayed.

Referring now to figure 2, conceptually, when the arrangement is in operation, there is a flow of data as follows.

Data arrives at the input terminal 50 for storage on the main memory 36 , but as the disk in the main memory 36 may be temporarily busy for another operation, the data arriving will be buffered in input buffer 35 a, by applying the data to the input 59a of said input buffer 35 a. As soon as the disk is capable of receiving the data, the data stored in the input buffer 35 a is supplied to the output 51a of the buffer 35a and applied to the input 54 of the main memory 36 , for storage on the disk.

Data will also be regularly requested from the main memory disk 36 to be displayed on the TV screen. Again the disk may be temporarily busy for another operation. Data stored in the output buffer 35 b is now supplied to the output 51 b and thus applied to the output terminal 53 so as to enable continuity of viewing for the user. As soon as the
disk is capable of supplying data, the data stored on the disk is supplied to the output 56 of the main memory 36 and applied to the input 59b of the output buffer memory 35b, for storage in the output buffer 35 b.

In particular, the input buffer 35 a is needed to buffer the incoming data while the disk is being read, and the output buffer 35 b is needed to provide a continuous output of data while the disk is output buffer 35b are combined into one shared memory 35.

It will be shown that the input buffer part and the output buffer part in the buffer memory 35 can be realized using a FIFO or alternatively a reversible queue mechanism. These structures are now discussed.

Figure 3 shows a buffer memory, such as the input buffer memory 35 a in the form of a FIFO. The output buffer memory has the same construction. Figure 3 shows basic FIFO queue control using a two-entry FIFO queue control block 60 , including two pointer locations, the pointers stored in the locations pointing to the beginning and the end of set to some suitable constant such as zero to indicate an empty queue, see figure 3a. Memory blocks 51a, 52a, ..., 58a and 59a are chained in one direction. All memory blocks include a memory space 70 for storing the data and a pointer location 71 , as indicated in the memory block 52 a. The pointer P1 in the control block 60 points to the address where the memory block 59a is stored. As this memory block is the block lastly stored, its pointer has a constant value, such as zero. The pointer P2 in the control block 60 points to the address where the memory block 51a is stored. This memory block is the block containing the oldest information stored in the buffer memory. Its pointer points to the address where the next memory block 52a is stored. The pointer 71 of the memory block 52a points to the address where the next memory block is stored. In this way, the pointer of block 58a points to the address where the block 59a is stored.

Memory blocks, such as the memory block 72 , are added to the queue at the end of the chain. This is realized by setting P1 in control block 60 to the address where the memory block 72 is stored. Further, the pointer in memory block 72 becomes zero, and the pointer in memory block 59 a will be set to the address where the memory block 72 is stored. Memory blocks, such as the memory block 51a, are taken from the queue at the start of the
55 chain. This is realized by setting P2 in the control block 60 to the address where the memory block 52 a is stored. In this way memory blocks can be added to and taken from the queue without the
need to follow the whole chain of memory blocks. The pointer administration can be maintained in a short, fixed period of time.

A basic administration of the buffer memory 35 is possible using 3 FIFO queues, namely one FIFO queue (FIFO number 1) for the free memory blocks in the common buffer memory 35, one FIFO (FIFO number 2) for the input buffer memory part in the common buffer memory 35 and one FIFO (FIFO number 3) for the output buffer memory part of the common buffer memory 35.

A memory block is allocated for input by taking it from FIFO number 1 and adding it to FIFO number 2. A memory block is deallocated from input after its contents have been written to main memory 36 by taking it from FIFO number 2 and adding it to FIFO number 1. A memory block is allocated for output by taking it from FIFO number 1 and adding it to FIFO number 3. A memory block is deallocated from output after its data has been transferred to the output terminal 53 by taking it from FIFO number 3 and adding it to FIFO number 1. For this scheme to work properly, there must be adequate memory available in the buffer memory 35. It is important not to allow too much output memory to be allocated, as the amount of free memory for input will then be insufficient. The amount of memory needed, and the maximum amount of memory to ever be allocated to output data are mainly dependent on the seek time and data transfer time of the main memory 36.

The FIFO queue control blocks, such as the control block 60, can be located in fixed locations of working RAM 23 or the buffer memory 35.

Separate channels can be separately administered by defining one FIFO for free memory blocks and two FIFOs per channel (one for the input buffer part and one for the output buffer part, for each channel).

It may be possible to economise on memory by allowing the situation to occur exceptionally where there are no free memory blocks to allocate for input. In this case the most recently filled output buffer memory block is taken from FIFO number 3 and added to FIFO number 1. An indication is set that in due course this data must be re-read from main memory 36 . This process can be repeated if more input buffer memory blocks are needed. A snag is that in order to deallocate the most recent buffer in a FIFO queue as administered in Figure 3. the entire chain of memory blocks must be followed in order to find the most-recent-but-one memory block, which is to become the most recent memory block. This problem can be solved by using a reversible FIFO queue for the output buffer part, as illustrated in Figure 4. Reversible queues are an extension to the FIFO of figure 3, in that the memory blocks are linked in both directions. This
enables a consistent queue administration to be maintained for use as FIFO (First-In First-Out) or LIFO (Last-In First-Out) withoul needing to follow the whole chain of pointers. For that purpose, the memory blocks include two pointer locations 71 and 73 , for pointing towards a subsequent and a previous memory block respectively. The memory block 61 can again be the block including the oldest information, and the block 69 then comprises the most information most recently stored.

If the reference numerals in Figure 3 that carry an index ' a ' are amended so as to carry an index ' b ', the buffer memory of Figure 3 thus obtained describes the output buffer memory 35 b .

Claims

1. An arrangement for storing an information signal in a memory (36) and retrieving the information signal from said memory, the arrangement including the memory (36), an input terminal (50) for receiving the information signal, an output terminal (51) for supplying a delayed version of the information signal, an input buffer memory (35a), having an input (52) coupled to the input terminal and an output (53) coupled to an input (54) of said memory (36), and an output buffer memory (35b) having an input (55) coupled to the output (56) of said memory and an output (57) coupled to said output terminal (51), characterized in that the input buffer memory and the output buffer memory are combined into one single buffer memory (35).
2. Arrangement as claimed in claim 1, characterized in that the memory (36) is a hard-disk memory arrangement.
3. Arrangement as claimed in claim 2, characterized in that the hard-disk arrangement (36) has a single magnetic head for storing the information signal on and retrieving the information signal from the hard disk included in the harddisk arrangement.
4. Arrangement as claimed in claim 1,2 or 3, characterized in that the buffer memory (35) is a random access memory.

| 0 | 0 |
| :--- | :--- | :--- |

FIG. 3 a

FIG. 4

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0785675 A2

EUROPEAN PATENT APPLICATION

(43) Date of publication: 23.07.1997. Bulletin 1997/30
(21) Application number: 97300246.2
(22) Date of filing: 16.01.1997
(84) Designated Contracting States: DE FR GB
(30) Priority: 16.01 .1996 JP 4889/96
(71) Applicant: KABUSHIKI KAISHA TOSHIBA Kawasakl-shl (JP)
(72) Inventors:

- Tomonaga, Elichiro

1-1-1, Shibaura, Minato-ku Tokyo (JP)

- Yamada, Masahlio

1-1-1, Shibaura, Minato-ku Tokyo (JP)

- Sakamoto, Noriya

1-1-1, Shibaura,Minato-ku Tokyo (JP)
(74) Representative: Muir, lan R. et al Haseltine Lake \& Co., Imperial House, 15-19 Kingsway London WC2B 6UD (GB)
(54) Digital signal receiver
(57) Digital signal receiver for recording a plurality of program streams at the same time period with a single storage medium. The transport streams from the tuners Tit through Tin are converied into the program streams at the format conversion circuits F11 through Fin, then converted into the data forms corresponding to the data bus 5 in the data bus interfaces IF11 through

IF1n, so as to output them to the data bus 5. Therefore, the data having a plurality of programs at the same time are transmitted on the data bus 5 in a multiplexed state. The data bus interface circuit 6 restores the data from the data bus 5 into the original data and supplies it to the storage medium 7. Accordingly, the storage medium 7 is able to record the program streams of a plurality of programs at the same time period.

Description

-The present invention relates to a digital signal receiver that is suited for recording the digital data transmitted by using the transport streams which is possible to transmit the multi-programs.

Recently, digital processings of image data or audio data have become widespread. The digitization is employed in systems for television broadcasting and televisior conference, for transmilting a moving picture or sound such as a video telephone, of for recording the moving picture or sound in a magnetic disc, optical disc or magnetic lape and reproducing them. In these systems a high efficiency coding is adapted to make good use of channels and recording media.

As the high efficiency coding a MPEG (Moving Picture Experts Group) 2 is a typical system, In a JTC (Joint Technical Committee) of an ISO (International Organization for Standardization) and an IEC (International Electro Technical Commission), the MPEG2 is a coding standard advancing its standardization as ISONEC 13818. In the MPEG2, a MPEG2 system which standardizes the system for multiplexing the data stream of the image data or audio data is defined for using the data streams of the encoded image data or audio data for various applications not limited to the coding standard. The MPEG2 system has two data stream standards depending on applications using the data stream, f.e., a transport stream on the assumption of adaptation to the broadcasting or communication (hereinafter referred to as TS (Transport Stream)) and a program stream on the assumption of the adaptation to the storage or recording (hereinafter relerred to as PS (Program Stream)).

The transporl stream is taken into account that a plurality of programs are transmitted by one stream it can use a plurality of reference times each programs. It is expected to be adapted for broadcasting or communicating applications. On the other hand, the program stream is expected to be adapted widely as a standard recording format of a storage medium such as a magnetic disc, oplical disc or magnetic tape. Here, these are standards for input signals of the decoder, and MPEG2 does not standardize the encode method of the signal.

Now, it is provided that the program transmitted by the digital broadcasting or digital communication is recorded, and in this case, a plurality of programs are transmitted by using the MPEG2 system transport streams. In this case, a plurality of programs are transmitted by using the MPEG2 system transport streams. In this case, to record the predetermined program the program portion which is desired to be recorded is extracted from the transport strearns, and the extracted portion is converted into the program stream and recorded to the recording medium.

Thus, by using the transport stream in the broadcasting or communication it is possible to transmit a plurality of programs by one stream. In the case that the receiver has a plurality of funer functions and also has fion units io program streams each having a single program, a data bus unit having a data bus for transenitting data, a plurality of first bus interlace units for con-
verting the program streams from the format conversion unit into data formats corresponding to the data bus and outputting them to the data bus at different timings each, a plurality of first bus interiace units for converting the program streams from the format conversion unit into data formats corresponding to the dala bus and outputting them to the data bus al different timings each, and a fourth bus interface unit for converting the dala transmitted to the data bus from a plurality of the first bus interface unit or the data transmitted to the data bus from the third interface unit into the data which have the same formats as the data formats of the program streams so as to supply a specific dacoding unit.

In order to achieve the above object; the digital signal receiver according to a third aspect of the present invention includes a plurality of demodulation units for selecting and demodulating a specilic frequency band from transmitted digital signals so as to obtain a transport stream which is constructed by multiplexing a plurallity of programs, a data bus unit having a data bus for transmitting data, a plurality of first bus interface units for converting a plurallity of the transport streams from the demodulation units into the data formats corresponding to the data bus and outputting them lo the data bus at different timings, a third bus interface unit for transmitting and receiving the data between the data bus, and converting the data formats between the data which are sent by a multiplex transmission via the data bus and the data which have the same formats as the data formats of the transport streams, a format conversion unil for transmitting and receiving the data between the third bus interlace unit, transmitting and recelving the data between the specific recording/reproducing unlt, and converling the format between the data containing transport streams and the data containing at least one program stream which is consisted of a signal program, and a fourth bus inlerface unit for converting the data transmitted to the data bus from a plurality of the first bus interface unit or the data transmitted to the data bus from the third interface into the data which have the same formals as the data formats of the transport streams so as to supply a specific decoding unit.

In order to achieve the above object, the digital signal receiver according to a fourth aspect of the present invention includes a plurality of demodulation units for selecting and demodulating a specific frequency band from transmitted digital signals so as to obtain a transport stream which is constructed by multiplexing a plurality of programs, an encoding unit for producing new transport streams by a time division multiplex of a plurality of the transport streams obtained from the demodulation units, a data bus unit having a data bus for transmilting the data, a first bus interface unit for converting the transport streams from the encoding unit into data formats corresponding to the data bus, a third bus interface unit for transmitting and receiving the data between the data bus, and converting the data formats between the data which are sent by a multiplex transmission via
the data bus and the data which have the same formats as the data formats of the transport streams, a format conversion unit for transmitting and receiving the data between the third bus interface unit, and also between 5 the specific recording/reproducing unit, and converting the format belween the data having a plurality of the transport streams and the data having at least one program stream which is consisted of a single program; and a fourth bus interface unit for converting the data transmitted to the data bus from the first bus interface unit or the data transmitted to the data bus lrom the third interface into the data which have the same formats as the data formats of the fransport streams so as to supply a specific decoding unit.

In order to achleve the above object, the digital signal receiver according to a fith aspect of the present invention includes a data bus unit having a data bus for transmitting the data, at least one recelving unit having a conversion unit for converting transport strearns constructed by multiplexing a plurality of programs which are obtained by selecting and demodulating the specific frequency bands from the transmitted digital signals into the program streams each having a simple program, and the first bus interface unit for converting the output of the conversion unit into the data formals which are data transmittable via the data bus, at least one recording/reproducing unit having the third bus interlace unit ior transmitting and receiving the data between the data bus and also between the specilic recording/reproducing unit, and converting the data formats between the data which are sent by a multiplex transmission via the data bus and the data having the same data formats as the program streams, and at least one decoding unit having the fourth bus interface unit for converting the data transmitted to the data bus from the at least one receiving unit or the data transmitted to the data bus from the at least one recording/reproducing unit into the data having the same formats as the program streams so as to supply them to the specific decoding unit.
in order to achieve the above object, the digital signal receiver according to a sixth aspect of the present invention includes a data bus unit having a data bus for transmitting the data, at least one receiving unit having a unit for obtaining the transport streams constructed by multiplexing some programs by selacting and demodulating the specilic frequency bands from the transmitted digital signals, and the first bus interface unit for converting the outputs of the unit mentioned above into the data formats which are data transmittable via the data 0 bus, at least one recording/teproducing unit having the third bus interface unit for transmitting and receiving the data between the data bus, and converting the data formats between the data multiplexed trammeled via the data bus and the data having the same data formats as 55 the transport streams, and unit for transmitting and receiving the data between the third bus interlace unit, converting the lormat between the data containing the fransport streams and the data containing at least one
program stream which is constructed by simple programs, and transmitting and receiving the data between the specific recording/reproducing unit, and at least one decoding unit having the fourth bus interface unit for converting the data transmitted to the data bus from the at least one receiving unit or the data fransmitted to the data buses from at least one recording/reproducing unit into the data having the same formals as the fransport streams so as to supply them to the specific decoding unit.

In order to achieve the above object, the digital signal receiver according to a seventh aspect of the present invention includes a data bus unit having a data bus for transmitting the data, at least one receiving unit having producing unit for producing new transport streams by the time-division multiplex of the transport streams constructed by multiplexing some programs which are obtained by selecting and demodulating the specific frequency band from the transmitted digital signals, and the first bus interface unit for converting the outputs of the producing unit into the data formats which are data transmittable via the data bus, at least one recording/ reproducing unit having the third bus interface unit for transmitting and receiving the data between the data bus, and converting the data formats between the data multiplexed trammeled via the data bus and the data having the same data formats as the transport streams, and a unit for transmitting and receiving the data between the third bus interface unit, converting the format between the data containing the transpoit strearns and the data conlaining at least one program stream which is consisted of a single program, and transmitting and receiving the data between the specific recording/reproducing unit, and at least one decoding unit having the fourth bus interface unit for converting the data transmitted to the data bus from at least one receiving unit or the data transmitted to the data bus from at least one recording/reproducing unit Into the data having the same formats as the transport streams so as to supply them to the specific decoding unit.

According to the first aspect of the digital signal receiver, it is possible to obtain the plurality of transport strearns from the transmitted digital signals by the plurality of demodulation unit. These transport streams are converted into the plurality of program streams by the formal conversion unit. A plurality of the first bus interface unit convert the program streams into the data lormats corresponding to the data bus and output them to the data bus by diflerent timings. Accordingly, the program sloams having the plurality of programs at the same time period present on the data bus. The second bus interface unit restores the data sent by the multiplex transmission through the bus into the original data formats and supplies them to the specific recording unit Accordingly, the program stream having the plurality of programs is recorded at the same time period by the recording unit.

According to the second aspect of the digital signal
receiver, data sent by the multiplex transmission via the data bus converted into the original data formats by the third bus interlace unit and supplied to the recording unit. Further, the reproduced data from the recording/ 5 reproducing unit is converted into the data formats corresponding to the data bus by the third bus interface unit so as to output to the data bus. The fourth bus interface unit converts the data transmitted to the data bus from the plurality of the first bus interface unit or the data unit info the dala having the same data formats as the data formats of the program streams so as to supply them to the specific decoding unit. Accordingly, in the decoding unit, the data associated to the transmitting ducing unit are converted into the data having the same data formats as that of the transport streams by the format conversion unit and converted into the data formats
corresponding to the data bus by the third bus interface unit, so as to be oulput to the data bus. The lounth bus interface unit converts the data transmitted to the data bus from the first bus interface or the data transmitted to the data bus from the third bus interface unit into the data having the same data formats as that of the transport streams and supplies them to the specific decoding unit. Accordingly, in the decoding unit, the transmitted data or the reproduced data from the recording/reproducing unit is decoded.

According to the fitth aspect of the digital signal receiver, the receiving unit, recording/reproducing unit and decoding unit have each first, third and fourth bus Interlace unit. The receiving unit, recording/reproducing unit and decoding unit can transmit the data using the data bus by the first, third and fourth bus interface unit. The transport streams are obtained from the digital signals transmitted from the receiving unit, which are converted into the program streams, then converted into the data formals corresponding to the data bus so as to output to the data bus. By delining the plurality of the recelving units, the data containing the plurality of the program streams flow on the data bus. The recording/reproducing unit records the data sent by the multiplex transmission on the data bus after converting them into the original data formats.

According to the sixth aspect of the digital signal receiver, the receiving unit converts the transport streams into the data formats corresponding to the data bus. By using the plurality of the receiving unit, the data containing the plurality of the transport streams flow on the data bus. The recording/reproducing unit records the data sent by the multiplex transmission on the data bus after converting them into the original data formats.

According to the seventh aspect of the digital signal receiver, the recelving unit produce new transport streams by multiplexing the plurality of transport streams and converts them into the data formats corresponding to the data bus. Accordingly, the data containing the plurality of transport streams bus flow on the data bus. The recording/reproducing unit records the data sent by the multiplex transmission on the data bus after converling them into the original data formats.

Additional objects and advantages of the present invention will be apparent to persons skilled in the art from a study of the following description and the accompanying drawings, which are hereby incorporated in and constitute a part of this specification.

For a better understandings of the present invention and many of the attendant advantages thereol, reference will now be made by way of example to the accompanying drawings, wherein:

FIGURE 1 is a block diagram showing one embodiment of the digital signal receiver according to the present invention;
FIGURE 2 is a diagram for explaining the format converters F11 inrough F1n in FIGURE 1;

FIGURE 3 is a diagram for explaining the data bus interfaces IF11 through IF1n in FIGURE 1; FIGURE 4 is a diagram for explaining the operation of the embodiment;
FIGURE 5 is a diagram for explaining the recording example of the storage medium;
FIGURE 6 is a block diagram showing the moditication of the FIGURE 1;
FIGURE 7 is a block diagram showing other embodiment of the present invention;
FIGURE 8 is a block diagram showing the modification of the FIGURE 7;
FIGURE 9 is a block diagram showing other embodiment of the present invention; and
FIGURE 10 is a block diagram showing the transformed embodiment from that shown in FIGURE 9.

Embodiments of the present invention will be explained hereinafter in reference to the drawings. FIG-
merical value is assigned according to the types.
For conversion between the transport stream and the program streams a stream called PES (Packetized Elementary Stream) packet defined in ISO/IEC 13818 is used.

The PES packet is constructed by extracting the each type of packet of the same program from the TS packet. And PES header is added to the end of a payload (information).

As shown in FIGURE 2c, the program stream includes a package of groups of a plurality of PES packets. And a package header is added to the end of it. The format converters F11 through F1n generales the package data by synthesizing PES from the input transport streams and oblains the program streams by adding the header to the generated package data. As mentioned above, the format converters F11 through Fin converts the transport streams into the program streams by using the PES as an intermediate format. In the process of the conversion from the transport stream to the PES, desired programs are selected. The program streams from the format converters F11 through F1n are supplied to data bus interlaces il11 through IFin.

The data bus interfaces If11 through IFin become the interlace for transmitting and receiving the data between the data bus 5, That is, the data bus interlaces IF11 through IF1n, which have the memory capaclly of each bus standard and register (not shown) performs buffering and control the transmitting and receiving the data between other data bus interfaces and data bus 5 and alse control the velocity of them.

The dala bus 5 transmits the data between each modules such as the stream decoders inside the recelver 1, or between apparatuses outside the receiver 1 . The bus interfaces IF11 through IFin convert the data streams into the data formats defined to the data bus and output them.

FIGURE 3 is a explanation diagram showing the example of the data formats on the data bus 5 .

The-data bus interfaces IF11 through IF1n, as shown in FIGURE 3, divide the input program stream (FIGURE 3a) intodata length mbytes defined to the bus, and add the k bytes header to the end of the divided m bytes. The header contains the address information of the bus interfaces in the dala transmitting origin, data length of the data following the header, the data reproducing order information and the error correct information.

Here, the data formats of the bus are not limited to the example shown in FIGUAE 3. It may be any formats if it assures the transmitting and recelving of the data. For, instance, il may be the format which recognizes the data origin and the data termination of the data in the header part, as shown in FIGURE 3, and it may be the format corresponding to the bus slandard which recognizes the data before the transmission of the data between the interfaces.

A data bus controller 4 controls the data transfer on
the dala bus 5 . The data controlled by the data bus controller 4 and transmitted to the data bus 5 by the proper data transler rate from the dala bus interfaces IIt1 through IF in are transmitted to the bus intertace of the destination terminal.

In the embodiment, the data bus controller 4 transmits the outputs of the data bus interfaces If11 through IF1n via the data bus 5 by the time-division multiplex.

The data transmitted via the data bus 5 is supplied 10 to the data bus interface 6 in the data termination. The bus interface 6 , which has a memory capacity delined by the data bus 5 to make it impossible to arbitrate the bus mastership between other data bus interfaces or a register, performs buflering. The data bus interface 6 re5 stores the original program stream from the input data and outputs them to a storage medium 7, and also outputs the header information to the storage medium 7 as a program information. Further, the data bus interface 6 converts the data from the storage medium 7 into the data format as corresponding to the data bus 5 and outputs them on the data bus 5 .

The slorage medium 7 detects that which program data the transmitted data are, where they are oblained from the tuners T11 through Tin, or where they are output from the dala bus interlaces IF11 through IFin based on the program information, and records each program stream as changing the recording position according to each program. For instance, If the storage medium 7 is an optical disc recorder or a hard disc apparatus it changes the recording positions of the program streams according to each disc sector.

On the other hand, the data on the data bus 5 is also supplied to the data bus interface 8 . The data bus interface 8 , which has a memory capacity defined by the data bus 5 to make it impossible to arbitrate the bus mastership between other data bus interlaces or a register, performs butlering. The data bus interiace 8 selects the program streams which are associated to the user operation from the header information of the input data and input them to the decoder 9 . The decoder 9 restores the video data, audio data or other data of the program by decoding the program stream and supplies them to the display (not shown) so as to display the desired program.

Next, the operation of the embodiment constructed like this will be explained hereinatter referring to FIGURES 4 and 5. FIGURE 4 is a flow chant for explaining the data transter on the data bus 5. FIGURE 5 is a llow chart for explaining the recording example of the storage medium.

The RF signals from the antenna 2 and the cable 3 are supplied to the tuners T11 through T1n, and where these are demodulated by being selected the specilic frequency band. The output digital signals of the tuners from the tuners T11 through Tin are supplied to the format converters F11 through Fin.

The format converters F11 through Fin selects the
specific programs which are associated to the user operation from the input transport streams and convert them into the program streams. The program streams from the format converters F11 through F1n are supplied to each data bus interiaces IF11 through IF1n.

The data bus interfaces IF11 through IF1n divide the input program stream shown in FIGURE 3a into m bytes units and adds k bytes header to the end of the m bytes unit as shown in FIGURE 3b so as to output them. FIGURES 4a through 4 c shows the outputs from the data bus interfaces IF11 through IF1n. The left inclined slanting line zones show one unit ($m+k$ bytes) of the data which is based on the program streams corresponding the programs selected by the format converter F11 from the oulputs of the tuner T11. Similarly, the right inclined slanting line zones show one unil ($m+k$ bytes) of the data which is based on the program streams corresponding the programs selected by the format converter F12 Irom the outputs of the tuner T12. Further, the cross-hatch parts show one unit ($m+k$ bytes) of the data which is based on the program streams corresponding the programs selected by the format converter F13 from the outputs of the tuner T13.

As shown in FIGURES 4 a through 4 c , the outputs of the data bus interfaces Fil through F13 are controlled by the data bus controller 4 so as to be output on the data bus 5 by different timings. Therefor, the multiplexed data are transmitted on the data bus 5 as shown in FIGURE 4d. That is, in the example of FIGURE 4, the data based in the three programs at the same time are transmitted via the data bus 5 .

Now, it is provided that these three programs are recorded in the storage medlum 7.
In this case, the data on the data bus 5 are supplied to the data bus interface 6. The data bus interface 6 separates the header from the each one unit data shown in FIGURE 4d, outputs the program streams to the storage medium 7 and also outputs the header to the storage medium 7 as a program information. The storage medium 7 records the program strearns of three programs supplied from the data bus interface 6.

Now, the disc apparatus is adapted as the slorage medium 7 . The FIGURE 5 is explaining the recording on the disc in thls case. The programs 1,2 and 3 of FIGURE 5 correspond to each oulputs from the format converters F11 through F1n. The storage medium 7 performs the recording and reproducing to the disc. 11. The storage medium 7 divides the data into areas divided in the track or sector units and records them. That is, it divides the disc 11 into 8 sectors, that is, 8 areas in round direction so as to record.

Here, the recording data write-in rate writes in the data by program units, as same as the data bus 5 transmission rate. For instance, in the specitic two tracks as shown in FIGURE 5 among the 8 areas the area 12 records the program 2, the area 15 records the program 3 , the area 14 records the programs 2 and 3 , and the area 15 records the programs 1 and 2. As mentioned
above, since the data transmitted from the data bus 5 via the data bus interface 6 is constructed by a plurality of programs are time-multiplexed it changes the disc write-In areas according to the change of programs so as to record a plurality ol programs at the same time period.

Further, it can select only specific programs from the received plurality of transport streams and display them. For instance, it is provided that the specific pro gram in the Iransport stream received the funer T11 is displayed. The format converter F11 selects the TS packet of the program to be displayed from the input transport streams to generate PES. Further, the format converter F11 packages the PES and adds the package 15 header to make the program stream.

This program stream is supplied to the data bus interlace IF and output in the format corresponding to the data bus $\mathbf{5}$ by adding the header which is designated to the data bus interface B. The data bus interface 8 takesin the data specified as a data termination from the data transmitted from the data bus 5 and restores the data into the original program streams by eliminating the header so as lo oulput them to the decoder 9 .

The decoder 9 decodes the programs streams so 25 as to obtain the video data, audio data and other data. These data are supplied to the display (not shown) and displayed.

Further, in the embodiment, it can be possible to reproduce and display the programs recorded in the storage medium 7. That is, in this case, the storage medium 7 reproduces the desired programs which are associaled to the user operation. The program streams of this program is divided into m bytes units in the data bus interface 6 and output in the format corresponding to the data bus 5 by adding the k bytes header by m bytes units. In this case, that the data temination is the data bus interiace 8 is specified by the header.

Accordingly, to the data bus interface 8 the program stream reproduced by the storage medium 7 is supplied. Other operations are as same as the display time of the receiving data.

As mentioned above in the embodiment, according to transmit the program streams of a plurality of programs obtained from the transport streams via the data bus by time-division multiplexed it is possible to record a plurality of program streams at the same time period by a storage medium.

By the way, in the embodiment shown in FIGURE 1 receiver is contalning a plurality of tuners and decoders. However, one receiver needs not to have all these circuits. FIGURE 6 shows the circuit example which has the same construction as FIGURE 1 by combining units, each of which has a part of circuit. In FIGURE 6 the same components as those shown in FIGURE 1 are assigned with the same marks and their explaining are omitted.

A luner section Ull includes a luner T11, a lormal converter F11 and a data bus interlace IF11. As same
as this, a tuner section U12 includes a tuner T12, a lormat converler F12 and a data bus interface IF12. The tuner section U1n includes a tuner T1n, a format converter Fin and a data bus interface IF1n.

A data bus section B11 includes a data bus controller 4 and a data bus 5. A recording section K11 includes a data bus interface 6 and a storage medium 7. And, a decoder section D11 includes a data bus inlerface 8 and a decoder 9 .

As mentioned above, in FIGURE 6 the data bus section B11 is independent. The ntuner sections Ulithrough Uin, the recording section K11 and the decode section D11 have each the bus interfaces IF11 through IF1n, 6 and 8, and they are connecled to the data bus 5 of the data bus section 811 vla each data bus interface. Therefore, the circuil construction of FIGURE 6 becomes as same as the FIGURE 1.

According to such a construction mentioned above, it becomes very easy to improve or extend each unit. For instance, since the improvement or changing number of the tuner section, or extension of the decoder sections are also easy it is possible to make the desirable surroundings by connecting the units desired by users.

FIGURE 7 is a block diagram showing the other embodiment of the present invention. In FIGURE 7 the same components as those shown in FIGURE 1 are assigned with the same marks and the explanation of them are onitted. In the embodiment of FIGURE 1 the transport streams from the tuners T11 through T1n ara converted into the program streams, them they are supplied over the data bus. However, in the embodiment of FIGURE 7 it is different from that of FIGURE 1 that the transpori streams are supplied on the data bus and it adapts the receiver 21 which has one formal converter.

The output transport stream from the tuners T11 through Tin are supplied to each data bus interfaces IF11 through IF1n. Also in this embodiment, the transport stream means the one defined in ISO/REC 13818, and the program stream means the one defined in ISO/ IEC 13818.

The data bus interfaces IF11 through IF1n, which have the same construction as the embodiment shown In FIGURE 1, divide the input data into m bytes and add k bytes header to the end of the divided each mbytes so as to output them in the data formats corresponding to the data bus 5 . In this embodiment, the inputs of the data bus interfaces IF11 through IF1n are transport streams. That is, n transport streams in maximum are time-division multiplexed in the data formals corresponding to the data bus 5 and flowed on the data bus 5 .

The data bus interface 6 takes-in the data transmitted on the data bus 5 and restores them into the original data formats soas to oulput them to the format converter 22.. The format converter 22 performs the format conversion to the transport stream part in the input data and makes program streams of the dasired programs so as to output them to the storage medium 7. Further, the for-
mat converter 22 outputs the header information to the storage medium 7 as the program information.

As shown in FIGURE 2, the packet ID showing the packet types is assigned to the header part of the transport stream. To this packet IDs diflerent values according to each packet type are assigned, and different values are assigned to different transport streams. So, by discriminating the packet ID it is possible to make the program streams of a plurality of programs which are desired to be recorded from a plurality of transport streams and output them to the storage medium 7 in the state which are time-division multiplexed.

On the other hand, the data bus interiace B restores the transport streams on the data bus 5 into the original data lormats and output them to the decoder 23. The decoder 23 decodes the transport streams and outputs the video data, audio data and other data of the desired programs to the displayed (not shown).

Next, the operation of the embodiment in such o structure as described above is explained.

The RF signals from the antenna 2 and the cable 3 are applied to the tuners $T 11$ through $T 1$ n, and the transport streams in the specific frequency band are selected. These transport streams are converted into the data formats corresponding to the data bus 5 in the data bus interlaces IF11 through IF1n and controlled by the data bus controller 4 so as lo be transmitted to the data bus 5 in the time-division multiplexed slate.

Now, it is provided that a plurality of desired programs in the received transport streams are recorded. In this case, the data bus interfaces IF11 through IF in for outputting the transport streams containing the programs to be recorded specifies the data bus interface 6 as a data termination. The data bus interface 6 takes-in 5 the specified transport streams and restores them into the original data formats, then outputs them to the format converter 22.

The format converter 22 detects the packet 10 contained in the input data and makes the program streams 0 of a plurality of programs which are desired to be recorded so as to oulput them to the storage medium 7. Further, the format converter 22 outputs the headar information to the storage medium 7 as the program information. Therefore, in the storage medium 7 a plurality 5 ol program streams are recorded at the same time period.

Further, in the embodiment, the displays associated to the receiving data and the reproduced data from the storage medium 7 are possible. In the case of display associated to the receiving data, the data bus interlace B extracts the transport streams specilied from the data on the data bus 5 and outputs them to the decoder 23. The decoder 23 decodes the input transport streams and supplies them to the displayed.

On the other hand, in the case of display associated to the reproduce data from the storage medium 7, the storage medium 7 reproduces the program streams of the programs which are displayed. The format converter

22 performs the format conversion to the program streams from the storage medium 7 and makes the transport streams. The transport strearns are converted into the formats corresponding to the data bus 5 in the data bus interface 6 and transmitted on the data bus 5 . In this case, the data bus interface 6 adds the header information which specifies the data bus interface B as the data termination of the transport streams.

The data bus interface 8 takes- in the transport streams of the programs which are to be displayed from the data bus 5 and converts the data lormats of them so as to output the to the decoder 23. Other operations are same as the display time of the receiving data.

As mentioned above, in the embodiment, it has the same ellect as the ambodiment shown in FIGURE 1, and it also has the eflect that it can obtain the multiplexed data of the program streams of a plurality of programs contained in a plurality of transport straams by a system of format converter.

Further in the embodiment, as same as the embodiment shown in FIGURE 1, 1 receiver needs not to have all circuits. FIGURE 8 shows the circuit having the same construction as that shown in FIGURE 7 by combining the units, each of which have a part of circuit. In FIGURE 8 the same components as those shown in FIGURE 7 are assigned with the same marks.

The tuner section U21 includes a tuner T11 and a data bus interlace IF11. As same as this, the tuner section U22 includes a tuner T12 and a data bus interlace IF12, while the tuner section U2n includes a tuner T1n and a data bus Interface IF1n.

The data bus section B21 includes a data bus controller 4 and a data bus 5 , while the recording section K21 includes a dala bus interface 6, a formal converter 22 and a storage medium 7 . Further, the decoding sectlon D21 includes a data bus interface 8 and a decoder 23.

Accordingly, in FIGURE 8 the data bus section B21 is independent. The n tuner sections U 21 through U 2 n , the recording section K21 and the decoder section D21 have each data bus interfaces IF11 through IF1n, 6, and 8 , and each if these sections are connected to the data bus 5 of the data bus section B 21 via each bus interface. Accordingly, the circuit construclion shown in FIGURE 8 becomes as same as that shown in FIGURE 7.

According to such a construction mentioned above, it will be easy to improve and extend each unit. For instance, since the improvement or changing of the number of the luner sections or extension of the decoder section are easy it can obtain the desired surroundings by connecting the units which are desired by user.

FIGURE 9 is a block diagram showing other embodiment of the present invention. In FIGURE 9 the same component as those shown in FIGURE 7 are assigned with the same marks, and the explanation of them are omitted. In embodiment shown in FIGURE 7 each transport streams are converted into the data formats corresponding to the data bus 5 in each data bus interlaces
shown in FIGURE 9 are assigned with the same marks, and the explanation of them are omitted.

The tuner section U31 includes funers TII through Tin, buffers BU11 through BU1n and a data bus interlace 33. Further, the data bus section B31 includes the dala bus controller 4 and the data bus 5 , while the recording section K31 includes the data bus interface 6, the format converter 22 and the storage medium 7. Further, the decoder section D31 includes the data bus interface B and the decoder 23.

As mentioned above, in FIGURE 10 the data bus section 831 is separated. The tuner section U31, recording section K31 and the decoder section D31 have data bus interlaces 31, 6 and B , and each of these sections is connected to the data bus 5 of the data bus section B31 via each data bus inferface. Accordingly, the circuit construction shown in FIGURE 10 becomes as same as that shown in FIGURE 9.

According to such a construction as mentioned above, also in the embodiment it can obtain the desired 'surroundings by converting the units which are desired by user.

As described above, the digital signal receiver according to the present invention has the effect that the a plurality of programs transmitted by using the transport streams are recorded to one recording medium at the same time.

While there have been illustrated and described what are at present considered to be preferred embodiments of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereot without departing from the true scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teaching of the present invention without departing from the central scope thereof. Therefor, it is intended that the present invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the present invention, but that the present invention includes all embodiments falling within the scope of the appended claims.

The foregoing description and the drawings are regarded by the applicant as including a variety of individually inventive concepts, some of which may lie partially or wholly outside the scope of some or all of the following claims. The fact that the applicant has chosen at the time of filing of the present application to restrict the claimed scope of protection in accordance with the following claims is not to be taken as a disclaimer or atternative inventive concepts that are included in the contents of the application and could be defined by claims differing in scope from the following claims, which different claims may be adopted subsequently during prosecution, for example, for the purposes of a divisional application.

Claims

1. A digital signal receiver comprising;

a plurality of demodulating means each for selecting and demodulating a specific band from received signals to obtain a transport stream formed from a plurality of multiplexed program signals;
data bus means having a data bus for transmitting data;
first data bus interface means for feading a tirne multiplexed transport stream or streams output from the demodulating means or time multiplexed program streams obtained from the transport streams from the demodulating means;
second data bus interlace means for receiving selected data signals from said data bus; and recording means for receiving and recording time separated signals from different programs selected from program streams directly from said second data bus interface or after conversion into program streams of transport streams from said second data bus interiace means.
2. A digital signal receiver according to claim 1 having third data bus interface means connected to said data bus for receiving signals from said first interlace means via the data bus or from the recording means via the second interface means and the data bus; and having decoding means for decoding specific program signals from said third data bus interlace means.
3. A digital signal receiver characterized by that it is provided with:
a plurality of demodulation means for selecting and demodulating a specific frequency band from Iransmitted digital signals so as to obtain a transport stream which is constructed by multiplexing a plurality of programs;
format conversion means for converting a plurality of transport streams from the demodulation means into program streams each having a single program;
data bus means having a data bus for transmitting data;
a plurality of first bus interlace means for converting the program streams from the format conversion means into data formats corresponding to the data bus and outputting them to the data bus at different timings each; and second bus interface means for converting the data which are sent by a multiplex transmission via the data bus into the original data formats and supplying them to a specific recording
means.
4. A digital signal receiver characterized by that it is provided with:
a plurality of demodulation means for selecting and demodulating a specific Irequency band from transmitted digital signals so as to obtain a transpor stream which is constructed by multiplexing a plurality of programs;
lormat conversion means for converting a plufality of transport streams from the demodulation means into program streams each having a single program;
data bus means having a data bus for transmitting data;
a plurality of first bus Interiace means for converting the program streams from the format conversion means into data formats corresponding to the data bus and outputting them to the data bus al different timings each; and fourth bus interface means for converting the data transmitted to the data bus from a plurality of the first bus interface means or the data transmitted to the data bus from third interface means into the data which have the same formats as the data formats of the program streams so as to supply a specific decoding means.
5. A digital signal receiver characterized by that it is provided with:
a plurality of demodulation means for selecting and demodulating a specific frequency band from transmitted digital signals so as to oblain a transport stream which is constructed by multiplexing a plurality of programs;
data bus means having data bus for transmitting data,
a plurality of first bus interface means for converting a plurality of the transport streams from the demodulation means into the data formats corresponding to the data bus and outputting them to the data bus at different timings; third bus interlace means for transmitting and receiving the data between the data bus, and converting the data formats belween the data which are sent by a multiplex transmission via the data bus and the data which have the same formats as the data formats of the transport streams;
format conversion means for transmitting and receiving the data between the third bus interface means, transmitting and receiving the data between the specilic recording/reproducing means, and converting the format between the data containing transport streams and the dala
containing at least one program stream which is consisted of a signal program; and
lourth bus interlace means for converling the data transmitted to the data bus from a plurality of the first bus interlace means or the data transmitted to the data bus from the third interface into the data which have the same formats as the data formats of the transport streams so as to supply a specific decoding means.
6. A digital signat recaiver characterized by that it is provided with:
a plurality of demodulation means for selecting and demodulating a specific trequency band from transmitted digital signals so as to oblain a transport strearn which is constructed by mulliplexing a plurality of programs;
encoding means for producing new transport streams by a time division multiplex of a plurality of the transport streams obtained trom the demodulation means;
data bus means having a data bus for transmitling the data;
first bus interface means for converting the transport streams lrom the encoding means into data formats corresponding to the data bus; third bus interface means for transmitting and receiving the data between the data bus, and converling the data formats between the data which are sent by a multiplex transmission via the data bus and the data which have the same lormats as the data formats of the transport streams;
format conversion means for transmitting and receiving the data between the third bus interlace means, and also. between the specific re cording/reproducing means, and converting the format between the data having a plurality of the transport streams and the data heving at least one program stream which is consisted of a single program; and
lourth bus interface means for converting the data transmitted to the data bus from the first bus interface means or the data transmitted to the data bus from the third interface into the data which have the same formats as the data formats of the transport streams so as to supply a specilic decoding means.
7. A digital signal recelver characterized by thal it is provided with:
data bus means having a data bus for transmirting the data;
at least one receiving unit having a conversion means for converling transport streams constructed by mulliplexing a pluality of programs

Which are obtained by selecting and demodulating the specific frequency bands from the transmitted digilal signals into the program streams each having a simple program, and the first bus interface means for converting the output of the conversion means into the data formats which are data transmittable via the data bus;
at least one recording/reproducing unit having the third bus interface means for transmitting and receiving the data between the data bus and also between the specific recording/reproducing means, and converling the data formats between the data which are sent by a multiplex transmission via the data bus and the data having the same data formats as the program strearns; and
at least one decoding unit having the fourth bus interface means for converting the data transmitted to the data bus from the at least one receiving unit or the data transmitted to the data bus from the at least one recording/reproducing unit into the data having the same formats as the program streams so as to supply them to the specific decoding means.
8. A digital signal receiver characterized by that it is provided with:
data bus means having data bus for transmitting the data;
at least one receiving unit having means for obtaining the transport streams constructed by multiplexing some programs by selecting and demodulating the specific frequency bands from the transmitted digital signals, and the first bus interface means for converting the outputs of the means mentioned above info the data tormats which are data transmittable via the data bus;
at least one recording/reproducing unit having the third bus interlace means for transmitting and receiving the data between the data bus, and converting the data formats between the data multiplexed trammeled via the dala bus and the data having the same data formats as the transport strearns, and means for transmitting and recelving the data between the third bus interface means, converting the format between the data containing the transport streams and the data containing at least one program stream which is constructed by simple programs, and transmitling and receiving the data between the specific recording/reproducing means; and
at least one decoding unit having the fourth bus interface means for converting the data transmitted to the data bus from the at least one re-
ceiving unit or the data transmitted to the data buses from at least one recording/reproducing unit into the data having the same formats as the transport streams so as to supply them to the specific decoding means.
9. A digital signal receiver characterized by that it is provided with:
data bus means having a data bus for transmitting the data;
at least one receiving unit having producing means for producing new transport strearns by the time-division muitiplex of the transport streams constructed by multiplexing some programs which are oblained by selecting and demodulating the specific frequency band from the transmitted digital signals, and the first bus interface means for converting the oulputs of the producing means into the data formats which are data transmittable via the data bus; at least one recording/reproducing unit having the third bus interlace means for transmitting and receiving the data between the data bus, and converting the data formats between the data multiplexed trammeled via the data bus and the data having the same data formats as the transport streams, and means for transmitting and receiving the data between the third bus interface means, converting the format between the data conlaining the transport streams and the data containing at least one program stream which is consisted of a single program, and transmitting and receiving the data between the specific recording/reproducing means; and
at least one decoding unit having the fourth bus interface means for converting the data transmitted to the data bus from at least one receiving unit or the data transmitted to the data bus from at least one recording/reproducing unit into the data having the same formats as the transport streams so as to supply them to the specific decoding means.

FIG. 4a
FIG. 4b
FIG. 4c
FIG. 4d

FIG. 10

N

(12)

Europäisches Patentamt
European Patent Office
office europeen des brevets

(45) Date of publication and mention of the grant of the patent: 28.11.2001 Bulletin 2001/48
(21) Application number: 96101743.1
(22) Date of filing: 07.02.1996
(54) Apparatus and method for recording and reproducing data Gerät und Verfahren zur Aufzeichnung und Wiedergabe von Daten
Appareil et méthode pour enregistrer et reproduire des donnèes
(84) Designated Contracting States: DEFR GB
(30) Priority: 09.02 .1995 JP 4637095
(43) Date of publication of application: 14.08.1996 Bulletin 1996/33
(73) Proprietor: MATSUSHITA ELECTRICINDUSTRIAL CO., LTD.
Kadoma-shi, Osaka 571-8501 (JP)
(72) Inventor: Yoneda, Yasushi Ikeda-shi, Osaka (JP)
(74) Representative: Kügele, Bernhard et al NOVAPAT-CABINET CHEREAU, 9, Rue du Valais 1202 Genève (CH)
(56) Relerences cited:

EP-A- 0447293 EP-A- 0521454
EP-A- 0552806 EP-A- 0594241
EP-A- 0606868 EP-A- 0626787
FR-A- 2700908 US-A-5 355353

- PATENT ABSTRACTS OF JAPAN vol. 18, no. 234 (E-1543), 28 April 1994 \& JP-A-06 022273 (VICTOR CO. OF JAPAN, LTD.), 28 January 1994,
- PATENT ABSTRACTS OF JAPAN vol. 94, no. 011 \& JP-A-06 326961 (CANON INC), 25 November 1994,
- PATENT ABSTRACTS OF JAPAN vol. 18, no. 275 (E-1553), 25 May 1994 \& JP-A- 06046366 (VICTOR CO. OF JAPAN, L.TD.), 18 February 1994,
- PATENT ABSTRACTS OFJAPAN vol. 95, no. 001 \& JP-A-07 030851 (FUJITSU GENERAL LTD), 31 January 1995,
- PATENT ABSTRACTS OF JAPAN vol. 18, no. 608 (E-1633), 18 November 1994 \& JP-A-06 233234 (FUJITSU GENERAL LTD.), 19 August 1994,

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description
 BACKGROUND OF THE INVENTION

1. Field of the invention:

[0001] The present invention relates to an apparatus and a method for recording and reproducing video and sound for providing a "time-shift reproduction" function and a "time-shift fast-forward reproduction" function.

2. Description of the Related Art:

[0002] In recent years, the popularization of satellite broadcasting, CATVs and the like has caused a considerable increase in the number of broadcasting channels. As a result, very frequently TV audiences want to watch several TV programs broadcasted in the same time period. Moreover, home-use video apparatuses have also been popularized. Therefore, it is desirable to develop a method for utilizing such apparatuses more efficiently. [0003] A television broadcast recording and reproducing apparatus according to the preamble of present claim 1 is known from the document JP-A-07 030851. This document describes such recorder having an A/D converter for digitally storing a television program in an IC memory. A controller is provided for controlling the recording of the digital data in the $1 C$ memory. This data is recorded sequentially in an FIFO form with time data. [0004] Figure 16 shows an exemplary conventional apparatus for recording and reproducing video and sound, in which a TV set is connected with a video cassette recorder (VCR).
[0005] Hereinafter, the respective components shown in Figure 16 will be described.
[0006] Broadcast receiving sections 1 and 2 receive a broadcast. Typically, the broadcast receiving section 1 is a tuner incorporated into a TV set, and the broadcast receiving section 2 is a tuner incorporated into a VCR. [0007] A video/sound recording section 3 converts the video and the sound output from the broadcast receiving section 2 into a recording signal so as to record the recording signal on a magnetic tape. The magnetic tape is driven by a magnetic tape driving section 4.
[0008] A video/sound reproducing section 5 converts the recording signal recorded on the magnetic tape, thereby reproducing the video and the sound. The video and the sound reproduced by the video/sound reproducing section 5 are supplied to a selective output section 6 . [0009] The selective output section 6 selectively outputs one of the output from the broadcast receiving section 1 and the output from the video/sound reproducing section 5 . The selection in the selective output section 6 is manually determined by a user.
[0010] A video display section 7 displays the video selected by the selective output section 6. A sound output section 8 outputs the sound selected by the selective output section 6 .
[0011] However, in order to reproduce a program now being recorded, a conventional apparatus having the above-described configuration is required to suspend the recording operation once, rewind the magnetic tape and then start the reproducing operation. Therefore, such an apparatus has the following problems.
(1) During recording of a program which is now being broadcasted, it is impossible to reproduce the program from the beginning while continuing recording of the program,
(2) In the case where watching and listening of a program now being broadcasted must be suspended, it is impossible to reproduce the program from the point at which watching and listening of the program was suspended while continuing recording of the program.
(3) In the case where watching and listening of a program now being broadcasted must be suspended, it is impossible to fast-forward reproduce the program from the point at which watching and listening of the program was suspended while continluing recording of the program.
[0012] In addition, it is impossible for a conventional apparatus to simultaneously record a plurality of programs on one and the same magnetic tape. Therefore, in order to simultaneously record a plurality of programs, it has been necessary to provide the same number of recording and reproducing apparatuses as the number of programs.
uration for an apparatus $\mathbf{1 0 0}$ for recording and reproducing video and sound according to a first example of the present invention.
[0017] Figure 2 is a diagram showing a specific configuration for the memory section 30 in the apparatus 100.
[0018] Figure 3 is a diagram showing another specific configuration for the memory section 30 in the apparatus 100.
[0019] Figures 4A to 4D are time charts showing an operation of the apparatus 100 in association with the "time-shift reproduction" function.
[0020] Figures 5A to 5D are time charts showing another operation of the apparatus 100 in association with the "time-shift reproduction" function.
[0021] Figure 6 is a block diagram showing a configuration for an apparatus $\mathbf{2 0 0}$ for recording and reproducing video and sound according to a second example of the present invention.
[0022] Figure 7 is a block diagram showing a configuration for an apparatus 300 for recording and reproducing video and sound according to a third example of the present invention.
[0023] Figure 8 is a block diagram showing a configuration for an apparatus 400 for recording and reproducing video and sound according to a fourth example of the present invention.
[0024] Figure 9 is a block diagram showing a configuration for an apparatus 500 for recording and reproducing video and sound according to a fifth example of the present invention.
[0025] Figures 10A to 10D are time charts showing another operation of the apparatus 500 in association with the "time-shift fast-forward reproduction" function. [0026] Figure 11 is a block diagram showing a configuration for an apparatus 600 for recording and reproducing video and sound according to a sixth example of the present invention.
[0027] Figure 12 is a block diagram showing a configuration for an apparatus 700 for recording and reproducing video and sound according to a seventh example of the present invention.
[0028] Figure 13 is a block diagram showing a configuration for an apparatus 800 for recording and reproducing video and sound according to an eighth example of the present invention.
[0029] Figure 14 is a block diagram showing a configuration for an apparatus 900 for recording and reproducing video and sound according to a ninth example of the present invention.
[0030] Figure 15 is a block diagram showing a configuration for an apparatus 1000 for recording and reproducing video and sound according to a tenth example of the present invention.
[0031] Figure 16 is a block diagram showing a configuration for a conventional apparalus for recording and reproducing video and sound.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0032] Hereinafter, the present invention will be described by way of illustrative examples with reference to the accompanying drawings.

Example 1
10 [0033] Figure 1 shows a configuration for an apparatus 100 for recording and reproducing video and sound according to a first example of the present invention. The apparatus $\mathbf{1 0 0}$ has a "time-shift reproduction" function. The "time-shift reproduction" function is herein dewhich is now being broadcasted, reproducing the program Irom the beginning while continuing recording of the program.
[0034] For example, the "time-shift reproduction" function is effectively applicable to a case where a first half of a program is desired to be watched again while continuing recording of the second half of the program. A user can reproduce the first half of the program from the beginning without waiting for the completion of recording of the second half of the program.
[0035] In addition, the "lime-shift reproduction" function is also effectively applicable to a case where a program is to be recorded from nine p.m. to eleven p.m. using a preset timer during the user's absence (such a recording will be referred to as an "absence recording"); the user comes home at a time during the absence recording (for example, at nine-thirty); and the user wants to start to reproduce the absence-recorded program before eleven o'clock. The user can reproduce the ab-sence-recorded program from the beginning without waiting for the completion of recording of the program. [0036] Moreover, the "time-shift reproduction" function is also effectively applicable to a case where watching and listening of a program now being broadcasted watching and listening to the program from the point at which watching and listening of the program was suspended. The user can reproduce the program from the point at which watching and listening of the program was suspended without waiting for the completion of recording of the program.
[0037] Hereinafter, the respective components of the apparatus $\mathbf{1 0 0}$ will be described with reference to Figure 1.
[003b] A broadcasi receiving section 10 receives a broadcast of video and sound. In general, the broadcast receiving section 10 is configured so as to receive broadcasts of a plurality of channels. The broadcast receiving section 10 selects one channel from a plurality of channels in response to a channel selection signal supplied from an input section 14, so as to output video and sound corresponding to the selected channel to a video/sound recording section 22 and a selective output
section 50. The channel selection signal is input from the input section 14 to the broadcast receiving section 10 via a line 101.
[0039] The video/sound recording section 22 inquires of a memory region management section 31 where the video and the sound supplied from the broadcast receiving section 10 are to be recorded in a memory section 30, and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the inquiry. The video/sound recording section 22 records the video and the sound at the position indicated by the information in the memory section 30 . This positional information is detemined by the memory region management section 31, and is referred to when a time-shift reproduction is made by a video/sound reproducing section 40, as will be described later. This positional information is, for example, an address on a recording medium.
[0040] A recording start signal, a recording end signal and a time-shift reproduction end signal are input from the input section 14 to the video/sound recording section 22 via a line 102. The video/sound recording section 22 starts a recording operation in response to the recording start signal, and ends the recording operation in response to the recording end signal or the time-shift reproduction end signal.
[0041] The memory section 30 has a function of performing the reproduction operation of the video and the sound recorded in the memory section 30 in parallel with performing the recording operation of video and sound in the memory section 30 . For example, the memory section 30 may be an optical disk driving apparatus having a recording head and a reproducing head which can be driven independently from each other, or a hard disk driving apparatus including a plurality of such heads.
[0042] Figure 2 shows a specific configuration for the memory section 30. The memory section 30 includes: a recording head 112 for recording data on a recording medium 110; a reproducing head 114 for reproducing the data recorded on the recording medium 110; a recording controller 116 for controlling the recording head 112; and a reproducing controller 118 for controlling the reproducing head 114.
[0043] The recording controller 116 receives data to be written on the recording medium 110 and the information, e.g., an address on the recording medium 110, indicating a position at which the data is to be written, from the video/sound recording section 22. The recording controller 116 controls the position of the recording head 112 based on the positional information and writes the data into the recording medium 110 via the recording head 112.
[0044] The reproducing controller 118 receives information, e.g., an address on the recording medium 110, indicating a position of the recording medium 110 from which the data is to be read out, from the video/sound reproducing section 40 . The reproducing controller 118 controls the position of the reproducing head 114 based
on the positional information and reads out the data corresponding to the positional information from the recording medium 110 via the reproducing head 114.
[0045] Thus the recording controller 116 and the re5 producing coniroller 118 can be controlled independent of each other. As a result, the recording head 112 and the reproducing head 114 can also be controlled independent of each other. Therefore, it becomes possible to perform the reproduction operation of the video and the sound recorded on the recording medium 110 in parallel with the recording operation of the video and the sound on the recording medium 110.
[0046] Figure 3 shows another specific configuration for the memory section 30 . The memory section 30 in5 cludes an arbitrating section 122 and a random access memory 120.
[0047] The arbitrating section 122 receives a write command from the video/sound recording section 22 and a read command from the video/sound reproducing section 40 . The arbitrating section 122 arbitrates between the write command and the read command, thereby sequentially outputting the write command and the read command to the random access memory 120. As a result, a simultaneous access to the random access memory 120 is prevented. By setting the cycle of the write command and the read command to be given to the random access memory 120 to be sufficiently small, it is possible to consider that the operation of writing the data onto the random access memory 120 can be performed substantially in parallel with the operation of reading out the data from the random access memory 120. Therefore, under such a configuration, it is also possible to perform the operation of reproducing the video and the sound recorded in the memory section 30 in parallel with the operation of recording the video and the sound in the memory section 30.
[0048] Referring back to Figure 1, the video/sound reproducing section 40 reproduces the video and the sound supplied from the memory section 30. A reproduction start signal, a reproduction end signal, a timeshift reproduction start signal and a time-shift reproduction end signal are input from the input section 14 to the video/sound reproducing section 40 via a line 103.
[0049] The video/sound reproducing section 40 starts and ends a normal reproduction operation in response to the reproduction start signal and the reproduction end signal, respectively. In response to the time-shift reproduction start signal, the video/sound reproducing section 40 receives positional information on the video and the sound recorded in the memory section 30 from the memory region management section 31 and then starts to reproduce the video and the sound based on the positional information. In response to the time-shift reproduction end signal, the video/sound reproducing section 40 ends the reproduction operation.
[0050] The memory region management section 31 manages the memory region of the video and the sound recorded in the memory section 30 , and determines a
memory region where a video and a sound is newly recorded. More specifically, the memory region management section 31 has a region A for storing therein the information, e.g., an address on the recording medium, indicating a position in the memory section 30 at which the video and the sound are recorded.
[0051] When the recording start signal is input to the video/sound recording section 22, the video/sound recording section 22 starts the recording operation. The video/sound recording section 22 inquires of the memory region management section 31 where the video and the sound supplied from the broadcast receiving section 10 are to be recorded in the memory section 30, and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the inquiry. The memory region management section 31 determines a position at which the video and the sound are to be recorded, and stores information indicating the position in the region R.
[0052] In the situation where the recording start signal is input to the video/sound recording section 22 again after the recording operation is once ended, new positional information is overwritten in the region A in the memory region management section 31. Thus, the memory region management section 31 holds only the latest positional information.
[0053] When the time-shift reproduction start signal is inpul to the video/sound reproducing section 40, the video/sound reproducing section 40 reads out positional information by reference to the region \mathbf{R} in the memory region management section 31, thereby starting to reproduce the video and the sound from the position indicated by the positional information.
[0054] The selective output section 50 selectively outputs at least one of the video and the sound output from the broadcast receiving section 10 and the video and the sound output from the video/sound reproducing section 40. The selective output section 50 may selectively output either one of the output from the broadcast receiving section 10 and the output from the video/sound reproducing section 40 , or may output both the output from the broadcast receiving section 10 and the output from the video/sound reproducing section 40 by applying priority orders to the two outputs.
[0055] The priority order is used to determine a mode for displaying a video in a video display section 60 or a mode for outputting a sound in a sound output section 70. For example, it is assumed that the selective output section 50 applies a priority order " 1 " to the output from the broadcast receiving section 10 and a priority order " 2 " to the output from the video/sound reproducing section 40 . In this case, the video display section 60 displays the video output from the broadcast receiving section 10 on a main screen and the video output from the video/sound reproducing section 40 on a sub-screen, for example. In a similar manner, the video display section 60 can employ an arbitrary display mode in accordance with the priority order. The sound output section

70 outputs the sound output from the broadcast receiving section 10 at a higher loudness level and the sound output from the video/sound reproducing section 40 at a lower loudness level, for example. In a similar manner,
5 the sound output section 70 can employ an arbitrary output mode in accordance with the priority order.
[0056] The selection in the seleclive output section 50 is made in response to a video/sound selection signal inpul from the input section 14 via a line 104. The video/ o sound selection signal is used by a user for manually switching the output from the broadcast receiving section 10 and the output from the video/sound reproducing section 40. The selection in the selective output section 50 is also made in response to the time-shift reproduc5 tion start signal and the time-shift reproduction end signal input from the input section 14 via the line 104.
[0057] Next, referring to Figures $4 A$ to $4 D$, the operation of the apparatus 100 will be described in association with the "time-shift reproduction" function.
[0058] Figures 4A to 4D show a temporal relationship among the output from the broadcast receiving section 10 (input data); the input to the memory section 30 (recording data); the output from the memory section 30 (reproduced data); and the output from the selective out5 put section 50 (output data).
[0059] In Figures 4A to 4D, each of the numbered squares indicates one unit for recording and reproduction. For example, this square may represent one frame or one field. In addition, this square may represent analog data or digital data.
[0060] When a recording start signal is input from the input section 14 at a time T1, the recording start signal is supplied to the video/sound recording section $\mathbf{2 2}$ via a line 102. As a result, the video/sound recording section 522 starts the recording operation. Consequently, the input data (data $1,2,3,4, \ldots$) are sequentially recorded in the memory section 30 (Figures 4 A and 4 B).
[0061] When a time-shift reproduction start signal is input from the input section 14 at a time T2, the timeo shift reproduction start signal is supplied to the video/ sound reproducing section 40 via a line 103 and to the selective output section 50 via a line 104. As a result, the video/sound reproducing section 40 starts the reproduction operation from the head of the recorded data. Consequently, the recorded data (data 1, 2, 3, 4, ...) are sequentially reproduced as reproduced data from the time T2 (Figure 4C). In addition, the selective output section 50 automatically changes the output thereof so that at least the reproduced data is selectively output. As a result, at least the reproduced data is output from the selective output section 50 as the output data (Figure 4D).
[0062] When a time-shift reproduction end signal is input from the input section 14 at a time T3, the time-shift reproduction end signal is supplied to the video/sound recording section 22 via the line 102, to the video/sound reproducing section 40 via the line 103, and to the selective output section 50 via the line 104. As a result,
the video/sound recording section 22 ends the recording operation; the video/sound reproducing section 40 ends the reproduction operation; and the selective output section $\mathbf{5 0}$ automatically changes the output thereof so that at least the output immediately before the time-shift reproduction start sinal is input is selectively output.
[0063] Thus, the reproduction operation of the video and the sound recorded in the memory section 30 can be performed in parallel with the recording operation of the video and the sound in the memory section 30 from the time T2 to the time T3.
[0064] In the operation exemplified in Figures 4A to $4 D$, the data 9 to 12 are recorded in the memory section 30. However, the data 9 to 12 are not reproduced by the video/sound reproducing section 40. Accordingly, as shown in Figures 5A to 5D, even if the video/sound recording section 22 is made to end the recording operation at a time T4 by inputting the recording end signal from the input section 14 at the time T4, the same operation as that shown in Figures 4A to 4D can be performed.
[0065] Thus, by inputting the recording end signal at the time T4, it is possible to prevent redundant data from being recorded in the memory section $\mathbf{3 0}$. For example, in the case where the length of a program to be recorded is known beforehand, it is possible to input such a recording end signal in good time.
[0066] It is noted that the recording start signal and the recording end signal may be manually input by a user, or may be automatically input at a preset time by utilizing a known function of absence recording.
[0067] In the first example described above, a timeshift reproduction start signal and a time-shift reproduclion end signal are provided separately from a reproduction start signal and a reproduction end signal which have conventionally been used. A method for realizing the generation of such signals most easily, is a method in which the input section 14 generates the reproduction start signal and the reproduction end signal in the case where the user inputs a reproduction start command and a reproduction end command to the input section 14, respectively, and the input section 14 generates the time-shift reproduction start signal and the time-shift reproduction end signal in the case where the user inputs a time-shift reproduction start command and a time-shift reproduction end command to the input section 14, respectively. However, it may be too complex for the user to distinguish the reproduction start command from the time-shift reproduction start command and distinguish the reproduction end command from the time-shift reproduction end command, and to input these commands to the input section 14.
[0068] By additionally providing a state judging section 15 (not shown) for judging whether or not the apparatus $\mathbf{1 0 0}$ is in the recording state, it becomes possible to eliminate the necessity of distinction between the reproduction start command and the time-shift reproduction start command and the distinction between the re-
production end command and the time-shift reproduction end command.
[0069] The state judging section 15 judges whether or not the apparatus $\mathbf{1 0 0}$ is in the recording state. Such 5 a judgement is accomplished, for example, by monitoring the recording start signal and the recording end signal input from the input section 14 to the video/sound recording section 22 . When the reproduction start command is input by the user to the input section 14, the 10 input section 14 inquires whether or not the apparatus 100 is in the recording state of the state judging section 15. In response to the inquiry, the state judging section 15 answers a judgement result to the input section 14. In the case where the judgement result indicates that 15 the apparatus 100 is not in the recording state, the input section 14 generates a reproduction start signal. The reproduction start signal is supplied to the video/sound reproducing section 40 . On the other hand, in the case where the judgement result indicates that the apparatus
20.100 is in the recording state, the input section 14 generates a time-shift reproduction start signal. The timeshift reproduction start signal is supplied to the video/ sound reproducing section 40 and the selective output section 50.
25 [0070] Also, the state judging section 15 judges which of the reproduction start signal and the time-shift reproduction start signal was generated more recently. Such a judgement is accomplished, for example, by monitoring the reproduction start signal and the time-shift reproduction start signal generated by the input section 14. When a reproduction end command is input by the user to the input section 14, the input section 14 inquires which of the reproduction start signal and the time-shift reproduction start signat was generated more recently
[0072] Figure 6 shows a configuration for an appara-
tus 200 for recording and reproducing video and sound according to a second example of the present invention. The configuration of the apparatus 200 is the same as that of the apparatus 100 shown in Figure 1 except that a video/sound compression section 21 and a videol sound expansion section 41 are additionally provided for the apparatus 200. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0073] The video/sound compression section 21 compresses the video and the sound output from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. An arbitrary method can be employed as the compression method or as the expansion method. For example, a compression method or an expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.
[0074] In the second example, not only the effects of the first example can be attained but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the first example as the memory section 30. In the case of using the same memory section 30 as that of the first example in this second example, it is possible to considerably increase the recordable time of the memory section 30.

Example 3

[0075] Figure 7 shows a configuration for an apparalus $\mathbf{3 0 0}$ for recording and reproducing video and sound according to a third example of the present invention. The apparatus 300 has a "time-shift reproduction" function corresponding to multiple channels. The "time-shift reproduction function corresponding to multiple channels is herein defined as a function of, during recording of programs of a plurality of channels which are now being broadcasted, reproducing a piurality of recorded programs from the beginning while continuing recording the plurality of programs.
[0076] Hereinafter, the respective components of the apparatus 300 will be described with reference to Figure 7.
[0077] An N -channel broadcast receiving section 12 receives video and sound of a N number of channels now being broadcasted, where N is a positive integer. [0078] An M-channel selection section 13 selects a M number of channels from the N number of channels in response to a channel selection signal supplied from an input section 16, thereby outputting the video and the sound corresponding to the selected M number of channels to an M-channel video/sound recording section 23.

The channel selection signal is input from the input section 16 to the M-channel selection section 13 via a line 301 , where M is a positive integer and $N \geq M$.
[0079] The M-channel video/sound recording section 23 inquires of a memory region management section 33 where the video and the sound corresponding to the M number of channels selected by the M-channel selection section 13 are to be recorded in a memory section 32, and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the inquiry. The M-channel video/sound recording section 23 records the video and the sound at the position indicated by the information in the memory section 32. This positional information is determined by the memory region management section $\mathbf{3 3}$, and is referred to when a time-shift reproduction is made by a P-channel video/sound reproducing section 42 as will be described later. This positional information is, for example, an address on a recording medium.
[0080] A recording start signal, a recording end signal and a time-shift reproduction end signal are input from the input section 16 to the M-channel video/sound recording section 23 via a line 302. The M-channel video/ sound recording section 23 starts a recording operation in response to the recording start signal, and ends the recording operation in response to the recording end signal or the time-shift reproduction end signal.
[0081] The memory section 32 has a function of performing the reproduction operation of the video and the sound recorded in the memory section 32 in parallel with performing the recording operation of video and sound in the memory section 32. For example, the memory section 32 may be an optical disk driving apparatus having a M number of recording heads and a P number of reproducing heads which can be driven independently from each other, or a hard disk driving apparatus including a plurality of such heads. Alternatively, the memory section 32 may be a random accessible semiconductor memory. The memory section 32 can be configured in the same way as the memory section 30 described with reference to Figures 2 and 3.
[0082] The P-channel video/sound reproducing section 42 selects a P number of channels among a plurality of channels recorded in the memory section 32 in response to the channel selection signal supplied from the input section 16, thereby reproducing the video and the sound corresponding to the selected P number of channels. The P number of channels may be selected among the M number of channels which are being recorded in 50 the memory section 32 and/or a plurality of channels which were previously recorded in the memory section 32. The channel selection signal is input from the input section 16 to the P-channel video/sound reproducing section 42 via a line 303, where P is a positive integer 5 [0083] A reproduction start signal, a reproduction end signal, a time-shift reproduction start signal and a timeshift reproduction end signal are input from the input section 16 to the P-channel video/sound reproducing
section 42 via a line 303.
[0084] The P-channel video/sound reproducing section 42 starts and ends a reproduction operation of the P number of channels in response to the reproduction start signal and the reproduction end signal, respectiveJy. In response to the time-shiff reproduction start signal, the P-channel video/sound reproducing section 42 receives positional information on the video and the sound recorded in the memory section 32 from the memory region management section 33 and then starts to reproduce the video and the sound of the number P of channels based on the positional information. In response to the time-shift reproduction end signal, the P-channet video/sound reproducing section 42 ends the reproduction operation of the P number of channels.
[0085] The memory region management section 33 manages the memory regions of the video and the sound corresponding to a plurality of channels recorded in the memory section 32, and determines a memory region where a video and a sound are newly recorded. More specifically, the memary region management section 33 has a plurality of regions \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{M + K}}$ for storing therein the information, e.g., an address on the recording medium, indicating the position in the memory section 32 at which the video and the sound corresponding to a plurality of channels are recorded.
[0086] When the recording start signal is input to the M -channel video/sound recording section 23, the Mchannel video/sound recording section 23 starts the recording operation of the M number of channels. The M channel video/sound recording section 23 inquires of the memory region management section 33 where the video and the sound supplied from the M-channel selection section 13 are to be recorded in the memory section 32, and obtain information indicating positions at which the video and the sound are to be recorded as a reply to the inquiry. The memory region management section 33 determines positions at which the video and the sound are to be recorded, and stores information indicating the positions in the regions $\mathbf{R}_{\mathbf{1}}$ to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$.
[0087] In the case where the recording start signal is input to the M-channel video/sound recording section 23 again after the recording operation was once ended, new positional information is overwritten in the regions $\mathrm{R}_{\mathbf{1}}$ to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$ in the memory region management section 33. In this way, the memory region management section 33 holds only the latest positional information.
[0088] When the time-shift reproduction start signal is input to the P-channel video/sound reproducing section 42, the P-channel video/sound reproducing section 42 reads out the positional information by reference to a P number of regions of the regions R_{1} to R_{M+K} in the memory region management section 33 , thereby starting to reproduce the video and the sound corresponding to the P number of channels from the position indicated by the positional information.
[0089] The selective output section 51 selectively outputs at least the video corresponding to a Q number of
channels and the sound corresponding to one channel among the video and the sound corresponding to the N number of channels output from the N -channel broadcast receiving section 12 and the video and the sound
an M-channel video/sound compression section 24 and a P-channel video/sound expansion section 44 are additionally provided for the apparatus 400 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be ornitted herein.
[0093] The M-channel video/sound compression section 24 compresses the video and the sound of a M number of channels output from the M -channel selection section 13 by a predetermined method. The P-channel video/sound expansion section 44 expands the video and the sound of a P number of channels output from the P-channel video/sound reproducing section 42 by a predetermined method. An arbitrary method can be employed as the compression method or as the expansion method. For example, a compression method or an expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.
[0094] In the fourth example, not only the effects of the third example can be attained but also the amount of data to be recorded in the memory section 32 can be reduced by compressing the output from the M -channel selection section 13. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the third example as the memory section 32 . In the case of using the same memory section 32 as that of the third example in this fourth example, it is possible to considerably increase the recordable time of the memory section 32.

Example 5

[0095] Figure 9 shows a configuration for an apparatus $\mathbf{5 0 0}$ for recording and reproducing video and sound according to a fifth example of the present invention.
[0096] The apparatus 500 has a "lime-shift fast-forward reproduction" function, The "time-shift fast-forward reproduction" function is herein defined as a function of starting to record a program now being broadcasted at a point where watching and listening of the program was suspended; fast-forward reproducing later the video and the sound which have been recorded from the point where watching and listening of the program was suspended; autornatically stopping the fast-forward reproduction at a point where the video and the sound fastforward reproduced catch up with the video and the sound now being broadcasted; and then automatically switching the former into the latter.
[0097] The "time-shift fast-forward reproduction" function is effectively applicable, for example, to a case where watching and listening of a program now being broadcasted must be suspended and a user later wants to restart to watch and listen to the program from the point where watching and listening of the program was suspended.
[0098] The configuration of the apparatus 500 is the same as that of the apparatus 100 shown in Figure 1
except that a time code generating section 11, a unit thin-out section 20 and a time code comparing section 52 are additionally provided for the apparatus 500. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0099] The time code generating section 11 generates a time code and then applies the time code to one unit of the video and the sound oulput from the broadcast receiving section 10 . When the video and the sound are digital data, the application of the time code is accomplished by adding a plurality of bits representing the time code to the digital data. When the video and the sound are analog data, the application of the time code 5 is accomplished by inserting an analog signal representing the time code during an inter-frame vertical retrace line period, for example. The "time code" herein refers to information for identifying a time. The "one unit" of the video and the sound herein refers to one unit for recording and reproduction. For example, one unit for recording and reproduction may be either one frame or one field. Note that, in this example, an expression "video and sound" means video and sound with a time code applied but for some special limitation.
[0100] The unit thin-out section 20 thins out (or decimates) video and sound with a time code applied at a predetermined ratio. The predeternined ratio is input from the input section 14 to the unit thin-out section 20 via a line 105. For example, in the case where the pre0 determined ratio is 50%, the unit thin-out section 20 thins out one of two units of the video and the sound output from the broadcast receiving section 10. Such a thin-out unit may be either one frame or one field. In this way, the video and the sound thinned out by the unit 5 thin-out section 20 are supplied to the video/sound recording section 22. As a result, the video/sound recording section 22 records the thinned out video and sound in the memory section 30.
[0101] The video/sound reproducing section 40 reproduces the video and the sound recorded in the memory section 30. As described above, the video and the sound recorded in the memory section 30 have been thinned out by the unit thin-out section 20. The video/ sound reproducing section 40 performs a signal processing for the thinned out sound so that the thinned out sound is recognizable as a normal sound by a human being. Any known processing can be employed as the signal processing, e.g., shortening a shadow zone, smoothly connecting the reproduced sounds, or the like. [0102] A time code comparing section 52 compares a time code TC1 of the video and the sound output from the broadcast receiving section 10 with the time code TC2 of the video and the sound output from the video/ sound reproducing section 40 . In the case where the 5 time indicated by the time code TC2 is equal to or later than the time indicated by the time code TC1, the time code comparing section 52 stops the reproduction operation of the video/sound reproducing section 40 and
the recording operation of the video/sound recording section 22, and changes the selection in the selective output section 50 ,
[0103] The selective output section 50 selectively outputs at least one of the video and the sound output from the broadcast receiving section 10 and the video and the sound output from the video/sound reproducing section 40. The selection in the selective output section 50 is made in response to a video/sound selection signal input from the time code comparing section 52. In the case where the video and the sound which have been fast-forward reproduced have caught up with the video and the sound now being broadcasted, the video/sound selection signal is used to switch the video and the sound output from the video/sound reproducing section 40 into the video and the sound output from the broadcast receiving section $\mathbf{1 0}$. The selection in the selective output section 50 is also made in response to a timeshift fast-forward reproduction start signal input from the input section 14 via a line 104.
[0104] Next, referring to Figures 10A to 10D, the operation of the apparatus 500 will be described in association with the "time-shift fast-forward reproduction" function.
[0105] Figures 10A to 10D show a temporal relationship among the output from the broadcast receiving section 10 (input data); the input to the memory section 30 (recording data); the output from the memory section 30 (reproduced data); and the output from the selective output section 50 (output data).
[0106] In Figures 10A to 10D, each of the numbered squares indicates one unit for recording and reproduction. For example, this square may represent one frame or one field. In addition, this square may represent analog data or digital data. Above each numbered square, a time code which is added to the data indicated by the square is shown.
[0107] When a recording start signal is input from the input section 14 at a time T1, the recording start signal is supplied to the video/sound recording section 22 via a line 102. As a result, the video/sound recording section 22 starts the recording operation. Input data (data 5, 7, $9,11, \ldots$) thinned out by the unit thin-out section 20 are supplied to the video/sound recording section 22 . Consequently, the input data thinned out by the unit thin-out section 20 are sequentially recorded in the memory section 30 (Figures 10A and 108).
[0108] When a time-shift fast-forward reproduction start signal is input from the input section 14 at a time T2, the time-shift fast-forward reproduction start signal is supplied to the video/sound reproducing section 40 via a line 103 and to the selective output section $\mathbf{5 0}$ via a line 104. As a result, the video/sound reproducing section 40 starts the reproduction operation from the head of the recorded data. Consequently, the recorded data (data $5,7,9,11, \ldots$) are sequentially reproduced as reproduced data from the time T2 (Figure 10C). In parallel with this reproduction operation, the video/sound re-
cording section 22 continues the recording operation. In addition, in response to the time-shift fast-forward reproduction start signal, the selective output section 50 automatically switches the priority order corresponding
5 to the input data into the priority order corresponding to the reproduced data so that the display of the reproduced data is given a priority. As a result, the reproduced data is output from the selective output section 50 as the output data in a higher priority than the input data
components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0113] The video/sound compression section 21 compresses the video and the sound thinned out by the unit thin-out section 20 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. An arbitrary method can be employed as the compression method or as the expansion method. For example, a compression method or an expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.
[0114] In the sixth example, not only the effects of the fifth example can be attained but also the amount of data to be recorded in the memory section $\mathbf{3 0}$ can be reduced by compressing the output from the unit thin-out section 20. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the fifth example as the memory section 30 . In the case of using the same memory section 30 as that of the lifth example in this sixth example, it is possible to considerably increase the recordable time of the memory section 30.

Example 7

[0115] Figure 12 shows a configuration for an apparatus 700 for recording and reproducing video and sound according to a seventh example of the present invention. The configuration of the apparatus 700 is the same as that of the apparatus $\mathbf{5 0 0}$ shown in Figure 9 except that the unit thin-out section 20 prior to the video/ sound recording section 22 is omitted but a unit thin-out section 45 is additionally provided posterior to the video/ sound reproducing section 40 for the apparatus 700. Therefore, the same components will be identified by the same reference humerals and the description thereof will be omitted herein.
[0116] The apparatus 700 does not perform thin-out processing during the recording operation. As a result, the output from the broadcast receiving section 10 is recorded in the memory section 30 without being thinned out at all. On the other hand, the unit thin-out section 45 thins out the video and the sound reproduced by the video/sound reproducing section 40 at a predetermined ratio during the reproduction operation. The predetermined ratio is input from the input section 14 to the unit thin-out section 45 via a line 106. For example, in the case where the predetermined ratio is 50%, the unit thinout section 45 thins out one of two units of the video and the sound output from the video/sound reproducing section 40 . Such a thin-out unit may be either one frame or one field. In this way, the video and the sound thinned out by the unit thin-out section 45 are supplied to the time code comparing section 52.
[0117] In the seventh example, not only the effects of the fifth example can be attained, but also it is possible
to freely set or change the reproduction speed by performing the thin-out processing for the video and the sound during the reproduction operation. As a resuit, a reproduction satisfying the users' needs can be performed easily.

Example 8

[0118] Figure 13 shows a configuration for an apparatus 800 for recording and reproducing video and sound according to an eighth example of the present invention. The configuration of the apparatus $\mathbf{8 0 0}$ is the same as that of the apparatus $\mathbf{7 0 0}$ shown in Figure 12 except that a video/sound compression section 21 is additionally provided and the unit thin-out section 45 is replaced by a pair of sections consisting of a video/sound expansion section 41 and a unit thin-out section 46. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0119] The video/sound compression section 21 compresses the video and the sound output from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. The unit thin-out section 46 performs a thin-out processing in collaboration with the video/sound expansion section 41. For example, in the case where a compression method俍 such as MPEG1 or MPEG2 is employed, the function of the unit thin-out section 46 and the function of the video/ sound expansion section 41 are accomplished only by expanding a numberl of frames, because the expansion 5 and the unit thin-out can be simultaneously performed by expanding only the Iframes and outputting. As a result, it is possible to efficiently perform the unit thin-out. [0120] In the eighth example, not only the effects of the seventh example can be attained, but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity

Example 9

[0121] Figure 14 shows a configuration for an apparatus 900 for recording and reproducing video and ording to a ninth example of the present in vention. The configuration of the apparatus 900 is the same as that of the apparatus $\mathbf{7 0 0}$ shown in Figure 12 except that a unit thin-out section $\mathbf{2 0}$ is additionally pro-
vided prior to the video/sound recording section 22 for the apparatus 900 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0122] The apparatus 900 periorms thin-out processing during both the recording operation and the reproduclion operation.
[0123] The unit thin-out section 20 thins out the video and the sound output from the broadcast receiving section 10 at a predetermined ratio during the recording operation. The predetermined ratio is input from the input section 14 to the unit thin-out section 20 via a line 105. The video and sound thinned out by the unit thin-out section 20 are recorded in the memory section 30 .
[0124] The unit thin-out section 45 thins out the video and the sound reproduced by the video/sound reproducing section 40 at a predetermined ratio during the reproduction operation. The predetermined ratio is input from the input section 14 to the unit thin-out section 45 via a line 106. The video and sound thinned out by the unit thin-out section 45 are supplied to the time code comparing section 52. The thin-out ratio in the unit thin-out section 20 and the thin-out ratio in the unit thin-out section 45 can be adjusted independently.
[0125] In the ninth example, not only the effects of the seventh example can be attained, but also the amount of data to be recorded in the memory section 30 can be reduced by recording the thinned out video and sound in the memory section 30. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the seventh example as the memory section 30. In the case of using the same memory section 30 as that of the seventh example in this ninth example, it is possible to considerably increase the recordable time of the memory section $\mathbf{3 0}$.

Example 10

[0126] Figure 15 shows a configuration for an apparatus $\mathbf{1 0 0 0}$ for recording and reproducing video and sound according to a tenth example of the present invention. The configuration of the apparatus 1000 is the same as that of the apparatus 900 shown in Figure 14 except that a video/sound compression section 21 is additionally provided and the unit thin-out section 45 is replaced by a pair of sections consisting of a video/sound expansion section 41 and a unit thin-out section 46. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.
[0127] The video/sound compression section 21 compresses the video and the sound output from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the vid$e 0$ and the sound output from the video/sound reproducing section 40 by a predetermined method. The unit thin-out section 46 performs thin-out processing in col-
laboration with the video/sound expansion section 41. For example, in the case where a compression method for performing an inter-frame or an inter-field coding such as MPEG1 or MPEG2 is employed, the function of 5 the unit thin-out section $\mathbf{4 6}$ and the function of the videol sound expansion section 41 are accomplished only by expanding a number l of frames, because the expansion and the unit thin-out can be simultaneously performed by expanding only the I frames and outputting. As a result, it is possible to efficiently perform unit thin-out. [0128] In the tenth example, not only the effects of the ninth example can be attained, but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the ninth example as the memory section 30 . In. the case of using the same memory section 30 as that 20 of the ninth example in this tenth example, it is possible to considerably increase the recordable time of the memory section 30.
[0129] In all the foregoing Examples 1 to 10 , all of the components can be embodied in physical devices. Alternatively, it is also possible to realize the functions of these components by using software controllable by a CPU. Those skilled in the art should readily understand that the functions other than that of the broadcast receiving section 10 and that of the memory section 30, in particular, can be easily realized by software.
[0130] According to the present invention, it is possible to realize a "time-shift reproduction" function, during recording a program now being broadcasted, of reproducing the program from the beginning while continuing recording the program. As a result, in the case where watching and listening of a program now being broadcasted must be suspended, it is possible to restart to watch and listen to the program later from the point where watching and listening of the program was sus40 pended. In addition, such a "time-shift reproduction" function corresponding to multiple channels is also realizable.
[0131] Moreover, according to the present invention, it is also possible to realize a "time-shift fast-forward reproduction" function. As a result, in the case where watching and listening of a program now being broadcasted must be suspended, it is possible to restant to watch and listen to the program later from the point where watching and listening of the program was suspended. By thinning out data during the recording operation, the amount of data to be recorded in the memory section 30 can be reduced. In addition, by thinning out data during the reproduction operation, it is possible to freely set or change the reproduction speed during the reproduction operation. As a result, it is possible to easily perform a reproduction operation satisfying the users' needs.
[0132] Furthermore, by compressing data during the
recording operation and by expanding data during the reproduction operation, the amount of data to be recorded in the memory section $\mathbf{3 0}$ can be reduced.

Claims

1. An apparatus (100) for recording and reproducing data, comprising:
receiving means (10) for receiving input data; recording means (22) for recording the input data on a recording medium (110);
memory means (30) for storing said recorded input data, said memory means comprising said recording medium (110);
managing means (31) for managing information indicating a position of the input data in said memory means (30);
reproducing means (40) for reproducing the data recorded on the recording medium (110), based on the information managed by the managing means (31) during recording of the input data on the recording medium;
selective output means (50) for selectively outputting at least one of the input data and the data reproduced by the reproducing means, and
input means (14) for inputting user control signals for controlling said recording means (22), said reproducing means (40) and said selective output means (50),
characterised in that said memory means
(30) further comprises

- a recording head (112) for recording data on said recording medium (110);
- a reproducing head (114) for reproducing the recorded data;
- a recording controller (116) for controlling said recording head (112); and
- a reproducing controller (118) for controlling said reproducing head (114),
wherein said input means (14) are arranged to control the operation of at least said recording controller (116).

2. An apparatus according to claim 1 , further comprising compression means (21) for compressing the input data and expansion means (41) for expanding the data reproduced by the reproducing means.
3. An apparatus according to claim 1, wherein the selective output means (50) comprises means (104) for applying a priority order to each of the input data and the reproduced data,
and wherein the apparatus further comprises display means (60) for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
4. An apparatus (300) for recording and reproducing data of a plurality of channels, comprising:
receiving means (12) for receiving input data of an N number of channels;
first selection means (13) for selecting an M number of channels among the N number of channels;
recording means (23) for recording on a recording medium the input data of the M number of channels selected by the first selection means; memory means (32) for storing said recorded input data, said memory means comprising said recording medium (110);
managing means (33) for managing information indicating a position of the input data of the M number of channels in said memory means (32);
second selection means (303) for selecting a P number of channels among a plurality of channels recorded on the recording medium;
reproducingmeans (42) for reproducing the data of the P number of channels selected by the second selection means among the plurality of channels recorded on the recording medium based on the information managed by the managing means (33), during recording of the input data of the M number of channels on the recording medium;
selective output means (51) for selectively outputting at least one of the input data of the N number of channels and the data of the P number of channels reproduced by the reproducing means (42), and
input means (14) for inputting user control signals for controlling said recording means (22), said reproducing means (40) and said selective output means (50),
wherein N, M and P are positive integers and wherein $N \geq M$, wherein said memory means (32) further comprises

- a recording head (112) for recording data on said recording medium (110);
- a reproducing head (114) for reproducing the recorded data;
- a recording controiler (116) for controlling said recording head (112); and
- a reproducing controller (118) for controlling said reproducing head (114),
and wherein said input means (14) are arranged to control the operation of at least said recording controller (116).

5. An apparatus according to claim 4 , further comprising compression means (24) for compressing the input data and expansion means (44) for expanding the data reproduced by the reproducing means.
6. An apparatus according to claim 4, wherein the selective output means (51) comprises means (304) for applying a priority order to each of the input data and the reproduced data,
and wherein the apparatus further comprises display means (61) for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
7. An apparatus according to claim 1, wherein said apparatus (500) further comprises:
time code generating means (11) for generating a time code and applying the time code to the input data;
thin-out means (20) for thinning out the input data with the time code at a predetermined ratio;
said recording means (22) arranged to record on said recording medium the input data with the time code which have been thinned out by the thin-out means;
said managing means (31) arranged to manage information indicating the position of the input data with the time code recorded on the recording medium;
said reproducing means (40) arranged to reproduce the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium;
comparing means (52) for comparing the time code of the input data with the time code of the data reproduced by the reproducing means; and
said selective output means (50) arranged to selectively output at least one of the input data and the data reproduced by the reproducing means based on a comparison result obtained by the comparing means.
8. An apparatus according to claim 7 , further comprising compression means (21) for compressing the input data with the time code which have been thinned out by the thin-out means and expansion means (41) for expanding the data with the time code which have been reproduced by the reproduc-
ing means.
9. An apparatus according to claim 7 wherein the selective output means (50) comprises means (104) for applying a priority order to each of the input data with the time code and the reproduced data with the time code,
and wherein the apparatus further comprises display means (60) for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
10. An apparatus according to claim 1, wherein said apparatus further comprises:
time code generating means (11) for generating a time code and applying the time code to the input data;
said recording means (22) arranged to record on said recording medium the input data with the time code;
said managing means (31) arranged to manage information indicating the position of the input data with the time code recorded on the recording medium;
said reproducing means (40) arranged to reproduce the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium;
thin-out means (45) for thinning out the data with the time code reproduced by the reproducing means (40) at a predetermined ratio;
comparing means (52) for comparing the time code of the input data with the time code of the data thinned out by the thin-out means (45); and
said selective output means (50) arranged to selectively output at least one of the input data and the data thinned out by the thin-out means (45) based on a comparison result oblained by the comparing means.
11. An apparatus according to claim 10, further comprising compression means (21) for compressing the input data with the time code and expansion means (41) for expanding the data with the time code which have been reproduced by the reproducing means (40).
12. An apparatus according to claim 10, wherein the selective output means (50) comprises means (104) for applying a priority order to each of the input data with the time code and the thinned out data with the time code,
and wherein the apparatus further comprises
display means (60) for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the prionity order.
13. An apparatus according to claim 1 , wherein said apparatus further comprises:
time code generating means (11) for generating a time code and applying the time code to the input data;
first thin-out means (20) for thinning out the input data with the time code at a first ratio;
said recording means (22) arranged to record on said recording medium the input data with the time code which have been thinned out by the first thin-out means;
said managing means (31) arranged to manage information indicating the position of the input data with the time code recorded on the recording medium;
said reproducing means (40) arranged to reproduce the data with the time code recorded on the recording medium, based on the information managed by the managing means (31), during recording of the input data with the time code on the recording medium;
second thin-aut means (45) for thinning out the data with the time code reproduced by the reproducing means at a second ratio;
comparing means (52) for comparing the time code of the input data with the time code of the data thinned out by the second thin-out means (45); and
said selective output means (50) arranged to selectively outpur at least one of the input data and the data thinned out by the second thin-out means (45) based on a comparison result obtained by the comparing means (52).
14. An apparatus according to claim 13, further comprising compression means (21) for compressing the input data with the time code which have been thinned out by the first thin-out means and expansion means (41) for expanding the data with the time code which have been reproduced by the reproducing means.
15. An apparatus according to claim 13 , wherein the selective output means (50) comprises means (104) for applying a priority order to each of the input data with the time code and the thinned out data with the time code;
and wherein the apparatus further comprises display means (60) for displaying an output from the selective output means (50) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
16. A method of recording and reproducing data, comprising the steps of:
(a) receiving input data;
(b) recording the input data on a recording medium;
(c) managing information indicating a position of the input data on the recording medium;
(d) reproducing the data recorded on the recording medium, based on the information managed in step (c), during recording of the input data on the recording medium such that said reproduction step is performed in parallel with said recording step;
(e) selectively outpulting at least one of the input data and the data reproduced in the step (d); and
further comprising the step of inputting liser control signais for controlling at least said recording step b).
17. A method according to claim 16 , further comprising a step of compressing the input data and a step of expanding the reproduced data.
18. A method according to claim 16, wherein the step (e) comprises a step of applying a priority order to each of the input data and the reproduced data,
and wherein the method further comprises a step of displaying the selective output in the step (e) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
19. A method of recording and reproducing data of a plurality of channels, comprising the steps of:
(a) receiving input data of an N number of channels;
(b) selecting an M number of channels among the N number of channels;
(c) recording on a recording medium the input data of the M number of channels selected in the step (b);
(d) managing information indicating a position of the input data of the M number of channels recorded on the recording medium;
(e) selecting a P number of channels among a plurality of channels recorded on the recording medium;
(f) reproducing the data of the P number of channels selected in the step (e) among the plurality of channels recorded on the recording medium, based on the information managed in the step (d), during recording of the input data of the M number of channels on the recording medium such that said reproduction step is per-
formed in parallel with said recording step;
(g) selectively outputting at least one of the input data of the N number of channels and the reproduced data of the P number of channels,
wherein N, M and P are positive integers and wherein $N \geq M$, and
further comprising the step of inputting user control signals for controlling at least said recording step b).
20. A method according to claim 19 , further comprising a step of compressing the input data and a step of expanding the reproduced data.
21. A method according to claim 19, wherein the step (g) comprises a step of applying a priority order to each of the input data and the reproduced data,
and wherein the method further comprises a step of displaying the selective output in the step (g) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
22. A method according to claim 16, comprising, after step a) and before step b), the additional steps of:
(i) generating a time code and applying the time code to the input data;
(ii) thinning out the input data with the time code at a predetermined ratio;
and, after step d) and before step e), the additional step of
(iii) comparing the time code of the input data with the time code of the data reproduced in the step (d); and
wherein said step e) of selectively outputting at least one of the input data and the reproduced data is based on the comparison result obtained in the step (iii).
23. A method according to claim 22, further comprising a step of compressing the input data with the time code which have been thinned out in the step (ii) and a step of expanding the data with the time code which have been reproduced in the step (d).
24. A method according to claim 22, wherein the step (i) comprises a step of applying a priority order to each of the input data with the time code and the reproduced data with the time code,
and wherein the method further comprises a step of displaying the selective output in the step (e) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
25. A method according to claim 28 , wherein the step (e) comprises a step of applying a priority order to each of the input data with the time code and the thinned out data with the time code,
and wherein the method further comprises a step of displaying the selective output in the step (e) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

Patentansprüche

1. Vorrichtung (100) zum Aufzeichnen und Wiedergeben von Daten mit:
einer Empfangsvorrichtung (10) zum Empfangen von Eingabedaten:
eine Aufzeichnungsvorrichtung (22) zum Autzeichnen der Eingabedaten aut einem Autzeichnungsmedium (110);
einer Speichervorrichtung (30) zum Speichern der aufgezeichneten Eingabedaten, wobei die Speichervorrichtung das Aufzeichnungsmedium (110) aufweist;
einer Verwaltungsvorrichtung (31) zur Verwaltung einer Information, welche eine Position der Eingabedaten in bzw. auf der Speichervorrichtung (30) verwaltet;
einer Wiedergabevorrichtung (40) zum Wiedergeben der Daten, welche auf dem Aufzeichnungsmedium (110) aufgezeichnet sind, basierend auf der Information, welche von der Verwaltungsvorrichtung (31) verwaltet wird während der Aufzeichnung der Eingabedaten auf dem Aufzeichnungsmedium;
einer selektiven Ausgabevorrichtung (50) zum selektiven Ausgeben von mindestens den Eingabedaten oder den Daten, welche von der Wiedergabevorrichtung wiedergegeben wurden, und
einer Eingabevorrichtung (14) zum Eingeben von Benutzer-Steuer-Signalen zum Steuern der Aufzeichnungsvorrichtung (22), der Wiedergabevorrichtung (40) und der selektiven Ausgabevorrichtung (50),
dadurch gekennzeichnet, dass die Speichervorrichtung (30) weiter aufweist:

- einen Aufzeichnungskopf (112) zum Aufzeichnen von Daten auf dem Aufzeichnungsmedium (110);
- einen Wiedergabekopf (114) zum Wiedergeben der aufgezeichneten Daten;
- eine Aufzeichnungssteuerung (116) Zum Steuern des Aufzeichnungskopfes (112); und
- eine Wiedergabesteuerung (118) zur Steue-
rung des Wiedergabekopfes (114) wobei die Eingabevorrichtung (14) so angeordnet bzw. ausgelegt ist, dass sie die Arbeitsweise von mindestens der Aulzeichnungssteuerung (116) steuert.

2. Vorrichtung nach Anspruch 1 weiter aufweisend eine Kompressions-Vorrichtung (21) zum Komprimieren der Eingabedaten und eine Expansionsvorrichtung (41) zum Expandieren der Daten, welche von der Wiedergabevorrichtung wiedergegeben werden.
3. Vorrichtung nach Anspruch 1, wobei die selektive Ausgabevorrichtung (50) eine Vorrichtung (104) aufweist zum Anwenden bzw. Anlegen einer Priori-tâts-Reihenfolge bei allen Eingabedaten und wiedergegebenen Daten
und wobei die Vorrichtung weiter eine Anzeigevorrichtung (60) aufweist zum Anzeigen einer Ausgabe von der selektiven Ausgabevorrichtung in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus verändert wird in Abhängigkeit von der Prioritäts-Reihenfolge.
4. Vorrichtung (300) zum Aufzeichnen und Wiedergeben von Daten von einer Mehrzahl von Kanälen mit:
einer Empfangsvorrichtung (12) zum Empiangen von Eingabedaten von einer Anzahi N von Kanälen;
einer ersten Auswāhlvorrichtung (13) zum Auswählen einer Anzaht M von Kanälen aus der Anzaht N von Kanälen;
einer Aufzeichnungsvorrichtung (23) zur Aufzeichnuing der Eingabedaten der Anzahl M der Kanäle, welche von der ersten Auswähivorrichtung ausgewähtt wurden, auf einem Aufzeichnungsmedium;
einer Speichervorrichtung (32) zum Speichem der aufgezeichneten Eingabedaten, wobei die Speichervorrichtung das Aufzeichnungsmedium (110) aufweist;
einer Verwaltungsvorrichtung (33) zum Verwalten einer Information, welche eine Position der Eingabedaten der Anzahi M der Kanale in der Speichervorrichtung (32) anzeigt;
einer zweiten Auswählvorrichtung (303) zum Auswählen einer Anzahl P von Kanälen aus einer Mehrzahi von Kanälen, welche auf dem Aufzeichnungsmedium aufgezeichnet wurden; einer Wiedergabevorrichtung (42) zur Wiedergabe der Daten der Anzahl P der Kanäle, welche ausgewählt wurde von der zweiten Auswählvorrichtung aus der Mehrzahl der Kanäle, welche auf dem Aulzeichnungsmedium aufgezeichnet wurden, basierend auf der Information, welche von der Verwaltungsvorrichtung
(33) verwaltet wird, wahrend der Aufzeichnung der Eingabedaten der Anzaht M der Kanäle auf dem Aufzeichnungsmedium;
einer selektiven Ausgabevorrichtung (51) zum selektiven Ausgeben von mindestens den Eingabedaten der Anzahl N der Kanăle oder den Daten der Anzahi P der Kanäle, weiche von der Wiedergabevorrichtung (42) wiedergegeben werden, und
einer Eingabevorrichtung (14) zum Eingeben von Benutzer-Steuer-Signalen zum Steuern der Aufzeichnungsvorrichtung (22), der Wiedergabevorrichtung (40) und der selektiven Ausgabevorrichtung (50),
wobei N, M und P positive ganze Zahlen sind und wobei $N \geq M$, wobei die Speichervorrichtung (32) weiter aufweist:

- einen Aufzeichnungskopf (112) zurn Aufzeichnen von Daten aut dem Autzeichnungsmedium (110);
- einen Wiedergabekopf (114) zum Wiedergeben der aufgezeichneten Daten;
- eine Aufzeichnungssteuerung (116) zum Steuern des Aufzeichnungskopfes (112); und
- eine Wiedergabesteuerung (118) zur Steuerung des Wiedergabekopfes (114)
und wobei die Eingabevorrichtung (14) so angeordnet bzw. ausgelegt ist, dass sie die Arbeitsweise von mindestens der Aufzeichnungssteuerung (116) steuert.

5. Vorrichtung nach Anspruch 4 weiter aufweisend eine Kompressionsvorrichtung (24) zum Komprimieren der Eingabedaten und eine Expansionsvorrichtung (44) zurn Expandieren der Daten, welche von der Wiedergabevorrichtung wiedergegeben werden.
6. Vorrichtung nach Anspruch 4, wobei die selektive Ausgabevorrichtung (51) eine Vorrichtung (304) aufweist zum Anwenden bzw. Anlegen einer Priori-tâts-Reihenfolge bei allen Eingabedaten und wiedergegebenen Daten
und wobei die Vorrichtung weiter eine Anzeigevorrichtung (61) aufweist zum Anzeigen einer Ausgabe von der selektiven Ausgabevorrichtung in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus verảndert wird in Abhängigkeit von der Priorităts-Reihenfolge.
7. Vorrichtung nach Anspruch 1, wobei die Vorrichtung (500) weiter autweist:
eine Zeit-Code-Erzeugungsvorrichtung (11) zur Erzeugung eines Zeit-Codes und zum An-
legen bzw. Zuführen des Zeit-Codes an die Eingabedaten;
eine Ausdünn(thin-out)vorrichtung (20) zum Ausdünnen der Eingabedaten mit dem Zeit-Code bei einem vorgegebenen Verhältnis:
wobei die Aufzeichnungsvorrichtung (22) so ausgelegt ist, dass sie die Eingabedaten mit dem Zeit-Code auf dem Aufzeichnungsmedium autzeichnet, welche von der Ausdünnvorrichtung ausgedünnt wurden;
wobei die Verwaltungsvorrichtung (31) so ausgelegt ist, dass sie eine Information verwaitet, welche die Position der Eingabedaten mit dem Zeit-Code, welche auf dem Aufzeichnungsmedium aufgezeichnet sind, angibt;
wobei die Wiedergabevorrichtung (40) so ausgelegt bzw. angeordnet ist, dass sie die Daten mit dem Zeit-Code, welche auf dem Aufzeichnungsmedium aufgezeichnet sind, wiedergibt, basierend auf der Information, welche von der Verwaltungsvorrichtung verwaltet wird, während der Aufzeichnung der Eingabedaten mit dem Zeit-Code auf dem Aufzeichnungsmedium;
eine Vergleichsvorrichtung (52) zum Vergleichen des Zeit-Codes der Eingabedaten mit dem Zeit-Code der Daten, welche von der Wiedergabevarrichtung wiedergegeben werden; und
wobei die selektive Ausgabevorrichtung (50) so ausgelegt ist, dass sie selektiv mindestens die Eingabedaten oder die Daten, welche von der Wiedergabevorrichtung wiedergegeben werden, ausgibt, basierend auf einem Vergleichsergebnis, welches von der Vergleichsvorrichtung erhalten wird.
8. Vorrichtung nach Anspruch 7 weiter autweisend eine Kompressionsvorrichtung (21) zum Komprimieren der Eingabedaten mit dem Zeit-Cade, welche ausgedünnt wurden von der Ausdünnvorrichtung und eine Expansionsvorrichtung (41) zum Expandieren der Daten mit dem Zeit-Code, welche von der Wiedergabevortichtung wiedergegeben wurden.
9. Vorrichtung nach Anspruch 7, wobei die selektive Ausgabevorrichtung (50) eine Vorrichtung (104) aufweist zum Anlegen bzw. Festlegen einer Priori-täts-Reihenfolge für alle Eingabedaten mit dem Zeit-Code und die wiedergegebenen Daten mit dem Zeit-Code,
und wobei die Vorrichtung weiter eine Anzeigevorrichtung (60) aufweist zum Anzeigen einer Ausgabe von der selektiven Ausgabevorrichtung in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus in Abhängigkeit von der Prioritäts-Reihenfolge verändert wird.
10. Vorrichtung nach Anspruch 1, wobei die Vorrich tung weiler autweist:
eine Zeit-Code-Erzeugungsvorrichtung (11) zum Erzeugen eines Zeit-Codes und zum Anlegen bzw. Zuführen des Zeit-Codes zu den Eingabedaten;
wobei die Aufzeichnungsvorrichtung (22) so auslegt ist, um auf dem Aufzeichnungsmedium die Eingabedaten mit dem Zeit-Code aufzuzeichnen;
wobei die Verwaltungsvorrichtung (31) so ausgelegt ist t_{x} dass sie eine information verwaltet, welche die Position der Eingabedaten mit dem Zeit-Code angibt, welche aut dem Aufzeichnungsmedium aufgezeichnet sind;
wobei die Wiedergabevorrichtung (40) so ausgelegt ist um die Daten mit dem Zeit-Code wiederzugeben, welche auf dem Aufzeichnungsmedium aufgezeichnet sind, basierend auf der Information, welche von der Verwaltungsvorrichtung verwaltet wird, während der Aufzeichnung der Eingabedaten mit dem Zeit-Code auf dem Aulzeichnungsmedium;
eine Ausdünn(thin-out)vorrichtung (45) zum Ausdünnen der Daten mit dem Zeit-Code, welche von der Wiedergabevorrichtung (40) wiedergegeben werden, bei einem vorgegebenen Verhältnis;
eine Vergleichsvorrichtung (52) zum Vergleichen des Zeit-Codes der Eingabedaten mit dern Zeit-Code der Daten, welche von der Ausdünnvorrichtung (45) ausgedûnnt wurden; und wobei die selektive Ausgabevorrichtung (50) so ausgelegt ist, um selektiv mindestens die Eingabedaten oder die Daten, welche von der Ausdünnvorrichtung (45) ausgedünnt wurden, selektiv auszugeben, basierend aul einem Vergleichsergebnis, weiches von der Vergleichsvorrichtung erhatten wurde.
11. Vorrichtung nach Anspruch 10 weiter aufweisend eine Kompressionsvorrichtung (21) zum Komprimieren der Eingabedaten mit dem Zeit-Code und eine Expansionsvorrichtung (41) zum Expandieren der Daten mit dem Zeit-Code, welche von der Wiedergabevorrichtung (40) wiedergegeben wurden.
12. Vorrichtung nach Anspruch 10, wobel die selektive Ausgabevorrichtung (50) eine Vorrichtung (104) aufweist zum Anlegen bzw. Festlegen einer Priori-täts-Reihenfolge für alle Eingabedaten mit dem Zeit-Code und die ausgedünnten Daten mit dem Zeit-Code,
und wobei die Vorrichtung weiter eine Anzeigevorrichtung (60) aufweist zum Anzeigen einer Ausgabe von der selektiven Ausgabevorrichtung in einern vorgegebenen Modus bzw. Betriebsart, wo-

Ausgabevorrichtung (50) eine Vorrichtung (104) aufweist zum Anlegen bzw. Festlegen einer Priori-täts-Reihenfolge für alle Eingabedaten mit dem Zeit-Code und die ausgedünnten Daten mit dem Zeit-Code,
und wobei die Vorrichtung weiter eine Anzeigevorrichtung (60) aufweist zum Anzeigen einer Ausgabe von der seiektiven Ausgabevorrichtung (50) in einern vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus in Abhängigkeit von der Prioritäts-Reihenfolge verändert wird.
16. Verfahren zur Aufzeichnung und Wiedergabe von Daten mit den Schritten:
a) Empfangen von Eingabedaten;
b) Aufzeichnen der Eingabedaten auf einem Aufzeichnungsmedium;
c) Verwalten einer information, welche eine Position der Eingabedaten auf dem Aufzeichnungsmedium angibt;
d) Wiedergeben der Daten, welche auf dem Aufzeichnungsmedium aufgezeichnet wurden, basierend auf der Information, welche in Schritt (c) verwaltet wird, während der Aufzeichnung der Eingabedaten auf dem Aufzeichnungsmedium, so dass der Wiedergabe-Schritt parallel zu dem Aufzeichnungs-Schritt durchgeführt wird;
e) selektives Ausgeben von mindestens den Eingabedaten oder den Daten, welche bei Schritt (d) wiedergegeben wurden; und
weiter aufweisend den Schritt des Eingebens von Benutzer-Steuer-Signalen zum Steuern von mindestens dem Aufzeichnungsschritt (b).
17. Verfahren nach Anspruch 16, weiter autweisend einen Schritt zum Komprimieren der Eíngabedaten und einen Schritt zum Expandieren der wiedergegebenen Daten.
18. Verfahren nach Anspruch 16, wobei der Schritt (e) einen Schritt zum Anlegen bzw. Anwenden einer Prioritäts-Reihenfolge bei allen Eingabedaten und den wiedergegebenen Daten aufweist,
und wobei das Verfahren weiter einen Schritt zum Anzeigen der selektiven Ausgabe bei dem Schritt (e) in einern vorgegebenen Modus bzw. Betriebsart umfasst, wobei der vorgegebene Modus in Abhăngigkeit von der Priontăts-Reihenfolge verändert wird.
19. Verfahren zur Aufzeichnung und Wiedergabe von Daten von einer Mehrzahl von Kanälen mit den Schritten:
a) Empfangen von Eingabedaten von einer An-
zahi N von Kanälen;
b) Auswählen einer Anzahi M von Kanälen aus der Anzahi N von Kanälen;
c) Aufzeichnen der Eingabedaten der Anzahl M der Kanăle, welche bei dem Schritt (b) ausgewählt wurden, auf einem Aufzeichnungsmedium;
d) Verwalten einer Information, welche eine Position der Eingabedaten der Anzahl M der Kanäle angibt, welche auf dem Autzeichnungsmedium aufgezeichnet wurden;
e) Auswählen einer Anzaht P von Kanälen aus einer Mehrzahi von Kanälen, welche auf dem Aufzeichnungsmedium aufgezeichnet wurden; f) Wiedergeben der Daten der Anzahl P der Kanäle, weiche in dem Schritt (e) aus der Mehrzahl der Kanäle, welche aut dem Aufzeichnungsmedium aufgezeichnet wurden, ausgewähit wurden, basierend aut der Information, welche in dem Schritt (d) verwaltet wurde, während der Aufzeichnung der Eingabedaten der Anzahl M der Kanãle auf dem Aufzeichnungsmedium, so dass der Wiedergabe-Schritt parallel zu dem Aufzeichnungs-Schritt durchgeführt wird;
g) selektives Ausgeben von mindestens den Eingabedaten der Anzahl N der Kanäle oder den wiedergegebenen Daten der Anzahl P der Kanăie,
wobei N, M und P positive ganze Zahlen sind und wobei $N \geq M$ und
weiter aufweisend den Schritt des Eingebens. von Benutzer-Steuer-Signalen zurn Steuern von mindestens dem Aufzeichnungs-Schritt (b).
20. Verfahren nach Anspruch 19 weiter aufweisend einen Schritt zum Komprimieren der Eingabedaten und einen Schritt zum Expandieren der wiedergegebenen Daten.
21. Verfahren nach Anspruch 19, wobei der Schritt (g) einen Schritt des Anwendens bzw. Anlegens einer Prioritäts-Reihenfolge bei alien Eingabedaten und den wiedergegebenen Daten umfasst,
und wobei das Verfahren weiter einen Schritt zum Anzeigen der selektiven Ausgabe in dem Schritt (g) in einem vorgegebenen Modus bzw, Betriebsart umfasst, wobei der vorgegebene Modus in Abhängigkeit von der Prioritäts-Reihenfolge verändert wird.
22. Verfahren nach Anspruch 16 mit den zusätzlichen Schritten nach Schritt a) und vor Schritt b):

[^0](ii) Ausdünnen der Eingabedaten mit dem ZeitCode bei einem vorgegebenen Verhaltnis; und nach dem Schritt d) und vor dem Schritt e) den zusäzzlichen Schritt
(iii) Vergleichen des Zeit-Codes der Eingabedaten mit dern Zeit-Code der Daten, welche in dem Schritt (d) wiedergegeben wurden; und wobei der Schritt e) der selektiven Ausgabe von mindestens den Eingabedaten oder den wiedergegebenen Daten auf dem Vergleichsergebnis basiert, welches in dem Schritt (iii) erhalten wurde.
23. Verfahren nach Anspruch 22 weiter aufweisend einen Schritt der Komprimierung der Eingabedaten mit dem Zeit-Code, welche ausgedünnt wurden in dern Schritt (ii) und einen Schritt der Expandierung der Daten mit dem Zeit-Code, welche in dem Schritt (d) wiedergegeben wurden.
24. Verfahren nach Anspruch 22, wobei der Schritt (i) einen Schritt umfasst zum Anlegen bzw. Anwenden einer Priorităts-Reihenfolge bei allen Eingabedaten mit dem Zeit-Code und den wiedergegebenen Daten mit dem Zeit-Code,
und wobei das Verfahren weiter einen Schritt aufweist zum Anzeigen der selektiven Ausgabe bei dem Schritt (e) in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus in Abhängigkeit von der Prioritäts-Reihenfolge verändert wird.
25. Verfahren nach Anspruch 16, mit dem zusätzlichen Schritt nach Schritt a) und vor Schritt b):
(i) Erzeugen eines Zeit-Codes und Anlegen bzw. Anwenden des Zeit-Codes bei den Eingabedaten;
und nach Schritt d) und vor Schritt e) mit den folgenden Schritten:
(ii) Ausdünnen der Daten mit dem Zeit-Code, welche in dem Schritt (e) wiedergegeben wurden bei einem vorgegebenen Verhältnis; und
(iii) Vergleichen des Zeit-Codes der Eingabedaten mit dem Zeit-Code der bei dem Schritt (ii) ausgedünnten Daten;
wobei der Schritt (e) der selektiven Ausgabe von mindestens den Eingabedaten und den in dem Schritt (ii) ausgedünnten Daten auf dem Verglaichsergebnis basiert, welches bei dem Schritt (iii) erhalten wurde.
26. Verfahren nach Arspruch 25 weiter aufweisend einen Schritt der Komprimierung der Eingabedaten mit dem Zeit-Code und einen Schritt der Expandierung der Daten mit dem Zeit-Code, welche in dem Schritt (d) wiedergegeben wurden.
27. Verfahren nach Anspruch 25, wobei der Schritt (e) einen Schritt aufweist zum Anwenden bzw. Anlegen einer Prioritäts-Reihenfolge bei ailen Eingabedaten mit dem Zeit-Code und den ausgedünnten Daten mit dem Zeit-Code,
und wobei das Verfahren weiter einen Schritt aufweist zum Anzeigen der selektiven Ausgabe bei dem Schritt (e) in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus in Abhängigkeit von der Prioritäts-Reihenfolge verãndert wird.
28. Verfahren nach Anspruch 16 weiter aufweisend die zusätzlichen Schritte nach Schritt a) und vor Schritt b):
(i) Erzeugen eines Zeit-Codes und Anlegen bzw. Anwenden des Zeit-Codes bei den Eingabedaten:
(ii) Ausdünnen der Eingabedaten mit dem ZeitCode bei einem ersten Verhältnis;
und nach Schritt d) und vor Schritt e) die folgenden Schritte:
(iii) Ausdünnen der Daten mit dem Zeit-Code, welche bei dem Schritt (d) wiedergegeben wurden, bei einem zweiten Verhältnis; und
(iiii) Vergleichen des Zeit-Codes der Eingabedaten mit dem Zeit-Code der bei dem Schritt (iii) ausgedünnten Daten;
wobei der Schritt e) der selektiven Ausgabe von mindestens den Eingabedaten oder den bei dem Schritt (iii) ausgedünnten Daten auf einem Vergleichsergebnis basiert, welches bei dem Schritt (iiii) erhalten wurde.
29. Verfahren nach Anspruch 28 weiter aufweisend einen Schritt der Komprimienung der Eingabedaten mit dem Zeit-Code, welche bei dem Schritt (ii) ausgedünnt wurden und einen Schritt der Expandierung der Daten mit dem Zeit-Code, welche bei dern Schritt (d) wiedergegeben wurden.
30. Verfahren Anspruch 28, wobei der Schritt (e) einen Schritt aufweist zum Arwenden bzw. Anlegen einer Prioritäts-Reihenfolge bei allen Eingabedaten mit dem Zeit-Code und den ausgedünnten Daten mit dem Zeit-Code,
und wobei das Verfahren weiter einen Schritt autweist zum Anzeigen der selektiven Ausgabe bei dem Schritt (e) in einem vorgegebenen Modus bzw. Betriebsart, wobei der vorgegebene Modus in Abhảngigkeit von der Prioritäts-Reihenfolge verändert wird.

Revendications

1. Dispositif (100) destiné à enregistrer et à reproduire
des donnees, comprenant
un moyen de réception (10) destiné à recevoir des données d'entrée, un moyen d'enregistrement (22) destiné à enregistrer les données d'entrée sur un support d'enregistrement (110),
un moyen de mémoire (30) destiné à mémoriser lesdites données d'entrée enregistrées, ledit moyen de mémoire comprenant ledit support d'enregistrement (110),
un moyen de gestion 31 destiné à gérer des informations indiquant une position des données d'entrée dans ledit moyen de mémoire (30), un moyen de reproduction (40) destiné à reproduire les données enregistrées sur le support d'enregistrement (110), sur la base des informations gérées par le moyen de gestion (31) durant l'enregistrement des données d'entrée sur le support d'enregistrement,
un moyen de sortie sélective (50) destiné à fournir sélectivement en sortie au moins l'une des données d'entrée et des données reproduites par le moyen de reproduction, et
un moyen d'entrée (14) destiné à recevoir en entrée des signaux de commande de lutilisateur destinés à commander ledit moyen d'enregistrement (22), ledit moyen de reproduction (40) et ledit moyen de sortie sélective (50).
caractérisé en ce que ledit moyen de mémoire (30) comprend en outre

- une tête d'enregistrement (112) destinée à enregistrer des données sur ledit support d'enregistrement (110),
- une tête de reproduction (114) destinée à feproduire les données enregistrées,
- un contrôleur d'enregistrement (116) destiné à commander ladite tête d'enregistrement (112), et
- un contrôleur de repraduction (118) destiné à commander ladite tête de reproduction (114),
dans lequel ledit moyen d'entrée (14) est agencé pour commander le fonctionnement d'au moins ledit contrôleur d'enregistrement (116).

2. Dispositif selon la revendication 1, comprenant en outre un moyen de compression (21) destiné à compresser les données d'entrée et un moyen d'expansion (41) destiné à expanser les données reproduites par le moyen de reproduction.
3. Dispositif selon la revendication 1 , dans lequel le moyen de sortie sélective (50) comprend un moyen (104) destiné à appliquer un ordre de priorité à chacune des données d'entrée et des données repro-
duites,
el dans lequel le dispositif comprend en outre un moyen d'affichage (60) destiné à afficher une sortie provenant du moyen de sortie sélective dans un mode prédéterminé, le mode prédéterminé étant modifié conformément à l'ordre de priorité.
4. Dispositif (300) destiné à enregistrer et à reproduire des données d'une pluralité de canaux, comprenant:
un moyen de réception (12) destiné à recevoir des données d'entrée d'un nombre N de canaux,
un premier moyen de sélection (13) destine à sélectionner un nombre M de canaux parmi le nombre N de canaux,
un moyen d'enregistrement (23) destiné à enregistrer sur un support d'enregistrement les données d'entrée du nombre M de canaux sélectionnés par le premier moyen de sélection, un moyen de mémoire (32) destiné à mémoriser lesdites données d'entrée enregistrées, ledit moyen de mémoire comprenant ledit support d'enregistrement (110),
un moyen de gestion (33) destiné à gérer des informations indiquant une position des données d'entrée du nombre M de canaux dans ledit moyen de mémoire (32),
un second moyen de sélection (303) destiné à sélectionner un nombre P de canaux parmi une pluralité de canaux enregistrés sur le support d'enregistrement,
un moyen de reproduction (42) destinè à reproduire les données du nombre P de canaux sélectionnés par le second moyen de sélection parmi la pluralité de canaux enregistrés sur le support d'enregistrement, sur la base des informations gérées par le moyen de gestion (33), durant lenregistrement des données d'entrée du nombre M de canaux sur le support d'enregistrement,
un moyen de sortie sélective (51) destiné à fournir sélectivement en sortie au moins l'une des données d'entrée du nombre N de canaux et des données du nombre P de canaux reproduits par le moyen de reproduction (42), et un moyen d'entrée (14) destiné à recevoir en entrée des signaux de commande de l'utilisateur destinés à commander ledit moyen d'enregistrement (22), ledit moyen de reproduction (40) et ledit moyen de sortie seelective (50),
dans lequel N, M et P sont des nombres entiers positifs et dans lequel $N \geq M$, où ledit moyen de mémoire (32) comprend en outre

- une tête d'enregistrement (112) destinée à en-
registrer des donnees sur ledit support d'enregistrement (110),
- une tête de reproduction (114) destinèe à reproduire les données enregistrées,
- un contrôleur d'enregistrement (116) destiné à commander ladite tēte d'enregistrement (112), et
- un controbleur de reproduction (118) destiné à commander ladite téte de reproduction (114),
et dans lequel ledit moyen d'entrée (14) est agence pour commander le fonctionnement dudit au moins un controbleur d'enregistrement (116).

5. Dispositif selon la revendication 4, comprenant en outre un moyen de compression (24) destiné à compresser les données d'entrée et un moyen d'expansion (44) destiné à expanser les données reproduites par le moyen de reproduction.
6. Dispositif selon la revendication 4 , dans lequel le moyen de sortie sélective (51) comprend un moyen (304) destiné à appliquer un ordre de priorité à chacune des donneées d'entrée et des données reproduites,
et dans lequel le dispositif comprend en outre un moyen d'affichage (61) destine à afficher une sortie provenant du moyen de sortie sélective dans un mode prédéterminé, le mode prédéterminé étant modilié conformément à l'ordre de priorité.
7. Dispositif selon la revendication 1 , dans lequel fedit dispositif (500) comprend en outre :
un moyen de génération de code de temps (11) destiné à générer un code de temps et à appliquer le code de temps aux données d'entrée, un moyen de réduction (20) destiné à réduire les données d'entrée avec le code de temps suivant un rapport prédéterminé,
ledit moyen d'enregistrement (22) agencé pour enregistrer sur ledit support d'enregistrement les données d'entrée avec le code de temps, qui ont été réduites par le moyen de réduction, ledit moyen de gestion (31) agencé pour gérer des informations indiquant la position des données d'entrée avec le code de temps enregistrées sur le support d'enregistrement, ledit moyen de reproduction (40) agencé pour reproduire les données avec le code de temps enregistrées sur le support d'enregistrement, sur la base des informations gérées par le moyen de gestion, durant l'enregistrement des donnėes d'entrée avec le code de temps sur le support d'enregistrement,
un moyen de comparaison (52) destiné à comparer le code de temps des données d'entrée au code de temps des données reproduites par
le moyen de reproduction, et ledit moyen de sortie selective (50) agencé pour fournir sélectivement en sortie au moins l'une des données d'entrée et des données reproduites par le moyen de reproduction sur la base d'un résultat de comparaison oblenu par le moyen de comparaison.
8. Dispositif selon la revendication 7, comprenant en outre un moyen de compression (21) destiné à compresser les données d'entrée avec le code de temps qui ont été réduites par le moyen de réduction et un moyen d'expansion (41) destiné à expanser les données avec le code de temps qui ont été reproduiles par le moyen de reproduction.
9. Dispositif selon la revendication 7 , dans lequel le moyen de sortie sélective (50) comprend un moyen (104) destiné à appliquer un ordre de priorité à chacune des données d'entrée avec le code de temps et aux données reproduites avec le code de temps,
et dans lequel le dispositif comprend en outre un moyen d'affichage (60) destiné à afficher une sortie provenant du moyen de sortie sélective dans un mode prédéterminé, le mode prédéterminé étant modifié conformément à l'ordre de priorité.
10. Dispositif selon la revendication 1 , dans lequel ledit dispositif comprend en outre :
un moyen de génération de code de temps (11) destiné à générer un code de temps el à appliquer le code de temps aux données d'entrée, ledit moyen d'enregistrement (22) agencé pour enregistrer sur ledit support d'enregistrement les données d'entrée avec le code de temps, ledit moyen de gestion (31) agencé pour gérer des informations indiquant la position des données d'entrée avec le code de temps enregistré sur le support d'enregistrement,
ledit moyen de reproduction (40) agencé pour reproduire les données avec le code de temps enregistré sur le support d'enregistrement, sur la base des informations gérées par le moyen de gestion, durant l'enregistrement des données d'entrée avec le code de temps sur le support d'enregistrement,
un moyen de réduction (45) destiné à réduire les données avec le code de temps reproduit par le moyen de reproduction (40) suivant un rapport prédéterminé,
un moyen de comparaison (52) destiné à comparer le code de temps des données d'entrée au code de temps des données réduites par le moyen de réduction (45),
ledit moyen de sortie sélective (50) agencé pour fournir sélectivement en sortie au moins l'une des données d'entrée et des données ré-
duites par le moyen de réduction (45) sur la base d'un rèsultat de comparaison obtenu par le moyen de comparaison.
11. Dispositif selon la revendication 10, comprenant en outre un moyen de compression (21) destiné à compresser les données d'entrée avec le code de temps et un moyen d'expansion (41) destiné à expanser les données avec le code de temps qui ont èté reproduites par le moyen de reproduction (40).
12. Dispositif selon la revendication 10 , dans lequel le moyen de sortie sélective (50) comprend un moyen (104) destiné à appliquer un ordre de priorité à chacune des données d'entrée avec le code de temps et aux données réduites avec le code de temps.
et dans lequel le dispositif comprend en outre un moyen d'affichage (60) destiné á afficher une sortie provenant du moyen de sortie sélective dans un mode prédéterminé, le mode prédèterminé étant modifié conformément à l'ordre de prionité.
13. Dispositif selon la revendication 1 , dans lequel ledit dispositif comprend en outre :
un moyen de génération de code de temps (11) destiné à générer un code de temps et à appliquer le code de temps aux données d'entrée, un premier moyen de réduction (20) destiné à réduire les données d'entrée avec le code de temps suivant un premier rapport,
ledit moyen d'enregistrement (22) agencé pour enregistrer sur ledit support d'enregistrement les données d'entrée avec le code de temps qui ont été réduites par le premier moyen de réduction,
ledit moyen de gestion (31) agencé pour gérer des informations indiquant la position des données d'entrée avec le code de temps enregistré sur le support d'enregistrement,
ledit moyen de reproduction (40) agencé pour reproduire les données avec le code de temps enregistré sur le support d'enregistrement, sur la base des informations gérées par le moyen de gestion (31), durant Perregistrement des données d'entrée avec le code de temps sur le support d'enregistrement,
un second moyen de réduction (45) destiné à réduire les données avec le code de temps reproduit par le moyen de reproduction suivant un second rapport,
un moyen de comparaison (52) destiné à comparer le code de temps des données d'entrée avec le code de temps des données réduites par le second moyen de réduction (45), et ledit moyen de sortie sélective (50) agencé pour fournir sélectivement en sortie au moins l'une des données d'entrée et des données ré-
duites par le second moyen de réduction (45) sur la base d'un résultat de comparaison obtenu par le moyen de comparaison (52).
14. Dispositif selon la revendication 13, comprenant en outre un moyen de compression (21) destíné à compresser les données d'entrée avec le code de temps qui ont été réduites par le premier moyen de réduction el un moyen d'expansion (41) destiné à expanser des données avec le code de temps, qui ont été reproduites par le moyen de reproduction.
15. Dispositif selon la revendication 13, dans lequel le moyen de sortie sélective (50) comprend un moyen (104) destiné à appliquer un ordre de priorité à chacune des données d'entrée avec le code de temps et des données réduites avec le code de temps,
et dans lequel le dispositif comprend en outre un moyen d'affichage (60) destiné à afficher une sortie provenant du moyen de sortie sélective (50) dans un mode prédéterminé, le mode prédéterminé étant modifié conformément à l'ordre de priorite.
16. Procédé d'enregistrement et de reproduction de données, comprenant les étapes consistant à :
(a) recevoir des données d'entrée,
(b) enregistrer les données d'entrée sur un support d'enregistrement,
(c) gérer des informations indiquant une position des données d'entrée sur le support d'enregistrement,
(d) reproduire les donnèes enregistrées sur le support d'enregistrement, sur la base des informations gérées dans l'étape (c) durant l'enregistrement des données d'entrée sur le support d'enregistrement de sorte que ladite étape de reproduction est exécutée paraltèlernent à ladite étape d'enregistrement,
(e) fournir sélectivement en sortie au moins lune des données d'entrée et des données reproduites dans l'étape (d), et
comprenant en outre l'étape consistant à recevoir en entrée des signaux de commande de l'utilisateur en vue de commander au moins ladite étape d'enregistrement b).
17. Procédé selon la revendication 16, comprenant en outre une étape consistant à compresser les données d'entrée et une étape consistant à expanser les données reproduites.
18. Procédé selon la revendication 16 , dans lequel Pétape (e) comprend une étape consistant à appliquer un ordre de priorité à chacune des données d'entrée et des données reproduites,
et dans lequel le procédé comprend en outre
une étape consistant à afficher la sortie sélective dans l'étape (e) dans un mode prédéterminé, le mode prédéteminé étant modifié conformément à l'ordre de priorité.
19. Procédé d'enregistrement el de reproduction des donnèes d'une pluralité de canaux, comprenant les étapes consistant à :
(a) recevoir des donneees d'entrée d'un nombre N de canaux
(b) sélectionner un nombre M de canaux parmi le nombre N de canaux,
(c) enregistrer sur un support d'enregistrement les données d'entrée du nombre M de canaux sèlectionnés dans l'étape (b),
(d) gérer des informations indiquant une position des données d'entrée du nombre M de canaux enregistrés sur le support d'enregistrement,
(e) sélectionner un nombre P de canaux parmi une pluralité de canaux enregistrés sur le support d'enregistrement,
(f) reproduire les données du nombre P de canaux sélectionnées dans l'étape (e) parmi la pluralité de canaux enregistrés sur le support d'enregistrement, sur la base des informations gérées dans l'étape (d), durant l'enregistrement des données d'entrée du nombre M de canaux sur le support d'enregistrement de sorte que ladite étape de reproduction est exécutée parallèlement avec ladite étape d'enregistrement, (g) fournir sélectivement en sortie au moins l'une des données d'entrée du nombre N de canaux et des données reproduites du nombre P de canaux,
dans lequel N, M et P sont des nombres entiers positifs et dans lequel $N \geq M$, et
comprenant en outre l'étape consistant à recevoir en entrée des signaux de commande de futilisateur en vue de commander au moins ladite étape d'enregistrement b).
20. Procédé selon la revendication 19, comprenant en outre une étape consistant à compresser les données d'entrée et une étape consistant à expanser les données reproduites.
21. Procédé selon la revendication 19, dans lequel l'étape (g) comprend une étape consistant à appliquer un ordre de priorité à chacune des données d'entrée et des données reproduites,
et dans lequel le procédé comprend en outre une étape consistant à afficher la sortie sélective dans l'étape (g) dans un mode prédéterminé, le mode prédéterminé étant modifié conformément à l'ordre de priorité.
22. Procédé selon la revendication 16, comprenant, après l'étape a) et avant l'étape b), les étapes supplémentaires consistant á :
(i) générer un code de temps et appliquer le code de temps aux données d'entrée,
(ii) réduire les donnėes d'entrée avec le code de temps suivant un rapport prédéterminé,
et, après l'étape d) et avant l'élape e), l'étape supplémentaire consistant à
(iii) comparer le code de temps des données d'entrée au code de temps des données reproduites dans létape d), et
où ladite étape e) consistant à fournir sélectivement en sortie au moins l'une des données d'entrée et des données reproduites est fondée sur le résultat de la comparaison obtenue à l'étape (iii).
23. Procédé selon la revendication 25, comprenant en
outre une étape consistant à compresser les données d'entrèe avec le code de temps et une ètape consistant à expanser les données avec le code de temps, qui ont été reproduites à l'étape (d).
24. Procédé seion la revendication 25 , dans lequel l'étape (e) comprend une étape consistant à appliquer un ordre de priorité à chacune des données d'entrée avec le code de temps et aux données ré. duites avec le code de temps,
et dans lequel le procédé comprend en outre une étape consistant à afficher la sortie sélective dans l'étape (e) dans un mode prédéterminé, le mode prédéterminé étant modifié conformément à lordre de priorité.
25. Procédé selon la revendication 16, comprenant, aprés l'étape (a) et avant l'étape (b), les étapes supplémentaires consistant à :
(i) générer un code de temps et appliquer le code de temps aux données d'entrée,
(ii) réduire les données d'entrée avec le code de temps suivant un premier rapport,
et après l'étape d) et avant l'étape e), les étapes suivantes;
(iii) réduire les données avec le code de temps, reproduites dans l'étape (d) suivant un second rapport, et
(iiii) comparer le code de temps des données d'entrée au code de temps des données réduites dans l'étape (iii),
dans lequel ladite étape (e) consistant à fournir sélectivement en sortie au moins l'une des données d'entrée et des données réduites dans l'étape (iii) est fondée sur un résultat de comparaison obtenu dans rétape (iiii).
26. Procédé selon la revendication 28, comprenant en outre une étape consistant à compresser les données d'entrée avec le code de temps, qui ont été réduites dans l'étape (ii) et une étape consistant à expanser les données avec le code de temps, qui ont été reproduites dans l'étape d).
27. Procédé selon la revendication 28 ; dans lequel l'étape e) comprend une étape consistant à appliquer un ordre de priorité à chacune des données d'entrée avec le code de temps et des données réduites avec le code de temps.
et dans lequel le procédé comprend en outre une étape consistant à afficher la sortie sélective dans l'étape (e) dans un mode prédéterminé, le mode prédéterminé étant modifié conformément a l'ordre de prionté.

FIG. 2
From video/sound To video/sound

FIG. 3

18 จLS 9ZLOdヨ

18 bLs 9zL 0 dヨ

THIS PAGE BLAMKK (

OFFICIAL COMMUNICATION FOR ENTRY

HICKMAN PALERMO TRUONG \& BECKER LLP 2055 GATEWAY PLACE, SUITE 550 SANJOSE, CALIFORNIA 95110-1089 TEL: (408) 414-1080 FAX: (408) 414-1076					
FACSIMILE TRANSMITTAL SHEET					
ro. Patricia	Martin, Examiner	$\begin{array}{r} \text { FROM: } \\ \mathrm{K} \\ \hline \end{array}$	rk D. Wong		
$\begin{aligned} & \text { COMPANY: } \\ & \text { USPTO } \end{aligned}$		DATE:	$\text { ARCH 7, } 2006$		
$\begin{aligned} & \text { FAXNUMBER } \\ & (571) 27 \\ & \hline \end{aligned}$	$3-9900$	$\begin{aligned} & \text { TOTAL } \\ & 16 \end{aligned}$	O. OF PACRS INCLUDIN		
$\begin{aligned} & \text { PHONE NGMBE } \\ & \text { (571) } 27 \end{aligned}$	$2-7716$	$\begin{aligned} & \text { SENDES } \\ & 60 \end{aligned}$	S REPERENCE NUMBER 097-0357		
RE: Inform	ion Disclosure St	$\begin{array}{lr} \\ \text { enent } & \text { U.S. SER } \\ & 90\end{array}$	$\begin{aligned} & \text { AAL NUMBER: } \\ & / 007,750 \end{aligned}$		
\square URGENt	\square PGR REVIEW	\square PLEASE COMMENT	\square please reply	\square	please
NOTRS/COMMENTS:					
Dear Ms. Martin -					
Pursuant to your request, attached please find the Corrected Information Disclosure Statement citing 37 C.F.R. $\S 1.97$ (b) and Form 1449 as submitted on 2/15/06. Please proceed to acknowledge receipt.					
Sincerely, Kirk D. Wong					

Kirk D. Wong

[^1]Attorney Buret No. 60097-0357

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of:
James M. Barton, et al.
Application No.: 90/007,750
Filing Date: October 17, 2005
Patent No.: $6,233,389$
Issue Date: May 15, 2001
) Examiner: NYA
) Confirmation No.: 4653

Group Art Unit No.: NYA
)
)
)
)
)
)
)

For. MULTIMEDIA TIME WARPING SYSTEM
Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 together with copies of the documents cited on that form, if needed. Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

In accordance with the provisions of 37 C.F.R. 1.98 , the attention of the Patent and Trademark Office is hereby directed to references listed on the attached form PTO-1449. The references were cited during the prosecution of parent application No. 09/126,071. Therefore, a copy of the references is not provided herewith.

Attorney Du . кet No. 60097-0357
Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an "X" to the left of the appropriate paragraph):

37 C.F.R. §1.97(b). It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(c). If so, then this Information Disclosure Statement includes one of the following:

A statement pursuant to 37 C.F.R. §1.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a commutication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement.
1.97(e)(2) The undersigned hereby states that no item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this information disclosure statement was known to any individual designated in §1.56(c) more than tbree months prior to the filing of this information disclosure statement.

A check for $\$ 180.00$ for the fee under 37 C.F.R. § 1.17 (p).
It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Attorney Dc...et No. 60097-0357

37 C.F.R. $\S 1.97$ (d). If so, then this Information Disclosure Statement includes the following:

A statement pursuant to 37 C.F.R. §1.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement; OR
1.97(e)(2) The undersigned hereby states that no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17$ (i) for submission of the Information Disclosure Statement.

It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(i). Applicants are submitting references to satisfy Applicants' disclosure obligations in hopes that the references will be considered by the Examiner. Although the submission does not fully meet 37 C.F.R. §1.97, Applicant respectfully requests that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to Applicant(s). It is understood that if the Examiner does not consider the cited references, the cited documents will be placed in the file pursuant to 37 C.F.R. §1.97(i).

Accordingly, copies of the references as listed on the attached Form PTO 1449 are submitted herewith. No certification or fees are deemed necessary.

Attorney DG_ret No. 60097-0357
区
The Examiner is hereby notified that the present application is related to the following related application(s):

DISCLOSURE OF RELATED APPLICATIONS

U.S. Application/Pat. No.	File Date	Atty. Docket. No.
$09 / 827,029$	$4 / 5 / 2001$	$60097-0026$
$09 / 935,426$	$8 / 22 / 2001$	$60097-0027$
$10 / 190,256$	$7 / 5 / 2002$	$60097-0028$
$10 / 081,776$	$2 / 20 / 2002$	$60097-0029$
$11 / 051,347$	$2 / 4 / 2005$	$60097-0297$

The related application(s) may contain subject matter that is related to the subject matter of the present application. The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(ies) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

区
The Examiner is hereby notified that for the following related application(s) an Office Action has been received as indicated below:

DISCLOSURE OF OFFICE ACTIONS

U.S. Application/ Pat. No.	File Date	Office Action Mailing Date	Atty. Docket. No.
$10 / 081,776$	$2 / 20 / 2002$	$5 / 20 / 05$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$11 / 5 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$6 / 29 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$9 / 29 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$4 / 4 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$10 / 23 / 02$	$60097-0029$
$09 / 827,029$	$4 / 5 / 2001$	$11 / 17 / 03$	$60097-0026$
$09 / 827,029$	$4 / 5 / 2001$	$6 / 10 / 06$	$60097-0026$

Attorney Du_кet No, 60097-0357

The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(ies) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

Throughout the pendency of this application, please charge any additional fees, including any required extension of time fees, and credit all overpayments to deposit account 50-1302.

Respectfully submitted,
HICKMAN PALERMO TRUONG \& BECKER LLP
Dated: February 15, 2006

Reg. No. 43, 284
2055 Gateway Place, Suite 550
San Jose, California 95110-1089
Telephone: (408) 414-1080 ext. 214
Facsimile: (408) 414-1076

> I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage in an envelope addressed to Mail Stop Ameodment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313 1450 on $\frac{\text { February } 15,2006 .}{\text { (Date of Deposit) }}$

INFORMATION DISCLOSURE CITATION IN AN APPLICATION (PTO-1449)

ATTX. DOCKET NO. 60097-0357	APPICATION NO. $90 / 007,750$
APPLICANT: James M. Barton, et al.	
FILING DATE: October 17,2005	GROUP:

$\begin{aligned} & \text { Exam. } \\ & \text { Initial* } \end{aligned}$	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. } \end{aligned}$	U.S. Patent Document		Name of Patentec or Applicant of Cited Document	Date of Publication of Cited Document MM-DD-YYYY	Pages, Columns Lines, Where Relevant Pessages or Relevant Figures Appear
		Number	Kind Code ${ }^{2}$ (If known)			
		3,682,363		Hull	8/8/72	
		3,942,190		Detweiler	3/2/76	
		4,141,039		Yamamoto	2/20/79	
		4.224 .481		Russell	9/23/80	
		4,258,418		Heath	3/24/81	
		4,313,135		Cooper	7/28/80	
		4,347,527		Lainez	8/31/82	
		4,388,659		Lemke	6/14/83	
		4,408,309		Kiesling et al.	10/4/83	
		4,423,480		Bauer et al.	12/27/83	
		4,439,785		Leonard	3/27/84	
		4,506,348		Miller et al.	3/19/85	
		4,506,358		Montgomery	3/19/85	
		4,602,297		Reese	7/22/86	
		4,633,331		McGrady et al.	12/30/86	
		4,665,431		Cooper	8/16/82	
		4,688,106		Keller et al.	8/18/87	
		4,689,022		Peers et al.	8/25/87	
		4,706,121		Young	11/10/87	
		4,752,834		Koombes	9/21/88	
		4,723,181		Hickok	2/2/88	
		4,755,889		Schwartz	7/5/88	
		4,760,442		O'Connell et al.	7/26/98	
		4,761,684		Clark et al.	8/2/98	
		4,789,961		Tindall	12/6/98	
		4,805,217		Morihiro et al.	2/14/89	
		4,816,905		Tweedy et al.	3/28/89	
		4,821,121		Beaulier	4/11/89	
		4,833,710		Hirashima	5/23/89	
		4,876,670		Nakabayashi et al.	10/24/89	
		4,891,715		Levy	1/2/90	

 and not considered. Include copy of this form with next conmmunication ti applicant.

| Examiner
 Signature | Date Considered | |
| :--- | :--- | :--- | :--- |

*EXAMINER: Initial if reference considered, whether or not citation is in conformanse with MPEP 609; Draw line through citation if not in conformance and not considered. Include cody of this form with next communieation to applieant.

Page 2 of 10

Examiner Signature		Dare Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communicadon to applicant.

Examiner Signature Date Considered and not considered. Include copy of this form with next communication to npplicant.

Examiner		Date Considered	
Signature			

"EXAMINER: Initisl if refertnce considered, whether or not citation is in conformance with MPEP 609; Drawy line through citation ifnot in conformance and not considered. Include copy of this form with next communtication co applicant.

Page 5 of 10

Examiner Signature		Date Considered	

-EXAMINER: Initial if reference considered, whether or not citstion is in conformance with MPEP 609 ; Draw tine trough cilation if not in conformance
and not considered. Thelude copy of this form with next communication to applicant.

| Substitute for Form 1449A/PTO (Modified)
 tuse as many shets as necessary) | Attorney Docket No.:
 $60097-0357$ | Application Number:
 $90 / 007,750$ |
| :--- | :--- | :--- | :--- | :--- |
| | | First Named Inventor:
 James M. Barton, et al |

Examiner Signature		Date Considered	

-EXAMINER: Initial if reference congidened, whother or not citation is in conformance with MPEP 609; Draw inne through citation ifnot in conformancs and not considerod. Inelude copy of this form whth next communication to applicant.

Exaniner Signarure		Date Considered

-EXAMINER: Initial if reference considered, whether or not ciration is in conformatice with MPEP 609; Draw line through citation if not in conformance
and not considered. Include copy of this form with next communication to applicant.

Substitute for Form 1449APTO (Modified) (use as many shects as necessery)			Attorney Docket No.: 60097-0357	Application Number: 90/007,750	
			First Named Inventor: James M. Barton, et al		
			Filing Date: October 17, 2005		
OTHER ART - NO PATENT LITERATURE DOCUMENTS					
Examiner Initial/s*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, scrial, symposium, catalog, etc.), date, page(s), volume-issut number(s), publisher, city and/or country where published			Translation ${ }^{2}$
		Winston Hodge, et al., "Chapter 7. True Video on Demand ws. Near Video on Demand", delivered at National Cable Television Conference, May 24, 1994 (pps. 103-120).			
		Cytil U. Orji, et al., "Design and Configuration Rationales for Digital Video Storage and Delivery Systems", Multimedia Tools and Applications, 9, 275302 (1992), © 1992 Kluwer Academic Publishers, Boston (pps. 275-302).			
		SCSI Specification, 0663 and 0663 Enhanced Disk Drive, Release 4.0, (247 pgs).			
		R. Johaston, et al., "A Digital Television Sequence Store", IEEE, (pps. 594600) © 1978			
		M. Hausdorfer, "Symposium Record Broadcast Sessions", HDTV Production: Today and Tomorrow, June 17, 1989, (7 pgs).			
		S. Berson, "Computer Science Department Technical Report", Staggered Striping in Multimedia Information System, December 1993, April 29, 1994, (24 pgs).			
		S. Berson, et al., "Design of a Scalable Multimedia Storage Manager", (pps. 130).			
		Conner Filepro Performance Series, CFP1060E/CFP1060S/CFP1060W, "Intelligent Disk Drive Product Manual", Rev. A, May 1994, © 1994, Conner Peripherals, Inc., (79 pgs).			
		Hugh M. Sierra, "An Introduction to Direct Access Storage Devices", © 1990 by Academic Press, Ync., (269 pgs).			
		I. Freeman, et al., "Systems Aspects of COBE Science Data Compression", Cosmology Data Analysis Center, (pps, 85-97).			
		Douglas T. Anderson, "The Hard Disk Technical Guide". Tenth Revision S-D., February 1994, © 1990, 1991, 1992, 1993, 1994 by Micro House International Inc., (70 pgs).			
		Official Action from EPO for foreign application no. 99909 867.6-2002 dated 27 December 2005 (5 pgs) - attached.			

Examiner		Date Considered	
Signature			

-EXAMINER: Initisl If reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation (f not in conformance and not considered. Inclede copy of this form with next communication to applicant.

"EXAMINER: Enitial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in confortraske and not considered. Include copy of this form with next communication to applicam.
'Unique citation designation niumber. ${ }^{2}$ See attached Kinds of U.S. Patent Documents, 'Enter Office that issued the document, by the two-letter code (WIPO Standard S.3). 'For Iapanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patcent document. 'Kind of document by the appropriste symbols as indicated on the document under WIPO Seandard ST. 16 if possible. "Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the emount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Weshington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commigsioner for Polents, Wasningion, DC. 20231.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER: \qquad .

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

OFFICLAL COMMUNICATION FOR ENTRY

THE INFORMATION CONTAINED DN THTS FACSIMILE IS INTENDED ONLY FQR THE PERSONAL AND CONFIDENTIAL USE OF THE DESIGNATED RECIPIENT(S) NAMED ABOVE THIS MESSAGE MAY BE AN ATTORNEY-CLIENT COMMUNICATION, AND AS SUCH IS PRIVILEGED AND CONFRDENTIAL. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECTPIENT OR AN AGENT RESPONSIBLE F-OR DELIVERNG IT TO THE INTENDED RECIPIENT, YOU are hereby notified that you have rgceived this document in error and that any review, dISSEMINATION, DISTRIBUTION OR COPYING OF THIS MESSAGE IS STRICTLY PROHIBITED. IF YOU HAVE RECEJVED THIS COMMUNICATION NN ERROR, PLEASE NOTIFY US IMMBDLATBLY BY TELEPHONE AND RETURN the original message to us by mail. Thank you.

IN THE ÚNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of:
James M. Barton, et al.
Application No.: 90/007,750
Filing Date: October 17, 2005
Patent No.: 6,233,389
Issue Date: May 15, 2001

Confirmation No.: 4653
Examiner: NYA
Group Art Unit No: NYA

For: MULTIMEDIA TIME WARPING SYSTEM
Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 together with copies of the documents cited on that form, if needed. Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

In accordance with the provisions of 37 C.F.R. 1.98, the attention of the Patent and Trademark Office is hereby directed to references listed on the attached fotm PTO-1449. The references were cited during the prosecution of parent application No. 09/126,071. Therefore, a copy of the references is not provided herewith.

Attomey surket No. 60097-0357

Pursuant to 37 C.F.R. §1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):

37 C.F.R. $\S 1.97$ (b). It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(c). If so, then this Information Disclosure Statement includes one of the following:

A statement pursuant to 37 C.F.R. §1.97(e)
$\square 1.97(\mathrm{e})(1)$ The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement.
1.97(e)(2) The undersigned hereby states that no item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this information disclosure statement was known to any individual designated in $\S 1.56$ (c) more than three months prior to the filing of this information disclosure statement.

A check for $\$ 180.00$ for the fee under 37 C.F.R. $\$ 1.17$ (p),
It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof retumed to applicant(s).

Attomey nc....et No. 60097-0357

37 C.F.R. $\S 1.97$ (d). If so, then this Information Disclosure Statement includes the following:

A statement pursuant to 37 C.F.R. §1.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement; OR
1.97(e)(2) The undersigned hereby states that no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

AND
A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1,17$ (i) for submission of the Information Disclosure Statement.

It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(i). Applicants are submitting references to satisfy Applicants' disclosure obligations in hopes that the references will be considered by the Examiner. Although the submission does not fully meet 37 C.F.R. §1.97, Applicant respectfully requests that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to Applicant(s). It is understood that if the Examiner does not consider the cited references, the cited documents will be placed in the file pursuant to 37 C.F.R. §1.97(i).

Accordingly, copies of the references as listed on the attached Form PTO 1449 are submitted herewith. No certification or fees are deemed necessary.

Attorney Lu_met No. 60097-0357
\triangle The Examiner is hereby notified that the present application is related to the following related application(s):

DISCLOSURE OF RELATED APPLICATIONS

U.S. Application/ Pat. No.	File Date	Atty. Docket. No.
$09 / 827,029$	$4 / 5 / 2001$	$60097-0026$
$09 / 935,426$	$8 / 22 / 2001$	$60097-0027$
$10 / 190,256$	$7 / 5 / 2002$	$60097-0028$
$10 / 081,776$	$2 / 20 / 2002$	$60097-0029$
$11 / 051,347$	$2 / 4 / 2005$	$60097-0297$

The related application(s) may contain subject matter that is related to the subject matter of the present application. The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(jes) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

】
The Examiner is hereby notified that for the following related application(s) an Office Action has been received as indicated below:

DISCLOSURE OF OFFICE ACTIONS

U.S. Application/ Pat. No.	File Date	Office Action Mailing Date	Atty. Docket. No.
$10 / 081,776$	$2 / 20 / 2002$	$5 / 20 / 05$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$11 / 5 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$6 / 29 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$9 / 29 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$4 / 4 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$10 / 23 / 02$	$60097-0029$
$09 / 827,029$	$4 / 5 / 2001$	$11 / 17 / 03$	$60097-0026$
$09 / 827,029$	$4 / 5 / 2001$	$6 / 10 / 06$	$60097-0026$

4

Attorney «u_кet No. 60097-0357

The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(ies) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

Throughout the pendency of this application, please charge any additional fees, including any required extension of time fees, and credit all overpayments to deposit account 50-1302.

Respectfully submitted,

HICKMAN PALERMO TRUONG \& BECKER LLP
Dated: February 15,2006

Reg. No. 43, 284
2055 Gateway Place, Suite 550
San Jose, California 95110-1089
Telephone: (408) 414-1080 ext. 214
Facsimile: (408) 414-1076

[^2]Annette Jacobs

PROOF OF SERVICE (37 C.F.R. §1.248)

I am a resident of the aforesaid county. I am over the age of eighteen years and not a party to the within action; my business address is 2055 Gateway Place, Suite 550 , San Jose, CA 95110.

On March 10, 2006, I served the within Information Disclosure Statement and PTO Form 1449 on the interested parties in this action, by placing a true copy thereof enclosed in sealed envelopes addressed as follows: David L. Fehrman, Morrison \& Foerster, LLP

555 W. Fifth Street, Suite 3500
Los Angeles, CA 90013
X. (BY MAII) The envelope was mailed with postage thereon fully prepaid. I am "readily" familiar with the firm's practice of collection and processing correspondence for mailing. It is deposited with U.S. Postal Service on that same day in the ordinary course of business. I am aware that on motion of a party served, service is presumed invalid if the postal cancellation date or postage meter date is more than one day after date of deposit for mailing an affidavit.

Executed on March 10, 2006, at San Jose, California.
X (STATE) I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Annette Jacobs
[Type or print name]

INFORMATION DISCLOSURE CITATION IN AN APPLICATION (PTO-1449)					ATTY. DOCKET NO. 60097-0357		APPICATION NO. 90/007,750	
					APPLICANT: James M. Barton, et al.			
					FILING DATE: October 17, 2005		GROUP: NYA	
U.S. PATENT DOCUMENTS								
$\begin{aligned} & \text { Exam. } \\ & \text { Initial* } \end{aligned}$	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	U.S. Patent Document		Name of Patentes or Applicant of Cited Document		Date of Publication of Cited Document MM-DD-YYYY		Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number	Kind Code ${ }^{2}$ (If known)					
		3,682,363		Hull		8/8/72		
		3,942,190		Detweiler		3/2/76		
		4,141,039		Yamamoto		2/20/79		
		4.224.481		Russell		9/23/80		
		4,258,418		Heath		3/24/81		
		4,313,135		Cooper		7/28/80		
		4,347,527		Lainez		8/31/82		
		4,388,659		Lemke		6/14/83		
		4,408,309		Kiesling et al.		10/4/83		
		4,423,480		Bauer et al.		12/27/83		
		4,439,785		Leonard		3/27/84		
		4,506,348		Miller et al.		3/19/85		
		4,506,358		Montgomery		3/19/85		
		4,602,297		Reese		7/22/86		
		4,633,331		McGrady et al.		12/30/86		
		4,665,431		Cooper		8/16/82		
		4,688,106		Keller et at.		8/18/87		
		4,689,022		Peers et al.		8/25/87		
		4,706,121		Young		11/10/87		
		4,752,834		Koombes		9/21/88		
		4,723,181		Hickok		2/2/88		
		4,755,889		Schwartz		7/5/88		
		4,760,442		O'Connell et al.		7/26/98		
		4,761,684		Clark et al.		8/2/98		
		4,789,961		Tindall		12/6/98		
		4,805,217		Morihiro et al.		2/14/89		
		4,816,905		Tweedy et al.		3/28/89		
		4,821,121		Beaulier		4/11/89		
		4,833,710		Hirashima		5/23/89		
		4,876,670		Nakabayashi et al.		10/24/89		
		4,891,715		Levy		1/2/90		

'EXAMINER: fnitial if reference considered, whether or not citotion is in conformance with MPEP 609; Draw line brough citation if not in conformance and thot consibered. Include copy of this form with next communication in applicant.

Page 1 of 10

Examiner
Signature
"EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance ond not considered. Include cony of this form with next corrmunication to applicant.

Page 2 of 10

PAGE 9333*RCVO AT 311012006 6:34:07 PM [Eastem Standard Time| ${ }^{4}$ SVR:USPTO-EEXRF-3/0 ${ }^{2}$ DNS:2733900 ${ }^{*}$ CSDD:408441076* DURATION (mm-ss): 1042

Substitute for Form 1449A/PTO (Modified) (use as many shects as necessary)		Attorney Docket No.: .60097-0357	Application Number:$90 / 007,750$	
First Named Invento James M. Barton, Filing Date:				
October 17, 2005				
	5,233,603	Tekeuchi	8/3/93	
	5,237,648	Mills et al.	8/17/93	
	5,241,428	Goldwasser et al.	8/31/93	
	5,245,430	Nishimura	9/14/93	
	5,247,347	Litteral et al,	9/21/93	
	5,251,009	Bruno	10/5/93	
	5,253,275	Yurt et al.	10/12/93	
	5,283,659	Akiyama et al.	2/1/94	
	5,285,272	Bradleyet al.	2/8/94	
	5,287,182	Haskell et al.	2/15/94	
	5,311,423	Clark	5/10/94	
	5,317,603	Osterweil	5/31/94	
	5,317,604	Osterweil	5/31/94	
	5,329,320	Yifrach	7/12/94	
	5,361,261	Edem et al.	11/1/94	
	5,357,276	Banker et al.	10/18/94	
	5,371,551	Logan et al.	12/6/94	
	5,412,416	Nemirofsky	5/2/95	
	5,414,455	Hooper et al.	5/9/95	
	5,428,731	Powers	6/27/95	
	5,438,423	Lynch et al.	8/1/95	
	5,440,334	Walters et al.	8/8/95	
	5,442,390	Hooper et al.	8/15/95	
	5,477,263	O'Callaghan	12/19/95	
	5,481,542	Logston et al.	1/2/96	
	5,488,409	Yuen et al.	1/30/96	
	5,506,615	Awaji	4/9/96	
	5,508,940	Rossmere et al.	4/16/96	
	5,513,011	Matsumoto	4/30/96	
	5,513,306	Mills et al.	4/30/96	
	5,519,684	Iizuka et al.	5/21/96	
	5,528,281	Grady et al.	6/18/96	
	5,528,282	Voeten et al.	6/18/96	
	5,550,594	Cooper et al.	7/26/93	
	5,550,982	Long et al.	8/27/96	
	5,555,463	Staron	12/10/96	
	5,559,999	- Maturi	9/24/96	
	5,572,261	Cooper	6/7/95	

-EXAMINER: Initial if reference considered, whether or not citstion is in conformance with MPEP 609; Draw line through citation ifnot in conformance
and not considered. Include copy of this form with next communicotion to applicant.
Page 4 of 10

Examiner Siganture		Date Considered	

QEXAMJNER: Initial if reference considered, whether or not citation is in conformance with MPEP 609, Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FOREIGN PATENT DOCUMENTS								
Exant. Initial*	$\begin{aligned} & \text { Site } \\ & \text { No.' } \end{aligned}$	Foreign Patent Document			Name of Patentec or Applicant of Cited Document	Date of Publication or Cited Document MM-DD-YYYY	Pagcs, Columns, Lines. Where Relevant Passages or Relevant Figures Appear	T
		Offices	Number ${ }^{4} \quad$ Kind Code ${ }^{3}$ (If known)					
		EP	0785675	A2	Toshiba	1/16/97		
		WO	2000/76130	A1	Thomason Multimedia	5/31/00		
		EP	0594241	A1	Philips Electronics N.V.	10/12/93		
		EP	0594241	B1	Koninklijke Phililps Electronics N.V.	4/17/94		
		PCT	US92/04573		H. Lee Brown, et al.	6/22/92		
		UK	GB2222742	A	Hashimoto Corporation	8/24/89		
		EPO	0726574	B1	Matsushita Electric Industrial Co., Ltd	8114/96		
		WO	91/03112	A1	Delta Beta Pty Ltd.	8/23/90		

| Examiner
 Sigaature | Date Considered | |
| :--- | :--- | :--- | :--- |

"EXAMINER: Intial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and int considered. Include copy of this form with next communication to applicent.

Page 6 of 10

Substitute For Form 1449A/PTO (Modified) (use as many shects as necessary)			Attorney Docket No.: 60097-0357	$\begin{aligned} & \text { Application Number: } \\ & 90 / 007,750 \end{aligned}$	
			First Named Invent r : James M. Barton, et al		
			Filing Date: October 17, 2005		
OTHER ART - NO PATENT LITERATURE DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{NO}^{\prime} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published			Translation ${ }^{2}$
		Inside MacIntosh "QuickTime", Apple Technology Library by Apple Computer, Inc., © 1993 (published by Addison-Wesley Publishing Company) 719 pgs .			
		Inside MacIntosh "Files", Apple Technology Library by Apple Computer, Inc., © 1992 (published by Addison-Wesley Publishing Company) 532 pgs.			
		Inside MacIntosh "Memory", Apple Technology Library by Apple Computer, Inc., © 1992 (published by Addison-Wesley Publishing Company) 303 pgs.			
		Inside MacIntosh "QuickTime Components", Apple Technology Library by Apple Computer, lnc., © 1993 (published by Addison-Wesley Publishing Company) 828 pgs.			
		Inside MacIntosh "Overview", Apple Technology Library by Apple Computer, Inc., (c) 1992 (published by Addison-Wesley Publishing Company) 251 pgs.			
		Quantum Q500 Series High Capacity 5 1/2" Fixed Disk Drive, Quantum Corporation, © 1983 (2 pgs)			
		Quantum 2000 Series Low-Cost 8' Fixed Disk Drives, "New DC Motor Option", Quantum Corporation (2 pgs)			
		Quantum Q2080 Low-Cost, 85 Megabyte Fixed Disk Drive, " 85 Mb capacity/40ms average access time", Quantum Corporation, © 1982 (2 pgs)			
		OEM Interface Specifications for DSAA-3xxx, "3.5-Inch Hard Disk Drive with ATA Interface, IBM Corporation, © 1994 (65 pgs).			
		International Standard ISO/IEC 11172-2:1993(E), (Part 2: Video), Downloaded 6/15/05 (136 pgs).			
		International Standard ISO/ECC 11171-3:1993/Cor.1:1996(E), (Part 3: Audio), Downloaded 6/15/05 (159 pgs).			
		Hewlett Packard ${ }^{(1)}$ MPEGscope User's Guide, Hewlett Packard Company (C) 1997-2000 (282 pgs).			
		DiviCom, MP100 User Guide, DiviCom, Inc., © 1996 (97 pgs).			

Examiner		Date Considered	
Signature			

-KXAMINER: Initial if reference considered, whether or not citotion is in conformance whith MPEP G09; Draw line farough citation if nat in coniormance
pid nut considered. luclude copy of this form with nexi communication to applicant.

-EXAMINER: Inifial if teference cousidered, whether or not citation is in conformance with MPEP 609: Draw line brough citation if not in conformance ond col considered. Include copy of this fomi with next communication to opplicant.

Examiner		Date Considered	
Signature			

*EXAMINER: Initial if reference considered, whether or nol citation is in conformance with MPEP 609; Draw line through citation if not in conformance ond not considered. Include cupy of this form with next communication to applicant.

-EXAMINER: Initial if refcrence considered, whether or not citation is in conformance with MPEP 609 ; Draw line through eifation if not in conformance and not considered. Include copy of this form with next cornmunication to applicant.
${ }^{1}$ Unique cilation designation number. ${ }^{2}$ See altached Kinds of U.S. Patent Docurnents. ${ }^{3}$ Enter Office that issued the document, by the Iwo-letter code (WIPO Standard S.3). "For Japanase patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{3}$ Kind of document by the appropriate symbols as indicaled on the document under WIPO Stacdard ST. 16 if possible. ${ }^{6}$ Applicant is to plact a check niotk here if English language Translation is allached.

Burden Ilour Slatement: This form is estimated to take 2.0 bours to complese. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required us complete this form should be sent to the Chief information Officer, Patent and Trademark Office. Washingtoa, DC: 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents. Washingtor, DC: 20231.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OEF AT TOP, BOTTOM OR SIDES
-FADED TEXT OR DRAWING
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

Attorney Durket No. 60097-0357

IN THE ÚNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of:

James M. Barton, et al.
Application No.: 90/007,750
Filing Date: October 17, 2005
Patent No.: 6,233,389
Issue Date: May 15, 2001

Confirmation No.: 4653
Examiner: NYA
Group Art Unit No.: NYA

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 together with copies of the documents cited on that form, if needed. Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

In accordance with the provisions of 37 C.F.R. 1.98, the attention of the Patent and Trademark Office is hereby directed to references listed on the attached form PTO-1449. The references were cited during the prosecution of parent application No. 09/126,071. Therefore, a copy of the references is not provided herewith

Attorney Du_set No. 60097-0357
Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):

37 C.F.R. §1.97(b). It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(c). If so, then this Information Disclosure Statement includes one of the following:

A statement pursuant to 37 C.F.R. §81.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement.
1.97(e)(2) The undersigned hereby states that no item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this information disclosure statement was known to any individual designated in $\$ 1.56$ (c) more than three months prior to the filing of this information disclosure statement.

A check for $\$ 180.00$ for the fee under 37 C.F,R. § 1.17 (p).
It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Attorney Dc...et No. 60097-0357

37 C.F.R. §1.97(d). If so, then this Information Disclosure Statement includes the following:
A. statement pursuant to 37 C.F.R. 81.97 (e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement; OR
1.97(e)(2) The undersigned hereby states that no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

AND
A check for $\$ 180.00$ for the fee under 37 C.F.R. $\$ 1.17$ (i) for submission of the Information Disclosure Statement.

It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s). .

37 C.F.R. §1.97(i). Applicants are submitting references to satisfy Applicants' disclosure obligations in hopes that the references will be considered by the Examiner. Although the submission does not fully meet 37 C.F.R. $\S 1.97$, Applicant respectfully requests that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to Applicant(s). It is understood that if the Examiner does not consider the cited references, the cited documents will be placed in the file pursuant to 37 C.F.R. §1.97(i).

Accordingly, copies of the references as listed on the attached Form PTO 1449 are submitted herewith. No certification or fees are deemed necessary.

Attormey Du__et No. 60097-0357

The Examiner is hereby notified that the present application is related to the following related application(s):

DISCLOSURE OF RELATED APPLICATIONS

U.S. Application/ Pat. No.	File Date	Atty. Docket. No.
$09 / 827,029$	$4 / 5 / 2001$	$60097-0026$
$09 / 935,426$	$8 / 22 / 2001$	$60097-0027$
$10 / 190,256$	$7 / 5 / 2002$	$60097-0028$
$10 / 081,776$	$2 / 20 / 2002$	$60097-0029$
$11 / 051,347$	$2 / 4 / 2005$	$60097-0297$

The related application(s) may contain subject matter that is related to the subject matter of the present application. The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(ies) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

The Examiner is hereby notified that for the following related application(s) an Office Action has been received as indicated below:

DISCLOSURE OF OFFICE ACTIONS

U.S. Application/ Pat. No.	File Date	Office Action Mailing Date	Atty. Docket. No.
$10 / 081,776$	$2 / 20 / 2002$	$5 / 20 / 05$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$11 / 5 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$6 / 29 / 04$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$9 / 29 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$4 / 4 / 03$	$60097-0029$
$10 / 081,776$	$2 / 20 / 2002$	$10 / 23 / 02$	$60097-0029$
$09 / 827,029$	$4 / 5 / 2001$	$11 / 17 / 03$	$60097-0026$
$09 / 827,029$	$4 / 5 / 2001$	$6 / 10 / 06$	$60097-0026$

Attorney Du_кet No. 60097-0357

The related application(s) may contain one or more claims that may be substantially similar to one or more claims in the present application, and those claims may have been rejected in the related application(s). Therefore, the Examiner is encouraged to review the file history(ies) of the related application(s) as some of the information contained therein may be material to the examination of the present application.

Throughout the pendency of this application, please charge any additional fees, including any required extension of time fees, and credit all overpayments to deposit account 50-1302.

Respectfully submitted,
HICKMAN PALERMO TRUONG \& BECKER LLP
Dated: February 15, 2006

Reg. No. 43, 284
2055 Gateway Place, Suite 550
San Jose, California 95110-1089
Telephone: (408) 414-1080 ext. 214
Facsimile: (408) 414-1076

I hereby ecrtify that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage in an envelope addressed to Mail Stop Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA $22313-$ 1450 on February 15, 2006.
(Date of Deposit)

Annette Jacobs

PROOF OF SERVICE (37 C.F.R. §1.248)

I am a resident of the aforesaid county. I am over the age of eighteen years and not a party to the within action; my business address is 2055 Gateway Place, Suite 550, San Jose, CA 95110.

On March 10, 2006, I served the within Information Disclosure Statement and PTO Form 1449 on the interested parties in this action, by placing a true copy thereof enclosed in sealed envelopes addressed as follows: David L. Fehrman, Morrison \& Foerstex, LLP

555 W. Fifth Street, Suite 3500
Los Angeles, CA 90013
X (BY MAIL) The envelope was mailed with postage thereon fully prepaid. I am "readily" familiar with the firm's practice of collection and processing correspondence for mailing. It is deposited with U.S. Postal Service on that same day in the ordinary course of business. I am aware that on motion of a party served, service is presumed invalid if the postal cancellation date or postage meter date is more than one day after date of deposit for mailing an affidavit.

Executed on March 10, 2006, at San Jose, California.
X (STATE) I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Annette Jacobs
[Type or print name]

Signature
*EXAMINER: Initial if reference considered, whether or not cilation is in conformance with MPEP 60\%: Draw line through citation if not in conformance
and nol considered. Include copy or this form with next communication to applicant.

Page 1 of 10

Page 2 of 10

Suhstitute for Form 1449A/PTO (Modified) (use as many sheets as necessary)				$\begin{aligned} & \text { Attorney Docket N .: } \\ & 60097-0357 \end{aligned}$	Application Number:$90 / 007,750$	
				First Named Inventor: James M. Barton, et al.		
				Filing Date: October 17, 2005		
U.S. PATENT DOCUMENTS						
$\begin{aligned} & \text { Exam } \\ & \text { Initial* } \end{aligned}$	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	U.S. Patent Document		Name of Patentee or Applicant of Citred Document	Date of Publication of Cited Document MM-DD-YYYY	Pages, Columns, Lines, Where Relevant Passages or Relvant Figures Appear
		Number	$\begin{aligned} & \text { Kind Code }{ }^{2} \\ & \text { (If known) } \end{aligned}$			
		5,581,479		McLaughlin et al.	12/3/96	
		5,583,561		Baker et al.	8/10/96	
		5,586,264		Belknap et al.	12/17/96	
		5,619,247		Russo	4/8/97	
		5,625,464		Compoint et al.	4/29/97	
		5,629,732		Moskowitz et al.	5/13/97	
		5,635,984		Lee	9/3/97	
		5,659,539		Porter	8/19/97	
		5,675,388		Cooper	12/28/93	
		5,696,866		Iggulden et al.	12/9/97	
		5,696,868		Kim et al.	8/19/96	
		5,701,383		Russo	12/23/97	
		5,706,388		Isaka	12/30/96	
		5,715,356		Hirayama et al.	2/3/98	
		5,721,815		Ottesen et al.	2/24/98	
		5,721,878		Ottensen et al.	2/24/98	
		5,724,474		Oguro et al.	3/3/98	
		5,751,282		Girard et al.	5/12/98	
		5,751,338		Ludwig et al.	5/12/98	
		5,751,371		Shintani	5/12/98	
		5,751,883		Ottensen et al.	5/12/98	
		5,754,254		Kobayashi et al.	5-1998	
		5,761,417		Henley et al.	6/2/98	
		5,771,334		Yamauchi et al.	6/23/98	
		5,774,170		Hite et al.	6/30/98	
		5,774,186		Brodsky et al.	6/30/98	
		5,778,137		Nielsen et al.	7/7/98	
		5,805,763		Lawler et al.	9/8/98	
		5,815,689		Shaw	9/29/98	
		5,822,493		Uehara et al.	10/13/98	
		5,852,705		Hanko et al.	12/22/98	

Examiner Signature		Date Considered

'EXAMINER: Initial If reference considered, whether or not citation is in' conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of chis form with next communtication to applicant.

Page 5 of 10

Substitute for Form 1449A/PTO (Modified) (use as many shects as nececsary)	Attorney D cket No.: 60097-0357	Application	
-	First Named Inventor: James M. Barton, et al.		
	Filing Date: October 17, 2005		
6,304,714	Krause et al.		
6,330,675	Wiser et al.	12/11/01	
6,341,195	Mankovitz et al.	1/22/02	
6,424,791	Saib	7-2002	
6,445,738	Zdepski	9/3/02	
6,445,872	Sano et al.	9-2002	
6,498,894	Ito et al.	12/24/02	
6,504,990	Abecassis	1-2003	
6,529,685	Ottesen et al.	3/4/02	
6,553,178	Abecassis	4/22/03	
6,788,882	Geer et al.	9/7104	
RE 36,801	Logan et al.	8/1/00	
Re. 33,535	Cooper	10/23/89	
2005/0025469	Geer et al.	2/3/05	
2005/0132418	Barton et al.	6/16/05	

FOREIGN PATENT DOCUMENTS								
Exam. Initizi*	$\begin{aligned} & \text { Cite } \\ & \text { No.' } \end{aligned}$	Foreion Patent Document			Name of Patentec or Applicant of Cited Document	Date of	Pages,	T
		Omice ${ }^{3}$	Number $\quad \begin{gathered}\text { Kind Code } \\ \text { (If known) }\end{gathered}$			Publication of Cited Document MM-DD-YYYY	Columns, Lines, Where Releyant Passagea or Relevant Figures Appear	
		EP	0785675	A2	Toshiba	1/16/97		
		WO	2000/76130	A1	Thomason Multimedia	5/31/00		
		EP	0594241	A1	Philips Electronics N.V.	10/12/93		
		EP	0594241	B1	Koninklijke Philitos Electronics N.V.	4/17/94		
		PCI	US92/04573		H. Lee Brown, et al.	6/22/92		
		UK	GB2222742	A	Hashimoto Corporation	8/24/89		
		EPO	0726574	B1	Matsushita Electric Industrial Co., Ltd	8/14/96		
		WO	91/03112	A1	Delta Beta Pty Ltd.	8/23/90		

Substitute for Form 1449A/PTO (Modified) (use as many shcets as occassary)			Attorney D cket No.: 60097-0357	$\begin{aligned} & \text { Application Number: } \\ & 90 / 007,750 \end{aligned}$	
			First Named Inventor: James M. Barton, et al		
			Filing Date: October 17, 2005		
OTHER ART - NO PATENT LTTERATURE DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{NO}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published			Translation ${ }^{2}$
Inside MacIntosh "QuickTime", Apple Technology Library by Apple Computer, Inc., © 1993 (published by Addison-Wesley Publishing Company) 719 pgs.					
		Inside MacIntosh "Files", Apple Technology Library by Apple Computer, Inc., © 1992 (published by Addison-Wesley Publishing Company) 532 pgs.			
		Inside MacIntosh "Memory", Apple Technology Library by Apple Computer, Inc., © 1992 (published by Addison-Wesley Publishing Company) 303 pgs,			
		Inside MacIntosh "QuickTime Components", Apple Technology Library by Apple Computer, Inc., © 1993 (published by Addison-Wesley Publishing Company) 828 pgs.			
		Inside MacIntosh "Overview", Apple Technology Library by Apple Computer, Inc., © 1992 (published by Addison-Wesley Publishing Company) 251 pgs.			
		Quantum Q500 Series High Capacity $51 / 4$ "Fixed Disk Drive, Quantum Corporation, © 1983 (2 pgs)			
		Quantum 2000 Series Low-Cost 8' Fixed Disk Drives, 'New DC Motor Option", Quantum Corporation (2 pgs)			
		Quantum Q2080 Low-Cost, 85 Megabyte Fixed Disk Drive, " 85 Mb capacity/40ms average access time", Quantum Corporation, © 1982 (2 pgs)			
		OEM Interface Specifications for DSAA-3xxx, " 3.5 -Inch Hard Disk Drive with ATA Interface, IBM Corporation, © 1994 (65 pgs).			
		International Standard ISO/IEC 11172-2:1993(E), (Part 2: Vidéo), Downloaded $6 / 15 / 05$ (136 pgs).			
		International Standard ISO/IEC 11171-3:1993/Cor.1:1996(E), (Part 3; Audio), Downloaded 6/15/05 (159 pgs).			
		Hewlett Packard(B) MPEGscope User's Guide, Hewlett Packard Company (C) 1997-2000 (282 pgs).			
		DiviCom, MP100 User Guide, DiviCom, Inc., © 1996.(97 pgs).			

Examincr Signature		Date Cousidered	
EXAMINER: Initial if reference considered, whether or not eitation is in			

"EXAMINER: Initial if reference considered, whether or not citation is in comformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applitant.

Substitute for F rm 1449A/PTO (Modified) (use as many sheets as necessary)			Attorney Docket No.: 60097-0357	Application Number: 90/007,750	
			Pirst Named Inventor: James M. Barton, et al		
			Filing Date: October 17,2005		
OTHER ART - NO PATENT LITERATURE DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the artictc (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published			Translation ${ }^{2}$
		Hewlett Packard \otimes MPEGscope Startup Guide, Hewlett Packard Company © 1997-2000 (39 pgs).			
		MediaStream by Media4, "Desktop Satellite Multimedia", "The MediaStream Receiver Card", "MediaStream Uplink System", by Media4, Inc. (2 pgs).			
		Jim Stratigos et al., Media4 Press Release "Announces Reseller Agreement with AlphaStar Television Networks", Microsoft® and Windows® 95 (3 pgs).			
		Jim Stratigos et al., Media4 Press Release "Announces Multimedia Satellite Network for Personal Computers"; Microsoft® and Windows(8) 95 (3 pgs):			
		Media Stream, "Satellite Receiver" Installation and Users Guide for Windows 95, Media4, Inc., © 1996 (33 pgs).			
		International Standard ISO/IEC 13818-1:2000(E) "Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Systems", © ISO/IEC 2000, Downloaded 6/30/05 (173 pgs).			
		International Standard ISO/IEC 13818-1:2000/Amd.2:2004(E) "Information Technology - Generic Coding of Moving Pictures and Associated Audio Information: Systems", Amendment 2: Support of IPMP on MPEG-2 Systems, © ISO/IEC 2004, Downloaded 6/30/05 (13 pgs).			
		International Standard ISO/IEC 13818-2:2000(E) "Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Video", (C) ISO/IEC 2000, Downloaded 6/30/05 (219 pgs).			
		International Standard LSO/IEC 13818-3:1998(E) "Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Audio", © ISO/IEC 1998 (125 pgs).			
		Guide to VAX/VMS File Applications,, Software Version VAX/VMS Version 4.0, September 1984 (19 pgs).			
		Harrick M. Vin, et al., Designing A Multiuser HDTV Storage Server, IEEE Journal, Vol. 11, No. 1, January 1993 (pps. 153-164).			
		Quantum Fireball 640/1280S Product Manual, Quantum(8), Copyright © 1995 by Quantum Corporation (190 pgs).			

| Examiner
 Signature | Date Considered | |
| :--- | :--- | :--- | :--- |
| | EXAMINER: Initial if reference eonaidened, whether or not cimation is in conformanco with MPEP 609; Draw linc through citation irnocin conformance | |

*EXAMINER: Initial if reference conaidened, whether or not cimtion is in confortranco with MPEP 609; Draw line through citation ifnot in conformance and not coasidered. Include copy of this form with next communication to applicant.

Substitute for Form 1449A/PTO (Modified) (use as many sheets as necessary)			Attorney Docket N .: 60097-0357	$\begin{aligned} & \text { Application Number: } \\ & 90 / 007,750 \end{aligned}$	
			First Named Invent r: James M. Barton, et al		
			Filing Date: October 17, 2005		
OTHER ART - NO PATENT LITERATURE DOCUMENTS					
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published			Translation ${ }^{2}$
Winston Hodge, et al., "Chapter 7, True Video on Demand vs. Near Video on Demand", delivered at National Cable Television Conference, May 24, 1994 (pps. 103-120).					
		Cyril U. Orji, et al., "Design and Configuration Rationales for Digital Video Storage and Delivery Systems", Multimedia Tools and Applications, 9, 275302 (1992), © 1992 KJuwer Academic Publishers, Boston (pps. 275-302).			
		SCSI Specification, 0663 and 0663 Enhanced Disk Drive, Release 4.0, (247 $\mathrm{pgs})$.			
		R. Johnston, et al., "A Digital Television Sequence Store", IEEE, (pps. 594600) © 1978.			
		M. Hausdorfer, "Symposium Record Broadcast Sessions", HDTV Production: Today and Tomorrow, June 17, 1989, (7 pgs).			
		S. Berson, "Computer Science Department Technical Report", Staggered Striping in Multimedia Information System, December 1993, April 29, 1994, (24 pgs).			
		S. Berson, et al., "Design of a Scalable Multimedia Storage Manager", (pps. 130).			
		Conner Filepro Performance Series, CFP1060E/CFP1060S/CFP1060W, "Intelligent Disk Drive Product Manual", Rev. A, May 1994, © 1994, Conner Peripherals, Inc., (79 pgs).			
		Hugh M. Sierra, "An Introduction to Direct Access Storage Devices", © 1990 by Academic Press, Inc., (269 pgs).			
		I. Freeman, et al., "Systems Aspects of COBE Science Data Compression", Cosmology Data Analysis Center, (pps. 85-97).			
		Douglas T. Anderson, "The Hard Disk Technical Guide", Tenth Revision S-D., February 1994, © 1990, 1991, 1992, 1993, 1994 by Micro House International Inc., (70 pgs).			
		Official Action from EPO for foreign application no. 99909 867.6-2002 dated 27 December 2005 (5 pgs) - attached.			

Examiner		Date Considered	
Signature			

"EXAMINER: Initial if reference considered, whether or not ciration is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next conmunication to applicant.

Filing Date: October 17, 2005
Patent No.: 6,233,389
Issue Date: May 15, 2001

```
) Confirmation No.: }465
    Examiner: NYA
    Group Art Unit No.: NYA
```

Confirmation No.: 4653
Examiner: NYA
Group Art Unit No.: NYA

For: MULTIMEDIA TIME WARPING SYSTEM
Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 together with copies of the documents cited on that form, if needed. Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

In accordance with the provisions of 37 C.F.R. 1.98, the attention of the Patent and Trademark Office is hereby directed to references listed on the attached form PTO-1449. The references were cited during the prosecution of parent application No. 09/126,071. Therefore, a copy of the references is not provided herewith.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):

37 C.F.R. $\S 1.97$ (b). It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(c). If so, then this Information Disclosure Statement includes one of the following:

A statement pursuant to 37 C.F.R. §1.97(e)
\square 1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement.
1.97(e)(2) The undersigned hereby states that no item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

A check for $\$ \underline{180.00}$ for the fee under 37 C.F.R. § 1.17 (p).
It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(d). If so, then this Information Disclosure Statement includes the following:

A statement pursuant to 37 C.F.R. §1.97(e)
\square 1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement; OR
1.97(e)(2) The undersigned hereby states that no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

AND
A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17$ (i) for submission of the Information Disclosure Statement.

It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(i). Applicants are submitting references to satisfy Applicants' disclosure obligations in hopes that the references will be considered by the Examiner. Although the submission does not fully meet 37 C.F.R. §1.97, Applicant respectfully requests that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to Applicant(s). It is understood that if the Examiner does not consider the cited references, the cited documents will be placed in the file pursuant to 37 C.F.R. §1.97(i).

Accordingly, copies of the references as listed on the attached Form PTO 1449 are submitted herewith. No certification or fees are deemed necessary.

Throughout the pendency of this application, please charge any additional fees, including any required extension of time fees, and credit all overpayments to deposit account 50-1302.

Dated: March 232006
Respectfully submitted,
HICKMAN PALERMO TRUONG \& BECKER LLP

Kirk D. Wong
Reg. No. 43,284
2055 Gateway Place, Suite 550
San Jose, California 95110-1089
Telephone: (408) 414-1080 ext. 214
Facsimile: (408) 414-1076

PROOF OF SERVICE (37 C.F.R. §1.248)

I am a resident of the aforesaid county. I am over the age of eighteen years and not a party to the within action; my business address is 2055 Gateway Place, Suite 550 , San Jose, CA 95110.

On March \qquad 2006, I served the within Information Disclosure Statement and PTO Form 1449 on the interested parties in this action, by placing a true copy thereof enclosed in sealed envelopes addressed as follows: David L. Fehrman, Morrison \& Forster, LLP 555 W. Fifth Street, Suite 3500
Los Angeles, CA 90013
X (BY MAIL) The envelope was mailed with postage thereon fully prepaid. I am "readily" familiar with the firm's practice of collection and processing correspondence for mailing. It is deposited with U.S. Postal Service on that same day in the ordinary course of business. I am aware that on motion of a party served, service is presumed invalid if the postal cancellation date or postage meter date is more than one day after date of deposit for mailing an affidavit.

Executed on March 2 , 2006, at San Jose, California.
X
(STATE) I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Annette Jacobs
[Type or print name]

A FAST ALGORITHM FOR VIDEO PARSING USING MPEG COMPRESSED SEQUENCES

Ke Shen and Edward J. Delp
Purdne University
School of Electrical Eagineering
Computer Vision and Image Processing Labaratory
Weat Lefayette, lodiana 47900-1285

Abstract

Vider paring ha frodamental operallos mand he mavy die that vides apphealions ooch as digital Bbania and video serites. The scectacy and ruection apsed of thy, pariag bo procosed, particolariy In resit than. In the paper, we preseat a ner Agosthin to rectsostreet DO coefficioal tos ago of a DCT and mollon compesations cocupremed vides sequeper, e.f. MPDG. The Miriognios of the DC codelisat lragges cun be weed to drtect aceas changes

> 1. INTRODUCTION

Deasaod los dieflal video has been growing rapidis la the peot fow yeas [1]. Applicaliona ascich an rideo-es-demand (VOD) and video databoes (VDB) we tening bate prac Hical mivikea, A VOD/VDB zpitra thal tecosporatea did tal video, astornge, dutabsee, sad wetworitug techanlogise is (N) video, siorige, dilabose, end anivi . Dhifial video seede to be preperity proctaned befors it cas bo liserted falo a video verver. Thest lakia leclode tomprosiag, pundot and indoxiag a vides pegranes. Video parsligg io the proctso of detcetiag eene champre er the porsing sin the proctse of delcetiag Ecrne Changre er in time and space in o scras, Aa sumplion that hy oflea chape greathy coes one frumen to the matil wletis ase cass chnage greaty croes one Grapen to the masi wikia ome chasGa shot, Baod an bia asaription, sewern mcant dieage of the polve dínibsition and motios. Color Noslograms have bera wide) sesed to video pentive colorithos $(1,3,4,8)$. The mollai of objacta is the mesea bave siap bees uned to deiest econe diange (i).

Diplel vided acpuences are macolly stored la a comb prosed formas sach me motion JPEG os MPEO [7 , o], The gorillas bo He inveris DCT (IDCT) operatlon. If a vides everuace can be propesped before the IDCT in pertortioed.

aceritioe tinet caa be andaced (0). Variocis spproincher lare bea propened to parse a video wegoeace diewetly frets the comprowed dale $[20,11,13\}$

Io thle peper we provat infant algonthan to perse MPSO1, 4 PEO2 or molive JPEO compreend ndina segsences by
 molion vectorn
2. PARSING OP MPEA CODED VIDED 8EQURNCE

Tha MSPEGI or MPBC2 video pompreation alporithen we Ma DGT and reolbs comperested predlition lo redece ape tal and teargeral modaducy. Onjy the DCT conflicizatio and the motlon voctope are aribilts la the compreneed dati strease. To the action of deserilo an asouiths for as
 notion vociors A shmpla weze chagge ditection schem uning color Matogizan diflarmen is alap deveribed.

2x. Color bletogram asilmation
A ant of coless cas be roprovenled in a threi disosugtoun opace, laume es a color opsce. In colot ippeos ABC where A, B, and Creppeseat the three chineadose of the color space a ecior cen be eopremeted by i vestor $x=1$ in in whars $8, b$, and s ane the three orlor cospopenems bo $A_{i} B_{1}$ and C repectively. In a color lasags a pired at apallal ponluos (n, n) ena be taprimed ian a wotion
$f(m, n)=[f a[m, n) \quad f u(m, n) \quad f c(m, n)]=x$
in the rolor peace, where $f_{4} \mathrm{Jo}$ and /ce ate the three coloe compoesals of the pixal vilse is A, B, wail C. A colot hasagi

 of ive raviose colvis la the fasat, car be oblationd by

$$
M[x]=\frac{1}{H N}(\text { Namber of phate } 3 P=x ;\{\in A B C) \text {. }
$$

-here Mand N ase eqmben of prede in the trexge fas man bontal firrection and ta veitleal tirestions, reperturds. A

है

H

3. EXPERMMETZAL RESULTS

6S16SO-000LL OHOE

4. Repergncis

(1) 3. W. Benollis and E. Thasy Conseat-baed vibeo ludering and retiven), IEBE Multinedla, pp. 82-12, Samemes 1994.
[2] Y.-Fi.Chasg, D. Cogefus, D. Pht, D. 8 keflith , M.Ths pat, and C. Veplatranan, "גa oper-ryelema aypeosch to "lieo on dersasd," ISEE Communiontione Mage aine, DA. 55-80, May JOM.
[1] M. J, Swaln and D. H. Ballard, "Color hadeainge" intarnational lownet of Compelar Vaien, vol. 1, Be. 1 , pp. 11-32, 10n1.
 romalk parthloelos of Aiv-aption wdeg, Muhimedta $5_{\text {pplters, }}$ Tol 3. FA 10-28, 1093 .
(S) M. Youg, B,-L. Yes, W. Worf, sad B. Us, "Video biowdiy, uxibs chetertag and weov tuandian on compresiod sequencers" Procedings of the SPIE Mulst modin Coraputing ond Neteorking 1925, Yetreang 8.10 1909, Sua Jom, Callorah.
[5] 8. Y. Lee and B-M, Kag, Yideo hdering ta ap Frosch bued on croviag object and unch, Proons for Image and Vidre Dotabsaen Fobecary is 1893, Ses Jase, Callifonia, pp, 25-22.
II 17, R. Pemasobaber und J. L. Nitaten, JPFO SIIt fom age Dala Comprasaien Stendond Lirary of Coxpres
 Cumognt-la-Rabsics
Irand Relasold, 105s.
10) D. Le Cali, "MPEC. A wdeo compreselan atandard
 ACN, mol 34, De. 4. 7p. 4t-80, Apra 1991.
I]' S. Clang and D, O. idemernchita, "A mve epproed 10 decodiny and comprodulas mollas-obmpacealed notional Conforener ea Acountios spescl and stipel Aroocselaga Apri 2T-10 3p93, Mlazrapolis, Mianonots,

[10) B. J. Zhang, O, Y, bom, and B, W, Smolis, "Video penting and browhes eing comprecsed data, tech sep., latitote of Syotam Sdeser, Nallonal Ualvenity of Siogupers, Keat Riden Slegopert, 1992.
(11) I. Neag Y. Jsam, and 8. P. Cingh, Soros change do loction is a MPDG compreited video segamcte procendiggs of tha SPIS conoronnoe on DVItsol Video Cons Frebetont Algorilhms and Thehnologles ings, vol 2 Febrany 1985, Sas Jose, Culifornla, g9, 14-28,
(12) H.-C. E. Hs ind Q. L. Tick, "Sowas decomapodUon

 Cultivels, $\mathrm{PD}, 25-17$.
[13] Y. S. Bembpey and J. 2. Bivact, "Fifical eolor the logram inderiag." Procodingo of the 1994 IEEE Intsm

[10] A. M. Aleliss, "Dovecilag ast conaprealyg dlavolve ro
 corapteatice Agonithm, Procordinge of St IEEE in i-8 1983, Cikego, Tisisis, pp. 12-1s.

Figut a: Hblogata dilerears ofrgase of ibe same ohfeo equence. Topr: Original pixel nlase are cmad. Chearly thare
 ened; botiona A median filver of clise of appled to ise. middy diapins. Toe Miph pabat are asppreped to arold ldog falo detiected to iflolve thandiank.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER: \qquad .

IMAGES ARE BEST AVAILABLE COPY. As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.
$21650-000 \mathrm{HOHOB}$

Catabase.' Thb assumption regalres us to define tools for the construction of suth datibases and the Insertion of new enstertil Into culsting datsbases. Wr ana characretise these tools in terma of - tequence of speditic raik nequiremems

I Arsifig, which segrients the video suream tate genaric cips, imese cups ent the etemertial tinder unibla ta the daribase, ldeally, the syitem decuip peres individual treeges into sumantic permitime pard intil of thee pitmitres a ride prifives. On the bista of these pimitiven a vides cip cas be indexed with i memantte descelption oulng
exising inowledge-representation techniques.

I Dudcalige, which egor videe cilps when the tys cen insuts them into the database. The us Inciudes Information baed on a lnowiedge model that guldes the chavilsation socording to the semanits primitetes of the Images indexing is thus driven by the lasast Itwed and any semante decciptions provided by the model.

1 Nutriond and bewshy, where users an acress the database through queriss based on text andor visual examples or browne It through Interaction with displays of neminingul icons. Usen can abo browne the renutb of a netrieval query. It is hoportant thal both setrievil and browsing appeal to tant thal both intiteval and
tha uber's visuaf bitultion.

Flpure 1 summartea thly tak ansigists as an whiliectural dlagrom. The beart of the syrsen is databave cuanajrasent rybem contuining the video and mudlo data fiepti video source materlal that has been compressed wherever peastble. The DBME defines atuibutes asd rthulopis amony these enthins to wems of o frams-hased approsch to inowledge reprisentaiton (desalbed forither undee the ubbhesd "A frasat-based knowledge base," p. 651. This reprvientation approwch, in tum, drives the indering of entilues as they ant adod to the databue. Thoie entita ave Indratly eatricted by the tools thes sappont the paraing ias. In the opposite direction, the dataluase content are made avaltable by toola that support the procesting of both spectife querter and the more groeral nerds of ctawal browing
The neal three sectiona dinnea elemerts of this architecture la greater detall.

Nadeo comicent pertiag

Thrte fool wers address the paring tank Thr first wet segments the video wource mowertal tato Indivitual comers athos, whiki then save es the
basc unill for bdentig. The itcond sel ldendiag different rasifferations of exmers techalque bn there elipas, The thited vat oppllea content uroded to the ldentilarition of contera-dependent sermen us poimitives

camera), in which the camen poation toce chetrgh" These eppratoms many aho ocexr in comb binations. They ve mest texdly devectes through mption setd arahys, dince each operation hat th own chaperatsuc pettern of eotten vecioys. Fore exumple, a toom caenes west of the potion weston to point ether towand or away Irocs a focus centet, while moveroend of the camen liunti them up es anodal valof acros the entire motion Seld

The motion vecton can be coerputed by the bloct-raanding diorthms used by mothon comp penultion ton video compreston Thme a gyam can oftea netieve the wectors from fies of video couppresed sccueding to tundinds puch as MTVG 3ad H-281. The gatem could abo copppute them In real thaec by using chtpe that perform such ceosprexton in handime.

Contoni modela

Contan paning b mont aflective with an a pro on rooded ef a witrot abuetime 'such a motel ean repretemt strong spatial apder within the individal trames of phots andfor a atrong tempon: order sapss a mequerce at shoes. News brondast woally provits stanple bumpter of moch models. Foa carapie, all shots of the anchorpenion contorms to a cortvoon rpatial lagout, and the temporal atructure atuply atrexsate betmen the minchor prezon and more detaled loouge (posajbly Inctudias breaba for comonerdslos.

Ous approech to content ganiny befors with Idenulying key fatures of the trager deta, whith are then compared to domaln nodels to Neathy oblects trleared to be part of the domsin. We then Ideatijy downin events as nequents that toctude spedile domain cbjects. Ous inlitil eoperiment Involve mpdets for out boundartes, ipped abota, and epuodes. The cut boundery model dives the uqpotolation process that hocates camers athon boundarfea. Once it shot has betn bolsted
 ype modes hased boih on features to be detect. d and on mempuras thet detemines acceptable stadlunth. Segoence of yped shots can thes be prallarly compared agninut eptiode roodels. We
 of video content mailyila.

Index coratristion and retriaval tools
The fundomunal tak of eny carabore sytrm
 buld tuderes that focilute puch ittional stevicts for vileo. We wani to bsie tha indes on semants

Pave $2 A$ aepunact of Nexab-byeng mutuge alifenmas Metol finna dencramitery Mins Nert aty/uevots anegurabel Doch op ann inacta and ip trenestione
aplomentel hr yperdal
nfects cen be thirmed.

I25 MukliMeder

the bapla of sathatios of lrame differnce vilues and a mouth pens techulque that turproves process by ypeed:

Degare 2 ilihurtates a typical saqumat of diffoence vaboes. The graph exdblts two wigh pulates
 trites a gradenal tranition occuming over a sequence of tomes, in thls cose, the taik is to IEentify the requencestert and end polnts. A the Inuet in fisure 2 shome, the difiertnct velus dur Ing wach o Uninslifon are by tea than ecross a pintrs breat Thas a stayle therestald bads the powes to detect grabual trinultions.

A ro-alied tabeanopartion apprasch sotves this probiem. The mame refen to the use of the Uhreholos, Firth s retuced threnhats detris the Once that forme has ben Ifentifed it is ceroparts egainm sucrestue frotest thas measing as accumalated difference tostend of tramemathere differments Thly porwatulated diflerenct mast be monotonle. When in crasea to be anoset onkc, is is compered afalast a second, bithen threhold. It this threibold is exceeded, we concude this the monotocicely tracrastres sequencs
 unl banstion. Expertosents hove blown thit epprosh to be wry iffective.?

Shot cteruficiotion

Betore a ryitum cin parse cuntert it musit fint recognize and tocormin for anlfita caused by comp eve movement. These soovements inchude paoning and rihtoy thorizontal or vertical rotedion of the camern) and socming (tocd lragh changed In waldit the cevien peatition down not chanye, and tretaing and booming (honkrontal and verth cal marswese mavement of the capen) wind dol bying (hortiontal latent trowement of the
properdes, nther than bower foved leaturts, A howlefge model cran tupponi such semanite propertes The model for ous tystem is a framsbused knowledga have, in toe following dacesson, the word "frime" reien to puch a thaowiedre bare object ratber than 1 video fortage frame.

A frame based lrowhedge bese
An tadex lused en wasuntie propented uyqutres in orgaiation that ecplleilly reprowets the vetows abject matier categortes of the wateriat being indead Soch a nipresentation to oftan real lod et a sementle Betwort but tert bodexal ferd to be forctared as treas (ea verealed by the tadented representations of most book tindere). We decided that the asore restricted trer form abo sulted our purposer.
Pfure 1 dova an arapge of mich a tree firp restris a yelection of topices citeporta tateo trim a docuxa entry viteo about the Pacuity of Enynetring at the Nationa) Unlverithy of Slapaport. The tret atructure nopesents reistlons of spectar leation and geveraliation among thete catecortes. Note, in praikcular, thal categories comespond both to comtent material about student actuvtid (ravtry) and to ctatificotion or differeme sppronches to produdng the video (Video_Trpen).
thers tead to chasity marerlas oo the bash of the informatioa dhey loppa to ertract. The partiowhi set of ategorles reliects interest both in the bouly and in docuraenary proderetson. Thrs, the purpose of tas loptel organtation a not to des. Hy twery obpect is the video detinitively, Datherf. It helpo esery who approsch this material whin oaly 3 general ect of quartons, orleating them in how to formalate most spectice guentions and what sorts of enswent to expert.

The trame-based knowle dge base ls the mos spproptate tecimology for buifding such a strue. ture. ${ }^{4}$ The frome la a data object that playy a role fimine to chat of a record in a trandithonsi datituas, Howevts, trapee are grouped taso desises, wech at whith weprestas zopan topical eategert. As Mrurt 3 thatrita, ther ciape und to be ocgaokind is is upectalimelion hierathy. Such a hierardey allow the reperientation of content ju terms of oat or roore erstems of atrgories than can then be used to focus attention for a veritty of task.

The dimpler of these aask to the canal beoms. ing of collections of tems. Howevts, Hernarchich organizition las lycilitate the retrienit of spedsle iterns that sethety the worts of constraing normally aspectated with a database query. Ins the

records of a databoe, thima are strociund as a callection of telids furailly called shets to frume based yrutans. These slots provide ofterend eltments of descifitive informution, and the Clementa dbingudst that toplal chursitatithas for each oblect rypresented by a bieme

Its lonportant to recogrixe thut wa lexe fremes to reprosent both clases (the ciltgodes) und unsunces (une ciemenu categortred). As an curmple ol a can trame, contider the laboratory citesory in Arure 3. We mighat dedine the thine for it os chomen in freure is, Aheratitrily, wer on dotine
 in lasunct af cere of ts subclatser in as silfhtly Note that mot at shown in figuet of
Note that not all sloto neod to te fined far e class defintiton f"wole indcatas in unifled atoth, while
masial Laharetary
Superclanat Mesdeole
subelasaen itable|Cosputer, Lob Elect roniclab Nochenlcel Lab civil_Lab Chimeal_lab)
tuatmenes, vold
becriptiont vold
videar wold
coursei vold
Soulpeant, vold
Mase, Mave Bimulator
Clases Civil_lab
Oascriptiont Monitoriog preasur. variacian in breaking waves. videas Maveirasker coverfrime couraei Civil_Eng
equi peont a atablefcorpucer Have_Cenactator

Ftrave 2.a bow amstione of toplon antegorles fora tocurvertery vided ubout extionectivy at aty Nattonef Undernitro of Thyopers.

Phome il Enempiss of chay mume Latorctorg (teop) whe sablece mutanct Heme.inalater poctions.

slructing a model for matcting regions of the color with suhable spatial propertios. The primh itves from which sach roodels afe constructed thes serve as the beas for the index structure. In wich o databese, asto video ellp would be represented by one of anore frames, and all indexing and retrievil would be bared on the tonage tratures of thoss fromes.
Some image dapabase syatem, purt as the Query By Imate Content IQsIC) Propect' have developed technląues thet aupport thls approwch. Thew fechuigpea inctude selection and coraputtlon of irasge fistura thas pruvide useful query functionalliy, dindlarity-based vetriteval methodh, and Interfices that let wien puse and refine quertes visually and navigute thele way through the databese vitually.

We chosa color, rexture, and thape as baske image fearures and developed a prototype ratien with lan Image-indexiag oblitites. This syittem sutomatically coupputes numerical Index keys bỉsed on color distribunton, peündnent color region mgenentation, and color histograms (as texture modeh) fur earh tmage. Each image th Indexed by the slae, color, location, and shape of regmented ragions and the color hisegramus of the entire lmage and nine subreglone To achieve tast reurlevat, the system codes thrse lmage featura into numertral indea keys arcording to the ${ }^{2}$ gutifance of each learure in the query-maschIng process. This rettleval approach has proved tast and acrunte.

Indesing representative linages easentully fignores the traponil nature of a videa Ratrieval should be bused on events as well as fasutes of statk lmages. Thls will tequite a betier understandiog al which temporsi vtsual features art both importand fat retrieval and feadile to coms puit. for leatance, we can retrieve cooming sequences through a relativeiy blatghtforward ccampraiton of the motion vector hetd.' Howerees. because such vector fields ate often difficult to compute (and becaure the "motion wertors" provided by compressed viden are not ahmys a relh able representation of optical Bowh a more viable alternultve alyht be to perform fealure analyalt on the spatio-temporad tmagea, We diccuss inis altemative betow under the subsection "Mcons: kems for video cuntant".

A Clipmap is straply a mindove cuntajning a collection of loons, each of which mpresents a camern shot. We can use Chipmaps to provide an unsunctured indes bre celtection of shors ${ }^{4}$ They can also be used to diaplay the resultas of retriena!

operationa Foe example, nther than staply llatIng the tomes netrieved by a treeseaz query, the yytem con comerosi a Cliparap based on the contenus of the Vidso slot of eich trame Such a olsplay is espectally useful whes the quecy resula in a long inn of frames. For example, Fgare is is a Chpmap constructed for a query requesiling all Imstarices of the Actring dars. Even If the system trolanices of the Activicy casc. Even If the syistem ordens retrisval resicha by depree of similartry (as they art fon fromeat seughy ti can sulll be diflicutt Ilass of thoss fames. The Cilpasip providet vinu. al nstogrition at an atiecmative to exwalating such text descriptions.

Intersective oldeo objoct
We turn now to the problem of Interfaces. Viaco is "roedia rich " prowliling moving pletures texl, misic, and sound Thus, Interiaces beind on krywonds or othes types of teat represeatation cannot provide wsers a sultable "window" on videu contem. Onty virual representation an provide th tarulefve tue to toct content Funhermors, we should not regard wirh cues as peaslve oblects A uses rhould be able to intriact whth them, fust as text indexes ser peore lor lnteraction than for mamisation In thas section, we disume threv approschea to iniernctivity.

Floure s. A mpleel

 Chpmand

8LL6SO-000LL OHOB

ootlon information ethber for selextugg a reprosenatadve frame of Ior conatructing a "sallent tur"w instead of a mpresentotive frame.

Hererchical video magnilite

Sometimes the ablity to crowse a ableo in its enitsely a more lamportant then exambing ladtvidual camers shots in denall. We base our approteh on the Mierarchical Vided Magnifiet." It is thustrated is Higure 8, which presenta in overview of the entre "Chunging sieps" video. The origtinal tape of thia compontilon was coaveriod to.a QalckTluen movit 1.202,602 units long. (thete are 600 QuidNTmes unltis per second, se thty corresponds to a lithla under 36 mintitex) As the figure shom, dimenilans aliow for the display of ive tarses slde by side. Therefore, the whole movie is duided into five sepmente of equal lengh, each weroent represeared by the trame at ta mbdpoinl.

As an example from thls parkcuter video, the ins segment ocruptea the tent 236,320 ondts of the move, and its repuesentative trame is ar indea 128,260. Each segrpent can thea be shanlanly eypanded by dividing it triso Afve pordons of equal length, elach mpresented by the coldpotat hame. By the thas we get to the thind level, we are view. ong ifve nqually spaced fremes from a segraent of
stap \$1,304 (upproxituntely 85.5 seconds). Useri an conture trowito to greiter deph , after Which the screen scrots scrosifingly.
The user an abo select any frtme on the dbplay for sionge. The nytum will store the enture appont hepresosted by the frovic as a separate file, which the wer can then exasine with the micon viewtr. (Thla ls how we crabed the terage tas Flpure 7. Thls appeosch to broming le pertacularly veluble for s source Ute "Chancter Seps " whteb does not have a wela-deined sarrative stincture. It cro terve tqually well for rasterial where the narrative asurusture ts nof yet underniood.
The Hierarchical Vydeo Megraitien ti an excel knt example of "conteabtore content unilyals," The techinique tequtres no hinformation meparding the content of the video otiver then fre dration We dercloped tit erplete the remplts of mitoens is scgmentation. The segruent bowaquartes deteric segmentation, The segreat bovaquines orierHersichtal Video Magotifr art thea "fuadised" by belng thitted to the oearest camen shot boundary. Thus, st the moplevels of the hierarchy, the regronts actualy comespond to mepvence of
 aned dwailon. These camera shot boundertas are honored in the mabivition of all regrints that constut of reove than a stigle mach shot. When a

 trecturn forpice any prome.
regnard coatains only voe shot, the strople afib mette firtsloc of ibe Mierachical Video Mapeilifer in rexernd fa crasuctity will pilsegent levels of the thererchey,

Ctpmesps

In idation to providing a useful taterfece for the rapulte of Nitrieval querich, Crprosps can aho serve as an intecactive tool tor Index eonstiveition. In thla copracay, the Clipmap pleys a role ts eiarb ining parsera shots stmitis to that of a lighable
 is way ustha in menually spring the video seg. ments into dilferent catepodes it worla beciuse the user can matntato siveest open Cipmap windoms. if is thua gosible to start with CHprasp window that is a totally unstructored collection and group segments from a commen categery
Intos sparate Clipmag. Thus, this frature can be Into a scparate Clipmag. Thus, thls frature an be
esed to fors ategories by the "divide and cosesed to forss altopories by the "avis and cose video focona iniop smallar piles.
Findernate, the groups cresed by thls proces then define the bopology of e dus hienvely, puch wis the one lloustrited in Rpere 3, Wbile no egstem is yot sophtrikested excoith to generite libels on detcriptiona for these desses evtomatically, the user can be proxipted tor such tnformation whlle ueving a display of the CYprasp correponding to the class that nteds hbeling.

Cose atardy iff wheo ctevtent aralyit

We took a case study eppeowh to validating the toots and techrskues alicussed in thls sorlicle. Mary of our best resits to date bave cocese fiom unalyas of relevision reis prognoms, As potared our earlos, comtent paning fs mont ferdble when wi have in i prorl model of a video's structurt based op dorasts lnowledge, Such moded deink-
 eample, Pyure 9 proddes a itrityhtionard vepresentation of the femporsi atructare of a nem
 (posibly Inteletived whl coramercull), each of which may irriube an apchorperion thee at th. begnating and/or end

As a rule, it is not resy to ciasity indiritual newi thots by troctural propertle, with the pos athle excepdion of certatn regolar testares, mach is werthr, opertis, and botmess. On the othet hiod, tritats of unchorpesion thos have a weil defined spashis strutuart which can be distrualthed from fames of other news sbous (see Figure IV). Atarioarly, exw tiem to most sew progums Diwap strits with en mathorpenon shot followed by o peqpescre of shots thestrating the newi incry.
 tay losuch fompornd and spathes structures

Ove sppraich to news vilto coratten paiding begtas with Nenilfying key featum of the shors, which wee then coapared to doculn meodels to Identily oblects infiened to be part of the domsin. Thas, we berat news progira paaing tnto thre becty The turx tapk defintes an anctorpenam chon apold that liscoporates both the temporal utrucrure of the thot and the spatial structure at : represertathe frame. The zecond bask developitinHarly mencrat to be used in emaching thete mod. ets wih a given thot at a megs of dediting whather that shot if an unchopperices shot. The thiod usk uses s temporal stroctur sooded of the entis neve propres to frallse the shat dawifailon:
We developed s set of slgorthons that locates anchopperson shots hased on the spelal and temporal leaturss of the whoas. The rytum then coom pane fequences of typed shots to ephode modets. The ahorithms have proved verf effecture and chive high wecuracy in newt Fideo pandige, ia

We appled the two inder xcherves dheused catbe-fext and viqual-to the news progranc: The tent inder uses the troptal catragory thes and custors news thens lo ciasion conseaponding to diflernt acws roplas. The freceen tool an metreve hes revas teass However, ahbough we can predefine the categury tree structure, we have to insert ench pevs them manually into the tree. which can be a tinae-consumbing and tedlous taik
The visual lodex is compened eutocsattisily trom the paritig prococo. We regiesent each nevs hern viaully by is aticen in a Clipenap. The ave frames ar anchorparion faysua conisining a news leon, watch provides of viad cua to the conteat of the rew them. U there as no aschorperson frome contsininus e oews lcon; then the cover farme ts the fart frime of the firs nem thon followtag the anchorperson thot. As loons of the news hema belongtres to a oevs program ere then provented th a tomaron CIprapp.
Curenily, we didelice, cempras, and meve the video data Df eich newi ftem as o QuidTtime filp.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING

- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
d LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

C8L6SO-000L1 OHOB

	Dirset Beane Culs	Tranationel Ocene Cuta
Manced	59	21
Detoeted	54	19
Miased	3	2
Pliso Almm	7	1

42 Gapaera Openation Peramotion Eallanation
Wition ithot low lovel visual foadurts auch as commer zoompran and moving objocts tro wapal Information for video indexing. We oatimate the cegcern rooen and pea with a 6-paremeter afine truaform model [5] using the motlon vectors from the MPED compreseed stream.

The motboa vecton In MPRO are muilly genersted by block mathing: finding a block in the referaco famp of the the mean square aroc is nalalmised. Alboogh the motios vertor do sot represeat tho truo optieal bow, it is axill good la mont cuyer to eximito tho ermern panmeters is sequeopen thas do bot cortala liege dark of tuifform regions.

When the distance betwees the objectbackraund and tho carpers is lage, it is umally rufficieat to wae a 6 ploracter affige tranform to deacribe the global motion of the curren framo,

$$
\left[\begin{array}{l}
\omega \tag{I}\\
\nu
\end{array}\right]=\left[\begin{array}{lllll}
1 & x & y & 0 & 0 \\
0 & 0 & 0 & 1 & x
\end{array}\right],\left[\begin{array}{llllll}
0_{1} & a_{2} & a_{3} & a_{4} & a_{3} & \theta_{3}
\end{array}\right]^{T}
$$

where (εy) to the coordinste of a mescroblock bs the curtent

 $\left[a_{1}, a_{2} a_{3} a_{1} a_{1} a_{0}\right]_{]}$.

Glven the motion vector for each macroblock, we find the pobel parnocter usios the Leas Squara (W) estimetion,
 betwees tha modion vectors estimared in (I) ted the ectal inotioa vecton obtalnad from de MPISO stretan [25].

$$
\begin{equation*}
s(a)=\sum_{i} \sum_{7}\left(\left(a_{x 7}-u_{7}\right)^{2}+\left(\omega_{n}-v_{77}\right)^{2}\right) \tag{2}
\end{equation*}
$$

Where $[a)^{T}$ Is the extimated motion vector. To solvo for A, tet the tirsi(derivative of $5(\sqrt{4}$) to 0 , then we get

where,

All numpatigns fee coonperied over all nill macroblocks whare modoa vecurn survive offer the eoplineer aolas roduction process Altat the fint LS eathnetow, molloa voe-

 procests is harated several times to refine than wocuras.

43 Moring Opjeet Detection snd Truelthg
Ather the globed carnern pertwetern it found, wo may recower the object motios by applylag the global modion courpensation If an object focsted at ($\mathrm{k} \boldsymbol{\mathrm { y }}$) is the exritat freme has a local unotion $M=\left[\omega_{g} m_{8}\right]^{T}$ from (α_{8}) $)$ to (x, y) in the reflusoce fleme whin motion vector U, then $\boldsymbol{v}+\boldsymbol{M}=X \cdot \mathbf{A}$, wea Figura 3. Thet meins the loeal objoct motton cas be recovered frums mothon vectors provided that alt lenowns

$$
\begin{equation*}
M=X \cdot \Delta-U \tag{4}
\end{equation*}
$$

This ia the global modice compesaatige (USC), Por modioo vectin of the beckgound OMC will live mosity G. Pot motion vermers of tho foreqround unoving ebjocta, GMC will reveal the loeal enetion of objocts, sea Pigues 4(D).

Moving obfects ape detected by draholifing the sagnitede of the local unotion followed by simpla morphologleal operatlons to delecte amall false offerss und to 6 II nolsy spote

 anotion M mes pel chlacienent b

E.1.1 trajs 1 - Frame Type Converion

The MPBC video consists of OOP milta, Bech OOP starts whith in frma. We only need to ro-encode few farnes whith are out of the GOP boandery it the begtanian cr endIng part of the segments. The nowly creatod OOP mey have a difcreat sives, but it le atill cooformabla to the MPBO format Detalis of the trape type cozvarslon mary be found in [15]. After type comerrifor, each segmens is indepcedestly decodable and can be paatad together bent to back to form a ofw expuctice. Figure 5 thows cuulifg out segonent and 2 at arblerary locallon to farm a new bitutream. Tha beyleming fow frumes of a atguest la ro-encoded mo form a chorter new 00 P .
5.1.2 lasue II - Decoder Video Buther Cantrol

Por conviant bitrate MPBO video, the MPEO encodea tolves the rate ectetrol problem whit the "virtual boffer" (12,13). s tionulation modalo of tbe docoder beffer. Before quandising each macroblock, it rete the sufereace vilue of the quantiz: bou perameter besed oa the folliness of the "ristual berfec:"

Whea cating mad pasting metionay segments from diferiens comprased video strearns of the amo bitrata, the lategity of tha cigtand nita control mocharisas in lott. Por euarple Figue 6 (0) shows tha video buffer occuparcy ather coos becting four seqmentr: Tho video buffer aise ha IMolto. Bech regreat consints of 49 frumet, etiorts with wn Ifame and
cods whin an 1 trama. Ths video buffer decrutset to a very low lovel wer the frst 1 Arme of Sesh. When Sest is pasted, the brifter atirts to herve the underilow problem.

Tho ovarilow probien can be exelly solved by stintuing zero bits at the end of a slloe or a ploture wbenever the buffer reschea a vay Migo level. The undertion probiem cas be solved by lnacting a syachode Enastsonal GOP [15] wilch has a lowre givaje btersis them eormal OOPa or by applyInt rate ehespiog aigoritum [10] to roduce the britrite of the botundery ITP fremes.
B.2 Exdanded Ecting Functions: Specied Entucta in tha Compreteed Domaln
I. addition to the beale editiog froution "cut and paras", sco end special visud eflects cess be crested is the compriased domals Por I frimes, the bethe cempresalon component is tha Disereta Coilna Trassform (DCT), whleh wre denote as

$$
\begin{equation*}
P(\alpha, v)=D C T(f(x, y)) \tag{5}
\end{equation*}
$$

Bexio lipose operations fike the intratity addition and scallog eas done as follows [7).

$$
\begin{align*}
\left.\operatorname{DCT} U_{1}(x, y)+f_{2}(x, y)\right) & =F_{1}(n, v)+P_{1}(\psi, v) \\
\operatorname{DCT}(\alpha+f(i, y)) & =\alpha \cdot F(\mu, v) \tag{1}
\end{align*}
$$

(a) Decoder

Seg3, bather remserna noreal.

0.22 Finn Enich

Plim offecta referi to maldry video wilh $4: 3$ atapect retio to different spect ratios auch is $1: 1.66,1: 1.25,1.2 .35$, asd 16:9. For I frames, the DCT blockat outatle of the deatred region tres set to Q and the blocks that tha on the matidng bounderies aro recalcolated aling the sengliflod DCT trasslatos sifgorithan described in (7)

$$
D C T(8)=D C T(H) \cdot D C T(A), \text { where } H=\left[\begin{array}{ll}
0 & 0 \tag{14}\\
0 & X_{A}
\end{array}\right]
$$

Where A in an origionl block locestod on the boondery, B is the pew masked block, and I_{4} to the isemuly matris with riza $h \times h$, as abown in Pigure 7 (c).

Por P and B trence, oaly macroblocky with notioe wecmen potating outsite of the masking reyion neted to bo rpeocodod. Macroblocks with motbon vectors poinelng insido do not nood ary modificulon. Efficient njecithmat for reancoditg macroblochs are described la [7,8).

52.3 Moy EHects

Key tificas are oftea uted for compontiny an anchorporion
 areather map. In spatial domatr, thas is dopo by ahoothas tho find video with a undorm backyound color (urually blie), thea roplace overy bhe coler piral whet the mecesd viripa. Ie compressed domala, wo eogracht the fita video lato fortround aod backgroend raploas by detocting bo thas color Then we replece the macroblochs with juat bloe beckgroumed color with coerexpondian macrobioch from tha eecond video. The need to ro-escodo tro mseroblocka lying ca the region boandery and the meteroblocias with molion vector poinitis dotaldo their regionss The percentage of macrob lockes which eoed re-escodtay depends on the video type and MPRE eacoder derign. Somel almalailon remolts wex reported is [7]. The courpleily of the re-encodins procese can be rufuced by asing the pro-editing modion vectora to Infes hew motion ealmation parnmeters.

5.24 Aolion Emectis

Motion effests Include Thene Prame Thrlable Spasd and Sirobe Mettor.

Pesere Fitme

Slame the freeta effiec in armally longer than I vecond, sitoply tavarion duplicstad trumes (ag vero-energy F framen) for a lopes perlod of ture la not dealnable for lotarective playback (e.g. rundoms searcb) dos to the finck of froquers 1 frames. Wh neod to ploce in I frame at rezular ifort fotervil. Therefore, the Brosen frume is coervertiad to as I trame If it Were BPP frima And the reat of tho GOP If filled with thell eated P frumes. All the macroblecks io tho depllested P trames wev set to Mation Compensaiton Not Coded le., i motion vector, and the 0 realdus enver Hocka are dol codod)

Vriable Speed

For fast modion, B, Ry and I frames wre subsezoendy dropped eccoriting to the veriable speced.

For slow modim tepending ou the slow motion nato, two upprosches tre usod an showe to Fywe S. Is approach 1. dirplicated fremes are Inserted whin so docoding tuvolved. But the IP frame delay is multiplied by the Invere of tha motion rita. Por example, \mathbf{x}, of cotpat video must be trens. mitted 4 Anmea earler, nother than the original 2 frumes. Thls epprouch la sultulle for nate $1 / 2$ and up.

In uprosech 2, ocigias P/B fromes aro coaverted to I finmen unint our DCT domels tachalipen 17. Then dupileated P frumet will be buserted between I tames. This appionch rodoces the gime deley, horrover extor DCT tomadn manipdations aro ropulrod

Siche Motion

Sirabe modoo la a comblastion of Proze Frame and Uriable
 Ing daptlesped P buace.

As described in Sectipa 5.12, to evold decoder beffer to
 Mtrite vidoo, we man mand tedundast bla to the lnsertod P fruses, To mald my lacticer zodertiom, we mey apply nte moljustexeat technilyuipa described In Soction S.1.2.

58 Adventegee of Compreessed Domalin Appresches
For the beake edifing finction: cut and paite the corryaresed domula spgroanh ress an leant 60 fine9' faster thon the straightformad epprotch (docodo-cribeucode). That it based on 12 recond per ear on sveragt, one P or 1 theme for

$691650-00011$ OHOB

7. CONCLUSION

Wo prosented a Conpresed Video Editlag and Pinsing Srrtean with our propesed compresed doomsin ridico manipuletion and lideving tuchndipues. The CVIPS proccasas the compressed vidso to autcomationly extratt hey visus fes. tures such as scena cas, esmere operation partisctern, movlig ofjects, and thea visul features (e.g, color, motion ing ofjects, and ures
upeod and trajectory). Content bised quertes eve formed uped asd trajectory, Conizat besed querica vile cilpe Thit the above visus feabras for rowtiongy new widce cilpe. video and crealing opocial oIfrets. We have abown thet the ctumpresed doconis spproach exa setrove sigalicant tyetem performesca hmpromeanent in apoed, quevity, and storage Sotiware haplemeatatioas of the propoend algorithes havo been developed to C and love erapdoying a client Horver model over tho WWW, The elient-tidive Implespentstion ha partienlerfy miefouf for usen with uceess io reaples comperten of even less powerfal devioses (such as Uight weight moblije unily).

1. ACIONOWLEDAENT

This rocek is supparted ta pat by a NSP CAREBR award (TPI-9501260), HP, intot, and the ADVENT projeot of Cohmbia Uaiverify. Inplerneotation of tho IAVA editing huerfice of the CVBPS was costribatod by Jan Stangue willo be mos a resosech intern ut Colombis Univeraly. Tho rideo abot browing end clutaring litarices wes costributas by Di Zhorg.

0. REFERENCES

1. AMD Eyfect Refrence Opith, Avid Mixila Componer end Ptisn Cociposer, Rolcase 5SO, Joon, 1085.

 dous and Image Proeesping 1992, Vol IIIS, PF. 1522-1530.

 slow Altortion" isCAS 1993, pa. 13-16.
2. F. Armer, A. His, and M-Y. Chlu, Tmago Proctushy 80
 of ACV Midriverlia '93, Ivene 1993, pp. 257-272.
3. J. Bergen, P. Auraden K. Hemen, and R. Mingorial Yherrychtol Model-Baod Meotion sedmadon" 2nd ECCV, 1992, PR 257.252.
 Vides Iodealing and Minolpalation, IRES Indern Coof on
 InageVMdeo LBrailet and Kideo-an-densoul, Oct 1995. Wrahtagtion DC

 U.C Berferigy, Aug. 1993. Podscripe fies shao mailhble

4. B.P. Chang and D.O. Mencrichrida, Mealpolation and Compoulthy of MCDCT Compreased Vidoo," IREE Joumad of Solieciod Ansar is Cononindeotiont, special line on Ihtot. Upind Signal Procesting, Pp- 1-11, Jae 1995.
5. N. Dimultrovi, mad P. Colehand, "Motion Recovery for Video
 5)ntenv, Vbl 13, Np, 4, October 1P91, pp. 408-439.

 mertonol Confinewce on Anagy Precrsing (ICIRM). Aenta, Thes, November 1594.
6. A. Hampaper, Re. 1stn, and T. B. Weyrooulh, "Pewere Based Digtol Video lederiag" IFIF2. 6 Ymal Datobarz Symenh IIL Sultzerlasd. March, 95.
7. 150nEC 13818-2 Comentite Dran paproc-2).
8. 1SOMECHICI/SCRONO11, MPRE Dooment AVC-400. Tal Model 3.
 is a MPED Compreated Video Seqpesce" ISATKIPIS Jjm-
 Dhe,
9. 10. Meag and S.F. Dhapg, Trole for Companeod-Doresh

 Jose, Cinforria, Feh 199 d .

 L. M. Wepper, esfions, Kideo Datuhest Syition, II, Fagoter Sclences Publlhers B.V. North Holma, 1992, pri 113-137.
1. T, A. Ohanisx, Digitol Norlheor RAlity: mew approockes to cilitiy film and video, Poced Press, Bapton, London, 1901.
2. H.3. Sentiagy, 2 Ayer, End M. Gortand, Model-Busod 2D \&

 Namben, CA, 1909, pp 5\%3-390.
 Sarpiling of Vides Seqpencel" SPIE Cond Diglial hape Compresilas: Als orihnu and Tichaologies 1995, Val 2118.
20 1. R Scrith mad E,R Cheng Vinalsges a Polly Aato-
 de 95, November, 199\%.

 medla Masacive.

 72
3. J. 5 whith and B.C. Emin, "A Revalalita lodependex Vdeo
 184.

24 MM. Yarge B.L. Yto, W, Wotf, and Bode Lia, Vides Browing aday Coutrity and Scene Trexulitions en Cors proted Seqpeases" ISIMSPIS Staparhom Procitiligs Feh 1995, 5 ta loes, Cilfomen the 2417. P\%, 399-413.
 Comqeasalion Por VBoo Coupreasion" Procedings of ICISSP 1991. m272s-2728.
26. D. Weog HJ. Thargy and S.F. Chwg, "Clasteriag Methods for Video Browires and Azsotasion" Storage and Reolinof

 Jose, CA. Peb. 159.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
\checkmark FADED TEXT OR DRAWING
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
\downarrow LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER: \qquad .

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

OTHER ART - NO PATENT LITERATURE DOCUMENTS			
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published	Translation ${ }^{2}$
		Office Action from CN for foreign patent application no. 200410056388.3 dated 25 November 2005 (15 pgs) - attached.	
		Current Claims in CN patent application no. 200410056388.3 (9 pgs) - attached.	

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Unique citation designation number. ${ }^{2}$ See attached Kinds of U.S. Patent Documents. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard S.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{3}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST, 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 2023 I.

$\substack{\text { Examiner } \\ \text { Simainer }}$	Daie Conisiderd	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Unique citation designation number. ${ }^{2}$ See attached Kinds of U.S. Patent Documents. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard S.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. 'Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. "Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statemene. This form is estimated to take 2.0 hours to complete, Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

FOREIGN PATENT DOCUMENTS								
Exam. Initial*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document			Name of Patentee or Applicant of Cited Document	Date of Publication of Cited Document MM-DD-YYYY	Pages, Columns, Lines. Where Relevant Passages or Relevant Figures Appear	T^{6}
		Ofice ${ }^{3}$	Number ${ }^{4}$	Kind Codes (If known)				
		WO	98/56188	A2	Sony Electronics Inc.	12-10-1998		

OTHER ART - NO PATENT LITERATURE DOCUMENTS			
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published	Translation ${ }^{2}$
		K. Shen et al., A Fast Algorithm for Video Parsing Using MPEG Compressed Sequences, IEEE, pp. 252-255 (0-8185-7310-9/626/1995).	
		S. Smollar et al., Content-based Video Indexing and Retrieval, IEEE, Summer 1994, pp. 62-72.	
		J. Meng et al., CVEPS-A Compressed Video Editing and Parsing System, ACM Multimedia '96, Boston MA, pp. 43-53 (ACM 0-89791-671-1/96/1).	
		Zhang, HongJiang, "Video Parsing, Retrieval and Browsing: An Integrated and Content-Based Solution," ACM Multimedia 95, Electronic Proceedings, November 5-9, 1995, 16 pages.	

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Unique citation designation number. ${ }^{2}$ See attached Kinds of U.S. Patent Documents. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard S.3) *For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. 'Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 2023 I.中华人民共和国国家知识产权局

邮政编码： 200233 上海桂平路435号 上海专利商标事务所有限公司钱辱民	发文日期

申请人：提维股份有限公司

发明创造名称：多媒体时间偏移系统

第一次审查意见通知书

行实质审査。
口根据专利法第 35 条第 2 款的规定，国家知识产权局决定自行对上述发明专利申请进行龶查。
2．$\square_{\text {申请人要求以其在：}}$

US	专利局的申请日	1998 年	07 月	30 日为优先权日，
专利局的申请日	年	月	日为优先权日，	
专利局的申请日	年	月	日为优先权日，	
专利局的申请日	年	月	日为优先权日，	
专利局的申请日	年	月	日为优先权日。	

Q申请人已经提交了经原申请国受理机关证明的第一次提出的在先申请文件的副本。
口申请人尚未提交经原申请国受理机关证明的第一次提出的在先申请文件的副本，根据专利法第 30 条的规定视为末提出优先权要求。
3．\square 经审査，申请人于：

年 月 日提交的	不符合实施细则第 51 条的规定；
年 月 日提交的	不符合专利法第 33 条的规定：
年 月 日提交的	

4．東查针对的申请文件：
－原始申请文件。 \qquad审査是针对下述申请文件的
申请日提交的原始申请文件的权利要求第
年
年
年
年
年
月
月提交的权利要求第

项，说明书第项，说明书第项，说明书第项，说明书第年 月

页，附图第 页：

5．\square 本通知书是在未进行检索的情况下作出的。 （1本通知书是在进行了检索的情况下作出的。
（本通知书引用下述对比文献（其编号在今后的审査过程中继续沿用）：

编号	文件号或名称	公开日期（或抵触申请的申请日）
1	CNII73095	$1998-2-11$
2	CNLI56942	$1997-8-13$
3	CNIJ89045	$1998-7-29$

6．東查的结论性意见；
（1）关于说明书：

21301
2002． 8

文件号或名称
CNLI56942
CNLI89045N

公开日期（或抵触甲请的申请日）
1997－8－13
1998－7－29
—申请的内容属于专利法第 5 条规定的不授予专利权的范围。说明书不符合专利法第 26 条第 3 款的规定。说明书不符合专利法第 33 条的规定。
（说明书的撰写不符合实施细则第 18 条的规定。日说明书中附图标记不符合实施细则第 19 条第 3 款的规定。
（关于权利要求书：
\square 权利要求 \qquad不具备专利法第 22 条第 2 彭规定的新颖性。 －权利要求 $1,12,23,35$ 不具备专利法第 22 条第 3 款规定的创造性。
\square 权利要求 \qquad不具备专利法第 22 条第 4 款规定的实用性。
\square 权利要求 \qquad属于专利法第 25 条规定的不授予专利权的范围。日权利要求 $1,3-9,12,14-21,23,35,37-43$ 不符合专利法第 26 条第 4 款的规定。 \square 权利要求 \square 权利要求 \qquad不符合专利法第 31 条第 1 款的规定。
\square 权利要求 \qquad不符合专利法第 33 条的规定。
\square 权利要求 \qquad不符合专利法实施细则第 2 条第 1 款关于发明的定义。符合专利法实施细则第 13 条第 1 款的规定。 \square 权利要求
\qquad
\qquad不符合专利法实施细则第 21 条的规定。
\square 权利要求 \qquad不符合专利法实施细则第 22 条的规定。
\square 权利要求 \qquad不符合专利法实施细则第 23 条的规定。

上述结论性意见的具体分析见本通知书的正文部分。
7．基于上述结论性意见，审查员认为：
■申请人应按照通知书正文部分提出的要求，对申请文件进行修改。
日申请人应在意见陈述书中论述其专利申请可以被授予专利权的理由，并对通知书正文部分中指出的不符合规定之处进行修改，否则将不能授予专利权。
\square 专利申请中没有可以被授予专利权的实质性内容，如果申请人没有陈述理由或者陈述理由不充分，其申请将被驳回。

8．申请人应注意下述事项：
（1）根据专利法第 37 条的规定，申请人应在收到本通知书之日起的肆个月内陈述意见，如果申请人无正当理由逾期不答复，其申请将被视为撤回。
（2）申请人对其申请的修改应符合专利法第 33 条的规定，修改文本应一式两份，其格式应符合审査指南的有关规定。
（3）申请人的意见陈述书和／或修改文本应邮寄或递交国家知识产权局专利局受理处，凡未邮寄或递交给受理处的文件不具备法律效力。
（4）末经预约，申请人和／或代理人不得前来国家知识产权局专利局与审査员举行会晤。
9．本通知书正文部分共有 6 页，并附有下述附件：
日引用的对比文件的复印件共 \qquad份 \qquad页。 \qquad

 （注：凡需给車逈员个人的信西不具有法律效力）

11

申请人：提维股份有限公司

发明创造名称：多媒体时间偏移系统

第一次审查意见通知书

1．日应申请人提出的实审诸求，根据专利法第 35 条第 1 款的规定，国家知识产权局对上氹父办令利申请进行实质审查。
\square 根据专利法第 35 条第 2 款的规定，国家知识产权局决定自行对上述发明专利申请进行車查。
2．日申请人要求以其在：
US 专利局的申请日 1998年07月30日为优先权日，
专利局的申请日专利局的申请日专利局的申请日专利局的申请日

年	月	日为优先权日，
年	月	日为优先权日，
年	月	日为优先权日，

年 月 日为优先权日。
四申请人已经提交了经原申请国受理机关证明的第一次提出的在先申请文件的副本。
—申请人尚末提交经原申请国受理机关证明的第一次提出的在先申请文件的副本，根据专利法第 30 条的规定视为未提出优先权要求。
3．\square 经支査，申请人于：

年 月 日提交的	不符合实施细则第 51 条的规定；	
年 月	日提交的	不符合专利法第 33 条的规定；
年 月 日提交的		

4．审查针对的申请文件：
－原始申请文件。
■审查是针对下述申请文件的
申请日提交的原始申请文件的权利要求第
项，说明书第
项，说明书第
项，说明书第
项，说明书第
年 \quad 月
页，附图第
页，附图第
页，页；
页，附图第
日页；提交的摘要附图：
5. \square 本通知书是在未进行检索的情况下作出的。回本通知书是在进行了检索的情况下作出的。口本通知书引用下述对比文献（其编号在今后的电查过程中继续沿用）：

编号	文件号或名称	公开日期（或抵触申请的申请日）
1	CNI 173095Λ	$1998-2-11$
2	CNI 156942Λ	$1997-8-13$
3	CNI 189045Λ	$1998-7-29$
的结论性意见：		
关于说明书：		

第一次审查意见通知书正文

申请号：2004100563883
本发明专利申请涉及电视播送信号的时移，尤其涉及电视播送信号的即时记录，储存及播放。经审查，现提供如下的审查意见：

1，权利要求 1 要求保护一种用于在计算机环境中同时储存及回放多媒体数据的方法。对比文件 1 （CN1173095A）公开了一种具有处理文本数据功能的电视设备，其中 （说明书第 3 页第 3 行至第 9 页第 16 行，图1－7）具体公开了以下技术特征：提供多个输入信号的调谐器（ 11,17 ）；其中所述调谐器接收模拟和／或数字电视播送信号；其中每个所述调谐器各自调谐到一特定的播送信号；视频处理电路（12， 18）将模拟电视播送信号转换成数字信号；提供输出装置（15）；视频处理电路 （ 12,18 ）将特定的数字信号解码成电视输出信号；将电视输出信号发送到电视监视器（16）；其中输出装置（15）允许在电视监视器上显示图像。权利要求 1 所要求保护的技术方案与对比文件 1 所公开的技术方案相比其区别特征在于：在存储装置中储存所述数字信号和数字电视播送信号；提供多个输出装置；其中每个所述输出装置从所述储存装置中提取特定的数字信号。上述区别特征所要解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目。对比文件2（CN1156942A）公开了一种录制和再生数据的装置和方法，其中（说明书第 10 页第 15 行至第 33 页第 8 行，图1－16）具体公开了以下技术特征：在存储装置（ 30,32 ）中储存所述数字信号和数字电视播送信号；其中输出装置
（ $60,70,61,71$ ）从所述储存装置中提取特定的数字信号。权利要求 1 中提供多个输出装置为本领域普通技术人员的常用技术手段。对比文件 2 和常用技术手段公开的技术特征所解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目，其所解决的技术问题和上述区别特征所要解决的技术问题相同，并且相应技术特征在对比文件 2 中和权利要求 1 中所起作用相同。由此可见，所属技术领域普通技术人员在对比文件 1 的基础上，会从对比文件 2 和常用技术手段获得将上述技术特征应用到对比文件 1 中而得到权利要求 1 所要求保护技术方案的启示，也就是说这样的结合对所属技术领域的技术人员来说是显而易见的，而且它们的结合没有产生预料不到的技术效果，因此权利要求 1 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条

第三款有关创造性的规定。
2．权利要求 12 要求保护的是实施相对于权利要求 1 的方法的装置，虽然权利要求 12 与权利要求 1 所要求保护的客体不同，但是由于它们所要求保护的技术方案中的技术特征是一一对应的，其所要求保护的技术方案实质上相同。鉴于权利要求 1 的方法不具备创造性，以与评述权利要求 1 不具备创造性相同的理由，权利要求 12 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条第三款有关创造性的规定。

3．权利要求 23 要求保护一种用于在计算机环境中同时储存及回放多媒体数据的方法。对比文件 1 （CN1173095A）公开了一种具有处理文本数据功能的电视设备，其中（说明书第3页第 3 行至第 9 页第 16 行，图1－7）具体公开了以下技术特征；提供多个输入信号的调谐器（11，17）；其中所述调谐器接收模拟和／或数字电视播送信号；其中每个所述调谐器各自调谐到一特定的播送信号；视频处理电路
（ 12,18 ）将模拟电视播送信号转换成数字信号；提供输出装置（15）；视频处理电路（12，18）将特定的数字信号解码成电视输出信号；将电视输出信号发送到电视监视器（16）；其中输出装置（15）允许在电视监视器上显示图像。权利要求 23 所要求保护的技术方案与对比文件 1 所公开的技术方案相比其区别特征在于：将数字信号或数字电视播送信号分离成其视频和音频分量；在存储装置中储存所述数字信号和数字电视播送信号；提供多个输出装置；其中每个所述输出装置从所述储存装置中提取特定的数字信号。上述区别特征所要解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目。对比文件2（CN1156942A）公开了一种录制和再生数据的装置和方法，其中（说明书第 10 页第 15 行至第 33 页第 8 行，图1－16）具体公开了以下技术特征：在存储装置 （ 30,32 ）中储存所述数字信号和数字电视播送信号；其中输出装置（ 60,70 ， 61，71）从所述储存装置中提取特定的数字信号。权利要求 23 中提供多个输出装置和将数字信号或数字电视播送信号分离成其视频和音频分量分别进行处理为本领域普通技术人员的常用技术手段。对比文件 2 和常用技术手段公开的技术特征所解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目，其所解决的技术问题和上述区别特征所要解决的技术问题相同，

第一次审查意见通知书正文

申请号： 2004100563883
本发明专利申请涉及电视播送信号的时移，尤其涉及电视播送信号的即时记录，储存及播放。经审查，现提供如下的审査意见：

1．权利要求 1 要求保护一种用于在计算机环境中同时储存及回放多媒体数据的方法。对比文件 1 （CN1173095A）公开了一种具有处理文本数据功能的电视设备，其中 （说明书第3页第3行至第9页第16行，图1－7）具体公开了以下技术特征：提供多个输入信号的调谐器（ 11,17 ）；其中所述调谐器接收模拟和／或数字电视播送信号；其中每个所述调谐器各自调谐到一特定的播送信号；视频处理电路（12， 18）将模拟电视播送信号转换成数字信号；提供输出装置（15）；视频处理电路 （ 12,18 ）将特定的数字信号解码成电视输出信号；将电视输出信号发送到电视监视器（16）；其中输出装置（15）允许在电视监视器上显示图像。权利要求 1 所要求保护的技术方案与对比文件 1 所公开的技术方案相比其区别特征在于：在存储装置中储存所述数字信号和数字电视播送信号；提供多个输出装置；其中每个所述输出装置从所述储存装置中提取特定的数字信号。上述区别特征所要解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目。对比文件 2 （CN1156942A）公开了一种录制和再生数据的装置和方法，其中（说明书第 10 页第 15 行至第 33 页第 8 行，图1－16）具体公开了以下技术特征：在存储装置（ 30,32 ）中储存所述数字信号和数字电视播送信号；其中输出装置
$(60,70,61,71)$ 从所述储存装置中提取特定的数字信号。权利要求 1 中提供多个输出装置为本领域普通技术人员的常用技术手段。对比文件 2 和常用技术手段公开的技术特征所解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目，其所解决的技术问题和上述区别特征所要解决的技术问题相同，并且相应技术特征在对比文件 2 中和权利要求 1 中所起作用相同。由此可见，所属技术领域普通技术人员在对比文件 1 的基础上，会从对比文件 2 和常用技术手段获得将上述技术特征应用到对比文件 1 中而得到权利要求 1 所要求保护技术方案的启示，也就是说这样的结合对所属技术领域的技术人员来说是显而易见的，而且它们的结合没有产生预料不到的技术效果，因此权利要求 1 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条

第三款有关创造性的规定。
2．权利要求 12 要求保护的是实施相对于权利要求 1 的方法的装置，虽然权利要求 12 与权利要求 1 所要求保护的客体不同，但是由于它们所要求保护的技术方案中的技术特征是一一对应的，其所要求保护的技术方案实质上相同。鉴于权利要求 1 的方法不具备创造性，以与评述权利要求 1 不具备创造性相同的理由，权利要求 12 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条第三款有关创造性的规定。
3．权利要求 23 要求保护一种用于在计算机环境中同时储存及回放多媒体数据的方法。对比文件 1 （CN1173095A）公开了一种具有处理文本数据功能的电视设备，其中（说明书第3页第3行至第9页第16行，图1－7）具体公开了以下技术特征：提供多个输入信号的调谐器（ 11,17 ）：其中所述调谐器接收模拟和／或数字电视播送信号；其中每个所述调谐器各自调谐到一特定的播送信号；视频处理电路
（ 12,18 ）将模拟电视播送信号转换成数字信号；提供输出装置（15）；视频处理电路（ 12,18 ）将特定的数字信号解码成电视输出信号；将电视输出信号发送到电视监视器（16）；其中输出装置（15）允许在电视监视器上显示图像。权利要求 23 所要求保护的技术方案与对比文件 1 所公开的技术方案相比其区别特征在于：将数字信号或数字电视播送信号分离成其视频和音频分量；在存储装置中储存所述数字信号和数字电视播送信号；提供多个输出装置；其中每个所述输出装置从所述储存装置中提取特定的数字信号。上述区别特征所要解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目。对比文件2（CN1156942A）公开了一种录制和再生数据的装置和方法，其中（说明书第10页第 15 行至第 33 页第 8 行，图1－16）具体公开了以下技术特征：在存储装置 （ 30,32 ）中储存所述数字信号和数字电视播送信号；其中输出装置（ 60,70 ， $61,71)$ 从所述储存装置中提取特定的数字信号。权利要求 23 中提供多个输出装置和将数字信号或数字电视播送信号分离成其视频和音频分量分别进行处理为本领域普通技术人员的常用技术手段。对比文件 2 和常用技术手段公开的技术特征所解决的技术问题是使用者能储存所选定的电视节目，而且使用者能够同时观看或回顾另一节目，其所解决的技术问题和上述区别特征所要解决的技术问题相同，

并且相应技术特征在对比文件 2 中和权利要求 23 中所起作用相同。由此可见，所属技术领域普通技术人员在对比文件 1 的基础上，会从对比文件 2 和常用技术手段获得将上述技术特征应用到对比文件 1 中而得到权利要求 23 所要求保护技术方案的启示，也就是说这样的结合对所属技术领域的技术人员来说是显而易见的，而且它们的结合没有产生预料不到的技术效果，因此权利要求 23 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条第三款有关创造性的规定。
4．权利要求 35 要求保护的是实施相对于权利要求 23 的方法的装置，虽然权利要求 35与权利要求 23 所要求保护的客体不同，但是由于它们所要求保护的技术方案中的技术特征是一一对应的，其所要求保护的技术方案实质上相同。鉴于权利要求 23的方法不具备创造性，以与评述权利要求 23 不具备创造性相同的理由，权利要求 35 所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条第三款有关创造性的规定。
5．同时，对比文件 3 （CN1189045A）和对比文件 2 结合也影响权利要求 $1, ~ 12, ~ 23$ 和 35 的创造性，相对于对比文件 3 和对比文件 2 公开的内容，权利要求 $1, ~ 12, ~ 23$ 和 35所要求保护的技术方案不具备突出的实质性特点和显著的进步，不符合专利法第二十二条第三款有关创造性的规定。
6．权利要求 1 中记载的＂所述多个输出装置允许所述电视监视器上图像显示中的图像＂（第1页第 12 行）语句不通顺，依审查员理解应为＂所述多个输出装置允计在电视监视器上图像显示中显示图像 ${ }^{*}$ ，上述不清楚之处导致了该权利要求的保护范围不清楚，不符合专利法实施细则第二十条第一款的规定。类似地，权利要求 12 ， 23 和 35 中的类似描述也不符合专利法实施细则第二十条第一款的规定。申请人应当修改上述描述，如改用其它表达方式，申请人应当注意该表达方式在原申请文件中要有所记载。
7．权利要求 $3-9$ 的附加技术特征在说明书中没有记载，实质上得不到说明书的支持，因此权利要求3－9没有以说明书为依据，不符合专利法第二十六条第四款的枕定。类似地，权利要求14－21，25－31，37－43也不符合专利法第二十六条第四款的规定。申请人应当将上述权利要求删除。

8．权利要求 4 中记载的＂选择所述输出装置中的哪一个显示在图像显示中的所述图像中＂含义不清楚，该描述没有说明是＂选择所述（多个）输出装置中的哪一个＂＂输出装置＂＂显示在图像显示中的所述图像＂，还是＂选择所述（多个）输出装置中的哪一个＂＂图像＂显示在图像显示中＂？而且，＂所述输出装置＂中的＂输出装置＂含义也不清楚，该描述没有说明是前述的＂多个输出装置＂之一呢，还是其全部呢？依审查员理解应为＂所述多个输出装置＂。上述不清楚之处导致了该权利要求的保护范围不清楚，不符合专利法实施细则第二十条第一款的规定。类似地，权利要求 15，26和38中的类似描述也不符合专利法实施细则第二十条第一款的规定。申请人应当修改上述描述，如改用其它表达方式，申请人应当注意该表达方式在原申请文件中要有所记载。
9．权利要求8中记载的＂反绕，帧步进，暂停＂（第1页第26－27行）中的逗号＂，＂使其描述语句不通顺，依审査员理解应为＂反绕，帧步进，暂停＂，上述不清楚之处导致了该权利要求的保护范围不清楚，不符合专利法实施细则第二十条第一款的规定。类似地，权利要求 $19, ~ 30$ 和 42 中的类似描述也不符合专利法实施细则第二十条第一款的规定。申请人应当对上述描述中的标点符号进行修改。
10．权利要求 19 中记载的＂所述解码步骤＂（第2页第29－30行）含义不清楚，因为所引用的权利要求 13 中为装置权利要求，其中进行解码的为＂模块＂，而非＂步骤＂，而且，＂解码模块＂在所引用的权利要求 13 中也没有记载，＂所述＂缺乏引用基础，上述不清楚之处导致了该权利要求的保护范围不清楚，不符合专利法实施细则第二十条第一款的规定。申请人要么将上述描述修改为＂所述解码的模块＂，要么将权利要求 13 修改为＂解码成电视输出信号的解码模块＂。类似地，权利要求 42 中的＂所述解码步骤＂（第 5 页第 $10-11$ 行）和权利要求 46 中的＂所述储存模块＂（第 5 页第 21行）也不符合专利法实施细则第二十条第一款的规定。
11．独立权利要求 $1, ~ 12, ~ 23$ 和 35 中记载的技术方案在说明书的发明内容部分中的技术方案中没有记载，因此权利要求 $1, ~ 12, ~ 23$ 和 35 在形式上得不到说明书的支持，不符合专利法第二十六条第四款的规定。申请人在针对本意见通知书对权利要求书进行修改以后，应当对说明书做出适应性修改。至少独立权利要求中记载的技术方案在说明书的发明内容部分中的技术方案中要有所记载，以在形式上得到说明

书的支持。
12．说明书中存在前后描述不一致之处，如＂输入区＂，＂输出区＂（第4页第5－6行等多处）与附图1和 13 中的＂输入模块＂，＂输出模块＂；＂偏移量＂（第6页第 15 行等多处）与附图5中的＂地址＂；＂MPEG声音704＂（第7页第23行）与＂MPEG声音（音频）编码器704＂（第7页第24行，第27行等多处），附图7中的＂声频＂；＂VBI数据 702＂（第7页第23行，附图7）与＂VBI解码器702＂（第7页第 25 行等多处）；＂标签 707＂（第8页第2－3行等多处）与附图7中的＂标记＂；＂控制目标917（1114）＂（第 11 页第 7 行，第 12 页第 2 行等多处）与附图 9 和 11 中的＂控制器＂。上述说明书中使用的技术术语与符号前后不一致之处，不符合专利法实施细则第十八条第三款的规定。申请人应当对说明书进行修改，克服上述缺陷，同时注意修改不得超出原说明书记载的范围。
13．说明书中使用了非本领域的科技术语，如＂垂直空白间隙＂（第4页第 18 行等多处）应为＂垂直消隐间隙＂。上述说明书中使用的非本领域的科技术语，不符合专利法实施细则第十八条第三款的规定。
14．说明书文字部分提及的附图标记＂ $21^{\prime \prime}$（第4页第 22 行）在附图中没有出现，不符合专利法实施细则第十九条第三款的规定。
15．说明书摘要文字部分超过了 300 字，不符合专利法实施细则第二十四条第二款的规定。申请人应当对说明书摘要文字部分进行修改，克服上述缺陷。
16．本申请说明书中的小标题不准确，不符合专利法实施细则第十八条第一款的规定。五部分小标题分别为＂技术领域＂，＂背景技术＂，＂发明内容＂，＂附图说明＂和＂具体实施方式＂。申请人应当对说明书进行修改，以符合上述规定。
17．说明书中存在打印错误：＂ 208 ＂（第 5 页第 12 行）应为＂ 308 ＂；＂模拟模拟＂（第 5 页第 13 行）应为＂模拟＂；＂二制＂（第 5 页第 24 行）应为＂二进制＂。

基于上述理由，本专利申请按照目前的文本不能被授予专利权。该申请存在实质性缺陷，属于专利法实施细则第五十三条驳回的情形，如果申请人不能在指定期限内陈述具有专利性的理由或者做出符合专利法第三十三条规定的修改，本申请将依据专利法第三十八条予以驳回。

审查员：陈荣华

THE PATENT OFFICE OF THE STATE INTELLECTUAL PROPERTY OFFICE OF THE PEOPLE'S REPUBLIC OF CHINA

Address:No. 6 Xi Tucheng Lu, Jimeng Qiao Haidian District. Beijing Post code: 100088 P.O.BOX:Beiijng 8020

Shanghai Patent \& Trademark Law Office
Date of Dispatch
November 25, 2005

Application No.: 200410056388.3	Applicant:TIVO, INC.
Application Date: March 4, 1999	Agent:
Title: MULTIMEDIA TIME WARPING SYSTEM	

NOTICE ON OFFICE ACTION

1. \triangle According to the Request for Substantive Examination raised by the applicant and based on the provision of Item 1, Article 35 of the Patent Law, the Examiner has proceeded with the Examination as to Substance on the above mentioned application for patent for invention.According to Item 2, Article 35 of the Chinese Patent Law, the Patent Office has decided to examine the above application for patent for invention.
2. \boxtimes The applicant has requested that the filling date of

July 30, 1998 at the US Patent Office as the priority date,
\qquad at the \qquad Patent Office as the priority date,
\qquad at the \qquad Patent Office as the priority date,
\qquad at the \qquad Patent Office as the priority date,
The applicant has already submitted the copy of the first filed prior application document certified by the receiving office of the country where the application was originally filed.
\square The applicant has not submitted the copy of the first filed prior application document certified by the receiving office of the country where the application was originally filed. It is deemed not having claimed priority according to the provision stipulated in Article 30 of the Patent Law. This application is a PCT application.
3. \square The applicant submitted on \qquad and \qquad the amendment documents.
On examination, among them,
the \qquad submitted on \qquad can not be accepted. the \qquad submitted on \qquad can not be accepted.
Because the above amendmentdoes not conform with the provisions of Article 33 of the Chinese Patent Law,
\square does not conform with the provisions of Rule 51 of the Implementing Regulations of the Chinese Patent Law,
Refer to the text of the Notice for the specific reasons why the amendment cannot be accepted
4. The examination has been proceeded on the original application documents.
\square The examination is directed at the following application documents:
Claim \qquad , page \qquad of the specification, page \qquad of the drawing of the original application documents submitted on the date of filing.
Claim \qquad , page \qquad of the specification, page \qquad of the drawing submitted on \qquad —
Claim \qquad , page \qquad of the specification, page \qquad of the drawing submitted on \qquad -
Claim \qquad , page \qquad of the specification, page \qquad of the drawing submitted on \qquad Abstract of the specification submitted on \qquad the drawing of the Abstract submitted on \qquad .
5. This Notice is made under the condition of no search having been conducted.
\boxtimes This Notice is made under the condition of search having been conducted.
\boxtimes This Notice has cited the below comparison documents (the number of which shall continue to be used in the subsequent examination procedures):

No.	Title of Document	Date of Publication (or the filing date of the conflicting Application)
1	CN 1173095A	$1998-02-11$
2	CN 1156942A	$1997-08-13$
3	CN 1189045A	$1998-07-29$
4		

6. The conclusive opinion drawn from the examination:
\boxtimes As regards the Specification:
\square The contents of the application fall under the scope stipulated by Article 5 of the Patent Law for which no patent right shall be granted.
\square The specification does not conform with the provision of Item 3, Article 26 of the Patent Law.
\triangle The drafting of the specification does not conform with the provision of Rule 18 of the Implementing Regulations.
\boxtimes The drafting of the specification does not conform with the provision of ltem 3, Rule 19 of the Implementing Regulations.
AAs regards the Claims:
\square Claim \qquad does not possess the novelty as stipulated in Item 2, Article 22 of the Patent Law
\boxtimes Claim 1,12.23.35 does not possess the inventiveness as stipulated in Item 3, Article 22 of the Patent Law.
\square Claim \qquad does not possess the practical applicability as stipulated in Item 4, Article 22 of the Patent Law.
\square Claim \qquad falls under the scope of Article 25 of the Patent Law where no patent right is to be granted.
\boxtimes Claim 1.3-9.12,14-21,23,35,37-43 does not conform with the provision of Item 4, Article 26 of the Patent Law.
\square Clain \qquad does not conform with the provision of Item 1, Article 31 of the Patent Law.
\square Claim \qquad does not conform with the definition of invention as stipulated in Item 1, Article 2 of the Implementing Regulations of the Patent Law,
\square Claim \qquad does not conform with the provision of Item 1, Rule 13 of the Implementing Regulations of the Patent Law.
\boxtimes Claim 1.4.8.12.15.19.23.26.30.35.38.42.46 does not conform with the provisions of Rules 20 of
the Implementing Regulations of the Patent Law,Claim \qquad does not conform with the provisions of Rules 21 of the Implementing Regulations of the Patent Law.
\square Claim \qquad does not conform with the provisions of Rules 22 of the Implementing Regulations of the Patent Law.
Refer to the text of this Notice for the specific analyses of the conclusive opinion.
7. Based on the above conclusive opinion, the Examiner deems that:
\square The applicant shall amend the application documents in accordance with the requirements raised in the text of the Notice.
The applicant shall discuss in his observations reasons why this application for patent can be granted a patent right, and amend the portions indicated in the text of the Notice which have been deemed as not conforming with the provisions, or no patent right shall be granted.There are no substantive contents in the application for patent that can be granted a patent right. If the applicant does not present reasons or the reasons presented are not sufficient, the application shall be rejected.
8. The applicant is asked to note the following items:
(1) According to the provision of Article 37 of the Patent Law, the applicant shall submit his observations within four months from the receipt of this Notice. Where, without justified reasons, the applicant does not respond at the expiration of said date, the application shall be deemed to have been withdrawn
(2) The applicant shall amend his application according to Article 33 of the Patent Law. The amended documents shall be in duplicate, and the form, in conformity with the relevant provisions in the Examination Guide.
(3) The applicant and/or his agent can not, without first making an appointment, go to the Patent Office to have an interview with the Examiner.
(4) The observations and/or the amended documents shall be mailed or delivered to Department of Receipt, the Patent Office of the State Intellectual Property Office. No documents shall possess legal effects if not mailed or delivered to Department of Receipt.
9. The text portion of this Notice totals $\underline{6}$ page(s), and includes the following attachment(s):
\boxtimes duplicate copy(ies) of cited comparison document(s), altogether $\underline{3}$ copy(ies) $\underline{99}$ pages.

Examination Department: \qquad Examiner(Seal): \qquad

[^3]
TEXT OF THE FIRST OFFICE ACTION

Application number: 2004100563883
The application relates to the time offset of television signals, and more particularly to the simultaneous recording, storage, and playback of television signals. After examination, the office action is as follows:

1. Claim 1 asks to protect a method for simultaneous storage and playback of multimedia data in a computer environment; while Reference 1 (CN 1173095A) discloses a television device having the function of text data processing, and specifically discloses (Page 3, Line 3 to Page 9, Line 16; and Figs. 1-7): "a tuner (11,17) for providing a plurality of input signals, wherein said tuner receiving analog and/or digital television signals, each turner respectively tunes to a particular output signal; a video processing circuit (12, 18) for converting the analog television signals to digital signals; output apparatus (15); the video processing circuit $(12,18)$ decoding the particular digital signal into a television output signal; transmitting the television output signal to television monitor (16); the output apparatus (15) allows for a picture displaying on the television monitor". The differences between the technical solution of Claim 1 and that of Reference 1 lie in: "storing digital signals and digital television signals in the storage apparatus; providing a plurality of output apparatuses; each of the apparatus extracts a particular digital signal from said storage apparatuses". The technical problem to be solved by the above distinguishing features is allowing the user to store selected television program, and to concurrently watch or playback another program. Reference 2 (CN 1156942A) discloses an apparatus and method for recording and reproducing data, and specifically discloses (Page 10, Line 15 to Page 33, Line 8; and Figs. 1-16): "storing the digital signals and television signals in the storage apparatus (30,32); the output apparatus ($60,70,61,71$) extracting a particular digital signal from said storage apparatus". Providing a plurality of output apparatuses is a technical measure commonly used in the art. The technical problem to be
solved by the combination of Reference 2 and common technical measure is allowing the user to store selected television program and to concurrently watch or playback another program, which is the same as the above technical problem solved by the above distinguishing technical features. Therefore, the usage of corresponding technical features of Reference 2 and common technical measure in Reference 2 is the same as in Claim 1. Therefore, the technical solution of Claim 1 can be derived by those skilled in the art from the combination of References 1 and 2 and common technical measures in the art. Therefore, this combination has no unexpected technical effect and can be easily contemplated by those skilled in the art. Therefore, the technical solution of Claim 1 neither has prominent substantial features nor has notable progress, not complying with the provision prescribed in Item 3, Article 22 of the Patent Law.
2. The apparatus asked to protect in Claim 12 corresponds to the method of Claim 1. Though the objects for protection of claims 12 and 1 are different, the technical solutions of claims 1 and 12 are substantially the same since they have corresponding technical features. Since the method of Claim 1 lacks an inventive step, for the same reason as above, Claim 12 neither has prominent substantial features nor has notable progress, not complying with the provision prescribed in Item 3, Article 22 of the Patent Law.
3. Claim 23 asks to protect a method for simultaneous storage and playback of multimedia data in a computer environment; while Reference 1 (CN 1173095A) discloses a television device having the function of text data processing, and specifically discloses (Page 3, Line 3 to Page 9, Line 16; and Figs. 1-7): "a tuner $(11,17)$ for providing a plurality of input signals, wherein said tuner receiving analog and/or digital television signals, each turner respectively tunes to a particular output signal; a video processing circuit (12, 18) for decoding the particular digital signal into a television output signal; transmitting the television output signal to television monitor (16); the output apparatus (15) allows for a picture displaying on the television monitor". The differences between the technical solution of Claim 23 and that of Reference 1
lie in: "separating the digital signals or digital television signals into video components and audio components; storing digital signals and digital television signals in the storage apparatus; providing a plurality of output apparatuses; each of the apparatus extracts a particular digital signal from said storage apparatuses". The technical problem to be solved by the above distinguishing features is allowing the user to store selected television program, and to concurrently watch or playback another program. Reference 2 (CN 1156942A) discloses an apparatus and method for recording and reproducing data, and specifically discloses (Page 10, Line 15 to Page 33, Line 8; and Figs. 1-16): "storing the digital signals and television signals in the storage apparatus (30, 32); the output apparatus $(60,70,61,71)$ extracting a particular digital signal from said storage apparatus". Providing a plurality of output apparatuses and separating digital signals and digital television signals into video components and audio components are technical measures commonly used in the art. The technical problem to be solved by the combination of Reference 2 and common technical measures is allowing the user to store selected television program and to concurrently watch or playback another program, which is the same as the above technical problem solved by the above distinguishing technical features. Therefore, the usage of corresponding technical features of Reference 2 and common technical measure in Reference 2 is the same as in Claim 23. Therefore, the technical solution of Claim 23 can be derived by those skilled in the art from the combination of References 1 and 2 and common technical measures in the art. Therefore, this combination has no unexpected technical effect and can be easily contemplated by those skilled in the art. Therefore, the technical solution of Claim 23 neither has prominent substantial features nor has notable progress, not complying with the provision prescribed in Item 3, Article 22 of the Patent Law.
4. The apparatus asked to protect in Claim 35 corresponds to the method of Claim 23. Though the objects for protection of claims 23 and 35 are different, the technical solutions of claims 23 and 35 are substantially the same since they
have corresponding technical features. Since the method of Claim 23 lacks an inventive step, for the same reason as above, Claim 35 neither has prominent substantial features nor has notable progress, not complying with the provision prescribed in Item 3, Article 22 of the Patent Law.
5. The combination of Reference 3 (CN1189045A) and Reference 2 would also affect the inventiveness of claims $1,12,23$, and 35 . Therefore, the technical solutions of claims $1,12,23$, and 35 neither have prominent substantial features nor have notable progress with respect to the combination of References 2 and 3, not complying with the provision prescribed in Item 3, Article 22 of the Patent Law.
6. (This deficiency would be overcome by us.)
7. The additional technical features of claims 3-9 are not recited in and supported by the Specification, not complying with the provision of Item 4, Article 26 of the Patent Law. Similarly, claims 14-21, 25-31, and 37-43 do not comply with the provision of Item 4, Article 26 of the Patent Law, either. The applicant should delete the above claims.
8. The additional technical features of Claim 4, "the user selects which of said output devices displays in said picture in a picture display", is unclear. Further, the "output devices" in Claim 4 is unclear too. According to the Examiner's understanding, "said output devices" in Claim 4 should be "said plurality of output devices"- in order to be consistent with the recitations in the cited claim. The above unclearness cause the scope of protection of Claim 4 unclear, not complying with the provision prescribed in Item 1, Rule 20 of the Implementing Regulations. Claims 15,26 , and 38 also have the above problems. If the applicant changes the claims $4,15,26$, and 38 into other formulations, such formulations should be recited in the Specification already.
9. (This deficiency would be overcome by us.)
10. The "decoding module" in Claim 19 does not exist in the cited Claim 13; therefore, it's inappropriate to use the word "said" before "decoding module". The applicant can either change "said decoding module" to "said
module for decoding", or change the additional technical feature of Claim 13 to "a decoding module for accepting control commands from a user". Claim 42 has similar problem too. Similarly; the "said storage module" of Claim 46 has the same problem too. Therefore, claims 19,42 , and 46 do not comply with the provision prescribed in Item 1, Rule 20 of the Implementing Regulations.
11. The technical solution of independent claims $1,12,23$, and 36 do not appear in the Summary of Invention section in the Specification, causing that claims $1,12,23$, and 36 are not supported by the Specification in terms of form, not complying with the provision prescribed in Item 4, Article 26 of the Patent Law. After amending the independent claims, the applicant should amend the Summary of Invention section correspondingly.
12. (This deficiency would be overcome by us.)
13. (This deficiency would be overcome by us.)
14. The reference sign of figure " 21 " on Page 5, Line 24 (WO00/07368: "user of line 21") of the Specification does not appear in corresponding Fig. 1, not complying with the provision prescribed in Item 3, Rule 19 of the Implementing Regulations.
15. The Abstract contains more than 300 Chinese words, not complying with the provision prescribed in Item 2, Rule 24 of the Implementing Regulations. The applicant should amend the Abstract to overcome this deficiency.
16. The subtitles in the Specification are not precise, not complying with the provision prescribed in Item 1, Rule 18 of the Implementing Regulations, The Specification should be drafted in five sections: 1) Technical Field; 2) Background Art; 3) Summary of invention; 4) Description of Figures; and 5) Detailed Embodiments.

Summing up the above, this application cannot be granted a patent right based on the present application documents. If the applicant amends the application documents according to the Office Action to overcome the
objections, the application will be granted a patent right; otherwise the application will be rejected. Please note that the amendments to the application documents shall conform with Article 33 of the Chinese Patent Law, i.e., the amendments cannot go beyond the scope of disclosure contained in the initial Description and Claims.

1. A process for simultaneous storage and playback of multimedia data in a computer environment, comprising the steps of:
providing a plurality of input signal tuners; wherein said tuners accept analog and/or digital television broadcast signals; wherein each of said tuners is individually tuned to a specific broadcast signal; converting analog television broadcast signals into a digital signal; storing said digital signals and digital television broadcast signals on a storage device;
providing a plurality of output devices;
wherein each of said output devices extracts a specific digital signal from said storage device;
decoding said specific digital signals into a television output signal;
sending said television output signal to a television monitor; and wherein said plurality of output devices allows for a picture in a picture display on said television monitor.
2. The process of claim 1, further comprising the step of: accepting control commands from a user.
3. The process of claim 2 , wherein the user selects the picture in a picture option to be displayed on said television monitor,
4. The process of claim 2, wherein the user selects which of said output devices displays in said picture in a picture display.
5. The process of claim 2, wherein the user selects the display position of each picture in the picture in a picture display.
6. The process of claim 2 , wherein the user selects an individual tuner and the specific broadcast signal for said individual tuner.
7. The process of claim 2 , wherein the user selects a specific digital signal to be extracted from said storage device and decoded.
8. The process of claim 2, wherein the user controls the decoding rate and direction of said decoding step to perform variable rate fast forward and rewind, frame step, pause, and play functions on said television output signal.
9. The process of claim 1, further comprising the step of: inserting on screen displays into said television output signal.
10. The process of claim 1, wherein the specific broadcast signal for an individual tuner is selected automatically based on the current date and time.
11. The process of claim 1, wherein the specific broadcast signal for an individual tuner is selected automatically based on a particular word or phrase in said broadcast signal.
12. An apparatus for simultaneous storage and playback of multimedia data in a computer environment, comprising:
a plurality of input signal tuners;
wherein said tuners accept analog and/or digital television broadcast signals; wherein each of said tuners is individually tuned to a specific broadeast signal; a module for converting analog television broadcast signals into a digital signal;
a module for storing said digital signals and digital television broadcast signals on a storage device;
a plurality of output devices;
wherein each of said output devices extracts a specific digital signal from said storage device;
a module for decoding said specific digital signals into a television output signal;
a module for sending said television output signal to a television monitor; and wherein said plurality of output devices allows for a picture in a picture display on said television monitor.
13. The apparatus of claim 12, further comprising: a module for accepting control commands from a user.
14. The apparatus of claim 13, wherein the user selects the picture in a picture option to be displayed on said television monitor.
15. The apparatus of claim 13 , wherein the user selects which of said output devices displays in said picture in a picture display.
16. The apparatus of claim 13, wherein the user selects the display position of each picture in the picture in a picture display.
17. The apparatus of claim 13 , wherein the user selects an individual tuner and the specific broadcast signal for said individual tuner.
18. The apparatus of claim 13 , wherein the user selects a specific digital signal to be extracted from said storage device and decoded.
19. The apparatus of claim 13, wherein the user controls the decoding rate and direction of said decoding module to perform variable rate fast forward and rewind, frame step, pause, and play functions on said television output signal.
20. The apparatus of claim 12, further comprising: a module for inserting on screen displays into said television output signal.
21. The apparatus of claim 12, wherein the specific broadcast signal for an individual tuner is selected automatically based on the current date and time.
22. The apparatus of claim 12, wherein the specific broadcast signal for an individual tuner is selected automatically based on a particular word or phrase in said broadcast signal.
23. A process for simultaneous storage and playback of multimedia data in a computer environment, comprising the steps of:
providing a plurality of input signal tuners;
wherein said tuners accept analog and/or digital television broadcast signals; wherein each of said tuners is individually tuned to a specific broadcast signal; converting analog television broadcast signals into a digital signal; separating a digital signal or digital television broadcast signal into its video and audio components; storing said video and audio components on a storage device; providing a plurality of output devices; wherein each of said output devices extracts a specific video and audio component from said storage device; decoding said specific video and audio components into a television output signal;
sending said television output signal to a television monitor; and wherein said plurality of output devices allows for a picture in a picture display on said television monitor.
24. The process of claim 23 , further comprising the step of: accepting control commands from a user.
25. The process of claim 24 , wherein the user selects the picture in a picture option to be displayed on said television monitor.
26. The process of claim 24 , wherein the user selects which of said output devices displays in said picture in a picture display.
27. The process of claim 24 , wherein the user selects the display position of each picture in the picture in a picture display.
28. The process of claim 24, wherein the user selects an individual tuner and the specific broadcast signal for said individual tuner.
29. The process of claim 24 , wherein the user selects a specific video and audio component to be extracted from said storage device and decoded.
30. The process of claim 24 , wherein the user controls the decoding rate and direction of said decoding step to perform variable rate fast forward and rewind, frame step, pause, and play functions on said television output signal.
31. The process of claim 23, further comprising the step of: inserting on screen displays into said television output signal.
32. The process of claim 23, wherein the specific broadcast signal for an individual tuner is selected automatically based on the current date and time.
33. The process of claim 23 , wherein the specific broadcast signal for an individual tuner is selected automatically based on a particular word or phrase in said broadcast signal.
34. The process of claim 23, further comprising the steps of:
extracting other signal components from said digital signal or said digital television broadcast signal;
wherein said storage step stores said other signal components on said storage device;
wherein each of said output devices extracts the associated signal components of said specific video and audio components from said storage device; and reproducing said associated signal components into their proper location in said television output signal.
35. An apparatus for simultaneous storage and playback of multimedia data in a computer environment, comprising:
a plurality of input signal tuners;
wherein said tuners accept analog and/or digital television broadcast signals; wherein each of said tuners is individually tuned to a specific broadcast signal; a module for converting analog television broadcast signals into a digital signal;
a module for separating a digital signal or digital television broadcast signal into its video and audio components;
a module for storing said video and audio components on a storage device;
a plurality of output devices;
wherein each of said output devices extracts a specific video and audio
component from said storage device;
a module for decoding said specific video and audio components into a television output signal;
a module for sending said television output signal to a television monitor; and

wherein said plurality of output devices allows for a picture in a picture

 display on said television monitor.36. The apparatus of claim 35 , further comprising: a module for accepting control commands from a user.
37. The apparatus of claim 36 , wherein the user selects the picture in a picture option to be displayed on said television monitor.
38. The apparatus of claim 36 , wherein the user selects which of said output devices displays in said picture in a picture display.
39. The apparatus of claim 36, wherein the user selects the display position of each picture in the picture in a picture display.
40. The apparatus of claim 36 , wherein the user selects an individual tuner and the specific broadcast signal for said individual tuner.
41. The apparatus of claim 36 , wherein the user selects a specific video and audio component to be extracted from said storage device and decoded.
42. The apparatus of claim 36 , wherein the user controls the decoding rate and direction of said decoding module to perform variable rate fast forward and rewind, frame step, pause, and play functions on said television output signal.
43. The apparatus of claim 35, further comprising: a module for inserting on screen displays into said television output signal.
44. The apparatus of claim 35 , wherein the specific broadcast signal for an individual tuner is selected automatically based on the current date and time.
45. The apparatus of claim 35, wherein the specific broadcast signal for an individual tuner is selected automatically based on a particular word or phrase in said broadcast signal.
46. The apparatus of claim 35, further comprising:
a module for extracting other signal components from said digital signal or said digital television broadcast signal;
wherein said storage module stores said other signal components on said storage device;
wherein each of said output devices extracts the associated signal components of said specific video and audio components from said storage device; and
a module for reproducing said associated signal components into their proper location in said television output signal.

Europáisches Patentamt
 European Patent Office

Offlce europeen des brevets

(43) Date of publication: 07.01.1998 Bulletin 1998/02
(21) Application number: 97111327.9
(22) Date of fliling: 04.07.1997
(84) Designated Contracting States: AT BECH DE DK ES F FR GB GRIEITLLUMC NL PT SE
(30) Priority: $05.07 .1996 \mathrm{JP} .176433 / 96$
(71) Applicant:

KABUSHIKI KAISHA TOSHIBA
Kawasaki-shi (JP)
(72) Inventor: Takashima, Tadoa

1-1 Shibaura 1-chome Minato-ku Tokyo 105 (JP)
(74) Representative:

Henkel, Feller, Hänzel \& Partner
Möhlstrasse 37
81675 München (DE)

(54) Television device having text data processing function

(57) This imvention provides a television device in which text data can be continuously and stably obtained even when the switching of reception is made between a plurality of tuners. Outputs of first and second signals $(11,17)$ are input to and demodulated by video processing circuits (12, 18). One of outputs of the video processing circuits $(12,18)$ is selected by a selector (24) and input to a text decoder (20). In a case where
the reception channel of the first tuner is switched to a channel received by the second tumer under a condition that the selector (24) selects the output of the video processing circuit (18), the selector (24) is switched to select the output of the video processing circuit (12) after the reception state of the first tuner becomes stable.

[^4]
Description

This invertion relates to a television device which has a text data processing function and a multiscreen display function and which can receive and display text data in addition to a television signal.

Recently, wide-screen television devices using a picture tube of oblong (wide) screen with the aspect ratio of $16: 9$ are widely used. There is provided a multiscreen system which permits a plurality of images with the aspect ratio of $4: 3$ to be displayed on the wide screen, for example, by making use of the merits of the wide screen. The television device of the multiscreen system can display a first image which is compressed in the horizontal direction as a parent screen on one side of the wide screen and display another compressed image as a child screen on a space area on the other side of the wide screen. The display mode is known as PIP (Picture in Picture). Further, in a television device of double-screen system (or double-window system), the wide screen can be divided into right and left areas of the same size and images of different broadcasting programs can be simultaneously displayed on the right and left shared screens.

To serve the above purpose, the television device of double-screen system has two different tuners.

Further, as one type of recent broadcasting, there is provided a data broadcasting program for transmitting text data multiplexed on the television signal. The text data is multiplexed in the vertical blanking period of the television signal.

In one application form of the television device of double-screen system, a normal television broadcasting program and a data broadcasting program are received, an image of the normal television broadcasting program is displayed on one of the shared screens, and an image of the text data of the data broadcasting program is displayed on the other shared screen.

As described above, the double-screen system can be utilized in various configurations of display types. That is, there are provided a one-screen display mode in which a normal television broadcasting program is received by use of only the first tuner and the image is displayed on the entire area of the wide screen, a dou-ble-screen display mode in which normal television broadcasting programs are received by use of the first and second tuners and respective images are displayed on the left and right screens, and a double-screen display mode in which text data is displayed on one of the screens.

However, in a case where the position of the user who utilizes the double-screen system is taken into consideration, a problem may occur particularly when a data broadcast is received. The user does not always fully understand the broadcasting system of text data and the broadcasting system of television program.

Assume now that a normal television broadcast is received by the first tuner of the television receiver of
double-screen system, the program is displayed on the screen which is one of the double screens, a data broadcast is received by the second tuner, and the text data is displayed on the other screen of the double screens. Further, assume that, in this situation, the user watching and listening to the broadcast takes an imterest in the text data, sets the one-screen display mode and sets the state in which the data broadcast is received by the first tuner.

In the above case, data of the data broadcast supplied to a decoder for the text data cannot be obtained until the operation of the first tuner becomes stabilized. As a result, it is sometimes impossible to see important text data.

Accordingly, an object of this invention is to provide a television device having a text data processing function capable of stably receiving text data even when one of a plurality of tuners is selectively switched to receive a data broadcast.

In order to attrin the above object, there is provided a television device comprising a first tuner, a second tuner, a selector for selectively supplying a reception output of one of the first and second tuners to a text decoder, and control means for controlling the operation of the television device, wherein the control means keeps the channel selecting states of the first and second tuners in an overlapped state for a preset period of time when the first tuner is selected to receive a channel which is the same as a channel which gives a data broadcast received by the second tuner under a condifion that the control means controls the selector to cause a reception output of the second tuner to be supplied to the text decoder, and controls the selector to supply a reception output of the first tuner to the text decoder when the reception state of the first tuner becomes stable.

By use of the above control means, the text decoder can stably acquire continuous text data.

This invention can be more fully understood form the following detailed description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a diagram for illustrating text data:
FIG. 2 is a block diagram showing the construction of a television device having a text data processing function according to one embodiment of this invention:
FIG. $3 A$ is a diagram showing the double-screen display state in the above embodiment;
FIG. 3 B is a diagram showing the one-screen display state in the above embodiment;
FIG. 4 A is a diagram showing the state of the display screen when the display state is switched from the double-screen display state to the one-screen display state:
FIGS. 4B and 4C are diagrams for illustrating a problem occurring when the display state is switched from the double-screen display state to
the one-screen display state;
FIGS. 5A to 5E are timing charts for illustrating the operation inherent to the device of this invention:
FIG. 6 is a diagram showing another embodiment of this invention; and
FIG. 7 is a block diagram showing an example of the concrete construction of a text data decoder.

There will now be described an embodiment of this invention with reference to the accompanying drawings.

FIG. 1 shows the positional relation- of data items having text-signals inserted into a television signal of normal NTSC system. That is, text signals D1 to D4 are transmitted in the respective vertical blanking periods. The text signal is inserted into the tenth horizontal period $(10 \mathrm{H})$ to the thirteenth horizontal period $(13 \mathrm{H})$ of the vertical blanking period in the same manner as in the multiplexed text system. The multiplexed text signal is repeatedly broadcasted, but the text signal is broadcasted as real-time information synchronized with the corresponding main program. Of course, the text signal may be broadcasted repeatedly in the same manner as the multiplexed text signal.

FIG. 2 shows a television device having a function of processing the above text data.

The television device has two systems each including a receiving system such as a tuner for receiving ground waves in order to make full use of the doublescreen function. A television signal S1 output from a first tuner 11 is supplied to a video processing circuit 12. A video signal S2 which is an output signal of the video processing circuit 12 is supplied to a compression circuit 13 and selection circuit 14.

A memory (not shown) is connected to the compression circuit 13 so that a compressed still picture can be stored and pictures of the respective channels can be sequentially stored and read out in the channel search mode.

A video signal output from the compression circuit 13 is supplied to the selection circuit 14. A video signal S3 selected by the selection circuit 14 is converted into an analog signal in a synthesizer circuit 15 and then supplied to a color cathode ray tube 16 for image display.

On the other hand, a television signal S 4 output from a second tuner 17 is supplied to a video processing circuit 18. A video signal S 5 which is an output signal of the video processing circuit $1 B$ is supplied to a compression circuit 19 and selection circuit 14. A video signal S3 selected by the selection circuit 14 is supplied to the color cathode ray tube 16 via the synthesizing circuit 15 and a corresponding image is displayed.

Further, the output video signal S2 of the video processing circuit 12 is supplied to one of two terminals of a selector 24. The output video signal S5 of the video processing circuit 18 is supplied to the other terminal of the selector 24. A signal selected by the selector 24 is input to a text data decoder 20 . If the text data decoder

20 is switched into a text processing mode via a microcomputer 22 by the operation of a remote controller 21, a text data processing operation is effected. An output signal obtained by the text processing operation is supplied to the synthesizing circuit 15 via an output circuit 23 in which the output timing is controlled. As a result, the text image is superposed on the image output from the selection circuit 14 and displayed.

The above television device is normally constructed such that the video processing circuit 12 has a higher performance and provides an image of higher image quality in comparison with the video processing circuit 18.

Further, in the above television device, an output signal of the selector 24 is supplied to a sync separation circuit 31. A synchronizing signal separated in the sync separation circuit 31 is supplied to the microcomputer 22. Further, the selector 24 is controlled by a switching control signal S6 from the microcomputer 22.

The microcomputer 22 is designed to control the switching position of the selector 24 in a period other than the period of the synchronizing signal supplied from the symc separation circuit 31 when controlling the selector 24.

With the above device, various display methods can be attained.

First, the channel of the system including the video processing circuit 12 is selected to perform the normal image display. At this time, the one-screen display mode is specified and the output video signal S2 from the video processing circuit 12 is selected by the selection circuit 14, supplied to the color cathode ray tube 16 via the synthesizing circuit 15 and displayed on the color cathode ray tube.

Next, when the double-screen display mode is specified, the video signal \$2 of the video processing circuit 12 is compressed to $1 / 2$ in the horizontal direction by the compression circuit 13 and the video signal S5 of the video processing circuit 18 is compressed by half in the horizontal direction by the compression circuit 19. The selection circuit 14 alternately selects the outputs of the compression circuits 13 and 19 for every $1 / 2$ horizontal period and supplies the selected output to the syrthesizing circuit 15 . As a result, a video image of a channel selected by the first tuner 11 is displayed on the left side of the display screen and a video image of a channel selected by the second tuner 17 is displayed on the right side of the display screen.

The output video signals of the video processing circuits 12 and 18 are supplied to and synchronized by a synchronization processing circuit (not shown) and then output.

In the double-screen display mode, the television signal S1 received by the first tuner 11 is displayed as a parent picture on a left screen 411 of a wide screen 41 as shown in FIG. 3A. The television signal S4 received by the second tuner 17 is displayed as a child picture on a right screen 412 of the wide screen 41 as shown in

FIG. 3A: In the one-screen display mode, the parent picture is displayed on the entire area of the wide screen 41 as shown in FIG. 3B.

In this example, a case wherein text data is first displayed on the screen 412 and then the text data display state is switched to the display state in the wide screen as shown in FIG. 3B is explained.

Assurne now that, for example, a double-screen display state in which a video image of a first channel by the first tuner is displayed on the left screen and text data and a video image of a fourth channel by the second tuner 17 are displayed on the right screen (the text data decoder 20 selects the second tuner 17 side) is set as shown in FIG. 4A. Further, assume that the display state is switched from the present state to a state in which the video image of the fourth channel and text data are displayed on the entire area of the wide screen.

When the display state is switched from the doublescreen display state to the one-screen display state, the operation state of the first tuner 11 is switched from a state in which the first channel is received to a state in which the fourth channel is received and an unstable state occurs until the channel selection is completed (reter to FIG. 4B).

The unstable state occurs because it takes a long time to correctly perform the AGC (Automatic Gain Control) and the conversion of PLL (Phase Locked Loop) data of the selection circuit at the time of channel switching. Therefore, in a preset period of time after the screen switching operation has been effected, the reception signal in the system of the first tuner becomes unstable and text data cannot be correctly reproduced (refer to FIG. 4C).

At this fime, if the selector 24 is immediately switched to select an output of the first video processing circuit 12, a problem occurs. That is, part of text data is lost in the unstable period as shown in FIG. 4C and part of the text data transmitted on the real-fime basis is missed. For example, information such as an address and telephone number transmitted as text data is sometimes lost.

In the field of application of the text data broadcasting, teleshopping is provided. That is, goods or articles are introduced in a television program, and information such as the article codes of the respective articles and the dealing shops thereot is transmitted as text data. If the channel switching operation described above is effected in such a television program, a telephone number for doing the teleshopping is sometimes lost.

In order to solve the above problem, in the device of this invention, the screen switching operation is effected as follows so as to prevent occurrence of omission of data.

FIGS. 5 A to 5 E show the states of outputs and data obtained when the switching position of the selector 24 is controlled in a case where text data is input to the parent screen or child screen. That is, when the display mode is switched from the double-screen display mode
to the one-screen display mode by operating the remate controller 21, first, the reception channel of the first tuner 11 is switched to a channel which is the same as the reception channel of the second tuner 17 by a selection control signal from the microcomputer 22. At this time, the selection circuit 14 selects the output signal of the video processing circuit 18 and an image of the television signal S4 (FIG. 5A) output from the second tuner 17 is displayed on the display screen 41 . The selector 24 keeps the state in which the video processing circuit 18 is selected. As a result, text data items D1, D2 are not omitted and can be received into the text data decoder 20. The second tuner 17 continues to receive the program until the first tuner 11 is set to select a channel for a desired program and the image mute thereof is released.

At this time, in the first tuner 11, the reception channel is switched to the same channel as the reception channel of the sacond tuner 17. Therefore, the television signal S1 is changed to the channel of the television signal $\mathrm{S4}$ received by the second tuner 17 after a channel selection stable timet1 has passed as shown in FIG. 5B. At the same time, it is subjected to the IF AGC control.

FIG. 5C shows a synchronizing signal output from the sync separation circuit 31 and FIG. 5D shows an output of the selector 24 . The selector 24 may effect the switching operation when the synchronizing signal output from the sync separation circuit 31 is at the low level, that is, in a period other than the vertical blanking period. The synchronizing signal output from the sync separation circuit 31 shown in FIG. 5C is input to the microcomputer 22. The microcomputer 22 sets the channel selection stable time 11 from the operation time of the screen switching key and then changes the switching position of the selector 24 from the second tuner 17 side to the first tuner 11 side in a period of time 12 other than the vertical blanking period. That is, it controis the selector 24 to select the output of the video processing circuit 12. Since the stable time t3 of the selector 24 at the time of switching thereof is extremely short time and the switching operation is effected in a period other than the vertical blanking period, the text data decoder 20 can receive text data items D3, D4, D5 shown in FIG. 5E derived from the first tuner 11 side. As a result, text data items D1 to D5 are not lost and can be decoded in the text data decoder 20. After input of the text data is switched to the first tuner 11, the second tuner 17 is set to receive another channel or set into the OFF state. Even if the time 12 is set as predetermined fixed time, the object of this invention can be attained. Further, it is possibie to provide means for positively monitoring and determining whether or not the reception state of the tuner 11 becomes stable in order to determine the switching timing of the selector 24 and use an output of the monitoring means so as to switch the switching position of the selector 24.

Switching of the display images on the wide screen
is effected by use of the selection circuit 14. The switching can be effected in the horizontal synchronizing signal period or vertical synchronizing signal period, for example.
in the above example, the display mode is switched from the double-screen display mode to the one-screen display mode and the test data reception state of the second tuner side is switched to the text data reception state of the first tuner. However, the concept of this invention is not limited to the above mode switching operation. For example, this invention can be applied in a case wherein the switching operation is effected between the reception channel of the first tuner and the reception channel of the second tuner while the state of the double-screen display mode is maintained. More specifically, the reception channels of one of the tuners which now receives text data and the other tuner which is to receive the text data are controlled to overiap in a preset period of time so as to prevent the text data from being lost. Atter the overlapping period of time has passed, an output of the other (latter) tuner which now receives the text data is supplied to the text data decoder and then the reception state of the former tuner is controlled. During the overlapping period, the text data decoder selects the output of the former tuner.

FIG. 6 shows another embodiment of this irvention.
In this embodiment, portions which are the same as those in the former embodiment are denoted by the same reference numerals. This embodiment is different from the former embodiment of FIG. 2 in that an output video signal S 2 of the video processing circuit 12 and an output video signal 55 of the video processing circuit 18 are supplied to a switching section 51 , one of the two output signals of the switching section 51 is supplied to a V/C/D processing circuit 52 , and the other output signal thereof is supplied to the compression circuit 19 and selection circuit 14. The V/C/D processing circuit 52 is a video/chroma/deflection processing circuit, and can adjust the image quality by controlling the luminance signal and can adjust the hue and color balance by controlling the chroma signal. Further, it processes the synchronizing signal for deflection process.

The V/C/D processing circuit 52 processes the output video signal selected and derived by a switch 511 of the switching section 51 and supplies the processed output video signal to the selection circuit 14 and compression circuit 13. Further, the V/C/D processing circuit 52 separates the synchronizing signal from the output video signal selected and derived by the switch 511 of the switching section 51 and supplies the synchronizing signal to the microcomputer 22.

In the switching section 51, the switch 511 normally selects a signal on the first tuner 11 side and a switch 512 selects a signal on the second tuner 17 side.

The switching section 51 is used to replace the right and left images in the double-screen display mode. That is. it the switch 511 is set to select the output on the funer 17 side and the switch 512 is set to select the out-
put on the tuner 11 side, the images of the right and left positions can be replaced with each other.

Assume now that the display state is switched from the double-screen display state to the one-screen display state as shown in FIG. 4A like the case of the former embodiment. In this case, the switch 511 is switched to the second tuner 17 side based on a switching control signal from the microcomputer 22 . Therefore, the V/C/D processing circuit 52 processes the output video signal of the same program as that of the output video signal selected and derived by the switch 512. The selection circuit 14 selects the output signal of the V/C/D processing circuit 52 and outputs the same as a signal for the wide display screen. Further, the reception state of the first tuner 11 is set to the reception state of a channel which is the same as the reception channel of the second tuner 17 in which the text broadcasting is performed.

As a result, at this time, an image of the channel received by the second tuner 17 and text data are displayed on the wide display screen.

The reception state of the first tuner 11 becomes stable when a preset period of time has passed. Then, the microcomputer 22 controls the switch 511 to select the video signal on the first tuner 11 side. Further, when the switching position of the selector 24 is switched, the microcomputer 22 monitors the synchronizing signal from the V/C/D processing circuit 52 and controls the selector 24 to select the signal on the first tuner 11 side in a period other than the period of the vertical synchronizing signal.

According to the above embodiment, an example in which the double-screen display mode is used is explained, but it is of course possible to apply this invention to the multiscreen display and PIP process. Further, as data dealt in the text data decoder 20, various data items such as an script used in another data broadcasting and inter text data can be used.

As described above, according to this invention, text data can be continuously received even when the switching operation of reception between a plurality of tuners is effected and the text data process of high reliability can be attained.

FIG. 7 shows an example of the concrete construction of the text data decoder.

A video signal is input to a sync separation section 122 and ADD converter 123 via an input terminal 121. Digital data explained with reference to FIG. 1 is superposed on the vertical blanking period of the video signal. Data converted into the digital form in the A/D converter 123 is subjected to the waveform equalization process in a waveform equalizing section 124 and supplied to a data fetching/error correcting section 125.

The data fetching/error correcting section 125 fetches a text signal based on the timing signal from the sync separation section 122 and performs the error correction process. A CPU 127 is operated based on a foxed program stored in a program ROM 128, In a char-
acter tont ROM 129, character fonts for displaying characters are stored and character data can be read out by causing the CPU 127 to address a desired character in the character font ROM 129 ,

A display synchronizing signal which is synchronized with the operation of the television device is supplied to an input terminal 130. The synchronizing signal is supplied to a display control section 131. The display control section 131 effects the process for reading out data of a display memory 132 in synchronism with reproduction of a television image and writing display data into the display memory 132 in response to a write instruction from the CPU 127.

Data read out from the display memory 132 is supplied to a color map memory ${ }^{133}$. The color map memory 133 receives display data as an address input and outputs level data of primary color signals R, G, B corresponding to the address. The level data is corverted to analog R. G, B signals by a D / A converter 134 and they are derived from an output terminal as a display signal.

The display signal is synthesized with the television signal by synthesizing means (not shown) and displayed on the display. Further, the D/A converter 134 can be omitted and the R, G, B signals output from the color map memory 133 can be used as they are depending on the type of an intertace on the display side.

An operation signal generated from the operating section of the remote controller operated by the viewer is input via an input terminal 136. The operation signal is fetched by the CPU 127 via an operation input interface (IF) 137 and then analyzed.

A modem 138 contains a modulator and demodulator to construct a communication control section and is connected to a telephone line 140 via a line connecting section 139. The line connecting section 139 controls connection/disconnection to or from the telephone line 140 and is controlled by the CPU 127.

The CPU 127 is connected to function blocks, that is, the data fetching/error correcting section 125, program ROM 128, character font ROM 129, operation input interface 137, work RAM 141, program RAM 142 and norvolatile memory 143 via the bus line.

The program RAM 142 is a memory for storing a script (computer program) transmitted from the broadcasting station, the content of the script is interpreted according to an interpreter in the fixed program stored in the ROM 128 by the operation of the viewer and a preset process can be executed according to the procedure.

A fixed identification number (ID) of the reception terminal is stored in the nonvolatile memory 143 and when order data is transmitted to the data collecting station in the teleshopping, for example, the identification number is used. In the data collecting station, the orderer is determined by recognizing the identification number.

The above circuit construction is used when the
multiplexed text broadcasting program is processed. That is, if reception of the multiplexed text broadcasting program is specified by the operation of the remote controlier, the CPU 127 is switched to be put under control of the multiplexed text broadcast processing program stored in the program ROM 128. Then, transmitted character data is converted to display data in the character font ROM 129 and stored into the display memory 132 via the display control section 131.
receiving and demodulating television broadcasting signals of two channels;
video signal processing means (13, 14, 19) for independently displaying a video signal which is a reception signal of said first tuner or cornpressing at least one of video signals which are reception signals of said first and second turners to simuttaneously display the video signats. on a display device;
selector means (24) for selectively deriving the television broadcasting signals received by said first and second tuners;
text receiving/demodulating means (20) for receiving an output of said selector means and receiving and demodulating transmitted text data superposed on a data channel contained in the television broadcasting signal and independent from the videofaudio signal thereof; text synthesizing means $(15,23)$ for syrthesizing the text data demodulated by said text receiving/demodulating means (20) with an output of said video signal processing means; synchronization separation means (31) for separating a synchronizing signal from an output of said selector means; and
switching control means (22) for controlling the switching operation of said selector means in a period other than the vertical blanking period based on the synchronizing signal from said symchronization separation means after the channel selection becomes stable in a case where a selected channel of said first tuner is switched to a channel selected by said second tuner.
5. A television device having a text data processing function according to claim 4, characterized by further comprising channel selection control means tor controlling said first and second tuners to temporarily receive the same channel program in a case where a reception channel of said first tuner is switched to a channel received by said second tuner; and means for setting said second tuner to another channel or setting said second tuner into an OFF state after the selection channel of said first tuner is switched.

FIG. 1

FIG. 3A

FIG. 3B

FIG. 4A

FIG. $4 B^{\text {RECEPTION }}$ RECEPT
OUTPUT

FIG. 5A

FIG. 5B

FIG. 5C STMC SEPABation
G. 5 D

FIG. 5E

FIG. 7

Europáisches Patentamt European Patent Office Office européen des brevets

EUROPEAN PATENT APPLICATION

(43) Date of publication: 14.08.1996 Bulietin 1996/33
(21) Application number: 96101743.1
(22) Date of filing: 07.02.1996
(51) Int. Cl..6 G11B 27/034, G11B 20/00,
G11B 27/30, G11B 27/10, G11B 7/14, H04N 5/85, H04N 5/92
(84) Designated Contracting States: DE FR GB
(30) Priority: 09.02.1995 JP 46370/95
(71) Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Kadoma-shl, Osaka 571 (JP)
(72) Inventor: Yoneda, Yasushi

Ikeda-shl, Osaka (JP)
(74) Representative: Kügele, Bernhard et al NOVAPAT-CABINET CHEREAU, 9, Rue du Valais 1202 Genève (CH)

(54) Apparatus and method for recording and reproducing data

(57) The apparatus for recording and reproducing data includes: a receiving section for receiving input data; a recording section for recording the input data on a recording medium; a managing section for managing information indicating a position of the input data recorded on the recording medium; a reproducing section for reproducing the data recorded on the recording medium based on the information managed by the managing means during recording of the input data on the recording medium; and a selective output section for selectively outputting at least one of the input data and the data reproduced by the reproducing section.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to an apparatus and a method tor recording and reproducing video and sound for providing a "time-shift reproduction" function and a "time-shift tast-torward reproduction" function.

2. Description of the Related Art:

in recent years, the popularization of satellite broadcasting, CATVs and the like has caused a considerable increase in the number of broadcasting channels. As a result, very frequently TV audiences want to watch several TV programs broadcasted in the same time period. Moreover, home-use video apparatuses have also been popularized. Therefore, it is desirable to develop a method for utilizing such apparatuses more efficiently.

Figure 16 shows an exemplary corventional apparatus for recording and reproducing video and sound, in which a TV set is connected with a video cassette recorder (VCR).

Hereinatter, the respective components shown in Figure 16 will be described.

Broadcast receiving sections 1 and 2 receive a broadcast. Typically, the broadcast receiving section 1 is a tuner incorporated into a TV set, and the broadcast receiving section 2 is a tuner incorporated into a VCR.

A video/sound recording section 3 corverts the video and the sound output from the broadcast receiving section 2 into a recording signal so as to record the recording signal on a magnetic tape. The magnetic tape is driven by a magnetic tape driving section 4.

A video/sound reproducing section 5 converts the recording signal recorded on the magnetic tape, thereby reproducing the video and the sound. The video and the sound reproduced by the video/sound reproducing section 5 are supplied to a selective output section 6 .

The selective output section 6 selectively outputs one of the output from the broadcast receiving section 1 and the output from the video/sound reproducing section 5 . The selection in the selective output section 6 is manually determined by a user.

A video display section 7 displays the video selected by the selective output section 6. A sound output section 8 outputs the sound selected by the selective output section 6 .

However, in order to reproduce a program now being recorded, a conventional apparatus having the above-described configuration is required to suspend the recording operation once, rewind the magnetic tape and then start the reproducing operation. Therefore, such an apparatus has the following probiems.
(1) During recording of a program which is now being broadcasted, it is impossible to reproduce the program from the beginning while continuing recording of the program.
(2) In the case where watching and listening of a program now being broadcasted must be suspended, it is impossible to reproduce the program from the point at which watching and listening of the program was suspended while continuing recording of the program.
(3) In the case where watching and listening of a program now being broadcasted must be suspended, it is impossible to tast-forward reproduce the program from the point at which watching and listening of the program was suspended while continuing recording of the program.

In addition, it is impossible for a corventional apparatus to simultaneously record a plurality of programs on one and the same magnetic tape. Theretore, in order to simultaneously record a plurality of programs, it has been necessary to provide the same number of recording and reproducing apparatuses as the number of programs.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, an apparatus for recording and reproducing data is provided. The apparatus includes: receiving means for receiving input data; recording means for recording the input data on a recording medium; managing means for managing information indicating a position of the input data recorded on the recording medium; reproducing means for reproducing the data recorded on the recording medium, based on the information managed by the managing means during recording of the input data on the recording medium; and selective output means for selectively outputting at least one of the input data and the data reproduced by the reproducing means.

According to another aspect of the present invention, an apparatus for recording and reproducing data of a plurality of channels is provided. The apparatus includes: receiving means for receiving input data of a N number of channels; first selection means for selecting a M number of channels among the N number of channels; recording means for recording on a recording medium the input data of the M number of channels selected by the first selection means; managing means for managing information indicating a position of the input data of the M number of channels recorded on the recording medium; second selection means for selecting a P number of channels among a plurality of channels recorded on the recording medium; reproducing means for reproducing the data of the P number of channels selected by the second selection means among the plurality of channels recorded on the record-
ing medium, based on the information managed by the managing means, during recording of the input data of the M number of channels on the recording medium; and selective output means for selectively outputting at least one of the input data of the N number of channels and the data of the P number of channels reproduced by the reproducing means, where N, M and P are positive integers and $N \geq M$.

In one embodiment, the apparatus further includes compression means for compressing the input data and expansion means for expanding the data reproduced by the reproducing means.

In another embodiment, the selective output means includes means for applying a priority order to each of the input data and the reproduced dats, and the apparatus further includes display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present irvention, an apparatus for recording and reproducing data is provided. The apparatus includes: receiving means for receiving input data; time code generating means for generating a time code and applying the time code to the input data; thin-out means for thinning out the input data with the time code at a predetermined ratio; recording means for recording on a recording medium the input data with the time code which have been thinned out by the thin-out means; managing means for managing information indicating a position of the irput data with the time code recorded on the recording medium; reproducing means for reproducing the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium; comparing means for comparing the time code of the input data with the fime code of the data reproduced by the reproducing means; and selective output means for selectively outputting at least one of the input data and the data reproduced by the reproducing means based on a comparison result obtained by the comparing means.

In one embodiment, the apparatus further includes compression means for compressing the input data with the time code which have been thinned out by the thinout means and expansion means for expanding the data with the time code which have been reproduced by the reproducing means.
in another embodiment, the selective output means includes means for applying a priority order to each of the input data with the time code and the reproduced data with the time code, and the apparatus further includes display means for displaying an outpuf from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, an apparatus for recording and reproducing data is provided. The apparatus includes: receiving
means for receiving input data; time code generating means for generating a time code and applying the time code to the input data; recording means for recording on a recording medium the input data with the time code: managing means for managing information indicating a position of the input data with the time code recorded on the recording medium; reproducing means for reproducing the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium; thinout means for thinning out the data with the time code reproduced by the reproducing means at a predeter: mined ratio; comparing means for comparing the time code of the input data with the time code of the data thinned out by the thin-out means; and selective output means for selectively outputting at least one of the input data and the data thinned out by the thin-out means based on a comparison result obtained by the comparing means.

In one embodiment, the apparatus further includes compression means for compressing the input data with the time code and expansion means for expanding the data with the time code which have been reproduced by the reproducing means.

According to still another aspect of the present irvention, an apparatus for recording and reproducing data is provided. The apparatus includes: receiving means for receiving input data; time code generating means for generating a time code and applying the time code to the input data; first thin-out means for thinning out the input data with the time code at a first ratio; recording means for recording on a recording medium the input data with the time code which have been means for managing information indicating a position of the input data with the time code recorded on the recording medium; reproducing means for reproducing the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium; second thin-out means for thinning out the data with the time code reproduced by the reproducing means at a second ratio; comparing means for comparing the time code of the imput data with the time code of the data thinned out by the second thin-out means; and selective output means for selectively outputting at least one of the input data and the data thinned out by the second thin-out means based on a comparison result obtained by the comparing means,

In one embodiment, the apparatus further includes compression means for compressing the input data with the time code which have been thinned out by the first thin-oul means and expansion means for expanding the data with the time code which have been reproduced by the reproducing means.

In another embodiment, the selective output means includes means for applying a priority order to each of
the input data with the time code and the thinned out data with the time code, and the apparatus further includes display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, a method for recording and reproducing data is provided. The method includes the steps of: (a) receiving input data; (b) recording the input data on a recording medium; (c) managing information indicating a position of the input data recorded on the recording medium; (d) reproducing the data recorded on the recording medium, based on the information managed in the step (c), during recording of the input data on the recording medium; and (e) selectively outputting at least one of the input data and the data reproduced in the step (d).

In one embodiment, the step (e) includes a step of applying a priority order to each of the input data and the reproduced data, and the method further includes a step of displaying the selective output in the step (e) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, a method for recording and reproducing data of a plurality of channels is provided. The method includes the steps of: (a) receiving input data of a N number of channels; (b) selecting a M number of channeis among the N number of channels; (c) recording on a recording medium the input data of the M number of channeis selected in the step (b); (d) managing information indicating a position of the input data of the M number of channels recorded on the recording medium; (e) selecting a P number of channels among a plurality of channels recorded on the recording medium; (f) reproducing the data of the P number of channels selected in the step (e) among the plurality of channels recorded on the recording medium, based on the information managed in the step (d), during recording of the input data of the M number of channels on the recording medium; and (g) selectively outputting at least one of the input data of the N number of channels and the reproduced data of the P number of channels, where N, M and P are positive integers and $N \geq M$.

In one embodiment, the method further includes a step of compressing the input data and a step of expanding the reproduced data.

In another embodiment, the step (g) includes a step of applying a priority order to each of the input data and the reproduced data, and the method further includes a step of displaying the selective output in the step (g) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, a method for recording and reproducing data is provided. The method inclucies the steps of: (a) receiving input data; (b) generating a time code and applying the time code to the input data: (c) thinning out
the input data with the time code at a predetermined ratio; (d) recording on a recording medium the input data with the fime code which have been thinned out in the step (c); (e) managing intormation indicating a position of the input data with the time code recorded on the recording medium; (f) reproducing the data with the time code recorded on the recording medium, based on the information managed in the step (e), during recording of the input data with the time code on the recording medium; (g) comparing the time code of the input data with the time code of the data reproduced in the step (f); and (h) selectively outputting at least one of the input data and the reproduced data based on a comparison result obtained in the step (g).

In one embodiment, the method further includes a step of compressing the input data with the time code which have been thinned out in the step (c) and a step of expanding the data with the time code which have been reproduced in the step (f).

In another embodiment, the step (h) includes a step of applying a priority order to each of the input data with the time code and the reproduced data with the time code, and the method further includes a step of displaying the selective output in the step (h) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, a method for recording and reproducing data is provided. The method includes the steps of: (a) receiving input data; (b) generating a time code and applying the time code to the input data; (c) recording on a recording medium the input data with the time code; (d) managing information indicating a position of the input data with the time code recorded on the recording medium; (e) reproducing the data with the time code recorded on the recording medium, based on the information managed in the step (d), during recording of the input data with the time code on the recording medium; (f) thinning out the data with the time code reproduced in the step (e) at a predetermined ratio; (g) comparing the time code of the input data with the time code of the data thinned out in the step (f); and (h) selectively outputting at least one of the input data and the data thinned out in the step (1) based on a comparison result obtained in the step (g).

In one embodiment, the method further includes a step of compressing the input data with the time code and a step of expanding the data with the time code which have been reproduced in the step (e).

In another embodiment, the step (h) includes a step of applying a priority order to each of the input data with the time code and the thinned out data with the time code, and the method further includes a step of displaying the selective output in the step (h) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

According to still another aspect of the present invention, a method for recording and reproducing data is provided. The method includes the steps of: (a)
receiving input data; (b) generating a time code and applying the time code to the input data; (c) thinning out the input data with the time code at a first ratio; (d) recording on a recording medium the input data with the time code which have been thinned out in the step (c): (e) managing information indicating a position of the input data with the time code recorded on the recording medium; (f) reproducing the data with the time code recorded on the recording medium, based on the information managed in the step (e), during recording of the input data with the time code on the recording medium; (g) thinning out the data with the time code reproduced in the step (f) at a second ratio; (h) comparing the time code of the input data with the time code of the data thinned out in the step (g); and (i) selectively outputting at least one of the input data and the data thinned out in the step (g) based on a comparison result obtained in the step (h).

In one embodiment, the method further includes a step of compressing the input data with the time code which have been thinned out in the step (c) and a step of expanding the data with the time code which have. been reproduced in the step (1).

In another embodiment, the step (i) includes a step of applying a priority order to each of the input data with the time code and the thinned out data with the time code, and the method further includes a step of display. ing the selective output in the step (i) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

Thus, the invention described herein makes possibe the advantages of (a) providing a recording/reproducing apparatus and method which provides a "timeshift reproduction" function for solving the above-mentoned problems (1) and (2) and a "time-shift fast-forward reproduction" function for solving the abovementioned problem (3); and (b) providing a recording/reproducing apparatus and method capable of simultaneously recording and reproducing data from a plurality of channels.

These and other advantages of the present inventsion will become apparent to those shilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram showing a configuration for an apparatus 100 for recording and reproducing video and sound according to a first example of the present invention.

Figure 2 is a diagram showing a specific configureton for the memory section 30 in the apparatus 100 .

Figure 3 is a diagram showing another specific configuration for the memory section 30 in the apparatus 100.

Figures 4 A to 4 D are time charts showing an overation of the apparatus 100 in association with the "timeshill reproduction" function.

Figures 5A to 5D are time charts showing another operation of the apparatus 100 in association with the "time-shitt reproduction" function.

Figure 6 is a block diagram showing a configuration tor an apparatus 200 tor recording and reproducing video and sound according to a second example of the present invention.

Figure 7 is a block diagram showing a configuration for an apparatus 300 for recording and reproducing video and sound according to a third example of the present invention.

Figure 8 is a block diagram showing a configuration for an apparatus 400 for recording and reproducing video and sound according to a fourth example of the present invention.

Figure 9 is a block diagram showing a configuration for an apparatus 500 for recording and reproducing video and sound according to a firth example of the present invention.

Figures 10A to 100 are time charts showing another operation of the apparatus 500 in association with the "time-shift fast-forward reproduction" function.

Figure 11 is a block diagram showing a contiguration for an apparatus 600 tor recording and reproducing 25 video and sound according to a sixth example of the present invention.

Figure 12 is a block diagram showing a configureion for an apparatus 700 for recording and reproducing video and sound according to a seventh example of the present invention.

Figure 13 is a block diagram showing a conffiguraion for an apparatus 800 for recording and reproducing video and sound according to an eighth example of the present invention.

Figure 14 is a block diagram showing a configuretion for an apparatus 900 for recording and reproducing video and sound according to a ninth example of the present invention.

Figure 15 is a block diagram showing a configureing video and sound according to a tenth example of the present invention.

Figure 16 is a block diagram showing a configuretron for a conventional apparatus for recording and reproducing video and sound.

DESCRIPTION OF THE PREFERRED EMBOLIMEATS

Hereinafter, the present invention will be described by way of illustrative examples with reference to the accompanying drawings.

Example 1

Figure 1 shows a configuration for an apparatus 100 for recording and reproducing video and sound according to a first example of the present invention. The apparatus 100 has a "time-shift reproduction" fund-
tion. The "time-shift reproduction" function is herein defined as a function of, during recording of a program which is now being broadcasted, reproducing the program from the beginning while continuing recording of the program.

For example, the "time-shift reproduction" function is effectively applicable to a case where a first half of a program is desired to be watched again while continuing recording of the second half of the program. A user can reproduce the first half of the program from the beginning without waiting-for the completion of-recording of the second half of the program.

In addition, the "time-shift reproduction" tunction is also effectively applicable to a case where a program is to be recorded from nine p.m. to eleven p.m. using a preset timer during the user's absence (such a recording will be referred to as an "absence recording"); the user comes home at a time during the absence recording (for example, at nine-thirty); and the user wants to start to reproduce the absence-recorded program before eleven o'clock. The user can reproduce the absence-recorded program from the beginning without waiting for the completion of recording of the program.

Moreover, the "time-shift reproduction" function is also effectively applicable to a case where watching and listening of a program now being broadcasted must be suspended and a user later wants to restart watching and listening to the program from the point at which watching and listening of the program was suspended. The user can reproduce the program from the point at which watching and listening of the program was suspended without waiting for the completion of recording of the program.

Hereinatter, the respective components of the apparatus 100 will be described with reference to Figure 1.

A broadcast receiving section 10 receives a broadcast of video and sound. In general, the broadcast receiving section 10 is confligured 50 as to receive broadcasts of a plurality of channels. The broadcast receiving section 10 selects one channel from a plurality of channels in response to a channel selection signal supplied from an input section 14, so as to output video and sound corresponding to the selected channel to a video/sound recording section 22 and a selective output section 50 . The channel selection signal is input from the input section 14 to the broadcast receiving section 10 via a line 101.

The video/sound recording section $\mathbf{2 2}$ inquires of a memory region management section 31 where the video and the sound supplied from the broadcast receiving section 10 are to be recorded in a memory section 30 , and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the inquiry. The video/sound recording section 22 records the video and the sound at the posifion indicated by the information in the memory section 30 . This positional information is determined by the memory region management section 31 , and is referred to when
a time-shift reproduction is made by a videa/sound reproducing section 40 , as will be described later. This positional information is, for example, an address on a recording medium.

A recording start signal, a recording end signal and a time-shift reproduction end signal are input from the input section 14 to the video/sound recording section 22 via a line 102. The video/sound recording section 22 starts a recording operation in response to the recording start signal, and ends the recording operation in response to the recording end signal or the time-shitt reproduction end signal.

The memory section 30 has a function of performing the reproduction operation of the video and the sound recorded in the memory section 30 in parallel with pertorming the recording operation of video and sound in the memory section 30 . For example, the memory section 30 may be an optical disk driving apparatus having a recording head and a reproducing head which can be driven independently from each other, or a hard disk driving apparatus including a plurality of such heads.

Figure 2 shows a specific configuration for the memory section 30 . The memory section 30 includes: a recording head 112 for recording data on a recording medium 110; a reproducing head 114 for reproducing the data recorded on the recording medium 110; a recording controller 116 for controlling the recording head 112; and a reproducing controller 118 for controlling the reproducing head 114.

The recording controller 116 receives data to be written on the recording medium 110 and the information, e.g., an address on the recording medium 110, indicating a position at which the data is to be written, from the video/sound recording section 22 . The recording controller 116 controls the position of the recording head 112 based on the positional information and writes the data into the recording medium 110 via the recording head 112.

The reproducing controller 118 receives information, e.g., an address on the recording medium 110 , indicating a position of the recording medium 110 from which the data is to be read out, from the video/sound reproducing section 40 . The reproducing controller 118 controls the position of the reproducing head 114 based on the positional information and reads out the data corresponding to the positional intormation from the recording medium 110 via the reproducing head 114.

Thus, the recording controller 116 and the reproducing controller 118 can be controlled independent of each other. As a result, the recording head 112 and the reproducing head $\mathbf{1 1 4}$ can also be controlled independent of each other. Therefore, it becomes possible to perform the reproduction operation of the video and the sound recorded on the recording medium 110 in paralle! with the recording operation of the video and the sound on the recording medium 110.

Figure 3 shows another speciric configuration for the memory section 30 . The memory section 30
includes an arbitrating section 122 and a random access memory 120 .

The arbitrating section 122 receives a wite command from the video/sound recording section 22 and a read command from the video/sound reproducing secfion 40 . The arbitrating section 122 arbitrates between the write command and the read command, thereby sequentially outputting the write command and the read command to the random access memory 120. As a result, a simultaneous access to the random access memory 120 is prevented. By setting the cycle of the write command and the read command to be given to the random access memory 120 to be sutficiently small, it is possible to consider that the operation of writing the data onto the random access memory 120 can be performed substantially in parallel with the operation of reading out the data from the random access memory 120. Therefore, under such a configuration, it is also possible to periorm the operation of reproducing the video and the sound recorded in the memory section 30 in parallel with the operation of recording the video and the sound in the memory section 30 .

Referring back to Figure 1, the video/sound reproducing section 40 reproduces the video and the sound supplied from the memory section 30. A reproduction start signal, a reproduction end signat, a time-shitt reproduction start signal and a bime-shitt reproduction end signal are input from the input section 14 to the video/sound reproducing section 40 via a line 103.

The video/sound reproducing section 40 starts and ends a normal reproduction operation in response to the reproduction start signal and the reproduction end signal, respectively. In response to the time-shitt reproduction starl signal, the video/sound reproducing section 40 receives positional information on the video and the sound recorded in the memory section 30 from the memory region management section 31 and then starts to reproduce the video and the sound based on the positional information. In response to the time-shift reproduction end signal, the video/sound reproducing section 40 ends the reproduction operation.

The memory region management section 31 manages the memory region of the video and the sound recorded in the memory section 30, and determines a memory region where a video and a sound is newly recorded. More specitically, the memory region management section 31 has a region \mathbf{R} for storing therein the information, e.g.. an address on the recording medium, indicating a position in the memory section 30 at which the video and the sound are recorded.

When the recording start signal is input to the video/sound recording section 22 , the video/sound recording section 22 starts the recording operation. The video/sound recording section 22 inquires of the memory region management section 31 where the video and the sound supplied from the broadcast receiving section 10 are to be recorded in the memory section 30, and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the
inquiry. The memory region management section 31 determines a position at which the video and the sound are to be recorded, and stores intormation indicating the position in the region \mathbf{R}.

In the situation where the recording start signal is input to the video/sound recording section 22 again after the recording operation is once ended, new posifional information is overwritten in the region \mathbf{R} in the memory region management section 31. Thus, the memory region management section 31 holds only the latest positional information.

When the time-shift reproduction start signal is input to the videolsound reproducing section 40,- the video/sound reproducing section 40 reads out positional information by reterence to the region \mathbf{R} in the memory region management section 31, thereby starting to reproduce the video and the sound from the position indicated by the positional information.

The selective output section 50 selectively outputs at least one of the video and the sound output from the broadcast receiving section 10 and the video and the sound output from the video/sound repraducing section 40. The selective output section 50 may selectively output either one of the output from the broadcast receiving section 10 and the output trom the video/sound reproducing section 40 , or may output both the output from the broadeast receiving section 10 and the output from the vided/sound reproducing section 40 by applying priority orders to the two outputs.

The priority order is used to determine a mode for displaying a video in a video display section 60 or a mode for ourputting a sound in a sound output section 70. For example, it is assumed that the selective output section 50 applies a priority order "1" to the output from the broadcast receiving section 10 and a priority order " 2 " to the output from the video/sound reproducing seation 40 . In this case, the video display section 60 displays the video output from the broadcast receiving section 10 on a main screen and the video output from the video/sound reproducing section 40 on a subscreen, for example. In a similar manner, the video display section 60 can employ an abbitrary display mode in accordance with the priority order. The sound ounput section 70 outputs the sound output from the broadcast receiving section 10 at a higher loudness level and the sound output from the video/sound reproducing section 40 at a lower loudness level, for example. In a similar manner, the sound output section 70 can employ an arbitrary output mode in accordance with the priority order.

The selection in the selective output section 50 is made in response to a video/sound selection signal input from the input section 14 via a line 104. The video/sound selection signal is used by a user for manually switching the output from the broadcast receiving section 10 and the output from the video/sound reproducing section 40 . The selection in the selective output section 50 is also made in response to the time-shift reproduction start signal and the time-shitt reproduction
end signal input from the input section 14 via the line 104.

Next, reterring to Figures 4A to 4D, the operation of: the apparatus 100 will be described in association with the "time-shitt reproduction" function.

Figures 4A to 4D show a temporal relationship among the output from the broadcast receiving section 10 (input data); the input to the memory section 30 (recording data); the output from the memory section 30 (reproduced data); and the output from the selective output section 50 (output data).

In Figures 4A to 4D, each of the numbered squares indicates one unit for recording and reproduction. For example, this square may represent one trame or one field. In addition, this square may represent analog data or digital data.

When a recording start signal is input from the input section 14 at a time T1, the recording start signal is supplied to the video/sound recording section 22 via a line 102. As a result, the video/sound recording section 22 starts the recording operation. Consequently, the imput data (data $1,2,3,4$. ...) are sequentially recorded in the memory section 30 (Figures 4A and 4B).

When a time-shift reproduction start signal is input from the input section 14 at a fime T2, the time-shift reproduction start signal is supplied to the videa/sound reproducing section 40 via a line 103 and to the selective output section 50 via a line 104. As a result, the videolsound reproducing section 40 starts the reproduction operation from the head of the recorded data. Consequently, the recorded data (data 1, 2, 3, 4, ...) are sequentially reproduced as reproduced data from the time T2 (Figure 4C). In addition, the selective output section 50 automatically changes the output thereof so that at least the reproduced data is selectively output. As a result, at least the reproduced data is output from the selective output section 50 as the output data (Figure 4D).

When a time-shift reproduction end signal is input from the input section 14 at a time T3, the time-shift reproduction end signal is supplied to the video/sound recording section 22 via the line 102, to the video/sound reproducing section 40 via the line 103, and to the selective output section 50 via the line 104. As a result, the video/sound recording section 22 ends the recording operation; the video/sound reproducing section 40 ends the reproduction operation; and the selective output section 50 automatically changes the output thereof so that at least the output immediately betore the timeshift reproduction start sina! is input is selectively output.

Thus, the reproduction operation of the video and the sound recorded in the mernory section 30 can be performed in parallel with the recording operation of the video and the sound in the memory section 30 from the time T2 to the time T3.

In the operation exemplified in Figures 4A to 4D, the data 9 to 12 are recorded in the memory section 30 . However, the data 9 to 12 are not reproduced by the
video/sound reproducing section 40. Accordingly, as shown in Figures 5A to 5D, even if the video/sound recording section 22 is made to end the recording operation at a time T4 by irputting the recording end signal from the input section 14 at the time T4, the same operation as that shown in Figures 4A to 4D can be performed.

Thus, by inputting the recording end signal at the time T4, it is possible to prevent redundant data from being recorded in the memory section 30 . For example, in the case where the length of a program to be recorded is known beforehand, it is possible to input such a recording end signal in good time.

It is noted that the recording start signal and the recording end signal may be manually input by a user, or may be automatically input at a preset time by utilizing a known function of absence recording.

In the first example described above, a time-shit reproduction start signal and a time-shift reproduction end signal are provided separately from a reproduction . start signal and a reproduction end signal which have conventionally been used. A method for realizing the generation of such signals most easily, is a method in which the input section 14 generates the reproduction start signal and the reproduction end signal in the case where the user irputs a reproduction start command and a reproduction end command to the input section 14 , respectively, and the input section 14 generates the time-shift reproduction starl signal and the time-shitt reproduction end signal in the case where the user imputs a time-shift reproduction start command and a time-shift reproduction end command to the input section 14, respectively. However, it may be too complex for the user to distinguish the reproduction start command from the time-shift reproduction start command and distinguish the reproduction end command from the timeshift reproduction end command, and to input these commands to the input section 14.

By additionally providing a state judging section 15 (not shown) for judging whether or not the apparatus 100 is in the recording state, it becomes possible to eliminate the necessity of distinction between the reproduction start command and the time-shift reproduction start command and the distinction between the reproduction end command and the time-shift reproduction end command.

The state judging section 15 judges whether or not the apparatus 100 is in the recording state. Such a judgement is accomplished, for example, by monitoring the recording start signal and the recording end signal input from the input section 14 to the video/sound recording section 22 . When the reproduction start command is input by the user to the input section 14, the input section 14 inquires whether or not the apparatus 100 is in the recording state of the state judging section 15. In response to the inquiry, the state judging section 15 answers a judgement result to the input section 14. in the case where the judgement result indicates that the apparatus $\mathbf{1 0 0}$ is not in the recording state, the input
section 14 generates a reproduction start signal. The reproduction start signal is supplied to the video/sound reproducing section 40 . On the other hand, in the case where the judgement result indicates that the apparatus 100 is in the recording state, the input section 14 generates a time-shift reproduction start signal. The time-shitt reproduction start signal is supplied to the video/sound reproducing section 40 and the selective output section 50.

Also, the state juiging section 15 judges which of the reproduction start signal and the time-shitt reproduction start signal was generated more recently, Such a judgement is accomplished, for example, by monitoring the reproduction start signal and the time-shitt reproduction start signal generated by the input section 14. When a reproduction end command is input by the user to the input section 14, the input section 14 inquires which of the reproduction start signal and the time-shift reproduction start signal was generated more recently of the state judging section 15 . In response to the inquiry, the state judging section 15 answers a judgement result to the input section 14. In the case where the judgement result indicates that it was the reproduction start signal, the input section 14 generates a reproduction end signal. The reproduction end signal is supplied to the video/sound reproducing section 40. On the other hand, in the case where the judgement result indicates that it was the time-shifl reproduction signal, the input section 14 generates a time-shitt reproduction end signal. The time-shift reproduction end signal is supplied to the video/sound recording section 22. the video/sound reproducing section 40 and the selective output section 50.

In this way, the same operation as those shown in Figures $4 A$ to $4 D$ and Figures 5A to 5D can be performed without using the time-shitt reproduction starl command and the time-shift reproduction end command. The state judging section 15 may be incorporated in the input section 14.

Example?

Figure 6 shows a configuration for an apparatus 200 for recording and reproducing video and sound according to a second example of the present invention. The configuration of the apparatus 200 is the same as that of the apparatus 100 shown in Figure 1 except that a video/sound compression section 21 and a video/sound expansion section 41 are additionally provided for the apparatus $\mathbf{2 0 0}$. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The video/sound compression section 21 compresses the video and the sound output from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. An arbi-
trary method can be employed as the compression mathod or as the expansion method. For example, a compression method or an expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.

In the second example, not only the effects of the first example can be attained but also the amoumt of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a resutt, it is possible to use a less expensive mamory device having a lower data transmission rate and a smaller memory capacity than that of the first example as the memory section 30 . In the case of using the same memory section 30 as that of the first example in this second example, it is possible to considerably increase the recordable time of the memory section 30 .

Example 3

Figure 7 shows a configuration for an apparatus 300 for recording and reproducing video and sound according to a third example of the present invention. The apparatus 300 has a time-shift reproduction" function corresponding to mudtiple channels. The "time-shift reproduction " function corresponding to multiple channels is herein defined as a function of, during recording of programs of a plurality of channels which are now being broadcasted, reproducing a plurality of recorded programs from the beginning while continuing recording the plurality of programs.

Hereinafter, the respective components of the apparatus 300 will be described with reference to Figure 7.

An N -channel broadcast receiving section 12 receives video and sound of a N number of channels now being broadcasted, where N is a positive integer.

An M-channel selection section 13 selects a M number of channels from the N number of channels in response to a channel selection signal supplied from an input section 16, thereby outputting the video and the sound corresponding to the selected M number of channels to an M -channel video/sound recording section 23. The channel selection signal is input from the input section 16 to the M-channel selection section 13 via a line 301 , where M is a positive integer and $N \geq M$.

The M-channel video/sound recording section 23 inquires of a memory region management section 33 where the video and the sound corresponding to the M number of channels selected by the M-channel selection section 13 are to be recorded in a memory section 32, and obtains information indicating a position at which the video and the sound are to be recorded as a reply to the inquiry. The M-channel video/sound recording section 23 records the video and the sound at the position indicated by the information in the memory secfion 32. This positional information is determined by the memory region management section 33 , and is referred to when a time-shift reproduction is made by a P-chan-
nel video/sound reproducing section 42 as will be described later. This positional information is, for example, an address on a recording medium.

A recording start signal, a recording end signal and a time-shift reproduction end signal are input from the input section 16 to the M -channel video/sound recording section 23 via a line 302. The M -channel video/sound recording section 23 starts a recording operation in response to the recording start signal, and ends the recording operation in response to the recording end signal or the time-shift-reproduction-end-signal.

The memory section 32 has a function of performing the reproduction operation of the video and the sound recorded in the memory section 32 in paralle! with performing the recording operation of video and sound in the memory section 32 . For example, the memory section 32 may be an optical disk driving apparatus having a M number of recording heads and a P number of reproducing heads which can be driven independently from each other, or a hard disk driving apparatus including a plurality of such heads. Aternatively, the memory section 32 may be a random accessible semiconductor memory. The memory section 32 can be configured in the same way as the memory section 30 described with reference to Figures 2 and 3.

The P -channel video/sound reproducing section 42 selects a P number of channels among a plurality of channels recorded in the memory section 32 in response to the channel selection signal supplied from the input section 16, thereby reproducing the video and the sound corresponding to the selected P number of channels. The P number of channels may be selected among the M number of channels which are being recorded in the memory section 32 and/or a plurality of channels which were previously recorded in the memory section 32. The channel selection signal is input from the input section 16 to the P-channel video/sound reproducing section 42 via a line 303 , where P is a positive integer.

A reproduction start signal, a reproduction end signal, a time-shift reproduction start signal and a timeshift reproduction end signal are input from the input section 16 to the P-channel video/sound reproducing section 42 via a line 303.

The P -channel video/sound reproducing section 42 starts and ends a reproduction operation of the P number of channels in response to the reproduction start signal and the reproduction end signal, respectively. In response to the time-shift reproduction start signal, the P-channel video/sound reproducing section 42 receives positional information on the video and the sound recorded in the memory section 32 from the memory region management section 33 and then starts to reproduce the video and the sound of the number P of channels based on the positional information. In response to the time-shift reproduction end signal, the P-channel video/sound reproducing section 42 ends the reproduction operation of the P number of channels.

The memory region management section 33 manages the memory regions of the video and the sound corresponding to a plurality of channels recorded in the memory section 32 , and determines a memory region where a video and a sound are newly recorded. More specifically, the memory region management section 33 has a plurality of regions \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$ for storing therein the information, e.g., an address on the recording medium, indicating the position in the memory section 32 at which the video and the sound corresponding to a plurality of channels are recorded.

When the recording start signal is input to the M channel video/sound recording section 23 , the M-channel video/sound recording section 23 starts the reconding operation of the M number of channeis. The M channel video/sound recording section 23 inquires of the memrory region management section 33 where the video and the sound supplied from the M-channel selecfion section 13 are to be recorded in the memory section 32, and obtain information indicating positions at which the video and the sound are to be recorded as a reply to the inquiry. The memory region management section 33 determines positions at which the video and the sound are to be recorded, and stores information indicating the positions in the regions \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$.

In the case where the recording start signal is input to the M-channel video/sound recording section 23 again after the recording operation was once ended, new positional information is overwritten in the regions \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$ in the memory region management section 33. In this way, the memory region management section 33 holds only the latest positional information.

When the time-shitt reproduction start signal is input to the P-channel video/sound reproducing section 42, the P -channel video/sound reproducing section 42 reads out the positional information by reference to a P number of regions of the regions $\mathbf{R}_{\mathbf{1}}$ to $\mathbf{R}_{\mathbf{M}+\mathrm{K}}$ in the memory region management section 33 , thereby starting to reproduce the video and the sound corresponding to the P number of channels from the position indicated by the positional information.

The selective output section 51 selectively outputs at least the video corresponding to a Q number of channels and the sound corresponding to one channel among the video and the sound corresponding to the N number of channels output from the N -channel broadcast receiving section 12 and the video and the sound corresponding to the P number of channels output from the P-channel video/sound reproducing section 42 , where Q is a positive integer and $N+P \geq Q$. Atternafively, the selective output section 51 can selectively output only the video corresponding to the number Q of channels and the sound corresponding to one channel among the output from the N -channel broadcast receiving section 12 and the output from the P-channel video/sound reproducing section 42, or may output both the output from the N -channel broadcast receiving section 12 and the output from the P-channel video/sound
reproducing section 42 by applying priority orders to the respective outputs.

The priority orders are used to determine a mode for displaying a video in a video display section 61 or a mode for outputting a sound in a sound output section 71. For example, it is assumed that the selective output section 51 applies priority orders " P_{1} to P_{N} " to the outputs from the N -channel broadcast receiving section 12 and priority orders "P $\mathrm{N}_{\mathrm{N}+1}$ to $\mathrm{P}_{\mathrm{N}+\mathrm{P} \text { " to the outputs from }}$ the P-channel video/sound reproducing section 42 . In this case, the video display section 61 displays a video having a priority order " P_{i} " on a screen having an area proportional to the priority order "p.". In the same way, the video display section 61 can employ an arbitrary display mode in accordance with the priority orders. The sound output section 71 outputs a sound having a priority order " P_{i} " at a loudness level proportional to the priority order "P". Herein, $i=1,2,3 \ldots, N+P$. In a similar manner, the sound output section 71 can employ an arbitrary ouput mode in accordance with the priority orders. However, it is preferable for the sound output section 71 to set the loudness level of the sounds other than one selected sound to be zero in order to prevent the confusion of a plurality of sounds.

The selection in the selective output section 51 is made in response to a video/sound selection signal input from the input section 16 via a line 304 . The video/sound selection signal is used by a user for manually switching the output from the N -channel broadcast receiving section 12 and the output from the P -channel video/sound reproducing section 42 . The selection in the selective output section 51 is also made in response to the time-shift reproduction start signal and the timeshitt reproduction end signal input from the input section 16 via the line 304.

Example 4

Figure 8 shows a configuration for an apparatus 400 for recording and reproducing video and sound according to a fourth example of the present invention. The configuration of the apparatus 400 is the same as that of the apparatus 300 shown in Figure 7 except that an M -channel video/sound compression section 24 and a P-channel video/sound expansion section 44 are additionally provided for the apparatus 400 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The M-channel video/sound compression section 24 compresses the video and the sound of a M number of channels output from the M -channel selection section 13 by a predetermined method. The P-channel video/sound expansion section 44 expands the video and the sound of a P number of channels output from the P -channel video/sound reproducing section 42 by a predetermined method. An arbitrary method can be employed as the compression method or as the expansion method. For example, a compression method or an
expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.

In the fourth example, not only the effects of the third example can be attained but also the amount of data to be recorded in the memory section 32 can be reduced by compressing the output from the M-channel selection section 13. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smalier memory capacity than that of the third example as the memory section 32 . In the case of using the same memory section 32 as that of the third example in this fourth example, it is possible to considerably increase the recordable time of the memory section 32 .

Example 5

Figure 9 shows a configuration for an apparatus 500 for recording and reproducing video and sound according to a firth example of the present invention.

The apparatus 500 has a "time-shift fast-forward reproduction" function. The "time-shift fast-forward reproduction" function is herein defined as a function of starting to record a program now being broadcasted at a point where watching and listening of the program was suspended; fast-forward reproducing later the video and the sound which have been recorded from the point where watching and listening of the program was suspended; automatically stopping the fast-forward reproduction at a point where the video and the sound fasttorward reproduced catch up with the video and the sound now being broadcasted; and then automatically switching the former into the latter,

The "time-shift fast-torward reproduction" function is effectively applicable, for example, to a case where watching and listening of a program now being broadcasted must be suspended and a user later wants to restart to watch and listen to the program from the point where watching and listening of the program was suspended.

The configuration of the apparatus 500 is the same as that of the apparatus 100 shown in Figure 1 except that a time code generating section 11, a unit thin-out section 20 and a time code comparing section 52 are additionally provided for the apparatus 500 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The time code generating section 11 generates a time code and then applies the time code to one unit of the video and the sound output from the broadcast receiving section 10 . When the video and the sound are digital data, the application of the time code is accomplished by adding a plurality of bits representing the time code to the digital data. When the video and the sound are analog data, the application of the time code is accomplished by inserting an analog signal representing the time code during an inter-frame verlical retrace line period, for example. The "time code" herein
refers to information for identitying a time. The "one unit" of the video and the sound herein refers to one unit for recording and reproduction. For example, one unit for recording and reproduction may be either one frame or one field. Note that, in this example, an expression "video and sound" means video and sound with a time code applied but for some special limitation.

The unit thin-out section 20 thins out (or decimates) video and sound with a time code applied at a predetermined ratio. The predetermined ratio is input from the input section 14 to the unit thin-out section 20 via a line 105. For example, in the case where the predetermined ratio is 50%, the unit thin-out section 20 thins out one of two units of the video and the sound output from the broadcast receiving section 10 . Such a thin-out unit may be either one frame or one field. In this way, the video and the sound thinned out by the unit thin-out section 20 are supplied to the video/sound recording section 22. As a result, the videolsound recording section 22 records the thinned out video and sound in the memory section 30 .

The video/sound reproducing section 40 reproduces the video and the sound recorded in the memory section 30. As described above, the video and the sound recorded in the memory section 30 have been thinned out by the unit thin-out section 20 . The video/sound reproducing section 40 performs a signal processing for the thinned out sound so that the thinned out sound is recognizable as a normal sound by a human being. Any known processing can be employed as the signal processing, e.g., shortening a shadow zone, smoothly connecting the reproduced sounds; of the like.

A time code comparing section 52 compares a time code TCI of the video and the sound output from the broadcast receiving section 10 with the time code TC2 of the video and the sound oulput from the video/sound reproducing section 40 . In the case where the time indicated by the time code TC2 is equal to or later than the time indicated by the time code TC1, the time code comparing section 52 stops the reproduction operation of the video/sound reproducing section 40 and the recording operation of the video/sound recording section 22, and changes the selection in the selective output section 50 .

The selective output section 50 selectively outputs at least one of the video and the sound output from the broadcast receiving section 10 and the video and the sound output from the video/sound reproducing section 40. The selection in the selective output section 50 is made in response to a video/sound selection signal input from the time code comparing section 52 . In the case where the video and the sound which have been fast-forward reproduced have caught up with the video and the sound now being broadcasted, the video/sound selection signal is used to switch the video and the sound output from the video/sound reproducing section 40 into the video and the sound output from the broadcast receiving section 10 . The selection in the selective
output section 50 is also made in response to a timeshift fast-torward reproduction start signal input trom the input section 14 via a line 104.

Next, reterring to Figures 10A to 10D, the operation of the apparatus 500 will be described in association with the "time-shift fast-forward reproduction" function.

Figures 10A to 10D show a temporal relationship among the output from the broadcast receiving section 10 (input data); the input to the memory section 30 (recording data); the output from the memory section 30 (reproduced data); and the output from the selective output section 50 (output data).

In Figures 10A to 10D, each of the numbered squares indicates one unit for recording and reproduc5 tion. For example, this square may represent one frame or one field. In acdition, this square may represent analog data or digital data. Above each numbered square, a time code which is added to the data indicated by the square is shown.

When a recording start signal is input from the input section 14 at a time $T 1$, the recording start signal is supplied to the video/sound recording section 22 via a line 102. As a result, the video/sound recording section 22 starts the recording operation. Input data (data 5, 7, 9, 5 11, ...) thinned out by the unit thin-out section 20 are supplied to the video/sound recording section 22 . Consequently, the input data thinned out by the unit thir-out section 20 are sequentially recorded in the memory section 30 (Figures 10A and 10B).

When a time-shift fast-forward reproduction start signal is imput trom the input section 14 at a time T2, the time-shift fast-forward reproduction start signal is supplied to the video/sound reproducing section 40 via a line 103 and to the selective output section 50 via a line 5 104. As a result, the video/sound reproducing section 40 starts the reproduction operation from the head of the recorded data. Consequently, the recorded data (data $5,7,9,11, \ldots$) are sequentially reproduced as reproduced data from the time T 2 (Figure 10C). In paro allel with this reproduction operation, the video/sound recording section 22 continues the recording operation. In addition, in response to the time-shift fast-forward reproduction start signal, the selective output section 50 Butomatically switches the priority order corresponding to the input data into the priority order corresponding to the reproduced data so that the display of the reproduced data is given a priority. As a result, the reproduced data is output from the selective output section 50 as the output data in a higher priority than the input data (Figure 10D).

During a period P1, the time indicated by the time code TC2 of the video and the sound output from the video/sound reproducing section 40 is earlier than the fime indicated by the time code TC1 of the video and the 5 sound output from the broadcast receiving section 10. As a result, the video/sound recording sectiori 22 confinues the recording operation and the video/sound reproducing section 40 continues the reproduction operation.

The video and the sound which have been fast-forward reproduced catch up with the video and the sound now being broadcasted at a time $T 3$. In the example shown in Figures 10B and 10C, the time (013) indicated by the time code TC1 accords with the time (013) indicated by the time code TC2 at the time T3. In such a case, the time code comparing section 52 supplies a recording end signal to the video/sound recording section 22, a reproduction end signal to the video/sound reproducing section 40 and a video/sound selection signal to the selective output section 50 . As a result, the video/sound recording section 22 ends the recording operation in response to the recording, end signal; the video/sound reproducing section 40 ends the reproduction operation in response to the reproduction end signal; and the selective output section 50 automatically switches the priority order corresponding to the reproduced data into the priority order corresponding to the input data in response to the video/sound selection sig. nal so that the display of the input data is given a priority. As a result, the input data is output from the selective output section 50 as the output data in a higher priority than the reproduced data (Figure 10D).
in this way, the reproduction operation of the video and the sound recorded in the memory section 30 can be pertormed in parallel with the recording operation of the video and the sound in the memory section 30 from the time T 2 to the time T 3 .

Example 6

Figure 11 shows a configuration for an apparatus 600 for recording and reproducing video and sound according to a sixth example of the present invention. The corfiguration of the apparatus 600 is the same as that of the apparatus 500 shown in Figure 9 except that a video/sound compression section 21 and a video/sound expansion section 41 are additionally provided for the apparatus 600 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The video/sound compression section 21 compresses the video and the sound thinned out by the unit thin-out section 20 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. An arbitrary method can be employed as the compression method or as the expansion method. For example, a compression method or an expansion method in compliance with a standard MPEG1 or MPEG2 can be employed.

In the sixth example, not only the effects of the fitth example can be attained but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the unit thin-out section 20. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the fifth
example as the memory section 30 . In the case of using the same memory section 30 as that of the fitth example in this sixth exarmple, it is possible to considerably increase the recordable time of the memory section 30 .

5

Example ?

Figure 12 shows a configuration for an apparatus 700 for recording and reproducing video and sound according to a seventh example of the present invention. The configuration of the apparatus 700 is the same as that of the apparatus 500 shown in Figure 9 except that the unit thin-out section 20 prior to the video/sound recording section 22 is omitted but a unit thin-out section 45 is additionally provided posterior to the video/sound reproducing section 40 for the apparatus 700. Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The apparatus 700 does not perform thin-out processing during the recording operation. As a result, the output from the broadcast receiving section 10 is recorded in the memory section 30 without being thinned out at all. On the other hand, the unit thin-out section 45 thins out the video and the sound reproduced by the video/sound reproducing section 40 at a predetermined ratio during the reproduction operation. The predetermined ratio is input from the input section 14 to the unit thin-out section 45 via a line 106. For example, in the case where the predetermined ratio is 50%, the unit thin-out section 45 thins out one of two units of the video and the sound output from the video/sound reproducing section 40 . Such a thin-out unit may be either one frame or one field. In this way, the video and the sound thinned out by the unit thin-out section 45 are supplied to the time code comparing section 52 .

In the seventh example, not only the effects of the fith example can be attained, but also it is possible to freely set or change the reproduction speed by pertorming the thin-out processing for the video and the sound during the reproduction operation. As a result, a reproduction satistying the users' needs can be performed easily.

Example 8

Figure 13 shows a configuration for an apparatus 800 for recording and reproducing video and sound according to an eighth example of the present invention. The configuration of the apparatus 800 is the same as that of the apparatus 700 shown in Figure 12 except that a video/sound compression section 21 is additionally provided and the unit thin-out section 45 is replaced by a pair of sections consisting of a video/sound expansion 55 section 41 and a unit thin-out section 46. Therefore, the same components will be identified by the same reference numerals and the description thereot will be omitted herein.

The video/sound compression section 21 compresses the video and the sound outpul from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. The unit thin-out section 46 pertorms a thin-out processing in collaboration with the video/sound expansion section 41. For example, in the case where a compression method for performing an interframe or an inter-field coding such-as-MPEG1 or MPEG2 is employed; the function of the unit thin-out section 46 and the function of the video/sound expansion section 41 are accomplished only by expanding a number I of trames, because the expansion and the unit thin-out can be simultaneously performed by expanding only the I frames and outputting. As a result, it is possibie to efficiently pertorm the unit thin-out.

In the eighth example, not only the effects of the seventh example can be attained, but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a result, it is possible to use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the seventh example as the mernory section 30 . In the case of using the same memory section 30 as that of the seventh example in this eighth example, it is possible to considerably increase the recordable time of the memory section 30 .

Example9

Figure 14 shows a configuration for an apparatus 900 for recording and reproducing video and sound according to a ninth example of the present invention. The configuration of the apparatus 900 is the same as that of the apparatus 700 shown in Figure 12 except that a unit thin-out section 20 is additionally provided prior to the video/sound recording section $\mathbf{2 2}$ for the apparatus 900 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The apparatus 900 performs thin-out processing during both the recording operation and the reproduction operation.

The unit thin-out section 20 thins out the video and the sound output trom the broadcast receiving section 10 at a predetermined ratio during the recording operation. The predetermined ratio is input from the input section 14 to the unit thin-out section 20 via a line 105 . The video and sound thinned out by the unit thin-out section 20 are recorded in the memory section 30 .

The unit thin-out section 45 thins out the video and the sound reproduced by the video/sound reproducing section 40 at a predetermined ratio during the reproduction operation: The predetermined ratio is input from the imput section 14 to the unit thin-out section 45 via a line 106. The video and sound thinned out by the unit thin-
out section 45 are supplied to the time code comparing section 52. The thin-out ratio in the unit thin-out section 20 and the thin-out ratio in the unit thin-out section 45 can be adjusted independently.

In the ninth example, not only the effects of the seventh example can be attained, but also the amoum of data to be recorded in the memory section 30 can be reduced by recording the thinned out video and sound in the memory section 30 . As a result, it is possible to 10 use a less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the seventh example as the memory section 30. In the case of using the same memory section 30 as that of the seventh example in this ninth example, it is 5 possible to considerably increase the recordable time of the memory section 30 .

Example 10

Figure 15 shows a configuration for an apparatus 1000 for recording and reproducing video and sound according to a tenth example of the present invention. The configuration of the apparatus 1000 is the same as that of the apparatus 900 shown in Figure 14 except that 5 a video/sound compression section 21 is additionally provided and the unit thin-out section 45 is replaced by a pair of sections consisting of a video/sound expansion section 41 and a unit thin-out section 46 . Therefore, the same components will be identified by the same reference numerals and the description thereof will be omitted herein.

The video/sound compression section 21 compresses the video and the sound output from the broadcast receiving section 10 by a predetermined method. The video/sound expansion section 41 expands the video and the sound output from the video/sound reproducing section 40 by a predetermined method. The unit thin-out section 46 performs thin-out processing in collaboration with the video/sound expansion section 41. For example, in the case where a compression method for performing an interframe or an inter-field coding such as MPEG1 or MPEG2 is employed, the function of the unit thin-out section 46 and the function of the video/sound expansion section 41 are accomplished 5 only by expanding a number 1 of frames, because the expansion and the unit thin-out can be simultaneously performed by expanding only the I frames and outputting, As a result, it is possible to efficiently perform unit thin-out.

In the tenth example. not only the effects of the ninth example can be attained, but also the amount of data to be recorded in the memory section 30 can be reduced by compressing the output from the broadcast receiving section 10. As a result, it is possible to use a 5 less expensive memory device having a lower data transmission rate and a smaller memory capacity than that of the ninth example as the memory section 30 . In the case of using the same memory section 30 as that of the ninth example in this tenth example, if is possible
to considerably increase the recordable time of the memory section 30 .

In all the foregoing Examples 1 to 10 , all of the components can be embodied in physical devices. Alternatively, it is also possible to realize the tunctions of these componemts by using software controllable by a CPU. Those skilled in the art should readily understand that the functions other than that of the broadcast receiving section 10 and that of the memory section 30 , in particular, can be easily realized by software.

According to the present invention, it is possible to realize a "time-shift reproduction function, during recording a program now being broadcasted, of reproducing the program from the beginning while continuing recording the program. As a result, in the case where watching and listening of a program now being broadcasted must be suspended, it is possible to restart to watch and listen to the program later from the point where watching and listening of the program was suspended. In addition, such a "ime-shitt reproduction" function corresponding to multiple channels is also realizable.

Moreover, according to the present invertion, it is also possible to realize a "time-shift fast-forward reproduction" function. As a result, in the case where watching and listening of a program now being broadcasted must be suspended, it is possible to restart to watch and listen to the program later from the point where watching and listening of the program was suspended. By thinning out data during the recording operetion, the amount of data to be recorded in the memory section 30 can be reduced: In addition, by thinning out data during the reproduction operation, it is possible to freely set or change the reproduction speed during the reproduction operation. As a result, it is possible to easily perform a reproduction operation satisfying the users' needs.

Furthermore, by cormpressing data during the recording operation and by expanding data during the reproduction operation, the amount of data to be recorded in the memory section 30 can be reduced.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadiy construed.

Claims

1. An apparatus tor recording and reproducing data, comprising:
receiving means for receiving input data; recording means for recording the input data on a recording medium:
managing means for managing information indicating a position of the input data recorded on the recording medium; reproducing means for reproducing the data
recorded on the recording medium, based on the intormation managed by the managing means during recording of the input data on the recording medium; and
selective output means for selectively outputting at least one of the input data and the data reproduced by the reproducing means.
2. An apparatus according to claim 1, turther comprising compression means for compressing the input data and expansion means for expanding the data reproduced by the reproducing means.
3. An apparatus according to claim 1, wherein the selective output means comprises means for applying a priority order to each of the input data and the reproduced data,
and wherein the apparatus further comprises display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
4. An apparatus for recording and reproducing data of a plurality of channels, comprising:
receiving means for receiving input data of a N number of channels;
first selection means for selecting a M number of channels among the N number of channels;
recording means for recording on a recording medium the input data of the M number of channels selected by the first selection means;
managing means for managing information indicating a position of the input data of the M number of channels recorded on the recording medium:
second selection means for selecting a P number of channels among a plurality of channels recorded on the recording medium;
reproducing means for reproducing the data of the P number of channels selected by the second selection means among the plurality of channels recorded on the recording medium, based on the information managed by the managing means, during recording of the input data of the M number of channeis on the recording medium; and
selective output means for selectively outputting at least one of the input data of the N number of channels and the data of the P number of channels reproduced by the reproducing means; wherein N, M and P are positive integers and wherein $\mathrm{N} \geq \mathrm{M}$.
5. An apparatus according to claim 4 , further comprising compression means for compressing the input data and expansion means for expanding the data reproduced by the reproducing means
6. An apparatus according to claim 4, wherein the selective output means comprises means for applying a priority order to each of the input data and the reproduced data,
and wherein the apparatus further comprises display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
7. An apparatus for recording and reproducing data, comprising:
receiving means for receiving input data;
time code generating means for generating a time code and applying the time code to the imput data;
thin-out means for thinning out the input data with the time code at a predetermined ratio; recording means for recording on a recording medium the input data with the time code which have been thinned out by the thin-out means;
managing means for managing information indicating a position of the input data with the time code recorded on the recording medium;
reproducing means for reproducing the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium:
comparing means for comparing the time code of the input data with the time code of the data reproduced by the reproducing means; and selective output means for selectively ourputting at least one of the input data and the data reproduced by the reproducing means based on a comparison result obtained by the comparing means.
8. An apparatus according to claim 7 , turther comprising compression means for compressing the input data with the time code which have been thinned out by the thin-out means and expansion means for expanding the data with the time code which have been reproduced by the reproducing means.
9. An apparatus according to claim 7, wherein the selective output means comprises means for applying a priority order to each of the input data with the time code and the reproduced data with the time code,
and wherein the apparatus further comprises display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
10. An apparatus for recording and reproducing data, comprising:
receiving means for receiving input data;
time code generating means for generating a time code and applying the time code to the input data;
recording means for recording on a recording medium the input data with the time code; managing means for managing information indicating a position of the input data with the time code recorded on the recording medium; reproducing means tor reproducing the data with the time code recorded on the recording medium, based on the information managed by the managing means, during recording of the input data with the time code on the recording medium;
thin-out means for thinning out the data with the time code reproduced by the reproducing means at a predetermined ratio;
comparing means for comparing the time code of the input data with the time code of the data thinried out by the thin-out means; and selective output means for selectively outputting at least one of the input data and the data thinned out by the thin-out means based on a comparison result obtained by the comparing means.
with the time code on the recording medium;
second thin-out means for thinning out the data with the time code reproduced by the reproducing means at a second ratio;
comparing means for comparing the time code of the input data with the time code of the data thinned out by the second thin-out means; and
selective output means for selectively outputting at least one of the input data and the data thinned out by the second thin-out means based on a comparison result obtained by the comparing means.
11. An apparatus according to claim 13, further comprising compression means for compressing the input data with the time code which have been thinned out by the first thin-out means and expansion means for expanding the data with the time code which have been reproduced by the reproducing means.
12. An apparatus according to claim 13, wherein the selective output means comprises means for applying a priority order to each of the imput data with the time code and the thinned out data with the time code,
and wherein the apparatus further comprises display means for displaying an output from the selective output means in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
13. A method for recording and reproducing data, comprising the steps of:
(a) receiving input data;
(b) recording the input data on a recording medium;
(c) managing information indicating a position of the input data recorded on the recording. medium:
(d) reproducing the data recorded on the recording medium, based on the information managed in the step (c), during recording of the input data on the recording medium; and (e) selectively outputting at least one of the input data and the data reproduced in the step (d).
14. A method according to claim 16 , further comprising a step of compressing the input data and a step of expanding the reproduced data.
15. A method according to claim 16 , wherein the step (e) comprises a step of applying a priority order to each of the input data and the reproduced data,
and wherein the method further comprises a
step of displaying the selective output in the step (e)
. in a predetermined mode, the predetermined mode
being changed in accordance with the priority order.
16. A method for recording and reproducing data of a plurality of channels, comprising the steps of:
(a) receiving input data of a N number of channels;
(b) selecting a M number of channels among the N number of channels;
(c) recording on a recording medium the input data of the M number of channels selected in the step (b);
(d) managing information indicating a position of the input data of the M number of channels recorded on the recording medium;
(e) selecting a P number of channels among a plurality of channels recorded on the recording medium;
(f) reproducing the data of the P number of channels selected in the step (e) among the plurality of channels recorded on the recording medium, based on the information managed in the step (d), during recording of the input data of the M number of channels on the recording medium; and
(g) selectively outputting at least one of the input data of the N number of channels and the reproduced data of the P number of channels,
wherein N, M and P are positive integers and wherein $N \geq M$.
17. A method according to claim 19, further comprising a step of compressing the input data and a step of expanding the reproduced data.
18. A method according to claim 19, wherein the step (g) comprises a step of applying a priority order to each of the input data and the reproduced data,
and wherein the method further comprises a step of displaying the selective output in the step (g) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
19. A method for recording and reproducing data, comprising the steps of:
(a) receiving input data:
(b) generating a time code and applying the time code to the input data;
(c) thinning out the input data with the time code at a predetermined ratio;
(d) recording on a recording medium the input data with the time code which have been thinned out in the step (c):
(e) managing information indicating a position of the input data with the time code recorded on the recording medium:
(f) reproducing the data with the fime code recorded on the recording medium, based on the information managed in the step (e), during recording of the input data with the time code on the recording medium;
(g) comparing the time code of the input data with the time code of the data reproduced in the step (f); and
(h) selectively outputting at least one of the input data and the reproduced data based on a comparison result obtained in the step (g).
20. A method according to claim 22 , further comprising a step of compressing the input data with the time code which have been thinned out in the step (c) and a step of expanding the data with the time code which have been reproduced in the step (7).
21. A method according to claim 22, wherein the step (h) comprises a step of applying a priority order to each of the input data with the time code and the reproduced data with the time code,
and wherein the method further comprises a step of displaying the selective outuut in the step (h) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
22. A method for recording and reproducing data, comprising the steps of:
(a) receiving input data;
(b) generating a time code and applying the time code to the input data;
(c) recording on a recording medium the input data with the time code;
(d) managing information indicating a position of the input data with the time code recorded on the recording medium;
(e) reproducing the data with the time code recorded on the recording medium, based on the information managed in the step (d), during recording of the input data with the time code on the recording medium;
(f) thinning out the data with the time code reproduced in the step (e) at a predetermined ratio;
(g) comparing the time code of the input data with the time code of the data thinned out in the step (f) and
(h) selectively outputting at least one of the input data and the data thinned out in the step (f) based on a comparison result obtained in the step (g).
23. A method according to claim 25 , further comprising a step of compressing the input data with the time code and a step of expanding the data with the time code which have been reproduced in the step (e).
24. A method according to claim 25 , wherein the step (h) comprises a step of applying a priority order to each of the imput data with the time code and the thinned out data with the time code.
and wherein the method further comprises a step of displaying the selective output in the step (h) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.
25. A method for recording and reproducing data, comprising the steps of:
(a) receiving input data;
(b) generating a time code and applying the time code to the input data:
(c) thinning out the input data with the time code at a first ratio:
(d) recording on a recording medium the input data with the time code which have been thinned out in the step (c):
(e) managing information indicating a position of the input data with the time code recorded on the recording medium;
(f) reproducing the data with the time code recorded on the recording medium, based on the information managed in the step (e), during recording of the input data with the time code on the recording medium:
(g) thinning out the data with the time code reproduced in the step ($($) at a second ratio;
(h) comparing the time code of the input data with the time code of the data thinned out in the step (g); and
(i) selectively outputting at least one of the input data and the data thinned out in the step (g) based on a comparison result obtained in the step (h).
26. A method according to claim 28 , further comprising a step of compressing the input data with the time code which have been thinned out in the step (c) and a step of expanding the data with the time code which have been reproduced in the step (f).
27. A method according to claim 28 , wherein the step (i) comprises a step of applying a priority order to each of the input data with the time code and the thinned out data with the time code,
and wherein the method further comprises a step of displaying the selective output in the slep (i) in a predetermined mode, the predetermined mode being changed in accordance with the priority order.

FIG. 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
\checkmark IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
$\sqrt{\text { FADED TEXT OR DRAWING }}$
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY
- OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

EAST Search History

$\begin{aligned} & \text { Ref } \\ & \# \end{aligned}$	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp				
L1	1428	MPEG and (audio same video) and record\$.ti.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 10:57				
L2	288	11	EPO; JPO; DERWENT	OR	OFF	2006/04/21 10:49				
L3	2	"6671290".pn. or "5398150".pn.	USPAT	OR	OFF	2006/04/21 11:48				
L4	10		US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/21 10:50				
L5	1140	11 not 12	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 10:57				
L6	468	15 and @AY<"1999"	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:41				
L7	0	standard and demultpleX $\$$ and audio and video and mpeg	EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:43				
L8	17	standard and demultiple\$ and audio and video and mpeg	EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:43				
L9	1	"6704493".pn.	USPAT	OR	OFF	2006/04/21 11:48				
L10	6	("5394249" \| "5610661"	"5864649"	"6049694"	"6233389"	"6504996"). PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/21 11:49
L11	101	tuner and mpeg\$ and record\$	EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:56				
L12	13	(hwon and lee).in.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:57				
L13	1440	(hwan and lee).in.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:58				
L14	279	(hwan and lee and jong).in.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 11:58				

EAST Search History

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	4	"2294173"	EPO; DERWENT	OR	OFF	2006/04/21 13:54
S2	4	"2293516"	EPO; DERWENT	OR	OFF	2006/04/21 13:57
S3	10	"0782332"	EPO; DERWENT	OR	OFF	2006/04/21 13:58
S4	6	"782332"	EPO; DERWENT	OR	OFF	2006/04/21 13:59
S5	77	h04n007/13\$.ipc. and mpeg\$	EPO; DERWENT	OR	OFF	2006/04/21 14:04
S6	453	h04n007/13\$.ipc, and record\$.ti.	EPO; DERWENT	OR	OFF	2006/04/21 14:28
S7	1128	(digital near broadcast\$) and record\$. ti.	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:28
S8	696	h04n007/13\$.ipc. and record\$.ti.	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:29
S9	243	S8 not S6	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:29
S10	1371	S7 or S9	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:29
S11	150	S10 and tuner	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:33
512	54442	h04n005/4\$.ipc.	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:35
S13	759	S12 and mpeg\$	EPO; JPO; DERWENT	OR	OFF	2006/04/21 14:58
S14	20	mpeg\$ and dvr	EPO; JPO; DERWENT	OR	OFF	2006/04/21 15:04
S15	16	standard and dvr	EPO; JPO; DERWENT	OR	ON	2006/04/21 15:06
S16	1	"6963612".pn.	USPAT	OR	ON	2006/04/21 15:07
S17	1	("5726989").PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/21 15:10
S18	85415	h04n005/7\$.ipc.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 15:11
S19	3198	S18 and digital and analog	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 15:11
S20	246	S19 and tuner	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/21 15:11

EAST Search History

S21	12		US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/21 15:13									
S22	3	$\begin{aligned} & \text { ("20030040917" \| " } 5787445 \text { " \| } \\ & \text { " } 5831943 ") . P N . \end{aligned}$	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 06:35									
S23	17	(barry and schwab).in.	USPAT	OR	OFF	2006/04/22 06:41									
S24	11	(kinya and washino).in.	USPAT	OR	OFF	2006/04/22 06:45									
S25	439	(program near stream)	EPO; JPO; DERWENT	OR	OFF	2006/04/22 06:45									
S26	121	(program near stream) same record\$	EPO; JPO; DERWENT	OR	OFF	2006/04/22 06:59									
S27	1	"6697432".pn.	USPAT	OR	OFF	2006/04/22 07:00									
S28	16		US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 07:15									
S29	1321	mpeg\$ same program same transport	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/22 07:16									
S30	833	S29 and record\$	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/22 07:16									
S31	11	("5481543" \| "5521927"	"5534944"	"5621840"	"5650825"	"5663962"	"5668601"	"5668841"	"5677980"	"5684804"	"5838874").PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 08:51
S32	1174	MPEG\$ and (record\$ and reproduc\$). ti.	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/22 08:52									
533	609	MPEG\$ and (record\$ and reproduc\$). ti.	EPO; JPO; DERWENT	OR	OFF	2006/04/22 08:53									
S34	150	S33 and @py<"1999"	EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:13									
S35	485	(multi near standard) and television	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:14									
S36	67	S35 and recorder	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:15									
S37	6	("5394249" \| "5610661"	"5864649"	"6049694"	" 6233389 "	"6504996"). PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 09:25					

EAST Search History

S38	1246	mpeg $\$$ and (record $\$$ or reproduc $\$$ or play\$) and (dvr or disk or disc)	EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:34								
S39	268	S38 and @py<"1999"	EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:30								
S40	20	S39 and (program or tuner)	EPO; JPO; DERWENT	OR	OFF	2006/04/22 09:30								
541	7926	mpeg\$ and (record\$ or reproduc\$ or play\$) and (dvr or disk or disc)	USPAT	OR	OFF	2006/04/22 09:35								
S42	3609	S41 and @AY<"1999"	USPAT	OR	OFF	2006/04/22 09:36								
S43	282	S42 and ((simultan\$ same record\$ same (reproduc\$ or play\$)))	USPAT	OR	OFF	2006/04/22 09:38								
S44	2	("5134499" \| "5479302").PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 09:47								
S45	37	("5134499").URPN.	USPAT	OR	OFF	2006/04/22 09:48								
S46	11		US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 09:50								
S47	10	("4488179" \| "4626847"	"4706121"	"4856081"	"4908713"	"5134499"	"5170388"	"5172111"	"5181114"	"5257142").PN.	US-PGPUB; USPAT; USOCR	OR	OFF	2006/04/22 10:04
S48	1	("5604838").URPN.	USPAT	OR	OFF	2006/04/22 10:08								

In re Reexamination of:

James M. Barton, et al.
Application No.: 90/007,750
Filing Date: October 17, 2005
Patent No.: 6,233,389
Issue Date: May 15, 2001

Confirmation No.: 4653
)
) Examiner: NYA
Group Art Unit No.: NYA

For: MULTIMEDIA TIME WARPING SYSTEM
Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 together with copies of the documents cited on that form, if needed. Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
$\boxtimes \quad 37$ C.F.R. $\S 1.97$ (b). It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicants).

37 C.F.R. §1.97(c). If so, then this Information Disclosure Statement includes one of the following:
\square A statement pursuant to 37 C.F.R. §1.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement.
1.97(e)(2) The undersigned hereby states that no item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in this information disclosure statement was known to any individual designated in §1.56(c) more than three months prior to the filing of this information disclosure statement.

A check for $\$ 180.00$ for the fee under 37 C.F.R. § 1.17(p).
It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

37 C.F.R. §1.97(d). If so, then this Information Disclosure Statement includes the following:

A statement pursuant to 37 C.F.R. §1.97(e)
1.97(e)(1) The undersigned hereby states that each item of information contained in this information disclosure statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this information disclosure statement; OR
1.97(e)(2) The undersigned hereby states that no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in §1.56(c)
more than three months prior to the filing of this information disclosure statement.

AND
A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17$ (i) for submission of the Information Disclosure Statement.

It is respectfully requested that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicants).

37 C.F.R. §1.97(i). Applicants are submitting references to satisfy Applicants' disclosure obligations in hopes that the references will be considered by the Examiner. Although the submission does not fully meet 37 C.F.R. §1.97, Applicant respectfully requests that the cited documents be considered and that the enclosed Information Disclosure Citation Form PTO-1449 be initialed by the Examiner to indicate such consideration and a copy thereof returned to Applicants). It is understood that if the Examiner does not consider the cited references, the cited documents will be placed in the file pursuant to 37 C.F.R. §1.97(i).

Accordingly, copies of the references as listed on the attached Form PTO 1449 are submitted herewith. No certification or fees are deemed necessary.

Throughout the pendency of this application, please charge any additional fees, including any required extension of time fees, and credit all overpayment to deposit account 50-1302.

Respectfully submitted,
HICKMAN PALERMO TRUONG \& BECKER LLP

Dated: April 202006

Reg. No. 43,284
2055 Gateway Place, Suite 550
San Jose, California 95110-1089
Telephone: (408) 414-1080 ext. 214
Facsimile: (408) 414-1076

FOREIGN PATENT DOCUMENTS									
$\begin{aligned} & \text { Exam. } \\ & \text { Initialt } \end{aligned}$	$\underset{\substack{\text { ciite } \\ \text { No.t }}}{\text { a }}$	Forcign Paten Document			$\begin{gathered} \text { PATENT DOCUMENTS } \\ \begin{array}{c} \text { Name of Patentee or Applicant } \\ \text { of Cited Document } \end{array} \end{gathered}$	Date of	Page	T^{6}	
		Office $^{3} \quad$ Number ${ }^{4} \quad \begin{gathered}\text { Kind Codes } \\ \text { (If known) }\end{gathered}$							
					Ciied Document	Lines, Where			
						Appe			

OTHER ART - NO PATENT LITERATURE DOCUMENTS					
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, joumal, serial, symposium, catalog, etc.), date, page(s), volume--issue number(s), publisher, city and/or country where published	Translation		
		TiVo Inc. vs. Echostar Communications Corp, et al., Case No. 2:04-CV-1-DF, "Verdict Form", filed April 13, 2006 in U.S. District Court, Eastern District of Texas, Marshall Division (8pgs).			

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 ; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
'Unique citation designation number. ${ }^{2}$ See attached Kinds of U.S. Patent Documents. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard S.3). 'For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{\text {S }}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to conplete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

PROOF OF SERVICE (37 C.F.R. §1.248)

I am a resident of the aforesaid county. I am over the age of eighteen years and not a party to the within action; my business address is 2055 Gateway Place, Suite 550, San Jose, California 95110.

On April20, 2006, I served the within Information Disclosure Statement and PTO Form 1449 on the interested parties in this action, by placing a true copy thereof enclosed in sealed envelopes addressed as follows: David L. Fehrman, Morrison \& Foerster, LLP 555 W. Fifth Street, Suite 3500
Los Angeles, CA 90013
X (BY MAIL) The envelope was mailed with postage thereon fully prepaid. I am "readily" familiar with the firm's practice of collection and processing correspondence for mailing. It is deposited with U.S. Postal Service on that same day in the ordinary course of business. I am aware that on motion of a party served, service is presumed invalid if the postal cancellation date or postage meter date is more than one day after date of deposit for mailing an affidavit.

Executed on April 20,2006 , at San Jose, California.
X (STATE) I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

Annette Jacobs
[Type or print name]

Litigation Search Report CRU 3999

Reexam Control No. 90/007,750

TO: Harvey, David
Location: CRU
Art Unit: 3992
Date: 04/26/06
Case Serial Number: 90/007,750

From: Michelle R. Eason
Location: CRU 3999
MDW 7C76
Phone: (571) 272-6277
Michelle.eason@uspto.gov

Search Notes

U.S. Patent No- 6,233,389

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

Litigation was found.

Date of Printing: APR 26,2006

KEYCITE

CUS PAT 6233389 MULTIMEDIA TIME WARPING SYSTEM, Assignee: TiVo, Inc. (May 15, 2001)

History

$\Rightarrow \quad 1$ MULTIMEDIA TIME WARPING SYSTEM, US PAT 6233389, 2001 WL 510913 (U.S. PTO Utility May 15,2001) (NO. 09/126071)

Assignments
2 Assignee(s): TIVO, INC. SUITE 100894 ROSS DRIVE SUNNYVALE, CALIFORNIA 94089, DATE RECORDED: Jul 30, 1998

Patent Status Files
Request for Re-Examination, (OG date: Jan 31, 2006)
. Patent Suit(See LitAlert Entries),

Litigation Alert

6 LitAlert P2004-08-19, (Jan 15, 2004) Action Taken: A complaint was filed.
7 LitAlert P2002-10-46, (Jan 23, 2002) Action Taken: A complaint was filed.
Prior Art
C 8 US PAT 4665431 APPARATUS AND METHOD FOR RECEIVING AUDIO SIGNALS TRANSMITTED AS PART OF A TELEVISION VIDEO SIGNAL, (U.S. PTO Utility 1987)
C 9 US PAT 5696868 APPARATUS AND METHOD FOR RECORDING/PLAYING BACK BROADCASTING SIGNAL, Assignee: Goldstar Co., Ltd., (U.S. PTO Utility 1997)
C 10 US PAT 5550594 APPARATUS AND METHOD FOR SYNCHRONIZING ASYNCHRONOUS SIGNALS, Assignee: Pixel Instruments Corp., (U.S. PTO Utility 1996)
C 11 US PAT 5675388 APPARATUS AND METHOD FOR TRANSMITTING AUDIO SIGNALS AS PART OF A TELEVISION VIDEO SIGNAL, (U.S. PTO Utility 1997)
C 12 US PAT 5202761 AUDIO SYNCHRONIZATION APPARATUS, (U.S. PTO Utility 1993)
C 13 US PAT RE 33535 AUDIO TO VIDEO TIMING EQUALIZER METHOD AND APPARATUS, (U.S. PTO Reissue 1991)

C 14 US PAT 5572261 AUTOMATIC AUDIO TO VIDEO TIMING MEASUREMENT DEVICE AND METHOD, (U.S. PTO Utility 1996)
C 15 US PAT 4313135 METHOD AND APPARATUS FOR PRESERVING OR RESTORING AUDIO TO VIDEO SYNCHRONIZATION, (U.S. PTO Utility 1982)
C 16 US PAT 5937138 : METHOD AND AN APPARATUS FOR SYSTEM ENCODING BITSTREAMS FOR SEAMLESS CONNECTION, Assignee: Matsushita Electric Industrial Co., Ltd., (U.S. PTO Utility 1999)
C 17 US PAT 5787225 OPTICAL DISK APPARATUS FOR THE REPRODUCTION OF
C 18 COMPRESSED DATA, Assignee: Matsushita Electric Industrial Co., Ltd., (U.S. PTO Utility 1998
18 US PAT 5706388 RECORDING SYSTEM RECORDING RECEIVED INFORMATION ON A RECORDING MEDIUM WHILE REPRODUCING RECEIVED INFORMATION PREVIOUSLY RECORDED ON THE RECORDING MEDIUM, Assignee: Ricoh Company, Ltd., (U.S. PTO Utility 1998)
© Copyright 2006 West, Carswell, Sweet \& Maxwell Asia and Thomson Legal \& Regulatory Limited, ABN 64 058914 668, or their Licensors. All rights reserved.

C 19 US PAT 5920842 : SIGNAL SYNCHRONIZATION, Assignee: Pixel Instruments, (U.S. PTO Utility 1999)
C 20 US PAT 5371551 TIME DELAYED DIGITAL VIDEO SYSTEM USING CONCURRENT RECORDING AND PLAYBACK, (U.S. PTO Utility 1994)
C 21 US PAT 5438423 TIME WARPING FOR VIDEO VIEWING, Assignee: Tektronix, Inc., (U.S. PTO Utility 1995)

US District Court Civil Docket

U.S. District - Georgia Northern
 (Atlanta)

1:05cv2799

Tivo, Inc v. Echostar Communications Corporation et al

This case was retrieved from the court on Tuesday, March 28, 2006

Date Filed: 10/28/2005 Assigned To: Judge William S Duffey, Jr	Class Code: APPEAL, CLOSED, SEAL_Material
Referred To:	Closed: yes
Nature of	Statute:
suit: Patent (830)	Jury Demand: None
Cause: FRCP 45(b) Motion to quash or modify subpoena	Demand Amount: \$0
Lead Docket: None Other Docket: USDC ED TX, 2-04cu01 DF	$\begin{array}{r} \text { NOS } \\ \text { Description: } \end{array}$
Jurisdiction: Federal Question	
Litigants	Attorneys
Tivo, Inc A Delaware Corporation Plaintiff	Christine wS Byrd [COR LD NTC] Irell \& Manella 1800 Avenue of the Stars Suite 900 Los Angeles, CA 90067 USA 310-277-1010 Perry M Goldberg [COR LD NTC] Irell \& Manella 1800 Avenue of the Stars Suite 900 Los Angeles, CA 90067 USA 310-277-1010 Email: Pgoldberg@irell.com William Charles Buhay [COR LD NTC] Weinberg Wheeler Hudgins Gunn \& Dial 950 East Paces Ferry Road One Atlanta Plaza, Suite 3000 Atlanta, GA 30326-1382 USA 404-876-2700 Email: Wbuhay@wwhgd.com
Echostar Communications Corporation A Nevada Corporation Defendant	Alison M Tucher [COR LD NTC] Morrison \& Foerster

	425 Market Street San Francisco, CA 94105-2482 USA 415-268-7000 Email: Atucher@mofo.com
	Charles Conrow Murphy, Ir [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Cmurphy@vaughanandmurphy.com
13	Ellen G Schlossberg [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Eschloss@vaughanandmurphy.com
	Haroid J McElhinny [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7265 Email: Hmcelhinny@mofo.com
	Marc J Pernick [COR LD NTC] Morrison \& Foerster, LLP 755 Page Mill Road Palo Alto, CA 94304-1018 USA 650-813-5718
	Peter P Meringolo [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA $415-268-6752$ Email: Pmeringolo@mofo.com
	Rachel Krevans [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA $415-268-7000$
Echostar Dbs Corporation A Colorado Corporation Defendant	Alison M Tucher [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA

	Charles Conrow Murphy, Jr [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Cmurphy@vaughanandmurphy.com
	Ellen G Schlossberg [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Eschloss@vaughanandmurphy.com
	Harold J McElhinny [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7265 Email: Hmcelhinny@mofo.com
	Marc J Pernick [COR LD NTC] Morrison \& Foerster, LLP 755 Page Mill Road Palo Alto, CA 94304-1018 USA 650-813-5718
	Peter P Meringolo [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-6752 Email: Pmeringolo@mofo.com
	Rachel Krevans [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7000
Echosphere Limited Liability Company A Colorado Limited Liability Company Defendant	Alison M Tucher [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7000 Email: Atucher@mofo.com
	Charles Conrow Murphy, Jr [COR LD NTC] Vaughan \& Murphy

260 Peachtree Street, NW
Suite 1600
Atlanta, GA 30303
USA
404-577-6550
Email: Cmurphy@vaughanandmurphy.com
Ellen G Schlossberg
[COR LD NTC]
Vaughan \& Murphy
260 Peachtree Street, NW
Suite 1600
Atlanta, GA 30303
USA
404-577-6550
Email: Eschlos5@vaughanandmurphy.com

Harold J McElhinny
[COR LD NTC]
Morrison \& Foerster
425 Market Street
San Francisco, CA $94105-2482$
USA
415-268-7265
Email: Hmcelhinny@mofo.com
Marc J Pernick
[COR LD NTC]
Morrison \& Foerster, LLP
755 Page Mill Road
Palo Alto, CA 94304-1018
USA
650-813-5718
Peter P Meringolo
[COR LD NTC]
Morrison \& Foerster
425 Market Street
San Francisco, CA 94105-2482
USA
415-268-6752
Email: Pmeringolo@mofo.com
Momant

```
Atlanta , GA 30303
USA
404-577-6550
Email: Eschloss@vaughanandmurphy.com
Harold J McElhinny
[COR LD NTC]
Morrison & Foerster
425 Market Street
San Francisco, CA 94105-2482
USA
415-268-7265
Email: Hmcelhinny@mofo.com
Marc J Pernick
[COR LD NTC]
Morrison & Foerster, LLP
755 Page Mill Road
Palo Alto, CA 94304-1018
USA
650-813-5718
Peter P Meringolo
[COR LD NTC]
Morrison & Foerster
4 2 5 \text { Market Street}
San Francisco, CA 94105-2482
USA
415-268-6752
Email: Pmeringolo@mofo.com
Rachel Krevans
[COR LD NTC]
Morrison & Foerster
4 2 5 \text { Market Street}
San Francisco, CA 94105-2482
USA
415-268-7000
Alison M Tucher
[COR LD NTC]
Morrison & Foerster
425 Market Street
San Francisco, CA 94105-2482
USA
415-268-7000
Email: Atucher@mofo.com
```

Date \#

Proceeding Text

07/07/2005 1 MOTION to Quash subpoenas with Brief In Support by Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation. (Attachments: \# 1 Exhibit 1\# 2 Exhibit 1-A\# 3 Exhibit 1-B\# 4 Exhibit 1-C\# 5 Exhibit 1-D\# 6 Exhibit 1-E\# 7 Exhibit 1-F\# 8 Exhibit 1-G\# 9 Exhibit 1-H\# 10 Exhibit 1-I\# 11 Exhibit 2\# 12 Exhibit 2-A\# 13 Exhibit 2-B\# 14 Exhibit 2-C\# 15 Exhibit 2-D\# 16 Exhibit 2-E\# 17 Exhibit 2-F)(fmm) (Entered: 07/15/2005)

07/26/2005
PROPOSED CONSENT ORDER For Extension of Time re: 1 MOTION to Quash subpoenas. (Buhay, William) (Entered: 07/26/2005)
07/27/2005 6 APPLICATION for Admission of Harold J. McElhinny Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received \$150.00, Receipt \#539834. (fmm) (Entered: 07/29/2005)

07/27/2005 $7 \quad$ APPLICATION for Admission of Peter P. Meringolo Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received \$150.00, Receipt \#539834. (fmm)

		(Entered: 07/29/2005)
07/27/2005	8	APPLICATION for Admission of Marc J. Pernick Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received $\$ 150.00$, Receipt \#539835. (fmm) (Entered: 07/29/2005)
07/28/2005	3	NOTICE of Appearance by William Charles Buhay on behalf of TiVo, Inc. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	4	Second MOTION for Extension of Time Reply to Motion for Protective Order and to Quash re: 1 MOTION to Quash subpoenas, 2 Proposed Consent Order with Brief In Support by TiVo, Inc.. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	5	PROPOSED ORDER Unopposed Motion to Extend Time to Reply to Motion for Protective Order and to Quash re: 4 Second MOTION for Extension of Time Reply to Motion for Protective Order and to Quash re: 1 MOTION to Quash subpoenas, 2 Proposed Consent Order. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	9	ORDER GRANTING 4 Motion for Extension of Time. IT IS HEREBY ORDERED that Plaintiff shall have (3) three additional days in which to file its response to the Joint Motion. Signed by Judge William S. Duffey Jr. on 7/26/05. (kt) (Entered: 07/29/2005)
08/01/2005	10	ORDER GRANTING 5 Unopposed Motion to Extend time until 8/4/05 for TiVo to reply to EchoStar and Non-Party Homer Knearl's Joint Motion for a Protective Order and to Quash Rule 45 Subpoenas. Signed by Judge William S. Duffey Jr. on 8/1/05. (kt) (Entered: 08/02/2005)
08/02/2005	--	ORDER (by docket entry only) granting 6 Application for Admission Pro Hac Vice of Harold McElhinny, granting 7 Application for Admission Pro Hac Vice of Peter Meringolo, granting 8 Application for Admission Pro Hac Vice of Marc Pernick. Ordered by Judge William S. Duffey Jr. on $8 / 2 / 05$. (jdb) (Entered: 08/02/2005)
08/03/2005	13	ORDER APPROVING 11 Third MOTION for Extension of Time to Reply to EchoStar and Non-Party Homer Knearl's Joint Motion for Protective Order and 1 Motion to Quash Rule 45 Subpoenas until 8/10/05. Signed by Judge William S. Duffey Jr. on 8/5/05. (kt) (Entered: 08/05/2005)
08/04/2005	11	Third MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Buhay, William) (Entered: 08/04/2005)
08/04/2005	12	PROPOSED ORDER Granting Six (6) Day Extension re: 11 Third MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas. (Buhay, William) (Entered: 08/04/2005)
08/05/2005	15	APPLICATION for Admission of Christine W.S. Byrd Pro Hac Viceby TiVo, Inc..Filing Fee received $\$ 150.00$, Receipt \#540264. (fmm) (Entered; 08/11/2005)
08/05/2005	16	APPLICATION for Admission of Perry M. Goldberg Pro Hac Viceby TiVo, Inc., Filing Fee received $\$ 150.00$, Receipt \#540264. (fmm) (Entered: 08/11/2005)
08/10/2005	14	Fourth MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1)(Buhay, William) (Entered: 08/10/2005)
08/12/2005	-	ORDER (by docket entry only) granting 15 Application for Admission Pro Hac Vice of Christine W.S. Byrd, granting 16 Application for Admission Pro Hac Vice of Perry M. Goldberg. Ordered by Judge William S. Duffey Jr. on 8/12/05. (jdb) (Entered: 08/12/2005)
08/12/2005	17	ORDER GRANTING 14 Unopposed Motion for Extension of Time to Reply to the Joint Motion until 8/31/05. Signed by Judge William S. Duffey Jr. on 8/11/05. (kt) (Entered: 08/12/2005)
08/31/2005	18	Fifth MOTION for Extension of Time re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1 Exhibit A \# 2 Proposed Order)(Buhay, William) Modified on 9/1/2005 to describe attachments (fmm). (Entered: 08/31/2005)
09/01/2005	19	ORDER GRANTING 18 Motion for Extension of Time until 9/14/05 for TiVo Inc. to reply to the Joint Motion for Protective Order and to Quash Rule 45 Subpoenas. Signed by Judge William S. Duffey Jr. on 8/31/05. (kt) (Entered: 09/01/2005)
09/14/2005	20	Sixth MOTION for Extension of Time to Reply to Joint Motion for Protective Order and Quash Rule 45 Subpoenas re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1 Proposed Order)(Buhay, William) Modified on 9/15/2005 to describe attachments (fmm). (Entered: 09/14/2005)
09/15/2005	21	ORDER GRANTING 20 Unopposed Motion for Extension of Time to Reply to the Joint Motion until 10/06/05. Signed by Judge William S. Duffey Jr. on 9/15/05. (kt) (Entered: 09/16/2005)
10/06/2005	22	Seventh MOTION to Continue by TiVo, Inc.. (Attachments: \# 1 Exhibit Texas Court's September 26th Order\# 2 Text of Proposed Order Oder Granting Continuance)(Buhay, William) (Entered: 10/06/2005)

$10 / 07 / 2005$	23	ORDER GRANTING 22 Seventh Unopposed Motion to Extend Time to Reply to EchoStar and Non- Party Homer Knearl's Joint Motion for a Protective Order and to Quash Rule 45 Subponeas until 10/13/05. Signed by Judge William S. Duffey Jr. on 10/O7/O5. (kt) (Entered: 10/O7/2005)
$10 / 07 / 2005$	24	RESPONSE re 22 Seventh MOTION to Continue filed by Echostar Technologies Corporation, Echosphere Limited Liability Company, Echostar Communications Corporation, EchoStar DBS
Corporation. (Schlossberg, Ellen) (Entered: 10/O7/2005)		

		(Murphy, Charles) (Entered: 11/17/2005)
11/17/2005	36	RESPONSE re 33 MOTION to Supplement 28 Response in Opposition to Motion, filed by Homer Knearl. (Murphy, Charles) (Entered: 11/17/2005)
02/06/2006	37	NOTICE Of Filing order in related case by TiVo, Inc, (Attachments: \# 1 Order in Colorado Case) (fmm) (Entered: 02/07/2006)
02/07/2006	--	Notification of Docket Correction re 37 Notice of Filing. Pleading incorrectly e-filed in closed miscellaneous case and moved to correct pending civil action. (fmm) (Entered: 02/07/2006)
02/10/2006	38	Minute Entry for proceedings held before Judge William S. Duffey Jr.: Telephone Conference held on 2/10/2006. (Court Reporter Nick Marrone.) (jdb) (Entered; 02/13/2006)
02/13/2006	39	ORDER granting in part and denying in part 1 Motion to Quash (See order for details.) IT is FURTHER ORDERED that the documents required by this Order to be produced in response to the subpoena which are not subject to in camera review shall be produced by Mr. Knearl on or before February 20, 2006. IT IS FURTHER ORDERED that Mr. Knearl's deposition shall be arranged to be conducted on or before February 28, 2006. IT IS FURTHER ORDERED that the motion is DENIED with respect to the grounds the Mr. Knearl was not provided with resaonable notice, with resaonable time for compliance or that the information otherwise has been requested to be produced by other lawyers at Merchant \& Gould. IT IS FURTHER ORDERED that if the Court in the Eastern District of Texas determines that the Subpoena response is outside the period allowed for discovery, compliance with this order shall not be required. IT IS FURTHER ORDERED that Plaintiff's Unopposed Motion for Extension of Time to Reply to Joint Motion for a Protective Order and to Quash Subpoenas 11, Plaintiff's Motion to Extend Time to Reply 26, Plaintiff's Motion to File Documents Under Seal 31, and Plaintiff's Motion for Leave to File a Supplement to its Response in Opposition 33 are GRANTED. Signed by Judge William S. Duffey Jr. on 2/13/06. (kt) (Entered: 02/13/2006)
02/14/2006	41	TRANSCRIPT of Proceedings held on February 10, 2006 before Judge William S. Duffey, Court Reporter: Nicholas A. Marrone. (kt) (Entered; 02/15/2006)
02/15/2006	40	APPLICATION for Admission of Alison M. Tucher Pro Hac Vice by Echostar Technologies Corporation, Echosphere Limited Liability Company, Echostar Communications Corporation, and EchoStar DBS Corporation.Filing Fee received $\$ 150.00$, Receipt \#547386. (to WSD) (kt) (Entered: 02/15/2006)
02/17/2006	-*	ORDER (by docket entry only) granting 40 Application for Admission Pro Hac Vice of Alison M. Tucher. Ordered by Judge William S. Duffey Jr. on 2/17/06. (jdb) (Entered: 02/17/2006)
02/28/2006	42	ORDER DIRECTING that Mr. Knearl is ORDERED to produce the documents enclosed in the packet transmitted today by Federal Express to counsel for Mr. Knearl. These documents shall be made available for inspection by Mr. Perry Goldbert, TiVo's outside counsel. The Produced Documents shall be produced for Mr. Goldberg's inspection on or before March 8, 2006. Mr. Goldberg will request Judge Folsom to determine if the Identified Documents are admissible in the litigation pending in Texas. Judge Folsome shall determine what, if any, restrictions will be placed on disclosre of any of the Identified Documents he will allow to be introduced at trial. Identified documents which are not admitted shall promptly be returned to counsel for Mr. Knearl. Signed by Judge William S. Duffey Jr. on 2/28/06. (kt) (Entered: 02/28/2006)
03/02/2006	43	Joint MOTION to Stay the Court's Order of February 28, 2006 with Brief In Support by Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation. (Attachments: \# 1 Brief In Support of Joint Motion for a Stay of the Court's Order of February 28, 2006\# 2 Text of Proposed Order) (Tucher, Alison) (Entered: 03/02/2006)
03/02/2006	44	Emergency MOTION 43 Joint MOTION to Stay the Coúrt's Order of February 28, 2006 to Waive the Time Requirements of Rule 7.1 with Brief In Support by Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation. (Attachments: \# 1 Text of Proposed Order)(Tucher, Alison) (Entered: 03/02/2006)
03/03/2006	45	ORDER DENYING 43 Motion to Stay the Court's Order of February 28, 2006, granting 44 Motion for Miscellaneous Relief. IT IS FURTHER ORDERED that because the Court has resolved the motion to quash at issue in this proceeding, the Clerk of Cour tis DIRECTED to close this case. Signed by Judge William S. Duffey Jr. on 3/3/06. (kt) (Entered: 03/03/2006)
03/03/2006	-	Civil Case Terminated. (kt) (Entered: 03/03/2006)
03/03/2006	46	NOTICE OF APPEAL as to 42 Order, by Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation. Filing fee $\$ 255$, receipt no, 548185 Transcript Order Form due on 3/17/2006. (fem) (Entered: 03/06/2006)

03/06/2006	47	DOCUMENT ERROR Transmission of Certified Copy of Notice of Appeal, Judgment, Order and Docket Sheet to US Court of Appeals re 46 Notice of Appeal, (fem) Modified on 3/8/2006 (fem), (Entered: 03/06/2006)
$03 / 08 / 2006$	48	Transmission of Certified Copy of Notice of Appeal, Judgment, Order and Docket Sheet to US Court of Appeals, Washington, D.C re 46 Notice of Appeal, (fem) (Entered: 03/08/2006)
$03 / 08 / 2006$	-	Notification of Docket Correction to indicate transmission incorrectly forwarded to the Eleventh Circuit and should have been transmitted to the Federal Circuit re 47 Transmission of Notice of Appeal and Docket Sheet to USCA. (fem) (Entered: 03/08/2006)
$03 / 09 / 2006$	49	ORDER of USCA - Federal Circuit temporarily staying 42 district court's Order re: 46 Notice of Appeal. USCA - Federal Circuit Miscellaneous Docket Case No. 816. (kac) (Entered: 03/10/2006)
$03 / 13 / 2006$	50	TRANSCRIPT ORDER FORM re: 46 Notice of Appeal. USCA - Federal Circuit Miscellaneous Number 816. Certificate of Readiness due on 3/27/2006 (All necessary transcript(s) on file.) (kac) (Entered: 03/13/2006)

Copyright © 2006 LexisNexis CourtLink, Inc. All rights reserved.
*** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

US District Court Civil Docket

U.S. District - Georgia Northern
 (Atlanta)

1:05mi208

Tivo, Inc v. Echostar Communications Corporation et al

This case was retrieved from the court on Wednesday, September 14, 2005

	425 Market Street San Francisco, CA 94105-2482 USA 415-268-7000
Echostar Dbs Corporation A Colorado Corporation Defendant	Charles Conrow Murphy, Jr [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Cmurphy@vaughanandmurphy.com
	Ellen G Schlossberg [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Eschloss@vaughanandmurphy.com
	Harold J McEIhinny [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA $415-268-7265$ Email: Hmcelhinny@mofo.com
	Rachel Krevans [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA $415-268-7000$
Echostar Technologies Corporation A Texas Corporation Defendant	Charles Conrow Murphy, Jr [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Cmurphy@vaughanandmurphy.com
	Ellen G Schlossberg [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Eschloss@vaughanandmurphy.com
	Harold J McElhinny [COR LD NTC] Morrison \& Foerster

Copyright © 2006 LexisNexis CourtLink, Inc. All rights reserved.
*** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

US District Court Civil Docket

U.S. District - Georgia Northern
 (Atlanta)

1:05mi190
Tivo, Inc v. Echostar Communications Corporation et al

This case was retrieved from the court on Thursday, October 20, 2005

	San Francisco , CA 94105-2482 USA 415-268-6752 Email: Pmeringolo@mofo.com Rachel Krevans [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7000
Homer Kneari Movant	Charles Conrow Murphy, Ir [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Cmurphy@vaughanandmurphy.com
	Ellen G Schlossberg [COR LD NTC] Vaughan \& Murphy 260 Peachtree Street, NW Suite 1600 Atlanta, GA 30303 USA 404-577-6550 Email: Eschloss@vaughanandmurphy.com
	Harold I McElhinny [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-7265 Email: Hmcelhinny@mofo.com
	Marc 1 Pernick [COR LD NTC] Morrison \& Foerster, LLP 755 Page Mill Road Palo Alto, CA 94304-1018 USA 650-813-5718
	Peter P Meringolo [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA 415-268-6752 Email: Pmeringolo@mofo.com
	Rachel Krevans [COR LD NTC] Morrison \& Foerster 425 Market Street San Francisco, CA 94105-2482 USA $415-268-7000$

Date	\#	Proceeding Text
07/07/2005	1	MOTION to Quash subpoenas with Brief In Support by Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation. (Attachments: \# 1 Exhibit 1\# 2 Exhibit 1-A\# 3 Exhibit 1-B\# 4 Exhibit 1-C\# 5 Exhibit 1-D\# 6 Exhibit 1-E\# 7 Exhibit 1-F\# 8 Exhibit 1-G\# 9 Exhibit 1-H\# 10 Exhibit 1-I\# 11 Exhibit 2\# 12 Exhibit 2-A\# 13 Exhibit 2-B\# 14 Exhibit 2-C\# 15 Exhibit 2-D\# 16 Exhibit 2-E\# 17 Exhibit 2-F)(fmm) (Entered: 07/15/2005)
07/26/2005	2	PROPOSED CONSENT ORDER For Extension of Time re: 1 MOTION to Quash subpoenas. (Buhay, William) (Entered: 07/26/2005)
07/27/2005	6	APPLICATION for Admission of Harold J. McElhinny Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received $\$ 150.00$, Receipt \#539834. (fmm) (Entered: 07/29/2005)
07/27/2005	7	APPLICATION for Admission of Peter P. Meringolo Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received $\$ 150.00$, Receipt \#539834. (fmm) (Entered: 07/29/2005)
07/27/2005	8	APPLICATION for Admission of Marc J. Pernick Pro Hac Viceby Echostar Technologies Corporation, Echosphere Limited Liability Company, Homer Knearl, Echostar Communications Corporation, EchoStar DBS Corporation.Filing Fee received $\$ 150.00$, Receipt \#539835. (fmm) (Entered: 07/29/2005)
07/28/2005	3	NOTICE of Appearance by William Charles Buhay on behalf of TiVo, Inc. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	4	Second MOTION for Extension of Time Reply to Motion for Protective Order and to Quash re: 1 MOTION to Quash subpoenas, 2 Proposed Consent Order with Brief In Support by TiVo, Inc.. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	5	PROPOSED ORDER Unopposed Motion to Extend Time to Reply to Motion for Protective Order and to Quash re: 4 Second MOTION for Extension of Time Reply to Motion for Protective Order and to Quash re: 1 MOTION to Quash subpoenas, 2 Proposed Consent Order. (Buhay, William) (Entered: 07/28/2005)
07/28/2005	9	ORDER GRANTING 4 Motion for Extension of Time. IT IS HEREBY ORDERED that Plaintiff shall have (3) three additional days in which to file its response to the Joint Motion. Signed by Judge William S. Duffey Jr. on 7/26/05. (kt) (Entered: 07/29/2005)
08/01/2005	10	ORDER GRANTING 5 Unopposed Motion to Extend time until 8/4/05 for Tivo to reply to EchoStar and Non-Party Homer Knearl's Joint Motion for a Protective Order and to Quash Rule 45 Subpoenas. Signed by Judge William S. Duffey Jr, on 8/1/05, (kt) (Entered: 08/02/2005)
08/02/2005	--	ORDER (by docket entry only) granting 6 Application for Admission Pro Hac Vice of Harold McElhinny, granting 7 Application for Admission Pro Hac Vice of Peter Meringolo, granting 8 Application for Admission Pro Hac Vice of Marc Pernick. Ordered by Judge William S. Duffey Jr, on 8/2/05. (jdb) (Entered: 08/02/2005)
08/03/2005	13	ORDER APPROVING 11 Third MOTION for Extension of Time to Reply to EchoStar and Non-Party Homer Knearl's Joint Motion for Protective Order and 1 Motion to Quash Rule 45 Subpoenas until 8/10/05. Signed by Judge William S. Duffey Jr, on 8/5/05. (kt) (Entered: 08/05/2005)
08/04/2005	11	Third MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Buhay, William) (Entered: 08/04/2005)
08/04/2005	12	PROPOSED ORDER Granting Six (6) Day Extension re: 11 Third MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas. (Buhay, William) (Entered: 08/04/2005)
08/05/2005	15	APPLICATION for Admission of Christine W.S. Byrd Pro Hac Viceby TiVo, Inc.. Filing Fee received $\$ 150.00$, Receipt \#540264. (fmm) (Entered: 08/11/2005)
08/05/2005	16	APPLICATION for Admission of Perry M. Goldberg Pro Hac Viceby TiVo, Inc.. Filing Fee received $\$ 150.00$, Receipt \#540264. (fmm) (Entered: 08/11/2005)
08/10/2005	14	Fourth MOTION for Extension of Time File Response re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1)(Buhay, William) (Entered: 08/10/2005)
08/12/2005	--	ORDER (by docket entry only) granting 15 Application for Admission Pro Hac Vice of Christine W.S. Byrd, granting 16 Application for Admission Pro Hac Vice of Perry M, Goldberg. Ordered by

		Judge William S. Duffey Jr. on 8/12/05. (jdb) (Entered: 08/12/2005)
08/12/2005	17	ORDER GRANTING 14 Unopposed Motion for Extension of Time to Reply to the Joint Motion until $8 / 31 / 05$. Signed by Judge William S. Duffey Jr. on 8/11/05. (kt) (Entered: 08/12/2005)
08/31/2005	18	Fifth MOTION for Extension of Time re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1 Exhibit A \# 2 Proposed Order)(Buhay, William) Modified on $9 / 1 / 2005$ to describe attachments (fmm). (Entered: 08/31/2005)
09/01/2005	19	ORDER GRANTING 18 Motion for Extension of Time until 9/14/05 for TiVo Inc. to reply to the Joint Motion for Protective Order and to Quash Rule 45 Subpoenas. Signed by Judge William S. Duffey Jr. on 8/31/05. (kt) (Entered: 09/01/2005)
09/14/2005	20	Sixth MOTION for Extension of Time to Reply to Joint Motion for Protective Order and Quash Rule 45 Subpoenas re: 1 MOTION to Quash subpoenas with Brief In Support by TiVo, Inc.. (Attachments: \# 1 Proposed Order)(Buhay, William) Modified on 9/15/2005 to describe attachments (fmm). (Entered: 09/14/2005)
09/15/2005	21	ORDER GRANTING 20 Unopposed Motion for Extension of Time to Reply to the Joint Motion until 10/06/05. Signed by Judge William S. Duffey Jr. on 9/15/05. (kt) (Entered: 09/16/2005)
10/06/2005	22	Seventh MOTION to Continue by Tivo, Inc.. (Attachments: \# 1 Exhibit Texas Court's September 26th Order\# 2 Text of Proposed Order Oder Granting Continuance)(Buhay, William) (Entered: 10/06/2005)
10/07/2005	23	ORDER GRANTING 22 Seventh Unopposed Motion to Extend Time to Reply to EchoStar and NonParty Homer Knearl's Joint Motion for a Protective Order and to Quash Rule 45 Subponeas until 10/13/05. Signed by Judge William S. Duffey Jr. on 10/07/05. (kt) (Entered: 10/07/2005)
10/07/2005	24	RESPONSE re 22 Seventh MOTION to Continue filed by Echostar Technologies Corporation, Echosphere Limited Liability Company, Echostar Communications Corporation, EchoStar DBS Corporation. (Schlossberg, Ellen) (Entered: 10/07/2005)
10/13/2005	25	DOCUMENT FILED IN ERROR Eighth MOTION for Extension of Time to Reply to Echostar and Non-Party Homer Knearl's Joint Motionf or a Protective Order and to Quash Rule 45 Subpoenas; Motion to Dismiss Joint Motion as Moot with Brief In Support by TiVo, Inc.. (Attachments: \# 1 Exhibit A to 8th Motion\# 2 Exhibit Exhibit B to 8th motion\# 3 Text of Proposed Order)(Buhay, William) Modified on 10/14/2005 (fmm). (Entered: 10/13/2005)
10/13/2005	26	REDOCKETED \#25 MOTION AS Eighth MOTION for Extension of Time by 2 weeks to file response re: 1 MOTION for protective order and to Quash subpoenas or MOTION to Dismiss without prejudice the 1 MOTION for protective order and to Quash subpoenas by TiVo, Inc. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Proposed Order)(fmm) (Entered: 10/14/2005)
10/14/2005	27	RESPONSE in Opposition re 26 MOTION to Dismiss MOTION for Extension of Time to file response to re: 1 MOTION to Quash subpoenas MOTION for Extension of Time to file response to re: 1 MOTION to Quash subpoenas filed by Homer Knearl. (Schlossberg, Ellen) (Entered: $10 / 14 / 2005)$

US District Court Civil Docket

U.S. District - Texas Eastern
 (Marshall)

2:04cv1

Tivo Inc v. Echostar Comm, et al
This case was retrieved from the court on Wednesday, April 26, 2006

Date Filed: 01/05/2004	Class Code: FRC, JURY, MREFHM, PATENT
Assigned To: Judge David Folsom	Closed: no
Referred To: Magistrate Judge Caroline Craven	Statute: 35:271
Nature of suit: Patent (830)	Jury Demand: Both
Cause: Patent Infringement	Demand Amount: \$0
Lead Docket: None	NOS Description: Patent
Other Docket: 5:05-cv-00081-DF	
Jurisdiction: Federal Question	
Litigants	Attorneys
Tivo Inc A Delaware Corporation Plaintiff	Alexander C D Giza [COR LD NTC]
	Irell \& Manella LLP
	1800 Ave of the Stars
	Ste 900
	Los Angeles, CA 90067-4276
	USA $310 / 277-1010$
	Fax: 13102037199
	Email: Agiza@irell.com
	Andrei Iancu [COR LD NTC]
	Irell \& Manella -Los Angeles
	1800 Avenue of the Stars
	Suite 900 - 90067
	Los Angeles, CA 90067-4276 USA
	310-277-1010
	Fax: 310-203-7199
	Email: Aiancu@irell.com
	Samuel Franklin Baxter
	[COR LD NTC]
	Attorney at Law P O Box 0
	Marshall, TX 75671
	USA
	903/ 927-2111
	Fax: 19039272622
	Email: Sbaxter@mckoolsmith.com
	Adam 5 Hoffman
	[COR LD NTC]
	Irell \& Manella LLP
	1800 Avenue of the Stars


```
USA
310/ 277-1010
Fax: 13102037199
Email; Pgoldberg@irell.com
R Scott Feldmann
[COR LD NTC]
Crowell & Moring -Irvine
3 Park Plaza
20TH Floor
Irvine, CA 92614
USA
949/ 263-8400
Fax: 949/ 263-8414
Email: Sfeldmann@crowell.com
Randall I Erickson
[COR LD NTC]
Crowell & Moring -Irvine
3 Park Plaza
20TH Floor
Irvine, CA }9261
USA
949/ 261-8400
Fax: 949/ 263-8414
Email: Rerickson@crowell.com
Richard E Lyon
[COR LD NTC]
Irell & Manella LLP
1800 Avenue of the Stars
Suite }90
Los Angeles, CA 90067-4276
USA
310/ 277-1010
Fax: 13102037199
Email: Rlyon@irell.com
Steven P Rice
[COR LD NTC]
Crowell & Moring-Irvine
3 Park Plaza
20TH Floor
Irvine, CA }9261
USA
949/ 263-8400
Fax: 949/ 263-8414
Email: Srice@crowell.com
Van V Nguyen
[COR LD NTC]
Crowell & Moring -Irvine
3 Park Plaza
20TH Floor
Irvine, CA }9261
USA
949/ 263-8400
Fax: 949/ 263-8414
Email: Vnguyen@crowell.com
Garret Wesley Chambers
[COR LD NTC]
McKool Smith -Dallas
300 Crescent Court
Suite 1500
Dallas, TX }7520
USA
```

	$\begin{aligned} & 214 / 978-4000 \\ & \text { Fax: } 12149784044 \end{aligned}$ Email: Gchambers@mckoolsmith.com
Echostar Communications Corporation A Nevada Corporation Defendant	Alison M Tucher [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA $415-268-7000$ Fax: 415-268-7522 Email: Atucher@mofo.com
	Ann Critin [COR LD NTC] [Term: 01/17/2006] Morrison \& Foerster 5200 Republic Plaza 370 17TH St Denver, CO 80202 USA 303-592-1500 Fax: 303-592-1510 Email: Acitrin@mofo.com
	Jason A Crotty [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Jcrotty@mofo.com
	Rachel Krevans [COR LD NTC] Morrison \& Foerster LLP 425 Market St San Francisco, CA 94105-2482 USA 415/ 268-7000 Fax: 14152687522 Email: Rkrevans@mofo.com
	Robert M Harkins, Jr [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco , CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Rharkins@mofo.com
	Harold J McElhinny [COR LD NTC] Morrison \& Foerster LLP 425 Market St San Francisco, CA 94105-2482 USA 415) 268-7000 Fax: 14152687522

	Karl J Kramer [COR LD NTC] Morrison \& Foerster - Palo Alto 755 Page Mill Road Palo Alto, CA 94304 USA 650-813-5775 Fax: 650-494-0792 Email: Kkramer@mofo.com
	Paul A Friedman [COR LD NTC] [Term: 01/09/2006] Morrison \& Foerster LLP 425 Market St San Francisco, CA 94105-2482 USA 415/ 268-6220 Fax: 14152687522 Email: Pafriedman@mofo.com
	Zachariah A Higgins [COR LD NTC] [Term: 11/12/2004] Kirkland \& Ellis LLP -California 555 California St Floor 24 San Francisco, CA 94104 USA 415/ 439-1887 Fax: 14154391500 Email: Zhiggins@kirkland.com
	Damon Michael Young [COR LD NTC] Young Pickett \& Lee 4122 Texas Blvd PO Box 1897 Texarkana, TX 75504-1897 USA 903/794-1303 Fax: 19037925098 Email: Dmyoung64@aol.com
Echostar Dbs Corporation A Colorado Corporation Defendant	Alison M Tucher [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Atucher@mofo.com
	Ann Critin [COR LD NTC] [Term: 01/17/2006] Morrison \& Foerster 5200 Republic Plaza 370 17TH St Denver, CO 80202 USA 303-592-1500 Fax: 303-592-1510 Email: Acitrin@mofo.com

```
Jason A Crotty
[COR LD NTC]
Morrison & Foerster LLP San Francisco
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415-268-7000
Fax: 415-268-7522
Email: Jcrotty@mofo.com
Rachel Krevans
[COR LD NTC]
Morrison & Foerster LLP
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415/ 268-7000
Fax: 14152687522
Email: Rkrevans@mofo.com
Robert M Harkins, Jr
[COR LD NTC]
Morrison & Foerster LLP San Franciscó
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415-268-7000
Fax: 415-268-7522
Email: Rharkins@mofo.com
Harold J McElhinny
[COR LD NTC]
Morrison & Foerster LLP
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415/ 268-7000
Fax: 14152687522
Email: Hmcelhinny@mofo.com
Karl I Kramer
[COR LD NTC]
Morrison & Foerster -Palo Alto
7 5 5 \text { Page Mill Road}
Palo Alto, CA 94304
USA
650-813-5775
Fax: 650-494-0792
Email: Kkramer@mofo.com
Paul A Friedman
[COR LD NTC]
[Term: 01/09/2006]
Morrison & Foerster LLP
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415/ 268-6220
Fax: 14152687522
Email: Pafriedman@mofo.com
Zachariah A Higgins
[COR LD NTC]
[Term: 11/12/2004]
Kirkland & Ellis LLP -California
555 California St
Floor 24
```



```
Fax: 14152687522
Email: Hmcelhinny@mofo.com
John Michael Pickett
[COR LD NTC]
Young Pickett \& Lee
4122 Texas Blvd
PO Box 1897
Texarkana, TX 75504-1897
USA
903/ 794-1303
Fax: 19037945098
Email: Jpickett@youngpickettlaw.com
Karl J Kramer
[COR LD NTC]
Morrison \& Foerster -Palo Alto
755 Page Mill Road
Palo Alto, CA 94304
USA
650-813-5775
Fax: 650-494-0792
Email: Kkramer@mofo.com
Paul A Friedman
[COR LD NTC]
[Term: 01/09/2006]
Morrison \& Foerster LLP
425 Market St
San Francisco, CA 94105-2482
USA
415/ 268-6220
Fax: 14152687522
Email: Pafriedman@mofo.com
Robert M Harkins, Jr
[COR LD NTC]
Morrison \& Foerster LLP San Francisco
425 Market St
San Francisco, CA 94105-2482
USA
415-268-7000
Fax: 415-268-7522
Email: Rharkins@mofo.com
```

Echostar Satellite Llc
Defendant

Merchant \& Gould Subpoena Recipient Movant

Echostar Technologies Corporation Defendant

Charles Conrow Murphy, Jr
[COR LD NTC]
Vaughan \& Murphy
260 Peachtree Street NW
Suite 1600
Atianta, GA 30303
USA
404-577-6550
Fax: 404-577-0060
Emaii: Cmurphy@vaughanandmurphy.com

Alison M Tucher
[COR LD NTC]
Morrison \& Foerster LLP San Francisco
425 Market St
San Francisco, CA 94105-2482
USA

```
415-268-7000
Fax: 415-268-7522
Email: Atucher@mofo.com
Ann Critin
[COR LD NTC]
[Term: 01/17/2006]
Morrison & Foerster
5200 Republic Plaza
370 17TH St
Denver,CO }8020
USA
303-592-1500
Fax: 303-592-1510
Email: Acitrin@mofo.com
Jason A Crotty
[COR LD NTC]
Morrison & Foerster LLP San Francisco
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415-268-7000
Fax: 415-268-7522
Email: Jcrotty@mofo.com
Rachel Krevans
[COR LD NTC]
Morrison & Foerster LLP
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415/ 268-7000
Fax: 14152687522
Email: Rkrevans@mofo.com
Robert M Harkins, Jr
[COR LD NTC]
Morrison & Foerster LLP San Francisco
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415-268-7000
Fax: 415-268-7522
Email: Rharkins@mofo.com
Damon Michael Young
[COR LD NTC]
Young Pickett & Lee
4122 Texas Blvd
PO Box }189
Texarkana, TX 75504-1897
USA
903/ 794-1303
Fax: 19037925098
Email: Dmyoung64@aol.com
Harold J McElhinny
[COR LD NTC]
Morrison & Foerster LLP
4 2 5 \text { Market St}
San Francisco, CA 94105-2482
USA
415/ 268-7000
Fax: 14152687522
Email: Hmcelhinny@mofo.com
```


	Texarkana, TX 75504-1897 USA 903/ 794-1303 Fax: 19037925098 Email: Dmyoung64@aol.com
Echostar Technologies Corporation Counter Claimant	Alison M Tucher [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Atucher@mofo.com
	Ann Critin [COR LD NTC] [Term: 01/17/2006] Morrison \& Foerster 5200 Republic Plaza 370 17TH St Denver, CO 80202 USA 303-592-1500 Fax: 303-592-1510 Email: Acitrin@mofo.com
	Damon Michael Young [COR LD NTC] Young Pickett \& Lee 4122 Texas Blvd PO Box 1897 Texarkana, TX 75504-1897 USA 903/794-1303 Fax: 19037925098 Email: Dmyoung64@aol.com
	Jason A Crotty [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Jcrotty@mofo.com
	Robert M Harkins, Jr [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Rharkins@mofo.com
	Karl J Kramer [COR LD NTC] Morrison \& Foerster -Palo Alto 755 Page Mill Road Palo Alto, CA 94304 USA $650-813-5775$

	Fax: 650-494-0792 Email: Kkramer@mofo.com
Echosphere Limited Liability Company Counter Claimant	Alison M Tucher [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Atucher@mofo.com
	Ann Critin [COR LD NTC] [Term: 01/17/2006] Morrison \& Foerster 5200 Republic Plaza 370 17TH St Denver, CO 80202 USA 303-592-1500 Fax: 303-592-1510 Email: Acitrin@mofo.com
	Damon Michael Young [COR LD NTC] Young Pickett \& Lee 4122 Texas Blva PO Box 1897 Texarkana, TX 75504-1897 USA 903/794-1303 Fax: 19037925098 Email: Dmyoung64@aol.com
	Jason A Crotty [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Jcrotty@mofo.com
	Robert M Harkins, Jr [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Rharkins@mofo.com
	Karl J Kramer [COR LD NTC] Morrison \& Foerster - Palo Alto 755 Page Mill Road Palo Alto, CA 94304 USA 650-813-5775 Fax: 650-494-0792 Email: Kkramer@mofo.com

	Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA $415-268-7000$ Fax: 415-268-7522 Email: Atucher@mofo.com
	Ann Critin [COR LD NTC] [Term: 01/17/2006] Morrison \& Foerster 5200 Republic Plaza 370 17TH St Denver, CO 80202 USA 303-592-1500 Fax: 303-592-1510 Email: Acitrin@mofo.com
	Jason A Crotty [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000 Fax: 415-268-7522 Email: Jcrotty@mofo.com
	Robert M Harkins, Jr [COR LD NTC] Morrison \& Foerster LLP San Francisco 425 Market St San Francisco, CA 94105-2482 USA 415-268-7000. Fax: 415-268-7522 Email; Rharkins@mofo.com Kart J Kramer [COR LD NTC] Morrison \& Foerster - Palo Alto 755 Page Mill Road Palo Alto, CA 94304 USA 650-813-5775 Fax: 650-494-0792 Email: Kkramer@mofo.com
Tivo Inc A Delaware Corporation Counter Defendant	
Echostar Communications Corporation A Nevada Corporation Counter Claimant	
Echostar Dbs Corporation A Colorado Corporation Counter Claimant	
Tivo Inc A Delaware Corporation Counter Defendant	
Echostar Satellite Lic Counter Claimant	Karl J Kramer [COR LD NTC] Morrison \& Foerster -Palo Alto

```
755 Page Mill Road
Palo Alto, CA 94304
USA
650-813-5775
Fax: 650-494-0792
Email: Kkramer@mofo.com
```

Echostar Technologies Corporation Counter Claimant		
Echosphere Limited Liability Company Counter Claimant		
Tivo Inc A Delaware Corporation Counter Defendant		
Date	\#	Proceeding Text
01/05/2004	1	Original Complaint with JURY DEMAND filed. Cause: 35:271 Patent Infringement (poa) (Entered: 01/07/2004)
01/05/2004	--	Demand for jury trial by TIVO Inc (poa) (Entered: 01/07/2004)
01/05/2004	--	Magistrate consent forms mailed to TIVO Inc (poa) (Entered: 01/07/2004)
01/05/2004	2	Form mailed to Commissioner of Patents and Trademarks. (poa) (Entered: 01/07/2004)
01/09/2004	--	Summons(es) issued for Echostar Comm, Echostar DBS Corp \& given to atty's runner (ktd) (Entered: 01/09/2004)
01/15/2004	3	Amended complaint by TIVO Inc, (Answer due 1/26/04 for Echostar DBS Corp, for Echostar Comm) amending [1-1] complaint adding dfts EchoStar Tech Corp, Echosphere Ltd Liab (ktd) (Entered: 01/15/2004)
01/15/2004	--	Summons(es) issued for EchoStar Tech Corp, Echosphere Ltd Liab \& given to pla's runner (ktd) (Entered: 01/15/2004)
01/15/2004	6	Form mailed to Commissioner of Patents and Trademarks. (ktd) Additional attachment(s) added on $1 / 28 / 2005$ (ehs,). (Entered: 01/22/2004)
01/20/2004	4	Return of service executed as to Echostar DBS Corp 1/12/04 Answer due on 2/2/04 for Echostar DBS Corp (ktd) Additional attachment(s) added on $1 / 28 / 2005$ (ehs,). (Entered: 01/21/2004)
01/20/2004	5	Return of service executed as to Echostar Comm 1/12/04 Answer due on 2/2/04 for Echostar Comm (ktd) Additional attachment(s) added on $1 / 28 / 2005$ (ehs,). (Entered: 01/21/2004)
01/26/2004	7	Return of service executed as to EchoStar Tech Corp, Échosphere Ltd Liab 1/16/04 Answer due on 2/5/04 for EchoStar Tech Corp, for Echosphere Ltd Liab (ktd) Additional attachment(s) added on $1 / 28 / 2005$ (ehs,). (Entered: 01/27/2004)
01/29/2004	8	Secty's Return of service executed as to Echostar DBS Corp 1/20/04 Answer due on 2/9/04 for Echostar DBS Corp (ktd) Additional attachment(s) added on 1/28/2005 (ehs,). (Entered: 01/30/2004)
01/29/2004	9	Secty's Return of service executed as to Echostar Comm 1/20/04 Answer dụe on 2/9/04 for Echostar Comm (ktd) Additional attachment(s) added on 1/28/2005 (ehs,). (Entered; 01/30/2004)
02/04/2004	10	Secretary of State certificate of service served upon Echosphere Ltd Liab on 1/28/04 (poa) (Entered: 02/04/2004)
02/05/2004	11	Stipulation to extend time to close of business on 3/1/04 for dft's answer or response (ktd) (Entered: 02/05/2004)
02/09/2004	12	Secretary's Return of Service Executed as to EchoStar Technologies Corporation by $\mathrm{c} / \mathrm{rrr}$ mail on 1/27/2004, answer due: 2/16/2004. (ktd,) (Entered: 02/13/2004)
02/27/2004	13	APPLICATION to Appear Pro Hac Vice by Attorney Rachel Krevans for Echostar Communications Corporation; Echostar DBS Corporation; EchoStar Technologies Corporation and Echosphere Limited Liability Company. (ktd,) (Entered: 03/01/2004)
02/27/2004	14	APPLICATION to Appear Pro Hac Vice by Attorney Zachariah A. Higgins for Echostar Communications Corporation; Echostar DBS Corporation; EchoStar Technologies Corporation and Echosphere Limited Liability Company. (ktd,) (Entered: 03/01/2004)

[^0]: (i) Erzeugen eines Zeit-Codes und Anlegen bzw. Anwenden des Zeit-Codes bei den Eingabedaten;

[^1]: THE INEQRMATION CONTAINED NN THIS FACSIMILE IS INTENDED ONLY FOR THE PERSONAI. AND CONEIDENTTAL USE OF THE DESIGNATED RECIEIENT(S) NAMED ABOVE. THIS MESSAGE MAY BE AN ATTORNEY-CLIENT COMMUNICATION, AND AS SUCH IS PRIVILEGED AND CONFIDENTIAL IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT OR AN AGENT RESPONSIGLE F-OR DELIVERING IT TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT YOU HAVE RECEIVED THIS DOCUMENT IN ERROR AND THAT ANY REVIEW, DISSEMINATION, DISTRIBUTYON OR COPYING OF THIS MESSAGE IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY US MMMEDLATELY BY TELEPHONE AND RETURN THE ORIGINAL MESSAGE TO US BY MALL. THANK YOU.

[^2]: Thereby certify that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage in an envelope addressed to Mail Stop Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313 1450 on February $15,2006$.
 (Date of Deposit)

[^3]: $2201 \quad 2001.7$

[^4]: Purteady Xerax (UK) Businaes Sarnces.
 2.15 .7134

