
376

362 I CHAPTER 22 THE PENTIUM [I PROCESSOR

Register Alias Table

FIGURE 22-4 Instruction decoder.

Performance Considerations

The only thing that you have to worry about, as far as the decoders are con-

cerned, is to apply the 421:1 template as often as you can. With the 421:1
template, when you schedule your instructions, you need to arrange them

such that the first instruction breaks down to four or less micro-ops, and

the following two instructions break down to one micro-op each. By

repeating this template, you guarantee maximum decoder efficiency. You

can easily apply the template with the help ofVTune’s static analyzer

described in the previous chapter. Ideally, the Pentium II processor can

decode three instructions every clock cycle. However, in reality, you never V

sustain this throughput because you cannot always apply the 4:1:1 template

or because the decoder stalls from branch misprediction or RAT stalls.

Use the event counters to measure the efficiency of the instruction decoder
as follows:

Instructions Decoder per clock : InstADecoded / Clock Cycles

22.6 Register Alias Table Unit

22.6.1
Operational Overview

Internally, the Pentium II processor has forty virtual registers, which are

used to hold the intermediate calculation results. When a new micro-op is

decoded, the Register Alias Table (RAT) unit renames the IA register (eax,

ebx, and so forth) to one of the virtual registers. At any given instance an IA

register could be mapped to one or more virtual registers.

How does it work? Consider the following sequence of instructions and

their related micro-ops. (Notice that the listed micro-ops are just mnemon-

ics that we made up to illustrate the point.)

The RAT aliases each of the IA registers, eczx and edx, to one of forty i11ter11al
virtual register W1, W2, and so forth. Notice that the RAT assigns a new virtual

377

are con-

l:1:1

e them

s, and

‘Y

y. You
er

can

l IICVCT ,

emplate
ills.

decoder

REGISTER ALIAS TABLE UNIT I 353

TABLE 22-5 IA Instructions and Their Related Micro-ops

mov eax, Mem uLoad vrO:eax, Mem

add edx, eax uAdd vr1 zedx, vrO:eax

mov eax, 12 uLoad vr2:eax, 12

add eax, ecx uAdd vr2:eax, vr3:ecx

add ecx, edx uAdd vr3:ecx, vr1 zedx

register for the same IA register only when the IA instruction is loaded with a

new Value. If the register is only read from, the last Virtual register is used. In

our example, the eax register is assigned a new Virtual register in both instruc-
tions 1 and 3 since both instructions load a new value into eax. But in instruc-

tion 5 the RAT uses the same virtual vrltedx register since the instruction does

not load a new Value into edoq it is a source operand.

Now, let’s see what happens to the micro-ops from Table 22—5 once they’re
handed to the execution unit:

In clock 1 the execution unit executes micro-ops I and 3—in two different

execution ports. Even though both micro-ops write to the same IA register,

ewc, the processor executes the opcodes at the same time since they write to

two different virtual registers.

In clock 2 the execution unit stalls on micro-ops 2 because ofthe dependen-

Cy on the 1/r0:eax register from micro—op I. But micro—op 4 is ready to exe-

cute, so it does—assuming that vr3:e¢:x is ready.

Since micro—op 5 depends on the result ofmicro—op 2, it can only execute af-

ter micro—op 2 executes. Micro-op 2 executes whenever the value of 1/r0:eax

gets its value from memory. Meanwhile, the execution unit processes other

rnicro—ops that are ready and waiting in the ROB.

So why is register renaming useful? Consider the third rnicro-op

U LO a d v r 2 : e a x , 12. Without register renaming, the micro—op has to

wait for the first two micro-ops to execute before it can execute; of course,

micro—op 4 has to wait as well. With register renaming, micro-ops 3 and 4

were able to execute while the processor was loading data from memory.

PARTVI

378

364 I CHAPTER 22 THE PENTIUM II PROCESSOR

22.6.2 Performance Considerations

The RAT is affected by one of the major performance bottlenecks in the

Pentium II processor—pa1‘tial register stalls. You’ll typically notice such

stalls when you run Pentium optimized code on the Pentium II processor.

Eliminating partial register stalls is one of the most obvious and most

rewarding optimizations you can achieve on the Pentium ll processor.

Partial stalls occur when an instruction that writes to an 8- or 16-bit

register (al, ah, ax) is followed by an instruction that reads a larger set of

that same register (eax). For example, the Pentium Pro will suffer a partial
stall if you write to the al or an register and then read the ax or eax register.

Notice that partial stalls can still occur even if the second instruction does

not immediately follow the first instruction. Since partial register stalls

could last for more than 7 cycles, on average, you can avoid partial stalls if
you separate the two instructions in question by a minimum of 7 cycles. Or

you can fix them.

The Pentium II processor implements special cases to eliminate partial stalls in

order to simplify the blending of code across processors. In order to eliminate

partial stalls, you must insert the SUB or XOR instructions in front ofthe orig-

inal instruction and clear out the larger register. Figure 22—5 shows all the

possibile partial register stalls and which flavor of the XOR or SUB instruc~

tions you can use to eliminate such stalls.

_ _ You must insert one of these instructions before the
: lryou wri = first instruction in order to eilnimate register partial

K . then read this Stalls-
reg.

EAX

X0!’ ah, ah f xor eax,eax
xor ax, ax
XDT eax,eax

No Partial Staii XDI’ 8X, 8X X0!’ eax,eax

X0!’ eax,eax

X0!’ 92X,98X

FIGURE 22-5 How to eliminate partial register stalls in the Pentium II processor.

379

REORDER BUFFER AND EXECUTION UNITS I 355

In the three examples We’ve added the XOR or SUB instructions in front of

the original code in order to eliminate partial register stalls.

xor eax, eax
mov ax, meml6
read eax

sub ax, ax
mov ai, nemB
read ax

xor ah, ah
mov ai, mem8
read ax

You can use VTune’s static analyzer to easily detect partial register stalls in

your code. You can also use the Partial_Rat_Stalls event counter to measure

the amount of cycles wasted by register partial stalls.

22.1 Reorder Buffer and Execution Units

22.7.1
Operational Overview

The Reorder Buffer (ROB, a.k.a. Reservation Station) is at the heart of the

out-of-order execution of the Pentium II processor. The ROB can receive

up to three micro»ops from the RAT and can retire up to three micro-ops in

one clock cycle. It can hold a maximum of forty micro-ops at any given

time. (See Figure 22-6.)

Calculation
Unit

Register Alias Table (RAT) A2335Load Unit

MOV [Memret], EAX

DAA
JMP label
PAND

PSRLQ
FMUL STO
FMADD sro ------—~w—
FDIV STU

Integer _ ALU

4--—*-- PACKSSWBAddress
Generation

LEA EAX, [EBX*4] ~—-——-—-»» um

PAND ————————w»-

PMULHW’""““'“"""‘”’

FIGURE 22-6 Pentium II processor Reorder Buffer and the
execution unit (port 0-4).

380

366 I CHAPTER 22 THE PENTIUM ll PROCESSOR

<.n4>t.ur\:»—-
C9

.1oad R4, [R1:4

. ShiftL R4, 2 1

. move R2, R3 1

. shiftt R2, 2 I

. add R2, R3 1

22.7.2

The Pentium II processor implements a data flow machine, which leads to
the out-of-order execution. In a data flow machine, the order of execution

of micro-ops is determined solely by the readiness of their data, not by the
order in which it entered the ROB. Let’s see how this model works.

Consider the coined pseudo—code fragment to the left. Assume that only

one instruction can execute, and it takes the number of cycles to the right to

execute. In a sequential (in-order) processor, it takes the code fragment 8
clocks to execute.

Now, consider a data flow machine where instructions execute based on the

availability of their data not on the order in which they appeared. Let’s examine

what happens every clock cycle:

1. The first instruction starts to execute immediately.
2. The second instruction stalls for the next 3 clocks in the ROB because it

needs the value of R4 to execute. Instead, instruction 3 executes (no data

dependency).
3. Instruction 4 executes.

4. Instruction 5 executes. Also, R4 value becomes valid.

5. Instruction 2 is now ready to execute, so it does.

As you can see, with out-of-order execution, it only takes 5 clocks to exe-

cute compared to 8 clocks for the sequential execution model. Even though

the micro-ops were executed out-of-order, the final results are exactly the

same because they are written out in the order they came in.

Performance Considerations

As a programmer, you do not have direct control over the operation of the

ROB and the execution unit. But you can affect its behavior indirectly based

on your understanding of the internal architecture. Here are a few guide-

lines that could help you maximize the number of executed micro-ops

every clock cycle.

I Blend your instruction types. The execution unit has five execution ports

that can execute up to five micro-ops in 1 clock cycle. To maximize this

number, you should use a mix of instructions as much as possible. Avoid

clumping the same kind of operations together (back—to-back loads, stores,
ALUS).

I Minimize mispredicted branches and partial stalls. Both ofthese are detri-

mental to the performance of the ROB and the execution units.

22

22

381

RENDERING OUR SPRITE ON THE PENTIUM H I 357

ads to I Keep your data in the L1 cache. This allows the load port (2) to bring in the

‘utjon data as fast as possible and in turn avoids data dependency stalls among

by the micro-ops.

I I

>33 22.8 Retirement Unit‘lg to
n The retirement unit acce ts u to three micro—o s in 1 clock c cle. It com-t 8 P P P Y

mits the final results to the IA registers or to memory. The retirement unit

the guarantees that the micro-ops are retired in the order in which they came
' . into the ROB. There is almost nothi11 that ou can do to affect the erfor—
(amine . , g Y ‘ Pmance of the retirement unit.

I I I

22.9 Rendering Our Sprite on the Pentium II
;e it

data Now that we know what’s important to the Pentium II processor, let’s see if
our favorite sprite has any problems when it runs on it. This time, however,

well use VTune to do the analysis.

Figure 227 shows the MMX sprite code analyzed for the Pentium II

processor using '\/Tune. Notice that, rather than showing the U/V pairing

exe-

iough
y the

‘ movci mmfl, QWUHD PTFE Iesi} '1

of the 4=1=1d€°°d“ EFOUP rum/q mmi, nwoao Pm (ear; 1
, based ‘ rnovq rnrn2, rnm3
lide_ pcmpeqb mm2, mm!)

PS panii mm1, mm2pandn mrn2, mmfl

. pm mm‘l, rnrn2

:2:'7.e this ’

Avoid

stores, rm‘-.n:i DWDRD F-‘TR [edi-’:3],mm‘I 2
in: rnairi+B {Mn} 1

e detri— 2

FIGURE 22-7 MMX sprite analysis for the Pentium II processor.

Si-
1::
<
D.

382

368 I CHAPTER 22 THE PENTIUM II PROCESSOR

Top of loop

columns, VTune shows a “decoder group” column and a micro-op count

column. The decoder group column, indicated by the curly bracket “{,”
indicates when two or three instructions are decoded simultaneously

because they adhere to the 421:1 decoder template (refer to section 22.5 for

more details). In the “ii-ops” column, VTune shows the number of micro—

ops that are generated when the instruction is decoded.

In the figure, notice that the highlighted instruction d e C e c X was decoded
by itself because the instruction sequence does not adhere to the 4:121

decoder template. The problem is caused because the m 0 v q [e di - 8] ,mm1

consists of two micro—ops and, thus, has to be the first instruction in a
decoder group sequence.

You can easily optimize the code for the Pentium II processor by switching
the two instructions. In this case, the mov q [edi * 8] , mm1 will be

decoded by the complex decoder, and the following two instructions are

decoded by the two simple decoders. Figure 22-8 shows the results of opti-

mizing our sprite. Note the differences in Line 21 of the number of micro-

ops and the improvement gained.

Static sis forshob:

rriovq mmll IIJW PTH {em}
mom mrrfl , QWURD PTH Iedi]

rriovq mrn2, mm?‘-

FIC.YmDEC|i3 mm2, mm!)

pend mmi , mm2
pandn rrin'i2, mmfl

pm rnm1,mm2
add edi, 8
add esi, 8

rri-:-~.w:i !.7B.~‘»!’1Z8FiE3I PIP} [Edi-53?), n'm‘i1 2
dew: ea->4 1

inz main+E {Eh} 1

FIGURE 22-8 MMX Sprite optimized forthe Pentium II processor.

383

iunt

{)))

1.5 for

.icro-

kfi
coded *2~wgj\NW

1 \-~~,:,mm1 MM\ 1,’a \J

ching

opti-
liCI'0—

22.10.1

SPEED UP GRAPHICS WRITES WITH WRITE COMBINING I 359

VTune also warns you about partial register stalls, which are very useful to

remove. Typically, you can remove partial register stalls with little or no

impact on performance on the Pentium processor.

In the fetch unit section, we recommended that you align loops on a l6—byte
boundary. Notice, however, in Figure 22-8, we did not bother to apply our own
recommendation: the top of our loop, "main+6:,” is not aligned on a l6—byte
boundary. Why not? The purpose of that rule was to assure that the decoder
would have three instructions to decode when itjumps to the top of the loop;
with luck, the three instructions follow the 4:111 rule. if you examine the first
three instructions in the loop, you'll notice that they fit within a l6—byte block
O><OO to O><OF. And since the fetch unit forwards 16 bytes at a time to the
decoder, the decoder will have three instructions to decode in these 1 6 bytes.

am. 22.10 Speed Up Graphics Writes with Write Combining
Operational Overview

By the time the Pentium II processor is in the mainstream market, software— .

only 3D games and high—resolution MPEG2 video will be widely available. 1
Unfortunately, one of the greatest bottlenecks for these applications is the i l

access speed to graphics memory. A typical software only MPEG2 player

consumes up to 30 percent of the CPU writing to video memory.

The Pentium II processor implements the Write Combining (WC) memory

type5 in order to accelerate CPU writes to the video frame buffer. The 32-

byte buffer delays writes on their way to a WC memory region, so applica-

tions can write 32 bytes of data to the WC buffer before it bursts them to

their final destination. The 32—byte burst writes are faster than individual

byte or DWORD writes, and they consume less bandwidth from the system
bus.

Typically, the video driver or the BIOS sets up the frame buffer to be WC

(similar to the way it is set up now as uncached memory).As usual, you can
use DirectDraw to retrieve the address of the frame buffer. Therefore, there

is no change required from an application point of view (well, you might
want to read on).

5l-
E
<
n.

5. Memory type: These include cached, uncached, WC, and other memory types.

384

370 I CHAPTER 22 THE PENTIUM II PROCESSOR

Let’s have a closer look at VVC and determine how it enhances graphics
application performance.

Assume that you are writing a 320 X 240 image to a WC frame buffer as

shown in Figure 22-9. Typically, you would write the pixels from left to right,

sequentially, one pixel at a time. For the sake of simplicity, also assume that

the address of the frame buffer is aligned on a 32—byte boundary.

When you write the first 32 bytes of line 1 to the frame buffer, those 32

bytes actually end up in the VVC buffer rather than in video memory. Once
you write byte 33 to the frame buffer, the WC buffer bursts its contents (the

first 32 bytes) to video memory and captures the thirty—third byte instead.

Similarly, the next 31 bytes are held in the WC buffer until the sixty-fifth

byte is written out. The same process repeats for every package of 32 bytes
of data aligned on a 32 byte boundary.

So what about the last 32 bytes in the image. How are they flushed out?

They are eventually flushed out when you write somewhere else in the

video buffer (for example, when your write out the next frame) or when a

task switch occurs. Actually, there are plenty of circumstances that cause the
VVC buffer to be flushed out:

Graphics Frame
Buffer Memory

omn:-

ti

2o
:umIn
6.3

4-paumun.5
FIGURE 22-9 WC frame buffer.

385

CS

as

i right,
3 that

32

Once

ts (the
Ltead.

ifth

bytes

1en a

se the

22.10.2

WHAT HAVE

YOU LEARNED?

SPEED UP GRAPHICS WRITES WITH WRITE COMBINING I 371

Any L1 uncached memory loads or stores (L1 cached loads and stores do
not flush the WC buffer).

Any WC memory loads or M7C stores to an address that does not map
into the current WC buffer.

I/O reads or writes.

Context switches, interrupts, IRET, CPUID, Locked instructions and
VVBINVD instructions.

Notice that the Pentium II processor generates a 32—byte burst write only if

the VVC buffer is completely full. Otherwise, it performs multiple smaller

writes to the WC region. These multiple writes are still faster than writing
to an uncached frame buffer.

Performance Considerations

in short, your WC could enhance your graphics performance if you write

your data sequentially to the frame buffer. We have listed the following

guidelines to remind you of what you should consider when you optimize
for a WC frame buffer.

Always write sequentially to the frame buffer in order to gain perfor-
mance from 32-byte VVC bursts.

Avoid writing to the frame buffer Vertically. For example, ifyou write to the

first pixel in line 1 then line 2, since the second write does not map to the cur-
rent VVC buffer, the WC buffer (holding only 1 byte) will be flushed out. The

same thing happens when you write to line 3, 4, and so forth.

Now you know about the internal units of the Pentium II processor. More importantly, you
know what matters to these units so you can get the best performance for your application.
As a last reminder:

Maximize your code execution from the Li cache,
Use the new instructions to minimize branches and mispredicted branches.

Avoid partial stalls. They are deadly.

Use VTune to analyze performance.

Use a mix of instructions (loads, stores, /\LUs, iVliVlX, and so forth) and apply the 421:1
decoder template.

Use Write Combining to blast your video images to the screen.

Read the next chapter to fami|iari7e yourself with memory optimization issues,

386

CHAPTER 23

um

Memory Optimization:

WHY READ

THIS CHAPTER?

T

Know Your Data

hroughout this section, we've stressed again and again that you should "know your data,"
know where it is coming from and know where it is going. We've also stressed that theO
O ptimizations for the internal components of the processor are mostly useful if the code

rdata is already in the Li cache. It’s a nice premise, but that's not always the case.

In this chapter we'll talk about

how the data behaves away from home: in the L2 cache or main memory;

how the data moves between the L1, L2, and main memory and what affects the
movement of data; ‘

how to bring the data into the L1 cache and keep it there as long as it's needed; and

as an added bonus, accesses to video memory, so you can understand how to write
effectively to video memory.

As you know, multimedia applications deal with a huge amount of data

that changes continuously from one second to the next. For example, a typ-

ical MPEG21 clip has 30 fps with a frame size of 704 X 480 pixels per frame
at an average of 12 bits per pixel. Moreover, since MPEG2 uses bidirectional

frame prediction, the size of the working data set2 is typically three to four

1. MPEG2 is :1 High Resolution Motion Video Compression Algorithm.
2. The working data set refers to the maximum si7/5 of data that is used by the application at any given
moment.

I373:

387

374 I CHAPTER 23 MEMORY OPTIMIZATION: KNOW Youn DATA

times the size of one frame. Taking all of this into account, you can calculate

the size of the working data set for an MPEG2 decoder as follows:

4 frames * [704 * 408 pixels) * 12 bits/pixelData Set Size -" _
8 b1ts/byte

— 1.9 MB

All of these bits definitely do not fit in the L1 cache or even in the L2 cache——

the L1 cache is 8 or 16K, and the L2 cache ranges between 256 and 512K.

Therefore, at any given moment, the majority of the data resides in main
memory rather than in the caches.

The main purpose of this chapter is to emphasize that memory access can

be very costly, in terms of clock cycles, and to highlight certain access pat-

terns that are more efficient than others. We’ll also point out the differences

between the various flavors of the Pentium and Pentium Pro processors

with regards to cache and memory behavior. We’ll top the chapter off with

a brief discussion about accessing video memory.

23.] Overview of the Memory Subsystem
23.1.1 Architectural Overview

Figure 23-1 shows a simplistic diagram of the memory subsystem for com-
puters with the Pentium H processor. Notice that the L1 code and data

caches are internal to the processor and run at the same speed as the core

engine. The L2 cache resides on a dedicated L2 bus, external to the proces-

sor, and runs at one half to one third the speed of the processor.3 The mem-
ory subsystem is connected to the PCI chip set, which connects the

processor to main memory, PCT bus, and other peripheral devices.

Core V PC1391
440FX

233 MHz
FIGURE 23-’! Memory architecture of a system with the Pentium II processor.

3. The fraction of the bus speed depends on the type of L2 cache used and the speed of the processor.

388

ulate

he~—

3.lI‘l

can

pat-
nces

rs

with

COITI‘

OI‘€

CBS‘

CH1-

8550!.

S501‘.

23.1.2

OVERVIEW OF THE MEMORY SUBSYSTEM I 375

The PCI chip set is the glue logic between the processor, memory, DMA,

and the PCI and AGP4 buses. It manages and controls the traffic between
the processor and all of these devices. A dedicated bus connects the system
memory to the PCISet. The PCI bus connects the PCISet to I/O adapters,

such as graphics, sound, and network cards. The AGP bus is a specialized

graphics bus that was designed with 3D acceleration in mind; notice that

the 440LX PCISet is the first chip set with the AGP bus.

Memory Pages and Memory Access Patterns

We’ve mentioned, throughout this section, that the L1 and L2 caches are

divided into 32—byte cache lines, which represent the least amount of data

that can be transferred between the L1 cache and main memory. For the

curious only: you can find out more about the internal architecture of the

caches from the Intel manuals (things like two—way and four—way set associ-
ate, and so forth).

Internally, the system memory is divided into smaller units called memory

pages. Memory pages are typically 2K in size and are aligned on a 2K

boundary. The only reason we’re talking about memory pages here is that

because of the design of DRAM chips, certain memory access patterns are

more efficient than others. In the discussion that follows, you need to come

outwith one thing: consecutive accesses within the same memory page are

more eficient than consecutive accesses that cross multiple memory pages.

In this discussion, we’re assuming that the processor missed both the L1

a11d L2 caches and that it is now fetching data from main memory. As we
mentioned earlier, the processor fetches an entire cache at a time from main

memory and writes it out to the cache. Since the processor has a 64-bit data

bus, it can fetch an entire cache line with four bus transactions.

Now, when the processor requests data from main memory, the memory

page where the data exists is first “opened”—this is done in the hardware-

and then the data is retrieved. Once the page is open, it takes less time to

read or write other data to the same page. Typically, the data sheet for the

memory chip specifies how long it takes to open the page and perform the

first read, and how long it takes to perform subsequent reads once the page
18 open.

4. The Accelerated Graphics Port (AGP) is a specialized graphics bus designed with 3D rendering in
mind.

5I-
as

. <
n.

389

376 I CHAPTER 23 MEMORY OPTIMIZATION: Know Your: DATA

For example, the data sheet of an Enhanced Data Out (EDO) memory chip

specifies the sequence {l0—2—2—2}{3—2—2—2} where the numbers represent

clock cycles. Each curly bracket indicates four bus cycles of 64 bits each——

that’s one cache line. The first sequence, {10-2-2-2}, specifies the timing if

the page is first opened and accessed four times. The second sequence, {3—2—

2-2}, specifies the timing if the page was already open and accessed four

additional timesflthat means you did not access any other memory page in

between. The last sequence repeats as long as you access memory within the

same page. One last thing: only one memory page can be open at any given
moment.

The data sheet we have been discussing relates to amemory bus running at

66 MHZ. Now, if we look at another processing speed, say a 233-MHZ pro—

cessor, the timing becomes {35—7—7—7}{1l—7—7—7} in processor clocks.

Whenever your application jumps to another memory page, the current

open page is first closed before opening the new page. As a result, it takes an

additional 24 processor clocks to switch between memory pages—that’s a

lot of processor clocks to waste. So what can you do about it? Maybe noth-

ing! Maybe a lot! The whole point is that you should try to organize your
memory footprint in such a way that you bring the data from main mem-

ory to the L1 cache in the most efficient manner. For example, if you know

that most of your data resides in main memory, for example, MPEG2, you

might try to arrange the data in a smarter fashion such that you can burst it
to the L1 cache faster.

In MPEG2’s motion comp ensation,5 for example, you typically access three
reference frame buffers and write the output to a fourth buffer or directly to

the screen. Typically, when the buffers are allocated, they are allocated in a

contiguous fashion, separately, as shown in Figure 23-2.With the allocation

scheme shown in Figure 23—2a, when you access the three frames, you’ll

definitely cross memory page boundaries and thus reduce the overall appli-

cation performance. Now, if you interleave the frames on a line—by—line

boundary, as shown in Figure 23-2b, you’ll have a better chance of accessing

the three frames from the same memory page, and thus increasing memory

access efficiency.

5. Motion Compensation is used when inter-frame decoding is used.

390

y chip
ent

ch——

ng if
, {3-2-
ur

age in
in the

given

ing at
pro-

ent
es an

noth-
our

em-

know
, rou

urst it

three

tly to
in a

ation

appli-

ssing
mory

OVERVIEW OF THE MEMORY SUBSYSTEM I 377

 Y, U, and V components

E‘ Y components only
In 4 x 4 block

YL/V12-=9 (16Y+ 4U+ 4\/) x 8 =12 bits/pixel
16 pixels Ill

23.1.3

YUV9 ={>(16Y+1U+1V) x B = 9 bits/pixel
15 pixels

YUV9

FIGURE 23-2 MPEG2 frame buffer allocation strategy.

Memory Timing

To complete the picture, let’s look at a comparison of the L1 and L2 caches

and system memory.

TABLE 23-! Memory Architecture and Timing for a System Using the
Pentium II Processor and EDO Memory

“Ll cache [l—1—I—1} {1—1—l—1} 4 (l864iMB/. econ ii
L2 cache {5—l—i—1} {10—2—2-2} 16 (466 MB/Second)

EDO memory {10—2—2-2} {35-7-7-7} 56 E133 MB/Secondg '{3-2-2-2} {H-7-7-7 32 233 MB/Second

SDRAM [1 H-1-1] 139-4-4-4} 51 E146 MB/Secondg[2-1-1-1} {7-4-4-4} 19 392 MB/Second

Access timing for main memory depends on the type of PCISet and 1nem—

ory used in the system (available types include EDO, FPRAM, SDRAM6).
SDRAM offers the best access timing because it has a lower repetition7 rate
{11—1—1—1}{2-1-1-1} relative to EDO {10—2—2—2}{3—2—2—2}. But SDRAMs are

only supported on systems with the PCISet 440/LX chip set or later.

'>'I-
I1:
<
IL

6. EDO: Enhanced Data Out; FPRAlVl: FastPage RAM; SDRAM: Synchronous DRAM.
7. Repetition rate: the timing for fetching the last 3 quad words in a cache line.

391

378 I CHAPTER 23 MEMORY OPTIMIZATION: Know YOUR DATA

23.1.4

From the CPU point of View, notice that the total number of clocks spent

accessing main memory depends on the speed of the processor. Faster pro-

cessors actually wait more clocks for memory than do slower processors.

For example, if a memory chip takes one nanosecond to respond, a proces-
sor running at 233 MHz waits 233 clocks before it receives the data, and a

200 MHz processor waits 200 clocks before it gets the same data. Even

though both processors Waited the same physical time, 1 nanosecond, the

faster processor ticked more clocks in that time——and thus it is losing more

clocks that could be spent doing something more useful.

Performance Considerations

The Pentium II processor includes event counters that can help you under-

stand the memory footprints of your application. Notice that even though

some of these counters are not 100 percent accurate, they can give you a

good indication of your application cache and memory behavior.

TABLE 23-2 Pentium II Processor Cache and Bus Performance Event Counters

DATA_MemRef All memory accesses including reads and writes to any memory

WP‘?

,2*LD, L2_ST Number of data load/store that miss in the L1 data cache and
are issued to the L2 cache

_2_LD_lfetch All instruction and data load requests that miss the Ll cache and
are issued to the L2 cache

,2_Rqsts All L2 requests including data loads/stores, instruction fetches,
and locked accesses

3US_TranAny Number of all transactions on the bus

3US_Tran_BRD Number of data cache line reads from the bus

3US_Trans_WB Number of cache lines evicted from the L2 cache because ofconflict with another cache line

3US_BrdyClocks Number of clocks when the bus is not idle

Assuming that you can quantify the amount of data that you read and write

in a portion of your application, you can derive the following formulas:

L2_LD + L2_ST
L1 Data Miss Ratio = Total Mem Ref

Pa

392

ent

pro-
rs.

oces—

d a

the
more

nder-

ugh

unters

mory

and

e and

hes

of

vrite

ARCHITECTURAL DIFFERENCES AMONG THE PENTIUM AND PENTIUM PRO PROCESSORS I 379

Since L1 cache misses generate L2 cache accesses, we are using the L2 event

counters to quantify the L1 data miss ratio rather than using the DCU (L1)
event counters.

BUS_TranBRD — BUS_TranTFetch
L2 Data Read Miss Ratio _ Total Mem Ref

% L2 Data Requests =

The L2 data read miss ratio represents the numberof cache line reads or
writes that missed the L2 cache and caused a line to be brought in from

memory. L2 holds both instruction and data. The %L2 data requests repre-

sent the percentage of data accesses only from L2.

BUS_BrdyC1ocks
Bus Utilization = Tot31 Clocks

BUS__TranBRD — BUS_TranIFetCh

% Bus Data Reads = BUS_TmnAny

The Bus Utilization indicates how often the bus is busy moving data
around (not idle). This includes all bus transactions whether it’s from the

CPU or from another bus master, DMA, or another processor.

The %Bas Data Reads represents the percentage of the bus used for data
reads.

23.2 Architectural Differences among the Pentium and
Pentium Pro Processors

To optimize your application for multiple IA processors, you need to pay
attention to some of the architectural differences between the Pentium and

Pentium Pro processors, For example, there are differences in the behavior

of the cache subsystem and the organization of the VVrite buffers. These

architectural differences affect the way you should proceed in optimizing
your memory.

3I-
D:
<
n.

393

380 I CHAPTER 23 MEMORY OPTIMIZATION: KNOW YOUR DATA

23.2.1 Architectural Cache Differences

On Pentium processors, when you write to an address in memory that does
not exist in the Li cache, the data is written directly to the L2 cache without

touching the L1 cache. If the data does not exist in the L2 cache, the data is

written directly to system memory without touching the L2 cache. This is
known as a Read Allocate Cache.

watch out H On Pentium Pro processors, if the processor encounters a cache write miss,

I only Small Portion it first bursts the entire cache line to the L1 cache from main memory or the
of cache line is L2 cache, and then writes the data to the L1. This is known as a Write Allo-

t°”°'led °' cafe on a Write Cache A/Iiss. This behavior is typically advantageous since

'W'lte wide is sequential stores in the same cache line are faster because they hit the L1

tg,;:::ecrat:E:|?n2e_ cache—unlike the Pentium processor where they’ll be written through. In
addition, when the stores are committed to main memory or the L2 cache,

they are committed in one 32—byte burst write, which is faster than individ-

ual memory writes—thus reducing overall bus utilization.

The Pentium Pro processor implements a nonblocking cache compared to

the Pentium processor, which implements a blocking cache. When the Pen-

tium processor encountered a read miss, first the processor has to satisfy
the read before it continues execution at the next instruction. V\7hen the

Pentium Pro processor encounters a read miss in the L1 cache, it blocks the

execution of that specific micro—op and all future micro-ops depending on
its results; but it allows other micro-ops to execute and even access data off
the L1 cache.

Processors with MMX technology double the size of the L1 cache relative to

their non—MMX counterparts. The Pentium and Pentium pro processors

include two independent instruction and data L1 caches of 8K each. Pro-

cessors with MMX technology include two independent instruction and
data L1 caches of 16K each.

Write Buffer Differences

Write buffers allow the processor to go on to the next instruction while it is

writing data to uncached memory, writing through memory, or when the

write misses the L1 cache. Instead of waiting for the write to go all the way

to memory, the processor places the data in one of the Write buffers and

goes to the next instruction. The Write buffers are flushed out to memory
when the data bus is available or on the next write to a full Write buffer.

394

ARCHITECTURAL DIFFERENCES AMONG THE FENTIUM AND PENTIUM PRO PROCESSORS I 331

to As we mentioned in the Pentium processor chapter, the Pentium processor

at does 3 has two dedicated 32-bit Write buffers: one for the U pipe and the other for
V1-thout — ‘ the V pipe. The Pentium processor with MMX technology has four inde-
data is 3 pendent 32-bit Write buffers, all of which can be accessed from either pipe.

Fhis is

Sequence 1
. 1. mov [e51], eax

[6 H1153; inc 6-31’7.

yorthe 1_ mov_[ed1’g, ebx
teAl10- ' E ‘

gince ,. Sequence 2 r1. mov Tc-511, cax
131-1 mow Eedil. ebx2.

yghqn inc csi‘
cache, -—

ndivid- of law — —— --

inc edi‘

For higher write performance on the Pentium processor, you should

fled to arrange your memory writes through both pipelines, rather than through

he pen_ , just one. Consider the first code sequence to the right where instructions 1

Ltisfy and 3 are both issued in the U pipe. When instruction 1 executes, it writes
the its data into the dedicated U pipe VN/rite buffer, allowing the processor to

cks the execute the next instruction. But when instruction 3 executes in the U pipe,

[ing on - the processor stalls until the contents of the U pipe Write buffer are flushed
iata Off . out to memory. Now, if you rearrange the code as shown in Sequence 2 the

second write will be issued in the V pipe and will end up in the V pipe’s

V dedicated Write buffer—and the processor can go on to the next instruc-

ative to tion in both pipes.
ssors

_ pm_ On the Pentium processor with MMX technology, both sequences execute

and the same since both pipelines can write to any of the four Write buffers.

The Pentium Pro and Pentium II processors implement four independent

32-byte M/rite buffers. The VN/rite buffers temporarily hold memory writes

until the bus is available. They combine multiple data writes into larger

memory writes—up to 32 bytes each———which can be burst to main mem-

ory. Typically, you don’t have to worry about scheduling instructions for

the VVrite buffers since you cannot easily affect their behavior.

PARTVI

395

382 I CHAPTER 23 MEMORY OPTIMIZATION: Know YOUR DATA

23.2.3 Data Controlled Unit Splits on the Pentium Pro Processor

DCU splits happen on Pentium Pro processors without MMX technology,

when an unaligned access crosses a cache line boundary. On average, the

processor takes 9-12 cycles to recover from a DCU split—that is a huge

amount of time compared to the 1 cycle that it takes for aligned access.

In addition, Pentium Pro processors witl1outMMX technology encounter a

similar problem when an unaligned cache access crosses an 8-byte bound-
ary. Such a split imposes a 5-7 clock penalty on the processor.

You can minimize DCU splits by minimizing misaligned memory accesses.

You can use the Misalign_MemRef event counter to quantify the amount of

DCU splits in your application. Notice that this c0uI1ter only counts the

number of misaligned data memory references that cross an

8—byte boundary rather than all misaligned accesses. Since the other mis-

aligned accesses, DWORDS, for example, do not affect performance, there
is no need to count them.

23.2.4 Partial Memory Stalls

The Pentium Pro and Pentium II processors stall when a memory store is

followed by a memory load of a different data size or alignment. Notice that

this problem is different from but similar to the partial register stall prob-

lem. ‘When a partial memory stall occurs, the micro-op that wants to load

memory has to wait until the micro-op that stored the data retires-and

that could take a long time depending on the state of the machine. You can

easily avoid such stalls by rewriting the code to avoid the penalty. Even

though you might end up with more instructions to execute, the extra
instructions can reduce stall time considerably.

In Figure 23-3, you see a list of all the situations in which a partial memory

stall can crop up. The highlighted text is a modified sequence of code that
will accomplish the same exact thing as the original code, only without the

partial memory stall.

396

MAXIMIZING ALIGNED DATA AND MMX STACK ACCESSES I 383

:es1']. Cx 16bitst0re mov ~ lsbitstore

jesi] mov

, [e51] No Parr/n/ Memory Stall mov

iesifl, cx mov

ax, cx mov al, cw

Zest], ecx 32 bitstore mov [esi'],eax 232 bitstore

eax, jes1+2] movq mmU,[es1]

eax, je51‘+2] No Partial Memory Stall mov [esi] , eax /Vo Part/‘a/Memory Sta//

[esiJ, ecx movd mmO, [es1+4]

ecx, ‘6 movd mml, eax

ax. cx osllq mmO. 32

nor mmO, mml

[esi], eax movq [esi],mmU 64bitom

ebx,[es1] pand mml, [€511

FIGURE 23-4 Restarting your code to avoid partial stalls.

23.3 Maximizing Aligned Data and MMX Stack Accesses
You recall, from Chapter 20, that MMX instructions that perform unaligned

accesses to video memory execute more slowly than do instructions that per-

form aligned accesses. Actually, the same concept applies to all types of mem-

ory accesses including integer, floating point, and MMX. On an unaligned

memory access, the Pentium and Pentium Pro processors split the

unaligned memory accesses into 2 bus cycles, causing a slowdown by more

than 50 percent.

The Pentium processor takes 3 cycles to execute an unaligned cache access.

The Pentium Pro processor wastes 5-7 cycles on unaligned cache accesses that

cross a 64-bit boundary and 9-12 cycles on unaligned cache accesses that cross

a cache-line boundary (DCU splits).

PARTVI

397

384 I CHAPTER 23 MEMORY OPTIMIZATION: KNOW YOUR DATA

Unaligned accesses to uncached memory are split into two accesses, and the

result is degradation of application performance. It’s bad enough that

uncached memory accesses take a long time to execute; unaligned memory

accesses to uncached memory could take double the time to execute and

can drastically degrade application performance.

23.3.1 The Pitfalls of Unaligned MMX Stack Access

MMX = M54: One of the common pitfalls in MMX programming is accepting the default

Compilers align local compiler alignment for function parameters’ variables. VV’hen a function is

‘md global Vmbles called, the compiler ensures that the function parameters are aligned on ad’ h i

taycifgé mg mt elf 4—byte boundary, which is not ideal for MMX instruction performance. To
Declare MMX Vari_ remedy this problem, copy any MMX function parameters to local vari-
ables with the ables and use the local variables instead, as follows:
nINT64 TYPE.

mi‘: MMXFLm:ti'on (
Int illidth,
_1rt6£ 1' Col OI") (1 Parameter _int64 aligned on 4 byte.

_‘iI”t64 iC0l0I"C0py = iC0’ol'; C] Local___int64aligned0n8byte.
—> Use lCOlC"‘COL‘y in function

ln”

23.4 Accessing Cached Memory
So what’s the moral of the story? Well, there are two: (1) maximize your

“good” accesses from the L1 cache; and (2) bring in the data to the L1 cache

as fast as possible. A

You’ve already seen what a good cache access can accomplish in the above

discussions about aligned accesses, DCU sp|its,»and so forth. You can reap

the best benefits of such accesses if you maximize your L1 data accesses.

V\7hat do we mean? Let’s assume that you want to access a 32-K buffer mul-

tiple times within a loop, and you have obeyed all the good access rules

above (assuring proper alignment, avoiding DCU splits, and so forth).

First, notice that the buffer size is larger than the L1 cache. In this case, if

you access the entire buffer on every pass of the loop, when you access the
second half of the buffer, the first half will be evicted from the L1 cache. As

you restart at the top of the buffer, the first half of the buffer will be brought

398

nd the

zmory
and

>ur

cache

bove

reap
es.

r mul-
es

e, if
s the

he. As

ought

WRITING TO VIDEO MEMORY I 385

into the L1 cache, again, and the second half will be evicted. Now, depend-

ing on your application, you might be able to avoid thrashing in the L1

cache by breaking the processing of your loop into multiple parts and

accessing half of the data at a time.

What about the issue of bursting data from main memory to the L1 cache

on the Pentium processor family? As we mentioned in the Pentium proces-

sor chapter, it is advantageous to pre—allocate the data specially if you

expect back—to—bacl< L1 cache misses or if you will be performing multiple

writes to uncached memory (refer to Chapter 19 for more details). But keep

in mind that preallocation is useful only if (1) the size of the data set does
11ot fit i11 the L2 cache (if it does, pre—allocation might actually take more

cycles); or (2) you use the majority of the data that you pre—allocate into the
L1 cache.

23.5 Writing to Video Memory
23.5.] Using Aligned Accesses to Video Memory

In Chapter 20, you’Ve seen that unaligned writes to video memory take

much longer to execute than do aligned writes. We’ve repeated the table

from that chapter below for your convenience (see Table 23-3).

TABLE 23-3 Measured Cycle Timing of Both Nonoptimized and Optimized
MMX Technology Sprite Loops

)0 110401 159 109132 158

1 180585 260 179676 259

2 180425 260 179558 259

3 180546 260 179487 259

4 150358 217 149725 216

5 185099 267 184392 266

6 185399 267 184364 266

7 185398 267 184277 266
5l—‘E
<1:
:1.

399

386 I CHAPTER 23 MEMORY OPTIMIZATION: KNOW YOUR DATA

Here are the rules: processors with MMX technology achieve the best write

bandwidth to video memory if they perform aligned quad word write. Pro-

cessors without MMX technology achieve their best write bandwidth to

Video memory if they perform aligned double word writes. In either case,

unaligned memory writes to Video memory have a detrimental effect on
the bandwidth of writes to video memory.

With the sprite example, we had a choice between making an unaligned

access to read the original sprite from system memory or making an

unaligned access to write the final result to video memory. Since unaligned

accesses to video memory are more costly than unaligned accesses to sys—
tem memory, we decided to go with the first alternatiVe——ensure that all

accesses to video memory are aligned on an 8—byte boundary. VVith this

implementation, we achieved an average time of 160 clocks per quad word,

regardless of the location or alignment of the sprite on the screen.

Spacing Out Writes to Video Memory with Write Buffers

The Pentium processor has two M/rite buffers and the Pentium processor

with MMX technology has four Write buffers. VVrite buffers queue

uncached memory writes on their way to memory and allow the processor
to continue execution at the next instruction. For more details about these

Write buffers, refer to section 23.2.2.

Since there is a limited number of Write buffers, you can easily fill up these

buffers if you perform back-to-back writes to video memory, in a bitmap

copy, for example. Once the Write buffers are full, the processor stalls on

the next video memory write until one of the Write buffers is flushed out.

The series of stalls will be repeated for the entire bitmap. As a result, valu-

able processor cycles are wasted between video memory writes.

Notice that the processor stalls only if you access uncached memory (read

or write) or if you encounter an L1 cache miss (read or write). If you can

guarantee that all accesses are in the L1 cache or a register, however, you can

spare those dead cycles and perform some useful operations in between

writes to video memory.

Consider a situation where you manipulate an image in system memory

and then copy the result to Video memory—for example, a color space con-

version routine.8 In this case, the back—to—back copy of the final image will

8. Color space converters are used in video decoders where they convert from the E U V color space pre-
ferred by video compression algorithms to the RGB color space.

400

CSSOI

cessor

t these

p these

'tmap
s on

d out.

, valu-

' (read
u can

ou can

een

ory
ce con-

ge will

space pre-

WRITING TO VIDEO MEMORY I 387

stall the processor once the Write buffers are full. You can spare those dead

cycles if you rearrange the code in such a way that you would perform color

conversion in between writes to video memory. From our experience, you
actually get the color conversion for free.

Upon a closer analysis of our MMX sprite sample, we found that we are get-

ting the calculations for merging the sprite with the background for free.

Moreover, we actually have a few more dead cycles iii the loop that we could

use to do more, so we did. We decided to add a new effect to the sprite—a

bias would be added to the visible pixels of the sprite every time the sprite is
updated on the screen. i

Notice in the following code that since an MMX register can hold up to

8 packed pixels, we needed to duplicate the bias value in eachof the

8 bytes——for example, to add 7 to each pixel, we need to use the value
O><0707070707070707. Even though it is not necessary, we decided to build

this packed bias using a few shift and OR operations inside the inner loop

rather than using a lookup table, for example. Once the packed bias is

ready, we would add it to the sprite before we merge it with the back-

ground, as shown in the highlighted code below.

Do0Word:
// build the packed bias” Assume it is 0x07
movq mm5, qwBias // 0x00003000 00000007

movq mm6, mm5
Psllq mm5, 8 7/ 0x00000000 00000700
por mm5, mm6 // 0x00000000 00000707

Movq r, mN5
Psllq r, 16 ’ 0x00000000 07070000
Por , mw6 ' 0x00000000 07070707

Movq r, mw5
Psllq , 32 ' 0x07070707 00000000
Por , mmh ' 0x07070707 07070707

movq , [e51]
paddb mm5 add it to the sprite

movq mm? mm3
movq mml [edi]
pcnpeqt mm2, mm0
pand mml, mm2
pandn nma. mm0
por mml, mm2
ad: edt, 8
ad: est, 8
dec ecx

movq [edi-8], mm;
jnz Do0Nord

PARTVI

401

388 I CHAPTER 23 MEMORY OPTIMIZATION: KNOW YOUR DATA

WHAT HAVE

YOU LEARNED?

When we measured the performance of the code with the new calculations,

we got little or no difference in the time it would take to execute this loop.

In this chapter, we examined the issues surrounding the system components, other than
the processor, that affect the overall performance of your application. At this stage you
should

have a good understanding of the architecture of the memory subsystem on the PC;

understand the timing and the internal structure of memory;
have an idea of the architectural differences between the Pentium and Pentium Pro

processor families;

know how to access both cached and uncached memory types; and

be able to figure out how to write data to video memory in the most efficient way.

402

ations,

. loop.

ther than

tage you

the PC;

tium Pro

t way.

EPILOGUE

 u

The Finale

We've reached the end of the book. We've covered several multimedia architectures in-

cluding DirectDraw, Direct3D, DirectSound, DirectShow, RDX, RSX, and RealMedia. We've
also talked about some of the most recent Intel Architecture processors for the PC. But
this is far from the end. Welcome to the treadmill.

In these closing pages, we’d like to touch upon some upcoming areas of development,
such as

I the spiral continues: faster processors, tighter multimedia architectures;

multimedia amidst the Internet explosion;

cheaper, faster, better 3D;

multimedia in the home;

and multimedia conferencing.

We hope you find the years ahead as exciting as we think they will be.

E.1 The Spiral Continues
E.I.I

The Hardware Spiral

Processors have gotten faster and continue to get even faster. It seems that

barely a year after the introduction of a processor, it becomes the baseline

processor, and a newer, faster processor is introduced. Of late we’Ve begun

RANDY (THE KID) KWONG, A GRESHAM HIGH SCHOOL STUDENT, SURPRISED US WITH HIS SAVOIR-FAIRE.

I389I

_.
>
I-
0:
<2‘
0..

403

390 I EPILOGUE THE FINALE

to see multiprocessor systems become popular as server platforms. Before

we know it, we may find multiprocessor systems becoming commonplace

on our desktops.

Similarly, the entire PC subsystem continues to evolve. It needs to, in order

to keep up with the data transfer demands forced by speedier processors

and more complex peripherals. In the near future you can expect both a
whole slew of new AGP-based multimedia peripherals and other advances

in memory architectures.

V/Vith new processors, evolved subsystems, and possibly multiprocessor

platforms, you will once again be faced with the issues you face today,

namely, more power and scalability. \Ve hope that tools like Intel’s VTune

and NuMega’s Softlce will continue to support optimizing for the new sys-
tem architectures.

The Software Spiral

Just as the hardware will evolve, so too will the software architectures.

Today’s architectures for 2D and 3D graphics, video, audio, and spatial

audio were developed as individual entities. The DirectX SDK packages

these technologies together as a single offering.

Look for future generations of DirectX to improve the integration of the

individual components. Also, look for continued merging of other architec-

tures. Take, for example, the recent announcement by Microsoft of its

incorporation of Real Networks’ Real Media Architecture.

V/Vith luck continued advances in these multimedia architectures will sup-

port scalability across system architectures.

E.2 Remote Multimedia (a.k.a. Internet Multimedia)
The Internet is everywhere! Everyone is talking about it! Just about every-

one wants to get onboard. Yet the Internet hasn’t been with us for very long.
There’s a lot more in store for us. For those who can remember that far

back, the Internet’s development is probably as exciting as the birth of the
PC itself.

Internet Languages

Internet Web pages today are based on static description languages such as

HTML or VRML. These languages respond to user interactions with a sim-

ple hypertext interface. More sophisticated languages are needed to allow

richer responses. Enter lava and VRML 2.0.

404

iefore

Lplace

1 order
;sors

wth a
/ances

;or

Y;
Tune

:w sys-

REMOTE MULTIMEDIA (A.K.A. INTERNET MULTIMEDIA) I 391

Created by Sun Microsystems, the Iava programming language is becoming

widely accepted as the de facto Internet interactive language. VRML 2.0,

based on the Moving \/Vorlds proposal from Silicon Graphics, adds audio
and video sources and time and user responses to the static 3D worlds of

VRML 1.0. But the cross-platform capabilities and security features of these

languages may impose significant performance overhead.

If performance becomes a bottleneck, keep an eye out for alternative Inter-

net programming languages that are tuned to the PC platform. Microsoft’s

Dynamic HTML, to be released as part of Internet Explorer 4.0, is one such
candidate.

The standard Iava programming language does not inherently contain rich

multimedia constructs. Intel, Sun, and Silicon Graphics have jointly speci-
fied Iava Media Framework (IMF) for multimedia extensions to Iava. Intel

will deliver IMF optimized for Intel Architecture platforms; Sun and Silicon

Graphics will deliver IMF versions optimized for their respective platforms.

In addition, the MPEG committee is working on expanding the scope of

the MPEG standard in upcoming versions (MPEG4, MPEG7) to define a

multimedia programming language that can be implemented on top of
Iava.

Multimedia on the Internet

Bringing multimedia to the Internet is not a trivial problem. Bandwidth

constraints on today’s Internet connections do not allow for rich multi-

media. So companies are inventing multimedia technologies tailored for

the Internet. For example, Progressive Downloads try to maintain user

interest by allowing users to preview partial multimedia data while entire

files are being downloaded. Similarly, Progressive 3D Meshes and Multi-

Layered video codecs allow data to be authored with many levels of detail:

the higher bandwidth the connection, the richer the picture.

Delivering real-time audio and video data across the Internet requires

architectures to support streaming data types, to support synchronizing the

streams, and to address end-to-end delays for continuous timely delivery.

RealNetworks’ RealMedia Architecture and Bamba from IBM AlphaWorks

are two such architectures. IPIX technology from Interactive Pictures Cor-

poration is another Internet audio/Video architecture that provides sur-

round video capabilities. Look for upcoming Internet multimedia

architectures to integrate the progressive download solutions with the
streaming architectures.

PARTVI

405

392 I EPILOGUE THE FINALE

E.2.3

E.2.4

Evolving Hardware for the Internet

Iust as software architectures will evolve, so too will the hardware. Hard-

ware providers are aggressively pursuing increased bandwidth channels.

Cable, satellite, and 56K modems are technologies targeted to the home

and small businesses. Other technologies such as DSL and ADSL are being
tested to improve bandwidth to the home over regular phone lines.

This increasing variation of bandwidth capabilities will require Internet

content providers to author scalable multimedia content. Similarly, appli—

cation developers will look for scalability constructs (hardware mecha-

nisms and software APIs) to tailor applications to available bandwidth and

effective throughput.

Multimedia Conferencing

Today we have primitive video and audio conferencing over the Internet

and over POTS1 lines. With the better bandwidth capabilities of ISDN,
companies like Intel and PictureTel have developed teleconferencing prod-

ucts that deliver better picture quality and a reasonably acceptable user

experience. As the Internet pipes to the home get bigger, we’ll see similarly
improved teleconferencing quality over the Internet.

Teleconferencing applications need teleconferencing APIs, and today’s prod-

ucts are based on in—house interfaces. Microsoft has recently introduced

NetShow, a conferencing API for Windows 9x, but it is still in its early stages.

Look for more comprehensive APIS to support echo cancelation, initiating

and responding to calls, packaging and parsing multiple data streams, data

sharing, recording a conference, and sharing documents among multiple
remote sites.

E.3 Better, Faster, Cheaper 3D
We’ve seen the first few generations of 3D on the PC, with the initial 3D

games, followed by several general-purpose libraries and most recently the
first revisions of Microsoft’s Direct3D. 3D on the PC has been born, and

now for its growth.

1. POTS: Plain Old Telephone System.

406

ard-

lels.
me

being

‘net

Lppli—
ia-

th and

met

prod-
ser

iilarly

s prod-
:ed

stages.

ating
, data

iple

3D

fly the
and

E.3.1

E.3.2

BETTER, FASTER, CHEAPER 3D - 393

3D Hardware Spiral

The birth of 3D has fueled the demand for richer, faster 3D through hard-

ware accelerators. A whole slew of 3D hardware products has been intro-

duced recently, including, among others, products based on the Virge
family of 3D chips from $3, the 3D RAGE family of 3D chips from ATI, the

Vérite’ family from Rendition, and the Voodoo product line from 3Dfi{
Interactive.

Early revisions had difficulties with Direct3D support. Look for drivers to

deliver improved performance and stability with the upcoming DirectX5
release from Microsoft.

I11 addition, some second—generation 3D hardware products have been

announced. Two announcements of particular interest are the Talisman
effort from Microsoft and the Intel740 effort from Intel.

The Talisman effort, spearheaded by Microsoft, is aimed at developing

high~performance, high—quality 3D with approximations tailored for the

PC environment. Microsoft is developing a full-featured Talisman reference

card in conjunction with Philips, Cirrus, SEI, and Fujitsu. De-featured

Talisman cards at lower price points will also become available.

The Intel740 effort is a codevelopment of Intel, Lockheed Martin, and Chips

and Technologies. The three companies are developing a graphics chip that

combines Real 3D technology from Lockheed Martin with 2D and video

technology from Chips and Technologies and AGP technology from Intel.

Lockheed Martin’s Real 3D is also featured in Sega Enterprise’s Model 2 and

Model 3 arcade platforms.

3D Software Spiral

O11ce again, just as the hardware evolves, so will the software. DirectX5

offers 3D advances such as the Draw Primitives API to simplify base 3D.

Similarly, in response to customer demand, expect improvements in the

performance and feature set of Direct3D’s Hardware Emulation Layers.

3D APIs and objects have grown based 011 3D application needs. With faster

computers, the demands will grow, and we will see newer 3D concepts and

APIS. For example, traditional polygonal modeling is not Well suited for

rendering streaky objects like hair. Developers will experiment with soft-

ware modeling techniques. Techniques that Win favor with the develop-

ment community will probably be implemented in hardware.

5l-'
n:
<
n.

407

Ara
%

394 EPILOGUE THE FINALE

E.3.3

E.3.4

3D Scalability

Once again, the hardware and software spiral presents us, developers, with

the power—spectrurr1/scalability problem. In the 3D area, special features are

being introduced to control scalability, such as Procedural Textures, Levels

of Detail, and Progressive Meshes. '

Procedural Textures define textures as pararneterized images. The param-

eters can be varied based on the capabilities of the platform. The more

powerful the computer, the richer the textured image. Representations of

fire, water, and clouds are examples of some parameterized textures.

Levels of Detail and Progressive Meshes allow a 3D scene to be authored
with elaborate detail. On less powerful platforms, details are dropped in

order to provide real-time response, although at reduced richness.

Emerging Application Areas

As 3D technologies have progressed, more research is being invested in the

application of 3D into emerging areas. One such emerging area is informa-

tion visualization, which attempts to deal with the problem of parsing

through the large quantities of information unleashed upon us by the
computer age.

Spotfire, a Data Mining product from the Swedish IVEE Development AB,

and various Information Visualization projects in the Civiscape project at

MIT’s Media Lab are examples of efforts in this field.

Based on visualization research at Xerox PARC, InXight, a Xerox New

Enterprise Company, was launched to convert research efforts into usable

products. InXight markets an SDK with advanced UI controls such as

Hyperbolic Tree, Cone Tree, Table Lens, and Perspective Wall to manipulate

large quantities of data.

Look for more advances in 3D user interfaces and 3D controls. From there,

it won’t take long until 3D creeps into commonplace business and home

applications.

E.4 Multimedia in the‘ Home

Electronic mail and browsing for information (surfing the Web) are the pri-

mary activities on the Internet today. VVebTV seems to be providing a con-

tinuation of this model by making it easier to Web-surf in comfort.

408

SOME WEB SITES FOR FURTHER READING I 395

Much like the Sega and Nintendo entertainment machines, WebTV uses the

with TV as a display device for Vv’eb—surfing computers. As digital TVs enter the
7 marketplace, we will see more devices using the TV for display purposes.s

»r:V:lrse And we will herald a new class of applications to take advantage of the com-
r puting power in the home. V\’e will also see applications being developed

for electronic commerce, as soon as adequate security mechanisms and
ram_ APIs are developed.

: of For the PC to be used as the central compute facility in the home, it will
have to be powered on for use by remote devices. Answer: Instant On, a

new feature in Windows98, will allow the PC to be “awoken” by peripheral

red devices even though the PC may seem to be off. For example, an Internet
' call from the outside can awaken our PC to receive a mail messa e, or ourl in Y E Y

PC can wake up to act as an Internet answering machine.

Instant On ca11 offer “compute—power” to any smart device. Expect, there-

‘ h fore, a slew of new “peripherals” to control home devices—the VCR, air-
.m t e conditioning, or the sprinkler. Imagine, calling in on your vacation to turn
Orma_ off that iron!
g

9 Obviously all these advances will require new APIs and new communica-

tion protocols. More excitement for us programmers.

It AB, _ _
:ct at E.5 Some Web Sites for Further Reading

This Book

7 b1 http://Www.awl.com/cseng/ titles/0»201—30944—0;a e

s Multimedia Architectures

Pulate rdx, rsx, directx, rma, apple

Upcoming 3D Graphics Hardware
th ,
)m:re http://www.microsoft.com/hwdev/devdes/talis1.HTM

http://WWW. research.microsoft.com/SIGGRAPH96/Talisman

http ://WWW. intel.com/pressroom/archive/releases/lock.htm
http://WWw.real3d.com

Current 3D Graphics Hardwarel '_
16 pm http://www.3dfx.comL con-

http://www.atitech.ca

http://www.diamondmm.com

http://www.s3.com

409

396 EPILOGUE THE FINALE

Internet Multimedia

http://wWw.sdsc.edu/Vrml

http://Www.alphaworks.ibm.com/formula/bamba

http://www.ipix.com

3D User Interfaces

http://civiscape.media.mit.edu/civiscape

http://wwwinxight.com/indexshtml

http://wWw.ivee.c0n1

D>>

.‘J>CJ>’J>>>>>‘J>>D>
22??

410

A Audio architectures on PCs, 8-9
ActiVeX Audio data, 167-168

controlling, 126-127 Audio files, playing pulse coded modulation
and controlling DirectShow, 124-127 (PCM), 163-165

handling events, 12 Audio mixing and Di-rectSound, 171-181
AddSourceFilter() function, 116-117 Audio services
AGI (Address Generation Interlock), 280, 299-300 interfaces, 162

Algorithm, Huffman coding, 76 RealMedia, 162-168, 167-168

Alpha component, 232 adjusting Volume, 165-168
ALU (Arithmetic Logic Unit), 14 playing pulse coded modulation (PCM) audio files,
Animation 1 63-165

mixing with video, 132-133 Audio streaming, 194
objects, 20-22 Audio under Windows 95, 171-172
RDX library, 55-58 AV (Audio —Video), 57

API, RDX mixing with high—leVel, 55-69 AV1 (Audio Video Interleaved) file format, 57, 75
Applications, DirectShow, 109-129 ’
Architectures B

DirectSound, 173-175 Back buffer, 48, 50-51

processor, 11-18 Backgrounds, 21-22, 24-25
VN/indows multimedia, 74-76 defined, 19, 21

Architectures on PCs GD1 drawing sprites and, 26
3D Video, 7-8 measuring performance, 266
audio, 8-9 mixing 3D objects on 2D, 263-266

Asynchronous interfaces, 147-148 mixing, 131-137
Attribute functions, 59 repainting using Direct3D, 226-230
Attributes, generic, 59

411

Backgrounds (Cont)
bltting Direct3D backgrounds, 229-230
creating Direct3D backgrounds, 228-229
looking at Direct3D materials, 227-228

Base class, 59

BeginScene(), 265
B frames, 77

Bi-directional frames, 77
B105, 369

Blt function, sprite, 34
Blt routine, 36

]3lt() routine, 321

l3ltSprite() function, 305

Blt sprites, hardware acceleration to, 51-53
Blts with GDIS, transparent, 22
BPU (branch prediction unit), 294
Branch

instructions, 360

performance
considerations, 359-360
with event counters, 361

predictions, 294-297, 359-361

BTBs (Branch Target Buffers), 279, 282, 293, 340,
350-351, 355, 359-361

and branch prediction, 294-297
closer look at, 295

Buffering, triple, 51
Buffers

back, 48, 50-51

Branch Target, 279, 282, 293, 340, 350-351, 355,
359-361

Directsound, 179-180
execute, 214-217, 221-222

front, 48

Memory Order, 352
Reorder, 351-352, 365-367
sound, 177, 179-181
Write, 300-302, 313-314, 380-381, 386-388
Z, 241-245, 254-255

C

Cached emitters, 186-187

Cached memory, 384-385
Caches

data, 353-355

differences, 380
instruction, 353-355

CActiVeMovie, 124

CAD (Computer—Aided Design), 198
CalibrateTimer(), 344
Calls 3

IDirect3DDeVice::BeginScene(), 222
IDirect3DDeVice::EndScene(), 222, 230

CBackgroundGrfx drawing speed, 53-54
CBasePropertyPage class, 103
CBaseRenderer, 96
CDirectShow::SetFileName(), 125
CFruitFilter, 115

CheckMediaType() function, 89
CheckTransform() function, 94
Classes

base, 59

CBasePropertyPagc, 103
COffscreenSurface, 43
CTextOutFiltcr, 99-100

implementing a simple sprite, 34-35
RDX sprite, 61
source filter, 84-85
source stream, 88

Client, server to, 143-144

Clippers, DirectDraw, 30
CoCreateInstance(), 185

CoCreatelnstance() function, 1 12
Codecs, Video, 76-77

Coding algorithm, Huffman, 76
COffscreenSurface class, 43

CoInitialize() function, 112, 185
Color formats

RGB, 73
YUV, 73-74

Coloring pixels, 231-232
COM (Component Object Model)

accessing custom interfaces, 119-120
manual construction of filter graphs, 114-119
paradigm, 98
showing filtcr property pages, 1 21-122

COM (Component Object Model) interfaces, 185
Command, VVriteDVVord, 306

CompleteConnect() function, 97
Complex surfaces, 49

/“\/“\f‘\/‘tf‘,f‘if\f*/‘r/‘r/‘r/\f'\/“/'\K“\K“\K'\/‘\/‘\’W

412

185

Components
alpha, 232
D ‘rectShow, 79-81

specular, 232
Compression, intra—frame, 76
Con erencing, rnultiniedia, 392
Con ext-swapping, 221-222

Copy mode, 232
Cost, post refresh, 51
Cou iter library, PMonitor event, 345-347
Cou 1t€IS

event, 357-359, 361

performance, 334-335
CPL ID, 285-286

CreateEvent() function, 122
CreateExecuteBuffer () , 215

Create() function, 124
CreateInsta.nce() function, 85, 103
CreateSurface(), 33, 237

CSprite, overview of assembly version of, 302-305
CSpriteGrfx drawing speed, 53-54
CSurfaceBackBuffer drawing speed, 50-51
CSurfaceOffscreen::Render, 46

CSurfaceRdx drawing in full screen mode, 64

CSurfaceRdx speed, 62-63
CSurfaceVidMem drawing speed, 46-47
CTextOutFilter, 98, 102-103, 115,121

classes, 99-100
declarations, 101

D

D3DDEVlCEDESC, 211

descriptors, 206
D3DENUMRET CANCEL, 207
D3DEXECUTEBUFFERDESC, 215

__D3DINSTRUCTlON structure, 217

D3DL1GHTSTATE_MATERlAL operand, 260
d3dmacs.h, 220
D3DlV1ATERlAL structure, 227-228

_D3DOP_TRlANGLE, 218
D3DOP_EXlT, 218
D3DOP_,POlNT, 217
D3DOP_PROCESSVERT1CES, 218

D3DOP_STATELIGHT opcode, 227, 260
D3DOP_STATERF,NDER, 234-235

INDEX I 399

D3DOP_STATER13NDER opcode, 230
D3DRENDERSTATE_DITHERENABLE, 234
D3DRENDERSTATE_SHADEMODE, 235
D3DRENDERST1-\TE_TEXTUREl\1APBLEND, 232
D3DSHADE_FLAT, 235
D3DTBLEND_COPY, 232, 241
D3DTBLEND_l\/IODULATE, 240
D3DTLVER"‘EX.dcColor, 228
D3D 1LVER EX structure, 238

D3D'fRIANGLE structure, 225-226

DACs (digital to analog converters), 29
Data

audio, 167-168
caches, 353-355
flows, 143-144

knowing, 373-374
management objects, 144-147
maximizing aligned, 383-384
moving, 92-93
types, 316-317

DCI (Display Control Interface), 6
DCU (data controlled unit) splits, 382
dcvDiffuse, 228

DDSCAPS_3DDEVICE flag, 209

DDSCAPS_VIS1BLE flag, 41
DDSURFACEDESC, 32

structure, 40

DDTEST tool, 31
DEBUGGING, 35

Decay, reverberation, 193
Decay time, 193
DecideBufferSize() function, 90
Declarations, CTeXtOutFilter, 101
Decoders, instruction, 361-362

Descriptors, D3DDEV1CEDESC, 206
Device~independence benefits, 30
Device memory, writing directly to, 30
Device—specific acceleration, accessing, 30
Direct3D, 197-224

backgrounds, 228-229
bltting backgrounds, 229-230
coloring pixels in, 231-232
demo time, 223-224
and DirectDraw, 203

enhancing performance, 247-262

413

400 I INDEX

Direct3-D (Cont)

measuring shading options, 251-256
optimizing texture mapping, 261-262
triangle speed, 247-251
using ramp drivers, 256-261

demo time, 35-36

drawing a sprite on, 35
redrawing backgrounds on, 36

speed for drawing sprites and backgrounds, 37
support capabilities models, 30

inside, 203-204 DirectDraw Lock section, 340

introduction to, 199-202 Direct listener objects, 186-187
immediate mode, 201-202 DirectShow

pros and cons, 202
retained mode, 200-201

looking into, 225-226
rendering engine, 203-204
revving up, 204-223

enumerating 1Direct3DDevices, 206-208
execute buffers, 214-217, 221-222

execute operations, 217-218
extending surface for 3D, 210-211
IDirect3DDevice creation, 208-209

IDirect3D object, 205

mapping using viewports, 212-214
operations rendering triangles, 218-221
palette preparation, 210
results from 31) devices, 222-223

talking to 3D devices, 214-217
texture compression, 237

texture mapping with, 235-241
Z—buffering with, 241-245

DirectDraw

Clippers, 30

conditions for using, 30-31
and Direct3D, 203
features of, 28-30

OFFSCREENSURFACE, 29-30
PRIMARYSURFACE, 29

~ surface objects, 29
gives direct access to graphics cards, 29
hardware acceleration via, 39-54

Hardware Emulation Layer (1-TEL), 28
introduction to, 27-28

objects, 31

and page flipping, 49
page flipping model, 48
Palettes, 30

primarysurfaces, 27-38
compositing objects on, 37-38

ActiveX, and controlling DirectShow, 124-127
ActiveX, handling events, 128

adding source filters, 116-1 18
applications, 109-129
COM

accessing custom interfaces, 119-120
automatic construction of filter graphs, 112-

1 14

manual construction of filter graphs, 114-119
showing filter property pages, 121-122

components, 79-81

creating events under, 122-123
filter graphs defined, 81-82
filters, 79-108

adding filters to registry, 105-108
adding interfaces, 98-100
adding property interfaces to filters, 101-103

adding property pages to filters, 100-105
creating source filters, 83-93

implementing property page interfaces,
l03—l05

overview on samples, 83

and registry files, 105-106
rendering filter creation, 96-98
self-registration, 106-108
transform filter creation, 93-95

understanding filters, 82-83
mechanisms for working on filter graphs, 110-111
playing files using ActiveX interface, 124-126
rendering filters, 118
transform filters, 118

DirectSound

architecture, 173-175

audio mixing with, 171-181
audio under Windows 95, 171-172
buffer creation, 179-180

controlling primary sound buffers, 179-181

414

features, 172-173

playing a VVAV file using, 175-179
creating sound buffers, 177
demo time, 178
DirecLSound structures, 176

initializing DirectSound, 175-176
mixing two WAV files, 178-179
playing sound, 177-179

DirectSoundBuffer object, 180
DirecLSoundCreate() function call, 175

DirectX Software Development Kit (SDK), 6, 9,
28, 31

DLL (Dynamic Link Library), 112
DllRegisterServer(), 107
DllU11registerServer(), 107
Doppler effect, 192-193
DoRenderSamp1e() function, 98
Draw() function, 161

Drawing sprites, 41-42
Draw order, 133

DSBCAPS_GI_OBALFOCUS flag, 178
Dual pipelined execution, 297-300
D1/VORD, 303, 308, 369

aligned start addresses, 37
Dynamic analysis, tune, 340-343
Dynamic prediction, 295

E

EBS (event—based sampling), 334, 341-342
Editor, graph, 110
EDO (Enhanced Data Out) memory chip, 376
Emitters, cached, 186-187

EMMS (Empty MMX Technology State), 315-31 6
EndOfSprite, 305
EndScene(), 265
Event counters, 357-359, 361

eventCreate() function, 135

Event interrupt, performance counter, 341
Events

ActiveX and handling, 128

creating under DirectShow, 122-123
Execute buffers, 214-217, 221-222

F

Fetch performance with event counters, 357-359

INDEX I 40']

FGE (Filter Graph Editor), 81, 111
FGM (Filter Graph Manager), 80, 82, 85, 110, 122

fgPlay() function, 135
fgvidSetTransparencyColor() function, 137
Field pictures, 72

File, *.grf, 110
File format, Audio Video Interleaved (AVI), 57, 75

FileFormatObject::GetPacket() function, 148
File—formatp1ug-ins, 141-142

building, 150-157
file headers, 153-156

generating data packets, 156-157
initializing, 150-153
stream headers, 153-156

streaming, 156-157
File headers, 153-156
Files

*.grf, 81
mixing WAV, 1 88

playing pulse coded modulation (PCM) audio,
163-1 65

playing WAV, 187-188
registry, 105-106

File—system plug—ins, 141-142
FillBuffer(), 93

function, 92

Filter graphs, 112-119
COM automatic construction of, 112-114

defined, 81-82
manual construction of, 114-119

working on, 110-111
Filters

adding property interfaces to, 101-103
adding property pages to, 100-105
adding to registry, 105-108
building list of, 115
connecting two pins, 118-119
CTextOut, 115
Directshow, 79-108

property pages, 121-122
rendering, 83, 96-98, 118

self—registration, 106-108
source, 82-93, 116-118
transform, 83, 93-95, 118

types, 82-83

415

402 I INDEX

FindPin() function, 119

Flags
DDSCAPS_3DDEV1CE, 209

DDSCAPS_'\/ISIBLE, 41
DSBCAPS_GIOBALFOCUS, 178

Flip() function, 50
Flippable surfaces, rendering, 50
Fo1lowMouse(), 264, 268

Format, RGB8 pixel, 33

FP (floating—point)
instructions, 3 15—3 16

registers, 3 14—3 15
fps (frames per second), 132
Frames

B, 77

bi—directional, 77
1, 76
inter, 77

interlaced Video, 72

key, 76
non-interlaced video, 72
P, 77

predicted, 77
Front buffer, 48
Full screen modes

CSurfaccRdX drawing in, 64
with RDX, 63-64

Function calls, DirectS0undCreate(), 175
Fun ctions

AddSourceFi1ter(), 116-17
attribute, 59

BltSprite(), 305
CheckMediaType(), 89
CheckTransform(), 94
CoCreate1nstance(), 112

CoInitialize(),112, 185

CompleteConnect(), 97
Create(), 124
CreateEvent(), 122
CreateInstance(), 85, 103
DecideBufferSize(), 90

DoRenderSamp1e(), 98
Draw(), 161

eventCreate(), 135

fgPlay(), 135
fgvidSetTransparencyColor(), 137

FileFormatObject::GetPacket(), 148
Fi1lBuffer(), 92
FindPin(), 119

F1ip(), 50
GetCurFile(), 87

GetDe1iveryBuffcr(), 95
GetFi1eHeader(), 153

GetMediaType(), 89
GetPacket(), 148, 156-57

GetI’ages(), 102
G etI’ropertyBuffe1’(), 146
GetPropcrtyUIrONG32(), 146
GetRendcrerInfo(), 157
G ctStreamHeader(), 154
IBaseFilter::EnumPins(), 118

IBaseFilter::QueryInterface0, 120-21
lDirect3DDevice::Execute(), 222
IDirect3DEXecuteBuffer::Lock, 216

IDirectSoundBu1‘Fer::SetFormat(), 179

IFilterGraph::FindFilterByNa1ne(), 120
IGraphBui1der::AddS0urceFflter(), 115
IGraphBuilder::Connect(), 119
IMediaContro1::AddSourceFi1ter(), 115
IMediaEvent::FreeEventParams(), 123

IMediaEvent::GetEventHandle(), 122

IMediaSample::GetPointer(), 95
InitFileFormat(), 151

Init() load, 23
IRMAAudioStrea1n::GetStreamVolume(), 166

IRMAFileObject::Init(), 152

IRMAPlugin::GetPluginInfo(), 149
IUnKnoWn::NonDe1egatingQuery1nLerface(), 87
Load(), 87,117
LoadFilter(), 118

Lock(), 241

NonDelagationQueryInterface(), 100
OnActivate(), 104

OnBegin(), 159
OnBuffering(), 159
OnConnect(), 104
OnMouseClick(), 165

OnPacket(), 158
OnPause(), 160
OnP0stSeek(), 160
OnPreSeek(), 160
OnThreadCreate(), 91

rxr-xrwr-\r\r\r“\r“\r“\r*\r*\v’fir‘.r‘.

416

,87

OnThrcadDcstroy(), 91
OnTimeSync(), 160
PlaySound(), 172
Pmon32ReadCounters(), 346

QueryInterface(), 100, 152
Read(), 153

ReadDone(), 155

ReadTimeStampCounter(), 344
Receive(), 95
RenderFile(), 111-13,116
RMACreateInstance(), 149
Seek(), 153
SetEnab1ePositionControls(), 127
SetOrientation() , 191
SetPosition(), 191

SetProperties(), 90
SetShowControls(), 127

SetShowPositionControls(), 127

sprite Blt, 34
srfDraw(), 134-36
StartStream(), 158
TimerCreate(), 135
Unlock(), 241
UseVV’indow(), 161

VV’aitForSingleObject(), 123

G

GDIS (Graphics Device Interfaces), 4, 6, 27-28, 30
drawing sprites, 22-24, 26
overview, 19-20

speed of, 26
transparent Blts with, 22

Generic attributes, 59

GetCurFile() function, 87

GetDeliveryBuffer() function, 95
GetFileFormatInfo(), 150
GetFileHeader() function, 153

GetMedia'l‘ype() function, 89
GetPacket() function, 148, 156-157

GetPages() function, 102
GetPropertyBuffer() function, 146
GetPropertyULONG32() function, 146
GetRendererInfo() function, 157
GetStreamHeader() function, 154
GetSurfaceDesc(), 33, 41

GPF (General Protection Fault), 42-43

INDEX I 403

Graph editor, 110
Graphics device independence, 4
Graphics page flipping defined, 47-48
Graphs, filter, 81-82, 110-119
*.grf file, 81,110
GUID, 98, 206, 208

GUID (Global Unique Identifier), 82

H

HAL (Hardware Abstraction Layer), 173
Hardware .

3D spiral, 393
acceleration

accelerating Offscreen to primary transfer by
page flips, 47-50

to Blt sprites, 51-53

CBackgroundGrfx drawing speed, 53-54
creating Offscreen surfaces, 39-41

CSpriteGrfx drawing speed, 53-54
CSurfaceBackBuffer drawing speed, 50-51
CSurfaceVidMern drawing speed, 46-47
demo time, 42-43

drawing sprites on DirectDraw Offscreen sur-
faces, 41-42

finding, 43-44

Offscreen surface drawing speed, 43
With RDX, 63-66

setting up for, 44-46
via DirectDraw, 39-54

for Internet, 392

page flipping, 47
spiral, 389-390
support of page flipping, 48

Headers

file, 153-156
stream, 153-156

HEI. (Hardware Emulation Layer), 28, 43-44
Homes, multimedia in, 394-395

HTML (HyperText Markup Language), 141
Huffman coding algorithm, 76

I

IA (Intel Architecture) processors, 278
IBaseFilter::EnumPins() function, 118

IBaseFilter::QueryInterface() function, 120-121

ICs (integrated circuits); See Memory chips

417

~,1—1,5“:‘cw’

a.«z@_»:i\)\~-nM.».«g-;».a_gnt<4v»,x~,v.:;«;.,2.3;‘;
ax,-.m«.,zt:&s11;,,_may-9-

404 I INDEX

IDirect3D::CreateViewport(), 213
1Direct3D::EnumDeVices, 206, 208
1Direct3D::Release(), 205

1Direct3DDevice::BeginScene() call, 222
IDirect3DDeVice::EndScene() call, 222, 230
IDirect3DDeVice::Execute() function, 222

IDirect3DDevice::GetCaps, 211
IDirect3DDeVice::GetCaps(), 243
IDirect3DDeVice::Release(), 211
IDirect3DDeVice creation, 208-209

IDirect3DDeVices, 206-209, 215, 235

IDirect3DExecuteBuffer::Lock function, 216

IDirect3DExecuteBuffer object, 216
IDirect3DMateria1 interface object, 228
IDirect3D objects, 205

IDirect3DRl\/IVieWport::SetFront(J, 212
IDirect3DTexture::GetHandle(), 237
IDirect3DViewport::Clear(), 229

IDirect3DViewport::SetBackground(), 227
IDirect3DViewport::SetViewport(), 213
IDirectDraW::EnumSurfaces(), 40
IDirectDraw::Release(), 205

IDirectDrawSurface2::Flip(), 50
IDirectDrawSurface, 209

IDirectDrawSurface:;GetSurfaceDesc(), 33

IDirectDrawSurface::Release(), 211, 264
IDirectSoundBuffer::SetFormat() function, 179

IFi1terGraph::FindFilterByNan1e(J function, 120
1FilterGraph::RenderFile(), 111
1—frames, 76

1GraphBui1der, 112

IGraphBuilder::AddSourceFilter() function, 115
IGraphBui1der::Connect() function, 119

IGraphBuilder::QueryInterface(), 114
11D (Interaural Intensity Difference), 184
IMediaControl::AddSourceFilter() function, 115

IMediaEVent::FreeEventParamsO function, 123
IMediaEVent::GetEVent(), 123

IMediaF.Vent::GetEVentHandle() function, 122
IMediaPosition, 114

IMediaSample::GetPointer() function, 95
Immediate mode, 200-202

Index, StreamCount, 154
InitFileFormat() function, 151
Init() load function, 23

InitPlugin O, 164

Input pins, 118
Instruction caches, 353-355
Instruction decoders, 361-362
Instruction fetch units, 355-359
Instructions

PCMPEQB, 322

prefetch, 293-294
RDTSC, 344

Intel, 13

Intel Architecture Optimization Manual, 334
Intel software, demo of, 395-396

Interface object, IDirect3DMateria1, 228
Interfaces

adding, 98-100
asynchronous, 147-148
Audio Services, 162

Component Object Model (COM), 185
custom, 119-120

implementing property page, 103-105
IRMAFileFormatObject, 147
IRMAFileResponse, 147
nonblocking, 147
playing files using ActiVeX, 124-126
property, 101-103

Inter—frames, 77

Interlaced Video format, 72
Internet

hardware for, 392

languages, 390-391
multimedia, 390-392

and RealMedia, 139-168

Interrupt, periodic timer, 341
Intra—frame compression, 76
IRMAAudioPlayer, 164
IRMAAudi0Stream::GetStreamVolume() function,

166

IRMABuffer objects, 144-145

IRMAFileFormatObject interface, 147
IRMAFi1eObject, 151
1RMAFileObject::Init() function, 152
IRMAFi1eResponse interface, 147
IRMAFormatResponse, 151
1RMAPackets, 147, 157

IRMAPlugin, 157

1RMAP1ugin::GetP1ugin1nfo() function, 149
IRMASimpleWindow, 161

IRl\
IR1\
IR1\
ITI

IUn

d':lUQU'5=3Lz-9

418

IR1\4AStrcam, 158
IRMAValues, 145-146

IRMAVolume object, 167

ITD (Interaural Time Delay), 184
IUnknown::NonDelegatingQueryInterface() func-

tion, 87

1 .

IMF (Java Media Framework), 391

K

Key frames, 76

L

Languages, Internet, 390-391
Libraries

PMonitor event counter, 345-347

RDX animation, 55-58

Lighting module, 204
Lit texture maps, 240-241
LoadFilter() function, 118
Load() function, 87, 117
Lock(), 23, 48

functions, 241
Lock section, DirectDraw, 340

INDEX I 405

subsystems, 3 74-3 79
architectural overview, 374-375

memory access patterns, 375-377
memory pages, 375-377

Video, 385-388

Memory chips, Enhanced Data Out (EDO), 376
Memory optimization, 373-388

accessing cached memory, 384-385
architectural differences

caches, 3 80

data controlled units (DCUS), 382

partial memory stalls, 382-383
VVrite b uffer differences, 3 80-3 81

architectural differences among Pentium proces-
sors, 379-383

knowing data, 373-388
maximizing aligned data, 383-384
memory subsystems, 3 74-3 79
memory timing, 3 77-3 78
MMX stack accesses, 3 83-3 84

performance considerations, 378-379
writing to Video memory, 385-388

spacing out writes to Video memory, 386-388
using aligned accesses to Video memory,

385-386

Write buffers, 386-388

M Memory Order Buffer, 352
m_AMControl, 125 Memory stalls, 382-383

Management objects, data, 144-147 Memory type, VVrite Combining (VVC), 350, 353
Mapping Metafiles defined, 143

texture, 232, 261-262 MFC (Microsoft Foundation Classes), 124

using Viewports, 212-214 Microsoft
Maps, texture, 271
MCI (Multimedia Command Interface), 5, 74
Media on PC, overview of, 3-9

3D Video architectures on PCs, 7-8
audio architectures on PCS, 8-9

background, 3-4

graphics device independence, 4
motion Video under VVindows, 5

multimedia gaming under VVindows 95, 6-7
memcpy, 3 7
Memory

allocation objects, 144-145
cached, 384-385

pages, 375-377

Component Object Model (COM) interface, 185
Direct3D, 197-224
DirectDraw, 27-28
DirectX, 28

Software Development Kit (SDK), 28
MIME types, 144, 157
Mixing

animation with Video, 132-13 3
with D irectSound audio, 171-181

introduction to, 131-133 ‘

in sprites, 266-270

sprites, backgrounds, and Videos, 131-13 7
sprites with video, 132
touching audio data before and after, 167-168

419

406 I INDEX

Mixing (Cont)
in Videos, 270-271

Videos on videos, 137
WAV files, 188

Mixing.3D objects on 2D backgrounds, 263-266
Mixing with RDX, 133-137

playing videos with DirectShow interfaces,
1 34-1 36

sprites on top of Videos, 136
videos on videos, 137

mmsystemlib, 171
MMX stack accesses, 383-384

MMX technology, 12-14, 278, 283, 285-286
architectural overview, 31 3-316

EMMS mixing MMX and FP instructions,
3 15-3 16

fl0ating—point (FP) registers, 314-315
Write buffers, 313-314

data types, 316-317

debugging, 320
exceptions to general Pentium rules, 323

instruction pairing rules, 324
instruction scheduling rules, 325-326
instruction set, 317-319
a look at, 311-312

MMX versus integer implementation of sprites,
330

multipliers, 326
optimization rules and penalties, 323-326
Pentium processors with, 31 1-331

performance analysis of sprites, 327-330
processors, 353

rendering sprite samples, 319-322
SIMD, 312

MOB (Memory Order Buffer), 352
Models

ramp, 233-234
RGB, 233

Modes

copy, 232
immediate, 200-202
retained, 200-201, 212
RG15, 255-256

shade, 231-232
Modules

lighting, 204

raster, 204

transform, 203
Motion video

concepts, 71-72
terms, 72

MOVD instructions, 316-17

MOVQ instructions, 317

MPEG (Motion Picture Encoding Group), 6
MSDN (Microsoft Developer Network), 23
Multimedia

conferencing, 392
gaming under Windows 95, 6-7
in homes, 394-395
Internet, 390-392

on Internet, 391
remote, 390-392

Windows architectures, 74-76

N

Nonblocking
interfaces, 147
Reads features, 293

NonDelagationQueryInterface() function, 100
Noninterlaced video format, 72

0

Object rendering, 268
Objects

accelerating with RDX, 64-66
animation, 20-22

compositing, 37-38

data management, 144-147

dynamic memory allocation object, 144-145
indexed list objects, 145-146
IRMABuffer, 144-145

IRMAPacket, 147
IRMAValu es, 145-146

packet transport objects, 147
direct listener, 186-187
DirectSoundBuffer, 180
IDirect3D, 205

IDirect3DExecuteBuffer, 216
indexed list, 145-146
IRMABuffe1‘, 145-146
IRMAVolum e, l 67

packet transport, 147

420

RDX, 269-270

surface, 29
3D, 263-266

objSetDestination(), 270
OFFSCREENSURFACE, 29-30
Offscreen surfaces

creating, 39-41
drawing speed, 43
drawing sprites on DirectDraw, 41-42

OnActivate() function, 104

OnBegin() fundion, 159
OnBuffering() function, 159
OnConnect() function, 104
OnMouseClicl(() function, 165
OnPacket() function, 158

OnPause() function, 160
OnPostSeek() function, 160
OnPreSeek() function, 160
OnThreadCreate() function, 91

OnThreadDestroy() function, 91
OnTimeSy11c() function, 160
Opcodes

D3DOP_STATELlGHT, 227, 260
D3DOP_STATERENDER, 230

Operands, 217
D3DLlGHTS'l"ATE_MATERlAL, 260

Optimization tools, 333-347
Order, draw, 133

Output pins, 118

P

Packet transport objects, 147
Page flipping

accelerating Offscreen, 47-50
DirectDraw, 48

graphics, 47-48
hardware, 47

hardware support of, 48
setting up DirectDraw to use, 49

Pages
filter property, 121-122
property, 82, 100-105

Palettes

DirectDraw, 30

handling, 270
preparation, 210

INDEX I 407

Palletized targets, 253

Paradigm, COM, 98
Partial memory stalls, 382-383

Partial register stalls, 383
PCMPEQB instruction, 322

PCM (pulse coded modulation), 163-165
PCs (personal computers)

and 3135, 197-199
3D video architectures on, 7-8
audio architectures on, 8-9

Pentimn 11 processors, 283-285, 349-371
architectural overview, 350-353

life cycles of instructions, 351-352
branch predictions, 359-361

branch performance considerations, 359-360

branch performance with event counters, 361
operational overview, 359

comparing with MMX technology processors,
353

comparing with Pentium pro processors, 352-353
data caches, 353-355
instruction and data caches, 353-355

operational overview, 354-355

performance considerations, 355
instruction decoders, 361-3 62

operational overview, 361
performance considerations, 362

instruction fetch unit, 355-359

fetch performance with event oounters, 357-359
operational overview, 355-356
performance considerations, 356-357

operational overview, 365-366
performance considerations, 366-367
register alias table (RAT) units, 362-365‘

operational overview, 362-363
performance considerations, 364-365

rendering sprite on Pentium 11, 367-369
Reorder Buffers (ROBs) and execution units,

365-367

retirement unit, 367

speed up graphics writes and Write Combining
(VVC), 369-371

operational overview, 369-371
performance considerations, 371

Pentium processors, 281-285, 289-309
architectural overview, 29-291

421

403 I INDEX

Pentium processors (Cont)

branch prediction and branch target buffer
(BTB), 294-297

closer look at BTB, 295

performance considerations, 296-297

dual pipelined execution, 297-300
dual pipeline execution

Address Generation Interlock (AG1), 299-300
operational overview, 297

Pentium integer pairing rules, 298-299
performance oonsiderations, 298

family Of, 12-14, 277-287
instruction and data L1 caches, 291-193

operational overview, 2 91
performance considerations, 291-293

instruction prefetch, 293-297
operational overview, 293-294
performance considerations, 294

memory optimization, 379-383

with MMX technology, 283, 311-331
architectural overview, 313-316

data types, 316-317
EMMS mixing MMX and FP instructions,

3 1 5-3 1 6

floating—point (PP) registers, 314-315
instruction set, 317-319

a look at MMX technology, 311-312
optimization rules and penalties, 323-326
performance analysis of sprites, 327-330
rendering sprite sample, 319-322
SIMD, 3 12

VVrite buffers, 313-314

with MMX technology processors, 353
Pentium 11 processors, 283-285

Pentium processors with MMX technology, 283
Pentium Pro processors, 282-283

revisiting sprite samples, 302-308
analyzing performance, 306-308

overview of assembly version of CSprite,
302-305

scheduling codes, 308
Write buffers, 300-302

operational overview, 300-301
performance considerations, 301-302

Pentium Pro processors, 282-283, 352-353, 382

Performance

counters, 334-335, 341

optimization tools

PMonitor event counter library, 345-347
read time stamp counter (RDTSC), 343-345

Periodic timer interrupt, 341
P frames, 77
Pictures, field, 72
Pins

input, 118
output, 1 18 .

Pipelined execution, dual, 297-300
Pixels

coloring, 231-232
RGB8 format, 33

PlaySound() function, 172
Plug—ins

building file—format, 150-157
building rendering, 157-162
file—format, 142

fi1e~system, 142
rendering, 141-142
requirements for all, 148-150

Pmon32Init(), 346

Pmon32ReadCounters() function, 346

PMonitor event counter library, 345-347
PN (Progressive Networks), 140
Post refresh cost, 51

Predicted frames, 77
Prediction

branch, 294-297

dynamic, 295
Prefetch instructions, 293-294

operational overview, 293-294
performance considerations, 294

PRIMARYSURFACE, 29

PrimarySurface::Blt, 43-44
Processor architecture

overview, 11-15

Pentium family, 12-14
system overview, 14-15

Processor family, Pentium, 277-287
concepts and terms, 278-281

identifying processor models, 285-286
MMX technology, 278

422

Processors

Intel Architecture (IA), 278
Pentium 11, 349-371

scalar single instruction, single data (SISD), 312
Property

interfaces, 101-103

pages, 82, 100-105, 103-105, 121-122

Q

QTVV (QuickTime for Windows), 5-6, 75

Query1nterface(), 205, 211, 235
function, 100, 152

R

Ramp
color models, 233-234
drivers, 256-261

creating materials for, 257-259

loading, 256-257
performance, 261
rendering triangles with, 259-260
using first try day, 257

Raster module, 204

RAT (register alias table) units, 362-365
RAT (Register Allocation) unit, 351-352, 360

RDTSC (read time stamp counter), 343-345
RDX (Realistic Display Experience) mixer, 7, 55-69

accelerating objects with, 64-66
animation library, 55-58
CSurfaceRdx drawing in full screen mode, 64
CSurfaceRdx speed, 62-63
Demo Time, 62-63

drawing sprites, 62
features of, 56-57

full screen mode with, 63-64

generic objects with, 59-60
hardware acceleration with, 63-66
interface convention, 59

mixing with, 133-137
mixing with high-level API, 55-69

objects, 269-270
programming model, 60

pros and cons, 58
sound, 75

sprite class, 61

INDEX I 409

and sprites, 267
surface creation, 60-61

using, 58-62
Read Allocate Cache, 380

ReadD one() function, 155
Read() function, 15 3

ReadTimeStampCounter() function, 344
RealMedia

asynchronous interfaces, 147-148
audio services, 162-168

building file—form at plug—ins, 15(L157
building rendering plug—ins, 157-162
data flows, 143-144

data management objects, 144-147
defined, 140

defines nonblocking interfaces, 147
and Internet, 139-168
overview of, 140-141

plug—in architecture, 141-143

requirements for all plug—ins, 148-150
server to client, 143-144

RealMedia Audio Services, 167-168

Receive() function, 95

Registers
floating—point (FP), 314-315
stalls, 383

Registry
adding filters to, 105-108
files, 105-106

Remote multimedia, 390-3 92
Render

operations, 239-240
states, 230-231, 234-235

RenderFile() function, 1 11-1 13, 116

Rendering
Direct3D engine, 203-204
filters, 83, 96-98, 118

flippable surfaces, 50
object, 268
performance, 255
plug—ins, 141-42, 157-162

sprites, 367-369
stages, 250-251

texture--mapped, 255
RENDERSTATE_TEXTURE1VIAPBLEND, 241

423

410 I INDEX

Reorder Buffer, 351-352
Reservation Station, 351
Retained mode, 200-201, 212
Reverberation

decay, 193
effect, 193

RGB8 pixel format, 33
RGB

color formats, 73
modes, 255-256

shading color models, 233

RLE (run length encoding), 76
RMACreateInstance() function, 149

RMA (Real Media Architecture), 6
ROBs (Reorder Buffers), 351-352, 363, 365-367
Routine, Blt(), 321
RSBs (Return Stack Buffers), 279, 283, 351

RSX 3D (Realistic 3D Sound Experience), 183-194
adding special sound effects with, 192-193

doppler effect, 192-193
reverberation effect, 193

audio streaming in, 194
creating cached emitters, 186-187

creating objects, 185
direct listener objects, 186-187
features, 184-185

mixing WAV files, 188

playing WAV files, 187-188
setting up 3D sound with, 190-192
true 3D sound, 188-190

RSX (Realistic Sound Experience), 9
*.rts, 143

RTSL (Real Time Session Language), 140-141
RTSP (Real Time Streaming Protocol), 140-141

5

Sampling, time-and event—based, 340-343

Scalability, 3D, 394
SDK (Software Development Kit), 6, 9, 28, 31
SDO (Source Data Object), 60
Seek() function, 153

Self-registration, filter, 106-108
Server to client, 143-144

SetEnablePositionControls() function, 127

SetMediaType(), 90
SetOrientation() function, 191

SetPositio11() function, 191

SetProperties() function, 90
SetShowControls() function, 127
SetShowPositionControls() function, 127
Shade modes, 231-232

Shading
options, 230-235

adding Z—buffers to recipes, 254-255
comparing 3D to 2D, 255-256
measuring, 251-256

teXture—mapping in triangles, 253-254
in triangles, 251-253

with ramp color model, 233-234
with RGB color model, 233

SIMD (Single Instruction Multiple Data), 311-312

SISD (scalar single instruction, single data) proces-
sor, 312

Software

3D spiral, 393
spirals, 390

Sound

3D, 190-192

effects, 192-193

playing, 177-178 _
Sound buffers ,

controlling primary, 179-181
demo time, 181

DirectSound buffer creation, 179-180

output format control, 179
creating, 177

Source filters, 82-93, 116-118
classes, 84-85

connection process, 89-91
create instance of, 85-88

moving data, 92-93
source stream class, 88

starting and stopping, 91-92
Source stream class, 88

Specular component, 232
Sprites, 20-21

Blt functions, 34
classes

implementing simple, 34-35
RDX, 61

defined, 19-20

with DirectDraw primary surfaces, 27-38

srt:

srf:
srf.‘
Sta
Sta
Sta

Sta

Sta
Str
Str
Str

Sit

SL'
Su
Su
Su

424

drawing, 35, 41-42
drawing RDX, 62
faster way of doing, 35
mixing in, 266-270
mixing with videos, 132
MMX versus integer implementation of, 330
performance analysis of, 327-330
rendering, 367-369
sample, 302-308, 319-322
using RDX to mix in, 267-269
and videos, 136

Sprites and backgrounds, GDI drawing, 26
Sprites in GDI, simple, 19-26

animation objects, 20-22
backgrounds, 21-22
sprites, 20-21

backgrounds, 24-25
demo time, 25

drawing sprites

and backgrounds, 26
using GDI, 22-24

transparent Blts with GDIS, 22
srtDraw() function, 134-36 »

srfSetDestinationMemory(), 271
srfSetDest\Nindow(), 267
Stack accesses, 383-384

Start addresses, DVVORD-aligned, 37
StartStream() function, 158
States

default values, 231

render, 230-231, 234-235

Static analysis, VTune, 336-340
StreamCount index, 154
Stream headers, 153-156

Streaming, 156-157
audio, 194

Structures

__D3DlNSTRUCT1ON, 217
D3DT1VERTEX, 238
D3DTRlANG1,E, 225-226
DDSURFACEDESC, 40

SUB, 364-365

Surface3D, 211

Surface objects, 29
Surfaces

2D, 264-265

INDEX I 411

3D, 264-265

complex, 49
querying and creating primary, 32-34
rendering flippable, 50

T

Targets, palletized, 253
TBS (time—based sampling), 334, 341
Texture compression, Direct3D, 237

Texture—mapped rendering, 255
Texture mapping, 232 -

with Direct3D, 235-241

optimizing, 261-262
setting up triangle vertices for, 238-239

Texture maps, 271
creating, 235-237
lit, 240-241

3Ds

backgrounds, 197-199
better, faster, cheaper, 392-394
devices, 222-223

emerging applications areas, 394
extending surface for, 210-211
hardware spirals, 393

objects, 263-266
and PCs, 197-199
scalabilities, 394

software spirals, 393
sound, 190-192
surfaces, 264-265
video architectures on PCs, 7-8

Time

decay, 193
and event-based sampling, 340-343

TimerCreate() function, 135
Timers

creating, 135
defined, 134

Timing, memory, 377-378

TimingApp, 51
Tools, DDTEST, 31
Transform

filters, 83, 93-95, 118
modules, 203

Triangles
controlling shading options, 230-235

425

412 I INDEX

Triangles (Cont)
changing default render states, 234-235
coloring pixels in Direct3D, 231-232
render states, 230-231

shading with ramp color model, 233-234
shading with RGB color model, 233

demo, 245

embellishing, 225-245
looking into Direct3D, 225-226
measuring rendering stages of, 249-250
operations rendering, 218-221
with ramp drivers, 259-260

repainting backgrounds using Direct3D, 226-230
speeds, 247-251
stages of rendering, 248
texture-mapping in, 253-254
texture mapping with Direct3D, 235-241

creating texture maps, 235-237

handling lit texture maps, 240-241
setting up render operations, 239-240
setting up triangle Vertices for texture map-

ping, 238-239
Z-buffering with Direct3D, 241-245

dealing with Z~buffering, 241-242
setting up for Z-buffering, 242-245

Triple buffering, 51
TSCs (Time Stamp Counters), 334-35
2Ds

backgrounds, 263-266
surfaces, 264-265

U

Unlock() functions, 241
UseWindow() function, 161

V

VBI (Vertical Blank Interval), 50
VFlatD, 31

VFW (Video for Windows), 5, 56, 75
Video architectures on PCs, 3D, 7-8
Video codecs, 76-77
Video formats

interlaced, 72
non—interlaced, 72

Video memory, 385-388

Videos

capturing and compressing, 72-74
mixing, 131-137
mixing animation with, 132-133
mixing in, 270—271

handling palettes, 270
video and texture maps, 271

mixing sprites on top ofl 136
mixing sprites with, 132
mixing videos on, 137
playing with RDX DirectShow interfaces, 134-136
under 1/Vindows, 71-77

motion, 5

motion video concepts, 71-72
overview of video codecs, 76-77
Windows multimedia architectures, 74-76

Viewports
mapping using, 212-214
multiple, 214

Volume, adjusting, 165-168
VTune

dynamic analysis, 340-343
introducing, 335-343
and miscellaneous performance optimization

tools, 333-347

static analysis, 336-340
systemwide monitoring, 340-343
time—and event-based sampling, 340-343
useful hints, 343

VxD (Virtual Device Driver), 345-346

W

WaitForSingleObject() function, 123
WAV files

mixing, 188

playing, 187-188
WC (Write Combining), 350, 353, 369-371
Windows

motion video under, 5
multimedia architectures, 74-76
95

audio under, 171-172

multimedia gaming under, 6-7
video under, 71-77

winmm.lib, 171-72

EN555

426

INDEX E 413

Write Allocate on a \A71'ite Cache Miss, 380 Y

Write buffers, 300-302, 313-314, 3 80-3 81, 386-3 88 Y U V color formats, 73-74
WriteDW'ord, 306, 308

Z

X Z-buffers

XOR, 364-365 adding to recipes, 254-255
With Dii‘ect3 D, 241-245

427

CDROM License Agreement Notice

The software contained on the enclosed disc may only be used under license by Intel Corporation. In order to use
the software, you must accept the License Agreement that will be presented to you for review at the time you first
access the contents of the disc. if you reject the License Agreement, please return the book and the disk, with all
packaging, to Addison Wesley.

Addison Wesley Longman warrants the enclosed disc to be free of defects in materials and faulty workmanship under
normal use for a period of ninety days after purchase. If a defect is discovered in the disc during this warranty period,
a replacement disc can be obtained at no charge by sending the defective disc, postage prepaid, with proof of pur~
chase to:

Addison-Wesley Developers Press
Editorial Department

One Jacob Way
Reading, MA 01867

After the ninety—day period, a replacement will be sent upon receipt of the defective disc and a check or money order
for $10.00, payable to Addison Wesley Longman, inc.

Addison Wesley Longman makes no warranty or representation, either express or implied, with respect to this soft‘-
ware, its quality, performance, merchantability, or fitness for a particular purpose. in no event will Addison Wesley
Longman, its distributors, or dealers be liable for direct, indirect, special, incidental, or consequential damages arising
out of the use or inability to use the software. The exclusion of implied warranties is not permitted in some states.
Therefore, the above @<clusi0n may not apply to you. This warranty provides you with specific legal rights. There may
be other rights that you may have that vary from state to state.

More information and updates are available at

http : //www.awi . com/cseng/titl es'/0-201~30944-0/

428

429

