
276

WE IMPROVING PERFORMANCE USING THE RAMP DRIVER I 257 l I

ndin to
ndauifio // init shared hardware ceviceCS1aredHardware *3Grfx = new Cshared-ardware():

// init direct draw L| it E1pGrfx->lnitDirectDrawtJ) return FAL5k; “ ‘ "' ”"‘ ‘ “ ‘ 1‘
mori’ to. i
no Cosg‘ . // init d3d iif iflpGrfx—>1aitDirect3D(USE¥RAMP>) return FALSE ;

// set up coozerative level ‘,

:1'edVjd_ if (!pGrf><->Se:CoopLevei(hwnd. DDSCL NORMAL)) return FALSE;

:rfor— L
1'1 mam-

Do revisit the code in Section 14.4.2 if you need to refresh your memory on

lb how to enumerate and select a driver.e

quarter 16.3.2 Using the Ramp Driver-—The First Try

,01u8%]ed Once we’ve loaded the new driver, can’t we just go ahead and create objects
‘ a CSurface3D and CTriangle3D or CTriangleTeX as usual and run them using

the Ramp driver, instead of the RGB driver? The answer is no.

VVhen we first tried running our simple triangle with the Ramp driver, we
3 ids ’ saw our background being painted correctly, but our CTriangle3D (shaded
lor triangle) was drawn as a black triangle. When we tried using CTriangleTex
on a PC (texture mapped triangle), our application crashed, right in the middle of

' the Ramp driver rendering module, with no clue as to what was wrong.

The key lies in remembering how the Ramp model operates—through

lookup tables (see section 15.3.4). The Ramp driver uses only the Blue

amfinta‘ component of a color specification and then accesses “a lookup table” to
dnven interpret the final result. The Ramp driver builds lookup tables from mate-

3 R_amP rial definitions. If no lookup table has been built (because, say, no material

algyll was created), then the rendering module crashes. Solution: create materials.to e

16.3.3 Creating Materials for the Ramp Driver

We have repeated the definition of the DBDWATERI AL structure here for easy
reference:

.t code

iclected

he pos-

ng the

i ll

277

258 I CHAPTER 16 UNDERSTANDING AND ENHANCING DiREc1'3D PERFORMANCE

typedet struct _D3DMATEP.IAL l
DWORD dwS’ze:
D3DCCLOR\/ALUE dCVDi Fuse;
D300: LORVALUE (j(jVAm[;1'em , ; Four different color components.
D3DCCLORVALUE dcvspecular;
DBDCCLORVALUE dcvEmissive;
DHDVAIUF dvPower ; O Spedfysharpnessofspecubrreflecfion;
D3DTE.‘<TJRE%ANDLE Wexture; ,\ <1 Combine a texture with specified coloring
I)‘/4(JRll dwRampSi 7e; \ {J Shading gradient of colors in Ramp/Mono modell D3DMATERlAL, *LPD3DMATERIAL; /

' 4

The Ramp driver builds lookup tables based on the specifications in a
material structure:

For materials with no specularity, the driver builds a linear “color ramp"
ranging from the ambient color to the maximum diffuse color.

For materials with specularity, the driver builds a two-stage color ramp;
the first stage ranges from the ambient color to the maximum diffuse col-

or, and the second stage ranges from maximum diffuse color light to the

maximum specular color. The gradient of the specular ramp is not linear,

and it is controlled by the dvPower field.

For materials with textures, the Ramp driver builds a color ramp for each
color in the texture.

The Ramp driver references the dwRampSize field to determine the size
of the ramp built for each color.

For example, the following code sequence builds a color ramp with sixteen
shades of red:

mMater1'alDesc.dcvDii°fuse.dvR D3D\/ALUE(l.OO);
mMatcrialDesc.dcvDiffuse.dvG — D3DvALUE(0.00);
mMaterialDesc.dCvDiffuse.dvB D3DVALUE(0.00);
m,Matcri‘a1Dcs:.hTexture —- NULL:
m_MaterialDesc.dwRampSize = 16;

In this next example, the Ramp driver builds a color ramp with eight shades
for each color in the associated texture:

278

IMPROVING PERFORMANCE USING THE RAMP DRIVER I 259

mMater1'aiDesc.dcvD1f:use.dvR — D3D\/ALLE(1.00);
mMater1'alDesc.dcvD1f‘use.dvG 4 D3D\/ALLE(l.|)[)1;
mMater1a1Desc.dcvD1f*use.dvB D3DV/\LLE(1.00);
mMater1a1Desc.hTe><ture = hTe><t.1re;
mMater1a1Desc.dwRarnpS1ze = 8

Rendering a Triangle with the Ramp Driver

Now that we’ve taken a look at how the Ramp driver builds its lookup

tables, let’s create a C’l‘riangleRarr1p to render a triangle with a shaded

Ramp driver.

BOOL CTF"aflgleRamp::lnit(LPDIRECT3I: pD3D, LPJIRECTDRAWPALETTE :Palette, [HM rReS)
{

Create material to “set” palette entries for C0l01‘.

pD3D—>CreateMateMai(&“n,pMater1a'Fns, NULL):
lll_MatEY'ldlDESC.CCVDl:fUSE.(l\/R = D33VALLE(1.00); ThCYCXU11'Ch3Hd1€i5NULL,
m_Mater1'alL)esc.ccvDi‘fuse.dvG = D3DVALLE(1.00): theMaxD'Lffusec010ris
m_Matem'a1Desc.ccvD1ffuse.dvB = D3DVALLE(1.00); wHITE.andthcRaInpSize
m_MaterialDesc.hTexture = NUI \; is 16.TheRaInpdriverwi11
m_Matem'a1Desc.cwRampSize = 16; cteatefnurteenShadesofgrav
m_pMater1'a|Fns—>SetMater"iaI(Xrm_MateMa11)esc); betweeneLAc»<andwHITE.
wi,pr~1ater1‘a1Fnsv>Getr-andie(p3dFrs, &m_h\4ater1‘a1);

*1

Standard code to allocate system memory space for an Execute Buffer i
#define nTRlS 1
ifdefme n\IERTS nT’zis*3
m_s4LEx = sizeof(D3DTLVER"EX) * HVERTS;
m_sztEx += s1zeof[D3DZNSTRUCTION) * 5:
m_sztEx += sizeof(D3DSTATEI * 2;
m_S7tlX 4= si7eot(D3DPHZC|SSVlRllCtS);
m_sztEx += sizeof(D3DTRIANGLE) * nT?IS;
m_pSys[xBuf+er = new BYTE Ln_s7t[x];
memset(m,pSysExBuffe“, O, m4sztEx?:

Use standard code to initialize vertices and then override the colors.

D3D‘LvERTEX *averts = (D3DTLVERTEX *)fl_pSySE><Buffer;
setup\/ert1‘ces(nTRIS. a\/erts);
‘lflt ";
for (i=0; 'l<FTRl52 i'++) l

d\/eFts[0].col0r‘ = RGBA_MAKE(OO0, 000, 255,
a\/er"ts[l].col0P = RGBA_MAKE(O00, 000, 128,
a\/er‘tS[2].c0l0r = RG3A_MAKE(O00, 000, 000.
a\/arts += 3;

The Ramp driver uses
only the blue compo-
nent and ignores the red
and green components.

279

260 I CHAPTER ‘[6 UNDERSTANDING AND ENHANCING DlRECT3D PERFORMANCE

The notable addition when setting up instructions for a triangle with the ramp
model is the D3 DOP_STATELIGHT opcode with its D3DLiGHTSTATE_MATERIAL

operand. (We’re using the 0P_STATE_LI Gl-.lT macro.) Any materials that

we’ve created have merely instructed the Ramp driver on how we want gm

lookup tables built. We use the D3 DOP_STATE _ I GHT instruction in an Execute
Buffer to instruct the Ramp driver to use a specific material for all future

rendering.

The D3DCP_STATELIGI-IT instruction seems to turn off the render state. The default
state is inoperative, and triangles will not be rendered unless you reset the render
state. The D3DOP_STATEREllDER specification must follow the D3DCP_S'ATEL1GHT
instruction, as render states set before the Light state become inoperative. You
may want to set all render states that concern you and not assume the value of
any state.

Set up instructions in Execute Buffer.

DNCRD dwstart : size0f(D3DTLVERTEX) * nVERTS;
LPVOID T3Tmp = (LFVOID)(m_pSysExButfe“ + dwstart);
0P_STATE_LIGHT(l, lpTmp):

STATE_DATA(D3DLIGHTsTATE_MATERIAL. m(hMateriai, lpTmp); <e~——~——~—e~——
OP_STATE_RENDER(1, lpTmp>;

STAT—kDATAID3DRENDERSTATE_SHADEMODE, D3DSHADE_GDURAUD, lpTmpl:
OP_PROCESS_VERTICES(1, lpTmp);

PROC’SSV[RTTCFS_DATA(D3DPROCE5SVERTiCtS_£OPY, 0, nVERTS, TpTmp):
OP‘TRIANGLE_LIST(nTRIS, TpTmp);
for (i=0; t<nTRIS; i++) {

((LP)3D'RIANGLE)TpTmp)->vl i*3+O;
((LPD3DTRIANGLE)TpTmp)—>v2 i*3+1:
((LPD3D'RIANGLE)TpTmp)->v3 = 1*3+2;
((LPD3DTRIANGLE)TpTmp)~>wFlags = O;
lpTm3 e ((char*)ipTmp) + sizeof(D3DTRIANGLE);

llll

dP_Ex1T«:ipTmp>;
DNCRD dw_th = (LPBYTE)lpTmp - m_psysExsmer - cwSta“t;

Tell the reriderer that we want it to use our material to render all future triangles.
Note that we reset the render state to Gouraud, even though this is the defaultstate.

We are now ready to render our triangle with the model. The Ramp model

only seems to set palette colors once an instruction stream has been exe-

cuted. Our code currently sets the palette on every End Scene. You may want

to execute an instruction stream with just the D3 D O LSTAT E L I G H T instruction

to update the palette during an initialization stage.
I GA

280

OPTIMIZING TEXTURE MAPPING I 261

How Does the Ramp Driver Perform?

Table 16-8 compares the performance of the RGB and the Ramp color

model drivers. We’ve shown results for various rendering options using

Scene 2 (16 X 5000) from our previous tests.

TABLE 1 6-8 Comparing the Direct3D RGB and Ramp Color Model Drivers

Gouraud T 55.3 milliseconds 4.3 milliseconds

thheecrlgiaduell Flat Shaded 55.3 milliseconds ~ l.8 millisecondsT

Ti L1GH¢ , Gouraud and Specular 60.3 milliseconds 4.3 milliseconds

rallVe- YOU Gouraud and Dither 55.3 milliseconds 20.6 milliseconds
ie value of

Texture Map and Gouraud 62.5 milliseconds l6.7 milliseconds

Texture Map Copy Mode l l4.4 milliseconds 14.9 milliseconds

Wow!

1 Look at the speed of the Flat Shaded, Goaraud, and Goaraud and Specular

options. Now we’re really screaming along!

The performance of Gouraud and Dither is not too shabby either. You

may not want to use it on all your triangles, but at this performance level,
you could use it on some.

The only “disappointment” is that the performance of texture mapping
in Copy mode has not improved. It would have been great ifwe could use

texture mapping Widely, but at this performance level you probably
would want to limit its use.

i_ mg

16.4 Optimizing Texture Mapping
5“ 6X3" Before we close, we’d like to include some advice from the Direct3D docu-
may want 1ne11tation on optimizing texture mapping:rstruction * 5

np model

I Texture mapping performance is heavily influenced by cache behavior.

Keep textures small; the smaller the textures are, the better chance they

have ofbeing maintained in the main CPU’s secondary cache.

281

262 I CHAPTER ‘[6 UNDERSTANDING AND ENHANCING DiREcr3D PERFORMANCE

WHAT HAVE

YOU LEARNED?

1 Do not change the textures on a per primitive basis. Try to keep polygons
grouped in order of the textures they use.

Use square textures whenever possible. Textures whose dimensions are

256 X 256 are the fastest. Ifyour application uses four 128 X 128 textures,
for example, try to ensure that all the textures use the same palette, and
place them into one 256 X 256 texture. This technique also reduces the

amount of texture swapping required. Of course, you should not use

256 X 256 textures unless your application requires that much texturing,
because, as already mentioned, textures should be kept as small as possible.

' Well, we’ve come to the end of this road. Cheers, and may all your 3D applj-
cations really sizzle.

We measured the performance of our simple RGB color model triangle, both its inner
workings and its various rendering options. We tried some optimizations and found that
the returns were decent for long Execute Buffers, but overall performance was still far from
stellar.

Next we learned how to use the Ramp color model driver, including using materials and
D3DOP_STATE-]GHT to direct the driver to create its lookup tables. And we were rewarded
with a dramatic improvement in performance.

We've spent sufficient time on DireCt3D’s Immediate mode. In the next chapter we will
cover mixing our 3D results with 2D and video.

282

CE

’°lYg0I1s e

ions are

:eXtures,
EH6, and

uces the

not use

xturing,
possible.

D appfi-

1 its inner
ound that
ll far from

erials and
rewarded

er we will

CHAPTER '17

um

Mixing 3D with Sprites,
Backgrounds, and Videos

You might as well ask, ”Why would I need to mix other graphics media types with 3D?"
Well, here are some scenarios that might prompt mixing:

a WHY READ

E THIS CHAPTER?

I You could create your application to be entirely 3D based. But 3D modeling and ren-
dering is performance intensive. Drawing some objects with faster 2D mechanisms
may bring an improvement in perlormance.

I You have your own object types, with their own rendering codes, and you want to in-
termingle these objects in a 3D model.

I Say you have designed 3D exploratorium within which you have real-life characters
communicating with the Explorer. You have motion video footage of these characters,
and you'd like to transparently overlay the video in your 3D world.

In short, you may want to mix media types because of performance advantages and/or
because you want to add richness. in this chapter first you'll learn how to mix a 3D object
within a 2D world, and then you'll learn how to use a video as a texture map within a 3D
world.

V l1.l Mixing a 3D Object on a 2D Background
We’ve already seen how mixing works in Part II, where we mixed :1 sprite on

top of a background. In fact, over the course of Part II, we looked at a vari-

ety of options for miXing—using GDI, DirectDraw, and RDX.

In Part H We mixed a sprite on top of a background by:

I creating a CSurface from among the Various options;

I263l

283

264 I CHAPTER ‘[7 MIXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

17.1.1

I creating a Cliackground from among any options suitable to the CSurfage
and attaching the CBackground to the CSurface;

I creating a CSprite from among any options suitable to the CSurface and
attaching the CSprite to the CSurface; and

I Blting the Cliackground first, Blting the CSprite on top of the CBa¢_k_

ground, and then refreshing the screen with the mixed image.

Our 3D Surface Is Also a 2D Surface

But wait! Let’s think about where we are. We got access to a 3D surface in

the first place by “querying” for 3D capabilities. As long as we retained

access to the original 2D surface——that is, as long as we did not call

IDirectDrawSurfuce::Releuse()—we can still use its innate 2D-ness.

So to mix a 3D object on top of a 2D background, we could

I create a CSurface suitable to be “extended” for 3D capabilities and then

“extend” the 2D surface to a 3D surface while retaining access to the orig-
inal 2D surface.

I create a 2D background from options suited to the 2D surface and then

attach this background to the dual 2D-3D surface.

I create a 3D triangle from available render styles and then attach the 3D

triangle to the dual CS urface.

I Blt the background first as usual, Blt the 3D sprite on top of the back-

ground, and then refresh the screen with the mixed image.

Here’s the 3D Version of the Foll0wM0use() method that handles dual
surfaces:

long CSurface3d::Fo1lowM0use(CPo1nt &point, int nTime}
(

Pre Scene Init: Set up to use 3D driver and clear Z—Buffer (if any).

m_p3dFns->Begi’nScene(>:
if (m_bIsZEnabied) (

DSDREC‘ drDst:
dr*D5L.><1= 0;
dr“Dst..y1:0;
drD5t.><2 = m_dwwidth;
dr“Dst.y? = m_dwH.eight,;
ikdefire nF.ECTS 1
m_p3:Viewport—>C1ear(nRECTS, &d\”DSt, DfjUCl[AR_/BIHFFRJ;

:1,

284

MIXING A 3D OBJECT ON A 2D BACKGROUND I 265

Set up R1 TDARAMS structure for d11al~surface usage.

BLT3/ARAMS ><Dst;
:<Dst.pcdsDesc = &rn_SurfDesc;
;<Dst.pddsFns = m_pZdFns;
xDst.p3dFns = m_p3dFns;
xDst.p3dv1‘ewpor: = W p3dV1'ewport;

Blt background to dual surface. Blt either 2D or 3D background based on Init.

if (m_nNeedLock & SKGLOCK)
llI,pZClFflS‘>l_OCl<(NUl_l_, &m_SUr*l‘Desc, DDLUCKANAIT, NLLL1;

it (m_pBacl<gr‘ound l= NULL) l
RECT rSrc = l0, 0, m_cwNidth, m_'dwHeight}; _

FONT pmst = lO’0l; 2Dbackgroundmay

) m_p3.ackground—>Bl L(&xDsL, &ptDst, &rSrc); nccdsurfacetobelocked.
it (m_nNeecLock & EKGLOCK)

Blt attached 3D Triangle.

m_p2dFns—>Unlor,k(NUI l);

it (m_pTm‘anqle l= NULL)
m_pTrlangle->Blt(&><Dst, &point);

Scene End Stage: End Scene, refresh screen, and return.

rr_p3dFns—>EndScene();
// of.-‘set ds: rect accounting for client a"ea
long lRlght = m_ptZeroZero.x + m_dwl\Hdth;
long lnottom = m_pt£eroZero.y + m_dv/Height;
RECT rDsL = ln_p:ZeroZero.x, rn_ptZeroZero.y, lRlgh:, lBo‘l:torn};
RU)! rsrc = (0, 0, m_dwwtdth. m_dwHe"ghtl:
// se: pa’ette and refresh screen
gpPrimary->SetPalette(gpPalette);
gpPrlmar‘y->Elt(&hDst. mpzcins, &rSrc, DDBLT_wAIT, NULL);
// return
return TRUE:

Notice the code added to pass both the 2D and the 3D descriptor to the

object renderers in the B LTPA RAMS structure. Also notice the code added to
lock and unlock the 2D surface for most 2D background rendering (a

hardware—accelerated 2D background would not need a Lock/Unlock).

Some hardware 3D devices may not allow 2D functions to be invoked bet\Neen
BeginSceneO and EndSceneO. These devices will set the
DDCAPSZ_N02D‘3URING33SCENE flag in the 2D caps structure (hwCaps.dwCaps2).
if this flag is set, you will need to modify the FollowMouse code to render a
2D background before BeginSceneO, but render a 3D Background after
Beg/nSCeneO. We found that the HEL drivers do not impose this restriction,
so we have not built this check into our current example.

285

266 I CHAPTER ‘I7 Mrxms 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

17.1.2 Measuring Background Performance

Table 17-1 compares the performance of Bltting a sprite with both 2D and
3D rendering paths.

TABLE 1 7-’! Comparing 2D and 3D Backgrounds

CBacl<groundCCode 7.1 milliseconds

CBackgroundP5

CBackgr0undTex

CBackground3D

6.8 milliseconds

46.5 milliseconds

3.8 milliseconds*

* CBacl<ground3D fills the background with a constant color; whereas all other options
transfer an image to the screen. Therefore he comparison of CBackground3D with
the other options is not a true apples—to—apples comparison. The figure is shown for
reference.

CBackgroundTex is an implementation of a texture-mapped 3D back-

ground object. You implement a texture-mapped 3D background by load-

ing a texture object and setting its handle in the background material

structure. Check the source code for the Timing Application 011 our Inter-

net site. (Note that unlike triangle textures, a background texture need not

be sized using powers of two.)

A CBackgroundTex is texture mapped to the surface and is not merely Bltted

to the surface. The implication is that if the source and destination sizes dif-

fer, the source is stretched (or shrunk) to fit the destination rectangle. Texture

mapping is much costlier, as the results of our measurements demonstrate.

If all you need is a simple Bit of a background image, then as the perfor-

mance results indicate, using 2D backgrounds behind 3D objects offers sig-

nificant performance boosts over using texture mapping.

11.2 Mixing in Sprites
Hey, can’t we add sprites to our dual surface just like we did with back-

grounds? Technically, yes. But our code lets us have only one active sprite at

a time. If we wanted to have more than one sprite, we would need to main-

tain some form of list (or array) of sprites and draw all the active sprites
within our Refresh functions.

286

quick trip through Chapter 8.

17.2.1 Using RDX to Mix in Sprites

The RDX programming model allows us to
I create a surface of a specified size and pixel depth;

jects) and connect them to the surface;

parency, and visibility); and

srfDraw() function provided by the surface object.

load-

nter—

d not

long CSurfcce3d::Fol'owMouse(CPoint eipofnt, int Mime)
l

Blttecl // pre scere irit
'_ m_p3dFns->Beg1rScene():

Sdlf it (m_hIs7fnabledI I
exture D3DRECTdrDst;

drDs:.x1= O; drDst.y1= 0;
rate‘ drDs:.xZ = m,dwNi‘dth; drDst.y2 = n_dwHei‘gn:;

m_p3d\/iewport->Clear(1, &crDst, D3DCLEAR_7RUFFFR);
or— l

1'5 sig- // setup BLTPARAMS stmct for dual-surface usageBLTPARAMS xDst;
xDst.pddsDesc = &rn_SurfDesc:
xDst.pddsFns = n_p2dFns;
><Dst.p3dtns = m_p3ctns;
xDst.p3;“/iewport = m_p3dViewpor'L;

k // Blt either 2D or 3D backqround to Dual-Surface' '{ . if (m_nl\eec1Lo<:k K EKGLOCK)
riteat V ~ TT_D2dFnS'>LOCl<(NULL, &m~Sur"fDesC, DDLOCK_WAlT, NULL);

. ‘E: _ it (rr_pEackground != NLLL) (
mam‘ _g am rSrc = (O. 0, m dwwidth, m,_dwHe1gnt1;
fies DOINT ptDst = {0,o}:

rr_pEackgr‘omd—>Blt(&xDst, &ptD5:, Msrc);
)
if (rn,nNeedLock & BKGLOCK) m_p2dFn5->Un1o<:<(NULL);

MIXING IN SPRITES I 267

Since the Intel RDX library provides code to manage lists of sprites and

draw them in back—to—front order, let’s just use RDX to mix sprites in. If

you’ve forgotten, or haven’t had a chance to play with RDX yet, do take a

I create mixable objects (such as sprites, backgrounds, grids, and AV ob-

: manipulate attributes of the objects (such as draw order, position, trans-

I mix and render all visible objects attached to a surface by invoking a single

Typically you attach the surface to a window using srfSetDe5tWindow(), and

the window is automatically refreshed by srfDmw(). RDX also has a

srfSetDestMemory() function that we can use to specify that the output of

srfDmw() be sent to a memory buffer that we provide. Let’s use

srfSetDestMemory() to have RDX output its data into our dual surface:

287

268 I CHAPTER ‘I7 MIXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

Draw RDX objects by invoking srfDraw on the Dual Surfa ce’s rn_hSurfmember,

if (m_bIsRd><) { .
In p2dFns->L0ck(NULL, &m_SurfDesc, DDLOCK,WAIT. NULL);
srfSetDestMemory(m_hSurf, m_Sur*tDesc.1pSurface, m,SurfDesc.1Pitch);sr‘fDraw(rn,hSurf):

rn_PZdFn$->Un10Ck(NULL): \ LockDirectDraw Surface andpass its data
pointer to RDX using srfSetDelMemory(),
Then draw all objects using 5rfDmw().

// Bit 3D tF1&I’|910 RDX draws its objects directly ontothe
W (m_pT7"7'6fl91e f= NULL) surfacewithorwithouttmnsparency.

m_pTri'ang1e->B1t(&><Dst, &p0i'nt);

)

// SceneEnd
m_p3dFns—>EndScene();
// offset dst rect accounting for client area
long Wight = m_ptZer0Zero.>< + ni_dwwi‘dth;
1ong ‘Bottom = m_ptZeruZerc«.y + m_dwHe7'ght:
RECT rDst = {m,ptZeroZero.><, m_ptZer0Zer0.y, iR1'ght, mottom};
RECT rSrc = (0, 0, mjwwidth, m_dwHe1'ght}: L Backg"// set alette and refresh screen

gpPri'maEy—>Se:PaIette(gpPa1ette); , CBaCkg“
gpPr1‘mary->B1t(&r‘Dst, m_p2dFns, &rS>“c, DDBLT_wAIT, NULL); CBaCkgnreturn TRUE;

CBacl<gn

CBac1<gr<

In the new Follow/Mouse() method that we have outlined above we are

drawing our background first and then mixing in the RDX output (a com-

posite of all the RDX objects). Finally we add in our 3D object on top of the
RDX and background combo.

288

MIXING IN SPRITES I 269

You’ll probably point out that if we’re using RDX, we can have our back-

ground be an RDX background (CBackgroundRDX) and not have to worry

about any CBackground code either. That is true. Very astute of you! In

fact, Table 17-2 has measurements of mixing the various 2D and 3D objects

(the sprite measurements were for sixteen sprites of about 5,000 pixels each,

and the background measurements were for a background of 734 X 475

pixels).

TABLE 1 7-2 Measuring Mixed 2D and 3D Objects

CBacl<grou ndCCode 7.1 milliseconds

CBackgroundP5 6.8 milliseconds

CBackgroundRDX CSpriteRDX 1.1 milliseconds

CBacl<groundTex 162 millisecondsC.TriangleTex (Ramp/Copyllilode)
46.5 milliseconds

j CBacl<ground3D 3.8 milliseconds 2.2 millisecondsCTriangle3D (Ramp/Flat)

Following are some observations based on the results:

I The MMX technology optimizations that RDX has used for background

drawing make CBackgroundRDX run at the speed of color filling. Vl/owl

There is a clear benefit to mixing 2D and 3D.

VVith Ramp mode triangles being rendered in the low—millisecond

speeds, our Execute Buffer overhead starts becoming important again.

These tests were performed with only sixteen triangles. It becomes

worthwhile to invest in code for long Execute Buffers, when you are ren-

dering many small triangles with the Ramp mode driver.

Flat-shaded Ramp mode triangles compare well with spriting. However,

texture mapping at 16 milliseconds (half the 30 fps budget) still takes

quite a bit of time. A judicious mix of shaded and texture—mapped trian-

gles would be the way to go. And, of course, using 2D sprites wherever

possible is also a good way to go.

Adding RDX Objects at Front and Back

What if you want to add RDX objects behind and ahead of the 3D object?
Well, RDX lets you create multiple surfaces. So you can solve this issue by

creating two RDX surfaces and retaining one as the “behind” surface and

289

270 I CHAPTER 17 MIXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

the other as the “ahead” surface. All objects attached to the behind surface
using 0bjSetDe5tinati0n() will get drawn behind the 3D object. And all ’
objects attached to the ahead surface will get drawn on top of the 3D object
This is a simple extra credit exercise. Go on! Try it for yourself.

11.3 Mixing in Video
Mixing in video is a little more complex than mixing sprites or back-

grounds. The following factors need to be considered:

I Video files are actually a series of images that need to be displayed
sequentially. To mix 3D on top of Video, we would need to mix our 3D

image whenever a new video frame is drawn———lest we “lose” sight of our

3D object.

A video file is recorded at a specific frame rate. Playback of frames in the

video must be synchronized to a timer, so that they can be displayed at
the recorded frame rate.

Video files are usually recorded in high—color resolutions to capture the

broad range ofcolors in natural situations. Video codecs prefer to choose

their own palettes, since they reduce the color range for palletized dis-

plays. They typically produce very poor quality if they are forced to use a

specified palette.

The issues of synchronized drawing and timed playback are dealt with in

detail in Chapter 10. We will use the same code to mix our 3D sprite on top
of a video object.

Handling Palettes

We do need to add some code to handle palettes. Our 2D objects use colors

only from the system palette, and there is no palette conflict between 2D

and Video objects. But Direct3D uses more than the system palette. Let’s

look at the code needed to manage palettes among these media.

There is no fast and high—quality solution to sharing palettes. Our code

shows you how to communicate palettes amongst video and 3D objects.

Since Video codecs don’t like palettes to be forced on them, we have written

our code to tell Direct3D to use the video objects palette.

Following is the code that takes a palette from a Video object file and uses

this palette with Direct3D surfaces. Note that Direct3D expects the palette

to be set on the 2D surface before any 3D functionality is requested.

290

> 3

1C] surface)
and all ~

3D Object. i

)ack—

3 displayed
nix our 3D

;ight of our

ames in the

lisplayed at

:apture the
:1‘ to choose

etized dis-

:ed to use a

with in

rite on top

use colors

ween 2D

e. Let’s

r code

bjects.
e written

nd uses

e palette 7%
d. i

17.3.2

MIXING IN VIDEO I 271

Create a palette object

LGGPALETTE *plogPaleLte;
PBYTE plrnp ~ new BYlE fsneof (LOGPALEWE) + sizeof (PALE*TEENTRY>*256]:
plogPalette = (LOGDALETTE *)pTnIp; , , _
p10gpd]e_LteV>paWerS.‘O‘,, = CKOMO; UseRDXtotalktoavideoobjectand getits palette
plogPalctte->palNumEntries = 256;

if (!r'dxGetVide0Palette(DlogPalette)) rezurri FALSE; l£_u

Change palette entry flags to not allow D3D to change any of them N
PALETTFLNTRY *pPa| = (PALETIEENTRY *) (plmp + sizeof(LOGPALETTE));
‘For (i"1l.i=C; 1 C 256; ji*F) pPal[i] .peFlegs = D3l'lPAl__READONLY;

Querying for a palette from a video file takes a lot of steps. RDX simplifies

these steps. So our code uses RDX to talk to the video codec. Refer back to

Section 10.2 for an explanation of how to manage video with RDX. For

quick reference, we’ve included here the essential code to query a palette

from an AVI file using RDX:

BUDL rLlxGetVideoPalette: :GetPalette(LOGPAtETTE *plogPalette, LPSTR *pFile1
(

// first, create a hFile object and load our‘ AV] file
err * hflCreate(&m_liFil);
macExitlfRd><Er‘ror(err. FALSE):
er" —' hfilLoad (rn,liFil, pFi“e):
macE><itIt'|7.d><Er"or(err". FALSE):

// create tre AV object and initialize it with the video file
err = avCWeate(&mJi/W);
macExitIfRd><Err0r(err, FALSE);
err = 3‘/AddViceoTracl<(m_hav. m_hFi|, 0, &rv_hvid):
macExitIfRr.xError(err, FALSE);

// get the palette from the video object
DINORVAL err = vidC.etPalette(m<hl/id, pLogPalette);
macE><itItRdxIrror(err, FALSE);
return lRUE;

Using Video as a Texture Map

After seeing how to mix 3D and video on a DirectDraw surface, it is a fairly

simple extrapolation to use video as a texture map. We merely modify

our previous code to provide the Texture Map Address when We call

5rfSetDestinationMemory().

291

272 I CHAPTER ‘[7 MIXING BID WITH SPRITES, BACKGROUNDS, AND VIDEOS

WHAT HAVE

YOU LEARNED?

Run the demo for this chapter on the CD and check the Texture Mapped
Video option.

By the end of the chapter, you should have learned how to

I mix a 3D object on a 2D background using Direct3D and DirectDraw;

mix a 3D object with RDX sprites and a background (Direct2'>D, DirectDraw, or RDX);

mix a 3D object on top of a video file where the video file is played through RDX and
can be either VFW or ActiveMovie based; and

make the simple modification needed to use video as a texture map source (that is, if
you perused the source code on the CD).

You've reached the end of our 3D coverage. We hope you have learned a lot.

292

PART VI

vi

 Processors and
"Outward Performance Optimization
>urce (that is, if I

1 lot.

wr-:’o LIKE To EXTEND AN ACKNOWLEDGEMENT TO FRANK BINNS, SHUKY ERLICH, BRUCE BARTTLET, JuL1E A BRAJENOVICH, K. SRIDHARAN,
RICK MANGOLD, Boa FABER, BEV BACKMAYER, DEBBIE MARR, BOB REESE, TOM WALSH, MICKEY GUTTMAN, BENNY EITAN, Kora‘!
GOTFLIEB, ODED LEMPEL, AND DAVID BISTRY

Chapter 18 The Pentium Processor Family

I Basic processor terms

I Overview of Pentium and Pentium Pro processors

I Overview of MMX technology

I Identifying processor models and features using CPUID

Chapter 19 The Pentium Processor

Detailed overview of processor components

Instruction pipelining

Integer pairing and scheduling rules

I

I

I

I Address Generation Interlock (AGI)

I Branch prediction
I

How to optimize the sprite sample

Chapter 20 The Pentium Processor with MMX Technology
MMX architecture

Instruction set and data types

EMMS usage guideline

Saturation versus wraparound

MMX pairing and scheduling rules

Optimizing the MMX sprite

Using scheduling rules to optimize the sprite

293

274 I PROCESSORS AND PERFORMANCE OPTIMIZATION

Chapter 2| VTune and other Performance Optimilation Tools

n V"une's coverage of pairing and scheduling rules

I Static and dynamic analysis

Hot—spot monitor and time—based and event-based sampling
\f'une usage hints

ReadTime StampC0unter—RDTSC

Using the PMonitor library

Chapter 22 The Pentium II Processor

Architectural overview and new features

Pentium ll performance counters

MMX pairing rules

Detailed component description including event counters for each unit

Write Combining memory type to speed graphics performance

Branch mispredictions, partial stalls, and the 4:1 :1 decoder template

Chapter 23 Knowing Your Data and Optimizing Memory
Overview oi‘ memory subsystem

Differences between Pentium and Pentium Pro member processors

Cache differences, DCU splits, partial memory stalls

MMX stack alignment

Accessing cached memory

Writing to video memory

When it comes to developing multimedia applications, you'll quickly realize that you're
dealing with a huge amount of data—most of which is typically used once or twice and
then thrown away. Unlike database, word processing, or transaction—based applications,
multimedia applications must quickly display a sequence of pictures to give the illusion of
motion; they must pump audio data in real time to play uninterrupted sound sequences;
orthey must rendera 3D model to give the illusion of a 3D world. There are lots of
calculations to make, lots of data to move around. In order to get smooth motion video,
audio, and 3D, you still have to fine-tune your applications for the platform they are
running on.

We decided to include this section because we believe that multimedia applications and
processor optimization go hand in hand—at least for now. Some developers think optimi-
zation is an art; some think it's a science. We think it's a mix of both.

First we cover the Pentium family processors, their architecture, and how they work with
code and data. We optimize our sprite sample for each of the processors we coveI——the
Pentium processor, the Pentium processor with MMX technology, and the Pentium ll.

294

t you're
/ice and

ications,
llusion of
quences;
JTS of

on video,
are

ions and

koptimi—

ork with
ver——the
um ll.

PROCESSORS AND PERFORMANCE OPTIMIZATION I 275

When you think about optimizing multimedia applications, don'tjust think about applying
the optimization rules of the processor (pairing, AG|s, register contentions, and so foith);l
you should first think about your data access pattern. Optimizing for the processor is most
useful when you access the data in the L1 cache. From our experience, you should not
try to squeeze every cycle out of your code; you need only focus on the code segments
that are called very often and those that consume most of the CPU cycles.

Rather than telling you how to optimize your code, we'll tell you how we go about opti-
mizing ours. Once the code is written, we typically use Intel's VTune to figure out how to
schedule instructions for optimal pairing and how the code behaves when it runs on the
PC—that's the science part. Since VTune does not know how to fix the code for us, we use
our knowledge of the processor scheduling rules and rearrange the code for optimal pair-
ing—that’s the art part.

We typically start with VTune’s static analyzer, which helps us figure out how to schedule
the instructions for the specific processor we’re optimizing for. Once the code is opera-
tional, we run it with VTune’s hot~spot system monitor. It tells us how much of the CPU
the application is using and which pieces of code are consuming most of the time. We
then zoom in on these segments and try to optimize them even more—if possible.

To learn more about the behavior of a particular section of code, we run VTune’s dynamic
analyzer. With the dynamic analyzer we can collect an exact execution trace of certain sec-
tions of code and then analyze the traced instructions. It gives us information about
branching, L1, L2, and cache hit rate, unaligned accesses, and many other things. With
dynamic analysis, we get a better understanding of the behavior of our code.

As a general rule, we pay special attention to memory accesses when we write our code.
We always try to guarantee that data that we want to use is already in the L1 cache when
it is time to access it. We do this by fetching data ahead of time, by operating on a smaller
subset of data at one time, or by changing our data access pattern.

We also pay special attention to branches—especially with the Pentium Pro and Pentium II
processors. If we can avoid a branch instruction, we do. If not, we use the dynamic
analyzer or the processor event counters to figure out how often we miss branches—then
we see if we can do better by rearranging the branch logic.

1. The terms pairing, AGI, and L1, L2 caches are defined in Chapter 18. 7 ’‘’ T

295

CHAPTER '18

£—;E:=-

The Pentium Processor Family

WHY READ

THIS CHAPTER?

You must be familiar with the Intel lnside® logo. But do you really know what's inside? Do
you really know how the Pentium processors work? The real question is, "Do you want to
know?" Come along, we'll take you on the grand Pentium processor tour.
In this chapter, you will

be introduced to terms and concepts used throughout this part of the book;

get an overview of the four Intel processors: the Pentium, Pentium with lVllVlX technol-
ogy, Pentium Pro, and Pentium ll; and

learn how to identify the different processors and detect their model~specific features
using CPU/D.

As of today, there are four major Pentium processors: the Pentium, Pentium
Pro, Pentium processor with MMX technology, and, just recently, the Pen-

tium H processor. Although the internal architecture of each processor dif-
fers from the others, all the processors are 100 percent compatible with the
Intel 486 instruction set. As a law of evolution, newer processors offer new

architectural features and new instructions to enhance the performance of

existing applications, and to enable new classes of applications.

In this chapter we’ll give you a brief overview of each of the processors

without going into too many details. If some of the terms or concepts are

not clear, refer to the chapter that covers that specific processor. Chapters 19,

296

278 I CHAPTER ‘[8 THE PENTIUM PROCESSOR FAMILY

20, and 22 give detailed information about the architecture of the internal
components of each of the Pentium processors: one chapter for the Pen.

tium processor, one for MMX technology, and one for the Pentium 11 pm. A
cessor. ‘Ne don’t cover the Pentium Pro because its features are a subset of
the Pentium II processor.

We also devote one chapter to VTune and other performance optimization

tools that make it easier for you to optimize your code, and, finally, in the

last chapter of the book we discuss memory optimization issues and tech-

niques related to memory, the caches, and the system bus.

18.] Basic Concepts and Terms

Before we delve into too much detail, let’s review some concepts and terms

relevant to processors in general and to Intel Architecture (IA) processors
in particular.

u L7 Cache. First level cache. The LT cache is on—chip static memory that can
provide data in T clock cycle on a cache hit. A cache hit occurs when the re-
quested data is already in the cache; otherwise you get a cache miss, and the
data is brought in from main memory or the second level cache (L2).

u L2 Cache. Second level cache. Typically the L2 cache is off—chip static memory
that runs more slowly than L1 cache. Some Pentium Pro processor models
have the L2 cache on the chip running at the speed of the processor core.
The L2 is typically much largerthan the L1 cache (256K—l MB). The L2 cache
has a cache miss/hit behavior similar to that of the LT cache.

I Cache line. A cache line describes the smallest unit of storage that can be al-
located in the processors Li cache; that is, when you read a byte or more
from main memory, the entire cache line is burst into the L1 cache from the

memory location where the bytes are read from. Cache lines are typically
aligned on a byte boundary equal to their width. For example, all four Pentium
processors have a 32—byte cache line aligned on a 32—byte boundary. It a read
crosses the cache line boundary, the processor brings in both cache lines
(64 bytes) from the memory location where the bytes are read from.

- Fetch. The process of loading raw opcodes from the cache or memory into
one of two prefetch buffers inside the processor.

I Decode. The process of parsing and interpreting the raw opcodes. In the Pen- . t

tium Pro processors, the IA instructions are decoded into micro~opcodes. l

297

if a read
lines

n.

>ry into

the Pen-
)Cl€S.

BASIC CONCEPTS AND TERMS I 279

Wr/teback. The process of committing the final results to lA registers, the
cache, or main memory.

M/cro-op. The decoder in the Pentium Pro and the Pentium ll processors
breaks the IA instructions into micro—instructions (rn/'cro—op codes). These

micro-ops are necessary for the out—of—order execution model used in these
processors.

Out—of—order execution. Pentium Pro processors execute micro-ops based on
the readiness of their data rather than the order in which they entered the ex-
ecution unit_ This is out—of—order execution.

Branch Target Buffer (BTB). The Branch Target Buffer holds a history of
branches that were mispredicted during the execution of an application. It
stores the address of the mispredicted branch instruction, the branch target
address, and the result of the misprediction. When the same instructions
show up again (in a loop for example), the branch prediction unit uses this
information to predict the outcome of the branch.

Return Stack Buffer (RSB). The Return Stack Buffer can correctly predict return
addresses for procedures that are called from different locations in succes-
sion. The RSB is useful for unrolling loops that contain function calls, and it
removes the need to in—line procedures called inside the loop.

U and Vpipes. The Pentium processor has two execution pipelines that oper-
ate in parallel and can sustain an execution rate of up to two instructions every
clock cycle. These two pipes are known as the U and V pipes.

Pipe/ining. The process of overlapping operations in the processor pipeline is
called pipelining. As a result of breakingthe instruction execution into multiple
stages (fetch, decode, execution, and writeback), the processor can execute
multiple instructions at the same time—each in a different execution stage. For
example, one instruction could be in the prefetch stage, one in decode, one
in execution, and one in writeback. This process is very similarto the assembly
line at automobile plants, where one person installs a front door, another per-
son installs the back door, and someone else installs the headlight, and so on.
All of them are working at the same time but on different cars. Analogously,
in the processor, all units are working at the same time but on different in-
structions.

298

280 I CHAPTER 18 THE PENTIUM Pnocesson FAMILY

DC —l—I——l—|—-+—C] k I 2 2 4 5
PF

D1 PF
D2 D1 PF

EX p2|oi PFUpto5

instructions W3. EXFE D1 PFin pipeline WB EX D2‘LDyWE EX D2
WB EX

We

FIGURE 1 8-1 The Pentium processor pipeline can execute
up to five instructions at any one time.

I Superpipe/ining. This is the same thing as pipelining except that the pipeline
is deeper. For example, the Pentium processor is pipelined since it has five
stages; the Pentium Pro and Pentium ll are superpipelined because they have
twelve execution stages.

Pairing. Two instructions pair if and only if the first instruction can execute in
the U pipe and the second instruction can execute in the V pipe. The pairing
rules exist because only the U pipe can execute complex instructions, there-
fore, we need to ensure that a complex instruction is followed by a simple
instruction. in the Pentium processor, you can have both the U and V pipes
executing instructions as long as they adhere to the Pentium pairing rules. You
can find the Pentium pairing rules in later chapters or in the /nte/Architecture
Optimization Manual found on the companion CD.

- Address Generation /nter/ock (AGI). An AGI occurs when you calculate an ad
dress in one instruction and use it in a following instruction. On the Pentium

processor, this typically causes a 2—clock stall in both pipelines. You can rem-
edy the problem by adding other useful instructions between the instruction
that calculates the address and the instruction that uses the address.

In the Pentium Pro and Pentium ll processors, even though AGls can theoret-
ically happen, they are not as obvious or obstructive because of the out—of—
order execution model that these processors use. So, basically, you don't have
to worry about AGls occurring in these two processors.

Partial sta//s. Partial stalls occur when you load a small register (a/) and follow
it with an access (read/write) to the larger register (ax or eax). These occur
only with Pentium Pro and Pentium II processors. Depending on the status of
the pipeline, partial stalls can be extremely taxing on application performance.
Removing partial stalls is typically one of the major optimizations that you can
get from the Pentium Pro processors. More about this in a later chapter.

299

THE PENTIUM PROCESSORS n 281

18.2 The Pentium Processors
Let’s look at an overview of the Pentium a11d Pentium Pro processors and

their MMX technology counterparts (see Figure 18-2).

The Pentium Processor

The Pentium processor marked a significant step over its predecessor, the

Intel 486. It uses two parallel execution pipelines——-U and V—which make

it possible for the processor to execute up to two instructions in parallel.
Each pipeline is divided into five execution stages, so the execution of up to

five instructions can be pipelined (or overlapped) at any given cycle (sec

_ Figure 18—3).
pipeline

:5 Eve i The Pentium processor has also improved the performance of floating-
y ave point operations drastically and separated the instruction and data L1

caches, so the processor can fetch instructions and access data all within the
ecute in

3 pairing
5, there

simple
V pipes
Jles. You
iitecture

te an ad-
Pentium
:an rem-

struction

i theoret-
out—of—
>n't have

Id follow
e occur

status of
rmance.

you can ‘ ;
Jter. r g H "'1

FIGURE 1 8-2 Evolution of the Pentium processor family. PARTVI

300

282 I CHAPTER ‘I8 THE PENTIUM PROCESSOR FAMILY

L1 Instruction Cache
_ (BKB te

H Prefetch buffers

Decode 2
Execution ,

YWEPHCK Wriieback
U Wriiubaek V,-ritebagk

FIGURE 1 8-3 An architectural view of the Pentium processor.

same clock cycle. It includes two dedicatedz 32-bit V\7rite buffers, which
make it possible for the processor to queue memory writes without stalling
the execution of instructions within the processor.

Finally, the Pentium processor includes two prefetch buffers of 32 bytes
each (one cache line each). With these prefetch buffers the processor can

prefetch instructions from two different execution paths: one fetches from
the next consecutive instruction address, and one fetches speculatively from

a branch target address. The prefetch buffers, in conjunction with the

Branch Target Buffer (BTB), help the prediction unit to speculate on the

outcome of previously encountered branches.

The Pentium Pro Processor

Intel then introduced the Pentium Pro processor. Instead of a five—stage

pipeline, the processor moved to a decoupled twelve-stage superpipelined
architecture with in—order execution at both ends of the pipeline, and out-

of-order execution in the middle. With the out—of—order execution capability,

the processor can speculatively process instructions out of sequence. This

capability is extremely useful when an instruction stalls while the processor
waits for data to be read from memory or waits for the result of an earlier

operation to be available. (See Figure 18-4.) The in—order units, in the front

2. The U pipe can only queue data in the U Write buffer, and the V pipe can only queue data in the
V Write buffer.

301

‘SSO|'.

, which

but stalling

‘-2 bytes
tssor can

:ches from

tively from
:h the

e on the

'e—stage

pipelined
:, and out-

l capability,
nce. This

2 processor
an earlier

n the front

data in the

18.2.3

THE PENTIUM PROCESSORS I 283

L1 Instruction Cache

Retire Q :

Fill Buffer
(32 bytes)

L1 Data Cache
(B KByte)

FIGURE 18-4 An architectural View of the Pentium Pro processor.

end and the back end, guarantee that instructions maintain the same

sequence when they enter and when they exit the execution unit.

In addition to the two execution U and V pipelines (Port 0 and Port 1), the

Pentium Pro processor added three more units: Port 2 loads data from the
cache or memory, Port 3 calculates store addresses, and Port 4 stores data to
the cache or memory.

Similar to the Pentium processor, the Pentium Pro maintains separate L1
data and instruction caches of 8K each. But the L2 cache has been moved

inside the chip to provide faster access to data in the L2 cache. The proces-
sor also doubles the size of the BTB to 512 entries in order to improve the

branch prediction rate. With a bigger BTB, more mispredicted branch
instructions can be remembered just in case they get encountered later.

The Pentium Processor with MMX Technology

In 1997 Intel introduced the Pentium processor with MMX technology,

which adds fifty—seven new instructions to the Pentium instruction set.
MMX technology is geared to multimedia applications. The size of the L1
caches is doubled, and the number ofWrite buffers is increased to four.

PARTVI -

302

284 I CHAPTER '18 THE PENTIUM PROCESSOR FAMILY

L1 Instruction Cache
(16KByte)

Preiefch buffers

_ (32-Bytes):

Li Data Cache(I6KByte) '

FIGURE ‘I 8-5 Pentium with MMX technology processor.

Since this processor is based on the Pentium processor, the internal archi-

tecture is identical except for a few changes. The size of the L1 caches is
doubled to 16K each, and the number of 32-bit Write buffers is increased to

four. A Return Stack Buffer (RSB) has been added; it can correctly predict
return addresses for procedures that are called from different locations in

succession (see Figure 18-5).

Finally, the number of 32-bit V/Vrite buffers is doubled to four undedicated

buffers in this processor. Unlike the Pentium processor, which had a dedi-

cated Write buffer for each pipe, in this processor the U and V pipes can

write to any of the four Write buffers. This setup is beneficial when there

are many writes to uncached memory.

The Pentium II Processor

The Pentium II processor was just released in the middle of 1997. It is basi-

cally a Pentium Pro processor with MMX technology. Similar to the Pen-

tium with MMX technology, the Pentium II processor contains fifty- seven

MMX instructions and eight MMX registers. The capacity of the L1 data
and instruction caches has been doubled to 16K each, and the Return Stack

Buffer (RSB) has been added. (See Figure 18-6.)

Unlike the Pentium Pro processor, the Pentium II moved the L2 cache off

the chip. Notice that in the Pentium Pro processor, the L2 cache runs at the

same speed as the core; however, in the Pentium II processor, the external

L2 cache runs at half or one third the speed of the processor core. You’ll find '

out more about this facet of the processor in the Pentium 11 chapter.

303

archi-
es is

reased to

predict
tions in

edicated

a dedi-
es can

1 there

It is basi~

e Pen-

ty—seven
1 data

rn Stack

che off

ns at the

Xternal

ou’ll find
er.

IDENTIFYING PROCESSOR MODELS

L1 Instruction Cache
(16KByte) ‘

MMX regiters

L1 Data Cache
(16KByte)

FIGURE 1 8-6 Architectural View of the Pentium II processor.

18.3 Identifying Processor Models
As the Intel architecture evolved with new features, Intel realized that it was

essential to provide a simple way for software to identify the availability of

such features. Starting from the Intel 386 processor, Intel provided a signa-

ture at processor reset. Later Intel added a special instruction, CPUID, so

that applications could identify features related to a specific processor
model.

The signature of the processor includes the Vendor ID, model, and stepping.

It also specifies whether certain features of the processor are supported; for

example, MMX technology, CM OV XX, and FMO V XX instructions. In the Pen»

tium Pro processor, CP UID also returns information about the organization
of instructions and data caches.

Let’s see how you can use CPUID to figure out whether or not MMX tech-

nology is supported on a certain processor. First you need to check whether

the processor supports the CPUID instruction. An Intel processor supports

the CPUID instruction if you can change bit 21 of the eflags register. The

following code snippet checks whether CPUID is supported. .4 T am.

304

286 I CHAPTER 18 THE FENTIUM PROCESSOR FAMILY

BOOL CpuIdSupported()
(

BOOL ssupported;

uasm l
// Try to crange bit 21.. save a copy :f it ir ecx.
nushtd // Push EFLAGS to stac
sop eax // EAX=EFLAGS
mov ecx, eax // save ‘t For later comparison
and ecx, 20C0OOn // isolate bit21
xor eax, 20COOOh // change slL21
push eax , // pusr it on stack
popfd // pop it to EFLAGS

// Now see it it changed
pushfd // Push new value or [tlAGS
pop eax // EAX=new EFLAGS
and eax, 20000Oh // isolate bit21
xor eax, ecx ‘ 1/ compare it to last value
mov fsupported, eax // EAX==O it did not change

l

re:urn (iSupported 1- 0);

After you have determined whether or not the CPUID instruction is avail-

able, you can use it to figure out if MMX technology is supported. MMX
technology is supported only if bit 23 of the feature flag is set. You can

obtain the feature flag by calling CPUID with the eax register set to 1.

BOGL MNKSupported()
l

BOOL fSupported;

_asm (
mov eax, 1 ~ CPUID level 1
CPJID - EDX = feature flag
and edx, UXHUCOUO ; test bit 23 of feature flag
mov fSupported, edx ' O: rot supported, !0: supported

l

return (fSlpported l: 0);

To give you a head start, we included a simple Dynamic Link Library on the
CD that performs these operations for you. It returns information about
the processor model, starting from the Intel 386, and enumerates all the

information supported by the CPUID. You can find all the sources, bina-
ries, and clociunentation on the companion CD.

305

IDENTIFYING PROCESSOR MODELS u 287

— WHAT HAVE Here is a recap of the points you will need to remember from this chapter as you read

You LEARNED? the following chapters:
I "he Pentium processor implements a five—stage pipeline capable of decoding two in-

structions per clock‘

"he Pentium Pro processor implements a twelve-stage, three—way superpipeline.

Intel added the MMX technology to both processors, which are targeted toward multi-
media applications. .

"he Pentium processor has two dedicated Write butters, the Pentium with MMX tech-
nology processor has four shared Write buffers, and the Pentium Pro processor has
four 32—byte Fill butters.

’he Pentium processor sutlers AGI stalls, and the Pentium Pro does not.

3I-
05.
<:
n.

306

um

The Pentium Processor

W]-[Y READ In tie previous chapter, we gave you an overview of the Pentium processor family. In this

THIS CHAPTER? chapter, we'll peel the top off the Pentium processor and have a peek inside at the com-
ponents. Then we'll delve into getting better performance from the components.

In his chapter you’ll

u get a better understanding of the components of the Pentium processor, including the
-1 cache, prefetch buffers, branch prediction unit, BTB, the U and V pipelines, and
he Write buffers;

earn the benefit of instruction pipelining and how to burst empty bubbles in the
pipeline;

earn the Pentium integer pairing and scheduling rules;

see how to avoid Address Generation Interlock (AG!) stalls;

ook at the importance of branch prediction and the problems that come with mis-
prediction;

get an analysis of our earlier sprite sample and see how you can rearrange instructions
0 reduce the amount of cycles it takes to execute the sprite with this processor.

The goal of this chapter is to show you how to optimize your code to ‘

achieve optimal performance on the Pentium processor. To do that, you

first need to learn about the internal components of the processor and how

to extract the most out of them. For each component we’ll give you a brief i

operational overview and then provide a few suggestions for gaining opti-

mal operation of that component.

307

290 I CHAPTER 19 THE FENTIUM PROCESSOR

\/Tune can easily ana_ In this chapter, you’ll learn about the L1 data and instruction caches, the
lyze your code and prefetch unit, the BTB, the U and V execution pipelines, and the Write buff_
Sh0‘/V’ YOU hC_JW We"_ ers. You’ll also be introduced to the Pentium pairing rules that must be fol-
your 'n5”UCt'°nS PM lowed to achieve high application performance. Finally, you’ll learn about

AGIS and how to resolve them.

At the end of the chapter, we rewrite the sprite sample, from Part II, “Sprites,
Backgrounds, and Primary Surfaces,” in assembly language. We then show

you how to use the Pentium pairing and scheduling rules to improve the
performance of the sample.

19.1 Architectural Overview

The Pentium processor includes’ a set of features that enables it to sustain an

execution rate of up to two instructions every clock cycle. These features

include a five—stage pipelined architecture, dual execution pipelines (U and
V), separate instruction and data L1 caches, two Write buffers, instruction

prefetching, and branch prediction (see Figure 19-1).

In order to sustain a high execution rate, you must first understand how

these components work and how to mold your code to satisfy their con-

straints. For example, you cannot assume that you have an unlimited

instruction cache, so it would be best to fit your inner loops into an 8K
block.

L1 Instruction Cache g
‘ (8KByte) ;‘

_Prefétc_h.buffers‘ ,:

‘ xeieutiun

N?_itétia__c-

L1 Data Cache i
(8KByte

FIGURE 19-’! Pentium processor architectural diagram.

308

INSTRUCTION AND DATA LI CACHES I 291

hes’ the In the following sections, you’ll get a detailed look into each of the Pentium ‘

rite buffl processor features and understand what you can do to make them work

ust be f01_ more efficiently.
rn about I I

19.2 Instruction and Data L1 Caches E
Ii: “Sprites, 19.2.1 Operational Overview
rsxilestiow The L1 cache is on—chip static memory that satisfies internal read/write

e re uests more uickl than an external bus c cle to memor can. In addi-q q Y Y Y ,
tion, the L1 cache reduces the processor usage of the external bus, thus
allowing other devices—-DMA, bus maters, and so forth—to move data on

the bus.. l

Sustam an The Pentium processor has two independent L1 caches; one satisfies data
features accesses, and the other satisfies instruction fetches. The two caches exist on
63 (U_aI1d two separate internal buses (each bus is 64 bits wide), so the processor can

Smlctlon load instruction and data in the same clock cycle. The Intel 486 can only it
load data or instructions at any given moment because its instruction and ;
data share one L1 cache.

d how

ir con- Both the instruction and the data LI caches are divided into 32-byte cache
‘ted lines——this is the minimum granularity of the L1 cache. When the proces-an 8K

sor transfers data between the L1 cache and the external bus (main memory
or the L2 cache), it transfers a minimum of one cache line at a time.

. On a read or write hit, the L1 cache satisfies the request in 1 clock cycle. OnThe Pentium Pro

exhibits different a read miss, the processor bursts an entire cache line into the L1 cache. If a

behavior on cache multi—byte read crosses a cache line boundary, the next consecutive cachewrite misses.
li11e is also brought into the L1 cache. On a write miss, the Pentium writes

the data directly to the L2 cache or to main memory.

19.2.2 Performance Considerations

To put it simply, “Reuse it while it’s in the L1 cache.” If you have already

brought in code or data from main memory to the L1 cache, make sure that

you use it while it’s still there——before it gets flushed out. Following are a
few suggestions to accomplish this task.

5;2

I Keep the size ofyour inner loops below 8K. Ifyour most executed loop does

not fit in the L1 code cache, the L1 cache will thrash continuously. To fix
this problem, you can break the task at hand into smaller tasks with

309

292 I CHAPTER 19 THE PENTIUM PROCESSOR

smaller loops that fit within the L1 cache. To find out the size of your

loop, you can either look into the map file generated by the linker or use

VTune’s static analyzer (see Chapter 21).

You should also Watch out for in—line macros and functions that, if used

often, could bloat the size of your code.

Reuse data while it’s in the L1 cache. If possible, operate on the data while

it’s in the L1 cache. Since multimedia data does not typically fit in the L1

cache, you can operate on part of the data at one time rather than the full

set. For example, instead of decoding the entire video frame in one loop,
you can decode the top half of the frame from start to finish and then the
bottom half—or whatever size fits in the L1 cache.

Allocate data ahead oftime. As we mentioned earlier, on a read miss, the

Pentium processor brings in an entire cache line to the L1 cache. Once

the requested data is available, it is forwarded immediately to the request.

ing instruction for processing. The processor then reads the remainder of
the cache line.

Now, while the cache line is being brought in, if another instruction

accesses uncached memory or causes another read miss (from another

line), the second instruction will stall until the entire cache li11e is com-

pletely brought in. But if the second instruction accesses data that’s
already in the L1 cache, the instruction executes normally.

Accordingly, you could possibly achieve better performance if you could

bring in data into the L1 cache before you’re ready to use it—allocating
data ahead of time.

For example, assume you’re processing two buffers, A and B, sequen-

tially and that you’re processing one cache line every iteration of the

loop as shown below:

To0fLoop: , _ _ _

Read cache line A[i'] A Waits torA[i] to be completelybroughtm.Read cache line B[j]
Process cache lines AH] and B[j]
lncwement 1' and j by one cache line

Goto TopOfLoop

So before you can process the two cache lines, you have to wait for the
entire A cache line and some of the B cache line to be brought in—and the

same thing happens for every iteration of the code. You can rearrange the
code in such a way that you can interleave bringing in the data to the L1
cache with some useful operations.

310

INSTRUCTION PREFETCH I 293

In the following code we read the first two cache lines outside the loop and
then we wait for both of them to finish. At the top of the loop, rather than

processing the two cache lines, we allocate the A cache line for the next iter-

ation ahead of time. While the cache line is being brought in, we do some

processing on the first two cache lines—they’re already in the L1 cache. We
then read the B cache line for the next iteration and then finish processing

the first two cache lines. By the time we get back to the top of the loop, we
should have the next A and B cache lines waiting in the L1 cache—so we

accomplish the same operations without the wait.

Read cacne line A[i]
Read cacne line B[j]

ToOtLoop:
Read cache 'ine A[l+3Z] <jPre—allocate for nextiteratiun.
Process some of Ali] and Bljl <JProcessthcmfromLlcache.
Read cache Tine B[j+3Z] <1Pre»al1ocatefornextiteratiun.
Process remainder of MN and Bljl <11-‘roces.sthemfromL1cache.
increment i and ;' by one cache line

Go'0 TopCfLoop

One of the major enhancements in the Pentium Pro processor is the Nonblocking
Read feature. The Pentium processor stalls completely when two bacl<—to~back
read misses occur. The Pentium Pro, on the other hand, allows other instructions
to execute while it's waiting for data to be brought into the Ll cache.

19.3 Instruction Prefetch

‘ 19.3.1
Operational Overview

The Pentium processor includes a prefetch unit that is capable of fetching

unaligned instructions and instructions split between two cache lines with-

out any penalty. It features two 32—byte prefetch buffers that operate in con-

junction with the Branch Target Buffer (BTB) to fetch raw opcodes from the

cache or main memory (see the discussion on BTB below). One prefetch

buffer fetches instructions sequentially; the other fetches instructions specu-

latively, according to the branch history in the BTB. Notice, however, that

only one of the prefetch buffers is active at any given time.

PARTVI

311

294 I CHAPTER 19 THE FENTIUM PROCESSOR

Prefetches are requested sequentially until a branch instruction is fetched
When a branch instruction is fetched, the address of the instruction is

looked up in the BTB, and if it is found, the behavior history of the instruct
tion is used to determine its outcome~—taken or not taken. If the branch is

predicted as not taken, prefetches continue with the next sequential

instruction; otherwise the other prefetch buffer is directed to start fetching
from the branch target address#as if the branch will be taken.

The actual outcome of the branch is only determined when the branch

instruction is executed. If the branch was mispredicted, both the U and

V instruction pipelines are flushed, and prefetching activity starts all over_

Performance Considerations

In reality, there are no special considerations for the prefetch unit in the

Pentium processor. The following general guidelines are helpful, although
they will be of more use for the Pentium Pro processor.

Align loops, branch, and function labels on 16—byte boundary.

Keep infrequently executed code separate from inner loops, such as ini~
tialization code and error handlers, so that it will not be prefetched and

decoded unnecessarily.

Do not interleave data with code, such as jump tables, because you don’t

want the data to be prefetched and decoded unnecessarily.

(VVe’ll discuss improving the performance of the prefetch unit in more
detail in the Pentium II chapter.)

19.4 Branch Prediction and the Branch Target Buffer
1 9.4.1 Operational Overview

The Pentium processor includes a branch prediction unit (BPU), which

predicts the outcome of branch instructions when they are flrst decoded.

What’s important here is that the processor take the prediction seriously

and start executing instructions from the predicted address—until it finds
otherwise when the actual branch result is determined. When a branch

instruction is mispredicted, the processor saves the address of the instruc-
tion and the correct path (taken or not taken) in the Branch Target Buffer

(BTB), which is simply a lo okup table with 256 entries.

312

branch

.e U and

."tS all over.

such as ini-

éfetched and

se you don’t

T), which
: decoded.

serio usly
ntil it finds

branch
he instruc-

rget Buffer

/ x
The Pentium Pro’s
static predictions are
slightly different from
those ofthe Penflurn
processon

1 9.4.2

BRANCH PREDICTION AND THE BRANCH TARGET BUFFER I 295

How does the BTB work? When the BPU encounters a branch instruction,

it looks up the address of the instruction in the BTB. If it finds the address,

the BPU looks at the history of this instruction and determines whether or
not the branch should be taken. If the instruction was taken before, the

BPU assumes that it will be taken again, and if not, the branch won’t be

taken. This is called dynamic prediction. If the branch is predicted taken, the

BPU directs the prefetch unit to fetch raw opcodes, from the predicted

branch address, i11to the second prefetch buffer.

If the BPU does 11ot find the branch instruction in the BTB, the Pentium

processor assumes that the branch will not be taken and that execution will
continue sequentially with the next instruction. This is called the static
prediction.

A Closer Look at the BTB

If you’re as unlucky as I am, you probably get a ticket when you’re caught

speeding. The next time you get caught speeding, the officer can easily look

up your record and will probably give you a bigger fine. Now, if you’re a

good citizen—or you just never get caught—you won’t have such a record.

The BTB works in a similar fashion; it only keeps a record of mispredicted

branch instructions. V/Vhen an instruction is mispredicted, the instruction

is “ticketed” and a record of it is kept in the BTB. The address of the

instruction, the target branch address, and the result of the branch are

recorded in the BTB (Figure 19—2). The next time any instruction comes

through, its address is matched against the instruction address in the BTB.
If the address is found, the outcome of the instruction is predicted based on

the “taken/not taken” flag in the BTB. If the instruction is predicted as

taken, the prefetch unit is directed to fetch instructions from the target

address in the BTB (see Figure 19-2).

80001000 8000l D00

80003001 , None4-
SOOODOOO 80002COO

FIGURE 1 9-2 BTB structure.

313

296 I CHAPTER ‘[9 THE PENTIUM PROCESSOR

19.4.3

Pentium Pros exhibit a
different behavior for
backward branches
not found in the BTB.

Performance Considerations

As we mentioned earlier, the actual outcome of a branch is only determined
When the instruction is eXecuted—in the execute stage. If the branch

instruction was predicted correctly, the processor continues on its merry
Way. If the branch instruction was mispredicted, the processor flushes both

pipelines and starts fetching from the correct address. As a result, the pro-
cessor is stalled until the correct sequence of instructions is fetched and fed
to the decoder unit.

You can determine how long it will take the processor to execute branch

instructions, assuming that instruction opcodes are already in the L1 cache.

Here’s how the process works.

Branch instructions not found in the BTB are assumed not taken. Notice

that this includes unconditional branches: if they’re not in the BTB, they’re
assumed not taken. Why? As you recall, the BPU makes its prediction in the

first decode stage of the pipeline. At that stage, the BPU does not know the

branch target address of the instruction if the unconditional branch

instruction is not in the BTB——because the instruction has not been fully
decoded yet. This case is highlighted in Table 19-1.

Use Table 19-1 to determine how many clocks it takes to execute a branch
instruction. Notice that the table assumes that the instructions of the cor-

rect branch address are already m the L1 code cache. If the instructions

aren’t in L1, it takes much longer to fetch the instructions from the L2 cache

or main memory.

TABLE 1 9-‘! Pentium Processor Branch Behavior

Correctly
Direct

incorrectly

_ Correctl
Indirect Y

incorrectly

Now that you know how the branch prediction unit and the BTB operate,

We’ll leave you with a few suggestions that could help you minimize branch

mispredictions in your code:

314

DUAL PIPELINED EXECUTION I 297

- Minimize branch mispredict/on. You can use VTune dynamic analyzer or the

determined internal Pentium performance counters to determine if you have a high rate .
ranch of branch mispredictions and to pinpoint the guilty routines. Armed with this .

_t information you can rearrange your code for better branch prediction.1 s merry

flushes both I Try to fit code i/vith high branch m/spredict/on in the L7 cache. As we men—

1t the pro_ tioned earlier, it only takes 3-4 cycles to recover from a branch misprediction
héd and f if the correct target address is in the L1 cache. But if the mispredicted branch ll

ed address is in the L2 cache or main memory, the penalty for branch mispredic— r
tion is much higher. Refer to the ”L1’ cache” section for more information i

b about the L1 cache. ‘*1;e ranch . .

he L1 Cache I Avoid /oops with a huge amount of mispredicted branches. A huge number
' oi mispredicted branches will thrash the BTB, since it can hold only the last ‘l

256 mispredicted distinct instruction addresses. As a result, the next time the , , yl
_ loop comes around, no history of the mispredicted instructions will exist, and it

en. Notice as a result you could have a high, branch misprediction rate. ll
TB, they’re

iction in the . . . *1

. know the . 19.5 Dual Plpellned Execution y
inch fU11 19.5.1 Operational Overview ‘,een

Y The Pentium processor includes two execution pipelines (U and V), which l
can execute two instructions in parallel (Figure 19-3a). Each pipeline is r

ts a branch divided into five execution stages, which allow for overlapped execution of it

of the COP different instructions at any given time (Figure 19-3b).
ructions ‘

6 L2 Cache At its maximum capacity, each pipeline can operate on up to five instruc— ' ,
tions at any given time, or a total of up to ten instructions in both pipelines

(Figure 19-3c). Notice that although the two pipelines can operate on that

many instructions at any given time, they can sustain only up to two

instructions per clock cycle. The fact is, without pipelining, each instruc—

tion would require at least 5 clocks to complete. Because of pipelining, the i

Pentium processor can operate on five instructions at any given time and i

sustain an execution rate of up to two instructions per clock cycle. l

Instruction l”5V”3tl°”
1 2 3 4 5 1 2 3 4 5 5 7 8 9 10

PF lF'F P‘Fi ‘ ‘ rlPF ri-

p WW5} v-— 1. U-Pipe
D1 <V— D1 PF l'"‘;f%;;,;;‘‘" ,_ D1 "'r."'? V»Pipe‘ i p ‘ D2 D1‘PF ~ mm D1iD1 P ‘ , ,. . y— ; p , I ,_

D'2i D'2 Q . EX D2iD1;PFl . 3 Ex_E><‘D2r,D2‘D D1PF‘PF.o ""' l ‘ . ; .

B operate, Exl EX W Mi we EXiD2yD1 % 2 1 :
ize branch Wgl 995 pl WE Exl Dzlmz _

l

U V A WB‘EX‘D2 >
-pipe »i>Ipe ==- ‘ ' ——-r I-

l ‘WBlEXl 5::
‘ l‘.“.’.Bi en(3) 2 Execufion pipelines (b) one execution pipeline (0) U and V PlP9"”95

FIGURE 1 9-3 The Pentium processor's dual execution pipelines.

315

298 I CHAPTER 19 THE PENTIUM PROCESSOR

19.5.2 Performance Considerations

Typically the pipeline is not maintained at its maximum capacity because

of data dependency, register contention, or other restrictions imposed by
the processor. These restrictions are known as the Pentium pairing rules

(we discuss these in more detail in the following section).

Figure 19-4 shows a couple of stalls caused by data dependency and

instruction prefetch. In the first case (inside bold box), the processor is

waiting for data or the result of an address calculation. In the second case,

the fetch unit is fetching instructions from the L2 cache or main memory,
which causes bubbles to propagate in the pipeline.

Similar bubbles could fill up the V pipeline ifyour instructions don’t adhere

to the Pentium pairing rules. The Pentium processor issues two consecutive

instructions in both pipelines only if the first instruction is pairable in the

U pipeline and the second instruction is pairable in the V pipeline. If the

two instructions don’t pair, both will execute in the U pipeline in 2 clock

cycles, a11d the V pipeline will be empty——bubbly.

Pentium Integer Pairing Rules

The Pentium processor pairs two instructions only if they satisfy all the

pairing rules listed in Figure 19-5. In the figure, three examples are listed

for each of the rules illustrating the usage of the rule.

*PFi

ID1

D2
W The Pe

EX ‘ ' cessori‘ from Al
WB

data dependency causes empty
bubbles in pipeline. In this case, a I ‘ _ __ _ _ _
stall in one pipeline causes a stall \ f i |n5[rucfiQn each; miss causgs

in the othe inipeline ,/ ‘ bubble in pipeline. Notice that/ earlier Instructions continueio
e_x_et;ute.

FIGURE I9-4 Data dependency and instruction fetch bubbles in the pipeline.

316

‘ pipeline.

The Pentium Pro pro-
cessor does not suffer
from AGI stalls.

DUAL PIFELINED EXECUTION I 2.99

PU Pairable in U
PV Pairable in V
UV Pairable in both
NP Not Pairable

Pairing Rules

Pairing rule 1: Two consecative instructions pair if the first instruction is pairable in
the J pipe and the second instruction is pairabie in the V Dipe. y

Palrlng rule _2: The second instruction cannot read or Write any subset of a register i
any subset of it was Written by the first instruction. Basically, if ou write to ci/, ah, cix, or
eax n the first instruction, you cannot read or write to any oft em in the second
instruction; the same applies to al other registers.L-——-—.-—

FIGURE 19-5 Pentium integer pairing rules.

For optimal pairing, always use simple instructions such as memory moves,

ALU operations, and logical operations. You can use VTune’s static analyzer

to easily determine the pajrability of your instructions.1

Address Generation Interlock (AGI)

As an extension to pairing rule 2, the Pentium processor suffers a 1-clock
penalty because of Address Generation Interlock (AG1). AGI stalls occur

when an instruction writes to a register that is then used as a base or an

index in the following clock cycle. For example, consider the following two
instructions:

Mov est, eax

Mov ebx, [esil

The second instruction suffers from an AGI stall since it uses the esi register

as a base register, and esi was just updated in the first instruction (see Figure

19-6). As a result, both processor pipelines stall for 1 Clock cycle as below.

1. You can find a list of instruction pairability in the Intel Architecture Optimization Manual found on
the companion CD.

PARTV]

317

300 I CHAPTER '19 THE PENTIUM PROCESSOR

iu Mov esi, eax

lvl
Mov esi, eax

2u

2V AGI Stall
AGI Stall 4

3u |Mov ebx, [esi] Mov ebx, [esi]

Zvl “X

If the first instruction that writes
to ESI is issued in either the
U orV pipes,

You must wait 1 clock cycle before
using ESI as a base or index——o1-
you’ll get an AGI stall.

This is the earliest slot where youcan use ESI as a base or index.

FIGURE 1 9-6 AGI stall in the Pentium processor.

To avoid AGI stalls, you can insert other useful instructions between the

two instructions——as long as the inserted instructions don’t use esi as a base
or an index.

19.6 Write Buffers
19.6.1

The Pentium with

MMX technology pro-
cessor has four Write
buffers that can be ac-

cessed by either pipe.

Operational Overview

The Pentium processor features two 32-bit VVrite buffers that queue data on

its way to the external bus——the L2 cache or main memory. One buffer is

dedicated to the U pipe and one to the V pipe. The main purpose of the

Write buffers is to enhance the performance of consecutive writes to mem-

ory. Note that the Write buffers are not used when you write to memory

addresses that are already in the L1 cache; only writes to the external bus are

queued in the V/Vrite buffers.

So why are the VVrite buffers useful? Without the Write buffers, when you

write data to memory that is not part of the L1 cache—uncached memory

T

U Pipe

j»

V Pipe

W

FIGURE '1 9-7 The Pentium processor's Write buffers.

318

3 data on
Jffer is

)f the
to mem-

tmory
ll bus are

en you

.nemory

I 9.6.2

WRITE BUFFERS I 301

or elsewhere—the processor has to wait untfl the data is completely trans-

ferred before it can move on to the next instruction. Depending on where

the data has to go—main memory, the L2 cache, and so forth, the write can

takeia long time to complete compared to when you’re writing to the L1
cache. The \/Vrite buffers can hold the data until it has a chance to write it to

memory. Meanwhile the processor is allowed to continue execution at the
next instruction.

Now, if the processor is asked to write another piece of data to memory

from the same pipe*while the first bit of data is still being written to mem—
ory, the processor stalls until the original data in the Write buffer is written

to memory. The V/Vrite buffer is also flushed out if you read from a memory

location that is not in the L1 cache or from uncached memory—and the
processor stalls until the Write buffers are flushed before it executes the
read.

Performance Considerations

You typically don’t have to worry about the Write buffers unless you’re

writing data to video memory or some other uncached memory location.

Multimedia video applications that write directly to video memory——

uncached memory—could benefit greatly if developers paid special atten-

tion to the pattern in which video» is written to video memory.

Since it takes time to write data to Video memory, you could space out the

writes and do some processing in between. The time it takes to write to

video memory depends on many factors, such as the type of memory used
on the graphics adapter. For the sake of simplicity, assume that on a 100-MHZ

processor it takes 10 CPU cycles to write a 32-bit word to video memory. If

you continuously write from a register to video memory, you’ll write 32 bits

every 10 clock cycles~—of course, you’re stalling for 9 of them.2 Now, if you
have some other processing to do, you can fill the 9 cycles getting some use-

ful work accomplished—as long as you access your data from the L1 cache.
For example, in a color conversion routine, rather than converting the whole

image in system memory and then writing it out to the video card, you can

perform the color conversion calculations in between writes to video mem-

ory——as long as you only access registers or the L1 cache.

At this point, you might have the impression that you only need to assure

that instructions pair correctly in order to gain performance. Ideally, this is

2. For a faster processor, you wait the same physical time, but you wait more processor clocks. That
means you can squeeze in even more instructions between writes to memory.

_.
>
I-
n:
<2
D.

319

302 I CHAPTER 19 THE PENTIUM PROCESSOR

true as long as your code and data are waiting in the L1 cache. Unfortu-

nately, with multimedia applications, you cannot make such an assump-

tion, since you typically deal with a huge amount of data, and 110t all of it
will fit in the L1 cache at once.

Because the L2 cache and memory run much more slowly than the internal

components, the processor has to wait for them to deliver code or data.

Even though the L2 cache and memory can get faster, they can’t have the

same speed ramp as the processor. As a result, the situation gets even worse

with faster processors, since they have to wait more clocks for the same

response time from the L2 cache or main memory.

As a multimedia developer, you m11st pay special attention to how you

access your data. Multimedia applications are memory intensive in nature

and exert a huge demand on the memory subsystem. Depending on the

nature of the data, certain access patterns are more efficient than others.

For example, you can preload the data to make sure that it is in the L1 cache

before you use it. You can also space out your writes to video memory and

do some useful operations in between.

We could spend a whole chapter on memory optimization issues, and that

is exactly what we did. We devoted the chapter at the end of this part to dis-

cussing memory optimization techniques.

19.1 Revisiting Our Sprite Sample

19.7.1

Great! You’ve made it this far. Now you can take a deep breath. But are your

hands still itching to optimize something? Let’s use the assembly version3 of
the sprite sample from Part II and try to figure out how we can optimize its
performance on the Pentium processor.

Overview of the Assembly Version of Csprite

First let’s see how the sprite sample works. As you know, a sprite is a regular

bitmap where one of the colors is designated to be transparent. A sprite is

typically overlaid on top of a background, and only the nontransparent pixels

of the sprite show up against the background. Of course, there are many

ways to overlay a sprite on top of a background. For example, you can read

pixels from both images and merge them in memory and then write out the

3. The assembly version of the sprite was only mentioned in Part 11. You can find the sources on the
companion CD.

320

ortu-

ump—

all of it

internal
data.

ve the
en worse
ame

you
nature

n the

thers.

L1 cache

ory and

nd that
rt to dis-

are your
rsion 3 of
imize its

a regular

prite is

nt pixels
many
can read

e out the

es on the

REVISITING OUR SPRITE SAMPLE I 303

merged result to the video screen. But if the background is already in video

memory, this might be an expensive solution——video memory takes a long

time to write and even longer to read.

In our implementation, we assume that the background is already in video

memory. We first read 4 bytes (a DWORD) from the sprite and only write

out the nontransparent pixels to the screen. To do that, you could look at

each pixel in the sprite to determine if it is transparent or not, and only

write out the nontransparent ones. But this strategy causes a huge branch

misprediction problem since you don’t really know yet what’s in the sprite.

Since we’re dealing with a static sprite, we decided to preprocess the sprite

to figure out which pixels we really need to write. The outcome of the pre—

processing is a command list indicating which pixels we should care about

and whicl1 we shouldn’t even examine. Another advantage of the command

list is that we avoid using compare instructions while we’re displaying the

sprite, so we are saved all the branch mispredictions that otherwise would
occur.

Consider the sprite bitmap in Figure 19-8. When we preprocess the sprite,

we handle one DWORD at a time and decide wl1at we’re supposed to do for

that DWORD. For example, the first DVVORD in line 0 says: “only draw the

third pixel.” The next one says, “Draw all four pixels,” and so on. These are

basically the commands in the command list. Table 19-2 shows us the com-

mand list we would generate for this sprite.

8

- D Transparent
Visible

FIGURE 19-8 Simple sprite.

TABLE 19-2 Command List for a Sprite

O WrIteByte3, Wr/teDWord, EndOfL/ne

1 Sk/PL/ne

2 S0//dtine, EndOfSprite

51-
n:
<1
n.

321

304 I CHAPTER 19 THE PENTIUM PROCESSOR

V\’hen it’s time to display the sprite, we first read the command list and then

do whatever the command says. Notice that we never have to deal with

transparent pixels at all; we know exactly which pixels we need to write.

This allows us to process the sprite in less time and reduces the bandwidth

on the system bus.

To avoid branch mispredictions, we designed the commands in such a way
that they could be used as an index to a jump table (Figure 19-9). The

lump Table[] array holds the address of the label that handles that task.

You’ll see what we’re getting at soon.

Table Pixels Command

Index 012 3 lumpTable[]
(0000) PDWORD,

J1,

-0,

L1,

30.

31,

9

Notice that the ‘ El 1
pixel arrangement 1 3 (1 1 O ’ 1 E1 1 ’
corresponds to the

ilnwe1'4l'>itsnfthe 14 (1110) ~ Tlllow

‘index ‘5 (111) . zwoma,
L6 SO_ID_INE.

17 SK PLINE,

18 E JOFLINE,

19 KNJOFSPRITE

FIGURE 1 9-9 Sprite command jump table.

Now, if you apply this jump table to the sprite in Figure 19-8, you’ll end up
with the command list shown in Table 19—3.

322

REVISITING OUR SPRITE SAMPLE I 305

TABLE ‘I9-3 Command List for the Simple Sprite

Wrn‘eByte0 7 00,

Wr/'teDWord,
EndOfL/ne

S/</pL/'ne

So/idL/‘ne,

EndOfSpri1‘e

When the BltSprite() function is first called, it performs an unconditional

jump to the first command in the command list. After a command is exe-

cuted, a similar jump transfers control to the next command in the list.

This process is repeated until the EndOfSprite is reached, which returns
control to the caller routine. Notice in Figure 19-9 that each command pro-

cesses at least one DVVORD of the sprite.

// This is a pseudo code that demonstrates how the jump table works.
// ire pCommandLis poiits to the fi“st command int: the JumpTabie.
EitSprite{PBY'E *pSrc, FBYTE *pDst, PBYTE *pCommandList)
l

// Execute tie first command in the list.
goto Jumpnb e *pCommandList+i];

NriteByte0001: // Only write first byte of DWOQD
pDst[O] = pSrc O]:
pSrc+=4, 3Ds:+=4; // go to next DNORD
goto Jum3'ab ej*3Cohman:_ist++j;

WriteByte0010: // Only write second byte of DNORD
pDst[l] = pSrc[1];
pSrc+=4. 3Ds +74;
goto JumpTab e *pComwandList ++];

WriteDNOrd: // Write entire DNORD
((DwURD*)3Ds)_UJ = (lDwURD*)pSrc)[Ul
pSrc+=4. P55 +=4;
gnto JumpTab e,*pCommand|ist ++];

// ‘he rest of the operations are siwiiarm

End0fSprite: // Unnem
return;

323

306 I CHAPTER 19 THE PENTIUM PROCESSOR

1 9.7.2
Analyzing the Performance of Our Sprite Sample

Before we go into some analysis, you should be aware that you can easily
use VTune to figure out if an instruction sequence pair will work. But in

order to figure out how to optimize your code, you’ll still need to have
knowledge of the Pentium pairing rules.

ln the following illustration, we’ll show you our thinking process when we
hand—opti1nize our code. For the purpose of our analysis, let’s try to opti-
mize the assembly Version of the VVriteD\/Vord command shown below.

WriteDWord:

mov ecx, [est] ; Read DWOHD tram sprite
mov Ledij, ecx ; write DWORD to background
inc ebx ; increment index pointer
mcv dl, [ebx] ; reac jump table index
add est, 4 ; next DMURD to szrite
add edi, 4 » next DWORD in background
jnp JumpTable[edx*4j ; Jump to next macro based on irdex.

Typically, when you schedule instructions, you start the analysis from the
first instruction in a block and try to pair it with the next sequential
instruction according to the Pentium pairing rules. If the first two instruc-

tions do not pair, you would skip the first instruction and try to pair the
second one with the third, and so on.

In Table 19-4, you can find the nonoptimized sequence of the VVriteDWord

command. In the first column we see the instruction sequence where paired
instructions are separated by a blank line. The second column has the num-

TABLE 1 9-4 The Nonoptimized Version of the WriteDWord Command

mov ccx, [1+1] - (7,2) do not airbecause (2) usesaregister
written by I Pairing Rule 2)

mov [ed1+1], ecx
- (2,3 air,‘ both instructions are UVpairab/e,inc ebx t/i)ere is no dependency

mov dl , [e-bx] 24,5) pair,‘ however, there is an additional clockadd esl Y 4 ecause of an AGI sta//-—EBX was just incremented.

add ed‘ , 4 (6,7) do not pair because (7) is not pairab/e
(Pairing Rule 1).

. J WP Junpta 37 P [ed><*4] indirect registerjumps are not pairab/e," they also
take 2 clocks to execute when the jump address
is in BTB (PR1 & Branch Timing).

324

ml

)m the

ll

instruc-

'r the

3DWord

'e paired
he num-

mand

REVISITING OUR SPRITE SAMPLE I 307

ber of clocks it takes to execute each pair of instructions, and the last col-

umn illustrates the step—by—step thinking process that we used to figure out

if two instructions could be paired.

Based on the analysis, you can see that there are a few pairing and schedul-

ing problems in the code. For example, instruction 4 has an AGI because

the ebx register was just incremented in instruction 3. To avoid an AGI stall,
you could switch the two instructions and use mo V dl , [e b ><+1] to refer-

ence the correct byte. See Table 19-5 for an optimized version of the
VVriteDWord command.

TABLE 19-5 Optimized Version of the WriteDWord Command from
the Sprite Sample

, t gm - 2,2 '
iii [£2111 (W”
ebx - (3,4) pa/resi , 4

[edi+1], ecx - (5,6)pa/redi, 4‘«lO\U‘!J>(.0l\3Fr‘
JumpTdb1e’Ledx*4 - lrid/rect register jumps are not pa/rab/e. Take

2 clocks when jump address is In BTB.

This simple optimization resulted in a gain of 2 clocks. In reality, it would

be great if either of the above samples executed in 5 or 7 cycles. Unfortu-

nately, both sequences take much longer to execute than indicated because

we are writing the results directly to Video memory, and this process, as we

mentioned earlier, is Very slow compared to how fast the processor can run.

Also note that the same instruction performs unaligned memory writes

depending on the position of the sprite on the screen. Misaligned memory

writes take more cycles to execute because the processor splits the write into
smaller writes.

In Table 196, you can see the actual measurements for both the nonopti-

mized and the optimized Versions of the WriteD\Vord command. In our

measurement, we used the worst-case sprite for the WriteD\Vord com-

mand, where all pixels are Visible and the sprite width is a multiple of 4.

325

308 I CHAPTER ‘[9 THE PENTIUM PROCESSOR

You can use VTune

to detect misalignedaccesses.

TABLE ‘I9-6 Measured Cycle Timing for Nonoptimized and
Optimized Versions of the WriteDWord Command

Output
Buffer

Alignment

C|ocks/

Sprite

O l455O

l

2

Notice that the 2-clock gain in performance is not even noticeable. As we

mentioned before, this is because the slow video memory access chews up

the 2-clock gain we saw in the optimized Version.

Take a closer look at the measurements again. Notice that all misaligned

writes to video memory result in a huge penalty compared to the aligned
writes (~30 clocks/DWORD). As a result, we rewrote the VVriteDWord

command to perform only aligned memory writes with some shifting and

masking. And, as we expected, we received a huge performance boost (~13

clocks/DWORD). You can find a copy of the aligned write implementation

of the sprite on the companion CD.

Do I Really Need to Schedule My Code?

Absolutely! We deliberately selected this example for two reasons. First, to

show you how to optimize your code from the processor’s point of View.

Second, to poi11t out that other components in the system, such as video

memory, can adversely affect your application performance. You will defi—

nitely benefit from scheduling instructions, especially if the data is close to

the processor (basically, in registers or 1.1 or L2 cache). For example, sprites

written into system memory execute at 8 clocks/DVVORD, and sprites writ-

ten into video memory execute at 38 clocks/DWORD. We have found that

most multimedia algorithms, such as those for compression, decompres-

sion, image filtration, and 3D benefit from instruction scheduling.

326

WHAT HAVE

You LEARNED?

that
es-

E

REVISITING OUR SPRITE SAMPLE I 309

At this stage, you should be familiarwith the internal components of the Pentium processor,
and you should have an idea of what you can do to achieve optimal performance on this
processor. Here is a recap of the tips you should have picked up by reading this chapter:

I Know your data: what does it look like, where does it come from, and where is it going
to? (See Chapter 23 for more.)

Align loops, unconditional branches, and function labels to 8-byte cache boundary.

Keep infrequently executed code and data separate from the inner loops.

Use simple instructions for optimal pairing.

Avoid branch mispredictions and AG stalls.

Measure the performance of your code, because this is the. best way to get a sense of
how well it is executing.

327

WHY READ

THIS CHAPTER?

CHAPTER 20

-T

The Pentium with MMX

Technology Processor

In this chapter you'll learn about the Pentium with MMX technology processor and its own
pairing and scheduling rules (the Pentium II processor is discussed in a later chapter).

In this chapter, you will

get an architectural oven/iew of MMX technology,

learn about the MMX data types, instructions, and register set,

learn the MMX pairing and scheduling rules,

see how to mix floating—point and MMX instructions using the El\/IMS guideline,

rewrite the sprite sample using MMX instructions, and

optimize the sprite for MMX technology using the scheduling rules.

20.1 A Look at MMX Technology

With the Pentium processor, Intel implemented parallel processing with

dual execution pipelines. MMX technology is the latest major addition to

the Intel Architecture, including fifty—seVen new instructions, and eight

new 64—bit registers. With MMX technology, Intel took parallel processing

to the level where a single instruction operates on multiple elements of

data—this is known as Single Instruction Multiple Data (SIMD).

Although the name MMX might imply a specific set of applications, multi-

media, the new instruction set is a general-purpose implementation of the

:31! I

328

312 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.2 SIMD

SIMD concept. It benefits all applications that perform the same operation
repetitively on contiguous blocks of data.

MMX technology introduces a new set of instructions and registers. The
instructions operate in parallel on BYTE, WORD, DVVORD, and QWORD

data types packed into 64-bit registers. They perform signed and unsigned

arithmetic, logical, packing, and unpacking operations on the previously
mentioned data types’ boundaries. They allow for saturation or wrap-
around to handle overflow and under~flow conditions.

In this chapter, you will first get an overview of MMX technology and a

brief description of the instruction and register sets. You will then learn the

MMX scheduling rules and how to apply them to the sprite sample.

Typically, integer instructions operate on individual integer data elements

(A + B) (see Figure 20—la). SIMD instructions, on the other hand, operate

on integer data arrays (A[1..n] +B[1..n]), where 11 is the number of elements

in the array, for example, r1 : 4 in (see Figure 20—1b).

In Figure 20-1, note that the SIMD processor duplicates the same execution

unit four times. Consequently, the SIMD processor can process fo11r data

elements in the same clock cycle (Figure 20—1b) while the scalar single

instruction, single data (SISD) processor takes four clock cycles to process

the same data (Figure 20—1a).

AFB/I

(a) Scalar, or SISD, operation (b) SIMD operation

FIGURE 20-"! Scalar versus SIMD operations.

329

ARCHITECTURAL OVERVIEW I 313

0.3 Architectural Overview

The Pentium with MMX technology is the first implementation of the

MMX technology, based on the Pentium processor. Recently Intel added

MMX technology to the Pentium Pro to create the Pentium II processor. In

this chapter we’ll discuss only the extension of MMX technology to the

Pentium processor. The Pentium II processor is discussed in Chapter 22.

Figure 20-2 shows an architectural overview of the Pentium with MMX
technology processor. The processor includes eight new MMX registers and

fifty-seven new MMX instructions. In addition, the processor doubles the
size of the L1 code and data caches to 16K each and adds a Return Stack

Buffer, which reduces the overhead of function returns. Finally, the two

dedicated Pentium Write buffers are replaced with four shared Write buff-
ers—32 bits each. i

The Pool of Four Write Buffers

In the previous chapter, we mentioned that the Pentium processor has two
dedicated Write buffers, which are used to queue data writes that do not hit

the L1 cache, write through cache, or write to uncached memory. In the

Pentium processor without MMX technology, one buffer is dedicated to the

U pipe and one is dedicated to the V pipe. As a result of this constraint, each
pipeline is allowed to queue only one memory write before the pipeline gets
stalled.

L1 Instruction Cache
(16KByte)

FIGURE 20-2 Architectural view of the Pentium with

MMX technology processor. ‘ :

330

314 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

I
a. Pentium processor b. Pentium processor with MMX technology

FIGURE 20-V3 Write buffers for Pentium and Pentium with
MMX technology processors.

To enhance write performance, the Pentium with MMX technology proces.
sor doubled the number of Write buffers—to four 32-bit Write buffers. It

also removed the constraint that buffers are dedicated to a specific pipeline,

Any of the four buffers can be accessed from either pipeline allowing up to

four back-to-back 32-bit memory writes or two 64-bit writes regardless of

which pipeline the writes came from. As a result, each pipeline can write up
to four 32-bit writes before stalling the pipeline (see Figure 20-3).

MMX Uses Floating-Point Registers

To maintain operating system compatibility, MMX technology maps the

MMX registers on top of the IA floating-point (FP) registers. Figure 20-4

shows a diagram of the MMX registers mapped one-to-one to the mantissa

part of the floating-point registers. As a result, when you read or write to a11

MMX register, you read and write to one of the floating-point registers and

vice versa. The only difference is how the data is interpreted in the register-

after all, it’s only bits. MMX instructions interpret the data as packed bytes,

words, or double words; floating-point instructions interpret the same data

as the mantissa part of a floating-point number.

331

ARCHITECTURAL OVERVIEW n 315

Floating-point Registers

E33:

63:

MM1

MM2

hnology MM3
with 9”“ “M4

MM5

MM6

MM7

g¥fpr°:5' MMX Registersu ers. -

C pipeline‘ FIGURE 20-4 Aliasing of MMX registers on top of the floating-point registers.
'11 g up to

ardless of So what’s the catch? First, it’s obvious that you cannot rely on the contents

11 write up of the floating—point registers after you execute an MMX piece of code, or
vice versa. VVhat’s not readily obvious is that the processor could generate

floating—point errors when you execute a floating—point instruction after an

MMX instruction. Why? Since an MMX instruction treats the entire 64 reg-

a S the ister bits as packed integers, it can write any sequence of bits in the MMX
ml: 204 register. But from the floating—point of view, certain bit combinations in the
6 mantissa mantissa combined with certain bits in the exponent generate floating-

. oint errors such as NAN,1 stack overflow or under—flow. Refer to the Pen-
r1te to an , .

. tium processor programmer s manual on the CD for more details.isters and

‘ t — . i .

ffisbies 20.3.3 EMMS to the Rescue: How to MIX MMX and FP Instructions5

same data
That is not to say that you can never mix MMX and floating—point code

fragments in the same application. Rather, you can mix the two types of

.§ . instructions if and only if you can guarantee that no floating—point errors

‘ will occur when you switch from MMX to floating—point. To do so, you

must use the new MMX instruction EMMS (Empty MMX Technology

State), which marks all the floating—point registers as Empty. To the floating-

point unit, an empty register indicates that it does not have any data in the

register and, therefore, does not generate stack overflow errors.

2z.

:

3.

1, NAN: “Not a Number" in floating—point terminology.

l;

l.

l

332

316 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

EMMS takes 04 1 Cy, Notice that you should use the EMMS instructions wisely since the EMMS
cles on the Pentium II instruction can take up to 53 clock cycles to execute on the Pentium with

PTOCBSSOF MMX technology.2 Ouch! Keeping that in mind, you should use the EMMS
instructions only in the following situations:

If you plan on mixing MMX and floating—point code in the same apph-
cation, insert the EMMS instruction at the end of each MMX block.

If your DLL exports an MMX function that could be called by an app1i_

cation that uses floating-point operations, insert the EMMS instruction

before you return from the routine.

To use the EMMS instruction ‘properly, just remember these simple rules:

I Minimize switching between MMX and floating—point instructions be-
cause the switch can be expensive (costing up to 53 cycles).

Never mix MMX and f1oating—point instructions at the instruction level—

separate the MMX and floating-point calculations into separate routines
and use EMMS at the end of MMX routines.

Never assume that the state of the registers is valid across transitions be-

cause both MMX and floating—point instructions write and read from

the same physical register file.

Always insert an EMMS instruction at the end of an MMX block unless

you are absolutely sure that no floating-point instruction will be used.

20.4 MMX Technology Data Types
You can interpret the 64-bit data format in an MMX register according to

the instruction that you use. Notice that with the exception of EMMS and

the 32-bit memory transfer instruction (MOV D), all MMX technology

instructions operate on one of the data formats shown in Figure 20-5.

The MOVD instruction operates on the lower 32 bits of an MMX register,

where it transfers the register’s contents to memory or to an integer register

(eax, ebx, and so forth). The MOVD instruction also transfers 32 bits of data

from memory or an integer register to the lower 32 bits of the MMX regis-

ter; in this case, the high 32 bits are set to zero.

2. The actual EMMS instruction takes only 1 clock cycle to execute, but when the first floating»point
instruction executes, it takes up to 53 cycles to completely switch to the floating—point mode.

333

THE MMX INSTRUCTION SET I 3'17

Eight packed consecutive bytes
-_.a'a:<,'ys.'/A¥¢al?J?«~'.«!t¢<1!r-2205938/I«~*-trzaaazr/isvav -.«.»m-«

T

i f ‘ ‘ ouac:‘w.-mic ~ —

FIGURE 20-5 Data formats for MMX technology instructions.

The EMMS instruction only affects the tag bits of the floating-point reg-

isters. It sets all the tag bits to 1, indicating that the floating—point registers
are empty.

20.5 The MMX Instruction Set

V/Vith the introduction of MMX technology, Intel added fifty-seven new
instructions to the IA architecture. These instructions consist of arithmetic,

comparison, conversion, logical, shift, and data transfer instructions.

V/Vith the exception of EMMS and data transfer instructions (MOVO and

MOVD), all MMX instructions follow the format shown in Figure 20-6.

In Table 20-1, you can find a list of the MMX instructions with a brief

description of each. For a detailed description, please refer to the Intel

Architecture MMX Technology: Progmmmefs Reference Manual found on
the companion CD.

B/W/D/Q b/w/d/g i

ADD, sue, CMP, _ . . etc. '”P“‘/ONPU‘ Output Data
Data Type

sger register
its of data

FIG U I§E 20-6 The MMX instruction format.

334

318 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

TABLE 20-‘! Summary of MMX instruction Set

Arithmetic P [B|w|b] 1 Wraparoun

Qaddus B: Add 8 by1es using unsigned arithmeticwith saturation.

lFF oo 01 FF FEiEO FF+L ,04 03 o2lo1 on 99 99
FF 03 03 FF FE FF FF

Igaddus W: Add 4 words using unsignedarithmetic wifli saturation.
FF 00 01 FF FE 80 FF FF

+ 04 03 02 01 oo 99l99 01
FF FF o4’oo FF 19 FF FF

TFADDS[B|W] Add signed with saturation

PADDUS[B|W] Add unsigned with saturation

PSL/B [B|W|D] Subtrac' with Wraparound

PSUB5[B|W] Subtract signed with saturation

P5UBU5[B|W] l Subtrac unsigned with saturation
PMU[_H\N/
PMULLW i\/_iu|ti ly four words and store

high low 32-bit result ii'i register
PM/iDDWd Packed multiply and add

Comparison PCMPEQ [B|W|D] Compare it equal

PCMPGT[B|W|D] Compare it greater than

Conversion PACl<S5Wb
PACKSSDW

Convert si ned WORD/DWORD
to signed yte/word using signedsaturation

PACKU5-‘Wb Convert signed word to s_igned
byte using signed saturation.

PUNPCKHBW
PUNPC/<HWd

PUNPCK/-iDq

interleave the hi h order 32-bit
data elements o the source and

destinaton operands across data
type bo Jndary.

PUNPCKLBW
PUNPCKLWd

PUNPCKLDq

interleave the low order 32-bit
data elements of the source and
destinaton operands across data
type bo Jndary.

PAND Bitwise ogical AND

PAN DN Bitwise logical AND NOT
POR Bitwise ogical OR
PXOR Bit\Nise ogical XOR

Liasu DQ]
PSRL DQ]

Shift left/right logical without carry
across cata type boundary

PSRA [win] l-ghift right arithmetic where the
sign is he most significant bit
(MSB) or the specific data-type.

’i

Data Transfer
i\/l OVD

Transfers 32 bits between MMX
register and integer register or
memory

iViO\/Q Firansfers 64 bits between MMX
register and MMX register or
memory

EMi\/IS Empty MMX technology state.
Clears FP tag word.

335

USING MMX TECHNOLOGY TO RENDER OUR SPRITE SAMPLE I 3'19

Notice that some of the instructions have few formats for signed versus

unsigned and wraparound versus saturation calculations. You already know

about signed versus unsigned calculations, so let’s make sure you under~

stand the wraparound versus saturation modes.

Assume that you have 2 bytes, and you want to add them together using

unsigned arithmetic. Since both are unsigned, their values can only range

from 0 to 255. But when you add them together, the results could range

from 0 to 510, which does not fit in 1 byte. So what do you do? Well, one

option is to saturate the result to 255, and the other option is to keep only

the lowest 8 bits of the result (the wraparound). Lets see how that works.

128

(b)

FIGURE 20-7 Unsigned case (a) and wraparound mode (b).

X/Vhen you use saturate instructions, results greater than the maximum pos-

sible value are clamped to the maximum value. Results less than the mini-

mum Value are clamped to the minimum value. In the unsigned case, the

final result would be clamped to 0 and 255, and in the signed case, they

would be clamped to -127 and 127. It is just like trying to go around in a
broken circle.

On the other hand, when you use wraparound mode, you would calculate

the result to whatever precision possible and only keep the lowest signifi~

cant 8 bits. It is just like going around in a circle.

it 20.6 Using MMX Technology to Render Our Sprite Sample
It’s time to revisit our spite again. This time, let’s use the new l\/IMX instruc—

tions to implement our favorite sprite. When we worked with the sprite sam-

ple in the previous chapter, we used integer instructions to selectively write

only the visible pixels of the sprite using byte writes (for example,

 ’— ,

336

320 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

mo V [mem] , a i). Since MMX technology does not offer byte write opera.
tions, we cannot selectively write the Visible pixels (1 byte at a time); rather

we have to merge the sprite and the background in an MMX register and write

the merged bytes to video memory. To do that, we use a Read/M0dify/Write

algorithm.

Swikh In enahie 'MBC5"/FR.\Dehug/Js97.pc
inline MMX assembly mu" tdafx.h"/Fo".\Debug/"/Fd".\Debug/" /FD

337

USING MMX TECHNOLOGY TO RENDER OUR SPRITE SAMPLE I 321

With this method, first we read 8 bytes from the background image into one of

the Ml\/[X registers, and then we apply the visible pixels to the background

using some logical masking techniques. Finally, we write out the modified

background to its original location.

ln this sample, We’ll simply re—imp|em ent the sprite sample We Worked with

in the previous chapter, but this time we will use MMX instructions. VVe

start out by redefining the transparency color member Variable to a 64-bit

entity and duplicating the 8-bit transparency color byte to all 8 bytes.

cl ass CSpr1'te {
Z)LlbllC:

1'it.64 m:wTransp; // Allow space to” 64 bit for MMX transaarency
):

Csprite::CS3r1tcIICBitmap &31'tmap, BVTE byKeyCol0r)

// Duplicate the transparency color accross twe 8 bytes.
memset (&m_qwlrans1;, byKeyColo", B):

\Iext we replace the contents of the Blt() routine with our MMX technology

sprite Blt() routine. This implementation of the sprite using MMX instruc-

:ions is not yet optimized.

Before we start, notice that we’re assuming an 8 bpp RGB color format and

:hat the sprite is at least 8 pixels wide. The Blt() routine processes each scan

-ine in two stages: The first stage handles the left side of the scan line 8 pix-

els at a time; the second stage handles the situations when the sprite width

is not a multiple of 8 and handles the remaining pixels at the end of the

scan line. Since both stages use the same technique for overlaying the sprite

on top of a background, we’ll discuss only the first stage, shown in the code
that follows.

void CSprlte::3lt(LPBYlE lpsurtace, long lP1'tch, CP01‘nt &po1‘nt‘;
l

PBYTE pDst:
DWURD row, col;
DWURD dwflelght = mjwtlelght;
lnL64 qwlransp = m:1wlrasnp;
PBYTE pfizrlte = m_pllat.a;

// compute address dst and src pixels. note pitch can be negative
pDst = (PBYTE)((lonq)lpSurface + polnt.>< + pm'nt.,v * lPltch);

lnt n8ByteBlocl<s 2 m dwwldth >> 3; // number or’ 8-byte bloc/<5

338

322 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

_dMH(
mov edi, pflst
mov est. pSprite
movq mm3, cwTransp

DoOneLine:
// Cneck if sprite has more than 8 bytes in
mov ecx, n8ByteBlocks
cmp ecx. O
je LessThan8BytesLeft

DoOWord:
// This ‘oop peocesses 8 pixels at a time
flovq mmO, [esi] // Sprite %““““
novq mml, [edi] // Bkend

flovq mmR, nm3 // /ransparency Color
pcmpeqb mmz, nmO // Transparency Musk
pand mm], nm? // keep bkgnd pixels
pandn mm2, nmO // keep sprite pixels
per mml, nm2 // merge them
novq [edi], mml // write out

add eci. B // advance pointers _
ad d €51 5 = transparent pixel
dc: ecx
jnz

mg

The routine processes 8 contiguous pixels at a time starting from the left-

most pixel of a sprite scan line. For each quad word (8 pixels), the routine

uses the PCVIPEQB instruction to create a transparency mask from the sprite

pixels and the transparency color. The PCM P EOB instruction compares the

8 bytes of the sprite with the 8 bytes of the transparency color. For each

byte, the result of the comparison is “FF” if the bytes match (these are the

transparent pixels) and “0” if they don’t match (these are the opaque pixels).

Next the PAND instruction is applied to the newly created mask and the

background allowing the background pixels to occupy the space of the

transparent pixels in the sprite (the ones that resulted in FF); the other pix-

els are zero. The PAN UN instruction is then used to create a similar pattern for

the opaque pixels in the sprite. In this step, the mask is first inverted and

then A.\lDed with the original sprite pixelsAthis basically clears out the

bytes corresponding to the transparent pixels in the sprite. Finally, the last
two results are combined together with the P0 R instruction in order to form

the image—-the sprite on top of the background.

339

MMX TECHNOLOGY OPTIMIZATION RULES AND PENALTIES I 323

20.7 MMX Technology Optimization Rules and Penalties

Before we start the analysis of the sample, it would be helpful to go through

some of the essential optimization rules and penalties for Pentium proces—

sors with MMX technology.

All the general rules that apply to the Pentium and the Pentium Pro proces-

sors apply to their counterparts with MMX technology. There are also new

rules that only apply to MMX instruction scheduling, as well as associated

penalties that go with them. In the following paragraphs, we will discuss

MMX instruction pairing and scheduling rules as well as variations from

the general Pentium scheduling rules.

Bankginlincl

Note that although the rules are listed here with minimal explanations of

how to apply them, most of the rules will be demonstrated in the section

where we apply MMX technology to optimizing the sprite sample. For a

complete explanation, refer to the Intel Architecture Optimization Manual

found on the companion CD.

20.1.1 MMX Exceptions to General Pentium Rules

The Pentium processor with MMX technology relaxed some of the penal—

ties we had to endure with the Pentium processor. The MIVLX—related rules

he left‘ allow for better erformance on both MMX technolo and inte er a li-. P 33’ 3 PP

muunc cations. See Table 20-2 for a summary of the new rules.
ie sprite ‘ I

~ th oi ” .
law; 6 TABLE 20-2 Comparison of Pentium Processor versus Pentium Processor
eac * with MMX Technologyare the ‘

e pixels). I 4

if Two instructions do not air MMX instructions do not pair if the U i el the . . . P . . . P P .
‘E v if either of them is longer than instruction IS longer than H bytes orthe \/ pipe

fthe _ 7 bytes instr_uction is longer than 7 bytes; note that
mher p1'X_ — prefixes are not counted here.

ittern for Prefixed instructions are only Instructions with OFh, 6_6H, or 67H* prefixes
,d and pairable in the U pipe are pairable in either pipe. The relaxation of this
’ restriction helps integer, floatingpoint, and MMX
UT The instructions. All /l/I/l/IX /nstruct/ons are prefixed
the last ‘ with OH).

I‘ t0 ICOTH1 * OFh: first byte of a 2~byte opcode; 66H: operand size prefix; 67H: address size prefix.

 4

340

324 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.7.2 MMX Instruction Pairing Rules

The pairing rules are the internal processor guidelines that must be fol-
lowed in order to execute two instructions in the same clock: one instruc.

tion executes in the U pipe, and the next one executes in the V pipe.

In the previous chapter We examined the general Pentium pairing rules that

are used with integer and memory operations. In this chapter, we’ll exam-

ine the MMX specific pairing rules. You can find a list of the MMX instruc-

tion pairing rules in Table 20-3. Each rule is followed by three samples

illustrating the application of that rule. Notice that when the pairing rules
are violated, the reason for the Violation is highlighted in bold for better

readability.
Schedi

. . . . » * take 3 c
TABLE 20-3 MMX Pairing Rules for Pentium with MMX Technology » (see tht

Pair Rule l:Two MMX instructions do not pair if they both use the MMX shtter, (Pac/< Unpack, Shift i'nsz‘rucri'ons).

' Rule 2: Two MMX instructions do not pair if they both use the multiplier unit (pmu//, pmu/h, pmadd).

Rule 3: An MMX instruction acces emory or an integer register can only be issued in the U pipe,

Pair Rule 4: It the U pipe MMX instructon is accessing memory or an integer register, the V pipe instruction mustbe an MMX instruction in order for the two to Dair.

Pair Rule 5: The MMX destination register of the U pipe should not match the source or destination register of
the V pipe (dependency check).

Pair Rule 6: EMMS is not pairable.

/ Pairable
X Not Pairable

341

‘o e fol-

instruc-
ll 6.

rules that
’ll exam-

X instruc-

ples

ing rules
better

struct/ons).

register of

MMX TECHNOLOGY OPTIMIZATION RULES AND PENALTIES I 325

MMX Instruction Scheduling Rules

The scheduling rules are the internal processor guidelines that indicate the

number of clocks it takes to execute certain instructions or when you can

perform certain operations. Basically, these rules indicate when the data is

ready after certain operations.

You can find a list of MMX instruction scheduling rules in Table 20-4.

Study the example at the bottom of each rule to understand the restrictions

imposed by the rule. We highlighted the two instructions affected by the

TABLE 20-4 MMX Scheduling Rules

Scheduling Rule 1: MMX instructions take a single clock to execute except for MMX multiply instructions, which
take 3 clocks to execute. In other words, multiply Instructions require 3 clocks before their data IS ready for use.
(See the Note on ”One Clock MMX Multiply")

Scheduling Rule 2: When an MMX register is updated, 1 extra cycle is needed before you can store it to mem-
ory or to an Integer regrster; no extra clock is needed if data is moved to an MMX register.

(Continued)
 ‘ i

342

326' I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

TABLE 20-4 MMX Scheduling Rules (Continued)

lscheduling Rule 3: No penalty for OFh prefix. There's a 2—clock penalty for 66h and 67h prefixes.
Schedulin Rule 4: The Pentium processor suffers a 1-clock penalty for address resolution (AGI). (Refer to
Chapter 19 or a detailed discussion of AGI stalls.)

Scheduling Rule 5: Switching between MMX technology and FP is an expensive task. (Refer to the beginning of
this chapter for more information about register aliasing and El\/|l\/IS.)

rule. In the first column of the table, we show the original sequence of the
two instructions (back to back). In the second column we Show the actual

behavior of the processor when it encounters these two instructions, fo1~

lowed by the number ofwasted clocks that result from that arrangement. In

the last column, we show an optimized Version of the code sequence, in

which we rearranged the instructions to fill up the wasted slots.

Pmulhw mma, mm]

Pmullw mm1, mm2

Pami mm2, mm3

lzu
Mow] rnm5, mm!) jReady to use 1 U
Movq mm4, mm]

A101/q mml, mm2

343

PERFORMANCE ANALYSIS OF OUR SPRITE I 327

20.8 Performance Analysis of Our Sprite
Now that you know the essential optimization rules for MMX technology

coding, let’s have a look at the inner loop of our sprite sample (Table 20-5).

As you can see, there are lots of problems here; let’s see how to fix them.

Typically, we start the analysis from the first instruction in the loop and try

to pair it with another instruction in the sequence according to the pairing

and scheduling rules above. If we cannot find an instruction that pairs with

the first instruction, we skip it and try to pair the second instruction with
the third, and so on, as we saw in the previous chapter.

The original instruction sequence is listed in the first column. The second

column shows the number of clock cycles it takes to execute an instruction

or an instruction pair. The last column shows our step-by-step analysis of

this code sequence.

TABLE 20-5 Nonoptimized MMX Technology Sprite Loop Analysis

DUQWDRD: (7,2) do not pair because they both access
’_. Move MMO, [E51] memory (PR 3)*

7. MDVO MM] . [PDT] (2,3) pair, since (2) is issued in the Upipe, and
3- MDVO MMZ, MM3 (3) is an MMX instruction

4. PCMPEQB MN2, MMC (4,5) do notpair because mm2 is the destination
register and it is used In (5) as a source
operand (PR 5)*

1, MM2 (5,6) pairM2, MNO

, MM2 (7,8) do not pair. (8) is an /\/I/|/IX instruction accessing
memory (doesn't go in V pipe [PR 3]).

:DIl , W1 (8) has a pipeline stail for one more cycle, since it is
writ/‘n mml to memory and mmi vvasjust updated.
(SR 23*

9. ADD ED , 8 pair10. ADD rs , 8

11. DEC ECX - pair12. JNZ DOQNORD

* PR stands or ”pairing rule"; SR stands for “sheduling rule."

.

344

328 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

In the second table, Table 20-6, we show an optimized Version of the

instruction sequence above, where we reordered some of the instructions to

fill in the empty slots.

TABLE 20-6 Optimized MMX Technology Sprite Loop Analysis

DOONJRD: - pair. Meve MMO, [EST]
. Move MM2. MM3

. Move MMl. [E31] - pairPCMPEQB MM2, MMO

r\n—-

PAND MM], MM2 - pairPANDN MM2, MMO

FOR MMl, MM2 - pair. ADD EDI, 8 *

. ADD EST, 8 - pair. era ECX »|—| I—‘Cc)$v\l:nU14>Ln

. MDVO [EDI-8]. MM1 - (Ii .8’. I2) dontpairbecause ii is writin to mem-
ory and I2 is not an MMX instruction (P 4)*

,.

12. JNZ Do0‘vi3Re

*PR stands for ‘pairing rule."

Note that the optimization resulted in a gain of 2 clocks. Pay special atten-

tion to the memory transfer instructions (1, 3, and 9 in the optimized

loop). The table indicates that these instructions take only 1 or 2 clock

cycles to execute. This is true if the address being accessed is in the L1

cache.3 But if this is not the case, then it would take extra cycles to execute

the instructions depending on where the data actually resides (L2 cache,

uncached memory, video memory, and so forth).

I.et’s assume that the background image, pointed to by pDst, resides in

video memory. Video memory is typically uncached and has a very slow

access pattern relative to that of the fast processor. As a result, all reads and

writes from/to Video memory consume much longer than 1 clock. The

2-clock gain in the optimized sprite loop is Very small compared to the time

. it takes to access video memory. In this case, the sprite sample is said to be

1/O bound; that is, the CPU is just waiting for the memory to respond to its
requests.

3. L1 cache is a small but Very fast memory that resides on the processor itself. In contrast, the L2
cache is typically bigger, slower, and resides outside the processor.

345

PERFORMANCE ANALYSIS OF OUR SPRITE I 32.9

Table 20-7 shows measurements of both loops using the internal CPU clock

cycle counter. VVe collected the measurement in eight buckets correspond-

ing to the alignment of the sprites top-left pixel on the screen. Please note

that regardless of the alignment, the optimized version gave a small perfor-

mance advantage over the nonoptimized version, which is the contribution

of the gain of 2 clocks.

TABLE 20-7 Measured Cycle Timing of Both Nonoptimized and Optimized
MMX Technology Sprite Loops

109732

179676

179558

110407

180585

180425

180546 179487

150358 149725._lj.._
185099 18—392

185399 18—364

185398 18-277mm

Nonetheless, each loop is consuming more cycles (158—267 clocks) than we

expected from the static analysis (7-9 clocks). Again, this increase is attrib-
uted to the video memory access time being slow as compared with the

processor access time.

Similar to the integer sprite we worked on in the previous chapter,

unaligned memory accesses have a dramatic effect on the performance of

the sprite. Note that we achieve the best performance when memory

accesses are 8-byte aligned. Performance drops significantly when memory

accesses are not aligned.

\/Vhen we reimplemented the sprite sample to perform aligned memory

writes, we received a huge performance gain—the sprite now executes at an

average of 160 clocks/8 pixels. You can find the aligned sprite implementa-

tion on the companion CD. PARTV1

346

330 I CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.8.1
MMX versus Integer Implementation of the Sprite

So how does this MMX implementation of the sprite compare to the inte.

ger implementation in the previous chapter? Not good! lf you recall from

the previous chapter, the WriteD\V0rd command of the integer sprite could

attain an average of 3 clocks/pixel for a full sprite.4 This is about seven times

faster than the sprite implementation we achieved using MMX technology!
Let’s have a closer look at the two sprite samples to understand why the dif\

ference is so marked and to figure out how to fix it.

The MMX sprite uses a Read/Modify/\Vrite algorithm, which requires two

accesses to uncached video memory: one for reading the initial bitmap, and

one for writing the final result. The sprite in the previous chapter only

accessed video memory once—when it wrote the visible pixels to the screen.

The additional read from video memory degrades performance signifi-

cantly for the MMX sprite.

Apparently, we made the wron g assumption about the location of the back-

ground image—it was fine for the integer sprite, but it’s not appropriate for

the MMX sprite. To speed up access to the background image with MMX,

we decided to build the mixed sprite/background in video memory first and

then send the mixed result to the screen. The only drawback here is that we

have to allocate additional system memory to hold the mixed background.

The result of the new implementation is shown in Table 20~9. VVOM7, the

MMX sprite is now faster than Speedy Gonzales, with an average of 1.7-1.8

clocks/pixel. By moving the background to system memory, the read and

write of the background image worked much faster than it did with the

integer sprite—even when the integer sprite uses system memory. You can

find a copy of this sample on the companion CD.

TABLE 20-8 Integer versus MMX Sprites Both Overlaid Either in
Video or System Memory

. Full Sprite refers to a sprite that does not have any transparen

347

PERFORMANCE ANALYSIS OF OUR SPRITE I 33']

WHAT HAVE At this point you should have a good idea about the l\/ll\/lX technology, its instruction set,

YOU LEARNED? registers, pairing and scheduling rules, and El\/ll\/lS. You should be able to manually opti-

e 1 t - . _

1 frglfl mize an MMX technology code fragment to obtain best performance.
te Could Another important point to take from this chapter is that it is vital that you know your data.

Know where it comes from, and where it goes to. We will talk more about this in the last
n tunes chapter of this part.
nology!

the dif- REFERENCES Intel Corporation. The Complete Guide to /l/lll/IX Technology.

. lntel Architecture /l/I/l/lX Technology: Program/ner’s Reference Manual.

res two . lntel Architecture /l/I/l/TX Technology: Developer's Manual.

ap, and

nly
screen.

nift-

. Intel Architecture Optimization Manual.

e back-

iate for

AMX,
rst and

that we

round.

V, the
1.7-1.8

and

the
011 can

in Z:

bo'co'oo'\1

348

CHAPTER 2']

in

VTune and Other Performance

Optimization Tools

WHY READ Your head must be steaming after reading the last couple of chapters. You're thinking:

THIS CHAPTER? Boy! I wish there were a better way to optimize "my code than this manual, tedious pro-
cess! You are in luck. This chapter introduces some useful tools you can use to optimize
your code for the Pentium processors. In this chapter you will

I become familiar with lntel’s Visual Tuning Environment (VTune), which contains a few
tools including static and dynamic code analysis, the hot—spot system monitor, and pro-
cessor event counters;

analyze the sprite in the MMX example using VTune and compare it to the previous
results;

learn how to count cycles using the internal Time Stamp Counter; and

learn how to use the PMonitor event counter library to monitor internal processor
events such as cache hits, misaligned accesses, and so forth.

You can fim an eVa|U_ In addition to the scheduling rules discussed earlier, Intel added three pro-

ation copy of Intel grammable performance counters to provide an accurate method for mea-

Vlune 0,“ the suring application performance on the Pentium processors. One counter
Companion CD" measures the number of clock cycles executed by the processor, and the

other two counters measure various internalevents such as the number of
data reads or Writes, L1 cache hit rate, and so forth.

To program events into counters, the processor must be running in privi-

leged level 0 (also known as ring 0). Therefore, you must Write a ring 0
driver in order to be able to access these counters from a ring 3 application.

349

334 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooLs

You might be thinking, “It’s not enough that I have to remember all of these

scheduling rules. Nowl have to write a ring 0 driver.” But you don’t. Thafs

why you’re reading this chapter.

In this chapter you will learn about VTune——Intel’s Visual Tuning Environ-

ment for Windows. V/Vith VTune you don’t have to memorize the schedul-

ing rules or write a ring 0 driver to access the performance counters. VTune

remembers all the pairing and scheduling rules and provides you with a

detailed analysis of your code. It can also provide you with a systemwide

view of your application using either time-based sampling (TBS) or event-

based sampling (EBS). You can accomplish all of this without any modifica-
tion to your code.

At the end of the chapter we will show you an alternate way of using the

Time Stamp Counter a11d event counter. Unlike VTune, which monitors the

entire application, this method allows you to monitor a specific portion of

your code.

21 .1 Overview of Performance Counters

On a 200 MHZ pro-
cessor, it takes the
TSC counter 2,924

years to roll over!

Before we start with the actual tools, let’s have a brief overview of the per-

formance counters. The Pentium performance counters are the best means

of getting accurate feedback about your application’s performance. They

give you insight into how the processor behaves when you run your

application.

The Pentium processors include a 64-bit Time Stamp Counter (TSC),

which counts the number of clocks executed by the processor. When the

processor is reset, the TSC starts counting at zero. You can also program an

initial value into the counter using the lrl RMS R instruction, which executes

only in ring 0. Once the counter is started, you can sample its value using

the RDTS C instruction at all processor privilege levels.

The Pentium processors also include two 40-bit counters (T0 and T1) that

can be programmed to monitor various internal ‘processor events that

affect application performance. These events can be either duration events

or frequency events. When monitoring duration events, the performance

counters measure the number of cycles while the event was active. V\7hen

monitoring frequency events, the event counters measure the number of

times the event occurred. For a list of the types of events, refer to the Intel

Architecture Optimization Manual found on the companion CD.

350

INTRODUCING VTUNE I 335

As with the TSC, you can program the event counters with the W RS M R

instruction, which executes in ring 0. On the Pentium Pro and Pentium

processors with MMX technology, you can read the event counters using

the new RD PMC instruction at any privilege level. But on the Pentium pro-

cessor without MMX technology, you can only use the privileged level

instruction RDMS R to sample the event counters at ring 0.1

_ with a

amwide I c 21.2 Introducing VTune
or event- VTune offers an easy-to—use Windows interface that simplifies optimization

rmodlfica‘ I for the Intel Architecture. It is a collection of both simple and complex opti-
mization methodologies that greatly help developers optimize their code for

the Pentium, Pentium Pro, and Pentium with MMX technology processors.

In our discussion we will focus on the various VTune features without

going into the details of how to use them. You can find more detail in

VTune’s online help files.

Let’s start with a summary ofVTune features and what they are used for. In
I Table 21-1, we list VTune features with a brief description of each. We also

: the per- highlight the purposes of the features and how you can benefit from them.
est means ‘ You can find out more details about these features later in the chapter.

TABLE 21 -‘I VTune Feature List

th ‘ _ na yzes _app iication (.0 exe, or.dl/I/) s
CH ing, warnings, and penalties for the selected processor.

“gram an You can use static analysis in the first sta e of instruction schedul-
executes , ing. Once you write your application, loa the object file into VTune

- and examine scheduling issues.

Dynamic analysis You can collect an execution trace of a range of instructions in yourapplication. The execution trace is collecte using the dynamic
analyzer, and it represents the actuai instructions executed. VTune
analyzes the execution trace and presents you with a view that

shows any potential problems with (your application. The dynamicView includes details about BTB pre iction, L1 code, and data cache
hits, and other dynamic properties.

You can use dynamicanalysis to understand the branch and cache
behavior of your application.

(Continued)

351

336 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

it is much fasterto use

*,obj files for static
analysis

TABLE 21-1 VTune Feature List (Continued)

Systemwide. VTune can monitor all applications, drivers, and operating systemmonitoring components executing in the system. VTune gets contro periodi-
cally from a timer interrupt (TBS) or from one of the internal event
counters (EBS) and saves the instruction pointer where the inter-
rupt occuired. It then displays a graphical view of the modules and
their system usage.

With systemwide monitoring you can determine which applications
are consuming the most processor time or if the processor is idle.

Hot—sp0t analysis This tool shows the percentage of CPU time spent executing eachfi
hot spot or active function relative to the execute time for the entire
application or relative to the entire system. The analysis is based on
the samples collected in systemw/de monitoring.

With hot—spot analysis you can zoom in on functions and instruc-
tions that take a long time to execute.

VTune Static Analysis
VTune’s static analyzer is a smart tool that understands all the timing and

scheduling rules of the Pentium processors. Basically, when you use static

analysis, VTune analyzes the instructions in your code for pairing informa-

tion and presents you with a simple View illustrating the results. We went

through the tedious process of analyzing code in the last couple of chapters.

With VTune you don’t have to remember any of the pairing and scheduling

rules, AGIs, or the number of micro-op codes per instruction. VTune does

it for you.

The static analyzer accepts executable (*.exe), object (*.obj), and Dynamic

Link Library (*.dll) files. When you load one of these files, VTune disassem-

bles the instructions in the file and applies the pairing rules to them.

You can see the static analysis View of the nonoptimized MMX sprite from

the previous chapter in Figure 21-1. From the static analysis View, you can

select the Source View, Assembly View, or a mix of both. You can also select

which processor to consider for the analysis (Pentium, Pentium Pro, Pen-

tium processor with MMX technology, or Pentium ll). Ln addition, VTune

provides an option for Blended processor analysis mode; that is where it dis-

plays any scheduling issues that affect any of the supported processors.

352

Source

Assemtly‘ View
Mixed SULIVCB and Aesenihiy

Dynamic Anflysis View

Black Begin
Black End

Run Dynamic Analysis

Slacnbrsixlm F55M!-lb '

INTRODUCING VTUNE I 337

\ Pairing, Penalties and
Warning Legend

uxrzuoiao as |:)I'ItWq -m2,mm3DXVZBDIJ3 50
Ox72I:IDbS 52
Ux7200b5 53DXFQOBLI: 55

60x72DUbt 55
02720002 51
U>(72Uflf.‘5 52
DXTZDDOE 6-1

I

{
i

Pciilpeqll minznnmo
wand mm1,mm2
i:-anun inirr2.rrmiJ
par
fTi0\Gaw
add
:12»

Elx72DDi>B 65{;:iinz

rnmi , mm?
QWOREA FIR [ed‘i?,niriii

Edi. fl
ear, 8

MM,,Mov_pap.1

ecx
5GEJ$5Cl.lM}~1+3a (nmaeri)

E>:p_Fiow_D2ia_mm2

Exp_F=‘i:W,_DepmJnn'fl , MM__li'W,_MHIn
Prav_MM_!m___Mem

Select Processor
lighted block (lines 45 and
Shows information about high- Pairing and Warning

47). hints

FIGURE 2 1 -1 VTune static analysis view of the MMX sprite.

VTune presents information about each instruction in column format
using either symbols, numbers, or descriptive pairing hints. Let’s see what

each of these columns or symbols mean. In the following table you can find

a brief description of the symbols and columns of VTune’s analysis View.

TABLE 21 -2 VTune Symbols and Column Description

umn either on this line or the nextl

“he instruction is issued in the U_pi0e,_ and it did not pair with the next
instruction. The reason for not pairing is listed in the Pairing issues col-me.

"his instruction is issued in the U p"

Warnings column.
instruction. lt also has a warning, which is listed in the Penalties and

pe, and it paired with the next

‘his instruction is issued in the U p'
instruction. l\lote: That this does _not mean that it paired with the next
instruction; it only means that it is p

pe and could pair with the next

airable.

This instruction is issued in the V pine and pairs with the previous
instruction.

There is a penalty associated with t|'
the Penalties and Warnings columr

is instruction. The penalty is listed in

(Continued)

353

338 I CHAPTER 2'! VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooLs

TABLE 21 -2 VTune Symbols and Column Description (Continued)

The warning listed in the Penalties and Warnings column affects only
the Pentium Pro processors.

T1ere_is a penalty and a warning associated with this instruction. It is
listed in the Penalties and Warnings column.

This indicates Instruction Cache Line boundaries, The instruction cache
line size is T6 bytes for the Intel 486 and 32 bytes forthe Pentium and I
Pentium Pro processors.

dT1e instructions included by these braces represent a Pentium Pro
ecoder group. The Pentium Pro decodes the instructions in a decoder

group in i clock cycle. A decoder group can include up to three consec~
ive instructions where the first one is decoded to four or less micro—op

codes, and the other two are decoded to one micro—op. This is the
”4:i ti" sequence described in the Pentium II processor chapter
(Chapter 22).

Address 1is column shows theirelative address of this instruction.

Line

T

This column shows the line number of the instruction in the source file.
Source

T1is column shows the assembly format of the instruction. In the mixed
mode, the column shows the source line followed by the assemblyinstruction.

Clocks
For the Pentium processor, _this column indicates the number of clocks it

would ytake to execute this instruction. This, of course, assumes perfectLi cac e.

U0ps For the Pentium Pro pfocessor, this column lists the number of micro-
ops this instruction represents.

Penalties
and

Warnings

This column lists the shorthand explanation of a penalty or a warning.
When you double-click the left mouse button on the line, you get more
information about the warning.

PairingIssues This column lists the shorthand explanation of pairing issues related to
this instruction. When you double-click on the line, you get more infor— :
mation about the pairing issue.

Notice that when you highlight a sequence of instructions, VTune displays

the total number of cycles and instructions at the bottom status bar. For

example, the highlighted instructions at lines (45-47) take 2 cycles to eXe—

cute, and they have 0 percent pairing rate.

In Figure 21-] , to get more information about the warnings and penalties,

you can double-click with the left mouse button on the problematic

instruction. VTune pops up another window with more information about

the problem (Figure 21-2). You can get even more explanations by selecting
the help button «, associated with the problem.

354

INTRODUCING VTUNE I 339

when a MOVIE/MCIVD mstructmn writes to memory, its source must be v
ready one cycle in advance. when a MU‘.-‘D instruction writes to an integer .,
register it source must be ready one cycle in advance‘

§The instruction has an explicit flow dependency with the previous instructio-. z, .
tea s from

register can only be issued to the L1 pipe.

FIGURE 21-2 Explanation of problems on line 58 of the MMX sprite.

Now, let’s compare the results of VTune’s static analysis of the MMX sprite

with our manual analysis in the previous chapter. For your convenience, we

have duplicated the table from the previous chapter (Table 20-6). Notice

that both methods yield the same number of clocks for each instruction

and both reach the same conclusions about scheduling problems. But

although it took us half an hour to figure this out, it took VTune less than
half a minute to do the same.

TABLE 21 -3 Nonoptimized MMX Sprite Manual Analysis

DSCNORD: (7,2) donotpa/r because they both access
l. MOVD MMO, [ESl] nqemofy

2. MUVQ MMl , [EDI] (2,3) pair, since (2) is issued in the U—Pipe, and
3- MOW W42» W3 (3) is an MMX instruction

4. PCMPEOB MMZ, M‘/0 (4,5) do notpgir because mm2 is the destination
register and /t /5 used In (5) as a source operand

. PAND MM1, MMZ (5,6) pair. PANDN MM2, mt)

POR WM1 , MM? (Z8) do not pair. (8) is MMX instruction accessing
memory (doesn't go in l/—Pipe).

. MOVO [E-D1] , W1 (8) has a pipe/ine staii for one more cyc/e,_ since it is
writing mml to memory, and mm] was just
updated.

EDI, 8 pairESI , 8

ECX - pairDUQWORD

355

340 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

i.et’s have another look at the clocks column of the static analysis view in

Figure 21-1. Notice that VTune assumes that all memory accesses take 1

clock cycle to execute. It also assumes that branch instructions take 1 clock

regardless of whether the branch is taken or not. Since these assumptions

are not always valid, VTune implements the dynamic analysis feature dis-
cussed below.

VTune Dynamic Analysis

Dynamic analysis provides more realistic timing information about your
code. VVith dynamic analysis VTune collects an actual trace of instructions

executed in your program and uses this trace for dynamic analysis. Since

VTune knows exactly which instructions actually executed, it can provide

better information about L1 cache hits, branch timing, and BTB hits.

To use dynamic analysis, you must select a block of instructions to analyze
from the static analysis View (lines 48-65 in Figure 21-1). When you run

the dynamic analyzer, VTune launches the application and collects a trace

of the actual instructions executed within the selected block. When you ter-
minate the application, VTune analyzes the collected trace and displays the
result in the dynamic analysis view.

We are not showing the dynamic analysis view since it looks exactly the

same as the static analysis View in Figure 21-1. The only difference is that

the dynamic View displays the actual instruction pairing and a more realis-

tic clock count. It also displays BTB hits, L1 code and data cache hits, and
branch behavior.

In Windows 95, your system might hang if you use VTune dynamic analyzer in
the middle of a D/reCtDraw Lock section. DirectDraw holds the Win 76L0c/<

between DirectDraw Lock and UnLocl< operations, which prevents VTune from
running properly. The Win 76Loc/< is a Windows 95 critical section that serializes
access to GDI and USER system DLLs. /-\s a result, the Win 76LoC/< prevents
Windows from running and blocks applications from using GDI or USER DLLs.

Systemwide Monitoring—Time- and Event-Based Sampling

So far, you’ve optimized your application and salvaged every wasted cycle in
it. But do you know how your application behaves from the point ofview of

the entire system? What if your application calls an operating system or

third-party function, do you know how long it takes to execute? Do you

know where the CPU spends most of its time? Simple. Use VTune.

356

A7 in
e 1

clock
tions

t dis~

rour

ztions
LIICE

vide

ialyze
run

trace

ou ter-

ys the

he

hat

realis-

and

INTRODUCING VTUNE I 34']

VTune includes a systemwide time- or event—based sampling (TBS or EBS)

feature, which monitors every running component in the system. This

includes operating system drivers (ring 0 and ring 3), DLLs, and other exe-

cutables. VTune analyzes the time or event samples and presents a percent-

age usage summary for each module in a bar graph format (Figure 21-3).

When TBS monitoring is active, VTune gains control from a periodic timer

interrupt where it records the instruction pointer (CS:EIP), process ID, and

module name where the interrupt occurred. At the end of the monitoring

session, VTune associates the collected pointers with their corresponding

module and presents a percentage usage summary bar graph. The y axis of
the bar graph represents the module name, and the x axis represents the

percentage CPU usage of each module relative to the entire system.

When EBS monitoring is active, VTune gains control from a performance

counter event interrupt where it records the instruction pointer (CS:EIP),

process ID, and module name where the interrupt occurred. As with TBS,

VTune associates the collected addresses with their corresponding module

and generates a percentage occurrence summary bar graph. The y—axis of the

bar graph represents the module name, and the x—aXis represents the per-

centage of occurrence of that event within modules relative to the entire
system.

We have compiled a few hints that are worth knowing about the system-

wide monitoring feature in VTune:

FIGURE 21-3 Systemwide monitoring module usage summary.

357

342 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooLs

I For Pentium processors, you need a special processor socket to use eVent_

based sampling (EBS) with VTune. But you don’t require a special socket for

the Pentium Pro processors. (Note: For Pentium processors, you can use

PMonitor for event monitoring, and no special socket is needed.)

When the mouse points to a module in the bar graph, VTune displays
statistics about that module at the bottom status bar.

You can pinpoint the amount of time that the operating system is idle

(not executing any threads or tasks including yours). The VMM module
reflects the idle CPU time in Windows 95, and the NTOSKRNL module
reflects the idle CPU time in Windows NT.

When you zoom in on a function in one of the modules, VTune displays a

time-based analysis View that shows the statistics for each instruction of the

Ml\/[X sprite (Figure 21-4). \/Vhen TBS is used, the Time column shows the

hit rate of each of the instructions relative to the entire application. A high

hit rate indicates that the instruction took a long time to execute.

Pay attention to the highlighted instruction on line 50 Figure 21-4. The

Time column indicates that this instruction was executing 71 percent of the

time when the timer interrupt occurred. But this is a simple instruction that

uses only register operands and should execute in only 1 clock cycle. OK,

let’s look at the instruction in the previous cycle, specifically on line 47. If

you remember from the previous chapter, this instruction reads data from

TimBed on SPlTE.eI-:c it i

p M .

l I3x1af4 41 J8 B?(8___P55Clv1M>(+5Y (1 101 (hiOrnate BllB_P55CMM){+3a: 45 mom mmU,QWORDPTR{esI]
U><1a1d 47 movq mm1, QWORD PTR led}
UX1 1300 43 muvq m:rI2, mrn‘3

Dx1hIJE riand mm1_mm2
pandn mm2,mmD

0x1bU<: pm‘ mm’l,:m'rI2

|.0x1bU7 muvq Qwoam-vrRIeaII,mrn1
u>:1m2 acid edhfi

U IJx1b15 add esi,8dew; ecx
jnz BR8_P55C?:1M>(4-Ea (1 afah)

FIGURE 21 -4 Time-based analysis view for the MMX sprite.

358

READ TIME STAMP COUNTER I 343

use event- uncached video memory and takes a long time to execute. So it is likely that

lsocket for this instruction is the culprit spending 71 percent of the time! And it is.
u can u

) Se Remember that VTune records the current instruction pointer when the

[6 displays timer interrupt occurs. When the interrupt occurs on line 47, the processor
has to finish executing this instruction before it acknowledges the interrupt.

:em is idle But after the processor executes the instructions in lines 47 and 48 (they
VI module pair), it advances the instruction pointer to line 50 and then generates the
[L module interrupt. As a result, \./Tune records that line 50 was executing 71 percent

of the time when the tiriier interrupt occurred.

fisplays H You’re thinking, Why doesn’t VTune just adjust the instruction pointers to
.011 of the point to the previous instruction (or previous cycle)? Vifune does not
hows the always know what the previous cycle was. For example, it the timer inter-
n. A high rupt occurs in the middle of a branch instruction (CAL.L,‘JMP, JCC), the inter-

rupt will occur at the branch target instruction (after it Jumps). When

VTune gets control, it has no idea that this is a branch target instruction,

. The and if it is, VTune has no idea from where it was called.
ent of the

‘tion that

e. OK,
e 47. If

tta from

 21.3 Read Time Stamp Counter
Now, let’s see how we can use the Time Stamp Counter to measure a small

or large portion of code using the RDTSC instruction. Since MSVC iiiline

assembly does not recognize the RDTSC instruction, we implemented the
instruction as an in—line function:

// Value returned in EDX:[AX which is the 64bit counter value.
‘ __i'nli‘ne _iri:64 ReadTi'meStarnpCuunter() 1

Jam xor eax, eax // prevent compiler trsm optimizirig around
UTSC.

_asm xor edx, edx
,,,asm _emi't OxOi°
_asm , emit 0x31ur

3I-E
<
n.c:\u1J\Lu2:l\:i

359

344 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooLs

Now you can use the inline ReadTimeStampCounter() function to execute

the RDTSC instruction. Notice that the RDTSC instruction returns its Values in

the eax and edx registers.

tunctiort)
l
__inth4 qwstart;
,Vint64 qwElapsedTime = qwStart: // Force qwstart into L1 Cache

l.
2.
3.
4.

()1L)‘ qwstart = ReadTimeStam3Coun:er();
....». Code you want to measure '
1. qwElapsedTime = ReadTireStampCounter() - qwStart;2. l

Notice that we read the qwStart Variable in line 4 in order to eliminate a

cache miss when we fill it with the initial value of the counter. In this case,

qwStart was preallocated into the L1 cache. We intentionally preallocated

qwStart so that we can minimize the side effects of the profiling code and
achieve the most accurate results.

Depending on the amount of time it takes for your code to execute, you
might want to calibrate the overhead of the RDTSC instruction (found on the

CD) and subtract it from the measured time. This is necessary for measur-

ing code fragments that take a small number of cycles to execute. In the fol-

lowing code we show how to calibrate the RDTSC instruction overhead using

CalibrateTimer(): ‘ 2 ‘I -4

main() l

int noverread;
// Invoke it once to bring ir the code for the function into tne
// L1 code cache. lren invoke it with a high csunter value so it
// would calibrate tte RDTSC instruction.
CalibrateTimer(1);
CalibrateTimer(lO000G00);
printf ("Overhead of RDTSC: %d\n", rOverhead);

I‘

int Calibratelimeriirt nlterationsi
l

__int54 iCouILer;
__int54 ioverhead = icounter; // Force icounter into the L1 cache

// Run a counter loop executing only the RDTSC instruction
// Figure out how nuch time that takes.
ifiounter = ReadTimeStampCounter();

360

THE PMONITOR EVENT COUNTER LIBRARY I 345

execute . ‘ J5“ ‘‘ v _ mov ecx, niterations
Values in L:opAga’n:‘ _emlL OxOt

‘emit Ox3l
dec ecx
jn7lnopAgain

)

// Overhead of RZTSC loou
ioverhead : ReadT1meS:amnCounter() — ‘Counter
// Now. figure out the ‘osp overhead w'Lnout the RDTSC instruction
iCounter — ReadTimeStampCounter();

,asm {
mzv ecx. nltsrations

LoopAga1'n1:
dec ecx
jnzL:opAga1r1vI

1/ Overhead of empty loop
‘Counter = ReadTimeStampCounter() - iCounter;

// Overhead of one RDTSC instruction
returr (1nt)(i0verhead 1Counter)/ nlterationsz

Again, notice that We called the function twice to avoid any cache misses-
once to make sure the function code is loaded into the L1 code cache, and

the other time to perform the actual calibration.

21.4 The PMonitor Event Counter Library

With the PMonitor library you can access the event counters from a ring 3

application. Unlike with VTune, you do not need a special socket on your

Pentium processor to use PMonitor’s event counters. Instead the PMonitor

library implements a Windows 95 Virtual Device Driver (VXD), which exe-

cutes in privileged level 0 to read the event counters.

To use the counters, first you need to program one or both counters with

the events that you want to monitor. Once you start the counters, you can

sample their values before and after the section of code that you want to
measure.

For example, let’s use counter 0 to measure the total number of instructions
executed, and counter 1 to measure the number of instructions executed in

the V pipe. First let’s initialize and start the counters as follows: PARTVI

361

346 I CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooI.s

#I'nclude ’‘I)ll_If.h‘’ // PMonI'tor interface file
maI'n()
l

struct Pmon3Zl/erslor Version;

// Load and I'n"tI'alize the Pmon library
DWORD dwPmon32Status = PIron32Znit(&\IerS1on):

// Now program tre two counters with the required events.
it (dwPm0n3ZStatus == Pmon32_0K) l

Pmon32Stant(
INST EXECU"ED, P.irIg3, // Counter 0 settings
INST_E)(ECU“ED_VPIPE, R1'ng3 // Counter 1 settings
1;-

First we use Pmon32Init() to initialize the PMonitor library and make sure

that it loads the VXD successfully. We then request that PMonitor program
counter 0 to count the total instructions executed in the user level (ring 3)

and counter 1 to count only the instructions executed in the V pipe (also in

ring 3). Once the counters are started, we can use them to measure the two
events as follows :

ifiinclude ‘‘dlljf.h'’ // PMorII'tor Interface fi
#defne GCt64bl't(><I‘ ((_1nt6/1 *)&X)[Ol

' " Struct PMUN32REPLY:Some Functi om) DWORD TO_l; // Counter I) low

< L r DWORD T0,h; // Counterohighs.ruct F-mon3zReoly Start. End; DwQRDT1_I;//Coumerflow
DWORD Tlih; // Counter 1 highPmon3?Read(‘.ounters(&Start);

**** Code To Profile
Pmon32Read(‘.nunte”s(Mind):

// Calculate the number of instructions executed.
_I'nt64 qwlotallnst = Get6Abit(End.T0_l) ~ Get64b1't(Start.T0_I>;
_1'nt64 qwPI'3e1nst = Get64b1't(End.T1,l) - Get64bI't(Start.T1,l):

Notice that the Pm0n32ReadCoum‘ers0 function has a big overhead because

it requires two ring transitions1 to read the event counters——and that work
consumes a lot of precious time. On the Pentium Pro and Pentium proces-

sors with MMX technology, you can eliminate such overhead by sampling

1. Ring transition refers to the switch between two privilege levels.

362

THE PMONITOR EVENT COUNTER LIBRARY I 347

the counters with the new RD PMC instruction. So the above sequence of
code can be changed as follows:

// Value returned in EDX:EAX whicw is the 64bit counter vaiue.
__flnline __inth4 ReadPerfornanceManitorcounterlint nCounter) l

_asr xor eax, eax // Prevent compiler from optimizing ~
_asm xor edx, edx // around RDPMC.
_asm muv ecx, wcounter // O: Countero. L:C0unter1
_asm _emit 0xOf // RDPMC
_asm _emtt 0x33

l

CSprite::Blt()
l

4_int64 qwTotalInst;
,t1nt64 qwVPipeInst = qwTotalInst; // force qwTotalInst ‘n L1 Cache.

qwTotalInst = ReadPerfornanceMonitorCounter(u); // Counter 0
qwVP’peInst — ReadPerfornanceMonitorCounter(1); // Counter 1

**** Code To Profile

// Calculate the number of instructions executed.
cwTota|Inst 2 ReadPer‘ormanceMonitorCounter(0) - qwTotal1rst;
qwVPipeInst = ReadPer’ormanceMon1torCounter(1) — qwTotal1rst;

WHAT HAVE We're positive that you would prefer to remember this chapter over the previous couple

You LEARNED? of chapters. Here are a few points to carry with you: '

I VTune simplifies optimizing applications on the Pentium processors, but it does not do
all the work for you.

Start with static analysis for looking at the initial scheduling of your instructions.

Use dynamic analysis to verify your scheduling assumptions and to understand branch
and L1 cache behavior.

Use systemwide monitoring and hot~spot view to zoom in on sections of time-
consuming functions so you could optimize them if possible.

To get more control over which pieces of code to profile, add timing code inside your
application with TSC and event counters.

Use PMonitor counters to gauge performance.

363

CHAPTER 22

um‘:-

The Pentium II Processor

WHY READ Are you ready forthe latest Intel processor, the Pentium II processor? Do your applications run
THIS CHAPTER? at their best on this new processor?

By reading this chapter, you will

I learn about the new features of the Pentium II processor and how to optimize your
application for them;

learn how to use Pentium II performance counters to measure various events that affect
performance on the processor;

understand how to properly use the Write Combining memory type to substantially
speed up accesses to the video frame buffer and reduce the utilization of the system
bus; and

in the process of optimizing forthe Pentium II processor, take a closer look at branch
mispredictions, partial register stalls, and the 4:1 :1 decoder template.

Simply put, the Pentium II processor is a Pentium Pro processor with
MMX technology. In 1996 Intel introduced the Pentium with MMX tech-

nology processor, which adds MMX technology to the Pentium family of
processors. In the middle of 1997 Intel extended the same technology to the

Pentium Pro processor family with the introduction of the Pentium II pro-
cessor. The Pentium II processor is well suited for both business and rnulti~
media applications.

364

350 I CHAPTER 22 THE PENTIUM II PROCESSOR

You may have noticed that we did not discuss the architecture of the Pen-
tium Pro processor. As a matter of fact, since the Pentium II processor is
derived from the Pentium Pro processor, any discussion of the Pentium II

processor already incorporates the Pentium Pro processor—except for the
MMX technology, of course. VVe’ll point out the differences between the
two processors early in the chapter.

'We start the chapter with an architectural overview of the Pentium II pro-
cessor, including a brief discussion of the internal operations of the compo-
nents of the processor. VVe follow that with a more detailed explanation of
each of the processor units and what’s important for them to deliver opti-
mal perfornianceilior each unit we will give you a few guidelines or tips
that could help you attain optimal performance on the Pentium II proces-
sor. If appropriate, we’ll also include a list of useful internal event counters
and an explanation of how you can use them to gauge the performance of
that unit. ‘

Finally, we’ll show you how to use the Write Combining (VVC) memory
type1 to speed up your graphics performance. WC is a new memory type
that was first introduced in the Pentium Pro processor and will be widely

available on systems using the Pentium II processor.

Wherever appropriate, we advise you to use VTune if we feel that it can help
you with performance measurement and analysis. The latest release of
Intel’s VTune2 includes support for the Pentium II processor.

22.1 Architectural Overview

As we mentioned earlier, the Pentium II is basically a Pentium Pro proces-

sor with MMX technology. The Pentium ll processor moved to a twelve-
stage pipelined architecture with a11 out-of-order execution core—as com-
pared to the five-stage pipeline of the Pentium. In addition, the Pentium H
processor includes three parallel decoders, five execution ports, a branch
target buffer (BTB) with 512 entries, and four 32—byte \/Vrite buffers (see
Figure 22-1).

1. Memory types include cached, uncached, Vxfrite Combining, and so forth.
2. 'We’Ve included a three-month fully functional evaluation copy ofVTune on the companion CD.

4:1
de»

365

“€::”~“5
’:m’é
\[

4:121 is the preferred
decoder sequence.

ARCHITECTURAL OVERVIEW

L1 Instruction Cache
16KByte)

Prefetch buffers
‘V '="(32—Bytes)

MMX registers

Fill Buffer
(32 bytes)

L1 Data Cache -1
(1 s KByte)

FIGURE 22-1 Architecture of the Pentium II processor.

Similar to the Pentium with MMX technology processor, the Pentium II

processor doubled the size of the L1 instruction and data caches to 16K

each and added eight MMX registers and a Return Stack Buffer (RSB).

The Life Cycle of an Instruction on the Pentium II

The Pentium II processor fetches instructions in a fashion similar to that of the

Pentium processor. It uses the Branch Target Buffer (BTB) to predict branch
behavior and prefetches instructions to one of the two 32—byte prefetch buffers.

The Pentium ll processor includes three parallel decoders capable of pro—

cessing up to three instructions in 1 clock cycle. The first one decodes

instructions up to four micro—op codes long, and the other two can only

decode instructions that are one micro—op long. In addition, the Pentium II

processor includes a microcode sequencer that decodes complex instruc-

tions that are five or more micro—ops long.

The Register Allocation Table (RAT) accepts up to six micro—ops from the

decoder and posts up to three micro—ops to the Reorder Buffer (ROB; a.k.a.

the Reservation Station). For each micro—op, the RAT renames the logical

lA—based registers to one of forty internal Pentium Pro registers and inserts

them into the ROB. This is where the “out-of—order” processing begins.

PARTVI

366

352 I CHAPTER 22 THE PENTIUM II PROCESSOR

22.1.2

The Reorder Buffer is the heart of the “out-of—order” execution. The ROB

consists of forty “seats” where the micro-ops “hang out” waiting for one of

the units to take care of them (they’ll be dispatched, executed, or retired).

The dispatch unit determines when a micro—op is ready to execute based on
the readiness of its data, not on the order in which it came in (since this is an

out-of—order system). The dispatch unit marks a micro—op as “ready for

execution” only when all of its operands are available.

The execution unit looks around the ROB for micro-ops that are ready to

execute. Depending on the type of micro—op, one of the five execution ports

executes it, marks it as “ready for retirement,” and then places it back into

the ROB. Note that the execution unit can execute up to five micro-ops in 1

clock cycle.

At this stage, the results of a micro—op are forwarded to other dependent

micro-ops in the ROB. Also the results of branch instructions are deter-

mined, and if a branch was previously mispredicted, the fetch unit is
directed to fetch instructions from the correct address, and all those

mispredicted instructions are flushed out of the ROB, RAT, decoder, and

fetch unit. In addition, the mispredicted instruction is logged into the BTB

for better future branch prediction.

The retirement unit waits for micro~ops that are ready to retire. When a

micro—op retires, its result is forwarded to the Memory Order Buffer

(MOB), where it gets committed to the IA registers (eax, ebx, and so forth),

the cache or-main memory. The MOB guarantees that the results are com-

mitted in the order of the instructions as they came in. The retirement unit

can retire up to three micro-ops every clock cycle.

Comparing the Pentium II with the Pentium Pro Processor

Following are the differences between the Pentium 11 and the Pentium Pro
processors:

I The Pentium II processor adds fifty—seven new MMX instructions and

eight MMX registers.
I The Pentium 11 doubles the size of the L1 caches to 16K each.

I The Pentium Pro processor has an on—chip L2 cache, which runs at the speed

ofthe processor core. The Pentium II processor has the L2 cache offthe chip,

and it runs at one half to one third the speed of the core—the fraction

depends on the frequency ofthe processor.

22.2

367

OB

ne of

ed).

ed on 22.1.3
is an

or

y to

ports
'nto

s in 1

 BTB

rth),
om-

t unit

INSTRUCTION AND DATA CACHES I 353

I Systems with the Pentium II processor have better support for the Write

Combining (WC) memory type and thus better access to video frame
buffers.

Comparing the Pentium II with the Pentium with MMX

Technology Processor

The Pentium II processor has the same support for MMX technology as the

Pentium with MMX technology processor. Fortunately, owing to architec-

tural differences in its processor core, the Pentium II processor relaxes some

of the scheduling constraints imposed by the Pentium with MMX technol-

ogy processor. In Table 22-1 the left column lists the MMX scheduling rules

of the Pentium with MMX technology scheduling, and the right column

specifies whether such a rule applies to the Pentium II processor.

TABLE 22-‘! Comparison of the MMX Instruction Scheduling Rules

Two MMX shift or two MMX Multiply instruc ions cannot execute in the same cycle.

iVli\/IX instructions accessing memory or an
integer register can only execute in the U
pipe.

if the U pipe MMX instruction accesses
memory or an integer register, the V pipe
must hold an MMX instruction to pair.

Both these rules don’t apply to the Pen—
tium ll. You need only worry about the 4:121
decoder sequence discussed later in this
chapter.

The destination register of the U pipe
instruction should not be accessed from
the V pipe instruction.

This rule does not apply here because ofthe Pentium l|'s out—of—order execution.

22.2 Instruction and Data Caches

It is important to note the differences in cache architecture between the

Pentium ll processor and previous processors. As we mentioned earlier, the
Pro

5 and

speed

e chip,
action

Pentium II processor doubled the size of the L1 caches (to 16K each) and

moved the L2 cache off the chip (running at one half or one third the speed

of the core). You might expect that moving the cache off the chip at a frac-

tion of the speed could have a huge negative impact on application perfor-

mance. Fortunately, doubling the size of the L1 cache positively outweighs

the negative effect of moving the L2 cache off the chip.

Except for write misses, the cache behavior of the Pentium II processor is

similar to that of the Pentium processor. On a write miss, the Pentium ll
processor first loads the cache line where the Write miss occurred into the

3l-
D:
<
n.

368

354 I CHAPTER 22 THE PENTIUM II PROCESSOR

L1 cache, and then it writes the data to the L1 cache. The Pentium proces-

sor, in contrast, writes the data through to the L2 cache or main memory
without preallocation into the L1 cache.

One of the major enhancements of the Pentium II processor, over the Pen-

tium processor, is that the read operations are nonblocking. As we men-

tioned in the Pentium chapter, the Pentium processor stalls completely
when two back—to—bacl< read misses occur——that is, it stalls until an entire

cache line is brought into the L1 cache. The Pentium II processor, on the

other hand, allows other inicro-ops to execute while it’s waiting for data to

be brought in to the L1 cache—~this improvement is made possible by the
out—of—order execution model.

Operational Overview

The L1 cache is on-chip static memory that satisfies internal read/write
requests more quickly than an external bus cycle to memory can. In addi-

tion, the L1 cache reduces the processor usage of the external bus, thus
allowing other devices to move data on the bus——the DMA, bus maters,
and so forth.

Similar to the Pentium with MMX technology processor, the Pentium II

processor has two independent L1 caches (16K each): one satisfies data
accesses, and the other satisfies instruction fetches. The two caches exist on

two separate internal buses (each bus is 64 bits wide), which allows the pro-

cessor to load instructions and data, simultaneously, in the same clock

cycle. In contrast, the Intel 486 can only load either data or instructions,

not both, at any given moment because both instructions and data have to
share the L1 cache.

Both the instruction and data L1 caches are divided into 32—byte cache

lines; this is the minimum granularity of the L1 cache. When the processor

transfers any amount of data between the L1 cache and the external bus

(main memory or the L2 cache), it transfers a minimum of one cache line
at a time.

The read behavior of the Pentium II processor is identical to that of the

Pentium processor. On a read or write hit, the L1 cache satisfies the request

in 1 clock cycle. On a read miss, the processor transfers an entire cache line

into the L1 cache. If a multi—byte read crosses a cache line boundary, the

next consecutive cache line is also brought into the L1 cache.

369

OC€S—

OTY

e Pen-
en-

ely
ntire

the

ata to

y the

22.2.2

ite

addi-
us

IS,

11
ta

ist on

e pro—

ns,
ave to

INSTRUCTION FETCH UNIT - 355

But the write miss behavior of the Pentium II processor is different from

that of the Pentium processor. On a write miss, the Pentium II processor
first loads the entire cache line where the write miss occurred into the L1

cache and then writes the data to the L1 cache. This behavior is useful for

applications that exhibit spatial data locality and access more than one ele-

ment in a cache line—such as applications that involve sequential access of

an array or access of local function variables.

Performance Considerations

To put it simply, “Reuse it while it’s in the L1 cache.” If you have already

brought in code or data from main memory to the L1 cache, make sure that

you use it while it’s still there—before it gets flushed out. Here are a few

suggestions on how to get good performance on the Pentium II processor.

I Keep the size ofyour inner /oops be/ow I6/<. If your most executed loop does
not fit in the Ll code cache, the L1 cache will thrash continuously. To fix this
problem, you can break the task at hand into smaller tasks with smaller loops
that fit within the L1 cache. To find out the size of your loop, you can either
look into the map file generated by the linker or use VTune's static analyzer.
You should also watch out for in-line macros and functions that, if used often,

could bloat your code.

I Reuse data While it's in the L I cache. if possible, operate on the data while it's in
the Li cache—before it gets flushed out. Since multimedia data does not typically
fit in the L1 cache, you can operate on some part of the data at one time rather
than the full set. For example, instead of decoding the entire video frame in one
loop, you can decode the top half of the frame from start to finish and then the
bottom half——or whatever part of the frame fits in the L1 cache.

22.3 Instruction Fetch Unit

e 22.3.1cessor

us

e line

he

quest
e line

the

Operational Overview

The Pentium II processor (Figure 22-2) has an aggressive prefetcher with

two 32—byte prefetch buffers that operate in conjunction with the branch

target buffer (BTB) to fetch raw opcodes from the L1 cache, L2 cache, or

main memory (see section 19.4 for more information about the operation
of the BTB).

PARTVI

370

356 I CHAPTER 22 THE PENTIUM 11 PROCESSOR

16 bytes todecoder

Fetch butters (32 bytes)

Main Memory
yfsm?“ ‘

FIGURE 22-2 Pentium II fetch unit.

Performance Considerations

Typically, you do not have to worry about the performance of the fetch unit
because the Pentium II processor uses an aggressive prefetcher, deep branch

prediction, and has a large L1 instruction cache. The combination of prefetch—
ing and branch prediction allows the processor to determine the correct execu-
tion path and have instructions ready for execution ahead of time. The larger
L1 cache improves the chance of a cache hit when the processor fetches raw
opcodes from the L1 cache, which can deliver 32 bytes in 1 clock Cycle.

Nonetheless, we’ve listed a few guidelines that could help you attain opti-

mal performance from the fetch unit point of view:

I Keep the size ofinner loops less than 16K. If the size ofinner loops does not fit
in the L1 cache, the cache will thrash. As a result, fetches are satisfied from
the L2 cache or main memory, both ofwhich are much slower than the L1
cache. To fix the problem, you can break the task at hand into smaller tasks
with smaller loops that fit within the L1 cache. To find out the size ofyour
inner loop, you can either look into the map file generated by the linker or
use VTune’s static analyzer.

Align heavily executed loops and branch and function labels on the 16—hyte
boundary. By labels wc’re referring to the address of the branch when the
branch instruction is taken. The idea here is to fill up the execution pipe-

line quickly after a branch is taken. By aligning the beginning of an exe-

371

22.3.3

INSTRUCTION FETCH UNIT I 357

cution block on 16-byte boundaries, you guarantee that there will be

enough opcodes to feed the three parallel decoders and, hence, quickly
fill up the ROB with micro—ops for the execution unit to work on.

Avoid interleaving code with data such as jump tables. Because of aggres-

sive prefetching, the processor could end up decoding data unnecessarily
if it is mixed with code.

Reduce the number ofmispredicted branches. Mispredicted branches can have ~

a drastic effect on the Pentium II processor because ofthe deep pipelining ar-

chitecture: it will take more clocks to propagate new micro—ops to the execu-

tion unit. The delay is even worse ifthe branch target is notin the L1 cache—

since it takes longer to fetch raw opcodes and thus takes longer to feed the
pipeline.

Depending on the state of the processor, the effect ofmispredicted branches

on the fetch unit could be hidden if the branch target is in the L1 cache. On

a mispredicted branch, the entire processor core becomes busy trying to

recover from the false branch prediction. If the branch target is in the L1

cache, the fetch unit typically has enough time to fetch the branch target

instructions while the rest of the units are busy recovering. But if the target
branch is out of the L1 cache, the fetch unit cannot fetch the correct instruc-

tions in time to satisfy the other stages of the pipeline, so they just stall.

Fetch Performance with Event Counters

You can use the processor’s internal event counters3 to measure the effi-

ciency of the fetch unit as shown in Table 22—2 a11d Figure 22-3. In the fig-

ure you can see where each of the counters is sampled by the processor.

Notice that all instruction fetches or misses represent a 32—byte quantity.

For example, the IFU_Fetch counter increments by one every time the fetch

unit loads 32 bytes of instructions from anywhere.

You can use these counters to determine how well your critical loops fit in

the L1 and L2 caches. The following equations may give you some insight

into where the fetch unit is getting its instructions.

IFU_IFetchMiss

% External Fetches (L2 and uncached) : IFU IF t h__ e c

This percentage gives you an indication of the actual instruction fetches

that missed the prefetch buffer and the L1 cache. These unexpected fetches

are probably caused by a branch misprediction or an interrupt.

3. See Chapter 21 for more about using VTune or PMonitor for event counter measurement.

PARTVI

372

358 I CHAPTER 22 THE PENTIUM ll PROCESSOR

TABLE 22-2 Pentium II instruction Fetch Unit Performance Event Counters

|FU_Fetch Number of all fetches including cached and
uncached fetches.

lFU_|fetch_Miss Number of fetch misses that miss the prefetchbuffer and the L1 cache. This number also includes
uncached fetches.

L2_|fetch Number of cached fetches that miss the Li cache.
So this is the number of L2 cache fetches.

BU S_Tran_l Fetch Number of cached fetches that miss the L2 cache.
It does not include uncached fetches that always go
to the bus.

|FU_Mem_Sta|l Number of cycles that the instruction fetch unit is
stalled for any reason.

16 bytes todecoder

lFU_FETCHS:
All instruction
Fetches

ction Cache”:
~ 0?‘) »

L2;Ffc?Instruction Fetches

lFU_FETCH_MlSS
L2_FETCH and
uncached fetches

BUS_TFiAN_lFETCH
Instruction Fetches that
miss the L2 cache.

Main Memor 1"‘Y

FIGURE 22-3 Sampling of the event counters by the Pentium II processor.

[39L.[0BOLJ|"|

L2,IFetch0/0 External Fetches from L2 = —————
IFU_IFetch

This percentage gives you an indication of the number of “demand fetches”

that could not be satisfied from the prefetch buffers or the L1 cache. Notice

that this number does not indicate all fetches from L2, only the demand

fetches. The fetch unit has a stream buffer that continuously fetches

373

BRANCH PREDICTION AND THE BRANCH TARGET BUFFER I 359

instructions from the L2 cache or main memory to keep the IFU fed prop-

erly; this happens during normal operations. Since these fetches do not

hinder application performance (they are actually good fetches), they are

not counted by the L2_IFetch event counter. This counter only counts

instruction fetches that miss the prefetch buffer and the L1 cache, because

these fetches affect application performance.

BUS_TranIFetch
% External Fetches from System Memory = IFU IF t h_ e c

This equation indicates the percentage of fetches that came from the system
bus. In this situation the instructions could not be found in either cache or

the prefetch buffer. This typically happens with applications executing from

uncached memory.

22.4 Branch Prediction and the Branch Target “Buffer
22.4.1

Operational Overview

The Pentium ll processor features a deep branch prediction mechanism

that enables the processor to better predict the outcome of branch instruc-

tions. This mechanism employs a Branch Target Buffer (BTB) that can hold

up to 512 branch addresses of previously mispredicted branch instructions.

(You can find a detailed discussion about branch prediction and the BTB in
section 19.4.)

The Pentiurn ll processor has a static prediction algorithm similar to the

Pentium processor’s with one exception: backward branch instructions that

are not in the BTB are predicted as taken in the Pentium II processor; the

Pentium processor assumes that all branch instructions not in the BTB are
not taken.

Performance Considerations

Branch misprediction is one of the first issues that you should consider

when you are optimizing for the Pentium II processor. X/Vhen a branch is

mispredicted, the Pentium ll processor has to flush the entire pipeline and

start fetching the correct instructions. With a deep pipelining architecture,

twelve stages, the new instructions take more clock cycles to propagate

from the fetch unit to the execution unit, making branch misprediction

more costly than with the Pentium processor, a five—stage processor. PARTVI

374

360 I CHAPTER 22 THE PENTIUM II PROCESSOR

The Pentium exhibits a
different behavior for
backward branches
notfioundin BTB.

You can determine how long it takes the processor to execute branch
instructions, assuming that instruction opcodes are already in the L1 cache.
VVith the exception of backward branches, all branch instructions that are
not in the BTB are predicted not taken, including unconditional branch
instructions.4 However, backward branch instructions that are not in the

BTB are predicted taken. Use Table 22-3 to determine, on average, how
many clocks it takes to execute a branch instruction. Notice that the table
assumes that the instructions of the correct branch address are already in

the L1 code cache. If they aren’t, it takes much longer to fetch the instruc-
tions from the L2 cache or main memory..

TABLE 22-3 Pentium II Processor Branch Behavior

Correctly

Incorrectly

Now that you know how the branch prediction unit and the BTB operate,
we’ll leave you with a few suggestions that could help you minimize branch
mispredictions in your code:

Minimize branch misprediction in your code. You can either use VTune’s dy-
namic analyzer or the performance event counters to pinpoint portions of
your code that are highly affected by branch mispredictions. You can then
rearrange your code to achieve better branch prediction behavior.
Use Conditional Move CMO VXX, FCMO VXX instructions. If possible, use these in-

structions to eliminate some ofthe branches in your application. For exam-

ple, you can use CMOVZ to eliminate a branch as follows:

nov eax, 0
dec ecx
CMOVZ eax, 1

mov eax, O
dec ecx
jnz Continue
mcv eax, 1

Continue:

i 1

1 Try tofit code with high branch misprediction within theL1 cache. If the correct
target branch instructions reside in the L1 cache, the fetch, decode, and RAT
units can typically recover from the branch rnisprediction while the execu-
tion unit is still recovering from the misprediction.

4. Refer Lo section 19.4 for more details about branches.

375

correct

d RAT
EXECU-

INSTRUCTION DECODERS I 36l

Branch Performance with Event Counters

You can use the Pentium II event counters to determine the behavior of

branch instructions within your code. Table 22-4 lists the important event

counters for branch prediction.

TABLE 22-4 Event Counters for Fetch Unit Instructions on the Pentium Pro

BR_inst,_Decoded Number of branch instruction decoded.

BR_lnst_Retired Number of branch instructions retired.

Number of branch instructions encoun~
tered with no history oi the branch targetaddress in the BTB.

BR_BTB_i\/I isses

BR_i\/i'issPred_Retired: Number of branch mispredicted branch
instructions that eventually executed and
retired.

You can measure the percentage of mispredicted branches in your code as
follows:

mispredicted branches : BR_MissPred_Retired / BR_Inst_Retired

You will also want to measure the percentage of branch instructions within

your code as follows:

branch instructions = BR_Inst_Retired/ Inst_Retired

To get an accurate assessment of your branch misprediction, you must have

both values. If the percentage of branch instructions within the code is very

small, then the percentage of mispredicted branches is insignificant regard-

less of how high it is.

22.5 Instruction Decoders

22.5.1
Operational Overview

The Pentium II processor features three parallel instruction decoders that

can decode up to three instructions generating up to six micro—ops in 1

clock cycle. The complex decoder processes instructions of four or less

micro—ops, and the simple decoders process only instructions of one micro-

op (4:1:1 decoder template described below). The micro-code sequencer

handles instructions greater than four micro—ops in length. The generated

micro—ops are forwarded to the Register Alias Table (RAT) for further

processing.

PARTVI

