n mem-

1be
Quarter
ouched

1180—a

' pixels
ns with,
> let’s
lor

onaPC.

smenta-
driver.
: Ramp
ality,
10del

t code
selected
he pos-
ng the

IMPROVING PERFORMANCE USING THE RAMP DRIVER =& 257

// init shared hardware device

CSharedHardware *pGrfx = new CSharedHardware();
// init direct draw

if (IpGrfx->InitDirectDraw()) return FALSE: 7

// init d3d
if (IpGrfx->InitDirect3D(USE_RAMP)) return FALSE ;
// set up cooperative level

if (IpGrfx->SetCooplevel (hWnd, DDSCL_NORMAL)) return FALSE;

l

Do revisit the code in Section 14.4.2 if you need to refresh your memory on
how to enumerate and select a driver.

Using the Ramp Driver—The First Try

Once we've loaded the new driver, can’t we just go ahead and create objects
CSurface3D and CTriangle3D or CTriangleTex as usual and run them using
the Ramp driver, instead of the RGB driver? The answer is no.

When we first tried running our simple triangle with the Ramp driver, we
saw our background being painted correctly, but our CTriangle3D (shaded
triangle) was drawn as a black triangle. When we tried using CTriangleTex
(texture mapped triangle), our application crashed, right in the middle of
the Ramp driver rendering module, with no clue as to what was wrong.

The key lies in remembering how the Ramp model operates—through
lookup tables (see section 15.3.4). The Ramp driver uses only the Blue
component of a color specification and then accesses “a lookup table” to
interpret the final result. The Ramp driver builds lookup tables from mate-
rial definitions. If no lookup table has been built (because, say, no material
was created), then the rendering module crashes. Solution: create materials.

Creating Materials for the Ramp Driver

We have repeated the definition of the D3DMATERIAL structure here for easy
reference:

L

258 1 CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

typedef struct _D3DMATERIAL {

DWORD dwSize;

D3DCOLORVALUE devDiffuse;

D3DCOLORVALUE dcvAmbient 1 Four different color components.

D3DCOLORVALUE dcvSpecular;

D3DCOLORVALUE devEmissive;

D3DVALUE dvPower ; { Specify sharpness of specular reflections.
D3DTEXTUREHANDLE hTexture; Q Combine a texture with specified coloring,
DWORD dwRampSize; \/ q Shading gradient of colors in Ramp/Mono modg

} D3DMATERIAL, *LPD3DMATERIAL;

']

The Ramp driver builds lookup tables based on the specifications in a
material structure:

a For materials with no specularity, the driver builds a linear “color ramp”
ranging from the ambient color to the maximum diffuse color.

= For materials with specularity, the driver builds a two-stage color ramp;

the first stage ranges from the ambient color to the maximum diffuse col-
‘ ' or, and the second stage ranges from maximum diffuse color light to the
maximum specular color. The gradient of the specular ramp is not linear,
and it is controlled by the dvPower field.

m For materials with textures, the Ramp driver builds a color ramp for each
térz ; color in the texture.

o m The Ramp driver references the dwRampSize field to determine the size
of the ramp built for each color. .

For example, the following code sequence builds a color ramp with sixteen
shades of red:

mMaterialDesc.dcvDiffuse.dvR = D3DVALUE(1.00);
‘ mMaterialDesc.dcvDiffuse.dvG = D3DVALUE(CQ.00);
| mMaterialDesc.dcvDiffuse.dvB = D3DVALUE(0.00);
1 m_MaterialDesc.hTexture = NULL;
m_MaterialDesc.dwRampSize = 16;

l J

In this next example, the Ramp driver builds a color ramp with eight shades
for each color in the associated texture:

277

IMPROVING PERFORMANCE USING THE RAMP DRIVER =® 259

mMaterialDesc.dcvDiffuse.dvR = D3DVALUE(1.00); |
mMaterialDesc.dcvDiffuse.dvG = D3DVALUE(1.00); ‘
mMaterialDesc.dcvDiffuse.dvB = D3DVALUE(1.00);

mMaterialDesc.hTexture = hTexture;

mMaterialDesc.dwRampSize = 8

ng.

N0 model, ‘
16.3.4 Rendering a Triangle with the Ramp Driver
] Now that we’ve taken a look at how the Ramp driver builds its lookup
tables, let’s create a CTriangleRamp to render a triangle with a shaded
.a Ramp driver.
¢ ramp” BOOL CTriangleRamp::Init(LpDIRECT3D pD3D, LPDIRECTDRAWPALETTE pPalette, UINT nRes)
p p
{
r I'aInp; Create material to “set” palette entries for color. ;
use col- pD3D->CreateMaterial (&m_pMaterialfns, NULL): : ‘
1t to the m _MaterialDesc.dcvDiffuse.dvR = D3DVALUE(1.00); The texture handle is NULL,
t1i m_MaterialDesc.dcvDiffuse.dv6 = D3DVALUE(1.00); || the MaxDiffuse color is
Inear, m_MaterialDesc.dcvDiffuse.dvB = D3DVALUE(1.00); HHITE,&ndtthamPSue.

m_MaterialDesc.hTexture = NULL; is 16. The Ramp driver will
. m_MaterialDesc.dwRampSize = 16; create fourteen shades of gray
ioreach m_pMaterialFns->SetMaterial(&m_MaterialDesc); between BLACK and WHITE.

m_pMaterialFns->GetHandle(p3dFns, &m_hMaterial);
the siz

€ Standard code to allocate system memory space for an Execute Buffer J

fidefine nTRIS 1
- fidefine NVERTS nTRIS*3
sixteen m_sztEx = sizeof (D3DTLYERTEX) * nVERTS;

m_sztEx += sizeof(D3DINSTRUCTION) * 5;
m_sztEx += sizeof(D3DSTATE) * 2;
m_sztEx += sizeof(D3DPROCESSVERTICES);
m_sztEx +='sizeof(D3DTRIANGLE) * nTRIS;
m_pSysExBuffer = new BYTE [m_sztEx];
memset(m_pSysExBuffer, 0, m_sztEx);

Use standard code to initialize vertices and then override the colors.

D3DTLVERTEX *aVerts = (D3DTLVERTEX *)m_pSysExBuffer;

setupVertices(nTRIS, aVerts);

int i

for (i=0; i<nTRIS; i++) {
aVerts[0].color = RGBA_MAKE(000, 000, 255, 255);
aVerts[1].color = RGBA_MAKE(000, 000, 128, 255);
aVerts[2].color = RGBA_MAKE(000, 000, 000, 255);
aVerts += 3;

The Ramp driver uses
only the blue compo-
nent and ignores the red
and green components.

shades

278

260 8 CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

The notable addition when setting up instructions for a triangle with the ram,
model is the D3D0P_STATELIGHT opcode with its D3DLIGHTSTATE_MATERIAL
operand. (We're using the 0P_STATE_LIGHT macro.) Any materials that
we’ve created have merely instructed the Ramp driver on how we want oy
lookup tables built. We use the D3DOP_STATELIGHT instruction in an Execyte
Buffer to instruct the Ramp driver to use a specific material for all future
rendering.

The p3p0p_sTATELIGHT instruction seems to turn off the render state. The defaylt
state is inoperative, and triangles will not be rendered unless you reset the render
state. The p3pop_sTATERENDER specification must follow the p3pop_sTATELTGHT
instruction, as render states set before the Light state become inoperative. Yoy
may want to set all render states that concern you and not assume the value of
any state.

Set up instructions in Execute Buffer.

DWORD dwStart = sizeof(D3DTLVERTEX) * nVERTS;
LPVOID 1pTmp = (LPVOID)(m_pSysExBuffer + dwStart);
OP_STATE_LIGHT(1, 1pTmp);

STATE_DATA(D3DLIGHTSTATE_MATERIAL, m_hMaterial, 1pTmp); €¢—————
OP_STATE_RENDER(1, 1pTmp);

STATE_DATA(D3DRENDERSTATE_SHADEMODE, D3DSHADE_GOURAUD, TpTmp);
OP_PROCESS_VERTICES(1, 1pTmp);
i PROCESSVERTICES_DATA(D3DPROCESSVERTICES_COPY, 0, nVERTS, 1pTmp);
OP_TRIANGLE_LIST(nTRIS, 1pTmp); -
for (i=0; i<nTRIS; i++) {
i ((LPD3DTRIANGLE)1pTmp)->vl = i*3+0;
‘y i ((LPD3DTRIANGLE)1pTmp)->v2 = i*3+1;
i ((LPD3DTRIANGLE)1pTmp)->v3 = i*3+2;
((LPD3DTRIANGLE)1pTmp)->wFlags = 0;
1pTmp = ((char*)1pTmp) + sizeof (D3DTRIANGLE);

}
OP_EXIT(TpTmp);
4 DWORD dwlLth = (LPBYTE)1pTmp - m_pSystExBuffer - dwStart;

Tell the renderer that we want it to use our material to render all future triangles.
[Note that we reset the render state to Gouraud, even though this is the default
| state. i

\ _

16.4

We are now ready to render our triangle with the model. The Ramp model
only seems to set palette colors once an instruction stream has been exe-
cuted. Our code currently sets the palette on every End Scene. You may want
to execute an instruction stream with just the D3D0P_STATELIGHT instruction
to update the palette during an initialization stage.

279

1the ramp.
RIAL

s that
} want oyp
in Execute
[l future

"he default
the render
TELIGHT

rative. Yoy
1e value of

-]

ap model
en exe-

may want
1struction

16.3.5

OPTIMIZING TEXTURE MAPPING m 261

How Does the Ramp Driver Perform?

Table 16-8 compares the performance of the RGB and the Ramp color
model drivers. We've shown results for various rendering options using
Scene 2 (16 X 5000) from our previous tests.

Gouraud

"55.3 milliseconds

TABLE 16-8 Comparing the Direct3D RGB and Ramp Color Model Drivers

4.3 milliseconds

Flat Shaded

55.3 milliseconds -

1.8 milliseconds

Gouraud and Specular

60.3 milliseconds

4.3 milliseconds

Gouraud and Dither

55.3 milliseconds

20.6 milliseconds

Texture Map and Gouraud

62.5 milliseconds

16.7 milliseconds

14.4 milliseconds

14.9 milliseconds

Texture Map Copy Mode

Wow!

® Look at the speed of the Flat Shaded, Gouraud, and Gouraud and Specular
options. Now we’re really screaming along!

s The performance of Gouraud and Dither is not too shabby either. You
may not want to use it on all your triangles, but at this performance level,
you could use it on some.

m The only “disappointment” is that the performance of texture mapping
in Copy mode has not improved. It would have been great if we could use
texture mapping widely, but at this performance level you probably
would want to limit its use.

16.4 Optimizing Texture Mapping

Before we close, we'd like to include some advice from the Direct3D docu-
mentation on optimizing texture mapping:

s Texture mapping performance is heavily influenced by cache behavior.
Keep textures small; the smaller the textures are, the better chance they
have of being maintained in the main CPU’s secondary cache.

262 8 CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

WHAT HAVE
YOU LEARNED?

s Do not change the textures on a per primitive basis. Try to keep polygons

grouped in order of the textures they use.

m Use square textures whenever possible. Textures whose dimensions are
256 % 256 are the fastest. If your application uses four 128 x 128 textures,
for example, try to ensure that all the textures use the same palette, anq
place them all into one 256 x 256 texture. This technique also reduces the
amount of texture swapping required. Of course, you should not use
256 x 256 textures unless your application requires that much texturing,
because, as already mentioned, textures should be kept as small as possible,

" Well, we’ve come to the end of this road. Cheers, and may all your 3D appli-

cations really sizzle.

We measured the performance of our simple RGB color model triangle, both its inner
workings and its various rendering options. We tried some optimizations and found that

the returns were decent for long Execute Buffers, but overall performance was still far from
stellar.

Next we learned how to use the Ramp color model driver, including using materials and
D3D0P_STATELIGHT to direct the driver to create its lookup tables. And we were rewarded
with a dramatic improvement in performance.

We've spent sufficient time on Direct3D’s Immediate mode. In the next chapter we will
cover mixing our 3D results with 2D and video.

281

e

17.1

olygons

ions are
‘extures,
tte, and
uces the
not use
Xturing,
20ssible,

D appli-

1 its inner
ound that

Il far from
erials and
rewarded
WHY READ
=r we wil THIS CHAPTER?

You might as well ask, “Why would | need to mix other graphics media types with 3D?"
Well, here are some scenarios that might prompt mixing:

In short, you may want to mix media types because of performance advantages and/or
because you want to add richness. In this chapter first you'll learn how to mix a 3D object
within a 2D world, and then you'll learn how to use a video as a texture map within a 3D
world.

In Part IT we mixed a sprite on top of a background by:

CHAPTER

=

B 263 =

17

Mixing 3D with Sprités.
Backgrounds, and Videos

You could create your application to be entirely 3D based. But 3D modeling and ren-
dering is performance intensive. Drawing some objects with faster 2D mechanisms
may bring an improvement in performance.

You have your own object types, with their own rendering codes, and you want to in-
termingle these objects in a 3D model.

Say you have designed 3D exploratorium within which you have real-life characters
communicating with the Explorer. You have motion video footage of these characters,
and you'd like to transparently overlay the video in your 3D world.

17.1 Mixing a 3D Object on a 2D Background

We'’ve already seen how mixing works in Part IT, where we mixed a sprite on
top of a background. In fact, over the course of Part II, we looked at a vari-
ety of options for mixing—using GDI, DirectDraw, and RDX.

creating a CSurface from among the various options;

I

282

264 a CHAPTER 17 MIXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

m creatinga CBackground from among any options suitable to the CSurfac,
and attaching the CBackground to the CSurface;

= creating a CSprite from among any options suitable to the CSurface anq
attaching the CSprite to the CSurface; and

® Blting the CBackground first, Blting the CSprite on top of the CBack.
ground, and then refreshing the screen with the mixed image.

17.1.1 Our 3D Surface Is Also a 2D Surface

But wait! Let’s think about where we are. We got access to a 3D surface in
the first place by “querying” for 3D capabilities. As long as we retained
access to the original 2D surface—that is, as long as we did not call
IDirectDrawSurface::Release()—we can still use its innate 2D-ness.

So to mix a 3D object on top of a 2D background, we could

m create a CSurface suitable to be “extended” for 3D capabilities and then
“extend” the 2D surface to a 3D surface while retaining access to the orig-
inal 2D surface.

m create a 2D background from options suited to the 2D surface and then
attach this background to the dual 2D-3D surface.

m create a 3D triangle from available render styles and then attach the 3D
triangle to the dual CSurface.

e Blt the background first as usual, Blt the 3D sprite on top of the back-
ground, and then refresh the screen with the mixed image.

Here’s the 3D version of the FollowMouse() method that handles dual
surfaces:

o Tong CSurface3d::FollowMouse(CPoint &point, int nTime)
{

Pre Scene Init: Set up to use 3D driver and clear Z-Buffer (if any).

m_p3dFns->BeginScene();
if (m_bIsZEnabled) {

D3DRECT drDst;
drDst.x1 = 0;
drDst.yl = 0;
drDst.x2 = m_dwWidth;

b

drDst.y2 = m_dwHeight;
jidefine nRECTS 1
m_p3dViewport->Clear(nRECTS, &drDst, D3DCLEAR_ZBUFFER);

TI%E

283

MIXING A 3D OBJECT ON A 2D BACKGROUND m 265

Set up BLTPARAMS structure for dual-surface usage. J

BLTPARAMS xDst;

xDst.pddsDesc = &m_SurfDesc;
xDst.pddsFns = m_p2dFns;
xDst.p3dFns = m_p3dfns;
xDst.p3dViewport = m_p3dViewport;

Blt background to dual surface. Blt either 2D or 3D background based on Init. ‘

if (m_nNeedLock & BKGLOCK)

m_p2dFns->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL);
if (m_pBackground != NULL) {

RECT rSrc = {0, 0, m_dwWidth, m_dwHeight};

POINT ptDst = {0,0};
SaTt . . 2D background may
m_pBackground->B1t(&xDst, &ptDst, &rSrc); need surface to be

}
if (m_nNeedLock & BKGLOCK) locked.

m_p2dFns->UnTock(NULL);

‘ Blt attached 3D Triangle.

if (m_pTriangle != NULL)
m_pTriangle->B1t(&xDst, &point);
nd then i P

he orig-

Scene End Stage: End Scene, refresh screen, and return. ‘

m_p3dFns->EndScene();

// offset dst rect accounting for client area

Tong 1Right = m_ptZeroZero.x + m_dwiidth;

long 1Bottom = m_ptZeroZero.y + m_dwHeight;

RECT rDst = {m_ptZeroZero.x, m_ptZeroZero.y, 1Right, 1Bottom};
RECT rSrc = {0, O, m_dwWidth, m_dwHeight};

// set palette and refresh screen
gpPrimary->SetPalette(gpPalette);

gpPrimary->B1t(&rDst, m_p2dFns, &rSrc, DDBLT_WAIT, NULL};
// return

return TRUE;

nd then

L the 3D

1e back-

Notice the code added to pass both the 2D and the 3D descriptor to the
object renderers in the BLTPARAMS structure. Also notice the code added to
lock and unlock the 2D surface for most 2D background rendering (a
hardware-accelerated 2D background would not need a Lock/Unlock).

Some hardware 3D devices may not allow 2D functions to be invoked between
BeginScene() and EndScene(). These devices will set the
DDCAPS2_No2DDURING3DSCENE flag in the 2D caps structure (hwCaps.dwCaps2).
If this flag is set, you will need to modify the FollowMouse code to render a
2D background before BeginScene(), but render a 3D Background after
BeginScene(). We found that the HEL drivers do not impose this restriction,
so we have not built this check into our current example.

266 8 CHAPTER 17 MIXiNG 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

17.1.2 Measuring Background Performance

Table 17-1 compares the performance of Bltting a sprite with both 2D apq
3D rendering paths.

TABLE 17-1 Comparing 2D and 3D Backgrounds

'CBackgroundCCode , 7.1 milliseconds
CBackgroundP5 6.8 milliseconds
CBackgroundTex 46.5 milliseconds
CBackground3D 3.8 milliseconds”

" CBackground3D fills the background with a constant color; whereas all other options
transfer an image to the screen. Therefore the comparison of CBackground3D with
the other options is not a true apples-to-apples comparison. The figure is shown for
reference.

=

CBackgroundTex is an implementation of a texture-mapped 3D back-
ground object. You implement a texture-mapped 3D background by load-
o ing a texture object and setting its handle in the background material
structure. Check the source code for the Timing Application on our Inter-
net site. (Note that unlike triangle textures, a background texture need not
be sized using powers of two.)

A CBackgroundTex is texture mapped to the surface and is not merely Bltted

to the surface. The implication is that if the source and destination sizes dif-

fer, the source is stretched (or shrunk) to fit the destination rectangle. Texture
I mapping is much costlier, as the results of our measurements demonstrate.

If all you need is a simple Blt of a background image, then as the perfor-
mance results indicate, using 2D backgrounds behind 3D objects offers sig-
n nificant performance boosts over using texture mapping.

17.2 Mixing in Sprites

Hey, can’t we add sprites to our dual surface just like we did with back-
grounds? Technically, yes. But our code lets us have only one active sprite at
a time. If we wanted to have more than one sprite, we would need to main-
tain some form of list (or array) of sprites and draw all the active sprites
within our Refresh functions.

285

k-

load-
1
Inter-
zd not

‘Bltted
2s dif-
exture
frate.

for-
ers sig-

k-
yrite at
main-
ites

MIXING IN SPRITES m 267

Since the Intel RDX library provides code to manage lists of sprites and
draw them in back-to-front order, let’s just use RDX to mix sprites in. If
you've forgotten, or haven’t had a chance to play with RDX yet, do take a
quick trip through Chapter 8.

Using RDX to Mix in Sprites
The RDX programming model allows us to

m create a surface of a specified size and pixel depth;

m create mixable objects (such as sprites, backgrounds, grids, and AV ob-
jects) and connect them to the surface;

manipulate attributes of the objects (such as draw order, position, trans-
parency, and visibility); and

mix and render all visible objects attached to a surface by invoking a single
srfDraw() function provided by the surface object.

Typically you attach the surface to a window using srfSetDestWindow(), and
the window is automatically refreshed by srfDraw(). RDX also has a
srfSetDestMemory() function that we can use to specify that the output of
srfDraw() be sent to a memory buffer that we provide. Let’s use
srfSetDestMemory() to have RDX output its data into our dual surface:

long CSurface3d::FollowMouse(CPoint &point, int nTime)
{
// pre-scene init
m_p3dFns->BeginScene();
if (m_bIsZEnabled) {
D3DRECTdrDst;
drDst.x1l = 0; drDst.yl = 0;
drbst.x2 = m_dwWidth; drDst.y2 = m_dwHeight;
m_p3dViewport->Clear(l, &drDst, D3DCLEAR_ZBUFFER);
}

// setup BLTPARAMS struct for dual-surface usage
BLTPARAMS xDst;

xDst.pddsDesc = &m_SurfDesc;

xDst.pddsFns = m_p2dFns;

xDst.p3dFns = m_p3dFns;

xDst.p3dViewport = m_p3dViewport;

// B1t either 20 or 3D background to Dual-Surface
if (m_nNeedlock & BKGLOCK)
m_p2dFns->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT,
if (m_pBackground != NULL) {
RECT rSrc = {0, 0, m_dwWidth, m_dwHeight};
POINT ptDst = {0,0};
m_pBackground->B1t(&xDst, &ptDst, &rSrc);
)
if (m_nNeedlLock & BKGLOCK) m_p2dFns->UnTock(NULL)

268 a CHAPTER 17 MIXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

Draw RDX objects by invoking srfDraw on the Dual Surface’s m_hSurfmember.

if (m_bIsRdx) { .
m_p2dfns->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL);
srfSetDestMemory(m_hSurf, m_SurfDesc.lpSurface, m_SurfDesc.1Pitch);

srfDraw(m_hSurf);
m_p2dFns->UnTock (NULL); Lock DirectDraw Surface and pass its data
} \ pointer to RDX using srfSetDetMemory().
Then draw all objects using srfDraw().
// B1t 3D triangle RDX draws its objects directly onto the
if (m_pTriangle I= NULL) surface with or without transparency.
m_pTriangle->B1t(&xDst, &point);

// SceneEnd

m_p3dFns->EndScene();

// offset dst rect accounting for client area

long TRight = m_ptZeroZero.x + m_dwWidth;

long 1Bottom = m_ptZeroZero.y + m_dwHeight;

RECT rDst = {m_ptZeroZero.x, m_ptZeroZero.y, 1Right, 1Bottom};
RECT rSrc = {0, 0, m_dwWidth, m_dwHeight}; . CBackgr
// set palette and refresh screen
gpPrimary->SetPalette(gpPalette);

gpPrimary->B1t(&rDst, m_p2dFns, &rSrc, DDBLT_WAIT, NULL);
return TRUE; :

CBackgre
CBackgr
CBackgr

\ —

In the new FollowMouse() method that we have outlined above we are
drawing our background first and then mixing in the RDX output (a com-
posite of all the RDX objects). Finally we add in our 3D object on top of the
RDX and background combo.

itch),

its data

nory().
v().
ithe
y.

| CBackgroundCCode

MIXING IN SPRITES ® 269

You'll probably point out that if we’re using RDX, we can have our back-
ground be an RDX background (CBackgroundRDX) and not have to worry
about any CBackground code either. That is true. Very astute of you! In
fact, Table 17-2 has measurements of mixing the various 2D and 3D objects
(the sprite measurements were for sixteen sprites of about 5,000 pixels each,
and the background measurements were for a background of 734 x 475
pixels).

TABLE 1'7-2 Measuring Mixed 2D and 3D Objects

7.1 milliseconds

CBackgroundP5

CBackgroundRDX
| CBackgroundTex

6.8 milliseconds

CSpriteRDX 1.1 milliseconds

465 milliseconds CTriangleTex (Ramp/CopyMode) 16.2 milliseconds

CBackground3D

3.8 milliseconds Clriangle3D (Ramp/Flat) 2.2 milliseconds

are
(a com-
yp of the

17.2.2

Following are some observations based on the results:

The MMX technology optimizations that RDX has used for background
drawing make CBackgroundRDX run at the speed of color filling. Wow!
There is a clear benefit to mixing 2D and 3D.

With Ramp mode triangles being rendered in the low-millisecond
speeds, our Execute Buffer overhead starts becoming important again.
These tests were performed with only sixteen triangles. It becomes
worthwhile to invest in code for long Execute Buffers, when you are ren-
dering many small triangles with the Ramp mode driver.

Flat-shaded Ramp mode triangles compare well with spriting. However,
texture mapping at 16 milliseconds (half the 30 fps budget) still takes
quite a bit of time. A judicious mix of shaded and texture-mapped trian-
gles would be the way to go. And, of course, using 2D sprites wherever
possible is also a good way to go.

Adding RDX Objects at Front and Back

What if you want to add RDX objects behind and ahead of the 3D object?
Well, RDX lets you create multiple surfaces. So you can solve this issue by
creating two RDX surfaces and retaining one as the “behind” surface and

PART V

270 m CHAPTER 17 MixiNG 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

the other as the “ahead” surface. All objects attached to the behind surface,
using objSetDestination() will get drawn behind the 3D object. And all
objects attached to the ahead surface will get drawn on top of the 3D object.
This is a simple extra credit exercise. Go on! Try it for yourself.

17.3 Mixing in Video

Mixing in video is a little more complex than mixing sprites or back-
grounds. The following factors need to be considered:

= Video files are actually a series of images that need to be displayeq
sequentially. To mix 3D on top of video, we would need to mix our 3D
image whenever a new video frame is drawn—Ilest we “lose” sight of our
3D object.

m Avideo file is recorded at a specific frame rate. Playback of frames in the
video must be synchronized to a timer, so that they can be displayed at
the recorded frame rate.

m Video files are usually recorded in high-color resolutions to capture the
broad range of colors in natural situations. Video codecs prefer to choose
their own palettes, since they reduce the color range for palletized dis-
plays. They typically produce very poor quality if they are forced to use a
specified palette.

e

The issues of synchronized drawing and timed playback are dealt with in
detail in Chapter 10. We will use the same code to mix our 3D sprite on top
of a video object.

17.3.1 Handling Palettes

| We do need to add some code to handle palettes. Our 2D objects use colors
only from the system palette, and there is no palette conflict between 2D
and video objects. But Direct3D uses more than the system palette. Let’s
look at the code needed to manage palettes among these media.

There is no fast and high-quality solution to sharing palettes. Our code
shows you how to communicate palettes amongst video and 3D objects.
Since video codecs don’t like palettes to be forced on them, we have written
our code to tell Direct3D to use the video object’s palette.

Following is the code that takes a palette from a video object file and uses
this palette with Direct3D surfaces. Note that Direct3D expects the palette
to be set on the 2D surface before any 3D functionality is requested.

289

1d surface,
And all

:3D object.

yack-

2 displayed
nix our 3D
sight of our

ames in the
lisplayed at

capture the
1 to choose
letized dis-
ced to usea

t with in
rite on top

use colors
veen 2D
te. Let’s

r code
objects.
ve written

and uses
1e palette
ed.

N s A

17.3.2

MIXING IN VIDEO & 271

Create a palette object

LOGPALETTE *plogPalette;
PBYTE pTmp = new BYTE [sizeof (LOGPALETTE) + sizeof (PALETTEENTRY)*2561;
plogPalette = (LOGPALETTE *)pTmp; . . .
plogPalette->palVersion = 0x0300; Use RDX to talk to a video object and get its paletta
plogPalette->paliNumEntries = 256;

if (!rdeetVideoPaktte(p]ogPaTette)) return FALSE;

Change palette entry flags to not allow D3D to change any of themJ

PALETTEENTRY *pPal = (PALETTEENTRY *) (pTmp + sizeof(LOGPALETTE));
for (int i = 0; 1 < 256; j++) pPalli] .peflags = D3DPAL_READONLY;

1 |

Querying for a palette from a video file takes a lot of steps. RDX simplifies
these steps. So our code uses RDX to talk to the video codec. Refer back to
Section 10.2 for an explanation of how to manage video with RDX. For
quick reference, we've included here the essential code to query a palette
from an AVI file using RDX:

BOOL rdxGetVideoPalette::GetPalette(LOGPALETTE *plogPalette, LPSTR *pFile)
(

// first create a hFile object and load our AVI file
err = hfilCreate(&m_hFil);

macExitIfRdxError(err, FALSE);

err = hfilLoad (m_hFil, pFile);
macExitIfRdxError(err, FALSE);

// create the AV object and initialize it with the video file
err = avCreate(&m_hAV);

mackxitIfRdxError(err, FALSE);

err = avAddVideoTrack(m_hav, m_hFil, 0, &m_hVid);
macExitIfRdxError(err, FALSE);

// get the palette from the video object
DINORVAL err = vidGetPalette(m_hVid, plLogPalette);
macExitIfRdxError(err, FALSE):
return TRUE;
}

L |

Using Video as a Texture Map

After seeing how to mix 3D and video on a DirectDraw surface, it is a fairly
simple extrapolation to use video as a texture map. We merely modify

our previous code to provide the Texture Map Address when we call
stfSetDestinationMemory().

PART V

|

290

272 8 CHAPTER 17 MIiXING 3D WITH SPRITES, BACKGROUNDS, AND VIDEOS

Run the demo for this chapter on the CD and check the Texture Mappeq
Video option.

WHAT HAVE By the end of the chapter, you should have learned how to

? .) . . .
YOU LEARNED? m mix a 3D object on a 2D background using Direct3D and DirectDraw;
mix a 3D object with RDX sprites and a background (Direct3D, DirectDraw, or RDX):
= mix a 3D object on top of a video file where the video file is played through RDX ang
can be either VFW or ActiveMovie based; and
m make the simple modification needed to use video as a texture map source (that is, if
you perused the source code on the CD).

You've reached the end of our 3D coverage. We hope you have leared a lot.

291

WE'D
RicK
GOTTL

os

PART VI
===

Processors and
Performance Optimization

e Mapped

Iraw, or RDX);
rough RDX and

surce (that is, if

1lot.

 WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO FRANK BINNS, SHUKY ERLICH, BRUCE BARTTLET, JULIE A BRAJENOVICH, K. SRIDHARAN,
RICK MANGOLD, BoB FABER, BEV BACKMAYER, DEBBIE MARR, BOB REESE, TOM WALSH, MICKEY GUTTMAN, BENNY EITAN, KOBY
GOTTLIEB, ODED LEMPEL, AND DAVID BISTRY

Chapter 18 The Pentium Processor Family
B Basic processor terms
m Overview of Pentium and Pentium Pro processors
m Overview of MMX technology
m |dentifying processor models and features using CPUID

Chapter 19 The Pentium Processor
m Detailed overview of processor components
m Instruction pipelining
® Integer pairing and scheduling rules
m Address Generation Interlock (AGH)
® Branch prediction
m How to optimize the sprite sample

Chapter 20 The Pentium Processor with MMX Technology
MMX architecture

Instruction set and data types

EMMS usage guideline

Saturation versus wraparound

MMX pairing and scheduling rules

Optimizing the MMX sprite

Using scheduling rules to optimize the sprite

|
.
%i
;5
.
é
|
|
|
.

s 273 =

292

274 =m PROCESSORS AND PERFORMANCE OPTIMIZATION

Chapter 21

Chapter 22

Chapter 23

VTune and Other Performance Optimization Tools
VTune's coverage of pairing and scheduling rules

Static and dynamic analysis

Hot-spot monitor and time-based and event-based sampling
VTune usage hints

ReadTime StampCounter—RDTSC

Using the PMonitor library

The Pentium Il Processor

Architectural overview and new features

Pentium Il performance counters

MMX pairing rules

Detailed component description including event counters for each unit
Write Combining memory type to speed graphics performance

Branch mispredictions, partial stalls, and the 4:1:1 decoder template

Knowing Your Data and Optimizing Memory

Overview of memory subsystem

Differences between Pentium and Pentium Pro member processors
Cache differences, DCU splits, partial memory stalls

MMX stack alignment

Accessing cached memory

Writing to video memory

When it comes to developing multimedia applications, you'll quickly realize that you're
dealing with a huge amount of data—most of which is typically used once or twice and
then thrown away. Unlike database, word processing, or transaction-based applications,
multimedia applications must quickly display a sequence of pictures to give the illusion of
motion; they must pump audio data in real time to play uninterrupted sound sequences;
or they must render a 3D model to give the illusion of a 3D world. There are lots of
calculations to make, lots of data to move around. In order to get smooth motion video,
audio, and 3D, you still have to fine-tune your applications for the platform they are
running on.

We decided to include this section because we believe that multimedia applications and
processor optimization go hand in hand—at least for now. Some developers think optimi-
zation is an art; some think it's a science. We think it's a mix of both.

First we cover the Pentium family processors, their architecture, and how they work with
code and data. We optimize our sprite sample for each of the processors we cover—the
Pentium processor, the Pentium processor with MMX technology, and the Pentium 1.

293

|

tyou're
Jice and
ications,
llusion of
quences;
its of

an video,
J are

iions and
1k optimi-

vork with
wer—the
ium 1.

-
;
.
:% -
o
%
o
|
|
i
|

PROCESSORS AND PERFORMANCE OPTIMIZATION ® 275

When you think about optimizing multimedia applications, don't just think about applying
the optimization rules of the processor (pairing, AGls, register contentions, and so forth);'
you should first think about your data access pattern. Optimizing for the processor is most
useful when you access the data in the L1 cache. From our experience, you should not
try to squeeze every cycle out of your code; you need only focus on the code segments
that are called very often and those that consume most of the CPU cycles.

Rather than telling you how to optimize your code, we'll tell you how we go about opti-
mizing ours. Once the code is written, we typically use Intel's VTune to figure out how to
schedule instructions for optimal pairing and how the code behaves when it runs on the
PC—that's the science part. Since VTune does not know how to fix the code for us, we use
our knowledge of the processor scheduling rules and rearrange the code for optimal pair-
ing—that's the art part.

We typically start with VTune's static analyzer, which helps us figure out how to schedule
the instructions for the specific processor we're optimizing for. Once the code is opera-

tional, we run it with VTune's hot-spot system monitor. It tells us how much of the CPU
the application is using and which pieces of code are consuming most of the time. We

then zoom in on these segments and try to optimize them even more—if possible.

To learn more about the behavior of a particular section of code, we run VTune's dynamic
analyzer. With the dynamic analyzer we can collect an exact execution trace of certain sec-
tions of code and then analyze the traced instructions. It gives us information about
branching, L1, L2, and cache hit rate, unaligned accesses, and many other things. With
dynamic analysis, we get a better understanding of the behavior of our code.

As a general rule, we pay special attention to memory accesses when we write our code.
We always try to guarantee that data that we want to use is already in the L1 cache when
itis time to access it. We do this by fetching data ahead of time, by operating on a smaller
subset of data at one time, or by changing our data access pattern.

We also pay special attention to branches—especially with the Pentium Pro and Pentium |l
processors. If we can avoid a branch instruction, we do. If not, we use the dynamic
analyzer or the processor event counters to figure out how often we miss branches—then
we see if we can do better by rearranging the branch logic.

1. The terms pairing, AGL and L1, L2 caches are defined in Chapter 18.

294

PART VI

e

CHAPTER 18
e

The Pentium Processor Family

WHY READ
THIS CHAPTER?

You must be familiar with the Intel Inside® logo. But do you really know what's inside? Do
you really know how the Pentium processors work? The real question is, “Do you want to
know?" Come along, we'll take you on the grand Pentium processor tour.

In this chapter, you will

® be introduced to terms and concepts used throughout this part of the book;

m get an overview of the four Intel processors: the Pentium, Pentium with MMX technol-
ogy, Pentium Pro, and Pentium Il; and

m learn how to identify the different processors and detect their model-specific features
using CPUID.

As of today, there are four major Pentium processors: the Pentium, Pentium
Pro, Pentium processor with MMX technology, and, just recently, the Pen-
tium II processor. Although the internal architecture of each processor dif-
fers from the others, all the processors are 100 percent compatible with the
Intel 486 instruction set. As a law of evolution, newer processors offer new
architectural features and new instructions to enhance the performance of
existing applications, and to enable new classes of applications.

In this chapter we'll give you a brief overview of each of the processors
without going into too many details. If some of the terms or concepts are
not clear, refer to the chapter that covers that specific processor. Chapters 19,

m 277 =

295

278 m CHAPTER 18 THE PENTIUM PROCESSOR FAMILY

20, and 22 give detailed information about the architecture of the interng]
components of each of the Pentium processors: one chapter for the Pen-
tium processor, one for MMX technology, and one for the Pentium II pro.
cessor. We don’t cover the Pentium Pro because its features are a subset of
the Pentium IT processor.

We also devote one chapter to VTune and other performance optimization
tools that make it easier for you to optimize your code, and, finally, in the
last chapter of the book we discuss memory optimization issues and tech-
niques related to memory, the caches, and the system bus.

18.1 Basic Concepts and Terms

Before we delve into too much detail, let’s review some concepts and terms
relevant to processors in general and to Intel Architecture (IA) processors
in particular.

= L1 Cache. First level cache. The L1 cache is on-chip static memory that can
provide data in 1 clock cycle on a cache hit. A cache hit occurs when the re-
quested data is already in the cache; otherwise you get a cache miss, and the
data is brought in from main memory or the second level cache (L2).

= L2 Cache. Second level cache. Typically the L2 cache is off-chip static memory
that runs more slowly than L1 cache. Some Pentium Pro processor models
have the L2 cache on the chip running at the speed of the processor core,
The L2 is typically much larger than the L1 cache (256K—1 MB). The L2 cache
has a cache miss/hit behavior similar to that of the L1 cache.

m Cache line. A cache line describes the smallest unit of storage that can be al-
located in the processor's L1 cache; that is, when you read a byte or more
from main memory, the entire cache line is burst into the L1 cache from the
memory location where the bytes are read from. Cache lines are typically
aligned on a byte boundary equal to their width. For example, all four Pentium
processors have a 32-byte cache line aligned on a 32-byte boundary. If a read
crosses the cache line boundary, the processor brings in both cache lines
(64 bytes) from the memory location where the bytes are read from.

-
o
.
i
|
-
-

m fetch. The process of loading raw opcodes from the cache or memory into
one of two prefetch buffers inside the processor.

m Decode. The process of parsing and interpreting the raw opcodes. In the Pen-
tium Pro processors, the IA instructions are decoded into micro-opcodes.

296

Interpa)

1€ Pen~ ‘
1 T pro.
ubset of

mization
%, in the
nd tech-

ad terms
ICessors

that can
:n the re-
, and the
2).

memory
models
J1 core,
L2 cache

:an be al-
I more
from the
dically
Pentium
If a read
lines

.

oy into

the Pen- i
ydes. |
|

BASIC CONCEPTS AND TERMS ® 279

Writeback. The process of committing the final results to IA registers, the
cache, or main memory.

Micro-op. The decoder in the Pentium Pro and the Pentium 1l processors
breaks the IA instructions into micro-instructions (micro-op codes). These
micro-ops are necessary for the out-of-order execution model used in these
processors.

Out-of-order execution. Pentium Pro processors execute micro-ops based on
the readiness of their data rather than the order in which they entered the ex-
ecution unit. This is out-of-order execution.

Branch Target Buffer (BTB). The Branch Target Buffer holds a history of
branches that were mispredicted during the execution of an application. It
stores the address of the mispredicted branch instruction, the branch target
address, and the result of the misprediction. When the same instructions
show up again (in a loop for example), the branch prediction unit uses this
information to predict the outcome of the branch.

Return Stack Buffer (RSB). The Return Stack Buffer can correctly predict return
addresses for procedures that are called from different locations in succes-
sion. The RSB is useful for unrolling loops that contain function calls, and it
removes the need to in-line procedures called inside the loop.

U and V pipes. The Pentium processor has two execution pipelines that oper-
ate in parallel and can sustain an execution rate of up to two instructions every
clock cycle. These two pipes are known as the U and V pipes.

Pipelining. The process of overlapping operations in the processor pipeline is
called pipelining. As a result of breaking the instruction execution into multiple
stages (fetch, decode, execution, and writeback), the processor can execute
multiple instructions at the same time—each in a different execution stage. For
example, one instruction could be in the prefetch stage, one in decode, one
in execution, and one in writeback. This process is very similar to the assembly
line at automobile plants, where one person installs a front door, another per-
son installs the back door, and someone else installs the headlight, and so on.
All of them are working at the same time but on different cars. Analogously,
in the processor, all units are working at the same time but on different in-
structions.

297

PART VI

280 m CHAPTER 18 THE PENTIUM PROCESSOR FAMILY

1 2 3 4 5
Clock —4—4——A——+—

PF

D1 pF
D2 |Di

EX

Upto5
instructions —VB: D1 |PF
in pipeline D1

D2

EX

i

FIGURE 18-1 The Pentium procéssor pipeline can execute
up to five instructions at any one time.

s Superpipelining. This is the same thing as pipelining except that the pipeline
is deeper. For example, the Pentium processor is pipelined since it has five
stages; the Pentium Pro and Pentium |l are superpipelined because they have
twelve execution stages.

Pairing. Two instructions pair if and only if the first instruction can execute in
the U pipe and the second instruction can execute in the V pipe. The pairing
rules exist because only the U pipe can execute complex instructions, there-
fore, we need to ensure that a complex instruction is followed by a simple
instruction. In the Pentium processor, you can have both the U and V pipes
executing instructions as long as they adhere to the Pentium pairing rules. You
can find the Pentium pairing rules in later chapters or in the Intel Architecture
Optimization Manual found on the companion CD.

Address Generation Interlock (AGI). An AGI occurs when you calculate an ad-
dress in one instruction and use it in a following instruction. On the Pentium
processor, this typically causes a 2-clock stall in both pipelines. You can rem-
edy the problem by adding other useful instructions between the instruction
that calculates the address and the instruction that uses the address.

In the Pentium Pro and Pentium Il processors, even though AGls can theoret-
ically happen, they are not as obvious or obstructive because of the out-of-
order execution model that these processors use. So, basically, you don't have
to worry about AGls occurring in these two processors.

Partial stalls. Partial stalls occur when you load a small register (af) and follow
it with an access (read/write) to the larger register (ax or eax). These occur
only with Pentium Pro and Pentium Il processors. Depending on the status of
the pipeline, partial stalls can be extremely taxing on application performance.
Removing partial stalls is typically one of the major optimizations that you can
get from the Pentium Pro processors. More about this in a later chapter.

THE PENTIUM PROCESSORS = 281

18.2 The Pentium Processors

Let’s look at an overview of the Pentium and Pentium Pro processors and
their MMX technology counterparts (see Figure 18-2).

18.2.1 The Pentium Processor

The Pentium processor marked a significant step over its predecessor, the

Intel 486. It uses two parallel execution pipelines—U and V—which make

it possible for the processor to execute up to two instructions in parallel.

Each pipeline is divided into five execution stages, so the execution of up to

five instructions can be pipelined (or overlapped) at any given cycle (see

) Figure 18-3). |
pipeline
1as five

ey ha The Pentium processor has also improved the performance of floating-
ve

point operations drastically and separated the instruction and data L1
caches, so the processor can fetch instructions and access data all within the
ecute in
2 pairing
s, there-
simple
V pipes
lles. You
wtecture

te an ad-
Pentium
an rem-
struction

| theoret-
out-of-
n't have

id follow
e occur
status of
rmance.
you can
Ster.

§

FIGURE 18-2 Evolution of the Pentium processor family.

PART VI

299

282 8 CHAPTER 18 THE PENTIUM PROCESSOR FAMILY

18.2.2

L1 Instruction Cache

(8KByte)
BTBf] I Prefetch buffers §
(@s6) [e SRS
Prefetch
Deco%f 1
U_Plpe Decode 2 Decode 2 V_Plpe
Execution . |Execution
Writeback Writeback
U-Writeback Mm
L1 Data Cache
(8KByte)

FIGURE 18-3 An architectural view of the Pentium processor.

same clock cycle. It includes two dedicated” 32-bit Write buffers, which
make it possible for the processor to queue memory writes without stalling
the execution of instructions within the processor.

Finally, the Pentium processor includes two prefetch buffers of 32 bytes
each (one cache line each). With these prefetch buffers the processor can
prefetch instructions from two different execution paths: one fetches from
the next consecutive instruction address, and one fetches speculatively from
a branch target address. The prefetch buffers, in conjunction with the
Branch Target Buffer (BTB), help the prediction unit to speculate on the
outcome of previously encountered branches.

The Pentium Pro Processor

Intel then introduced the Pentium Pro processor. Instead of a five-stage
pipeline, the processor moved to a decoupled twelve-stage superpipelined
architecture with in-order execution at both ends of the pipeline, and out-
of-order execution in the middle. With the out-of-order execution capability,
the processor can speculatively process instructions out of sequence. This
capability is extremely useful when an instruction stalls while the processor
waits for data to be read from memory or waits for the result of an earlier
operation to be available. (See Figure 18-4.) The in-order units, in the front

2. The U pipe can only queue data in the U Write buffer, and the V pipe can only queue data in the
V Write buffer.

'SSOr.

, which
but stalling

i2 bytes
'$SOT can
«ches from
tively from
h the

e on the

‘e-stage
pipelined
;, and out-
| capability,
nce. This

: processor
an earlier
n the front

data in the

18.2.3

THE PENTIUM PROCESSORS m 283

L1 Instruction Cache

(8KByte)
BTB[Z
(512)

-

[Bacode

Decode 1|

oYoe) 21

Fill Buffer
{32 bytes)

L1 Data Cache
(8 KByte)

FIGURE 18-4 An architectural view of the Pentium Pro processor.

end and the back end, guarantee that instructions maintain the same
sequence when they enter and when they exit the execution unit.

In addition to the two execution U and V pipelines (Port 0 and Port 1), the
Pentium Pro processor added three more units: Port 2 loads data from the
cache or memory, Port 3 calculates store addresses, and Port 4 stores data to
the cache or memory.

Similar to the Pentium processor, the Pentium Pro maintains separate L1
data and instruction caches of 8K each. But the L2 cache has been moved
inside the chip to provide faster access to data in the 1.2 cache. The proces-
sor also doubles the size of the BTB to 512 entries in order to improve the
branch prediction rate. With a bigger BTB, more mispredicted branch
instructions can be remembered just in case they get encountered later.

The Pentium Processor with MMX Technology

In 1997 Intel introduced the Pentium processor with MMX technology,
which adds fifty-seven new instructions to the Pentium instruction set.
MMX technology is geared to multimedia applications. The size of the L1
caches is doubled, and the number of Write buffers is increased to four.

PART VI
R I
£ 0
s = W

284 s CHAPTER 18 THE PENTIUM PROCESSOR FAMILY

L1 Instruction Cache
(16KByte)

Prefetch buffers g
 (32Bytes) |

- MMX registers

acd 9 Mo

MM1

Writeback MM2

buifers (32 bits) MM3

M4

L1 Data Cache Wi
(16KByte)

FIGURE 18-5 Pentium with MMX technology processor.

Since this processor is based on the Pentium processor, the internal archi-
tecture is identical except for a few changes. The size of the L1 caches is
doubled to 16K each, and the number of 32-bit Write buffers is increased to
four. A Return Stack Buffer (RSB) has been added; it can correctly predict
return addresses for procedures that are called from different locations in
succession (see Figure 18-5).

Finally, the number of 32-bit Write buffers is doubled to four undedicated
buffers in this processor. Unlike the Pentium processor, which had a dedi-
- cated Write buffer for each pipe, in this processor the U and V pipes can

' write to any of the four Write buffers. This setup is beneficial when there
L are many writes to uncached memory.

I} 18.2.4 The Pentium I! Processor

=

* The Pentium II processor was just released in the middle of 1997. It is basi-
cally a Pentium Pro processor with MMX technology. Similar to the Pen-
tium with MMX technology, the Pentium IT processor contains fifty-seven

1 ,’f MMX instructions and eight MMX registers. The capacity of the L1 data

A, and instruction caches has been doubled to 16K each, and the Return Stack

Buffer (RSB) has been added. (See Figure 18-6.)

Unlike the Pentium Pro processor, the Pentium IT moved the L2 cache off

| the chip. Notice that in the Pentium Pro processor, the L2 cache runs at the

‘ same speed as the core; however, in the Pentium II processor, the external

] L2 cache runs at half or one third the speed of the processor core. You'll find
out more about this facet of the processor in the Pentium II chapter.

302

IDENTIFYING PROCESSOR MODELS &= 285

L1 Instruction Cache
(16KByte)

MMX registers

Prefetch buffers MMO,
S L MM1

32 Bytes MM2

MM3

§ |Decode D

Register Allag|

,
e
BEi
(32 bytes)
L1 Data Cache
al archi- (%EBW?)
hes is
reased to FIGURE 18-6 Architectural view of the Pentium Il processor.
" predict
tions in
L] 3
18.3 Identifying Processor Models
edicated As the Intel architecture evolved with new features, Intel realized that it was
1a dedi- essential to provide a simple way for software to identify the availability of
s can such features. Starting from the Intel 386 processor, Intel provided a signa-
n there ture at processor reset. Later Intel added a special instruction, CPUID, so
that applications could identify features related to a specific processor
- model.
| The signature of the processor includes the vendor ID, model, and stepping.
Itis basi- | It also specifies whether certain features of the processor are supported; for
he Pen- o example, MMX technology, CMOVxx, and FMOVxx instructions. In the Pen-
ty-seven tium Pro processor, CPUID also returns information about the organization
L1 data ; of instructions and data caches.
in Stack | ,
% Let’s see how you can use CPUID to figure out whether or not MMX tech-
% nology is supported on a certain processor. First you need to check whether
iche off the processor supports the CPUID instruction. An Intel processor supports
1ns at the the CPUID instruction if you can change bit 21 of the eflags register. The
sxternal following code snippet checks whether CPUID is supported.
oullfind - ’
er.

PART VI

286 m CHAPTER 18 THE PENTIUM PROCESSOR FAMILY

BOOL CpuldSupported()
{

BOOL fSupported;

_asm {
// Try teo change bit 21.. save a copy of it in ecx.
pushfd // Push EFLAGS to stack
pop eax // EAX=EFLAGS
mov ecx, eax // save it for later comparison
and ecx, 200000h // isolate bit2l
xor eax, 200000h // change bit2l
push eax) // push it on stack
popfd // pop it to EFLAGS

// Now see if it changed

pushfd // Push new value of EFLAGS
pop eax // EAX=new EFLAGS
and eax, 20000Gh // isolate bit2l
xor eax, ecx) // compare it to Tast value
mov fSupported, eax // EAX==0 if did not change

}

return (fSupported != 0);

\ |

After you have determined whether or not the CPUID instruction is avail-
able, you can use it to figure out if MMX technology is supported. MMX
technology is supported only if bit 23 of the feature flag is set. You can
obtain the feature flag by calling CPUID with the eax register set to 1.

BOOL MMXSupported()
{

BOOL fSupported;

_asm {

mov eax, 1 ; CPUID Tevel 1

CPUID ; EDX = feature flag

and edx, 0x800000 ; test bit 23 of feature flag

mov fSupported, edx ; 0: not supported, !0: supported

}

return (fSupported != 0};

\ |

To give you a head start, we included a simple Dynamic Link Library on the
CD that performs these operations for you. It returns information about
the processor model, starting from the Intel 386, and enumerates all the
information supported by the CPUID. You can find all the sources, bina-
ries, and documentation on the companion CD.

WHAT HAVE
you LEARNED?

—

S avail-
MMX
can

1.

ed

y on the
about
1the

bina-

IDENTIFYING PROCESSOR MODELS ® 287

Here is a recap of the points you will need to remember from this chapter as you read
the following chapters:

m The Pentium processor implements a five-stage pipeline capable of decoding two in-
structions per clock.

m The Pentium Pro processor implements a twelve-stage, three-way superpipeline.

m Intel added the MMX technology to both processors, which are targeted toward multi-
media applications. :

8 The Pentium processor has two dedicated Write buffers, the Pentium with MMX tech-
nology processor has four shared Write buffers, and the Pentium Pro processor has
four 32-byte Fill buffers.

m The Pentium processor suffers AGl stalls, and the Pentium Pro does not.

305

WHY READ
THIS CHAPTER?

CHAPTER 19
==]

The Pentium Processor

In the previous chapter, we gave you an overview of the Pentium processor family. In this
chapter, we'll peel the top off the Pentium processor and have a peek inside at the com-
ponents. Then we'll delve into getting better performance from the components.

In this chapter you'll

m get a better understanding of the components of the Pentium processor, including the
L1 cache, prefetch buffers, branch prediction unit, BTB, the U and V pipelines, and
the Write buffers;

m leamn the benefit of instruction pipelining and how to burst empty bubbles in the
pipeline;

m leamn the Pentium integer pairing and scheduling rules;

m see how to avoid Address Generation Interlock (AGI) stalls;

m look at the importance of branch prediction and the problems that come with mis-
prediction;

m getan analysis of our earlier sprite sample and see how you can rearrange instructions
to reduce the amount of cycles it takes to execute the sprite with this processor.

The goal of this chapter is to show you how to optimize your code to
achieve optimal performance on the Pentium processor. To do that, you
first need to learn about the internal components of the processor and how
to extract the most out of them. For each component we’ll give you a brief
operational overview and then provide a few suggestions for gaining opti-
mal operation of that component.

B 289 m

306

290 @ CHAPTER 19 THE PENTIUM PROCESSOR

VTune can easily ana-
lyze your code and
show you how well
your instructions pair.

In this chapter, you'll learn about the L1 data and instruction caches, the
prefetch unit, the BTB, the U and V execution pipelines, and the Write buff.
ers. You'll also be introduced to the Pentium pairing rules that must be fo].
lowed to achieve high application performance. Finally, you'll learn about
AGIs and how to resolve them.

At the end of the chapter, we rewrite the sprite sample, from Part 11, “Sprites,
Backgrounds, and Primary Surfaces,” in assembly language. We then show
you how to use the Pentium pairing and scheduling rules to improve the
performance of the sample.

19.1 Architectural Overview

The Pentium processor includes a set of features that enables it to sustain an
execution rate of up to two instructions every clock cycle. These features
include a five-stage pipelined architecture, dual execution pipelines (U and
V), separate instruction and data L1 caches, two Write buffers, instruction
prefetching, and branch prediction (see Figure 19-1).

In order to sustain a high execution rate, you must first understand how
these components work and how to mold your code to satisfy their con-
straints. For example, you cannot assume that you have an unlimited

instruction cache, so it would be best to fit your inner loops into an 8K
block.

L1 Instruction Cache
(8KByte)

V-Pipe

U-wiite buffer] V-Wite buffer
32 bits} 32 bls)

L1 Data Cache
(8KByte)

FIGURE 19-1 Pentium processor architectural diagram.

The P
exhibi
behay
write

307

INSTRUCTION AND DATA L1 CACHES = 291

ches, the In the following sections, you'll get a detailed look into each of the Pentium
Write buff. processor features and understand what you can do to make them work
wst be fo. more efficiently.

irn about

19.2 Instruction and Data L1 Caches

IL, “Sprites, 19.2.1 Operational Overview
hen show

The L1 cache is on-chip static memory that satisfies internal read/write
Tove the

requests more quickly than an external bus cycle to memory can. In addi-
tion, the L1 cache reduces the processor usage of the external bus, thus
allowing other devices—DMA, bus maters, and so forth—to move data on

the bus.
sustain an The Pentium processor has two independent L1 caches; one satisfies data
features accesses, and the other satisfies instruction fetches. The two caches exist on
1es (U and two separate internal buses (each bus is 64 bits wide), so the processor can

1struction load instruction and data in the same clock cycle. The Intel 486 can only

load data or instructions at any given moment because its instruction and
data share one L1 cache.

nd how

e.ir con- Both the instruction and the data L1 caches are divided into 32-byte cache
rited lines—this is the minimum granularity of the L1 cache. When the proces-
an 8K

sor transfers data between the L1 cache and the external bus (main memory
or the L2 cache), it transfers a minimum of one cache line at a time.

On a read or write hit, the L1 cache satisfies the request in 1 clock cycle. On

The Pentium Pro

exhibits different a read miss, the processor bursts an entire cache line into the L1 cache. If a
behavior on cache multi-byte read crosses a cache line boundary, the next consecutive cache
write misses.

line is also brought into the L1 cache. On a write miss, the Pentium writes
the data directly to the L2 cache or to main memory.

19.2.2 Performance Considerations

To put it simply, “Reuse it while it’s in the L1 cache.” If you have already
brought in code or data from main memory to the L1 cache, make sure that
you use it while it’s still there—before it gets flushed out. Following are a
few suggestions to accomplish this task.

m Keep the size of your inner loops below 8K. If your most executed loop does
not fitin the L1 code cache, the L1 cache will thrash continuously. To fix
this problem, you can break the task at hand into smaller tasks with

292 8 CHAPTER 19 THE PENTIUM PROCESSOR

smaller loops that fit within the L1 cache. To find out the size of yoy;
loop, you can either look into the map file generated by the linker or yg,
VTuné’s static analyzer (see Chapter 21).

You should also watch out for in-line macros and functions that, if used
often, could bloat the size of your code.

i ® Reuse data while it’s in the L1 cache. If possible, operate on the data while
it’s in the L1 cache. Since multimedia data does not typically fitin the 1]
cache, you can operate on part of the data at one time rather than the fy]]
set. For example, instead of decoding the entire video frame in one loop,
you can decode the top half of the frame from start to finish and then the
bottom half—or whatever size fits in the L1 cache.

m Allocate data ahead of time. As we mentioned earlier, on a read miss, the
Pentium processor brings in an entire cache line to the L1 cache. Once
the requested data is available, it is forwarded immediately to the request-
ing instruction for processing. The processor then reads the remainder of
the cache line.

Now, while the cache line is being brought in, if another instruction
accesses uncached memory or causes another read miss (from another
line), the second instruction will stall until the entire cache line is com-
pletely brought in. But if the second instruction accesses data that’s
already in the L1 cache, the instruction executes normally.

Accordingly, you could possibly achieve better performance if you could
bring in data into the L1 cache before you're ready to use it—allocating
data ahead of time.

TINNE

For example, assume you're processing two buffers, A and B, sequen-
tially and that you’re processing one cache line every iteration of the)
loop as shown below: 19..

ToOflLoop: . . :
Read cache line A[1] ‘/!T/Valts for Ali] to be completely brought in.
Read cache 1ine B[j]

Process cache Tines A[i] and B[j]
Increment i and j by one cache line
Goto TopOflLoop

So before you can process the two cache lines, you have to wait for the
entire A cache line and some of the B cache line to be brought in—and the
same thing happens for every iteration of the code. You can rearrange the
code in such a way that you can interleave bringing in the data to the L1
cache with some useful operations.

309

> of your
€1 or use

t, if used

ata while
inthel]
n the fu]]
ne Ioop, ‘

then the

miss, the
he. Once
request-
ainder of

tion
mother
is com-
1at’s

yu could
ocating

Juen-
f the

the)
and the
ige the
1e L1

- 19.3.1

INSTRUCTION PREFETCH = 293

In the following code we read the first two cache lines outside the loop and
then we wait for both of them to finish. At the top of the loop, rather than
processing the two cache lines, we allocate the A cache line for the next iter-
ation ahead of time. While the cache line is being brought in, we do some
processing on the first two cache lines—they’re already in the L1 cache. We
then read the B cache line for the next iteration and then finish processing
the first two cache lines. By the time we get back to the top of the loop, we
should have the next A and B cache lines waiting in the L1 cache—so we
accomplish the same operations without the wait.

Read cache line A[1]
Read cache 1ine B[Jj]

ToOfLoop:
Read cache line A[I+32] @ Pre-allocate for next iteration.
Process some of A[i] and B[Jj] & Process them from L1 cache.
Read cache 1ine B[j+32] & Pre-allocate for next iteration.
Process remainder of A[i] and B[j] ¢ Processthem from L1 cache.
Increment 1 and j by one cache Tine

GoTo TopOfloop

l

One of the major enhancements in the Pentium Pro processor is the Nonblocking
Read feature. The Pentium processor stalls completely when two back-to-back
read misses occur. The Pentium Pro, on the other hand, allows other instructions
to execute while it's waiting for data to be brought into the L1 cache.

19.3 Instruction Prefetch

Operational Overview

The Pentium processor includes a prefetch unit that is capable of fetching
unaligned instructions and instructions split between two cache lines with-
out any penalty. It features two 32-byte prefetch buffers that operate in con-
junction with the Branch Target Buffer (BTB) to fetch raw opcodes from the
cache or main memory (see the discussion on BTB below). One prefetch
buffer fetches instructions sequentially; the other fetches instructions specu-
latively, according to the branch history in the BTB. Notice, however, that
only one of the prefetch buffers is active at any given time.

PART VI

310

294 B CHAPTER 19 THE PENTIUM PROCESSOR

Prefetches are requested sequentially until a branch instruction is fetcheq
‘When a branch instruction is fetched, the address of the instruction is
looked up in the BTB, and if it is found, the behavior history of the instry,.
tion is used to determine its outcome—taken or not taken. If the branch g
predicted as not taken, prefetches continue with the next sequential
instruction; otherwise the other prefetch buffer is directed to start fetching
from the branch target address—as if the branch will be taken.

4

The actual outcome of the branch is only determined when the branch
instruction is executed. If the branch was mispredicted, both the U and

. . T : The:

V instruction pipelines are flushed, and prefetching activity starts all over. sta(:i'

sligt

19.3.2 Performance Considerations fhor
i3 P (

In reality, there are no special considerations for the prefetch unit in the
Pentium processor. The following general guidelines are helpful, although
they will be of more use for the Pentium Pro processor.

m Align loops, branch, and function labels on 16-byte boundary.

s Keep infrequently executed code separate from inner loops, such as ini-
tialization code and error handlers, so that it will not be prefetched and
decoded unnecessarily.

m Do not interleave data with code, such as jump tables, because you don’t
want the data to be prefetched and decoded unnecessarily.

(We'll discuss improving the performance of the prefetch unit in more
detail in the Pentium IT chapter.)

19.4 Branch Prediction and the Branch Target Buffer

19.4.1 Operational Overview

The Pentium processor includes a branch prediction unit (BPU), which
predicts the outcome of branch instructions when they are first decoded.
What’s important here is that the processor take the prediction seriously
and start executing instructions from the predicted address—until it finds
:] o otherwise when the actual branch result is determined. When a branch

| instruction is mispredicted, the processor saves the address of the instruc-
tion and the correct path (taken or not taken) in the Branch Target Buffer
(BTB), which is simply a lookup table with 256 entries.

311

is fetched.
:tion is

the instruc.

le branch ig
ntial
art fetching

branch
e Uand
:ts all over,

1it in the
l, although

ry.
such as ini-
sfetched and

seyou don’t

n more

oF

N, which

- decoded.
seriously
ntil it finds
branch

he instruc-
rget Buffer

A e e

The Pentium Pro’s
static predictions are
slightly different from
those of the Pentium
PrOCESSOT.

19.4.2

BRANCH PREDICTION AND THE BRANCH TARGET BUFFER & 295

How does the BTB work? When the BPU encounters a branch instruction,
it looks up the address of the instruction in the BTB. If it finds the address,
the BPU looks at the history of this instruction and determines whether or
not the branch should be taken. If the instruction was taken before, the
BPU assumes that it will be taken again, and if not, the branch won’t be
taken. This is called dynamic prediction. If the branch is predicted taken, the
BPU directs the prefetch unit to fetch raw opcodes, from the predicted
branch address, into the second prefetch buffer.

If the BPU does not find the branch instruction in the BTB, the Pentium
processor assumes that the branch will not be taken and that execution will
continue sequentially with the next instruction. This is called the static
prediction.

A Closer Look at the BTB

If you're as unlucky as I am, you probably get a ticket when you’re caught
speeding. The next time you get caught speeding, the officer can easily look
up your record and will probably give you a bigger fine. Now, if you're a
good citizen—or you just never get caught—you won't have such a record.

The BTB works in a similar fashion; it only keeps a record of mispredicted
branch instructions. When an instruction is mispredicted, the instruction
is “ticketed” and a record of it is kept in the BTB. The address of the
instruction, the target branch address, and the result of the branch are
recorded in the BTB (Figure 19-2). The next time any instruction comes
through, its address is matched against the instruction address in the BTB.
If the address is found, the outcome of the instruction is predicted based on
the “taken/not taken” flag in the BTB. If the instruction is predicted as
taken, the prefetch unit is directed to fetch instructions from the target
address in the BTB (see Figure 19-2).

1 180001000 80001D00 | Taken

80003001 None Not
8000D000 80002C00 | Taken

FIGURE 19-2 BTB structure.

19.4.3

Pentium Pros exhibit a
different behavior for
backward branches

not found in the BTB.

296 m CHAPTER 19 THE PENTIUM PROCESSOR

Performance Considerations

As we mentioned earlier, the actual outcome of a branch is only determineq
when the instruction is executed—in the execute stage. If the branch
instruction was predicted correctly, the processor continues on its merry
way. If the branch instruction was mispredicted, the processor flushes both
pipelines and starts fetching from the correct address. As a result, the pro-
cessor is stalled until the correct sequence of instructions is fetched and fed
to the decoder unit.

You can determine how long it will take the processor to execute branch
instructions, assuming that instruction opcodes are already in the L1 cache,
Here’s how the process works.

Branch instructions not found in the BTB are assumed not taken. Notice
that this includes unconditional branches: if they’re not in the BTB, they're
assumed not taken. Why? As you recall, the BPU makes its prediction in the
first decode stage of the pipeline. At that stage, the BPU does not know the
branch target address of the instruction if the unconditional branch
instruction is not in the BIB—because the instruction has not been fully
decoded yet. This case is highlighted in Table 19-1.

Use Table 19-1 to determine how many clocks it takes to execute a branch
instruction. Notice that the table assumes that the instructions of the cor-
rect branch address are already in the L1 code cache. If the instructions
aren’t in L1, it takes much longer to fetch the instructions from the 1.2 cache
or main memory.

TABLE 19-1 Pentium Processor Branch Behavior

. Correctl 1
Direct 4
Incorrectly
. Correctl
Indirect !
Incorrectly

Now that you know how the branch prediction unit and the BTB operate,
we’ll leave you with a few suggestions that could help you minimize branch
mispredictions in your code:

313

"determined
ranch

Lits merry
flushes both
ilt, the pro-
‘hed and fed

te branch
he L1 cache,

en. Notice
BTB, they’re
iction in the
ot know the
ranch

been fully

te a branch
of the cor-
ructions
the L2 cache

['B operate,
mize branch

DUAL PIPELINED EXECUTION & 297

w Minimize branch misprediction. You can use VTune dynamic analyzer or the
internal Pentium performance counters to determine if you have a high rate
of branch mispredictions and to pinpoint the guilty routines. Armed with this
information you can rearrange your code for better branch prediction.

m Ty to fit code with high branch misprediction in the L1 cache. As we men-
tioned earlier, it only takes 3—4 cycles to recover from a branch misprediction
if the correct target address is in the L1 cache. But if the mispredicted branch
address is in the L2 cache or main memory, the penalty for branch mispredic-
tion is much higher. Refer to the “L1 cache” section for more information
about the L1 cache.

® Avoid loops with a huge amount of mispredicted branches. A huge number
of mispredicted branches will thrash the BTB, since it can hold only the last
256 mispredicted distinct instruction addresses. As a result, the next time the
loop comes around, no history of the mispredicted instructions will exist, and
as a result you could have a high branch misprediction rate.

- 19.5 Dual Pipelined Execution

19.5.1

Operational Overview

The Pentium processor includes two execution pipelines (U and V), which
can execute two instructions in parallel (Figure 19-3a). Each pipeline is
divided into five execution stages, which allow for overlapped execution of
different instructions at any given time (Figure 19-3b).

At its maximum capacity, each pipeline can operate on up to five instruc-
tions at any given time, or a total of up to ten instructions in both pipelines
(Figure 19-3¢). Notice that although the two pipelines can operate on that
many instructions at any given time, they can sustain only up to two
instructions per clock cycle. The fact is, without pipelining, each instruc-
tion would require at least 5 clocks to complete. Because of pipelining, the
Pentium processor can operate on five instructions at any given time and
sustain an execution rate of up to two instructions per clock cycle.

Instruction Instruction
1 2 3 4 5 t 2 3 4 5 6 7 8 9 10

PF | T lerpE
PF MY ; i
! - S e U-Pipe
D1, PF e N ‘ ‘
o1 Rl | reniee __ |p1 ot PF;PF: V-Pipe
o | Dz D1|PF / D2 D2 D1:D1 PFIPF ,
y y © | Ex Dpz/D1PF| N EX D2/D2 D1/D1 PF PF
o2 D2 g e N, g o EX EX D iDz D1D1 PF PF,
Exl X * w_}IWB EX|D2 | D1|PF * 7 '
WB‘ we "'i' ws|Ex| D2 | D1 -
WB| EX | D2 T ;
U-pipe V-pipe @ el inshodbonsin
| W8 EX | ot pipeines
o

(a) 2 Execution pipelines (b) one execution pipeline (¢) U and V pipelines

FIGURE 19-3 The Pentium processor's dual execution pipelines.

PART VI

298 m CHAPTER 19 THE PENTIUM PROCESSOR

19.5.2

19.5.3

Performance Considerations

Typically the pipeline is not maintained at its maximum capacity because
of data dependency, register contention, or other restrictions imposed by
the processor. These restrictions are known as the Pentium pairing rules
(we discuss these in more detail in the following section).

Figure 19-4 shows a couple of stalls caused by data dependency and
instruction prefetch. In the first case (inside bold box), the processor is
waiting for data or the result of an address calculation. In the second case,
the fetch unit is fetching instructions from the L2 cache or main memory,
which causes bubbles to propagate in the pipeline.

Similar bubbles could fill up the V pipeline if your instructions don’t adhere
to the Pentium pairing rules. The Pentium processor issues two consecutive
instructions in both pipelines only if the first instruction is pairable in the
U pipeline and the second instruction is pairable in the V pipeline. If the
two instructions don’t pair, both will execute in the U pipeline in 2 clock
cycles, and the V pipeline will be empty—bubbly.

Pentium Integer Pairing Rules

The Pentium processor pairs two instructions only if they satisfy all the
pairing rules listed in Figure 19-5. In the figure, three examples are listed
for each of the rules illustrating the usage of the rule.

5 9w u
Clock +H—+—+——4+—+—+—+—+—+—4—4
PE L g Ll Lilslco go b It
‘ 8 &
D1 ol ol ikl o co &
D2 Lo LlL Lkl s 50 50
EX IRV NP A R A e
o
WB CRECN K TR
O 00 M 2 3 4 5
) data dependency causes empty
bubbles in pipeline. In this case, a I
stallin one pipeline causes astall | Instruction cache miss causes ~
in the othe pipetine. L bubble in pipeline. Notice that

earlier instructions continue to
execute.

FIGURE 19-4 Data dependency and instruction fetch bubbles in the pipeline.

315

~TSO0F |

The Pe
Cessor
from At

ecause

sed by NP Not Pairable
rules —
Pairing Rules
Pairing rule 1: Two consecutive instructions pair if the first instruction is pairable in
1 the U pipe and the second instruction is pairable in the V pipe. v
s
id case,
emory, Pairing rule 2: The second instruction cannot read or write any subset of a register if
any subset of it was written by the first instruction. Basically, if you write to al, ah, ax, or
eax in the first instruction, you cannot read or write to any of them in the second
instruction; the same applies to all other registers.
tadhere
secutive
zin the
If the
clock
FIGURE 19-5 Pentium integer pairing rules.
'Z the
listed For optimal pairing, always use simple instructions such as memory moves,
ALU operations, and logical operations. You can use VTune’s static analyzer
to easily determine the pairability of your instructions."
19.5.4 Address Generation Interlock (AGI)
As an extension to pairing rule 2, the Pentium processor suffers a 1-clock
- " penalty because of Address Generation Interlock (AGI). AGI stalls occur
" P when an instruction writes to a register that is then used as a base or an
,/\VN\AV";\J index in the following clock cycle. For example, consider the following two
PN instructions:
The Pentium Pro pro- Mov esi, eax.
cessor does not suffer Mov ebx, [esi]
from AGI stalls. |
| The second instruction suffers from an AGI stall since it uses the esi register
as a base register, and esi was just updated in the first instruction (see Figure
19-6). As a result, both processor pipelines stall for 1 clock cycle as below.
>
(=
. . (14
: pipeline. g

DUAL PIPELINED EXECUTION m 299

PU Pairable in U
PV PairableinV
UV Pairable in both

1. You can find a list of instruction pairability in the Intel Architecture Optimization Manual found on
the companion CD.

19.6.1

The Pentium with

‘ MMX technology pro-
| cessor has four Write

buffers that can be ac-
cessed by either pipe.

300 8 CHAPTER 19 THE PENTIUM PROCESSOR

If the first instruction that writeg
to ESI is issued in either the
U orV pipes,

Tu | Mov esi, eax

v Mov esi, eax <
2u
—— AGI Stall AGI Stall P
2v <
3u | Mov ebx, [esi] Mov ebx, [esi] .
3v

You must wait 1 clock cycle before
using ESI as a base or index—or
you'll get an AGI stall.

This is the earliest slot where you
can use ESI as a base or index.

FIGURE 19-6 AGl stall in the Pentium processor.

To avoid AGI stalls, you can insert other useful instructions between the
two instructions—as long as the inserted instructions don’t use esi as a base
or an index.

19.6 Write Buffers

Operational Overview

The Pentium processor features two 32-bit Write buffers that queue data on
its way to the external bus—the L2 cache or main memory. One buffer is
dedicated to the U pipe and one to the V pipe. The main purpose of the
Write buffers is to enhance the performance of consecutive writes to mem-
ory. Note that the Write buffers are not used when you write to memory
addresses that are already in the L1 cache; only writes to the external bus are
queued in the Write buffers.

So why are the Write buffers useful? Without the Write buffers, when you
write data to memory that is not part of the L1 cache—uncached memory

3 3
U Pipe V Pipe

Main Memory

FIGURE 19-7 The Pentium processor’s Write buffers.

317

1at writes
“the

icle before
Jex—or

‘here you
index.

:n the
as a base

> dataon
affer is
of the

to mem-
‘mory
 bus are

en you
mnemory

19.6.2

WRITE BUFFERS m 301

or elsewhere—the processor has to wait until the data is completely trans-
ferred before it can move on to the next instruction. Depending on where
the data has to go—main memory, the L2 cache, and so forth, the write can
take a long time to complete compared to when you’re writing to the L1
cache. The Write buffers can hold the data until it has a chance to write it to
memory. Meanwhile the processor is allowed to continue execution at the
next instruction.

Now, if the processor is asked to write another piece of data to memory—
from the same pipe—while the first bit of data is still being written to mem-
ory, the processor stalls until the original data in the Write buffer is written
to memory. The Write buffer is also flushed out if you read from a memory
location that is not in the L1 cache or from uncached memory—and the
processor stalls until the Write buffers are flushed before it executes the
read.

Performance Considerations

You typically don’t have to worry about the Write buffers unless you're
writing data to video memory or some other uncached memory location.
Multimedia video applications that write directly to video memory—
uncached memory—could benefit greatly if developers paid special atten-
tion to the pattern in which video is written to video memory.

Since it takes time to write data to video memory, you could space out the
writes and do some processing in between. The time it takes to write to
video memory depends on many factors, such as the type of memory used
on the graphics adapter. For the sake of simplicity, assume that on a 100-MHz
processor it takes 10 CPU cycles to write a 32-bit word to video memory. If
you continuously write from a register to video memory, you’ll write 32 bits
every 10 clock cycles—of course, you're stalling for 9 of them.” Now, if you
have some other processing to do, you can fill the 9 cycles getting some use-
ful work accomplished—as long as you access your data from the L1 cache.
For example, in a color conversion routine, rather than converting the whole
image in system memory and then writing it out to the video card, you can
perform the color conversion calculations in between writes to video mem-
ory—as long as you only access registers or the L1 cache.

At this point, you might have the impression that you only need to assure
that instructions pair correctly in order to gain performance. Ideally, this is

PART VI

2. For a faster processor, you wait the same physical time, but you wait more processor clocks. That
means you can squeeze in even more instructions between writes to memory.

302 = CHAPTER 19 THE PENTIUM PROCESSOR

true as long as your code and data are waiting in the L1 cache. Unfortu-
nately, with multimedia applications, you cannot make such an assump-
tion, since you typically deal with a huge amount of data, and not all of it
will fit in the L1 cache at once.

Because the L2 cache and memory run much more slowly than the internal
components, the processor has to wait for them to deliver code or data.
Even though the L2 cache and memory can get faster, they can’t have the
same speed ramp as the processor. As a result, the situation gets even worse
with faster processors, since they have to wait more clocks for the same
response time from the L2 cache or main memory.

As a multimedia developer, you must pay special attention to how you
access your data. Multimedia applications are memory intensive in nature
and exert a huge demand on the memory subsystem. Depending on the
nature of the data, certain access patterns are more efficient than others.
For example, you can preload the data to make sure that it is in the L1 cache
before you use it. You can also space out your writes to video memory and
do some useful operations in between.

We could spend a whole chapter on memory optimization issues, and that
is exactly what we did. We devoted the chapter at the end of this part to dis-
cussing memory optimization techniques.

19.7 Revisiting Our Sprite Sample

Great! You've made it this far. Now you can take a deep breath. But are your
hands still itching to optimize something? Let’s use the assembly version® of
the sprite sample from Part IT and try to figure out how we can optimize its
performance on the Pentium processor.

19.7.1 Overview of the Assembly Version of CSprite

First let’s see how the sprite sample works. As you know, a sprite is a regular
bitmap where one of the colors is designated to be transparent. A sprite is
typically overlaid on top of a background, and only the nontransparent pixels
of the sprite show up against the background. Of course, there are many
ways to overlay a sprite on top of a background. For example, you can read
pixels from both images and merge them in memory and then write out the

3. The assembly version of the sprite was only mentioned in Part IL You can find the sources on the
companion CD.

fortu-
sump-
all of it

> internal
data.

e the
€N Worse
same

you

1 nature
m the
sthers.
L1 cache
lory and

and that
art to dis-

are your
rsion? of
imize its

aregular
sprite is
ant pixels
many
can read
e out the

es on the

REVISITING OUR SPRITE SAMPLE & 303

merged result to the video screen. But if the background is already in video
memory, this might be an expensive solution—video memory takes a long
time to write and even longer to read.

In our implementation, we assume that the background is already in video
memory. We first read 4 bytes (a DWORD) from the sprite and only write
out the nontransparent pixels to the screen. To do that, you could look at
each pixel in the sprite to determine if it is transparent or not, and only
write out the nontransparent ones. But this strategy causes a huge branch
misprediction problem since you don’t really know yet what’s in the sprite.

Since we're dealing with a static sprite, we decided to preprocess the sprite
to figure out which pixels we really need to write. The outcome of the pre-
processing is a command list indicating which pixels we should care about
and which we shouldn’t even examine. Another advantage of the command
list is that we avoid using compare instructions while we’re displaying the
sprite, so we are saved all the branch mispredictions that otherwise would
occur.

Consider the sprite bitmap in Figure 19-8. When we preprocess the sprite,
we handle one DWORD at a time and decide what we’re supposed to do for
that DWORD. For example, the first DWORD in line 0 says: “only draw the
third pixel.” The next one says, “Draw all four pixels,” and so on. These are
basically the commands in the command list. Table 19-2 shows us the com-
mand list we would generate for this sprite.

Line 0 D Transparent
Line 1

Line 2§

FIGURE 19-8 Simple sprite.

TABLE 19-2 Command List for a Sprite

0 WriteByte3, WriteDWord, EndOfLine
1 SkipLine
2 SolidLine, EndOfSprite

320

PART VI

304 8 CHAPTER 19 THE PENTIUM PROCESSOR

When it’s time to display the sprite, we first read the command list and thep
do whatever the command says. Notice that we never have to deal with
transparent pixels at all; we know exactly which pixels we need to write.
This allows us to process the sprite in less time and reduces the bandwidth
on the system bus.

To avoid branch mispredictions, we designed the commands in such a way
that they could be used as an index to a jump table (Figure 19-9). The
JumpTable[] array holds the address of the label that handles that task.
You'll see what we’re getting at soon.

Table Pixels | Command

index | 012 3 |JumpTable[]
0 (0000) SkIpDUWoRD,
1 (0001) WRITEBYTEOQOL,
2 (0010) WRITEBYTEQO1O,
3 (0011) WRITEBYTEOOLT,
4 (0100) WRITEBYTEQ100,
5 (0101) WRITEBYTEQLOL,
6 (0110) WRITEBYTEQ110,
7 . (0111) WRITEBYTEQLLL,
8 (1000) RITEBYTELQOO,
9 (1001) RITEBYTELQO1,

10 (1010) RITEBYTELQ10,

11 WRITEBYTELO11, é
Notice that the (1100) RITEBYTELL00,
pixel arrangement 13 (1101) RITERYTELL01,
corresponds to the
lower 4 bits of the 14 (1110) RITEBYTEL110,
index. 15 (1111) RITEDWORD,

16 SOLIDLINE,

17 SkIpLINE,

18 ENDOFLINE,

19 ENDOFSPRITE

FIGURE 19-9 Sprite command jump table.

Now, if you apply this jump table to the sprite in Figure 19-8, you'll end up
with the command list shown in Table 19-3.

ndthen
vith
Tite,
dwidth

h a way

end up

REVISITING OUR SPRITE SAMPLE ® 305

TABLE 19-8 Command List for the Simple Sprite

0 WriteByteO100, 4
WriteDWord, 15
EndOfLine 18

1 SkipLine 17

2 SolidLine, 16
EndOfSprite 19

When the BltSprite() function is first called, it performs an unconditional
jump to the first command in the command list. After a command is exe-
cuted, a similar jump transfers control to the next command in the list.
This process is repeated until the EndOfSprite is reached, which returns
control to the caller routine. Notice in Figure 19-9 that each command pro-
cesses at least one DWORD of the sprite.

// This is a pseudo code that demonstrates how the jump table works.
// The pCommandList points to the first command into the JumpTable.
B1tSprite(PBYTE *pSrc, PBYTE *pDst, PBYTE *pCommandList)

(

// Execute the first command in the 1ist.
goto JumpTable[*pCommandList++];

WriteByte0001: // Only write first byte of DWORD
pDst[0] = pSrc[0];
pSrct+=4, pDst+=4; // go to next DWORD

goto JumpTable[*pCommandList++];

WriteByte0010: // Only write second byte of DWORD
pbst[1] = pSrcil];
pSrct+=4, pDst+=4;
goto JumpTable[*pCommandList ++1;

WriteDWord: // Write entire DWORD
((DWORD*)pDst)[0] = ((DWORD*)pSrc)[0]
pSrc+=4, pDst+=4;
goto JumpTable[*pCommandlList ++1;

// The rest of the operations are similar..
EndOfSprite: // Done...

return;
}

[\

322

=
-
x
<
o

306 m CHAPTER 19 THE PENTIUM PROCESSOR

19.7.2

Analyzing the Performance of Our Sprite Sample

Before we go into some analysis, you should be aware that you can easily
use VTune to figure out if an instruction sequence pair will work. But in
order to figure out how to optimize your code, you'll still need to have
knowledge of the Pentium pairing rules.

In the following illustration, we’ll show you our thinking process when we
hand-optimize our code. For the purpose of our analysis, let’s try to opti-
mize the assembly version of the WritetDWord command shown below.

WriteDWord:
mov ecx, [esi] ; Read DWORD from sprite
mov [edi], ecx ; Write DWORD to background
inc ebx ; increment index pointer
mov d1, [ebx] ; read jump table index
add esi, 4 ; next DWORD to sprite
add edi, 4 ; next DWORD in background
Jjmp JumpTableledx*4] ; Jump to next macro based on index.
L]

Typically, when you schedule instructions, you start the analysis from the
first instruction in a block and try to pair it with the next sequential
Instruction according to the Pentium pairing rules. If the first two instruc-
tions do not pair, you would skip the first instruction and try to pair the
second one with the third, and so on.

In Table 19-4, you can find the nonoptimized sequence of the WriteDWord
command. In the first column we see the instruction sequence where paired
instructions are separated by a blank line. The second column has the num-

TABLE 19-4 The Nonoptimized Version of the WriteDWord Command

. mov ecx, [esi+1] * (1,2) do not pair because (2) uses a register
written by 1(Pairing Rule 2)

2. mov [edi+l], ecx 1. (2,2? ﬁd/f,‘ both instructions are UV pairable,

3. inc ebx and there is no dependency

4. mov d1, L[ebx] 2. 24,5) pair; however, there is an additional clock

5. add esi, 4 ecause of an AGI stall—EBX was just incremented. -
6. add edi, 4 1|+ (6,7) do not pair because (7) is not pairable P

(Pairing Rule 7).

. Jmp jumptableledx*4] Indlirect register jumps are not pairable; they also
take 2 clocks toexecute when the jump address
is in BTB (PR1 & Branch Timing).

R

ym the
1
instruc-
ir the

2DWord
e paired
he num-

mand

clock
smented.

ble

ey also
jc}f/ress

REVISITING OUR SPRITE SAMPLE ® 307

ber of clocks it takes to execute each pair of instructions, and the last col-
umn illustrates the step-by-step thinking process that we used to figure out
if two instructions could be paired.

Based on the analysis, you can see that there are a few pairing and schedul-
ing problems in the code. For example, instruction 4 has an AGI because
the ebx register was just incremented in instruction 3. To avoid an AGI stall,
you could switch the two instructions and use mov d1, [ebx+1] to refer-
ence the correct byte. See Table 19-5 for an optimized version of the
WriteDWord command.

TABLE 19-8 Optimized Version of the WriteDWord Command from
the Sprite Sample

1. mov ecx, [esi+1] = (1,2) pair

2. mov dl, [ebx+1] (12)p

3. inc ebx 11° (3,4 pair

4. add esi, 4 9P

5. mov [edi+1], ecx 1= (5,6) pair

6. add edi, 4 G6)p

7. jmp JumpTableledx*4 |2 |« Indirect register jumps are not pairable. Take-

2 clocks when jump address is in BTB.

This simple optimization resulted in a gain of 2 clocks. In reality, it would
be great if either of the above samples executed in 5 or 7 cycles. Unfortu-
nately, both sequences take much longer to execute than indicated because
we are writing the results directly to video memory, and this process, as we
mentioned earlier, is very slow compared to how fast the processor can run.

Also note that the same instruction performs unaligned memory writes
depending on the position of the sprite on the screen. Misaligned memory
writes take more cycles to execute because the processor splits the write into
smaller writes.

In Table 19-6, you can see the actual measurements for both the nonopti-
mized and the optimized versions of the WriteDWord command. In our
measurement, we used the worst-case sprite for the WriteDWord com-
mand, where all pixels are visible and the sprite width is a multiple of 4.

324

308 =

You can use VTune
to detect misaligned
accesses.

19.7.3

TABLE 19-6 Measured Cycle Timing for Nonoptimized and
Optimized Versions of the WriteDWord Command

CHAPTER 19 THE PENTIUM PROCESSOR

Output Clocks/ Clocks/ Clocks/ Clocks/
Puffer Sprit 4 Pixels Sprite 4 Pixel
Alignment prite P xels
0 14550 11 14480 1
1 53600 405 53300 40

53700 40.5 53400 40
53600 40.5 53400 40

Notice that the 2-clock gain in performance is not even noticeable. As we
mentioned before, this is because the slow video memory access chews up
the 2-clock gain we saw in the optimized version.

Take a closer look at the measurements again. Notice that all misaligned
writes to video memory result in a huge penalty compared to the aligned
writes (~30 clocks/DWORD). As a result, we rewrote the WriteDWord
command to perform only aligned memory writes with some shifting and
masking. And, as we expected, we received a huge performance boost (~13
clocks/DWORD). You can find a copy of the aligned write implementation
of the sprite on the companion CD.

Do I Really Need to Schedule My Code?

Absolutely! We deliberately selected this example for two reasons. First, to
show you how to optimize your code from the processor’s point of view.
Second, to point out that other components in the system, such as video
memory, can adversely affect your application performance. You will defi-
nitely benefit from scheduling instructions, especially if the data is close to
the processor (basically, in registers or L1 or L2 cache). For example, sprites
written into system memory execute at 8 clocks/DWORD, and sprites writ-
ten into video memory execute at 38 clocks/DWORD. We have found that
most multimedia algorithms, such as those for compression, decompres-
sion, image filtration, and 3D benefit from instruction scheduling.

lefi-
se to
rites
writ-
that

es-

REVISITING OUR SPRITE SAMPLE m 309

WHAT HAVE At this stage, you should be familiar with the internal components of the Pentium processor,
EARNED? and you should have an idea of what you can do to achieve optimal performance on this
you L processor. Here is a recap of the tips you should have picked up by reading this chapter:

Know your data: what does it look like, where does it come from, and where is it going
t0? (See Chapter 23 for more.)

Align loops, unconditional branches, and function labels to 8-byte cache boundary.
Keep infrequently executed code and data separate from the inner loops.

Use simple instructions for optimal pairing.

Avoid branch mispredictions and AGI stalls.

Measure the performance of your code, because this is the best way to get a sense of
how well it is executing.

PART VI

CHAPTER 20
e

The Pentium with MMX
Technology Processor

WHY READ Inthis chapter you'll learn about the Pentium with MMX technology processor and its own
THIS CHAPTER? pairing and scheduling rules (the Pentium Il processor is discussed in a later chapter).

In this chapter, you will

get an architectural overview of MMX technology,

learn about the MMX data types, instructions, and register set,

learn the MMX pairing and scheduling rules,

see how to mix floating-point and MMX instructions using the EMMS guideline,
rewrite the sprite sample using MMX instructions, and

optimize the sprite for MMX technology using the scheduling rules.

20.1 A Look at MMX Technology

With the Pentium processor, Intel implemented parallel processing with
dual execution pipelines. MMX technology is the latest major addition to
the Intel Architecture, including fifty-seven new instructions, and eight i
new 64-bit registers. With MMX technology, Intel took parallel processing |

to the level where a single instruction operates on multiple elements of

data—this is known as Single Instruction Multiple Data (SIMD).

Although the name MMX might imply a specific set of applications, #multi-
media, the new instruction set is a general-purpose implementation of the

312 8 CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

SIMD concept. It benefits all applications that perform the same operatiop
repetitively on contiguous blocks of data.

MMX technology introduces a new set of instructions and registers. The
instructions operate in parallel on BYTE, WORD, DWORD, and QWORD
data types packed into 64-bit registers. They perform signed and unsigned
arithmetic, logical, packing, and unpacking operations on the previously
mentioned data types’ boundaries. They allow for saturation or wrap-
around to handle overflow and under-flow conditions.

In this chapter, you will first get an overview of MMX technology and a
brief description of the instruction and register sets. You will then learn the
MMX scheduling rules and how to apply them to the sprite sample.

20.2 SIMD

Typically, integer instructions operate on individual integer data elements

(A + B) (see Figure 20-1a). SIMD instructions, on the other hand, operate

on integer data arrays (A[1..n]+B[1..n]), where 7 is the number of elements
in the array, for example, # = 4 in (see Figure 20-1b).

In Figure 20-1, note that the SIMD processor duplicates the same execution
unit four times. Consequently, the SIMD processor can process four data
elements in the same clock cycle (Figure 20-1b) while the scalar single
instruction, single data (SISD) processor takes four clock cycles to process
the same data (Figure 20-1a).

A, B,

Glalalal [elelslel)

AsB,
AsBy

A,B, [a-B]A-B]AcB] A4-B4U
A-B,

(a) Scalar, or SISD, operation (b) SIMD operation

FIGURE 20-1 Scalar versus SIMD operations.

aents
rerate
ments

sution
data

e
ocess

20.3 Architectural Overview

ARCHITECTURAL OVERVIEW ® 313

The Pentium with MMX technology is the first implementation of the
MMX technology, based on the Pentium processor. Recently Intel added
MMX technology to the Pentium Pro to create the Pentium II processor. In
this chapter we’ll discuss only the extension of MMX technology to the
Pentium processor. The Pentium II processor is discussed in Chapter 22.

Figure 20-2 shows an architectural overview of the Pentium with MMX
technology processor. The processor includes eight new MMX registers and
fifty-seven new MMX instructions. In addition, the processor doubles the
size of the L1 code and data caches to 16K each and adds a Return Stack
Buffer, which reduces the overhead of function returns. Finally, the two
dedicated Pentium Write buffers are replaced with four shared Write buff-
ers—32 bits each. ‘

The Pool of Four Write Buffers

In the previous chapter, we mentioned that the Pentium processor has two
dedicated Write buffers, which are used to queue data writes that do not hit
the L1 cache, write through cache, or write to uncached memory. In the
Pentium processor without MMX technology, one buffer is dedicated to the
U pipe and one is dedicated to the V pipe. As a result of this constraint, each
pipeline is allowed to queue only one memory write before the pipeline gets
stalled.

L1 Instruction Cache
(16KByte)

MMX registers

MMC

— MM1
Writeback .. N
bufers (32 bits) [

1.1 Data Cache v
(16KByte)

PART VI

FIGURE 20-2 Architectural view of the Pentium with
MMX technology processor.

314 s CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.3.2

Main Memory l Main Memory |

a. Pentium processor b. Pentium processor with MMX technology

FIGURE 20-3 Write buffers for Pentium and Pentium with
MMX technology processors.

To enhance write performance, the Pentium with MMX technology proces-
sor doubled the number of Write buffers—to four 32-bit Write buffers. It
also removed the constraint that buffers are dedicated to a specific pipeline,
Any of the four buffers can be accessed from either pipeline allowing up to
four back-to-back 32-bit memory writes or two 64-bit writes regardless of
which pipeline the writes came from. As a result, each pipeline can write up
to four 32-bit writes before stalling the pipeline (see Figure 20-3).

MMX Uses Floating-Point Registers

To maintain operating system compatibility, MMX technology maps the

MMX registers on top of the IA floating-point (FP) registers. Figure 20-4

shows a diagram of the MMX registers mapped one-to-one to the mantissa
part of the floating-point registers. As a result, when you read or write to an
MMX register, you read and write to one of the floating-point registers and
vice versa. The only difference is how the data is interpreted in the register—
after all, it’s only bits. MMX instructions interpret the data as packed bytes,
words, or double words; floating-point instructions interpret the same data
as the mantissa part of a floating-point number.

chnology

with

2gYy proces-
uffers, It

ic pipeline,
wing up to
rardless of
n write up

).

naps the

ure 20-4

€ mantissa
write to an
gisters and
register—
:ked bytes,
same data

ARCHITECTURAL OVERVIEW = 315

T ——

MM2

",.4:\@ N MM3
M MM4
MM5

MM6

MM7

MMX Registers

So what’s the catch? First, it’s obvious that you cannot rely on the contents
of the floating-point registers after you execute an MMX piece of code, or
vice versa. What’s not readily obvious is that the processor could generate
floating-point errors when you execute a floating-point instruction after an
MMX instruction. Why? Since an MMX instruction treats the entire 64 reg-
ister bits as packed integers, it can write any sequence of bits in the MMX
register. But from the floating-point of view, certain bit combinations in the
mantissa combined with certain bits in the exponent generate floating-
point errors such as NAN,! stack overflow or under-flow. Refer to the Pen-
tium processor programmer’s manual on the CD for more details.

20.3.3 EMMS to the Rescue: How to Mix MMX and FP Instructions

That is not to say that you can never mix MMX and floating-point code
fragments in the same application. Rather, you can mix the two types of
instructions if and only if you can guarantee that no floating-point errors
will occur when you switch from MMX to floating-point. To do so, you
must use the new MMX instruction EMMS (Empty MMX Technology

L
§

% k State), which marks all the floating-point registers as Empty. To the floating-

point unit, an empty register indicates that it does not have any data in the
register and, therefore, does not generate stack overflow errors.

1. NAN: “Not a Number” in floating-point terminology.

FIGURE 20-4 Aliasing of MMX registers on top of the floating-point registers.

PART VI

316 8 CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

EMIMIS takes O-11 oy- Notice tbat you should use the EMMS instructions wisely since tthe EMMS

dles on the Pentium Il instruction can take up to 53 clock cycles to execute on the Pentium with

processor. MMX technology.? Ouch! Keeping that in mind, you should use the EMMg
instructions only in the following situations:

m If you plan on mixing MMX and floating-point code in the same appl;.
cation, insert the EMMS instruction at the end of each MMX block.

m If your DLL exports an MMX function that could be called by an appli-
cation that uses floating-point operations, insert the EMMS instruction
before you return from the routine.

To use the EMMS instruction properly, just remember these simple rules:

m Minimize switching between MMX and floating-point instructions be-
cause the switch can be expensive (costing up to 53 cycles).

s Never mix MMX and floating-point instructions at the instruction level—
separate the MMX and floating-point calculations into separate routines
and use EMMS at the end of MMX routines.

s Never assume that the state of the registers is valid across transitions be-
cause both MMX and floating-point instructions write and read from
the same physical register file.

s Always insert an EMMS instruction at the end of an MMX block unless
you are absolutely sure that no floating-point instruction will be used.

20.5

20.4 MMX Technology Data Types

You can interpret the 64-bit data format in an MMX register according to
the instruction that you use. Notice that with the exception of EMMS and
the 32-bit memory transfer instruction (40vD), all MMX technology
instructions operate on one of the data formats shown in Figure 20-5.

The MoVD instruction operates on the lower 32 bits of an MMX register,
where it transfers the register’s contents to memory or to an integer register
(eax, ebx, and so forth). The M0vD instruction also transfers 32 bits of data
from memory or an integer register to the lower 32 bits of the MMX regis-
ter; in this case, the high 32 bits are set to zero.

2. The actual EMMS instruction takes only 1 clock cycle to execute, but when the first floating-point
instruction executes, it takes up to 53 cycles to completely switch to the floating-point mode.

the EMMs
tium with
:the EMMS

same appli-
X block.

by an appli-
' instruction

aple rules:

ructions be-

:tion level—
‘ate routines

nsitions be-
1 read from

slock unless
11 be used.

cording to
IMMS and

logy
2 20-5.

3
-
=
=
|
.

‘egister,
:ger register
its of data
AMX regis-

loating-point
node.

THE MMX INSTRUCTION SET =& 317

Eight packed consecutive bytes

A A A

. Double Word 1

FIGURE 20-5 Data formats for MMX technology instructions.

The EMMS instruction only affects the tag bits of the floating-point reg-
isters. It sets all the tag bits to 1, indicating that the floating-point registers
are empty.

20.5 The MMX Instruction Set

With the introduction of MMX technology, Intel added fifty-seven new
instructions to the 1A architecture. These instructions consist of arithmetic,
comparison, conversion, logical, shift, and data transfer instructions.

With the exception of EMMS and data transfer instructions (M0vQ and
MovD), all MMX instructions follow the format shown in Figure 20-6.

In Table 20-1, you can find a list of the MMX instructions with a brief
description of each. For a detailed description, please refer to the Intel
Architecture MMX Technology: Programmer’s Reference Manual found on
the companion CD.

| B/W/D/Q

P || Operation b/w/d/q

Input/Output Output Data
Data Type Type

l Packed | | ADD, SUB, CMP, etc.

FIGURE 20-6 The MMX instruction format.

318 =

CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

TABLE 20-1 Summary of MMX Instruction Set

Arithmetic

raparoun

Qq;i};ius B: Add 8 bytes using unsigned arithmetic PADDS[BI‘N] Add signed with saturation
with saturation.
[FToe o7 e [Fe e PADDUS[B|W] | Add unsigned with saturation
I I PSUB [BIW|D] | Subtract with Wraparound
[FFlos[oa[FFIFE[FF] FFIFF]

, PSUBS[B|W] Subtract signed with saturation
paddus W: Add 4 words using unsigned . - -
arithmetic with saturation. PSUBUS[BIW] | Subtract unsigned with saturation

[FF oo [of FFIFE 80 [FF FF] PMULHW/ Multiply four words and store
[04 oaToz 0100 o9Te9 of] PMULLW high/low 32-bit result in register
FF FF|{04 00|FF 19[FF FF -

PMADDWd Packed multiply and add
Comparison PCMPEQ[B|WID] | Compare if equal
PCMPGT[B|WI|D] | Compare if greater than
H PACKSSWb Convert signed WORD/DWORD
Conversion PACKSSDW to signed byte/word using signed
saturation
PACKUSWbB Convert signed word to signed
byte using signed saturation.
PUNPCKHBw | Interleave the high order 32-bit
PUNPCKHWd | data elements of the source and
PUNPCKHDg | destination operands across data
type boundary.
PUNPCKLBwW Interleave the low order 32-bit
PUNPCKLWd data elements of the source and
PUNPCKLDq destination operands across data
type boundary.
Logical PAND Bitwise logical AND
PANDN Bitwise logical AND NOT
POR Bitwise logical OR
PXOR Bitwise logical XOR
H PSLLIWID|Q] Shift left/right logical without carry
Shift PSRL[[‘\'I\V)]D Q] across data type boundary
PSRA[WI|D] Shift right arithmetic where the
sign is the most significant bit
(MSB) for the specific data-type.
Data Transfer MOVD Transfers 32 bits between MMX
register and integer register or
memory
MOVQ Transfers 64 bits between MMX
register and MMX register or
memory
EMMS Empty MMX technology state.
Clears FP tag word.

20.6

tion
Jration

_—]

ind

turation
saturation
1 store

n register
Id

1

/DWORD
ing signed

)y signed
ation.

ar 32-bit
ource and
cross data

r 32-bit
ource and
cross data

thout carry
lary

1ere the
ant bit
Jata-type.

en MMX
Ister or

en MMX
ter or

y state.

UsiNG MMX TECHNOLOGY TO RENDER OUR SPRITE SAMPLE ® 319

Notice that some of the instructions have few formats for signed versus
unsigned and wraparound versus saturation calculations. You already know
about signed versus unsigned calculations, so let’s make sure you under-
stand the wraparound versus saturation modes.

Assume that you have 2 bytes, and you want to add them together using
unsigned arithmetic. Since both are unsigned, their values can only range
from 0 to 255. But when you add them together, the results could range
from 0 to 510, which does not fit in 1 byte. So what do you do? Well, one
option is to saturate the result to 255, and the other option is to keep only
the lowest 8 bits of the result (the wraparound). Let’s see how that works.

128

0 255

Q255
(b)
FIGURE 20-7 Unsigned case (2) and wraparound mode (b).

When you use saturate instructions, results greater than the maximum pos-
sible value are clamped to the maximum value. Results less than the mini-
mum value are clamped to the minimum value. In the unsigned case, the
final result would be clamped to 0 and 255, and in the signed case, they
would be clamped to ~127 and 127. It is just like trying to go around in a
broken circle.

On the other hand, when you use wraparound mode, you would calculate
the result to whatever precision possible and only keep the lowest signifi-
cant 8 bits. It is just like going around in a circle.

20.6 Using MMX Technology to Render Our Sprite Sample

It’s time to revisit our spite again. This time, let’s use the new MMX instruc-
tions to implement our favorite sprite. When we worked with the sprite sam-
ple in the previous chapter, we used integer instructions to selectively write
only the visible pixels of the sprite using byte writes (for example,

PART VI

320 @ CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

mov [mem], al).Since MMX technology does not offer byte write opera.
tions, we cannot selectively write the visible pixels (1 byte at a time); rather
we have to merge the sprite and the background in an MMX register and write
the merged bytes to video memory. To do that, we use a Read/Modify/Write

algorithm.

Switch to enable "MBCS"/FR.\Debug/1s97.pe
inline MMX assembly /Yu'stdafich"/Fo"\Debug/" /Fd"\Debug/" /FD

[eo77 oees oo [7or |

UsING MMX TECHNOLOGY TO RENDER OUR SPRITE SAMPLE & 321

With this method, first we read 8 bytes from the background image into one of
the MMX registers, and then we apply the visible pixels to the background
using some logical masking techniques. Finally, we write out the modified
background to its original location.

In this sample, we’ll simply re-implement the sprite sample we worked with

in the previous chapter, but this time we will use MMX instructions. We

start out by redefining the transparency color member variable to a 64-bit i
entity and duplicating the 8-bit transparency color byte to all 8 bytes. k

class CSprite {
pubTic:

__int64 m_gwTransp; // Allow space for 64 bit for MMX transparency
b

CSprite::CSprite(CBitmap &bitmap, BYTE byKeyColor)
{

// Duplicate the transparency color accross the 8 bytes.
memset (&m_gwTransp, byKeyColor, 8);
}

L |

Next we replace the contents of the Blt() routine with our MMX technology
sprite Blt() routine. This implementation of the sprite using MMX instruc-
tions is not yet optimized.

Before we start, notice that we’re assuming an 8 bpp RGB color format and
that the sprite is at least 8 pixels wide. The BIt() routine processes each scan
line in two stages: The first stage handles the left side of the scan line 8 pix-
els at a time; the second stage handles the situations when the sprite width
is not a multiple of 8 and handles the remaining pixels at the end of the
scan line. Since both stages use the same technique for overlaying the sprite
on top of a background, we’ll discuss only the first stage, shown in the code
that follows.

void CSprite::BTt(LPBYTE TpSurface, long 1Pitch, CPoint &point)
{

PBYTE pDst;

DWORD row, col;

DWORD dwHeight = m_dwHeight;
__int64 gwTransp = m_qwTrasnp;
PBYTE pSprite = m_pData;

// compute address dst and src pixels. note pitch can be negative
pDst = (PBYTE)((Tong)1pSurface + point.x + point.y * 1Pitch);

PART VI

int n8ByteBlocks = m_dwWidth >> 3; // number of 8-byte blocks

322 s CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR
_asm |
maov edi, pOst
mov esi, pSprite
movg mm3, qwlransp
DoOneline:
// Check if sprite has more than 8 bytes in width.
mov ecx, nB8ByteBlocks
cmp ecx, 0
je LessThan8ByteslLeft
DoQWord:
// This loop processes 8 pixels at a time
movq mm0, Cesil // Sprite Sprita Background
movq mml, [edi] /1 BkGnd

movq mm2, mm3 /1 Transparency Color

pcmpeagb mm2, mm0 /! Transparency Mask

pand mml, mm2 /1 keep bkgnd pixels

pandn mm2, mmo /1 keep sprite pixels

por mml, mmZ2 /1 merge them

movq [edi], mml /1 write out

add edi, 8 // advance pointers .
add esi, 8 = transparent pixel
dec ecx

jnz DoQWord

J

\ _ |

The routine processes 8 contiguous pixels at a time starting from the left-
most pixel of a sprite scan line. For each quad word (8 pixels), the routine
uses the PCMPEQS instruction to create a transparency mask from the sprite
pixels and the transparency color. The PCMPEQB instruction compares the -
8 bytes of the sprite with the 8 bytes of the transparency color. For each |
byte, the result of the comparison is “FF” if the bytes match (these are the

transparent pixels) and “0” if they don’t match (these are the opaque pixels).

Next the PAND instruction is applied to the newly created mask and the
background allowing the background pixels to occupy the space of the
transparent pixels in the sprite (the ones that resulted in FF); the other pix-
els are zero. The PANDN instruction is then used to create a similar pattern for
the opaque pixels in the sprite. In this step, the mask is first inverted and
then ANDed with the original sprite pixels—this basically clears out the
bytes corresponding to the transparent pixels in the sprite. Finally, the last
two results are combined together with the pOR instruction in order to form
the image—the sprite on top of the background.

Background

he left-
routine
1e sprite
»ares the
"each
are the
e pixels).

[the

f the
ither pix-
ittern for
:d and

ut the
the last
t to form

MMX TECHNOLOGY OPTIMIZATION RULES AND PENALTIES & 323

20.7 MMX Technology Optimization Rules and Penalties

20.7.1

Before we start the analysis of the sample, it would be helpful to go through
some of the essential optimization rules and penalties for Pentium proces-
sors with MMX technology.

All the general rules that apply to the Pentium and the Pentium Pro proces-
sors apply to their counterparts with MMX technology. There are also new
rules that only apply to MMX instruction scheduling, as well as associated
penalties that go with them. In the following paragraphs, we will discuss
MMX instruction pairing and scheduling rules as well as variations from
the general Pentium scheduling rules.

Note that although the rules are listed here with minimal explanations of
how to apply them, most of the rules will be demonstrated in the section
where we apply MMX technology to optimizing the sprite sample. For a
complete explanation, refer to the Intel Architecture Optimization Manual
found on the companion CD.

MMX Exceptions to General Pentium Rules

The Pentium processor with MMX technology relaxed some of the penal-
ties we had to endure with the Pentium processor. The MMX-related rules
allow for better performance on both MMX technology and integer appli-
cations. See Table 20-2 for a summary of the new rules.

TABLE 20-2 Comparison of Pentium Processor versus Pentium Processor
with MMX Technology

Two instructions do not pair MMX instructions do not pair if the U pipe

if either of them is longer than instruction is longer than 11 bytes or the V pipe

7 bytes instruction is longer than 7 bytes; note that
prefixes are not counted here.

Prefixed instructions are only Instructions with OFh, 66H, or 67H* prefixes

pairable in the U pipe are pairable in either pipe. The relaxation of this

restriction helps integer, floating-point, and MMX
instructions. All MMX instructions are prefixed
with OFh.

* OFh: first byte of a 2-byte opcode; 66H: operand size prefix; 67H: address size prefix.

PART VI

324 8 CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.7.2 MMX Instruction Pairing Rules
The pairing rules are the internal processor guidelines that must be fol-
lowed in order to execute two instructions in the same clock: one instruc-
tion executes in the U pipe, and the next one executes in the V pipe.

In the previous chapter we examined the general Pentium pairing rules that
are used with integer and memory operations. In this chapter, we’ll exam-
ine the MMX specific pairing rules. You can find a list of the MMX instruc-
tion pairing rules in Table 20-3. Each rule is followed by three samples
illustrating the application of that rule. Notice that when the pairing rules
are violated, the reason for the violation is highlighted in bold for better
readability.

Schedy
take 3 ¢
(See th

TABLE 20-3 MMX Pairing Rules for Pentium with MMX Technology

Pair Rule 1: Two MMX instructions do not pair if they both use the MMX shifter, (Pack Unpack, Shift instructions).

Pair Rule 2: Two MMX instructions do not pair if they both use the multiplier unit (prnufl, pmulh, pmadd).

Pair Rule 3: An MMX instruction accessing memory or an integer register can only be issued in the U pipe.

Pair Rule 4: If the U pipe MMX instruction is accessing memory or an integer register, the V pipe instruction must
be an MMX instruction in order for the two to pair.

Pair Rule 5: The MMX destination register of the U pipe should not match the source or destination register of
the V pipe (dependency check).

Pair Rule 6: EMMS is not pairable.

v Pairable
X Not Pairable

be fol-
instruc-

pe.

rules that
1 exam-
X instruc-
nples

ing rules
t better

1structions),

!
Jction must

register of

MMX TECHNOLOGY OPTIMIZATION RULES AND PENALTIES m 325

MMYX Instruction Scheduling Rules

The scheduling rules are the internal processor guidelines that indicate the
number of clocks it takes to execute certain instructions or when you can
perform certain operations. Basically, these rules indicate when the data is
ready after certain operations.

You can find a list of MMX instruction scheduling rules in Table 20-4.
Study the example at the bottom of each rule to understand the restrictions
imposed by the rule. We highlighted the two instructions affected by the

TABLE 20-4 MMX Scheduling Rules

Scheduling Rule 1: MMX instructions take a single clock to execute except for MMX multiply instructions, which
take 3 clocks to execute. In other words, multiply instructions require 3 clocks before their data is ready for use.
(See the Note on “One Clock MMX Multiply”) .

Scheduling Rule 2: When an MMX register is updated, 1 extra cycle is needed before you can store it to mem-
ory or to an Integer register; no extra clock is needed if data is moved to an MMX register.

(Continued)

PART VI

326 @ CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

TABLE 20-4 MMX Scheduling Rules (Continued)

20.8

Scheduling Rule 3: No penalty for OFh prefix. There's a 2-clock penalty for 66h and 67h prefixes.

Scheduling Rule 4: The Pentium processor suffers a 1-clock penalty for address resolution (AG). (Refer to
Chapter 19 for a detailed discussion of AGI stalls.)

Scheduling Rule 5: Switching between MMX technology and FP is an expensive task. (Refer to the beginning of
this chapter for more information about register aliasing and EMMS.)

rule. In the first column of the table, we show the original sequence of the
two instructions (back to back). In the second column we show the actual
behavior of the processor when it encounters these two instructions, fol-
lowed by the number of wasted clocks that result from that arrangement. In
the last column, we show an optimized version of the code sequence, in
which we rearranged the instructions to fill up the wasted slots.

Pmulhw mm0, mm1

Pmullw mm1, mm?2

S
.
!
.
:
-

M1 1u|2u | 3u
M2 1u|2u|3u
M3 1u|2u | 3u

Pand mm2, mm3

Movq mm3, mm0

Ready to use —®

Movq mm4, mml

Movq mm1, mm2

PERFORMANCE ANALYSIS OF OUR SPRITE = 327

20.8 Performance Analysis of Our Sprite

Now that you know the essential optimization rules for MMX technology
coding, let’s have a look at the inner loop of our sprite sample (Table 20-5).
As you can see, there are lots of problems here; let’s see how to fix them.

1inning of

Typically, we start the analysis from the first instruction in the loop and try
to pair it with another instruction in the sequence according to the pairing
and scheduling rules above. If we cannot find an instruction that pairs with

2 of the the first instruction, we skip it and try to pair the second instruction with

> actual the third, and so on, as we saw in the previous chapter.

s, fol- ‘
ment. In The original instruction sequence is listed in the first column. The second
e, in column shows the number of clock cycles it takes to execute an instruction

or an instruction pair. The last column shows our step-by-step analysis of
this code sequence.

TABLE 20-5 Nonoptimized MMX Technology Sprite Loop Analysis

DOQWoRD : (1,2) do not pair because they both access
1. Mova mM0, [Est] memory (PR 3)*

2. tova w1, [Ep1] (2,3) pair, since (2) is issued in the U pipe, and
3. Mova mM2, MM3 (3) is an MMX instruction

4. pcwpeas M2, MO |1 |+ (4,5) do not pair because mmz2 is the destination
register and it is used in (5) as a source

operand (PR 5)*
5. PAND MM1, MM2 1 |* (56) pair
6. PANDN MMZ, MMO
7. POR MM1, MM2 1 |+ (78) do not pair. (8) is an MMX instruction accessing

memory (doesn't go in V pipe [PR 3]).

8. mova [Ep1], MMl |2

(8) has a pipeline stall for one more cycle, since it is
writing mm1 to memory, and mm1 was just updated.
(SR 23*

9. ADD £DI, 8 1 | pair
10. ADpp ESI, 8

11. DEC ECX 1 |* par
12. Jnz DoQWorp

* PR stands for “pairing rule”; SR stands for “sheduling rule!’

PART VI

328 m CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

In the second table, Table 20-6, we show an optimized version of the
instruction sequence above, where we reordered some of the instructions t,
fill in the empty slots.

TABLE 20-6 Optimized MMX Technology Sprite Loop Analysis

0QWoRD: * pair

%. Mova MMO, [Eél] 4
. MOVQ MM2, MM

3. mova mMl, [EpI] 1 * pair '

4. PCMPEQB MMZ, MMO

5. PAND MMI, MM2 1 * pair

6. PANDN MMZ, MMO

7. POR MM, MM2 1 « pair

8. ADD EDI, 8 ‘

9. ADD ESI, 8 1 * pair

10. DEC Ecx :

11. wova [ep1-81, mul |1 « (11 & 12) don't pair because 11 is writing to mem-

ory and 12 is not an MMX instruction (PR 4)*
12. Jnz DoQWoro 1

*PR stands for “pairing rule.”

Note that the optimization resulted in a gain of 2 clocks. Pay special atten-
tion to the memory transfer instructions (1, 3, and 9 in the optimized
loop). The table indicates that these instructions take only 1 or 2 clock
cycles to execute. This is true if the address being accessed is in the L1
cache.? But if this is not the case, then it would take extra cycles to execute
the instructions depending on where the data actually resides (L2 cache,
uncached memory, video memory, and so forth).

Let’s assume that the background image, pointed to by pDst, resides in
video memory. Video memory is typically uncached and has a very slow
access pattern relative to that of the fast processor. As a result, all reads and
writes from/to video memory consume much longer than 1 clock. The
2-clock gain in the optimized sprite loop is very small compared to the time

it takes to access video memory. In this case, the sprite sample is said to be
1/0 bound; that is, the CPU is just waiting for the memory to respond to its
requests.

3. L1 cache is a small but very fast memory that resides on the processor itself. In contrast, the L2
cache is typically bigger, slower, and resides outside the processor.

1€
ctions to

7 to mem-
H*

il atten-
zed
lock

L1
execute
zache,

s in

v slow
ads and
The

the time
id to be
md to its

PERFORMANCE ANALYSIS OF OUR SPRITE & 329

Table 20-7 shows measurements of both loops using the internal CPU clock
cycle counter. We collected the measurement in eight buckets correspond-
ing to the alignment of the sprite’s top-left pixel on the screen. Please note
that regardless of the alignment, the optimized version gave a small perfor-
mance advantage over the nonoptimized version, which is the contribution
of the gain of 2 clocks.

TABLE 20-7 Measured Cycle Timing of Both Nonoptimized and Optimized
MMX Technology Sprite Loops

0 110407 159 109732 158
1 180585 260 179676 259
2 180425 260 179558 259
3 180546 260 179487 259
4 150358 217 149725 216
5 185099 267 184392 266
6 185399 267 184364 266
7 185398 267 184277 266

Nonetheless, each loop is consuming more cycles (158-267 clocks) than we
expected from the static analysis (7-9 clocks). Again, this increase is attrib-
uted to the video memory access time being slow as compared with the
processor access time.

Similar to the integer sprite we worked on in the previous chapter,
unaligned memory accesses have a dramatic effect on the performance of
the sprite. Note that we achieve the best performance when memory
accesses are 8-byte aligned. Performance drops significantly when memory
accesses are not aligned.

When we reimplemented the sprite sample to perform aligned memory

writes, we received a huge performance gain—the sprite now executes at an
average of 160 clocks/8 pixels. You can find the aligned sprite implementa-
tion on the companion CD.

PART VI

330 e CHAPTER 20 THE PENTIUM WITH MMX TECHNOLOGY PROCESSOR

20.8.1 MMX versus Integer Implementation of the Sprite

So how does this MMX implementation of the sprite compare to the inte-
ger implementation in the previous chapter? Not good! If you recall from
the previous chapter, the WritetDWord command of the integer sprite could
attain an average of 3 clocks/pixel for a full sprite.* This is about seven times
faster than the sprite implementation we achieved using MMX technology!
Let’s have a closer look at the two sprite samples to understand why the dif-
ference is so marked and to figure out how to fix it.

Wt
You L

REF

The MMX sprite uses a Read/Modify/Write algorithm, which requires two
accesses to uncached video memory: one for reading the initial bitmap, and
one for writing the final result. The sprite in the previous chapter only
accessed video memory once—when it wrote the visible pixels to the screen,
The additional read from video memory degrades performance signifi-
cantly for the MMX sprite.

Apparently, we made the wrong assumption about the location of the back-
ground image—it was fine for the integer sprite, but it’s not appropriate for
the MMX sprite. To speed up access to the background image with MMX,
we decided to build the mixed sprite/background in video memory first and
then send the mixed result to the screen. The only drawback here is that we
have to allocate additional system memory to hold the mixed background.

The result of the new implementation is shown in Table 20-9. WOW, the
MMX sprite is now faster than Speedy Gonzales, with an average of 1.7-1.8
clocks/pixel. By moving the background to system memory, the read and
write of the background image worked much faster than it did with the
integer sprite—even when the integer sprite uses system memory. You can
find a copy of this sample on the companion CD.

TABLE 20-8 Integer versus MMX Sprites Both Overlaid Either in
Video or System Memory

4. Full Sprite refers to a sprite that does not have any transparent pixels.

PERFORMANCE ANALYSIS OF OUR SPRITE & 331

WHAT HAVE At this point you should have a good idea about the MMX technology, its instruction set,
You LEARNED? registers, pairing and scheduling rules, and EMMS. You should be able to manually opti-

ae inte- : ;
mize an MMX technology code fragment to obtain best performance.

II from

te could
en times
mnology!
7 the dif-

Another important point to take from this chapter is that it is vital that you know your data.
Know where it comes from, and where it goes to. We will talk more about this in the last
chapter of this part.

REFERENCES Intel Corporation. The Complete Guide to MMX Technology.

. Intel Architecture MMX Technology: Programmer’s Reference Manual.

ires two . Intel Architecture MMX Technology: Developer's Manual,

1ap, and
»nly
e screen.

nifi-

. Intel Architecture Optimization Manual.

1€ back-
riate for
VIMX,

first and
that we
sround.

N, the
“1.7-1.8
1and
1the
(ou can

CHAPTER 21

VTune and Other Performance i |
Optimization Tools N

WHY READ Your head must be steaming after reading the last couple of chapters. You're thinking:
THIS CHAPTER? Boy! I wish there were a better way to optimize my code than this manual, tedious pro-
cess! You are in luck. This chapter introduces some useful tools you can use to optimize
your code for the Pentium processors. In this chapter you will

m become familiar with Intel's Visual Tuning Environment (VTune), which contains a few
tools including static and dynamic code analysis, the hot-spot system monitor, and pro-
cessor event counters;

m analyze the sprite in the MMX example using VTune and compare it to the previous
results;

m learn how to count cycles using the internal Time Stamp Counter; and

m leamn how to use the PMonitor event counter library to monitor internal processor
events such as cache hits, misaligned accesses, and so forth.

Voucanfindanevale- In addition to the scheduling rules discussed earlier, Intel added three pro-

ation copy of Intel grammable performance counters to provide an accurate method for mea- i

VTune on the suring application performance on the Pentium processors. One counter {

companion CD. L
measures the number of clock cycles executed by the processor, and the
other two counters measure various internal events such as the number of
data reads or writes, L1 cache hit rate, and so forth.

To program events into counters, the processor must be running in privi-
leged level 0 (also known as ring 0). Therefore, you must write a ring 0
driver in order to be able to access these counters from a ring 3 application.

g 333 =&

348

334 m CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

You might be thinking, “It’s not enough that I have to remember all of thege
scheduling rules. Now I have to write a ring 0 driver.” But you don’t. That
why you're reading this chapter.

In this chapter you will learn about VTune—Intel’s Visual Tuning Environ-
ment for Windows. With VTune you don’t have to memorize the schedul-
ing rules or write a ring 0 driver to access the performance counters. VTune
remembers all the pairing and scheduling rules and provides you with a
detailed analysis of your code. It can also provide you with a systemwide

| view of your application using either time-based sampling (TBS) or event-
based sampling (EBS). You can accomplish all of this without any modifica-
tion to your code.

21.2

At the end of the chapter we will show you an alternate way of using the
Time Stamp Counter and event counter. Unlike VTune, which monitors the
entire application, this method allows you to monitor a specific portion of
your code.

21.1 Overview of Performance Counters

Before we start with the actual tools, let’s have a brief overview of the per-
formance counters. The Pentium performance counters are the best means
L of getting accurate feedback about your application’s performance. They
give you insight into how the processor behaves when you run your

application.
On a 200 MHz pro- The Pentium processors include a 64-bit Time Stamp Counter (TSC),
cessor, it takes the which counts the number of clocks executed by the processor. When the

TSC counter 2,924
years to roll over!

processor is reset, the TSC starts counting at zero. You can also program an
initial value into the counter using the WRMSR instruction, which executes

‘ only in ring 0. Once the counter is started, you can sample its value using

J | the RDTSC instruction at all processor privilege levels.

i
2
e
3
é
:

The Pentium processors also include two 40-bit counters (T0 and T1) that

can be programmed to monitor various internal processor events that

affect application performance. These events can be either duration events

. or frequency events. When monitoring duration events, the performance
counters measure the number of cycles while the event was active. When
monitoring frequency events, the event counters measure the number of

g} times the event occurred. For a list of the types of events, refer to the Intel

g Architecture Optimization Manual found on the companion CD.

|

349

s INTRODUCING VTUNE s 335
ill of thege As with the TSC, you can program the event counters with the WRSMR
't. That’ instruction, which executes in ring 0. On the Pentium Pro and Pentium
processors with MMX technology, you can read the event counters using
the new RDPMC instruction at any privilege level. But on the Pentium pro-
3 Environ. cessor without MMX technology, you can only use the privileged level
schedul- instruction RDMSR to sample the event counters at ring 0.
1. VTune
.with a -
mwi 21.2 Introducing VTune
de
I or ev.ent- VTune offers an easy-to-use Windows interface that simplifies optimization
modifica- for the Intel Architecture. It is a collection of both simple and complex opti-
mization methodologies that greatly help developers optimize their code for
ing th the Pentium, Pentium Pro, and Pentium with MMX technology processors.
; e
nitors the In our discussion we will focus on the various VTune features without
ortion of going into the details of how to use them. You can find more detail in
VTune’s online help files.
Let’s start with a summary of VTune features and what they are used for. In
Table 21-1, we list VTune features with a brief description of each. We also
“ the per- highlight the purposes of the features and how you can benefit from them.
est means You can find out more details about these features later in the chapter.
'e. They
ur TABLE 21-1 VTune Feature List
h)th . atic analysis nalyzes application (.0bj, .exe, or .dlf) and shows instruction pair
en the ing, warnings, and penalties for the selected processor.
‘ogram an You can use static analysis in the first stage of instruction schedul-

executes | ing. Once you write your application, load the object file into VTune

. ine uling issues.
ue using and examine scheduling is

GeRbaaR

Dynamic analysis | You can collect an execution trace of a range of instructions in your
application. The execution trace is collected using the dynamic

- analyzer, and it represents the actual instructions executed. VTune

1 T1) that analyzes the execution trace and presents you with a view that

. shows any potential problems with your application. The dynamic
s that view includes details about BTB_pre(}/iction, L1 code, and data cache
on events hits, and other dynamic properties.

rmance You can use dynamic analysis to understand the branch and cache
When behavior of your application.

nber of (Continued)
e Intel

336 @ CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

21.2.1

[tis much fasterto use
* obj files for static
analysis

TABLE 21-1 VTune Feature List (Continued)

Systemwide VTune can monitor all applications, drivers, and operatinﬁg system
monitoring components executing in the system. VTune gets control periodi-
cally from a timer interrupt (TBS) or from one of the internal event
counters (EBS) and saves the instruction pointer where the inter-
rupt occurred. It then displays a graphical view of the modules and
their system usage.

With systemwide monitoring you can determine which applications
are consuming the most processor time or if the processor is idle.

Hot-spot analysis | This tool shows the percentage of CPU time spent executing each
hot spot or active function relative to the execute time for the entire
application or relative to the entire system. The analysis is based on
the samples collected in systemwide monitoring.

With hot-spot analysis you can zoom in on functions and instruc-
tions that take a long time to execute.

VTune Static Analysis

VTune’s static analyzer is a smart tool that understands all the timing and
scheduling rules of the Pentium processors. Basically, when you use static
analysis, VTune analyzes the instructions in your code for pairing informa-
tion and presents you with a simple view illustrating the results. We went
through the tedious process of analyzing code in the last couple of chapters.
With VTune you don’t have to remember any of the pairing and scheduling
rules, AGIs, or the number of micro-op codes per instruction. VTune does
it for you.

The static analyzer accepts executable (*.exe), object (*.0bj), and Dynamic
Link Library (*.dll) files. When you load one of these files, VTune disassem-
bles the instructions in the file and applies the pairing rules to them.

You can see the static analysis view of the nonoptimized MMX sprite from
the previous chapter in Figure 21-1. From the static analysis view, you can
select the Source View, Assembly View, or a mix of both. You can also select
which processor to consider for the analysis (Pentium, Pentium Pro, Pen-
tium processor with MMX technology, or Pentium II). In addition, VTune
provides an option for Blended processor analysis mode; that is where it dis-
plays any scheduling issues that affect any of the supported processors.

351

INTRODUCING VTUNE = 337

Ls
BSYSt\em Souoz Block Begin
ol periodi- :Z::;r::;m Assentiy Block End Pairing, Penalties and
|terna! event | - [——— Run Dynamic Analysis Warning Legend
2 tgeI inter- \¥
odules a .. B
nd Static: Analysis for PS5MMX. obj
applications
'ssor s idle.
=] !
e -» |
) € entire a7 < : . b e
is based on 0x720060 48 smoveg a2, tom3
Dr0s 5z pen . low omp 2 |
e mept, i xp Flow _Dep _m)
1d instruc- [g &2 o oo
{ooxmubt 58 movg GUWORD PR e, mmi MM_MOY _Dep:d Exp_Fiow_Dep_mm1, MM_irt, Mem
_— 0x720002 B1 ecid edl, & Frav_tdv_n_htem
Ux720005 62 add esi,B
[0x7200c8 64 dec eex
0x720008 65 ¢ajpz BKG_PSSCUM3s (72004eh)
im0
ming and
use static
g informa- Select Processor Shows information about high- Pairing and Warning
lighted block (lines 45 and 47). hints
We went
f chapters.
scheduling FIGURE 21-1 VTune static analysis view of the MMX sprite.
Tune does . 1
VTune presents information about each instruction in column format
using either symbols, numbers, or descriptive pairing hints. Let’s see what
Dynamic each of these columns or symbols mean. In the following table you can find
. e s .
> disasserm- a brief description of the symbols and columns of VTune’s analysis view.
em.
TABLE 21-2 VTune Symbols and Column Description |
prite from . S— . _ — — |
I vou ¢ The instruction is issued in the U pipe, and it did not pair with the next i ‘
> you can instruction. The reason for not pairing is listed in the Pairing /ssues col- |
ilso select umn either on this line or the next line.
Pro, Pen- T This instruction is issued in the U pipe, and it paired with the next
n, VTune ; instruction. It also has a warning, which is listed in the Penalties and
here it dis Warnings column.
2SSOTS e This instruction is issued in the U pipe and could pair with the next
: ’ instruction. Note: That this does not mean that it paired with the next

instruction; it only means that it is pairable.

This instruction is issued in the V pipe and pairs with the previous
instruction.

There is a penalty associated with this instruction. The penalty is listed in
the Penalties and Warnings column

(Continued)

338 8 CHAPTER 21 VTuUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

TABLE 21-2 VTune Symbols and Column Description (Continued)

The warning listed in the Penalties and Warnings column affects only
the Pentium Pro processors.

There is a penalty and a warning associated with this instruction. It is
listed in the Penalties and Warnings column.

This indicates Instruction Cache Line boundaries. The instruction cache
line size is 16 bytes for the Intel 486 and 32 bytes for the Pentium and
Pentium Pro processors.

The instructions included by these braces represent a Pentium Pro
decoder group.. The Pentium Pro decodes the instructions in a decoder
group in 1 clock cycle. A decoder group can include up to three consec-
utive instructions where the first one is decoded to four or less micro-op
codes, and the other two are decoded to one micro-op. This is the
“4:1:1" sequence described in the Pentium |l processor chapter

(Chapter 22).

Address This column shows the relative address of this instruction.

Line This column shows the line number of the instruction in the source file.

Source This column shows the assembly format of the instruction. In the mixed |
mode, the column shows the source line followed by the assembly
instruction.

Clocks For the Pentium processor, this column indicates the number of clocks it
would take to execute this instruction. This, of course, assumes perfect
L1 cache.

Uops For the Pentium Pro processor, this column fists the number of micro-

ops this instruction represents.

Penalties | This column lists the shorthand explanation of a penalty or a warning.
and When you double-click the left mouse button on the line, you get more
Warnings |information about the waming.

Pairing This column lists the shorthand explanation of pairing issues related to
Issues this instruction. When you double-click on the line, you get more infor-
mation about the pairing issue.

Notice that when you highlight a sequence of instructions, VTune displays
the total number of cycles and instructions at the bottom status bar. For
example, the highlighted instructions at lines (45-47) take 2 cycles to exe-
cute, and they have 0 percent pairing rate.

In Figure 21-1, to get more information about the warnings and penalties,
you can double-click with the left mouse button on the problematic

instruction. VTune pops up another window with more information about
the problem (Figure 21-2). You can get even more explanations by selecting
the help button | associated with the problem.

xd)

T e———
s only
-]
LItis

|
) cache

um and

’ro
lecoder
consec-
licro-op
the

Irce file,

* mixed
1bly

docks it
perfect

Ticro-

ming.
't more

ited to
» infor-

splays
For
) exe-

alties,

about
ecting

INTRODUCING VTUNE ® 339

¥ Advanced Instruction Analpzer

1o memory, its saurce must be
eady one cycle in advance, When a MOVD instructian writes to an integer |

instruction that reads
egister can only be lssued to the U pipe.

FIGURE 21-2 Explanation of problems on line 58 of the MMX sprite.

Now, let’s compare the results of VTune’s static analysis of the MMX sprite
with our manual analysis in the previous chapter. For your convenience, we
have duplicated the table from the previous chapter (Table 20-6). Notice
that both methods yield the same number of clocks for each instruction
and both reach the same conclusions about scheduling problems. But
although it took us half an hour to figure this out, it took VTune less than
half a minute to do the same.

TABLE 21-3 Nonoptimized MMX Sprite Manual Analysis

DOQHORD : N (7,2) do notpd/r because they oth access
1. wmova mMO, [EsI] memory .
2. Mova mvl, [ep1] 1 |+ (2,3) pair, since (2) is issued in the U-Pipe, and
3. Mova MM2, MM3 (3) Is an MMX instruction

4. PCMPEQB MMZ, MMD 1 |+ (4,5) do not pair because mm2 is the destination
register and it is used in (5) as a source operand

5. PAND MM1, MM2 1 | (56) pair

6. PANDN MMZ, MMO

7. POR MM1, MM2 1 | (78) do not pair, (8) is MMX instruction accessing

memory (doesn't go in V-Pipe).

8. Mova [EDI], MMI

N

(8) has a pipeline stall for one more cycle, since it is
writing mm 1 to memory, and mm1 was just

updated.
9. aDD DI, '8 1 |* pair
10. aop £sI, 8
11. DEC ECX 1 |= pair
12. Jnz DoQWoro

PART VI

21.2.2

i 21.2.3

340 w CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

Let’s have another look at the clocks column of the static analysis view in
Figure 21-1. Notice that VTune assumes that all memory accesses take 1
clock cycle to execute. It also assumes that branch instructions take 1 clock
regardless of whether the branch is taken or not. Since these assumptions
are not always valid, VTune implements the dynamic analysis feature dis-
cussed below.

VTune Dynamic Analysis

Dynamic analysis provides more realistic timing information about your
code. With dynamic analysis VTune collects an actual trace of instructions
executed in your program and uses this trace for dynamic analysis. Since
VTune knows exactly which instructions actually executed, it can provide
better information about L1 cache hits, branch timing, and BTB hits.

To use dynamic analysis, you must select a block of instructions to analyze
from the static analysis view (lines 48-65 in Figure 21-1). When you run
the dynamic analyzer, VTune launches the application and collects a trace
of the actual instructions executed within the selected block. When you ter-
minate the application, VTune analyzes the collected trace and displays the
result in the dynamic analysis view.

We are not showing the dynamic analysis view since it looks exactly the
same as the static analysis view in Figure 21-1. The only difference is that
the dynamic view displays the actual instruction pairing and a more realis-
tic clock count. It also displays BTB hits, L1 code and data cache hits, and
branch behavior.

In Windows 95, your system might hang if you use VTune dynamic analyzer in
the middle of a DirectDraw Lock section. DirectDraw holds the Win76Lock
between DirectDraw Lock and UnlLock operations, which prevents VTune from
running properly. The Win76Lock is a Windows 95 critical section that serializes
access to GDI and USER system DLLs. As a result, the Win76Lock prevents
Windows from running and blocks applications from using GDI or USER DLLs.

Systemwide Monitoring—Time- and Event-Based Sampling

So far, you've optimized your application and salvaged every wasted cycle in
it. But do you know how your application behaves from the point of view of
the entire system? What if your application calls an operating system or
third-party function, do you know how long it takes to execute? Do you
know where the CPU spends most of its time? Simple. Use VTune.

355

N in
el
clock
tions
 dis-

Jour
-tions

ince
wide

1alyze
run
trace
ou ter-

ys the

he

that
realis-
and

Zer in
k
~from
jalizes
its
JlLs.

clein
ew of
or
ou

INTRODUCING VTUNE = 341

VTune includes a systemwide timme- or event-based sampling (TBS or EBS)

feature, which monitors every running component in the system. This

includes operating system drivers (ring 0 and ring 3), DLLs, and other exe- |
cutables. VTune analyzes the time or event samples and presents a percent- :
age usage summary for each module in a bar graph format (Figure 21-3). ‘:

When TBS monitoring is active, VTune gains control from a periodic timer

interrupt where it records the instruction pointer (CS:EIP), process ID, and |
module name where the interrupt occurred. At the end of the monitoring

session, VTune associates the collected pointers with their corresponding

module and presents a percentage usage summary bar graph. The y axis of

the bar graph represents the module name, and the x axis represents the

percentage CPU usage of each module relative to the entire system.

When EBS monitoring is active, VTune gains control from a performance
counter event interrupt where it records the instruction pointer (CS:EIP),
process ID, and module name where the interrupt occurred. As with TBS,
VTune associates the collected addresses with their corresponding module
and generates a percentage occurrence summary bar graph. The y-axis of the
bar graph represents the module name, and the x-axis represents the per-
centage of occurrence of that event within modules relative to the entire
system.

We have compiled a few hints that are worth knowing about the system-
wide monitoring feature in VTune:

FIGURE 21-3 Systemwide monitoring module usage summary.

342 m CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TooOLS

f m For Pentium processors, you need a special processor socket to use event.
based sampling (EBS) with VTune. But you don’t require a special socket for
the Pentium Pro processors. (Note: For Pentium processors, you can use
PMonitor for event monitoring, and no special socket is needed.)

a When the mouse points to a module in the bar graph, VTune displays
statistics about that module at the bottom status bar.

s You can pinpoint the amount of time that the operating system is idle
(not executing any threads or tasks including yours). The VMM module
reflects the idle CPU time in Windows 95, and the NTOSKRNL module
reflects the idle CPU time in Windows NT.

When you zoom in on a function in one of the modules, VTune displays a

time-based analysis view that shows the statistics for each instruction of the
MMX sprite (Figure 21-4). When TBS is used, the Time column shows the
hit rate of each of the instructions relative to the entire application. A high
hit rate indicates that the instruction took a long time to execute.

Pay attention to the highlighted instruction on line 50 Figure 21-4. The

o Time column indicates that this instruction was executing 71 percent of the
time when the timer interrupt occurred. But this is a simple instruction that
uses only register operands and should execute in only 1 clock cycle. OK,
let’s look at the instruction in the previous cycle, specifically on line 47. If
you remember from the previous chapter, this instruction reads data from

Time-Based Analysis for SPRITE.exe R s

P . 3
| Oxtafq = e BRE_PESCIMMM+5f (Tb11h) : L
| ' - 2 l me

Oxleta BHE_P5SCMMA+3a movy mm0, QWORD PTR {esi]

move mmt, @AORD PTR [edi]
movy Wz, mm3

Uxiblz - 7 Hompiegk: mmz, mmi
| k Ox1b06 ‘ ‘ pand mm1, mm2
0x1h09 pandn mm2, mmo
0x100c por mmd, mm2
@ 0x1bUt movy QWORD PTR {edi], mml

| K Oxibi2 add edi, 8

i 0x1015 add esi, 8

i i 0x1b18 . dgn Box

’ = . Ox1b18 jnz BRI PESCMME+3a (Tafah)

FIGURE 21-4 Time-based analysis view for the MMX sprite.

357

READ TIME STAMP COUNTER m 343

use event.

uncached video memory and takes a long time to execute. So it is likely that

I'socket for this instruction is the culprit spending 71 percent of the time! And it is.

U can ug

) ‘ Remember that VTune records the current instruction pointer when the

e displays timer interrupt occurs. When the interrupt occurs on line 47, the processor
has to finish executing this instruction before it acknowledges the interrupt.

em s idle Bu't afFer the processor execut_es the ‘instructif)ns in lines 47 and 48 (they

V module Palr), it advances the instruction pointer t(? line 50 and then. generates the

L module interrupt. As a result, \./Tun%a records that line 50 was executing 71 percent
of the time when the timer interrupt occurred.

isplays a Y01.1’re thinking, Why .doesn’t YTune just a.dj ust the instruction pointers to

ion of the point to the previous 1nstr1'16t10n (or previous cycle)? VTune d.oes not

hows the always knowf what th‘e previous cyclg was. For .example, if the timer inter-

1. A high rupt oc_curs in the middle of a branc-h 1nstru.ct10n (CAL.L,‘JMP, J¢¢), the inter-
rupt will occur at the branch target instruction (after it jumps). When
VTune gets control, it has no idea that this is a branch target instruction,

The and if it is, VTune has no idea from where it was called.

ent of the

ction that

e. OK,

e47.1f

ita from

21.3 Read Time Stamp Counter

Now, let’s see how we can use the Time Stamp Counter to measure a small
or large portion of code using the RDTSC instruction. Since MSVC inline
assembly does not recognize the ROTSC instruction, we implemented the
instruction as an in-line function: :

// Value returned in EDX:EAX which is the 64bit counter value.

1. _inline __int64 ReadTimeStampCounter() f{

2. _asm xor eax, eax // prevent compiler from optimizing around
RDTSC.

3. asm xor edx, edx

Pl

4 _asm _emit 0x0f
5. asm _emit 0x31
6.

-1

344 m CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION TOOLS

Now you can use the inline Read TimeStampCounter() function to execute
the ROTSC instruction. Notice that the RDTSC instruction returns its values in
the eax and edx registers.

Function()

{

__int64 gwStart;

__int64 gwElapsedTime = gwStart; // Force gwStart into L1 Cache

1.
2.
3.
4.
5
6

gwStart = ReadTimeStampCounter();

...... . Code you want to measure)

1. gwElapsedTime = ReadTimeStampCounter() - gwStart;
1

| S

| Notice that we read the qwStart variable in line 4 in order to eliminate a
cache miss when we fill it with the initial value of the counter. In this case,
qwsStart was preallocated into the L1 cache. We intentionally preallocated
gwsStart so that we can minimize the side effects of the profiling code and
achieve the most accurate results.

Depending on the amount of time it takes for your code to execute, you

might want to calibrate the overhead of the ROTSC instruction (found on the
CD) and subtract it from the measured time. This is necessary for measur-
ing code fragments that take a small number of cycles to execute. In the fol-

‘ lowing code we show how to calibrate the RDTSC instruction overhead using
CalibrateTimer():

21.4

I

‘” main() {

: int nOverhead;

i // Invoke it once to bring in the code for the function into the
// L1 code cache. Then invoke it with a high counter value so it
// would calibrate the RDTSC instruction.
CalibrateTimer(1);
CalibrateTimer(10000000);
printf ("Overhead of RDTSC: %d\n", nOverhead);

int CalibrateTimer(int nlterations)

__int64 iCounter;
__int64 i0verhead = iCounter; // Force iCounter into the L1 cache

// Run a counter loop executing only the RDTSC instruction
// Figure out how much time that takes.
iCounter = ReadTimeStampCounter();

359

' execute
values in

the

—

nate a
his case,
ocated
»de and

e, you
ad on the

measur-
n the fol-
2ad using

THE PMONITOR EVENT COUNTER LIBRARY ® 345

_asm {
mov ecx, nlterations
LoopAgain:
_emit Ox0f
_emit 0x31
dec ecx
jnzloopAgain

}

// Overhead of RDTSC loop

i0verhead = ReadTimeStampCounter() - iCounter

// Now, figure out the loop overhead without the RDTSC instruction
iCounter = ReadTimeStampCounter();

_asm {
mov ecx, nlterations
LoopAgainl:
dec ecx
jnzboopAgainl
}

// Overhead of empty Toop
iCounter = ReadTimeStampCounter() - iCounter;

// Overhead of one RDTSC instruction
return (int)(iOverhead- iCounter)/ nlterations;

Again, notice that we called the function twice to avoid any cache misses—
once to make sure the function code is loaded into the L1 code cache, and
the other time to perform the actual calibration.

21.4 The PMonitor Event Counter Library

With the PMonitor library you can access the event counters from a ring 3
application. Unlike with VTune, you do not need a special socket on your
Pentium processor to use PMonitor’s event counters. Instead the PMonitor
library implements a Windows 95 Virtual Device Driver (VxD), which exe-
cutes in privileged level 0 to read the event counters.

To use the counters, first you need to program one or both counters with
the events that you want to monitor. Once you start the counters, you can
sample their values before and after the section of code that you want to
measure.

For example, let’s use counter 0 to measure the total number of instructions
executed, and counter 1 to measure the number of instructions executed in
the V pipe. First let’s initialize and start the counters as follows:

346 s CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION ToOOLS

f#inctude "D11_If.h" // PMonitor interface file
main()
{

struct Pmon32Version Version;

// Load and initialize the Pmon library
DWORD dwPmon32Status = Pmon32Init(&Version);

// Now program the two counters with the required events.
if (dwPmon32Status == Pmon32_0K) {

Pmon32Start(
INST_EXECUTED, Ring3, // Counter 0 settings
INST_EXECUTED_VPIPE, Ring3 // Counter 1 settings

I

|]

First we use Pmon32Init() to initialize the PMonitor library and make sure
that it loads the VxD successfully. We then request that PMonitor program
counter 0 to count the total instructions executed in the user level (ring 3)

and counter 1 to count only the instructions executed in the V pipe (also in
ring 3). Once the counters are started, we can use them to measure the two
events as follows :

#include “d11_if.h” // PMonitor Interface file You
fidefine Get64bit(x) ((__int64 *)&x)[0]

Struct PMON32REPLY :

SomeFunction() DWORD T0_l; // Counter 0 low
(DWORD TO_h; // Counter 0 high
struct Pmon32Reply Start, End; DWORD T1_]; // Counter 1 low

DWORD T1_h; // Counter 1 high
Pmon32ReadCounters(&Start);
**%k Code To Profile
Pmon32ReadCounters(&End);

// Calculate the number of instructions executed.
__int64 gwTotallnst = Get64bit(End.TO_1) - Get64bit(Start.T0_1);
__int64 qwPipelnst = Get64bit(End.T1_1) - Geté4bit(Start.T1_1);

L |

Notice that the Pmon32ReadCounters() function has a big overhead because
it requires two ring transitions' to read the event counters—and that work
consumes a lot of precious time. On the Pentium Pro and Pentium proces-
sors with MMX technology, you can eliminate such overhead by sampling

1. Ring transition refers to the switch between two privilege levels.

THE PMONITOR EVENT COUNTER LIBRARY m 347

the counters with the new RDPMC instruction. So the above sequence of
code can be changed as follows:

// Value returned in EDX:EAX which is the 64bit counter value.
__inline __int64 ReadPerformanceMonitorCounter(int nCounter) {
_asm xor eax, eax // Prevent compiler from optimizing -
_asm xor edx, edx // around RDPMC.
_asm mov ecx, nCounter // 0: Counter0, l:Counterl
_asm _emit O0x0f // RDPMC
_asm _emit 0x33
}

CSprite::B1t()
{

__int64 gqwTotallnst;
__inte4 qwVPipelnst = qwTotallnst; // force gwTotallnst in L1 Cache.
gwTotallnst = ReadPerformanceMonitorCounter(0); // Counter 0
qwVPipelnst = ReadPerformanceMonitorCounter(l); // Counter 1

Ke sure

'ogram
.'ing 3) , // Calculate the number of instructions executed.

[lsoi qwTotallnst = ReadPerformanceMonitorCounter(0) - gwTotallnst;
also mn qw¥Pipelnst = ReadPerformanceMonitorCounter(1) - gwTotallnst;
‘he two

**%% Code To Profile

|

WHAT HAVE We're positive that you would prefer to remember this chapter over the prewous couple
YOU LEARNED? ©f chapters. Here are a few points to carry with you:

m VTune simplifies optimizing applications on the Pentium processors, but it does not do
all the work for you.
Start with static analysis for looking at the initial scheduling of your instructions.

Use dynamic analysis to verify your scheduling assumptions and to understand branch
and L1 cache behavior.

Use systemwide monitoring and hot-spot view to zoom in on sections of time-
consuming functions so you could optimize them if possible.

To get more control over which pieces of code to profile, add timing code inside your
application with TSC and event counters.

. Use PMonitor counters to gauge performance.
] gauge p

because
at work
proces-
mpling

WHY READ
THIS CHAPTER?

The Pentium Il Processor

CHAPTER 22 |
= |

Are you ready for the latest Intel processor, the Pentium Il processor? Do your applications run
at their best on this new processor?

By reading this chapter, you will

m leam about the new features of the Pentium Il processor and how to optimize your
application for them;

8 leam how to use Pentium Il performance counters to measure various events that affect
performance on the processor;

® understand how to properly use the Write Combining memory type to substantially
speed up accesses to the video frame buffer and reduce the utilization of the system
bus; and

® in the process of optimizing for the Pentium !l processor, take a closer look at branch
mispredictions, partial register stalls, and the 4:1:1 decoder template.

Simply put, the Pentium II processor is a Pentium Pro processor with
MMX technology. In 1996 Intel introduced the Pentium with MMX tech-
nology processor, which adds MMX technology to the Pentium family of
processors. In the middle of 1997 Intel extended the same technology to the
Pentium Pro processor family with the introduction of the Pentium II pro-
cessor. The Pentium II processor is well suited for both business and multi-
media applications.

s 349 m

363

350 8 CHAPTER 22 THE PENTIUM Il PROCESSOR

You may have noticed that we did not discuss the architecture of the Pen-
tium Pro processor. As a matter of fact, since the Pentium II processor is
derived from the Pentium Pro processor, any discussion of the Pentium II
processor already incorporates the Pentium Pro processor—except for the
MMX technology, of course. We'll point out the differences between the
two processors early in the chapter.

We start the chapter with an architectural overview of the Pentium II pro-
cessor, including a brief discussion of the internal operations of the compo-
nents of the processor. We follow that with a more detailed explanation of
cach of the processor units and what's important for them to deliver opti-
mal performancé'./For each unit we will give you a few guidelines or tips
that could help you attain optimal performance on the Pentium II proces- L
sor. If appropriate, we'll also include a list of useful internal event counters ‘
and an explanation of how you can use them to gauge the performance of
that unit.

Finally, we’ll show you how to use the Write Combining (WC) memory
type! to speed up your graphics performance. WC is a new memory type
that was first introduced in the Pentium Pro processor and will be widely
available on systems using the Pentium II processor.

Wherever appropriate, we advise you to use VTune if we feel that it can help
you with performance measurement and analysis. The latest release of
Intel’s VTune? includes support for the Pentium II processor.

22.1 Architectural Overview

As we mentioned earlier, the Pentium II is basically a Pentium Pro proces-
sor with MMX technology. The Pentium II processor moved to a twelve- ‘
stage pipelined architecture with an out-of-order execution core—as com-
pared to the five-stage pipeline of the Pentium. In addition, the Pentium II
processor includes three parallel decoders, five execution ports, a branch
target buffer (BTB) with 512 entries, and four 32-byte Write buffers (see

Figure 22-1). : 41
der

1. Memory types include cached, uncached, Write Combining, and so forth.
@ 2. We've indluded a three-month fully functional evaluation copy of VTune on the companion CD.

Pen-
ris
mlI
r the
‘he

pro-
ympo-
n of
opti-
ips
oces-
Inters
ce of

oces-
lve-
com-
um II
ach
see

4:1:1 is the preferred
decoder sequence.

ARCHITECTURAL OVERVIEW =m 351

L1 Instruction Cache
(16KByte)

|Profetch buffers
- (32 Bytes)
IFetch 0
TFetchi
|Fetch 2
:
°|
Al (U-Pipe)
- [Execuie
| [Fetie 0] Porta| |Rort3
W= “Load ﬁgﬁ?]
18 Unit Unit
Fill Buffer|
(32 bytes)

L1 Data Cache
(16 KByte)

MMX registers

FIGURE 22-1 Architecture of the Pentium Il processor.

Similar to the Pentium with MMX technology processor, the Pentium 11
processor doubled the size of the L1 instruction and data caches to 16K
each and added eight MMX registers and a Return Stack Buffer (RSB).

The Life Cycle of an Instruction on the Pentium Ii

The Pentium II processor fetches instructions in a fashion similar to that of the
Pentium processor. It uses the Branch Target Buffer (BTB) to predict branch
behavior and prefetches instructions to one of the two 32-byte prefetch buffers.

The Pentium II processor includes three parallel decoders capable of pro-
cessing up to three instructions in 1 clock cycle. The first one decodes
instructions up to four micro-op codes long, and the other two can only
decode instructions that are one micro-op long. In addition, the Pentium IT
processor includes a microcode sequencer that decodes complex instruc-
tions that are five or more micro-ops long.

The Register Allocation Table (RAT) accepts up to six micro-ops from the
decoder and posts up to three micro-ops to the Reorder Buffer (ROB; a.k.a.
the Reservation Station). For each micro-op, the RAT renames the logical
IA-based registers to one of forty internal Pentium Pro registers and inserts
them into the ROB. This is where the “out-of-order” processing begins.

PART VI

352 m CHAPTER 22 THE PENTIUM Il PROCESSOR

22.1.2

The Reorder Buffer is the heart of the “out-of-order” execution. The ROB
consists of forty “seats” where the micro-ops “hang out” waiting for one of
the units to take care of them (they’ll be dispatched, executed, or retired).

The dispatch unit determines when a micro-op is ready to execute based on
the readiness of its data, not on the order in which it came in (since this is an
out-of-order system). The dispatch unit marks a micro-op as “ready for
execution” only when all of its operands are available.

The execution unit looks around the ROB for micro-ops that are ready to
execute. Depending on the type of micro-op, one of the five execution ports
executes it, marks it as “ready for retirement,” and then places it back into
the ROB. Note that the execution unit can execute up to five micro-ops in 1
clock cycle.

At this stage, the results of a micro-op are forwarded to other dependent
micro-ops in the ROB. Also the results of branch instructions are deter-
mined, and if a branch was previously mispredicted, the fetch unit is
directed to fetch instructions from the correct address, and all those
mispredicted instructions are flushed out of the ROB, RAT, decoder, and
fetch unit. In addition, the mispredicted instruction is logged into the BTB
for better future branch prediction.

The retirement unit waits for micro-ops that are ready to retire. When a
micro-op retires, its result is forwarded to the Memory Order Buffer
(MOB), where it gets committed to the IA registers (eax, ebx, and so forth),
the cache or main memory. The MOB guarantees that the results are com-
mitted in the order of the instructions as they came in. The retirement unit
can retire up to three micro-ops every clock cycle.

Comparing the Pentium Il with the Pentium Pro Processor

Following are the differences between the Pentium II and the Pentium Pro
processors:

m The Pentium IT processor adds fifty-seven new MMX instructions and
eight MMX registers.

s The Pentium II doubles the size of the L1 caches to 16K each.

e The Pentium Pro processor has an on-chip L2 cache, which runs at the speed
of the processor core. The Pentium II processor has the L2 cache off the chip,

and it runs at one half to one third the speed of the core—the fraction
depends on the frequency of the processor.

366

22.2

ed on
s1san
or

ly to
ports
into
1sin 1

ent
°or-

ind
: BTB

1a

orth),
com-
t unit

a Pro

1s and

' speed
e chip,
action

INSTRUCTION AND DATA CACHES =m 353

e Systems with the Pentium II processor have better support for the Write

Combining (WC) memory type and thus better access to video frame
buffers.

Comparing the Pentium Il with the Pentium with MMX
Technology Processor

The Pentium IT processor has the same support for MMX technology as the
Pentium with MMX technology processor. Fortunately, owing to architec-
tural differences in its processor core, the Pentium IT processor relaxes some
of the scheduling constraints imposed by the Pentium with MMX technol-
ogy processor. In Table 22-1 the left column lists the MMX scheduling rules
of the Pentium with MMX technology scheduling, and the right column
specifies whether such a rule applies to the Pentium II processor.

TABLE 22-1 Comparison of the MMX Instruction Scheduling Rules

Two MMX shift or two MMX MUItip[ykihsty‘fudi

s cannot execute in the same cycle.

MMX instructions accessing memory or an
integer register can only execute in the U

pipe.

Both these rules don't apply to the Pen-
tium 1. You need only worry about the 4:1:1
decoder sequence discussed later in this

- - - ter.
If the U pipe MMX instruction accesses chapter
memory or an integer register, the V pipe
must hold an MMX instruction to pair.
The destination register of the U pipe This rule does not apply here because of

instruction should not be accessed from | the Pentium II's out-of-order execution.
the V pipe instruction.

22.2 Instruction and Data Caches

It is important to note the differences in cache architecture between the
Pentium IT processor and previous processors. As we mentioned earlier, the
Pentium IT processor doubled the size of the L1 caches (to 16K each) and
moved the L2 cache off the chip (running at one half or one third the speed
of the core). You might expect that moving the cache off the chip at a frac-
tion of the speed could have a huge negative impact on application perfor-
mance. Fortunately, doubling the size of the L1 cache positively outweighs
the negative effect of moving the L2 cache off the chip.

Except for write misses, the cache behavior of the Pentium IT processor is
similar to that of the Pentium processor. On a write miss, the Pentium IT
processor first loads the cache line where the write miss occurred into the

PART VI

354 8 CHAPTER 22 THE PENTIUM Il PROCESSOR

22.2.1

L1 cache, and then it writes the data to the L1 cache. The Pentium proces-
sor, in contrast, writes the data through to the L2 cache or main memory
without preallocation into the L1 cache.

One of the major enhancements of the Pentium II processor, over the Pen-
tium processor, is that the read operations are nonblocking. As we men-
tioned in the Pentium chapter, the Pentium processor stalls completely
when two back-to-back read misses occur—that is, it stalls until an entire
cache line is brought into the L1 cache. The Pentium II processor, on the
other hand, allows other micro-ops to execute while it’s waiting for data to
be brought in to the L1 cache—this improvement is made possible by the
out-of-order execution model.

Operational Overview

The L1 cache is on-chip static memory that satisfies internal read/write
requests more quickly than an external bus cycle to memory can. In addi-
tion, the L1 cache reduces the processor usage of the external bus, thus
allowing other devices to move data on the bus—the DMA, bus maters,
and so forth.

Similar to the Pentium with MMX technology processor, the Pentium II
processor has two independent L1 caches (16K each): one satisfies data
accesses, and the other satisfies instruction fetches. The two caches exist on
two separate internal buses (each bus is 64 bits wide), which allows the pro-
cessor to load instructions and data, simultaneously, in the same clock
cycle. In contrast, the Intel 486 can only load either data or instructions,
not both, at any given moment because both instructions and data have to

share the L1 cache. 22.

Both the instruction and data L1 caches are divided into 32-byte cache
lines; this is the minimum granularity of the L1 cache. When the processor
transfers any amount of data between the L1 cache and the external bus
(main memory or the L2 cache), it transfers a minimum of one cache line
at a time.

The read behavior of the Pentium II processor is identical to that of the
Pentium processor. On a read or write hit, the L1 cache satisfies the request
in 1 clock cycle. On a read miss, the processor transfers an entire cache line
into the L1 cache. If a multi-byte read crosses a cache line boundary, the
next consecutive cache line is also brought into the L1 cache.

368

INSTRUCTION FETCH UNIT & 355

But the write miss behavior of the Pentium II processor is different from
that of the Pentium processor. On a write miss, the Pentium II processor
first loads the entire cache line where the write miss occurred into the L1
cache and then writes the data to the L1 cache. This behavior is useful for
applications that exhibit spatial data locality and access more than one ele-
ment in a cache line—such as applications that involve sequential access of
an array or access of local function variables.

22.2.2 Performance Considerations

To put it simply, “Reuse it while it’s in the L1 cache.” If you have already
brought in code or data from main memory to the L1 cache, make sure that
you use it while it’s still there—before it gets flushed out. Here are a few
suggestions on how to get good performance on the Pentium II processor.

m Keep the size of your inner loops below 16K. If your most executed loop does
not fit in the L1 code cache, the L1 cache will thrash continuously. To fix this
problem, you can break the task at hand into smaller tasks with smaller loops
that fit within the L1 cache. To find out the size of your loop, you can either
look into the map file generated by the linker or use VTune’s static analyzer.
You should also watch out for in-line macros and functions that, if used often,
could bloat your code.

m Reuse data while it's in the L1 cache. If possible, operate on the data while it's in
the L1 cache—before it gets flushed out. Since multimedia data does not typically
fit in the L1 cache, you can operate on some part of the data at one time rather

ne pro- than the full set. For example, instead of decoding the entire video frame in one
y loop, you can decode the top half of the frame from start to finish and then the
’ns, bottom half—or whatever part of the frame fits in the L1 cache.
ave to

22.3 Instruction Fetch Unit
he 22.3.1 Operational Overview
cessor The Pentium IT processor (Figure 22-2) has an aggressive prefetcher with
bu§ two 32-byte prefetch buffers that operate in conjunction with the branch
¢ line target buffer (BTB) to fetch raw opcodes from the L1 cache, L2 cache, or

main memory (see section 19.4 for more information about the operation

the of the BTB).

equest
he line
the

PART VI

356 B CHAPTER 22 THE PENTIUM Il PROCESSOR

16 bytes to
decoder

Fetch buffers (32 bytes)

TR R

FIGURE 22-2 Pentium I fetch unit.

22.3.2 Performance Considerations

Typically, you do not have to worry about the performance of the fetch unit
because the Pentium II processor uses an aggressive prefetcher, deep branch
prediction, and has a large L1 instruction cache. The combination of prefetch-
ing and branch prediction allows the processor to determine the correct execu-
, tion path and have instructions ready for execution ahead of time. The larger

L L1 cache improves the chance of a cache hit when the processor fetches raw
opcodes from the L1 cache, which can deliver 32 bytes in 1 clock cycle.

Nonetheless, we've listed a few guidelines that could help you attain opti-
mal performance from the fetch unit point of view:

“ m Keep the size of inner loops less than 16K. If the size of inner loops does not fit
‘ in the L1 cache, the cache will thrash. As a result, fetches are satisfied from
I the 1.2 cache or main memory, both of which are much slower than the L1
i cache. To fix the problem, you can break the task at hand into smaller tasks
with smaller Joops that fit within the L1 cache. To find out the size of your
inner loop, you can either look into the map file generated by the linker or

| use VTune’s static analyzer.

w Align heavily executed loops and branch and function labels on the 16-byte
boundary. By labels we're referring to the address of the branch when the
branch instruction is taken. The idea here is to fill up the execution pipe-

‘- line quickly after a branch is taken. By aligning the beginning of an exe-

370

unit
anch
refetch-
't execu-
larger
s raw

| Opti-

es not fit
ied from
ntheLl
ller tasks
> of your
linker or

> 16-byte
vhen the
on pipe-
“an exe-

22.3.3

INSTRUCTION FETCH UNIT m 357

cution block on 16-byte boundaries, you guarantee that there will be
enough opcodes to feed the three parallel decoders and, hence, quickly
fill up the ROB with micro-ops for the execution unit to work on.

s Avoid interleaving code with data such as jump tables. Because of aggres-
sive prefetching, the processor could end up decoding data unnecessarily
if it is mixed with code.

® Reduce the number of mispredicted branches. Mispredicted branches can have
a drastic effect on the Pentium II processor because of the deep pipelining ar-
chitecture: it will take more clocks to propagate new micro-ops to the execu-
tion unit. The delay is even worse if the branch target is notin the L1 cache—
since it takes longer to fetch raw opcodes and thus takes longer to feed the
pipeline.
Depending on the state of the processor, the effect of mispredicted branches
on the fetch unit could be hidden if the branch target is in the L1 cache. On
a mispredicted branch, the entire processor core becomes busy trying to
recover from the false branch prediction. If the branch target is in the L1
cache, the fetch unit typically has enough time to fetch the branch target
instructions while the rest of the units are busy recovering. But if the target
branch is out of the L1 cache, the fetch unit cannot fetch the correct instruc-
tions in time to satisfy the other stages of the pipeline, so they just stall.

Fetch Performance with Event Counters

You can use the processor’s internal event counters® to measure the effi-
ciency of the fetch unit as shown in Table 22-2 and Figure 22-3. In the fig-
ure you can see where each of the counters is sampled by the processor.
Notice that all instruction fetches or misses represent a 32-byte quantity.
For example, the IFU_Fetch counter increments by one every time the fetch
unit loads 32 bytes of instructions from anywhere.

You can use these counters to determine how well your critical loops fit in
the L1 and L2 caches. The following equations may give you some insight
into where the fetch unit is getting its instructions.

IFU_IFetchMiss
IFU_IFetch

% External Fetches (L2 and uncached) =

This percentage gives you an indication of the actual instruction fetches
that missed the prefetch buffer and the L1 cache. These unexpected fetches
are probably caused by a branch misprediction or an interrupt.

PART VI

3. See Chapter 21 for more about using V'Tune or PMonitor for event counter measurement.

358 m CHAPTER 22 THE PENTIUM Il PROCESSOR

TABLE 22-2 Pentium Il Instruction Fetch Unit Performance Event Counters

IFU_Fetch Number of all fetches including cached and
uncached fetches.

IFU_Ifetch_Miss Number of fetch misses that miss the prefetch
buffer and the L1 cache. This number also includes
uncached fetches.

L2_lIfetch Number of cached fetches that miss the L1 cache.
So this is the number of L2 cache fetches.

BUS_Tran_|IFetch Number of cached fetches that miss the L2 cache.
It does not include uncached fetches that always go
to the bus.

IFU_Mem_Stall Number of cycles that the instruction fetch unit is

stalled for any reason.

16 bytes to
decoder

22

Fetch buffers (32 bytes

IFU_FETCHS:
All Instruction
Fetches

2 Prefetch buffers (32 bytesi

N “Feton Uni

L1 Instruction Cache

. L2 FETCH
Instruction Fetches
that miss the L1 cache.

IFU_FETCH_MISS

L2_FETCH and
uncached fetches

s
BUS_TRAN_IFETCH
Instruction Fetches that

miss the L2 cache.

payoBoun

FIGURE 22-3 Sampllng of the event counters by the Pentium It processor.

12 _IFetch

% External Fetches from 1.2 =
IFU_JFetch

2

This percentage gives you an indication of the number of “demand fetches’
that could not be satisfied from the prefetch buffers or the L1 cache. Notice
that this number does not indicate all fetches from L2, only the demand
fetches. The fetch unit has a stream buffer that continuously fetches

Inters

ch
cludes

-ache.

zache.
ays go

nit is

essofr.

'tches”

Notice
ind

22.4 Branch
22.4.1

22.4.2

BRANCH PREDICTION AND THE BRANCH TARGET BUFFER & 359

instructions from the L2 cache or main memory to keep the IFU fed prop-
erly; this happens during normal operations. Since these fetches do not
hinder application performance (they are actually good fetches), they are
not counted by the L2_IFetch event counter. This counter only counts
instruction fetches that miss the prefetch buffer and the L1 cache, because
these fetches affect application performance.

BUS_TranlIFetch

% External Fetches from System Memory = 50 IFetch
_IFetc

This equation indicates the percentage of fetches that came from the system
bus. In this situation the instructions could not be found in either cache or
the prefetch buffer. This typically happens with applications executing from
uncached memory.

Prediction and the Branch Target Buffer

Operational Overview

The Pentium II processor features a deep branch prediction mechanism
that enables the processor to better predict the outcome of branch instruc-
tions. This mechanism employs a Branch Target Buffer (BTB) that can hold
up to 512 branch addresses of previously mispredicted branch instructions.
(You can find a detailed discussion about branch prediction and the BTB in
section 19.4.)

The Pentium II processor has a static prediction algorithm similar to the
Pentium processor’s with one exception: backward branch instructions that
are not in the BTB are predicted as taken in the Pentium II processor; the
Pentium processor assumes that all branch instructions not in the BTB are
not taken.

Performance Considerations

Branch misprediction is one of the first issues that you should consider
when you are optimizing for the Pentium II processor. When a branch is
mispredicted, the Pentium II processor has to flush the entire pipeline and
start fetching the correct instructions. With a deep pipelining architecture,
twelve stages, the new instructions take more clock cycles to propagate
from the fetch unit to the execution unit, making branch misprediction
more costly than with the Pentium processor, a five-stage processor.

PART VI

The Pentium exhibits a

different behavior for
backward branches
not found in BTB.

360 @ CHAPTER 22 THE PENTIUM Il PROCESSOR

You can determine how long it takes the processor to execute branch
instructions, assuming that instruction opcodes are already in the L1 cache.
With the exception of backward branches, all branch instructions that are
not in the BTB are predicted not taken, including unconditional branch
instructions.t However, backward branch instructions that are not in the
BTB are predicted taken. Use Table 22-3 to determine, on average, how
many clocks it takes to execute a branch instruction. Notice that the table
assumes that the instructions of the correct branch address are already in
the L1 code cache. If they aren’t, it takes much longer to fetch the instruc-
tions from the L2 cache or main memory.

TABLE 22-3 Pentium Il Processor Branch Behavior

orrecﬂ\) 1 1
Incorrectly 6 9-15

Now that you know how the branch prediction unit and the BTB operate,
we'll leave you with a few suggestions that could help you minimize branch
mispredictions in your code: '

s Minimize branch misprediction in your code. You can either use VTune’s dy-
namic analyzer or the performance event counters to pinpoint portions of
your code that are highly affected by branch mispredictions. You can then
rearrange your code to achieve better branch prediction behavior.

& Use Conditional Move cMovxX, FCHOVXX instructions. If possible, use these in-
structions to eliminate some of the branches in your application. For exam-
ple, you can use CHOVZ to eliminate a branch as follows:

mov eax, O mov eax, 0
dec ecx dec ecx
jnz Continue CMOVZ eax, 1
mov eax, 1

Continue:

\ J
u Trytofitcodewith high branch misprediction within the L1 cache. If the correct
target branch instructions reside in the L1 cache, the fetch, decode, and RAT
units can typically recover from the branch misprediction while the execu-
tion unit is still recovering from the misprediction.

4, Refer to section 19.4 for more details about branches.

22.4.3

erate,
ranch

ae’s dy-
dJons of
an then

1es€ in-
¢ exam-

22.5.1

N

correct
1d RAT
execu-

INSTRUCTION DECODERS =m 361

Branch Performance with Event Counters

You can use the Pentium II event counters to determine the behavior of
branch instructions within your code. Table 22-4 lists the important event
counters for branch prediction.

TABLE 22-4 Event Counters for Fetch Unit Instructions on the Pentium Pro

Number of branch instruction decoded.

BR_Inst_Decoded

BR_Inst_Retired Number of branch instructions retired.

BR_BTB_Misses

Number of branch instructions encoun-
tered with no history of the branch target
address in the BTB.

Number of branch mispredicted branch
instructions that eventually executed and
retired.

BR_MissPred_Retired:

You can measure the percentage of mispredicted branches in your code as
follows:

mispredicted branches = BR_MissPred_Retired / BR_Inst_Retired

You will also want to measure the percentage of branch instructions within
your code as follows:

branch instructions = BR_Inst_Retired / Inst_Retired

To get an accurate assessment of your branch misprediction, you must have
both values. If the percentage of branch instructions within the code is very
small, then the percentage of mispredicted branches is insignificant regard-
less of how high it is.

22.5 Instruction Decoders

Operational Overview

The Pentium II processor features three parallel instruction decoders that
can decode up to three instructions generating up to six micro-ops in 1
clock cycle. The complex decoder processes instructions of four or less
micro-ops, and the simple decoders process only instructions of one micro-
op (4:1:1 decoder template described below). The micro-code sequencer
handles instructions greater than four micro-ops in length. The generated
micro-ops are forwarded to the Register Alias Table (RAT) for further
processing.

PART VI

